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1
Introduction

Objective of the present thesis:

Thanks to the explosive growth of computational power and model develop-
ment, multiscale computational materials science has reached a stage where
many complicated phenomena or properties that are of great importance to
manufacturing can be predicted or explained. The word “ab initio study”
becomes commonplace as the development of density functional theory has
enabled the predictions to be independent of experimental data or empirical
parameters. For some crucial phenomena, e.g., precipitation processes in
multicomponent alloys, however, challenges exist due to the requirement of
an accurate and efficient description of both energetics and kinetics of a com-
plex system. Therefore a systematic methodology needs to be established
to predict the morphology and realistic formation kinetics of precipitates
in multicomponent alloys, which is the main contribution of the present
work. Aluminum alloys are chosen as prototype applications of the present
methodology, because of the well-known strengthening mechanism—age or
precipitation hardeningwhich is a typical and important precipitation process
utilized in industrial materials. Especially the realistic precipitation kinetics
in multicomponent Al-based alloys is far from being understood.

1
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2 1. Introduction

1.1. Aluminum and its alloys

A s the most abundant metallic element on this planet, aluminum has become one of the
most widely used materials in the industry since the beginning of the 20th century.

Compared with, e.g., iron, the relatively low specific mass (2.70g/cm3) of aluminum
significantly reduces the weight of the products [1]. However, pure aluminum suffers from
its softness and the low strength, limiting its structural applications. A typical strategy
to tackle this problem is to add alloying elements into the pure aluminum matrix that can
yield both satisfactory strength and ductility for general usage in automobile and aerospace
industries [2–4].

Since AlfredWilm discovered the age hardening phenomenon in aluminum alloys [5, 6],
the design of aluminum alloys has been focusing on increasing the strength without losing
the ductility. In order to get the desiredmicrostructure, a typical strategy is to find an optimal
combination of different alloying elements before proper heat treatments. Such aluminum
alloys are, therefore, typically described as heat treatable alloys [5, 7]. Elements that
are most commonly present in aluminum alloys (in various combinations) include copper,
magnesium, zinc, silicon and manganese. They are labeled commercially with different
four-digit numbers, e.g., 2xxx series with Cu as the principal alloying element, 6xxx series in
whichMg and Si are the principal alloying elements [1, 8, 9]. Typical commercial aluminum
alloys are listed in table 1.1.

Table 1.1: Commercial aluminum alloys and their applications.

Series Principal alloying elements Applications
1xxx pure Al Electrical and chemical industries
2xxx Al-Cu (Mg) Aircraft
3xxx Al-Mn Architectural applications and various

containers
4xxx Al-Si Welding rods and brazing sheet
5xxx Al-Mg Boat hulls, gangplanks and other prod-

ucts exposed to marine environments
6xxx Al-Mg-Si Architectural extrusions
7xxx Al-Zn (Cu,Mg,Cr,Zr) Aircraft and other high-strength appli-

cations
8xxx Al-Sn-Li -

1.2. Age hardening: diffusional transformation in
solids

It is well-known that the strength of aluminum alloys can be considerably increased after
proper aging. [10, 11]. This type of transformation usually occurs when the high temperature
homogenous solid solution is quenched into a two- or multi-phase region where it becomes
supersaturated. The whole heat treatment process is schematically described in the Al-
rich part of the Al-X phase diagram (figure 1.1, X refers to the alloying element) with the
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following reaction [12],
𝛼 → 𝛼′ + 𝛽

where 𝛼 refers to the homogeneous aluminum solid solution, 𝛼′ indicates a solid solution
𝛼 with a lower concentration of the alloying element, 𝛽 is the second phase (precipitates).

Figure 1.1: Schematic diagram of the heat treatment processes of age-hardened aluminum alloys. The Al-rich part
of an Al-X phase diagram (X can refer to Cu, Mg, Zn etc.) is shown where L, 𝛼, and 𝛽 refer to three different
phases: the liquid phase, the Al-rich solid solution and the precipitation phase. Arrows represent iso-composition
or isothermal transitions: 𝑎 → 𝑏, homogenization treatment; 𝑏 → 𝑎, quenching; → 𝑐, natural aging; → 𝑐′,
artificial aging. T1, T2 and T3 are temperatures at which homogenization, artificial aging and natural aging are
performed. Insets show examples of the typical microstructure after the aging process.

In spite of additional machining steps or multiple heating or cooling processes, the main
heat treatment process from figure 1.1 can be summarized by the following three steps:

Step 1. Homogenization treatment. Alloys are solutionized at a high temperature (T1) for a
sufficient time. The aim is to get a homogeneous solid solution 𝛼 containing as many
alloying atoms as possible. A high vacancy concentration is desired to accelerate the
diffusion process at temperatures where diffusion is expected to be slow.

Step 2. Quenching to room temperature T3 at which the solubility of the X atom in 𝛼 is
smaller than that at T1. As a result, the supersaturated solid solution as well as the
number of vacancies are preserved in a regionwhere the equilibrium state is composed
of the two phases 𝛼+𝛽 (yellow region in figure 1.1).

Step 3. Isothermally aging at either room temperature T3 (natural aging) or at an elevated
temperature T2 (T3<T2<T1, artificial aging) to acquire a sufficient number of uni-
formly distributed precipitates.
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During the precipitation process most of the supersaturated solid solutions evolve
through several intermediate states or metastable phases before reaching the equilibrium
state. Typically, at an early stage precipitates are fully coherent with the parent matrix
whereas a great structural mismatch between precipitates andmatrix occurs at the final stage.
Precipitation hardening is achieved via the obstruction of the motion of dislocations due to
the occurrence of these multiple phases (precipitates). The very first coherent precipitates
(clusters) fail to impede dislocations (too small) whereas the coarsened incoherent ones
(too few) can be easily bypassed or sheared by dislocations (so-called overaged) [5, 10,
13]. Optimal mechanical properties are thus generally associated with the presence of
precipitates with appropriate size and distribution. As being largely responsible for the
optimal morphology and distribution of the precipitates at the later stage, early stage
precipitations, i.e., the formation of Guinier-Preston zones (see the following section), in
aluminum alloys have been the focus of alloy microstructure studies either experimentally
or theoretically.

1.3. Early stage precipitation: Guinier-Preston zones
The precipitation sequence in aluminum alloys starts typicallywith the formation ofGuinier-
Preston (GP) zones (named after Guinier and Preston [14, 15]). GP zones are solute-rich
clusters with diameters ranging from 1 to 10 nm. In transmission electron micrographs
or field ion micrographs one can observe GP zones in different shapes. The shape of GP
zones depends on the degree of mismatch between solute and solvent atoms as well as the
elastic anisotropy of the matrix [16, 17]. If solute atoms are almost of the same size as the
solvent atoms (e.g., Al-Ag, Al-Zn systems), spherical GP zones are usually expected [18–
20]. When the sizes of the solute and solvent atoms differ more, disk-like GP zones can be
observed [7, 16, 21, 22]. These planes are usually parallel to low-index planes of the matrix
lattice (e.g. Al-Cu {100} plane) where the elastic mismatch gives the lowest energetic cost.

At the early stage of precipitation the appearance of GP zones is the consequence of
a homogeneous nucleation due to the low interfacial energy or a spinodal decomposition
within a metastable miscibility gap. The formation of GP zones is also promoted by
the excess quenched-in vacancies. Since the equilibrium vacancy concentration decreases
exponentially with temperature, precipitation processes proceed slowly at relatively low
ageing temperatures. It is the high temperature solution treatment and the rapid quenching
that retain a significant number of vacancies to speed up the precipitation [6].

The formation of GP zones improves the strength of alloys even though they are small in
size. While GP zones are fully coherent with the matrix, a size mismatch between solute and
solvent atoms often results in a large strain within the local area [7, 10]. Such a strain field
around the coherent precipitates retards the movement of dislocations whereby the strength
and hardness of alloys are appreciably increased. Since GP zones are thermodynamically
metastable, they subsequently transform to more stable transient precipitates that may
further enhance the mechanical properties [10]. Optimal mechanical properties may be
achieved, as mentioned before, by a mixture made up of multiple metastable precipitates.
The precipitation sequences in some of the most important aluminum alloys are listed in
table 1.2 [10].
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Table 1.2: Precipitation sequence in some of the most important aluminum alloys.

Aluminum alloy Precipitation sequence
Al-Ag GP zone(spheres) → 𝛾′(plates) → 𝛾(Ag2Al)
Al-Cu GP zone(discs) → 𝜃″(discs) → 𝜃′(plates) → 𝜃(CuAl2)
Al-Cu-Mg GP zone(rods) → 𝑆′(laths) → 𝑆(CuMgAl2)
Al-Zn-Mg GP zone(spheres) → 𝜂′(plates) → 𝜂(MgZn2)
Al-Mg-Si GP zone(rods) → 𝛽′(rods) → 𝛽(Mg2Si)

1.4. Multiscale computational materials science
Since modern high-resolution transmission electron microscopy (HRTEM) and atom probe
tomography (APT) became available, detailed information about the relationship between
the microstructure and mechanical properties has been obtained. In order to obtain the
desiredmechanical properties, onemust firstly investigate themicrostructure evolution [23].
Although early stage precipitation can be experimentally observed it is challenging to
theoretically predict the structures of GP zones as well as their realistic evolution kinetics.
Moreover, as the realistic aluminum alloys are typically multicomponent alloys, obtaining
new physical insight from “trial and error” experiments becomes intractable and costly.

With the rapid increase in available computing resources, computational modeling is
becoming an indispensable tool to efficiently study the microstructural evolution and kinet-
ics in alloys [23, 24]. One can flexibly isolate different physical effects—switch on/off one
or several variables to monitor their corresponding consequences, individually. After being
verified by available experimental results, the established computational methodologies can
serve as a guide for manufacturing processes or further experimental investigations.

To this end, first of all, the physical model should capture the characteristic of the
topic to be studied. The aluminum alloys that are of importance to industrial applications
typically contain multiple alloying elements, which means that multicomponent systems
must be taken into account. The challenge is then to accurately and efficiently describe
both energetics and kinetics in systems with multiple species which is a highly non-
trivial task. Precipitation processes in aluminum alloys are essentially governed by the
vacancy mediated substitutional atomic diffusion. At the very early stage of the diffusion,
precipitates, i.e., GP zones, are generally coherent with the alloy matrix. Such a feature
greatly reduces the degrees of freedom in describing the interatomic potential. Atom-
vacancy exchanges can therefore be restricted on a fixed (fcc) crystalline lattice. Moreover,
as aging must be carried out at low temperatures to get sufficient supersaturation, long-time
annealing is generally required because of the low kinetics. Calculations or simulations
must therefore be designed in a computationally feasible and efficient way without losing
the underlying physics.

Simplicity and universality have been long pursued for physical modeling. To date,
unfortunately, no simple model is capable of describing phenomena in materials at arbitrary
length or time scale [25]. For instance, although density functional theory (DFT) and
Hartree-Fockmethods solve ground state problems at the quantum level, they are challenged
by problems involving thousands of atoms or more [26]. Therefore multiscale modeling
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is necessary. Considering the different elementary processes in materials (e.g., electrons,
atoms, dislocations, grains, ...), a variety of materials properties have been computed or
predicted with satisfactory accuracy by multiscale computational modeling [27]. Numerous
computational approaches have been maturely developed, ranging from atomic scale to
macroscopic scale, from nanosecond to hours (see Fig. 1.2). A brief review of their pros
and cons is crucial before any development of a new model.

Hψ(r)=Eψ(r)
DFT

MD

10-15

 (K)MC

10-9 10-3 103 Time(s)

10-12

10-9

10-6

100

FEM

Length(m)

CALPHADDD

Multiscale methods

PF

micro

meso

macro

10-3

Figure 1.2: Multiscale methods for materials design. DFT=Density Functional Theory; MD=Molecular
Dynamics; (K)MC=(Kinetic) Monte Carlo simulation; PF=Phase Field method; DD=Discrete Dislocation method;
FEM=Finite Element Method; CALPHAD=CALculation PHAse Diagram.

1.4.1. Energetics from a quantum description

Ab initio calculations based on density functional theory (DFT) have been regarded as a
standard treatment for ground-state energetics at T = 0K for metallic systems although
the extension to finite temperatures is also available. Using only structural information
DFT extracts ground state properties from the electronic density by solving the many-
body Schrödinger equation in a self-consistent way [28]. In recent years accurate finite
temperature free energies have become available from first principles by taking all of
thermal excitation contributions into account, i.e., electronic contributions, quasi- and
anharmonic vibrational contributions and/or magnetic contributions [29, 30]. In section 2.1
the DFT method will be explained in detail.

Although satisfactory ground state energies and free energies can be predicted, the
application of DFT is limited by the requirement of expensive computing power. Nowadays
ab initio predicted properties, e.g., total energies, elastic constants, electronic structures
etc., serve as crucial energy paramenters for larger scale models, e.g., the CALPHAD
approach [31–33].
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1.4.2. Properties at finite temperatures

Only properties predicted at finite temperatures are of practical use for industry applications.
Finite-temperature transitions at atomic or molecular scale in materials, e.g., solute atom
precipitation [5], magnetic transitions [34], adsorption and desorption [35], and chemical
reactions in polymer materials [36] were shown to have a significant impact on macroscopic
mechanical properties [10]. Monte Carlo (MC) or molecular dynamic (MD) simulations
have been widely used to elucidate thermodynamics and kinetics involved in these transi-
tions driven by interatomic or intermolecular interactions. The predictive ability of these
simulations relies on the accuracy of the potential energy derived from the electronic and
atomic interactions. It is therefore generally necessary to first establish the potential energy
that reflects the real interactions among the atoms (molecules). The system driven by the
potential energy physically evolves then following a computationally efficient algorithm.
The remainder of this section will briefly introduce the main feature of MC and MD
simulations.

• (K)MC simulation

Monte Carlo simulation is one of the most efficient methods to solve problems in
materials science whose fundamental nature is stochastic, e.g., atomic diffusion,
surface adsorption and desorption, grain growth [37], film deposition (or growth) [38,
39]. Specifically MC enables one to extract properties from the ensemble average of
a system described under specific thermodynamic conditions [40–42].

A variety of Monte Carlo algorithms have been developed during the past 50
years. TheMetropolis algorithm is generally considered as the pioneer for sampling
equilibrium properties [43, 44]. The key feature of the Metropolis sampling is
the improvement of the efficiency by applying importance sampling in the phase
space [45–47]. Another breakthrough in the development of Monte Carlo algorithms
is the combination of kinetics with MC, which is now generally called kinetic
Monte Carlo (kMC), although it was originally called “𝑛-fold way algorithm” by
its developers Bortz et al. [48, 49]. The KMC algorithm unconditionally accepts
every attempt transition with known transition rate [50]. An event with a higher rate
is typically associated with a larger occurrence probability. Such a feature enables
studies of realistic kinetics in alloys at a long-time scale [51, 52]. The phase space,
or say the total number of configurations should also be a finite value. A priori
known transition probabilities are, however, necessary before implementing either
theMetropolis or 𝑛-fold way sampling. Therefore efficient evaluation of all transition
probabilities becomes important.

• Molecular dynamics

The generation of a new configuration in MD is driven by Newton’s equations
of motion [53]. From the gradient of the potential energy forces acting on each
atom are calculated. The time evolution of the system is characterized by the
instantaneous positions and velocities updated after a finite time interval. Numerical
integration of Newton’s equations of motion, e.g., using the Verlet algorithm, is
applied to propagate positions and velocities as a function of time. MD benefits
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from the explicit knowledge of the classical trajectory while suffers from the limited
time scale (typically less than 100 ns) [54]. Therefore modeling rare events such
as the thermally-excited vacancy diffusion goes far beyond the capability of MD
simulations.

1.4.3. Models for larger scale descriptions

Phenomena at the meso- or macro-scale require models which focus on larger scale objects
in materials, i.e., phases, domains, dislocations, grains or even continuum medium. Only
interactions among these objects are considered. The predictive power of these models gets
greatly enhanced when the “objects” are discretized because one can then keep track of
the detailed evolution of each unit instead of obtaining an “averaged” image only. This
advantage can be found in various models e.g., discrete dislocation method [55], phase field
model [56, 57]) and finite element method.

It should be mentioned that since the 1970s, the CALPHAD (CALculation PHAse
Diagrams) approach has become one of the most important methods to study phase equilib-
ria [58, 59]. Gibbs energies of each phase are described as polynomials of composition,
pressure and temperature where parameters are to be fitted to available experimental
data. Optimized Gibbs energies are then used to calculate equilibrium phase diagrams
as well as thermodynamic quantities. With reliable binaries it is feasible to extend
to multinaries by adding additional parameters describing interactions among multiple
species [60, 61]. However, the predictive ability of the CALPHAD model is limited by its
intrinsic approximations for alloymixing behavior and the amount of available experimental
data [62]. To model problems involving non-equilibrium transitions one should go beyond
CALPHAD.

1.5. Outline of the thesis
This thesis is divided into three main parts: (1) general background (chapter 1), (2) related
theory and methods (chapters 2 and 3) and (3) applications of the methods (chapters 4–7).
They are organized as follows:

The theory and the main methodologies used in this work will be introduced in
chapter 2, including the discussion of the technical issues in detail. Specifically, chapter 3
is devoted to the cluster expansion (CE) method in particular addressing the issues arising
in multicomponent alloys.

In chapter 4 one of the applications of the CE method in equilibrium thermodynamics
will be presented—vacancy properties in concentrated alloys. The developed simple model
is applied to extract vacancy properties in concentrated Cu-Ni alloys.

In chapter 5 precipitation thermodynamics and kinetics for dilute Al-Cu alloys are
investigated by CE for configurational energies and for diffusion activation barriers. A
significant change in kinetics will be found when local atomic environment dependent
diffusion barriers are considered. A remarkable finding when studying the impact of the
local atomic environment dependent diffusion barriers will be shown in chapter 6: In purely
phase-separating alloys ordered pattern can be kinetically driven to appear as a transient
phase.
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As an extension of DFT at T = 0 K, electronic contribution at finite temperatures to the
free energy for all the transition metals will be computed and presented in chapter 7.
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2
Theory and Method

Multiscale computational materials science can unveil intrinsic physics in
materials. By a proper use of multiscale computational methods, intricate
properties or transformations in materials can be computed or simulated.
Monitoring early stage precipitation in aluminum alloys requires simulations
at the atomic scale. An accurate description of interatomic potentials in
such simulations is the premise for obtaining trustworthy results that can
be connected with experimental observations. Cluster expansions which
provide a bridge between ab initio calculations and configurational energetics
have proven to be accurate and efficient not only in thermodynamics but
also in kinetics. Moreover, precipitates observed in simulations should be
carefully identified both in the real space and in the reciprocal space.

15
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16 2. Theory and Method

2.1. Density functional theory: A brief introduction

N owadays ab initio calculations based on density functional theory (DFT) are routinely
applied to determine the ground state properties of materials. Excellent agreement

has been found where experimental data are available for comparison [1–3]. With the fast
development of the computer hardware, DFT calculations show an increasing power in
predicting more properties when coupled with multiscale high-throughput computational
methods [4]. In this section, the essence of the DFT method will be introduced.

2.1.1. Schrödinger equation
The study of the ground state structural and electronic properties of materials can be
physically described as finding the ground state of an ensemble of interactive nuclei and
electrons [5]. In order to obtain the energy as well as wavefunctions one needs to solve the
many-body time-independent Schrödinger equation [6–8],

𝐻̂Ψ𝑖(r,R) = 𝐸𝑖Ψ𝑖(r,R) (2.1)

where r and R represent the sets of coordinate vectors {r𝑖}(𝑖 = 1, 2, 3, ..., 𝑛) of 𝑛 electrons
and coordinate vectors {R𝐼}(𝐼 = 1, 2, 3, ..., 𝑁) of 𝑁 nuclei. The Hamiltonian operator is
a linear combination of the kinetic energy and the potential energy of interactive nuclei and
electrons,

𝐻̂ = ̂𝑇 𝑁 + ̂𝑇𝑒 + ̂𝑉 𝑁−𝑁(R) + ̂𝑉 𝑒−𝑒(r) + ̂𝑉 𝑁−𝑒(r,R)

= −
𝑁
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(2.2)

where 𝑀 (𝑚) and 𝑍 (𝑒) refer to the mass and the charge of the nucleus (electron).
Practically it is impossible to solve this equation without any approximations because it

is a 3(𝑛+𝑁) dimensional correlated system. Exceptions are only limited to the cases with a
small number of particles, e.g., hydrogen atom. Simplifications for solving the Schrödinger
equation have several common features. They either (1) eliminate negligible correlations in
order to orthogonalize the vectors, or (2) reduce the number of degrees of freedom, or (3)
replace the real correlations with approximations.

2.1.2. Born-Oppenheimer (adiabatic) approximation

The Born-Oppenheimer approximation is based on separating the different time scales of
the motion of nuclei and electrons. The velocities of electrons are much larger than that
of the nuclei due to their difference in mass. Approximately the motion of electrons can
be regarded to be adiabatically independent, which means that the low-mass electrons can
catch up instantaneously with the movement of the nuclei [9]. In other words, we only need
to solve the Schrödinger equations for electrons with the nuclei assumed to be stationary. By
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applying the Born-Oppenheimer approximation the wavefunction expression can therefore
be decoupled as,

Ψ(r,R) = Θ(R)Φ(r,R) (2.3)
where Θ(R) is the nuclear wavefuntion and Φ(r,R) is the electronic wavefunction. The
decoupled adiabatic Schrödinger equations for electrons and nuclei can be then written as,

[ ̂𝑇𝑒 + ̂𝑉 𝑒−𝑒(r) + ̂𝑉 𝑁−𝑒(r,R)]Φ𝑖(r,R) = 𝜀𝑖(R)Φ𝑖(r,R) (2.4)

[ ̂𝑇 𝑁 + ̂𝑉 𝑁−𝑁 + 𝜀𝑖(R)]Θ𝐼(R) = 𝐸𝐼Θ𝐼(R) (2.5)
where 𝜀𝑖 are the eigenvalues of electrons which depend parametrically on the positions of
nuclei. Since classical nuclear approximations [10] have successfully been developed to
solve Eq. 2.5, we are now left with the most challenging problem of solving the many-body
Schrödinger equations for electrons based on fixed positions of nuclei, Eq. 2.4 [11, 12].

2.1.3. Hohenberg-Kohn theorem

The key aspect of the density functional theory lies in replacing the multi-dimensional
wavefunction with a 3D electron density from which all ground state properties can be
derived, as proposed by Hohenberg and Kohn [13]. The theorem states the following:

• The ground state energy of an 𝑛-electron system is a unique functional of the
electronic density 𝑛(r): 𝐸0 ∼ 𝐸[𝑛(r)].

• The ground state energy can be obtained at the equilibrium charge density 𝑛0(r) by
minimizing the energy functional with respect to the electronic density, which is

𝐸0 = min{𝐸[𝑛(r)]} = 𝐸[𝑛0(r)] (2.6)

According to the Hohenberg-Kohn theorem, the ground state total energy functional of
an 𝑛-electron system can be written as

𝐸0[𝑛0] = 𝑇 [𝑛0] + 𝑉𝑁−𝑒[𝑛0] + 𝑉𝑒−𝑒[𝑛0] (2.7)

where 𝑇 , 𝑉𝑁−𝑒 and 𝑉𝑒−𝑒 represent the electronic kinetic energy, electron-nucleus interac-
tions and electron-electron interactions, respectively. The effect of nuclei on the electrons,
𝑉𝑁−𝑒[𝑛0], can be regarded as an external field which is also determined by the electronic
density,

𝑉𝑁−𝑒[𝑛0] = ∫ 𝑛0(r)𝑣ext(r)dr (2.8)

Eq. 2.7 can then be rewritten as,

𝐸0[𝑛0] = ∫ 𝑛0(r)𝑣ext(r)dr + 𝐹[𝑛0] (2.9)

where a functional 𝐹[𝑛0] (= 𝑇 [𝑛0] + 𝑉𝑒−𝑒[𝑛0]) which is independent of the external
potential is defined [8].

The Hohenberg-Kohn theorem opened up a way to search for the ground state energy.
However, two unsolved problems are still left: (1) how can we find the ground state
electronic density 𝑛0 and (2) how to solve 𝐹[𝑛0].
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2.1.4. Kohn-Sham method

The Hohenberg-Kohn theorem sheds light on where the ground state properties are hidden.
The Kohn-Sham method introduced next gives then a practical way to carry out the
search [14, 15]. The strategy within the Kohn-Sham method can be summarized as:

(1) One can simplify a problem of an 𝑛-body system to 𝑛 problems of one-body systems.
(2) One can separate an interactive system into an effective non-interacting system and

extra correction terms.
First a reference system with 𝑛 non-interacting electrons is introduced. The electronic

density𝑛𝑟(r) of the reference system is assumed to be the same as the ground state electronic
density of the interacting system1. Each of these 𝑛 non-interacting electrons lies in the same
external potential as that in the interacting system. The Hamiltonian of the reference system
is then written as,

𝐻̂𝑟 =
𝑛

∑
𝑖=1

ℎ̂𝑟
𝑖 =

𝑛
∑
𝑖=1

[ − ℏ2

2𝑚𝑖
∇2

𝑖 + 𝑣𝑟
eff(r𝑖)] (2.10)

where ℎ̂𝑟 refers to the one-electron Kohn-Sham Hamiltonian. Then the Schrödinger
equation for each electron in the reference system is,

ℎ̂𝑟
𝑖 𝜓𝑟

𝑖 = 𝜀𝑟
𝑖 𝜓𝑟

𝑖 (2.11)

Based on the reference system, the functional 𝐹[𝑛0] of the interacting system in Eq. 2.9
can be rewritten as,

𝐹[𝑛0] = 𝑇 [𝑛0] + 𝑉𝑒−𝑒[𝑛0]

= (𝑇 𝑟[𝑛0] + 𝑇 ′[𝑛0]) + (𝑒2

2 ∬ 𝑛0(r)𝑛0(r′)
|r − r′| drdr′ + 𝑉 ′

𝑒−𝑒[𝑛0])

= (𝑇 𝑟[𝑛0] + 𝑒2

2 ∬ 𝑛0(r)𝑛0(r′)
|r − r′| drdr′) + 𝐸xc[𝑛0] (2.12)

where the kinetic energy 𝑇 [𝑛0] and the electron-electron interaction 𝑉𝑒−𝑒[𝑛0] can be
explicitly divided into a reference term and an extra term, respectively. Two extra terms,
𝑇 ′[𝑛0] and 𝑉 ′

𝑒−𝑒[𝑛0], constitute the exchange-correlation energy functional,

𝐸xc[𝑛0] = 𝑇 ′[𝑛0] + 𝑉 ′
𝑒−𝑒[𝑛0] (2.13)

Then the ground state energy functional in Eq. 2.9 with the assumption that

𝑛𝑟(r) = 𝑛0(r) (2.14)

will be,

𝐸0[𝑛𝑟] = 𝑇 𝑟[𝑛𝑟] + ∫ 𝑛𝑟(r)𝑣ext(r)dr + 𝑒2

2 ∬ 𝑛𝑟(r)𝑛𝑟(r′)
|r − r′| drdr′ + 𝐸𝑥𝑐[𝑛𝑟] (2.15)

In the reference system it is trivial to compute the electronic density from one-electron
wavefunctions. Then we are left with the problem of finding the proper one-electron
1superscript “𝑟” in this section indicates the reference system
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wavefunctions𝜓𝑟
𝑖 whichminimize the total energy functional of the systemwe are interested

in. According to theKohn-Sham algorithm, the ground state energy𝐸0 can be obtained from
Eq. 2.6 via solving 𝑛 one-particle Schrödinger equations (Kohn-Sham equations) [14, 16]:

{ − ℏ2

2𝑚𝑖
∇2

𝑖 + 𝑣𝑟
eff(r)}𝜓𝑟

𝑖 (r) = 𝜀𝑟
𝑖 𝜓𝑟

𝑖 (r) (2.16)

by setting

𝑛𝑟(r) =
𝑛

∑
𝑖=1

|𝜓𝑟
𝑖 (r)|2 (2.17)

where
𝑣𝑟
eff(r) = 𝑣ext(r) + 𝑒2 ∫ 𝑛𝑟(r′)

|r − r′|dr
′ + 𝜇xc[𝑛𝑟(r)] (2.18)

and
𝜇xc[𝑛𝑟(r)] = 𝛿𝐸𝑥𝑐[𝑛𝑟(r)]

𝛿𝑛𝑟(r) (2.19)

is called the exchange-correlation potential [5, 17].
Eqs. 2.16–2.19 should be solved in a self-consistent way [14, 15, 18] (see also Fig. 2.1).

To beginwith, an initial trial electronic density𝑛𝑟(r) is generated. The exchange-correlation
potential 𝜇xc[𝑛𝑟(r)] and the effective Kohn-Sham potential 𝑣𝑟

eff(r) are then calculated from
Eqs. 2.19 and 2.18. An updated electronic density is subsequently computed by Eqs. 2.16
and 2.17. This process repeats until a self-consistent electronic density is obtained. The
ground state total energy is then given by,

𝐸0 =
𝑛

∑
𝑖=1

𝜀𝑟
𝑖 − 𝑒2

2 ∬ 𝑛𝑟(r)𝑛𝑟(r′)
|r − r′| drdr′ + 𝐸xc[𝑛𝑟(r)] − ∫ 𝑛𝑟(r)𝜇xc[𝑛𝑟(r)]dr. (2.20)

The remaining problem is to find the exact expression of the exchange-correlation
functional 𝐸xc[𝑛]. This is also where the accuracy of DFT calculations gets limited. A
hierarchy of exchange-correlation functionals based on various approximations has been
developed.

2.1.5. Exchange-correlation functionals

According to the sequence of an increasing accuracy, four rungs of the “Jacob’s ladder”
within the family of DFT exchange-correlation functionals have been established [19, 20].

• Local density approximation (LDA)
The LDA simply assumes that the exchange-correlation energy depends on the local
electronic density only,

𝐸LDA
xc [𝑛(r)] = ∫ 𝑛(r)𝜀[𝑛(r)]dr (2.21)

where 𝜀[𝑛(r)] is the exchange-correlation energy per electron of a homogeneous
electron gas with the local density 𝑛(r). It is exact only for systems whose electronic
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Initial trial density as nin(r)

Solve μxc[n(r)] and veff(r)

Solve Kohn-Sham equation and obtain ψi(r)

Calculate nout(r) from ψi(r)

Compare nout(r) and nin(r)

Calculate ground state energy E0

Output E0, ψi(r), nout(r), μxc[n(r)], veff(r) etc.

Check required accuracy

No
Yes

Mix nout(r) and nin(r)

Yes
No

Figure 2.1: The flow chart of self-consistently solving Kohn-Sham equations to obtain the ground state energy.

density variation is sufficiently slow [21, 22]. The actual performance shows that
the LDA can yield satisfactory results for systems with covalent, ionic and metallic
bonds, especially for those with homogeneous electronic density. However, a well-
known deficiency of the LDA is the overestimation of the bond strength [5, 19, 20].
Lattice constants and atomic ground state energies obtained with LDA are therefore
generally underestimated whereas cohesive energies are overestimated. Band gaps in
semiconductors and insulators are seriously underestimated.

• Generalized gradient approximation (GGA)
The GGA improves the LDA with an additional assumption that the exchange-
correlation energy depends also on the gradient of the electronic density ∇𝑛(r),

𝐸GGA
xc [𝑛(r)] = ∫ 𝑛(r)𝜀[𝑛(r)]dr + ∫ 𝐹xc[𝑛(r), ∇𝑛(r)]dr (2.22)
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where a functional 𝐹xc which may not be designed in a unique way is required
to satisfy several conditions for the exchange correlations of electrons. Several
exchange-correlation functionals in the “GGA family” have been developed in recent
years:

PW91 the functional proposed by Perdew et al. in 1991 [23].
PBE the Perdew-Burke-Ernzerhof functional [24, 25].
AM05 the functional designed to include surface effects by Armiento and Mattson

in 2005 [26].
PBEsol A revised PBE functional that improves predictions of equilibrium properties

in solids [27].

Generally speaking, the GGA corrects the over-binding deficiency of the LDA and
yields better results in predicting correct ground state properties of metals. However,
besides the problem of underestimation for band gaps, it was reported that the
GGA overcorrects the over-binding problem, resulting in an overestimation of lattice
constants, bulk moduli, phonon frequencies etc. More comparison among different
GGAs can be found in Refs. [5, 19, 20, 28].

• Meta-GGA and hybrid functionals
More accurate descriptions can be achieved by adding higher order approximations.
In the meta-GGA both the Laplacian of the electronic density ∇2𝑛(r) and the local
kinetic energy density which is the sum of all the occupied Kohn-Sham eigenstates,

𝜏(r) = 1
2

𝑛
∑
𝑖=1

|∇𝜓𝑖(r)|2, (2.23)

are taken into account. In addition, accuracy may also be increased by mixing non-
local and local functionals. As an example, the B3LYP functional consists of 80%
of the LDA and 20 % of the exact Hartree-Fork exchange functional as well as other
functionals wherein empirical parameters may exist [29, 30].

It should be noticed that the choice of the exchange-correlation functional depends on the
features of the system under study and properties to be evaluated. For instance, for metallic
solid solutions, it is unwise to choose the B3LYP functional which is designed for molecules.
Likewise if the electronic density of the system deviates from homogeneous distribution, the
GGA or the meta-GGA yields a better description than the LDA. Interestingly, sometimes
LDA can also give excellent results for inhomogeneous systems [19]. The reason might be
the cancelation of errors induced by two opposite deficiencies.

2.1.6. Limitations of DFT

Although DFT has been successful in the prediction of properties in materials from first
principles, its limitations still exist due to the intrinsic approximations in the exchange-
correlation functionals. The deficiencies of the current widely used exchange-correlation
functionals lead to several failures such as [16, 31]:
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• Incorrect prediction of the exited states, e.g., the underestimation of band gaps in
semiconductors and insulators.

• Dissatisfying description of the binding behavior.

• Poor predictions for elements with strongly correlated d- and f -bands.

• Failure for predicting van der Waals interactions.

Fortunately, for the present study—ground state total energies of multi-component
metallic systems without strong d- or f - bands, the GGA-PBE can give reasonable results
with satisfactory accuracy.

2.2. Lattice gas model
As multicomponent alloys in a solid solution state are generally in the form of a certain
crystalline structure, it is reasonable to study phenomena in terms of configurational order
by a lattice gas model. The definition of the “lattice gas” refers to the assumption that
species (atoms as well as vacancies) are confined to a fixed lattice. For substitutional solid
solutions it is also assumed that each lattice site is associated with one and only one type of
the species [32]. This approximation applies for one-, two-, or three-dimensional lattices.

2.2.1. Generalized mean field approximations

Based on the lattice gas model, the degrees of freedom of a many-body system are
discretized into a finite mesh. By doing this the system becomes tractable, but the problems
are still far from solved. Further approximations are necessary to achieve an efficient
description of interactions among particles at a low computational cost. To simplify a
many-body problem to “one-body” problems mean field approximations (MFAs) introduce
“averaged effective interactions” acting on a single particle generated by all the other
particles [33]. Specifically fluctuations of the system can be expanded around the mean
of an effective field with different “order” [34].

• Bragg-Williams approximation
The Bragg-Williams approximation, also called the single-site or “zeroth order”
approximation, is the simplest mean field approximation. It is assumed that the
occupation of one lattice site is not influenced by any of the other lattice positions.
In other words, the probabilities of single-site occupations by atoms of type 𝑖 are
exclusively determined by the atomic concentration 𝑥𝑖 [35–37]. For example, in
binary A-B alloys, the configurational energy described by the Bragg-Williams
approximation can be expressed as,

𝐸(𝑥𝐴) = ∑
𝑖

∑
𝑗

𝑛𝑖𝑗𝐽𝑖𝑗 = 𝑧
2[𝑥2

𝐴𝐽𝐴𝐴 + 2𝑥𝐴𝑥𝐵𝐽𝐴𝐵 + 𝑥2
𝐵𝐽𝐵𝐵], (2.24)

where 𝐽𝑖𝑗 is the bonding energy between nearest neighbor sites 𝑖-𝑗, 𝑧 is the coordina-
tion number and 𝑥𝐴(𝐵) is the atomic concentration of A (B) atom. The corresponding
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configurational mixing entropy has the form,

𝑆 = −𝑘𝐵[𝑥𝐴ln𝑥𝐴 + 𝑥𝐵ln𝑥𝐵], (2.25)

where 𝑘𝐵 is the Boltzmann’s constant.

• Quasi-chemical approximation
Within the quasi-chemical approximation (also called the pair approximation) nearest
neighbor pairs correlate with each other by a certain degree of short range order. Solid
solutionswith phase separating or ordering tendency exhibit non-randomdistributions
of 𝑖-𝑗 pairs. At finite temperatures equilibrium states can be reached by minimizing
Gibbs energies with respect to each pair correlation function. If we define a short-
range-order interaction parameter, 𝜔 = 𝐽𝐴𝐵 − (𝐽𝐴𝐴 + 𝐽𝐵𝐵)/2 [38–40], then the
Gibbs energy can be expressed as,

𝐺 = 𝐸 − 𝑇 𝑆
= 𝑧

2 ∑
𝑖,𝑗

𝑥𝑖𝑗𝐽𝑖𝑗 + 𝑘𝐵𝑇 ln𝑊(𝑥𝑖, 𝑥𝑖𝑗)

= 𝑧
2(𝑥𝐴𝐽𝐴𝐴 + 𝑥𝐵𝐽𝐵𝐵 + 2𝑥𝐴𝐵𝜔) + 𝑘𝐵𝑇 ln𝑊(𝑥𝑖, 𝑥𝑖𝑗), (2.26)

where 𝑥𝑖𝑗 is the concentration of pair 𝑖-𝑗 and 𝑊(𝑥𝑖, 𝑥𝑖𝑗) represents the total number
of possible arrangements of A and B atoms. It is apparent that the Gibbs energy is a
function of point and pair correlation functions.

• Cluster variation method (CVM)
The cluster variation method, proposed by Kikuchi [41, 42] more than 50 years ago, is
derived based on a generalized mean field approximation. It generalizes correlations
in terms of 𝑛-body clusters which is expected to be exact if clusters of infinite size are
included [43]. The formalism of the CVM is based on the establishment of a cluster
algebra on fixed lattices decorated by different occupation variables assigned to each
species 𝑖 (𝑖 = 𝐴, 𝐵, 𝐶...). The configurational energy functional (or Hamiltonian)
[𝐸] is written as a weighted summation of effective cluster interactions (ECIs)1 while
the configurational entropy functional [𝑆] is expressed as a sum of generalized “𝑥ln𝑥”
terms [44, 45],

[𝑆] = 𝑘𝐵
𝑀

∑
𝑖=1

𝛾𝑖 ∑
𝜎𝑖

[𝑝𝑖(𝜎𝑖)]ln[𝑝𝑖(𝜎𝑖)], (2.27)

Where 𝛾𝑖 is the Kikuchi-Barker coefficient associated with the cluster of type 𝑖, 𝑝𝑖(𝜎𝑖)
refers to the density function of the cluster of type 𝑖 with decoration 𝜎𝑖 and 𝑀 the
maximal clusters used in one expansion, i.e., four-body clusters in the tetrahedron-
triangle (TT) approximation and six-body clusters in the tetrahedron-octahedron (TO)
approximation [46]. It is generally believed that by including larger maximal clusters
higher accuracy can be reached. For most of the alloys, convergence can be nicely
achieved with maximal clusters including four atoms.

1See section 2.4 for more details
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2.2.2. Case study: The Ising model

The Isingmodel is a prototype case of the lattice gas model originally proposed for modeling
magnetic transitions. It was afterwards generalized to study the configuration dependent
properties in solid solutions. In the Ising model spins which are either up (+1) or down (–1)
are arranged on the lattice sites of an 𝑛-dimensional lattice. Nearest neighbor interactive
spin pairs are associated with an interaction −𝐽 if they are parallel or +𝐽 if they are
antiparallel [32, 46–48]. The total energy under an external magnetic field can be expressed
as [49],

𝐸 = −𝐽
𝑁

∑
𝑖,𝑗

𝜎𝑖𝜎𝑗 − 𝐻
𝑁

∑
𝑖=1

𝜎𝑖, (2.28)

where 𝜎𝑖 represents the spin variable of site 𝑖 with value +1 or −1, “𝑖,𝑗” corresponds to the
nearest neighbor spin pair,𝑁 is the total number of spins and𝐻 the magnetic field intensity.

Although simple the Ising model is non-trivial with respect to analytical solutions. For a
one-dimensional Ising model an exact solution had been obtained where no transitions were
found. Phase transitions have been observed in two- or three-dimensional cases [50].

2.3. Vacancy-assisted substitutional diffusion in solid
solution

One application of the lattice gas model is to model phase transformations on a fixed
crystalline lattice, e.g., fcc alloys. From amicroscopic point of view, precipitation processes
in substitutional solid solutions are the consequence of atomic diffusion via vacancies on
the lattice. Substitutional atoms may exchange their positions with neighboring vacancies
once they acquire enough excitations at finite temperatures [51–53] (see Fig. 2.2). However,
oftentimes aging treatment for aluminum alloys is performed at low temperatures where the
diffusion kinetics is typically very slow.

2.3.1. Transition state theory for thermal activation processes

Substitutional diffusion can be regarded as stochastic walks of diffusing atoms on a certain
lattice. In close packed structures diffusion can hardly happen without vacancies. Most of
the time atoms keep oscillating on their equilibrium lattice positions at certain vibrational
frequencies. By chance vacancy-atom swapping may occur if one atom next to a vacancy
gets thermally activated and overcomes a certain activation energy barrier [54]. Such a
description suggests that diffusion at the atomic level depends not only on the number
of available vacancies but also on the activation energy. According to the transition state
theory (TST) [55], the rate of the thermally activated jumps of the diffusing atom follows
an Arrhenius relation [54, 56]:

𝜈(𝑉 , 𝑇 ) = 𝑘𝐵𝑇
ℎ exp( − Δ𝐹 act(𝑉 , 𝑇 )

𝑘𝐵𝑇 ) (2.29)

where Δ𝐹 act(𝑉 , 𝑇 ) is the thermal activation free energy, i.e., free energy difference
between the saddle point and the end point and ℎ is the Planck constant. To facilitate the
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Figure 2.2: Vacancy-assisted substitutional diffusion in fcc ternary alloys. The energy profile is shown by the thick
red curve where the two valleys are energies of the end points (𝐸1 and𝐸2) and the peak is the energy at the saddle
point (𝐸𝑠). The corresponding configurations are also attached. Blue, orange and green solid circles refer to three
alloying elements (the close-packed [110] plane is shown). Dashed open circles indicate the original positions of
atoms without the diffusing atom sitting at the saddle point. The kinetically resolved activation (KRA) barrier is
illustrated by the black double-headed arrow.

standard 𝑇 =0K DFT calculations, it is generally preferred to separate the activation energy
at 𝑇 =0K from Δ𝐹 act(𝑉 , 𝑇 ) in the exponential and put all relevant thermal excitations
(mainly the vibrational contributions) into a prefactor 𝜈0(𝑉 , 𝑇 ) [57]. Eq. 2.29 then becomes,

𝜈(𝑉 , 𝑇 ) = 𝜈0(𝑉 , 𝑇 )exp( − 𝑄
𝑘𝐵𝑇 ) (2.30)

where 𝑄 = Δ𝐸act
0𝐾(𝑉 ) referring to the activation barrier at 𝑇 =0K and 𝜈0(𝑉 , 𝑇 ) is the

so-called effective attempt frequency. The activation energies at 𝑇 = 0 K in Eq. 2.30 are
nowadays routinely calculated via the nudged elastic band (NEB) method which will be
discussed in Sec. 2.3.3.

Several approaches are available for evaluating 𝜈0(𝑉 , 𝑇 ). A simplest estimation is based
on an Einstein frequency which is the frequency of the jumping atom when all the atoms
are at the equilibrium positions:

𝜈Ein0 = 1
2𝜋 √𝑘/𝑀 (2.31)

where 𝑀 is the mass of the jumping atom and 𝑘 is the spring constant of the jumping
atom at the equilibrium position. A more accurate calculation using a high-temperature
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approximation of phonon modes at the Gamma point is the Vineyard formula [58, 59]

𝜈Vin0 =
∏𝑁

𝑗 𝜈𝑗

∏𝑁−1
𝑗 𝜈′

𝑗
(2.32)

where 𝜈𝑗 (𝜈′
𝑗) are normal frequencies at theGamma point in the equilibrium (transition) state.

Of course, if one aims at accurate calculations of the temperature and volume dependent
effective attempt frequency, all thermal excitations should be included in Eq. 2.29.

2.3.2. Kinetically resolved activation (KRA) barrier

Due to the multiple local atomic configurations in multi-component alloys, the activation
barrier𝑄 depends on the jumping direction, i.e., fromFig. 2.2 it is apparent that𝑄(1 → 2) ≠
𝑄(2 → 1). A problem then rises that the energy barrier is not a state function anymore. Van
de Ven et al. [60, 61] solved this problem by introducing the so-called kinetically resolved
activation (KRA) barrier which is defined as,

𝐸KRA = 𝐸𝑠 − 1
2(𝐸1 + 𝐸2), (2.33)

as is also schematically shown in Fig. 2.2. Then the activation barrier can be rewritten for
jump 1 → 2 as,

𝑄 = 𝐸KRA + (𝐸2 − 𝐸1)/2. (2.34)

2.3.3. Saddle point energy calculations
It is essential to know the saddle point energy before calculating activation barriers. Inmulti-
component alloys the saddle point may not necessarily be right at the middle point between
two end points because symmetry may be broken due to the multiple interactions [54].
The most widely used and efficient method for searching the saddle point is called the
nudged elastic band (NEB) method. It is also applied to compute the minimum-energy
path (MEP) [62, 63]. The schematic description of the NEB method is shown in Fig. 2.3.
To perform NEB calculations initial and final structures should firstly be fully relaxed. An
initial guess for the transition path (called the elastic band, labeled by “NEB” in Fig. 2.3)
is then made by interpolating several intermediate “images” between initial and final states.
Finally the saddle point (or the MEP) can be found by minimizing the total energy of
the elastic band with respect to atomic displacements under the nudge of the band (i.e.,
perturbations to different components of spring forces). An improved NEB method called
the climbing image nudged elastic band (CI-NEB) method has also been developed (see
Ref. [64, 65] for more details). In the present thesis the CI-NEB method is used for all the
calculations of the saddle point energy.

2.4. Cluster expansion
The cluster expansion (CE) method is designed specifically to treat problems related to the
configurational order in materials. The advantage of the CE is particularly evident for the



2.4. Cluster expansion

2

27

Figure 2.3: Schematic diagram of the nudged elastic band (NEB) method. Large open circles and curves in thick
black lines represent the contours of the potential energy surface where the initial and the final states are labeled.
Grey solid circles are intermediate “images” connected by the elastic band. Inset shows different force components
acting on a specific “image” from its neighbor “images”. The nudged elatic band and the minimum-energy path
are labeled by “NEB” and “MEP”, respectively. (from: http://theory.cm.utexas.edu/henkelman/research/saddle/)

case when ab initio DFT calculations are challenged by cumbersome energy evaluations.
In Monte Carlo simulations, for example, the most time-consuming step is the computation
of the configurational energy for every iteration. It is therefore impractical to rely on DFT
calculations only, especially when the system is large. Readers can refer to section 3.2.1 for
the basics of the CE in detail. In the following sections computation details of the CE will
be explained and discussed.

2.4.1. Calculation of effective cluster interactions

Effective cluster interactions (ECIs) can be extracted by the structure inversion method
(see section 3.2.1 for details). One should firstly establish an energy database of several
known structures typically by ab initio DFT calculations. For each structure in the energy
database the correlation function of each selected cluster is then examined by evaluating the
Connolly-Williams matrix [66]. With the Connolly-Williams matrix the structure inversion
can be applied by either (a) the direct inversion method or (b) a least-squares procedure.
If the Connolly-Williams matrix is a square matrix, direct inversion might be efficient.
Otherwise the Connollly-Williams matrix is a pseudo-inverse which requires a least-squares
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fit. ECIs are then extracted after minimizing the fitting error [43, 67],

∑
𝑠

𝑤[𝑠][𝐸DFT[𝑠] − ∑
𝛼

̃𝐽𝛼⟨𝜎𝛼[𝑠]⟩]2 = min, (2.35)

Where 𝐸DFT[𝑠] is the energy of structure 𝑠 obtained with DFT and 𝑤[𝑠] is a weight factor
assigned to each structure to make sure that ground-state structures have higher weight than
metastable ones,

𝑤[𝑠] = 1
1 + 𝜔( 𝑑[𝑠]

⟨𝑑⟩ )
2 , (2.36)

where 𝑑[𝑠] is the energy difference between structure 𝑠 and the ground state structure at the
same composition (convex hull), ⟨𝑑⟩ is the expectation value of 𝑑[𝑠] and 𝜔 is a scale factor.

2.4.2. Criteria for a good CE

The performance of a CE can be tested with some fitness criteria. Common fitness criteria
are (a) the root mean square fitting error for known structural energies and (b) a measure of
the “predictive ability”—the leave-one-out cross validation (LOOCV) score [43, 67–71],

LOOCV =
√√√
⎷

1
𝑁𝑠

𝑁𝑠

∑
𝑠=1

(𝐸DFT[𝑠] − 𝐸CE[𝑠∗])2, (2.37)

Where 𝑁𝑠 is the number of structures, 𝐸CE[𝑠∗] is the predicted energy by a CE extracted
from a least-squares fit based on the energy database excluding structure 𝑠.

By adding more ECIs in a CE the fitting error will always go down as a result of an
increasing degree of freedom. The LOOCV predictive error, on the other hand, increases
after arriving at a minimum (see Fig. 2.4). Similarly as for a polynomial fitting a more
accurate fit is always achieved at the cost of the predictive ability.

2.4.3. Ground-state search: Towards an optimized CE

The structure inversion method makes it possible to effortlessly calculate both the predicted
energies from one set of ECIs and ECIs from an ab initio energy database. The ground-state
search can therefore be efficiently performed within a pre-defined “structure pool” (SP),
i.e., a set of structures with restricted size and/or maximal length of the translation vectors.
Since a “good” CE is generally judged by how accurately the convex hull is reproduced
instead of all structures, the performance of the CE can therefore be improved by a ground-
state-search procedure [43, 72]. The whole procedure (schematically shown in Fig. 2.5) can
be described by the following steps:

1. Compute energies of a group of small supercell structures via ab initio DFT calcula-
tions since they are not computationally expensive. These energies can be regarded
as the initial “energy pool” (EP).

2. Calculate the correlation functions for all possible structures within the SP.
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Number of ECIs
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ro

r

fitting error

predictive error

similar to polynomial fitting

leave-one-out cross validation

Figure 2.4: A comparison of the fitting error and the “LOOCV” predictive error. The fitting error decreases with
an increasing number of ECIs (purely thick green line) while the “LOOCV” predictive error exhibits a parabolic
behavior (line with the first half in green and the second half in red). The similarity of the predictive error and the
polynomial fitting is also illustrated (insets) where either underfitting or overfitting gives relatively large error.

3. Obtain a CE from the current EP and use these ECIs to predict energies of all the
possible structures in the SP. If ground state candidates with predicted total energies
below the convex hull are found, these candidates should then be computed ab initio.

4. Update the EP by adding the newly-calculated ab initio energies and obtain an updated
CE from the expanded EP.

5. Repeat the last two steps.

Build a small ab initio energy database(ED)

cluster expansion

Predict energies of the SD and plot convex hull  

Build a hypothetical structure database (SD) 

Check if new ground state CANDIDATES found  

Calculate ab initio energies of these candidates and update ED  

yes

No convergence Finish searching

no

Good CE

Figure 2.5: A flow chart for the ground-state search process using the CE.

Every iteration from step 3 to 5 can spontaneously increase the “volume” of the EP
as well as the accuracy of the CE. As the performance of the CE gets improved new
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ground state structures become less likely to be found. Eventually the ground-state search
converges when no more new ground-state structures are discovered and the LOOCV score
is sufficiently small [73]. The criteria for the convergencemay also be found by (1) checking
the LOOCV score for structures which are not used for extracting the CE or by (2) repeating
the algorithm with a different initial EP.

2.5. Monte Carlo simulation
Monte Carlo simulations (MC) provide efficient algorithms to evaluate properties which
are sensitive to atomic configurations at finite temperatures, e.g., configurational energies,
heat capacities, correlation functions etc. The MC with the residence time algorithm
implemented, also called the kinetic Monte Carlo (kMC), enables one to keep track of the
evolution kinetics. In the following sections the (kinetic)Monte Carlo theory and algorithms
used in the present thesis will be discussed.

2.5.1. Partition function

The partition function of a system represents all the statistical information when the system
reaches thermodynamic equilibrium,

𝑍 = ∑
𝜎

𝑒−𝛽𝐸(𝜎) , (2.38)

where 𝛽 = 1
𝑘𝐵𝑇 with 𝑘𝐵 representing the Boltzmann’s constant and𝑇 the temperature1,𝐸(𝜎)

is the energy associated with configuration 𝜎. The sum goes over all possible microstates
that the system can visit [49, 74, 75]. If an energetic degeneracy exits, or say multiple
microstates take the same energy 𝐸(𝑠), the partition function is then,

𝑍 = ∑
𝑠

𝑔𝑠𝑒−𝛽𝐸(𝑠) , (2.39)

where 𝑔𝑠 is the density of states associated with energy 𝐸(𝑠). The temperature independent
density of states can be evaluated by the algorithm proposed by Wang and Landau. [76].
With the definition of the partition function it is evident that the probability of the occurrence
of any particular microstate 𝜎 at thermodynamic equilibrium can be written as the Bolzmann
distribution,

𝑃 (𝜎) = 𝑒−𝛽𝐸(𝜎)

𝑍 , (2.40)

As a result it is required to obey the detailed-balance for sampling equilibrium properties in
the MC algorithm, see also section 2.5.3.3.

2.5.2. Thermodynamic quantities

Since the partition function has been well defined its connection to a variety of thermody-
namic quantities is straightforward, i.e.,
1Without specification, 𝛽 in this thesis has the same meaning as here.
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• Free energy
𝐹 = − 1

𝛽 ln𝑍 (2.41)

All the other thermodynamic quantities can be derived from the free energy, i.e.,

• internal energy

𝑈 = ⟨𝐸⟩ = 𝜕(𝛽𝐹)
𝜕𝛽 (2.42)

• Heat capacity

𝐶𝑣 = 𝜕𝑈
𝜕𝑇

= − 𝛽
𝑇

𝜕𝑈
𝜕𝛽

= 𝛽
𝑇

𝜕2(𝛽𝐹)
𝜕𝛽2

= 𝛽
𝑇

𝜕2𝑙𝑛𝑍
𝜕𝛽2

= 𝛽
𝑇

𝜕
𝜕𝛽 ( 1

𝑍
𝜕𝑍
𝜕𝛽 )

= 𝛽
𝑇 [ 1

𝑍
𝜕2𝑍
𝜕𝛽2 − 1

𝑍2 (𝜕𝑍
𝜕𝛽 )

2
]

= 𝛽
𝑇 [⟨𝐸2⟩ − ⟨𝐸⟩2], (2.43)

For magnetic systems similar equations in terms of magnetization can be derived as,

• Magnetic susceptibility

𝜒𝑣 = 𝜕⟨𝑀⟩
𝜕𝐻

= 𝛽[⟨𝑀2⟩ − ⟨𝑀⟩2], (2.44)

Where 𝑀 is the magnetization of the material and 𝐻 is the magnetic field intensity.

• Entropy
It should be noticed that some thermodynamic quantities, e.g., the free energy and
the entropy cannot be readily measured directly from Monte Carlo simulations. This
is because they are not simply quantities that measure the average fluctuations of
microstates but are dependent on the available size of the phase space [77, 78].
However, as one can obtain the internal energy 𝑈 directly from the MC, the entropy
can be derived from the integration of the heat capacity,

𝑆(𝑇 ) = 𝑆(𝑇0) + ∫
𝑇

𝑇0

𝐶𝑝
𝜏 𝑑𝜏, (2.45)
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Alternatively, one can also firstly compute the free energy from the integration of
Eq. 2.42,

𝛽𝐹(𝛽) = −𝑆(∞) + ∫
𝛽

0
𝑈𝑑𝛽′, (2.46)

Where 𝑆(∞) refers to the entropy at the high temperature limit with the value
−𝑘𝐵[𝑥ln𝑥 + (1 − 𝑥)ln(1 − 𝑥)] (𝑥 is the composition) for binary systems. Then
the entropy can be obtained from the derivative of the free energy,

𝑆 = −(𝜕𝐹
𝜕𝑇 )

𝑣
. (2.47)

2.5.3. Markov chains

States 𝜎1, 𝜎2, 𝜎3, ..., 𝜎𝑛... generated in the MC form a so-calledMarkov chain. One of the
most important properties is that the newly-generated state is only dependent on the present
state and has no relation to the previous states [49, 79], which is expressed as,

𝑃(𝜎𝑛+1|𝜎1, 𝜎2, 𝜎3, ..., 𝜎𝑛) = 𝑃(𝜎𝑛+1|𝜎𝑛). (2.48)

2.5.3.1. Transition matrix

For finite size systems with the total number of states 𝑁𝑚, an 𝑁𝑚-dimensional row vector
v describing the probability distribution is defined so that entries of the vector sum up to
unity. For any two states 𝑖, 𝑗 ∈ 𝑁𝑚 there is a transition probability 𝑝𝑖𝑗 = 𝑝(𝜎𝑖 → 𝜎𝑗). It
follows that transition probabilities among different states form an 𝑁𝑚 × 𝑁𝑚 transition
matrix P with elements 𝑝𝑖𝑗.

The transition matrix is a stochastic matrix that has the following important proper-
ties [79, 80]:

1. The value of each element is between 0 and 1.

2. The sum of the row elements should be unity, i.e. ∑𝑗 𝑝𝑖𝑗 = 1.

3. If v0 is assumed to be the initial probability distribution and P is the transition matrix
of a time-homogeneous Markov chain (i.e., the transition matrix is always the same
for each transition), the probability distribution after 𝑡 steps will be v0 ⋅ P𝑡.

2.5.3.2. Equilibrium probability distribution

The transition matrix P of a Markov chain is regular and ergodic if all entries are definitely
positive over time and any state can be visited from any other state within a finite amount
of steps. There is a limiting probability distribution v𝑠 called the equilibrium (or stationary)
probability distribution which satisfies [81]

v𝑠 ⋅ P = v𝑠, 𝑡 → ∞ (2.49)

The equilibrium probability distribution is also defined as

v𝑠 = lim
𝑡→∞

v0 ⋅ P𝑡, (2.50)
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where v0 is an arbitrary initial probability distribution vector which implies that the
stationary distribution is independent of the initial state. As 𝑡 goes towards infinity the
powers P𝑡 approach a limiting matrix P𝑠 whose column elements are of the same vector v𝑠.
Once the equilibrium state has been reached, the probability distribution becomes invariant
in any number of steps,

v𝑠 ⋅ P𝑡
𝑠 = v𝑠. (2.51)

It immediately follows that, comparing Eq. 2.51 with 2.49,

P𝑡
𝑠 = P𝑠 (2.52)

which indicates an important property of the limiting matrix P𝑠: it is an idempotent matrix
which is always diagonalizable with eigenvalues either 0 or 1. From Eq. 2.49 it is also
evident that the equilibrium probability distribution v𝑠 is an eigenvector of the transition
matrix associated with the eigenvalue 1.

2.5.3.3. Master equation and detailed balance

The flux of the probability density with respect to the time can be described by themaster
equation, which is given by [49, 79],

𝜕𝑝(𝜎𝑗, 𝑡)
𝜕𝑡 = ∑

𝜎𝑖

𝑝𝑡(𝜎𝑖 → 𝜎𝑗)𝑝(𝜎𝑖, 𝑡) − ∑
𝜎𝑖

𝑝𝑡(𝜎𝑗 → 𝜎𝑖)𝑝(𝜎𝑗, 𝑡), (2.53)

where 𝑝𝑡(𝜎𝑖 → 𝜎𝑗) is the transition probability from state 𝜎𝑖 to 𝜎𝑗 per unit time and 𝑝(𝜎, 𝑡)
is the probability that the system stays at 𝜎 at time 𝑡. Under the steady-state condition (not
necessarily the equilibrium state) where there is no net probability transition flux the LHS
of Eq. 2.53 should be zero

∑
𝜎𝑖

𝑝𝑡(𝜎𝑖 → 𝜎𝑗)𝑝(𝜎𝑖, 𝑡) = ∑
𝜎𝑖

𝑝𝑡(𝜎𝑗 → 𝜎𝑖)𝑝(𝜎𝑗, 𝑡). (2.54)

Eq. 2.54 is a description of the so-called detailed balance. As 𝑡 → ∞ detailed balance can
also be written as

𝑝𝑡(𝜎𝑖 → 𝜎𝑗)𝑝(𝜎𝑖, 𝑡 = ∞) = 𝑝𝑡(𝜎𝑗 → 𝜎𝑖)𝑝(𝜎𝑗, 𝑡 = ∞). (2.55)

It is possible to use different transition probabilities in MC algorithms for either equilibrium
properties or kinetics. When designing a Markov chain without the knowledge of the
transition matrix one is required to satisfy the detailed balance described by Eq. 2.54
or 2.55 [82]. The imposed detailed balance guarantees that the system can be driven towards
the equilibrium Boltzmann distribution (Eq. 2.40).

2.5.3.4. Convergence of Markov chains

If we assume that the transition matrix P is (a) diagonalizable and (b) its 𝑁𝑚 eigenvalues
satisfy 1 = |𝜆1| ≥ |𝜆2| ≥ ... ≥ |𝜆𝑁𝑚

|, P can be then rewritten as

P = VΛV−1, (2.56)
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where V is a matrix made up of 𝑁𝑚 orthonormal column eigenvectors of P, v1, v2, ...,
v𝑁𝑚

(normalized with ||v𝑖|| = 1) and Λ is the diagonalized P with items 𝜆1, 𝜆2,..., 𝜆𝑁𝑚
on the diagonal. Therefore v1, v2,..., v𝑁𝑚

can also be viewed as a basis into which state
functions are expanded. Any arbitrary state s can be described as a linear combination of
v𝑖(𝑖 = 1, 2, ..., 𝑁𝑚) with coefficients 𝑐𝑖:

s =
𝑁𝑚

∑
𝑖=1

𝑐𝑖v𝑇
𝑖 . (2.57)

Eq. 2.50 is then applied as 𝑡 → ∞

s𝑠 = s ⋅ P𝑡

= s(VΛV−1)(VΛV−1)...(VΛV−1)
= sVΛ𝑡V−1

=
𝑁𝑚

∑
𝑖=1

[𝑐𝑖v𝑇
𝑖 VΛ𝑡V−1]

= 𝑐1𝜆𝑡
1v𝑇

1 + 𝑐2𝜆𝑡
2v𝑇

2 + ... + 𝑐𝑁𝑚
𝜆𝑡

𝑁𝑚
v𝑇

𝑁𝑚

= 𝜆𝑡
1[𝑐1v𝑇

1 + 𝑐2(𝜆2
𝜆1

)
𝑡
v𝑇

2 + 𝑐3(𝜆3
𝜆1

)
𝑡
v𝑇

3

+... + 𝑐𝑁𝑚
(

𝜆𝑁𝑚

𝜆1
)

𝑡
v𝑇

𝑁𝑚
]. (2.58)

Obviously, from Eq. 2.58, the equilibrium distribution s𝑠 gradually converges to 𝑐1v𝑇
1 as

𝑡 → ∞ since each term 𝜆𝑖
𝜆1

is smaller than 1. Because |𝜆2| ≥ |𝜆3| ≥ ... ≥ |𝜆𝑁𝑚
| the second

largest eigenvalue 𝜆2 dominates the speed of the convergence [83, 84].

2.5.4. Conventional Monte Carlo simulations

In order to obtain the equilibrium distribution, as mentioned before, the detailed balance
must be obeyed,

𝑝𝑡(𝜎𝑖 → 𝜎𝑗)
𝑝𝑡(𝜎𝑗 → 𝜎𝑖)

= 𝑝(𝜎𝑗, 𝑡 = ∞)
𝑝(𝜎𝑖, 𝑡 = ∞) . (2.59)

The substitution of Eq. 2.40 into the above equation yields

𝑝𝑡(𝜎𝑖 → 𝜎𝑗)
𝑝𝑡(𝜎𝑗 → 𝜎𝑖)

= 𝑒−𝛽(𝐸𝜎𝑗 −𝐸𝜎𝑖 ), (2.60)

where the unknown partition function 𝑍 cancels out and only the energy difference between
two states needs to be computed. Transition probabilities that satisfy the detailed balance
can be realized in various ways [85]. Two of them are of great popularity:

• Glauber transition probability

𝑃𝐺 = 𝑒−𝛽∆𝐸

1 + 𝑒−𝛽∆𝐸 (2.61)
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where Δ𝐸 is the energy difference before and after a transition, e.g., a spin reversal
or two spins exchange or an A atom “flips” to a B atom.

• Metropolis transition probability

𝑃𝑀 = min{1, 𝑒−𝛽∆𝐸} (2.62)

which means if Δ𝐸 ≤ 0 the transition probability equals unity, otherwise the
transition probability follows 𝑒−𝛽∆𝐸.

The algorithm of the conventional MC can be summarized as following:

Conventional Monte Carlo algorithm

1. Choose an initial state, e.g., configurational random state.

2. Generate a new configuration, e.g., species “Q” at site 𝑖 is replaced by “M” or species
at 𝑖 and 𝑗 are swapped

3. Calculate the probability 𝑃 for the transition.

4. Generate a random number 𝑟 ∈ [0,1).

5. If 𝑟 < 𝑃 , perform the transition, otherwise keep the current state.

It should be noticed that in step 3 either the Metropolis or the Glauber transition
probability can give the correct dynamics. If the time evaluation is necessary, however,
the Glauber dynamics is preferred since it is still possible to build the connection to the
real time from the transition probability. One may speed up the search for the equilibrium
state via the Metropolis transition probability at the cost of losing the track of the time.
The Metropolis algorithm accelerates the convergence by accepting all the transitions that
result in the energy decrease. Fig. 2.6 shows a comparision between these two transition
probabilities at relatively high temperature.

2.5.5. Kinetic Monte Carlo simulations

2.5.5.1. The n-fold way algorithm

In some cases, e.g., at low temperatures or near critical temperatures, the probability of
accepting a transition becomes quite low. Most of the attempt transitions are rejected and
no transitions occur for many steps. This can also be seen from Fig. 2.6 where 𝛽Δ𝐸 is large.
To overcome this inefficiency the kinetic Monte Carlo (kMC) method based on the 𝑛-fold
way algorithm was proposed by ensuring that an event must occur at each time step. The
time increment is calculated with the assumption that no transition occurs among successive
steps (see Fig. 2.7) [86, 87]. Themost important feature of the kMCmethod is the integration
of the realistic transition rate that enables the investigation of the realistic kinetics.

To perform the kMC simulations, first of all, transition rates of all possible transitions are
a priori required. For thermal activation processes transition rates are estimated by Eq. 2.30.
In fcc alloys vacancy-assisted substitutional diffusion is realized by vacancies exchanging
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Figure 2.6: A comparison of the transition probability given by the Metropolis formula and the Glauber formula at
high temperatures. It should be noticed that for transitions with the energy decreasing and with the energy slightly
increasing the Metropolis dynamics (blue solid line) gives higher transition probability than the Glauber dynamics
(red dotted line).
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Figure 2.7: Schematic description of the (energy) state evolution in the kMC as a function of the time. The orange
solid circles refer to transitions in the conventional MC. 𝐸𝑖 and 𝑡𝑖 (𝑖 = 0–5) exemplify the evolution of the energy
state and the time in the kMC. Unlike the conventional MC, for each kMC time step (which is not necessarily
equal), there must be a transition. The distance between orange solid circles shows one conventional MC step
which is uniformly distributed.

their positions with one of 12 nearest neighbor atoms at a certain rate [see Fig. 2.8(a)]. Each
nearest neighbor atom is not equiprobably chosen but biasedly selected in proportion to their
swapping rates with the vacancy. The higher the swapping rate is the larger the probability
for the transition to occur.

An illustration of the kMC algorithm is shown in Fig. 2.8(b) using a casino wheel.
Transition rates 𝑟𝑖(𝑖 = 1, 2, 3, ..., 𝑛) of 𝑛 possible events are distributed along the
circumference of the casino wheel. The size of the area associated with each rate indicates
the relative magnitude of the transition probability. 𝑅𝑖 are cumulative sums of rates from 1
to 𝑖, i.e., 𝑅2 = 𝑟1 + 𝑟2; 𝑅𝑛 = ∑𝑛

𝑖=1 𝑟𝑖. Every attempt transition is similar to triggering the
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pointer of the wheel—the transition where the pointer stops will occur.

1

2

3

4

6

7

5

8

10

11

12

9

r1

r5

r12

r6

r1

r2 r3

r4

r5

r6

rn

rn-1

rn-2

...

R1

R2

R3

R4

R5

R6
Rn-3

Rn-2

Rn-1

Rn

Figure 2.8: Schematic illustration of (a) the substitutional diffusion on the fcc lattice and (b) the kMC algorithm.
Vacancy (atoms) represented as an open square (colored circles), the vacancy-atom exchange rate (the cumulative
sum of rates) is referred by 𝑟𝑖 (𝑅𝑖). The casino wheel shown in (b) is divided by areas in different size, indicating
the different probabilities associated with different transitions.

The algorithm of kMC simulations can be summarized as following:

The n-fold way algorithm

1. Make a list of all possible transition rates 𝑟𝑖 of the system.

2. Calculate the cumulative sums 𝑅𝑖 = ∑𝑖
𝑖=1 𝑟𝑖 for 𝑖 = 1, 2, 3, ..., 𝑛.

3. Generate a random number 𝑥 ∈ [0,1).

4. Perform the 𝑖th transition if 𝑅𝑖−1 ≤ 𝑅𝑛𝑥 < 𝑅𝑖.

5. Update the time increment with 𝑡 = 𝑡 + Δ𝑡, where Δ𝑡 = 1
𝑅𝑛

.

2.5.5.2. Time increment: A Poisson process

The number of transitions occuring within a fixed time interval follows a Poisson dis-
tribution because each transition rate is independent of both the last transition and the
time [82, 85, 87]. Therefore the probability that transition 𝑖 occurs 𝑛 times within Δ𝑡 can
be written as,

𝑃𝑛(Δ𝑡) = (𝑟𝑖Δ𝑡)𝑛

𝑛! 𝑒−𝑟𝑖∆𝑡 (2.63)

A group of independent Poisson processes forms an expanded Poisson process, whichmeans
the total number of the occurrence of transitions with different rates 𝑟1, 𝑟2, 𝑟3, ..., 𝑟𝑛 within
Δ𝑡 follows also a Poisson distribution

𝑃𝑁(Δ𝑡) = (𝑅𝑛Δ𝑡)𝑁

𝑁! 𝑒−𝑅𝑛∆𝑡, (2.64)
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where 𝑅𝑛 = ∑𝑛
𝑖=1 𝑟𝑖. Therefore the time interval between two successive transitions can

be obtained via assuming there are no transitions within Δ𝑡,

𝑃0(Δ𝑡) = 𝑒−𝑅𝑛∆𝑡 (2.65)

Since it is a stochastic process, a random number 𝑧 ∈ [0, 1) is set to be equal to 𝑃0(Δ𝑡)
before the time increment is extracted as

Δ𝑡 = −𝑙𝑛𝑧
𝑅𝑛

. (2.66)

Alternatively with the property that ⟨Δ𝑡⟩ = 1
𝑅𝑛

one may also update the time increment via
Δ𝑡 = 1

𝑅𝑛
.

2.5.6. Efficiency improvement: Removing oscillations in the
kMC

2.5.6.1. Origin of oscillations

The diffusion activation barrier 𝐸KRA described in section 2.3.2 (see Fig. 2.2) is sensitive
to the local atomic arrangement. Sometimes barriers between different swaps can differ
significantly, leading to an exponential difference in swapping probability (see Eq. 2.30).
It is therefore very likely that the barrier of one specific swap might be dramatically
lower than all of the neighboring swapping barriers, see Fig. 5.4, e.g., the barrier between
position 𝑝2 and 𝑝3. It follows that the vacancy may keep exchanging the position with the
same neighboring atom for a long time until it escapes by chance. Such non-productive
oscillations greatly reduce the efficiency of the simulation. It is firstly good to try to find

Ep2

Ep3

rp2→p1

rp3→p2

rp2→p3

EKRA

A

B

A

E

p1

p4

Ep1

Ep4

rp3→p4

p2 p3

Figure 2.9: Schematic diagram of an energy landscape with low barriers between states 2 and 3. Black square
represents a vacancy, species C, while orange and green solid circles refer to atomic species A and B.

a solution to the oscillation problem from a simplified four-state model in one dimension
since the extension to fcc crystalline structures is trivial. The simplified four-state model is
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schematically shown in Fig. 5.4 where the vacancy can jump only between four positions
𝑝1, 𝑝2, 𝑝3 and 𝑝4. At each time the vacancy is only allowed to move left or right by
overcoming a certain barrier. The rates from state 𝑖 to 𝑗, 𝑟𝑖→𝑗, are evaluated by Eq. 2.30. It
is obvious that the barrier between 𝑝2 and 𝑝3 is much lower than the others, which means
the vacancy oscillation will occur between 𝑝2 and 𝑝3. Once the vacancy escapes from the
oscillation and arrives at either position 𝑝1 or 𝑝4 it is supposed that it has no chance to
get back to position 𝑝2 or 𝑝3. In order to remove these oscillations it is crucial to find the
answer to the following two questions: (a) the average time the vacancy gets involved in
the oscillation and (b) the probability distribution after the vacancy escapes.

2.5.6.2. Average oscillation time

To evaluate the average oscillation time it is essential to examine the characteristic time the
vacancy spends on each oscillation state. Therefore let us start from the transition matrixM
for oscillation state 𝑝2 and 𝑝3,

M = ( 1 − 𝑟𝑝2→𝑝1
− 𝑟𝑝1→𝑝3

𝑟𝑝3→𝑝2
𝑟𝑝2→𝑝3

1 − 𝑟𝑝3→𝑝2
− 𝑟𝑝3→𝑝4

) (2.67)

where the entry 𝑚𝑖𝑗 in matrix M refers to the probability of the transition from state 𝑗 to
state 𝑖. If we define a 2 × 1 column vector s(𝑡) whose entry 𝑠(𝑡)

𝑖 (𝑖 = 1, 2) refers to the
probability that the vacancy stays at position 𝑝(𝑖+1) at time 𝑡, it then follows that

s(𝑡) = M ⋅ s(𝑡−1). (2.68)

Repeated substitutions of Eq. 2.68 yields

s(𝑡) = M𝑡 ⋅ s(0). (2.69)

Since the vacancy will anyhow arrive at either position 𝑝1 or 𝑝4 it is obvious that the (long
time) limit ofM𝑡 is a zero matrix. The expected time that the vacancy stays at position 𝑝𝑖
(𝑖 = 2, 3) can be defined as,

𝑡𝑝𝑖
= ∫

∞

0
𝑠(𝑡)

𝑖−1𝑑𝑡 =
∞

∑
𝑡=0

𝑠(𝑡)
𝑖−1, 𝑖 = 2, 3 (2.70)

If we assume that s(0) = (1, 0)𝑇 which means the vacancy initially stays at position 𝑝2 it
then follows that the sum in Eq. 2.70 can be written as,

𝑡𝑝𝑖
=

∞
∑
𝑡=0

𝑚(𝑡)
(𝑖−1)1, 𝑖 = 2, 3 (2.71)

where𝑚(𝑡) is the corresponding entry in theM𝑡 matrices. FromEq. 2.71 it is obvious that 𝑡𝑝𝑖
can be obtained from the first entry of the (𝑖−1)th row inmatrixN = I+M+M2+M3+... =
(I − M)−1. The average oscillation time is then obtained by summing over the residence
time at positions 𝑝2 and 𝑝3.
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2.5.6.3. Probability distribution after the oscillation

At each time 𝑡 the probability that the vacancy jumps to position 𝑝1 from 𝑝2 is

𝑃 (𝑡) = 𝑠(𝑡)
1 𝑟𝑝2→𝑝1

. (2.72)

The overall probability that the vacancy can finally escape to position 𝑝1 should therefore
be the sum of all contributions from each time step,

ℙ =
∞

∑
𝑡=0

𝑃 (𝑡) = 𝑟𝑝2→𝑝1
𝑡𝑝2

. (2.73)

Similarly, the overall probability that the vacancy can finally arrive at position 𝑝4 is
𝑟𝑝3→𝑝4

𝑡𝑝3
.

2.5.7. Error analysis of the simulation data

In statistics, for a series of uncorrelated data 𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛, a good estimator of their
deviation from the expectation value is the variance,

𝜎2(𝑥) = ⟨𝑥 − ⟨𝑥⟩⟩2 = ⟨𝑥2⟩ − ⟨𝑥⟩2 (2.74)

where ⟨𝑥⟩ is the expectation value of the data estimated as,

⟨𝑥⟩ = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖. (2.75)

The variance of ⟨𝑥⟩ can be estimated by

𝜎2(⟨𝑥⟩) = 1
𝑛𝜎2(𝑥). (2.76)

However, this is not the case for the correlated data generated from aMarkov chain [88, 89].
Larger error may occur if less independent data are collected.

Suppose we collect 𝑛 measurements of a thermodynamic quantity, say energy, 𝐸1,
𝐸2, 𝐸3,...,𝐸𝑛 and let the expectation value ⟨𝐸⟩ be an estimate of the desired energy of
the system. How accurately does the ⟨𝐸⟩ represent the real energy value of the system is
typically estimated by the variance given by [90],

𝜎2(⟨𝐸⟩) = 1
𝑛

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝐶𝑖𝑗 (2.77)

where 𝐶𝑖𝑗 is the covariance between 𝐸𝑖 and 𝐸𝑗 defined as,

𝐶𝑖𝑗 = ⟨𝐸𝑖𝐸𝑗⟩ − ⟨𝐸𝑖⟩2 (2.78)

If we define 𝑑 = |𝑖 − 𝑗| as the distance between two data points, 𝐶𝑖𝑗 can also be viewed
as a correlation function which depends on the correlation distance 𝑑, especially when the
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system has reached thermodynamic equilibrium:

𝐶(𝑑) = ⟨𝐸0𝐸𝑑⟩ − ⟨𝐸⟩2

= ( 1
𝑛 − 𝑑

𝑛−𝑑
∑
𝑖=1

𝐸𝑖𝐸𝑖+𝑑) − ⟨𝐸⟩2 (2.79)

The asymptotic behavior of the normalized correlation function 𝑐(𝑑) as 𝑑 → ∞ is given by,

𝑐(𝑑) = 𝐶(𝑑)
𝐶(0) ∼ (𝑒− 1𝜏𝑒 )𝑑, (2.80)

where 𝜏𝑒 is called the exponential correlation time. It is related to the second largest
eigenvalue 𝜆2 in Eq. 2.58 by,

𝜆2 = 𝑒− 1𝜏𝑒 (2.81)

The variance of ⟨𝐸⟩, compared with Eq. 2.76, is then increased as a result of the
correlation [91],

𝜎2(⟨𝐸⟩) = 𝜎2(𝐸)
𝑛 𝜏int

= 𝜎2(𝐸)
𝑛 (1 + 𝜆2

1 − 𝜆2
) (2.82)

where

𝜏int = 1 + 2
∞

∑
𝑑=1

𝑐(𝑑)

= 1 + 𝜆2
1 − 𝜆2

(2.83)

is called the integrated correlation time. From Eq. 2.82 it is apparent that 𝜎2(⟨𝐸⟩) of the
correlated data points is larger than that of the uncorrelated data by a factor of 𝜏int. Besides,
the integrated correlation time has a limiting value of 2𝜏𝑒 at the large 𝜏𝑒 limit.

For a Gaussian distribution with expectation value ⟨𝐸⟩ and variance 𝜎2(⟨𝐸⟩) the
probability 𝑝 that the data are located within a confidence interval [⟨𝐸⟩ − 𝜖,⟨𝐸⟩ + 𝜖] is
given by

𝑝 = erf( 𝑞√
2

), (2.84)

where 𝜖 = 𝑞𝜎(⟨𝐸⟩). One can set 𝑝 = 0.99 which means the certainty of the error bar is
99%. Then the error bar is estimated as

𝜖 =
√

2𝜎(⟨𝐸⟩)erf−1(0.99) (2.85)

with 𝜎(⟨𝐸⟩) calculated by Eq. 2.82.
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2.6. Identification of precipitates
One of the most important analyses of the simulation results is the determination of the
structure of precipitates. Firstly, it is straightforward to observe the structure in real space
since positions of each atom are available. However, for most of the ordering or phase
separating phenomena, it is necessary to examine the diffraction pattern in reciprocal space
by Fourier analysis.

2.6.1. Bragg diffraction of the single species

Bragg diffractions reflect the long-range order in alloys whose diffraction pattern is
characterized by Bragg peaks. The scattered intensity 𝐼𝑠 is proportional to the structure
factor 𝑆𝐺 by

𝐼𝑠 ∼ 𝑆𝐺𝑆∗
𝐺 (2.86)

where the “*” refers to the complex conjugate [92]. The structure factor 𝑆𝐺 is defined as

𝑆𝐺 = ∑
𝑗

𝑓𝑗exp(−𝑖G ⋅ r𝑗), (2.87)

where 𝑓𝑗 is an atomic property called the atomic form factor.
If the position of atom 𝑗 in the real space r𝑗 and the reciprocal vectorG are described as

r𝑗 = 𝑥𝑗a1 + 𝑦𝑗a2 + 𝑧𝑗a3 (2.88)

and
G = ℎb1 + 𝑘b2 + 𝑙b3, (2.89)

where a1, a2, a3 and b1, b2, b3 are primitive vectors in real and reciprocal space, then
Eq. 2.87 becomes

𝑆𝐺(ℎ𝑘𝑙) = ∑
𝑗

𝑓𝑗exp[−𝑖(𝑥𝑗a1 + 𝑦𝑗a2 + 𝑧𝑗a3) ⋅ (ℎb1 + 𝑘b2 + 𝑙b3)]

= ∑
𝑗

𝑓𝑗exp[−𝑖2𝜋(𝑥𝑗ℎ + 𝑦𝑗𝑘 + 𝑧𝑗𝑙)]. (2.90)

Since the basis for fcc structures is (0,0,0), (1/2,1/2,0), (1/2,0,1/2) and (0,1/2,1/2) it is trivial
to find that 𝑆(ℎ𝑘𝑙) = 4𝑓 if ℎ, 𝑘, 𝑙 are either all odd or all even number and 𝑆(ℎ𝑘𝑙) = 0 if
they are mixed (assuming pure fcc with the uniform atomic form factor 𝑓). It is apparent
that the reciprocal diffraction pattern of an fcc structure is bcc [93].

In MC simulations it is trivial to separate the diffraction intensity of any single species.
Such a possibility increases the chance to find more features that might not be easily
observed in the experiment. Some superstructures with special periodicity can show
obviously strong peaks among successive Bragg peaks.

2.6.2. Diffuse scattering pattern
A good measure of the short-range order (SRO) exhibited by precipitates is the diffuse
scattering pattern. The scattering intensity for binary A-B fcc alloys is calculated as

𝐼SRO = 𝐼𝑓 ∑
𝑙

∑
𝑚

∑
𝑛

𝛼𝑙𝑚𝑛exp(−𝑖g ⋅ r𝑙𝑚𝑛), (2.91)
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where 𝐼𝑓 = 𝑁𝑥𝐴𝑥𝐵(𝑓𝐴 − 𝑓𝐵)2 (𝑥𝑖 is the atomic concentration of species 𝑖, 𝑓𝑖 the atomic
form factor and𝑁 the number of atoms), g = ℎ1b1+ℎ2b2+ℎ3b3 is a vector in the reciprocal
lattice, r𝑙𝑚𝑛 = 𝑙a1 + 𝑚a2 + 𝑛a3 represents an interatomic vector with an arbitrary atom at
the origin and position (𝑙, 𝑚, 𝑛) as the end. Substitution of g and r𝑙𝑚𝑛 in Eq. 2.91 yields

𝐼SRO = 𝐼𝑓 ∑
𝑙

∑
𝑚

∑
𝑛

𝛼𝑙𝑚𝑛cos2𝜋(ℎ1𝑙 + ℎ2𝑚 + ℎ3𝑛). (2.92)

For cubic systems such as fcc, Eq. 2.92 can be further simplified via symmetry [94],

𝐼SRO = 𝐼𝑓 ∑
𝑙

∑
𝑚

∑
𝑛

𝛼𝑙𝑚𝑛cos(2𝜋ℎ1𝑙)cos(2𝜋ℎ2𝑚)cos(2𝜋ℎ3𝑛). (2.93)

The parameter 𝛼𝑙𝑚𝑛 in Eq. 2.91 is called theWarren-Cowley SRO parameter [95, 96] which
is defined as

𝛼𝑙𝑚𝑛 = 1 − (𝑃 𝐴𝐵
𝑙𝑚𝑛/𝑥𝐵) = (𝑃 𝐵𝐵

𝑙𝑚𝑛 − 𝑥𝐵)/(1 − 𝑥𝐵) (2.94)

where 𝑃 𝐴𝐵
𝑙𝑚𝑛 is the conditional probability that a B atom can be found at position (𝑙, 𝑚, 𝑛)

if an A atom is at the origin. The Warren-Cowley SRO parameter can also be determined
experimentally from the diffuse scattering intensity measured from X-ray diffraction [97,
98].
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3
Cluster Expansions for
Thermodynamics and

Kinetics of Multicomponent
Alloys

Cluster expansions have proven a very useful tool to model thermodynamics
and kinetics of substitutional alloys in metallic, ionic, and even covalently
bonded systems. Cluster expansions are usually obtained with the structure
inversion method in which the energies, or other relevant property, of a
set of structures are used to obtain expansion coefficients. The expansion
coefficients are multipliers of correlation functions which pertain to clusters
of sites on the parent lattice. There are significant practical issues associated
with obtaining a cluster expansion, such as selecting which structures
and especially which correlation functions are required for an adequate
description of the energy. While these issues are significant for binary
alloys, they become much more daunting when dealing with multicomponent
alloys. Moreover, oftentimes interest is not limited to the energetics of the
thermodynamic equilibrium state, but the evolution of quenched alloys with
time is just as important. The treatment of diffusion within the context
of cluster expansions is then another challenge. The article describes a
formal method for utilizing cluster expansions for transition states as occur
during vacancy mediated diffusion in substitutional alloys. The methods
are illustrated with some applications to the prediction of initial coherent
precipitates in Al-Cu and Al-Mg-Si alloys.
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3.1. Introduction

C luster expansions (CEs) have become a ubiquitous tool in computational alloy the-
ory [1–21] and even in seemingly completely unrelated fields such and electronic band

gap engineering and protein sequencing [22–25]. It is used to express thermodynamic and
other properties as function of the configurational order of alloys. Most of the applications
focus on binary alloys. However, the most interesting and the most realistic alloys are
generally multi-component alloys. Although there are several CE studies on ternary
alloys [26–32], usually a presupposed cluster, such as the irregular tetrahedron in the case
of bcc lattices, is selected while ignoring convergence issues. On the other hand, more
recent ab initio studies on multinary alloys are not so clear on the formal basis and the
actual implementation of the CE [13, 33–36] so that a comprehensive derivation, such as
given here, might be desirable. In particular, the generalized Ising model for binary alloys
cannot be easily extended to multinary alloys [37]. The specific treatment in the literature
of vacancy mediated diffusion in alloys [12, 38, 39] too, is scant and not very detailed on
practical implementation. In the current workwe try to present a comprehensive and detailed
formalism that trivially extends to multi-component alloys. An important special feature is
that CEs for multinary systems can be built-up from expansions with fewer components.
We will first define a general framework for substitutional alloys, next describe how to add
atomic species to a CE with re-use of already determined expansion coefficients. Then a
generalization of the cluster expansion to treating the environmentally dependent energetics
of transition states for vacancy mediated diffusion in concentrated alloys will be presented.
Finally some applications to multi-components alloys are presented as illustrations.

3.2. Theory
3.2.1. cluster probabilities, sum rules, and correlation func-

tions

Here, without loss of generality, we will assume that the expanded property is the energy E.
The CE assumes that the energy can be written as a rapidly converging sum over cluster
contributions where contributions from larger clusters become negligible. A practical
example of this idea is common in organic chemistry where the formation enthalpy of a
molecule can be expressed approximately as a sum of contributions from nearest neighbor
pairs (read bonds) only. In the case of ethane one would count one C-C pair and six C-
H pairs and estimate that the formation energy with respect to the isolated atoms is given
as the sum of the single C-C bond energy and the six C-H bond energies. Contributions
from larger clusters such as triplets usually provide minor corrections only. We will now
return to the case of crystalline bulk alloys and limit ourselves to the case where every
atom can be uniquely identified with one and only one atomic position. That is, the alloy
becomes perfectly periodic with a relatively small unit cell when all atoms were to become
indistinguishable. There is a well-defined “fixed” underlying grid of atomic sites. In such a
case clusters can be uniquely identified without any ambiguity on how to classify any group
of atomic sites. There would then never be any doubt whether a given pair is a 1st or a 2nd
nearest neighbor pair. Another aspect of a “fixed” underlying grid is that the configuration
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of the alloy would be completely specified by the atomic occupation for every site, as in the
case of e.g. the Ising model. In analogy with the Ising model we could assign the occupation
of every site with a site occupation variable,

𝜎(𝑃)
𝑖 = { 1 𝑃 atom at site 𝑖

0 no 𝑃 atom at site 𝑖 (3.1)

where 𝑃 designates a particular atomic species, the parentheses remind us it does not refer
to exponentiation [27, 40, 41]. To be completely general we will consider a vacancy also as
an atomic species. If there are𝑁 atomic species in the alloy, only𝑁 −1 need to be specified
because of a sum rule:

𝑁
∑
𝑃=1

𝜎(𝑃)
𝑖 = 1 ∀𝑖 (3.2)

It signifies that every site is occupied by one and only one atom. The occupation of an
arbitrary pair cluster consisting of sites 𝑖 and 𝑗 with occupations 𝑃 and 𝑄 can be described
in terms of site occupation variables

𝜎(𝑃𝑄)
𝑖𝑗 = 𝜎(𝑃)

𝑖 𝜎(𝑄)
𝑗 (3.3)

Here again, sum rules apply for every individual pair

𝑁
∑
𝑃=1

𝑁
∑
𝑄=1

𝜎(𝑃𝑄)
𝑖𝑗 = 1 ∀𝑖𝑗 and

𝑁
∑
𝑃=1

𝜎(𝑃𝑄)
𝑖𝑗 = 𝜎(𝑄)

𝑗 (3.4)

Therefore, it is necessary to only specify the 𝑁 − 1 occupations of sites 𝑖 and 𝑗 and to only
specify the pair occupations that contain exclusively the 𝑁 − 1 atomic species in order to
fully determine the specific atomic occupancy of the 𝑖𝑗 pair cluster. It is not necessary to
specify the occupation of a point or pair cluster that contains one or more atoms of type 𝑁 .
This generalizes to clusters of multiple sites: a three body cluster consisting of sites 𝑖, 𝑗, 𝑘
with occupations 𝑃 , 𝑄, 𝑅 can be described in terms site occupation variables

𝜎(𝑃𝑄𝑅)
𝑖𝑗𝑘 = 𝜎(𝑃)

𝑖 𝜎(𝑄)
𝑗 𝜎(𝑅)

𝑘 . (3.5)

The value of any 𝜎𝑃𝑄𝑅
𝑖𝑗𝑘 where an 𝑁 type atom occurs follows from sum rules and

occupations of contained points, contained pairs, and triangle involving 𝑁 − 1 species
exclusively.

The specific occupation of any particular cluster is generally not of interest in an
infinitely large crystal. Then, the cluster probabilities are much more informative. Cluster
probabilities are averages over equivalent clusters, where equivalence derives from the
symmetry of the underlying grid of atomic sites. Angle brackets are used to designate cluster
probabilities. < 𝜎𝑃𝑄

𝑖𝑗 > with sites 𝑖 and 𝑗 nearest neighbors, thus indicates the probability
that any nearest neighbor pair in the infinite crystal is occupied by a 𝑃𝑄 pair of atoms.
Obviously, this probability shall always be in the interval [0,1]. The previously mentioned
sum rules also apply to cluster probabilities so that probabilities exclusively pertaining to
the 𝑁 − 1 atomic species only are needed for a full description of probabilities. In other
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words, the cluster probabilities pertaining to 𝑁 −1 atomic species present a complete set of
independent basis functions of the alloy configuration. Therefore, unlike the complete set
of cluster probabilities involving all𝑁 atomic species, the subset of the cluster probabilities
pertaining to the𝑁−1 atomic species is a suitable basis for expanding properties that depend
on the alloy configuration. This subset is a non-unique choice as a definition of correlation
functions. Non-unique for several reasons; site occupations expressed as 0 or 1 instead of
e.g. the Ising definition of +1 and -1; and because in our definition any one of the 𝑁 atomic
species can be declared redundant. In the following we proceed with the assumption that
the 𝑁 th species has been declared redundant [42].

The correlation function expansion of the energy per atom can now be expressed as

𝐸[𝑠] = ∑
𝛼

𝐽𝛼𝑚𝛼 < 𝜎𝛼[𝑠] > (3.6)

𝐸[𝑠] is the energy per atom of the structure 𝑠, 𝛼 is the short-hand notation for the index
of a particular correlation function < 𝜎𝛼 >=< 𝜎(𝑃𝑄...𝑅)

𝑖𝑗...𝑘 >, 𝐽𝛼 is the effective cluster
interaction (ECI) pertaining to correlation 𝛼 per occurrence, and 𝑚𝛼 is the multiplicity, or
the number of clusters 𝛼 per atom. It is to be noted that considering crystal structures with
interstitials may benefit from definingmultiplicities and structural energies with reference to
a lattice point of the disordered structure. However, here we shall avoid such complications
and assume we are dealing with simple underlying lattices with just one atom per lattice
point in the disordered state as for common fcc- and bcc-based alloys. Often, it is handier
to combine 𝑚𝛼 and 𝐽𝛼 into one term, ̃𝐽𝛼 = 𝑚𝛼 𝐽𝛼, the ECI per atom.

In the case of a binary A-B alloy the probabilities of the pure A clusters only are required
for an expansion of𝐸[𝑠]. So for every cluster there is one and only one correlation function.
It is now apparent why the actually correct term “correlation function expansion” is usually
replaced with the much more common “cluster expansion” as initially binary alloys only
were considered.

Expansions based on cluster probabilities can be much more efficient than those based
on the Ising convention—even in the case of binary alloys. When the majority type atom is
considered as the redundant species, there will be very few clusters consisting of minority
atoms only. In fact, in a large simulation cell, say for a Monte Carlo simulation, one can
maintain a list of the minority atoms to count quickly how many of those pure minority
atom clusters are present. In contrast, using the Ising definition, the particular sign of every
instance of a cluster must be evaluated before the value of the corresponding correlation
function is known. The more dilute an alloy, the greater the advantage of the current
definition [42].

3.2.2. Inheritance of expansion coefficients

Another advantage of the current description is that it is quite trivial to build up an 𝑁
component CE using, and retaining exactly, the CEs of 𝑁 − 1 subsystems comprised of
𝑁 −1 components. In other words, when modeling a ternary alloy A-B-C one can reuse the
ECIs of the A-C and B-C binaries. The reason for this is that the correlation functions as
defined here form an independent basis. In the case of an A-B-C ternary it is quite simple
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to rationalize the preservation of ECIs from the A-C and B-C binaries:

𝐸[𝑠] = ∑
𝛼

̃𝐽𝛼 < 𝜎𝛼[𝑠] >

= ∑
𝛼

̃𝐽 (𝐴𝐵)
𝛼 < 𝜎(𝐴𝐵)

𝛼 [𝑠] >

= ∑
𝛼,𝑛≠0

̃𝐽 (𝐴𝑛𝐵0)
𝛼 < 𝜎(𝐴𝑛𝐵0)

𝛼 [𝑠] > + ∑
𝛼,𝑚≠0

̃𝐽 (𝐴0𝐵𝑚)
𝛼 < 𝜎(𝐴0𝐵𝑚)

𝛼 [𝑠] >

+ ∑
𝛼,𝑛≠0∀𝑚≠0

̃𝐽 (𝐴𝑛𝐵𝑚)
𝛼 < 𝜎(𝐴𝑛𝐵𝑚)

𝛼 [𝑠] > (3.7)

The RHS contains three sums over correlation functions deriving from clusters 𝛼. The 1st
of the three sums refers to correlation functions pertaining to A-C alloys only because there
is no B present. Likewise the 2nd term refers to BC alloys only because there are zero A
atoms. The last term only contains correlations that pertain to both A and B atoms. It follows
that for a ternary alloy A-B-C the pure A ECIs can be copied from the AC binary and the
pure B ECIs can be copied from the B-C binary provided that the C species is chosen as the
redundant species. This can be formulated as:

̃𝐽𝛼𝐴𝑛/𝐴𝐵(𝐶) = ̃𝐽𝛼𝐴𝑛/𝐴(𝐶)
̃𝐽𝛼𝐵𝑛/𝐴𝐵(𝐶) = ̃𝐽𝛼𝐵𝑛/𝐵(𝐶), (3.8)

where the notation 𝛼𝑃𝑄/𝐴𝐵(𝐶) refers to the ECI of cluster type 𝛼(here pair only) with
decoration 𝑃 𝑄 in the alloy A-B-C with the species C as eliminated species, and where
the subscript 𝑛 indicates that it is valid for all 𝑛-body pure A and pure B clusters. ECIs
from the A-B binary are not as trivially preserved exactly. If the CE is limited to pair-
wise terms only, i.e. clusters 𝛼 contain two sites at most, it requires a minor algebraic
operation only. The 𝐴𝐵 pair interactions of the A-B-C ternary can be obtained simply
from ̃𝐽𝛼𝐴𝐵/𝐴𝐵(𝐶) = ̃𝐽𝛼𝐴𝐴/𝐴(𝐶) + ̃𝐽𝛼𝐵𝐵/𝐵(𝐶) − ̃𝐽𝛼𝐴𝐴/𝐴(𝐵). The reason that it is more
complicated to derive a similar equation when the CE contains 3-site and larger clusters, is
that the 3-site and larger cluster interactions of mixed 𝐴𝐵 type all contain energy terms that
include all three species simultaneously. Of course, such energy terms cannot originate from
a description of any binary. It follows that in the case of pair clusters, and it then does not
matter up to which neighbor shell the pairs are considered, all three atomic species cannot
be present in one cluster. By induction it then follows that for a quaternary alloy A-B-C-D
with D as the eliminated species the A-B-C ternary ECIs can be exactly preserved provided
that the ECIs are limited to clusters of 3 sites or fewer. For a penternary alloy A-B-C-D-E
all subsystem quaternary CE coefficients can be preserved if no clusters larger than 4-sites
are considered. Generally, ECIs pertaining to 4-site clusters are already quite small, and
generally it is not necessary to go to 5-site or larger clusters. The implication is that CEs of
many-component alloys are completed determined by their subsystems. Another important
consequence is that once CEs for all quaternary systems are known, no new CEs need to be
performed for penternary or higher component systems because the ECIs are already known
from their quaternary subsystems. This is quite a remarkable conclusion given that generally
it is believed that determining CEs for many component alloys is impossibly complicated
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due to the combinatorial explosion of possible combinations of correlation functions that
such a CE entails.

It should also be pointed out that the inheritance of ECIs to higher order alloy systems
is analogous to the extrapolation methods well-known to CALPHAD practitioners [43].

To fully take advantage of this inheritance of ECIs from subsystems, it is of course
necessary that consistently the same set of underlying clusters is used for all the subsystems.
Then a new question arises, one may determine the optimal set of clusters for a CE in some
specific binary, but how can one find the optimal set of clusters for a large group of binaries?

3.2.3. Completeness

Another question that arises is how a change of basis, say for re-using the ECIs of the
A-B-C-D quaternary in the A-B-C-D-E penternary, affects the selection of correlation
functions to be used in the CE. This question has been addressed already earlier where
it was concluded that a completeness criterion must be met [42]: When a certain cluster is
included in the CE all its subclusters must be included as well [44, 45]. In multicomponent
alloys this completeness criterion must be generalized for a CE to remain invariant under
transformation of the occupation variable. For a multicomponent alloy the completeness
criterion can be shown to require that if a certain correlation function is included in a CE,
a) all correlations associated with that cluster must be included, and 2) all correlations
associated with the subclusters must be included also. The multicomponent completeness
criterion can be derived in a completely analogous way as was done for a binary [42].

3.2.4. Pools of correlation functions

In the following sections we will therefore focus on the issue of selecting the optimal set of
clusters for a series of binaries. We will limit ourselves to fcc Al-based alloys. The set of
cluster will be selected from a certain “pool”. This pool is defined by two criteria: a) only
clusters with up to and including 4 sites are considered, and b) in such clusters no two sites
shall be further apart than the 8th nearest neighbor. We designate this pool as N4R8. The
justification of these criteria is as follows: the enthalpy of mixing is generally represented
as a polynomial in the composition. The highest power in this polynomial is an indication
of the number of sites in the largest cluster that significantly contributes to the alloy energy.
E.g. a parabolic enthalpy of mixing, symmetric around equiatomic composition, indicates
that only 2 body (i.e. pairwise) interactions are needed and three- four- and larger body
interaction terms can be neglected. Extensive experience in fitting binary phase diagrams
has shown that usually a sub-regular (i.e. a third order polynomial) or more rarely, a fourth
order polynomial in the composition is completely adequate to represent the enthalpy of
mixing accurately. Therefore, ECIs with 4 sites (N4) should generally be adequate. With the
exception of long-period superstructures, such as in Cu-Pd, all experimentally observed fcc
superstructures can be stabilized by pairwise interactions with ranges up to the 8th nearest
neighbor (R8). The experimentally observed Al3Zr phase(StructurBericht notation:D022) is
stabilized by the 8th nearest neighbor (<2 0 0> afcc, see Fig. 3.1). The N4R8 pool contains
1 point cluster, 8 pair clusters, 50 three body, and 427 four body clusters for a total of
486 clusters. In addition we must count the so-called empty cluster with zero sites. The
“cluster interaction” corresponding to the empty cluster represents a constant off-set in the
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energy. Including this empty cluster there are 487 clusters in the N4R8 pool. The versatility

Figure 3.1: The 8 neighbor pairs included in the N4R8 cluster pool.

of the N4R8 set of clusters is nicely illustrated by the accurate representation of the GP
morphology. A particularly challenging issue for any CE without explicit treatment for
long-ranged elastic interactions is the prediction of GP zone shapes [46]. In Al-Cu with
about 2 a/o Cu, GP zones are known to form as pure Cu on 100 planes separated by 2 or
3 atomic planes of pure Al. Initially, it is believed that there are 3 intermediary Al planes,
but absorption of vacancies and concomitant relaxation rapidly reduces this to 2 atomic
Al layers [47–49]. Describing the Cu-Al-Al-Al sandwich morphology requires a highly
optimized CE with a LOOCV of just 1 meV/atom, with about 200 fitted structural energies
and 80 ECIs. see Fig. 3.2.

Figure 3.2: (left) Distance to the convex hull as function of the Cu atomic concentration in Al-rich Al-Cu alloys
according to ab initio calculations and as obtained with a N4R8 CE using 80 ECIs and about 200 structural energies
representing the whole Al-Cu composition range. The stability of the transitory GP zones consisting of single Cu
(100) planes separated by 3 Al planes is readily apparent at X(Cu) =0.25. At right only Cu atoms are displayed in
a box formed by 20 × 20 × 20 fcc cubes with 2 a/o Cu. In the kinetic Monte Carlo simulation using the CE the
early stages of precipitation are simulated at 300 K. A GP zone can be recognized in the lower RHS of the box.

3.2.5. On the impossibility of finding the best expansion

Finding the best CE for a certain alloy, using a large set of structural energies, and using
a pool of clusters with 𝑁 members is a daunting task. The total number of combinations
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𝑃 (𝑁) that can be generated by selecting arbitrarily a set of clusters with anywhere from 1
to 𝑁 members can be calculated as follows:

𝑃(𝑁) = 𝑁!
(𝑁 − 1)! (1)! + 𝑁!

(𝑁 − 2)! (2)! + ... + 𝑁!
(𝑁 − 𝑁)! (𝑁)! =

𝑁
∑
𝑖=1

( 𝑁
𝑖 ) = 2𝑁−1

(3.9)
The value of 𝑃 (𝑁) is easily understood because each cluster either is included, or is
not included, which gives 2𝑁 , but we explicitly excluded the possibility of a completely
empty combination so that one has to be subtracted. When 𝑁 = 487 the value of 𝑃 is
approximately 4 × 10146, and this is considering a single binary only! It is not feasible to
evaluate all possible CEs and select the best performing one exactly. One has to settle for a
“good” CE, rather than expect to find the “best” CE. How well a CE performs can be judged
with some fitness criterion. Common fitness criteria are (a) the root mean square fitting error
in for the known structural energies, sometimesmodified by other criteria such as whether or
not correct ground states are produced by the CE [50]; (b) a measure of “predictive ability”
of a CE [5, 50, 51], such as the leave-one-out cross-validation score [44] or leave-many-out
cross-validation score [14].

Several methods for finding “good” CE have been proposed. Various statistical
methodologies have been discussed in e.g. Refs. [44, 52, 53] and [54]. Here we mention 4
methods.

• “aufbau”

where a given CE is expanded with a single new cluster, one at a time [55]. All not yet
included clusters are considered. Among the set of not yet included clusters the one
that gives the best improvement in the fitness criterion is selected. Now, a new CE has
been generated and the process is repeated. Repetitions stop either when the maximal
number of clusters in the CE is reached, or when the fitness criterion improves too
little, or deteriorates.

• Singular value decomposition(SVD) [56]

When there are not precisely 𝑁 structural energies available, the < 𝜎𝛼[𝑠] > matrix is
not square and only a pseudo-inverse can be defined. Usually, the number of structural
energies is less than 𝑁 , so that there is an under-determined set of equations to be
solved. Oftentimes the < 𝜎𝛼[𝑠] > matrix is ill-conditioned for various reasons which
to some extent can be mitigated by adding very small random numbers. Generally,
this methods works best when the set of equations is over-determined, i.e. when
the number of structural energies is larger than 𝑁 . This is in practice rarely the
case. When this method succeeds in generating a CE it is optimal in the sense that
it produces a small fitting error. The SVD method can be modified in order to better
utilize insight in underlying physical properties, see Ref. [57].

• Genetic algorithm [16] A population of distinct CEs is allowed to “mate” (i.e.
exchange expansion terms) and the resulting offspring is then culled on the basis of
the fitness criterion. This procedure of is repeated for a number of generations, till
the fitness criterion no longer improves.
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• Enumeration in combination with completeness and mandatory clusters [55]
Imposition of the completeness criterion drastically reduces the number of acceptable
CEs. If furthermore it is imposed that certain clusters, such as the empty cluster,
the single point and nearest neighbor pair clusters are always required in a valid CE
the number of CEs can be reduced further. A complete CE is fully characterized by
its maximal clusters only. When only CEs are considered with a limited number of
maximal clusters their total number remains relatively small. In the case of binary
fcc alloys with the N4R8 cluster pool and imposition of completeness and mandatory
inclusion of the empty, point, nearest and next nearest pair clusters, and considering
only CEs with 4 or fewer maximal clusters, there remain just 2,018,401,138 (≈ 2 ×
109) CEs only. While this number is still very large, it can be evaluated in a number
of weeks to months on a single CPU core.

This 4th method is used below.
It should be remarked that enumeration with a limited number of maximal clusters biases

CEs with completeness towards the clusters with larger numbers of sites. Larger clusters
are favored because they contain several subclusters and thus yield a greater improvement
in the “fitting criterion” than smaller clusters. With a handicap or weighting function this
bias can be ameliorated to some extent.

To illustrate that a single set of clusters can yield acceptable CEs across a range of alloys,
we considered all major alloying elements in Al-base alloys. Leave-one-out cross-validation
scores (LOOCV) have been determined for CEs of 9 binary Al alloys, Al-Cu, Al-Fe, Al-Li,
Al-Mg, Al-Mn, Al-Si, Al-Ti, Al-Zn, Al-Zr. The CEs are complete as discussed in section
3.2.3. The CEs are based on the N4R8 pool with up to 4 maximal clusters. For each
binary a set of 100 ab initio computed structural energies was used for fitting. Enumeration
gave 2,018,401,138 CEs for each binary. To find the optimal CE across all 9 binaries we
computed the product of all 9 LOOCVs for a given set of maximal clusters. The resulting
set of clusters is shown in Fig. 3.3. Including the empty cluster, the maximal clusters shown

Figure 3.3: The 4 maximal clusters (blue spheres) that minimize the product of LOOCVs of 9 binary Al alloys.
Fcc cubes and dashed lines have been added for clarity.

in figure 3 have 20 subclusters, thus there are 24 ECIs in our optimal CE for Al-alloys,
Al-optimal for brevity. For a ternary alloys the number of ECIs in Al-optimal is 146 out of
the more than 7000 that occur within the N4R8 pool for ternaries. Al-optimal gives small
LOOCV values for binaries (Al-Mg: 1.3 meV/atom, Al-Si: 2.8 meV/atom) by design, but
for the Al-Mg-Si ternary also, the LOOCV has a small value of just 2.2 meV/atom. Of
course, as mentioned in section 3.2.2 the interactions of the Al-Mg and Al-Si binaries
were inherited in describing the ternary. It should be remarked that with 100 structural
energies per binary, while extracting only 24 ECIs, the CE is very overdetermined and as
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a consequence the LOOCV takes values that are very close to the root of the mean square
error of the fit. In addition to using 100 structural energies for each of the three constituent
binaries, an additional 100 structural energies pertaining to truly ternary compounds were
used. The Al-Mg-Si CE was used to predict plausible initial coherent, i.e. fcc-based, stages
of precipitation and resulting structures are displayed in Fig. 3.4.

Figure 3.4: fcc-based superstructures predicted by the Al-optimal CE for Al-Mg-Si: (a) Al4Mg3Si, (b)
Al8Mg2Si2, (c) Al6Mg2Si2, (d) Al2MgSi, (e) Al4Mg2Si2. Al: green spheres, Mg: orange spheres, and Si:
blue spheres.

3.2.6. Cluster expansions for vacancy-mediated diffusion in
substitutional alloys

When vacancies trade places with neighboring atoms in an alloy, a certain activation barrier
must be overcome, see Fig. 3.5. When the vacancy is considered as an additional atomic
species, it is apparent that the energies of state 1(𝐸1) and state 2(𝐸2) can be described by a
multinary CE. However, for the activated state between states 1 and 2 problems arise. In the
activated state the atom that trades places with the vacancy is no longer uniquely associated
with a single lattice site. This is a problem because the cluster expansion is built upon the
concept of there being a lattice gas where every site is associated with one, and only one,
atomic species. A second problem is that the energy barrier is not purely a “state function”
because the height of the barrier depends on the direction of the swap, the transition 1 → 2
has a different barrier than transition 1 ← 2. This last problem is elegantly solved by van
der Ven et al. by defining the kinetically resolved activation barrier [12], defined as

𝐸𝐾𝑅𝐴 = 𝐸𝑡𝑟 − 1
2(𝐸1 + 𝐸2) (3.10)

Where 𝐸𝑡𝑟 is the highest energy along the lowest energy path connecting the states 1 and 2.
When 𝐸𝐾𝑅𝐴, 𝐸1 and 𝐸2 are known it is trivial to extract the energy barriers for transitions
1 → 2 and 1 ← 2.

The first problem, the lattice gas violation, can also be resolved by introducing a
new atomic species for the vacancy-swapping atom pair, “swapping pair” for brevity, as
displayed in Fig. 3.6. When a single vacancy is present only in an 𝑁 -component alloy
(here 𝑁 = 3: orange species, blue species, and vacancy), replacing the swapping pair by
two “atoms” of a new atomic species, results in 𝑁 − 1 new 𝑁 component systems. Thus
the complexity of the problem is not significantly increased. When the value of 𝐸KRA is
computed in actual alloys, it is found to vary strongly with atomic occupancy right around
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Figure 3.5: Schematic view of vacancy-mediated diffusion of substitutional atom. E1 (E2) is the energy in state
1(2), 𝐸𝑡𝑟 is the energy is the transition state. For movement from state 1 to 2 (2 to 1) an energy barrier 𝐸𝑡𝑟 − 𝐸1
(𝐸𝑡𝑟 − 𝐸2) must be overcome.

Figure 3.6: Transition states (left side) in a binary alloy with vacancies are mapped onto a lattice gas featuring two
distinct ternaries (top: orange, blue, and an orange jumping atom represented as a green swapping pair; bottom:
orange, blue and and an blue jumping atom represented as a purple swapping pair).

the swapping pair. In Al-Cu alloys the largest and smallest values might easily differ by a
factor 3. To illustrate the significant local neighborhood dependence of the KRA energies,
some Al-Cu supercells are shown with the corresponding values of 𝐸KRA in Fig. 3.7.
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Figure 3.7: Supercells with transition states. Dark (light) blue spheres: Cu (Al), large orange sphere: Al in
transition state, small brown spheres: half vacancy. The kinetically resolved activation barrier is (a) 0.22 eV
in Al23Cu8Vac and (b) 0.65 eV in Al31Vac.

As 𝐸KRA is a strong function of the local environment, a local CE appears a sensible
approach. A local CE should depend only on atomic occupancy right near the swapping pair
and this expansion should not describe the average energetics of the alloy, which is already
covered in the CE for states 1 and 2. This is easily achieved by selecting only correlation
functions that encompass the swapping pair. We emphasize that the whole pair should
be included because otherwise correlation functions may not be properly distinguished, as
illustrated in Fig. 3.8. The reason for this is that the introduction of the swapping pair has
eliminated many operations from the symmetry group of the underlying disordered crystal
structure. Only operations that preserve the swapping pair can be retained. As the local CE
retains only correlations that contain the swapping pair, it is apparent that such a local CE
is NOT complete in a strict sense, because subclusters that contain only one or no sites of
the swapping pair are excluded. Of course, one can retain the completeness property with
regard to the local environment of the swapping pair. The local CE can be expressed as

𝐸𝐾𝑅𝐴 = ∑
𝛼

𝜎𝛼∪𝛽 𝐽𝛼∪𝛽 (3.11)

Where 𝛼 represents a cluster decoration corresponding to the empty cluster, or a point
cluster, etc. but not part of the swapping pair, 𝛽 represents the swapping pair, 𝜎𝛼∪𝛽 is a
counter for the number of cluster decorations of type 𝛼 ∪ 𝛽, and 𝐽 is the corresponding
ECI. 𝜎𝛼∪𝛽 has a maximum value 𝜇𝛼∪𝛽 that is determined by its symmetry, e.g. for the
decorations encircled by the blue oval in figure 4 it is 4(left side) and 2(right side).

3.2.7. Positive definite local cluster expansions
Another aspect of the 𝐸KRA local CE is that it should generally yield positive values for
all local neighborhoods. Unlike configurational energies which can be both positive and
negative, here only positive energies are desired. In the local CE occurrences of cluster
decorations are counted. As these occurrences can be counted using positive numbers only,
it is tempting to assume that a strictly positive expansion can be obtained by requiring all
ECI non-negative. However, this is a severe restriction that makes it generally too difficult
to obtain a good CE. A less severe restriction can be designed. For 𝛼 is empty a positive
interaction 𝐽𝛽 must exist. The sum of all negative valued interactions, times their maximal



3.3. Conclusion

3

63

Figure 3.8: Green spheres indicate the swapping pair on a (100) plane in fcc. In the local CE, the pair (indicated
by the red line) on the left and the pair on the right are not equivalent but are not properly distinguished when
applying the symmetry of the underlying lattice gas. However, when the swapping pair is completely included, as
in the clusters enclosed by the blue lines, the inequivalence is readily apparent.

multipliers 𝜇𝛼∪𝛽, plus the 𝐽𝛽 should thus be positive,

𝐽𝛽 + 1
2 ∑

𝛼∗
𝜇𝛼∪𝛽 (𝐽𝛼∪𝛽 − |𝐽𝛼∪𝛽|) > 0 (3.12)

where 𝛼∗ in the sum indicates that the empty cluster is excluded. This less restrictive
condition is easily implemented in the aufbau and enumeration methods. The most effective
method we have found however, is another method; Immediately screening every CE for
a large number of pre-selected local environments and requiring that for all these test
environments the 𝐸KRA exceeds zero or some small positive value.

3.3. Conclusion
It has been shown that the definition of the correlation functions is a crucial aspect of
cluster expansions. Particularly for multicomponent alloys, the current definition of the
correlation functions allows inheritance, i.e. effective cluster interactions from constituent
systems can be directly re-used. This assures that a good description of the alloy energetics
in constituent systems is carried forth in more complex alloys. It also great facilitates
determining cluster expansions in alloys with many components because it was shown that
if N-body terms in a CE suffice for describing the energetics of an alloy, then alloys with
N+1 components do not require any interactions beyond those present in the N+1 constituent
systems with N components. As generally CEs with 4-body terms are capable of describing
alloy energetics to within the meV/atom range, it follows that penternary alloys already, can
be fully described using the energetics of the constituent quaternaries only. This observation
is also an indication why there are so very few multicomponent superstructures in metallic
alloys. Another aspect of the current formulation of correlation coefficients is the great
efficiency in evaluating the energy in dilute binaries and multicomponent alloys generally.
Efficient algorithms for determining CEs were presented. These methods were illustrated
by determining a set of clusters that yields good CEs for multiple Al-based alloys. Finally,
the peculiarities of strictly local CEs, e.g. for KRA energy barriers for vacancy mediated
diffusion in substitutional alloys, were discussed. A method to impose that such local CEs
yield only positive energy barriers was presented.
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4
Ab initio prediction of vacancy

properties in concentrated
alloys: the case of fcc Cu-Ni

Vacancy properties in concentrated alloys continue to be of great interest
because nowadays ab initio supercell simulations reach a scale where even
defect properties in disordered alloys appear to be within reach. We show
that vacancy properties cannot generally be extracted from supercell total
energies in a consistent manner without a statistical model. Essential
features of such a model are knowledge of the chemical potential and
imposition of invariants. In the present work, we derive the simplest model
that satisfies these requirements and we compare it with models in the
literature. As illustration we compute ab initio vacancy properties of fcc Cu-Ni
alloys as function of composition and temperature.
Ab initio density functional calculations were performed for SQS supercells
at various compositions with and without vacancies. Various methods of
extracting alloy vacancy properties were examined. A ternary cluster expan-
sion yielded effective cluster interactions (ECIs) for the Cu-Ni-Vac system.
Composition and temperature dependent alloy vacancy concentrations were
obtained using statistical thermodynamics models with the ab initio ECIs.
An Arrhenius analysis showed that the heat of vacancy formation was
well represented by a linear function of temperature. The positive slope
of the temperature dependence implies a negative configurational entropy
contribution to the vacancy formation free energy in the alloy. These findings
can be understood by considering local coordination effects.
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4.1. Introduction

N owadays, ab initio prediction of point defects and diffusivities in pure metals has
become commonplace. Especially for self-diffusion and for impurity diffusion in dilute

alloys generally good agreement has been found with experimental data [1–8]. For point
defects in pure metals, generally excellent agreement with high temperature experimental
data can be achieved provided that sufficient thermal excitation effects are included [9–
11]. Point defects in alloys are more complicated than point defects in pure metals due
to the multiple local environments. In so far alloys have been considered it is usually in
the low-point defect concentration limit so that point defects can be assumed to be non-
interacting. Within these limitations, point defect properties in ordered structures such
as B2-AlNi [12–16], B2-FeAl [12, 17, 18], and L12-Ni3Al [19] have been theoretically
studied. As described in Refs. [14, 19], special attention should be paid to the definition
of the single defect formation energy for ordered alloys because it is non-trivial to define
and compute supercell energy differences under the constraints of constant number of atoms
and constant degree of order. Therefore, the common strategy to solve this problem is to
minimize a grand canonical potential (i.e. fixed number of lattice sites and varying number
of atomic species). In this approach chemical potentials are used as Lagrange multipliers to
preserve composition. Oftentimes in energy considerations little thought is given then to the
requirement of preservation of e.g. volume as atoms in the reservoir are exchanged with the
supercell. Likewise other parameters are oftentimes not clearly defined with respect to what
state variables are held fixed (pressure or volume; entropy or temperature, order parameter,
or ordering energy). Nevertheless, this method has found widespread use when dealing with
ordered structures.

In disordered crystalline materials, such as substitutional alloys, experimental informa-
tion on vacancies and diffusivities is scarce (see e.g. ref. [20, 21]), and from the theoretical
side also, there have been rather few studies that deal with specific alloy systems. Initially
using empirical potentials [22–25], and later through ab initio approaches, both through
supercell calculations [26–29] and ab initio based cluster expansions [30–33], it has been
established that the local atomic environment around a vacancy plays a significant role.
While the influence of vacancies on phase stability [30, 34] and kinetics [31–33] received
some attention for Al-Ni [30], Sc-S [34], and Al-Li [31–33] alloys, the actual vacancy
properties in specific alloys were mostly neglected with the exception of an empirical
potential study of Cu-Ni alloys by Zhao et al. [24]. In the latter study [24] vacancies
were studied with an embedded atom method (EAM) potential and structural relaxation,
vibrational and configurational effects were included. This very comprehensive approach
did not lead to a clear identification of how the structural, configurational and vibrational
effects individually contributed to vacancy properties, and the complexity of the treatment
did not allow one to extract rules of thumb that might be extrapolated to other alloy
systems. On the other hand, there are various lattice gas models that treat vacancies through
Bragg-Williams, or quasi-chemical approaches [14, 35–41] that are transparent enough to
extract rules of thumb. But these studies suffer from a too simple representation of the
energetics, such as including pairwise nearest neighbor interactions only, that are applicable
to very few actual alloys. Vacancy properties in disordered alloys were investigated also by
studying vacancies embedded in an effective medium, such as that defined by the coherent
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potential approximation (CPA). CPA implementations such as the self-consistent Green’s
function(LSGF) method [42] or exact muffin-tin orbital (EMTO) method [43], were shown
to give composition dependent vacancy properties in alloys at T=0K. However, the CPA
based methods consider the local vacancy environment only in an averaged way, and tend
to neglect the temperature dependence of the local environment and oftentimes neglect local
structural relaxations or limit relaxation to the nearest neighbor shell.

Therefore, in the current work we will consider structural relaxation and configurational
effects realistically, and attempt to describe the alloy-vacancy system in a simple enough
model so that vacancy properties emerge as function of a small number of intuitive
parameters. As the vacancy concentration in disordered alloys is generally very low, we
neglect intra-vacancy interactions and do not concern ourselves with vacancy clusters. In
the following, we introduce a formalism to extract vacancy properties from supercell and
cluster expansion approaches. We show how a simple cluster expansion can give rise to non-
trivial vacancy properties in the alloy, such as negative configurational vacancy formation
entropies and vacancy induced short range order. Finally, we give some general tendencies
for vacancies in alloys based on phase separation and ordering tendencies in substitutional
alloys.

4.2. Theory
We consider the problem of vacancy formation energies in disordered alloys, a problem
that recently is receiving increased attention [27, 28, 31, 33]. We limit ourselves initially to
configurationally random alloys, i.e. the reference state is the configurationally random state
without vacancies. This is not only for simplicity, but also, because it uniformly applies to
all substitutional alloys far enough above the transition temperature. The extension to alloys
with short range order is briefly discussed later. To describe a defect formation energy, it is
good to make a brief sojourn to the basic definition via the 1𝑠𝑡 law of thermodynamics

d𝐸 = ∑ 𝑌 d𝑋
= 𝑇 𝑑𝑆 − 𝑃𝑑𝑉 + ∑

𝑖
𝜇𝑖d𝑁𝑖 + 𝜖𝑠𝑟𝑜d𝜂𝑠𝑟𝑜 + Δ𝐸𝑑d𝑁𝑑 + … , (4.1)

where 𝑌 represents intensive variables that are system size independent while 𝑋 represents
extensive variables that are proportional to system size. A matching pair of “𝑌 and 𝑋” are
usually referred to as conjugates. Subscript 𝑖 refers to an atomic species, 𝜖𝑠𝑟𝑜 is an effective
interaction energy associated with short range order (SRO). 𝜂𝑠𝑟𝑜 is an extensive short range
order parameter, which could simply be a combination of the number of like atom pairs and
of unlike atom pairs, while Δ𝐸𝑑 is the energy and 𝑁𝑑 is the number of a particular kind of
defect. It then follows that the defect energy may be defined as

Δ𝐸𝑑 = d𝐸
d𝑁𝑑

|𝑆,𝑉 ,𝑁𝑖,𝜂𝑠𝑟𝑜,…, (4.2)

where the interest lies in the parameters that are held constant, the “invariants”. As we
generally are more apt to work at constant pressure this equation can be conveniently
rewritten in terms of the enthalpy. At finite temperatures eqn. 4.2 needs a modification
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because the configurational entropy is non-analytic in the low (defect) concentration limit.
Then, the configurational entropy contribution due to the defect species under consideration
must be explicitly excluded. In the case of substitutional point defects this gives

Δ𝐺𝑑 = d𝐺
d𝑁𝑑

|𝑇 ,𝑃,𝑁𝑖,𝜂𝑠𝑟𝑜,…, (4.3)

where the excess Gibbs energy is defined in the usual way, namely by excluding the ideal
mixing contribution.

𝐺 = 𝐺 − 𝑁𝑘𝐵𝑇 [𝑥𝑑ln(𝑥𝑑) + (1 − 𝑥𝑑)ln(1 − 𝑥𝑑)], (4.4)

with 𝑁 representing the total number of atomic positions, and 𝑥𝑑 = 𝑁𝑑/𝑁 being the
fraction of atomic positions that is occupied by the point defects.

4.2.1. Problematic supercell calculations

In order to facilitate the link with ab initio supercell calculations, we consider how the
defect formation enthalpy Δ𝐻𝑑 might be extracted from periodic supercell calculations by
replacing a derivative with a finite difference. Moreover, the T=0 K case will be considered
here which is typical for ab initio calculations. It should be emphasized that the result of this
exercise is that vacancy properties in disordered, or less than perfectly ordered, alloys cannot
be derived from supercell calculations alone. An additional statistical thermodynamicmodel
is essential. At T=0 K the entropy contribution vanishes so that 𝐻 takes the same value as
the free energies 𝐺 and 𝐺.

Δ𝐻𝑑 = d𝐻
d𝑁𝑑

|𝑇 =0,𝑃,𝑁𝑖,𝜂𝑠𝑟𝑜,... = [𝐻𝑠𝑐+𝑑 − 𝐻𝑠𝑐]𝑇 =0,𝑃,𝑁𝑖,𝜂𝑠𝑟𝑜,.... (4.5)

Below, the invariants will be omitted for brevity. When the defect is a vacancy, the
requirement of keeping the number of atoms constant means that an appropriate term for
compensating the energy loss of the vacated atom must be included

Δ𝐻𝑣𝑎𝑐 = [𝐻𝑠𝑐+𝑣𝑎𝑐 − 𝐻𝑠𝑐 + 𝜇], (4.6)

where 𝜇 is the chemical potential of the vacated atom. For a pure metal 𝜇 is simply the
energy of the supercell divided by the number of atoms in the supercell. However, in
a disordered alloy, say with atomic species A and B, the 𝜇 term depends on the type of
atom removed to make the vacancy. Moreover, 𝜇𝑖 is the chemical potential of atomic
species 𝑖 (𝑖=A or B) in the alloy, which generally differs from 𝜇𝑖 in the pure element, as
was erroneously assumed in eqn. 5 in ref. [27]. It is now apparent also why an enthalpy
formulation is preferable over an energy formulation because maintaining equal pressure is
much easier than maintaining equal volume in the supercell with vacancy plus that of the
𝑖-atom vis-a-vis the supercell without the vacancy.

In binary A-B random alloys, vacancies can be surrounded by a various numbers of A
and B atoms unlike the pure element case. In the nearest neighbor shell of an fcc alloy the 12
nearest neighbors of a vacancy can range from 12A and 0B atoms all theway to 0A and 12B
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atoms. The composition of the nearest neighbor shell, and of more distant neighbor shells,
affects the vacancy formation enthalpy. It is then apparent that “the vacancy formation
enthalpy” in a disordered alloy requires a careful definition because the vacancy formation
enthalpy must be a function of the atomic neighborhood of the vacancy, the composition
of the alloy and other factors. In order to preserve the composition of the alloy, A and B
atoms need to be removed according to their composition, that is 𝑥𝐴 times an A atom and
𝑥𝐵 times a B atom. It follows that a weighted average over A and B removed supercells
must be considered,

Δ𝐻𝑣𝑎𝑐(𝑥𝐴, 𝑥𝐵) = 𝑥𝐴[𝐻𝑠𝑐+𝑣𝑎𝑐𝐴
+ 𝜇𝐴 − 𝐻𝑠𝑐] + 𝑥𝐵[𝐻𝑠𝑐+𝑣𝑎𝑐𝐵

+ 𝜇𝐵 − 𝐻𝑠𝑐]
= 𝑥𝐴[𝐻𝑠𝑐+𝑣𝑎𝑐𝐴

− 𝐻𝑠𝑐] + 𝑥𝐵[𝐻𝑠𝑐+𝑣𝑎𝑐𝐵
− 𝐻𝑠𝑐] + 𝐻𝑠𝑐/𝑁

= [𝑥𝐴𝐻𝑠𝑐+𝑣𝑎𝑐𝐴
+ 𝑥𝐵𝐻𝑠𝑐+𝑣𝑎𝑐𝐵

− 𝑁 − 1
𝑁 𝐻𝑠𝑐], (4.7)

where 𝑁 is the number of atoms in the supercell without vacancy. Of course, actual
supercells contain small numbers of atoms only, and therefore they poorly satisfy the
invariants. Removing a certain atom from a supercell changes the composition and
the state of order. For solid solutions without any short- or long range order, the
most configurationally representative supercells are constructed as special quasi-random
structures (SQSs) which, for all presupposed important correlation functions in the alloy
reproduce the values for truly random structures [44]. In such a supercell one can then
remove one atom at a time, and define the vacancy formation enthalpy as an appropriate
average

Δ𝐻𝑣𝑎𝑐(𝑥𝐴, 𝑥𝐵) = 1
𝑁

𝑁
∑
𝑖=1

[𝐻𝑆𝑄𝑆−𝑎𝑡𝑜𝑚𝑖
− 𝑁 − 1

𝑁 𝐻𝑆𝑄𝑆]. (4.8)

However, the above equation is actually not physically relevant because it averages over
vacancy neighborhoods. In an actual alloy vacancies would occur where favorable local
neighborhoods exist, so that the effective vacancy formation enthalpy should be tilted
towards the lowest enthalpy neighborhoods. In a random alloy with low A concentration,
it is improbable to find neighborhoods with exclusively A atoms, even if that type of
neighborhood were to give the lowest vacancy formation enthalpy. Therefore, the tilting
towards the lowest enthalpy configurations is limited by combinatorial factors. If the
effective interactions between vacancies and A or B atoms are limited to the near neighbors,
the sum in eqn. 4.8 could be limited to those atomic positions which have a particular
neighborhood 𝛼 only,

Δ𝐻𝛼
𝑣𝑎𝑐(𝑥𝐴, 𝑥𝐵) = 1

𝑁𝛼

𝑁𝛼

∑
𝑖𝛼=1

[𝐻𝑆𝑄𝑆−𝑎𝑡𝑜𝑚𝑖𝛼
+ 𝜇𝑖 − 𝐻𝑆𝑄𝑆]. (4.9)

Where 𝑁𝛼 refers to the number of sites in the SQS supercells with neighborhood 𝛼. This
definition is akin to ref. [24, 43, 45, 46]. The chemical potentials of the A and B atomic
species in the solid solution (at T=0 K) can be obtained by fitting an interpolation formula,
usually some low-order polynomial in the composition, to the solid solution enthalpy. In the
earlier work [45, 46] the chemical potential was obtained by averaging over various ordered
structures, which for disordered alloys is likely to be less reliable than using SQSs.
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In practice, it is rather cumbersome to generate SQS supercells that contain all types
of neighborhoods. Just considering the nearest neighbor shell in fcc solid solutions alone
gives 144 distinct configurations [47] in a binary alloy. Therefore, it is usually more
efficient to compute neighborhood dependent vacancy formation enthalpies through cluster
expansions [31–33].

4.2.2. Cluster expansion

In the cluster expansion approach the A-B alloy with vacancies is treated as a ternary with
the vacancy as an additional species [30–33, 48, 49]. As the vacancy concentration in actual
disordered alloys is usually very low, and vacancy clusters in thermally equilibrated alloys
are rare, such cluster expansions typically do not require determination of vacancy-vacancy
interaction terms. This significantly reduces the number of effective cluster interactions
(ECIs) that are needed for a good representation of the energetics of alloys with vacancies.

Here, we follow the site occupation variable definition p as in ref. [50–52], where the
site occupation is represented as a vector with as many components as there are species in
the alloy, here vacancy, A, and B atoms. For convenience the vacancy could be designated
as a type “C” atom, an idea already expressed earlier in refs. [30, 34, 48, 49, 53, 54]. The
occupation variable for every site 𝑖 thus has vector components 𝑝(𝐶), 𝑝(𝐵), and 𝑝(𝐴). 𝑝(𝑄)

is the probability that a site is occupied by the species 𝑄. For a particular site 𝑖, 𝑝(𝑄) takes
the value zero, except when the actual occupancy at that site is “Q” in which case it equals
unity.

As every site is occupied by one and only one of these three species, it follows that for
every site there exists a “sumrule:” 𝑝(𝐶)+𝑝(𝐵)+𝑝(𝐴) = 1. Therefore, one of the components
is redundant. Specifying 𝑝(𝐶) and 𝑝(𝐵) fully determines the value of 𝑝(𝐴) through 𝑝(𝐴) =
1 − 𝑝(𝐶) − 𝑝(𝐵).

Sumrules apply not just to individual sites but to clusters also. In a cluster each site is
occupied by one of the species in the alloy, giving rise to the concept of a “cluster decoration”
where each site in a cluster is decorated with an atomic species. The sum of the probabilities
for all the cluster decorations is unity for each cluster in the alloy. For instance the sum of
probabilities for pair decorations, here for a ternary alloy: 𝑝(𝐴𝐴) +𝑝(𝐴𝐵) +𝑝(𝐴𝐶) +𝑝(𝐵𝐴) +
𝑝(𝐵𝐵) + 𝑝(𝐵𝐶) + 𝑝(𝐶𝐴) + 𝑝(𝐶𝐵) + 𝑝(𝐶𝐶) = 1.

Using these sum rules, it can be trivially shown that redundancy can be removed by
eliminating the cluster decoration probabilities involving one of the species in the alloy. In
other words, all cluster decoration probabilities in a ternary A-B-C alloy can be completely
determined by specifying the probabilities of decorations involving the species 𝐶 and 𝐵
only. Generally, in an alloy with 𝑁𝑠𝑝 species, the cluster decoration probabilities involving
𝑁𝑠𝑝-1 species can be used as a basis set of non-redundant variables, i.e. as correlation
functions, to fully describe the probabilities, i.e. the configuration [55]. In the case
of a binary alloy, this means that the cluster decoration probabilities of pure B cluster
decorations 𝑝𝛾 (where we have eliminated the B superscripts for brevity) fully describes
the configurational order, so that the enthalpy of a binary alloy with structure 𝜎 can be
given as

𝐻𝜎 = ∑
𝛾

𝐽𝛾𝑝𝜎
𝛾 , (4.10)
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where 𝛾 indicates a cluster and 𝐽𝛾 is an effective interaction enthalpy associated with a
pure B cluster decoration, as was formally proven in ref. [55]. Considering vacancies as a
ternary species, and considering isolated vacancies only, eqn. 4.10 can be adapted to include
vacancies in alloys,

𝐻𝜎 = ∑
𝛾

𝐽𝛾𝑝𝛾 + ∑
𝛾′

𝐽𝛾′𝑝𝛾′ , (4.11)

where the second term involves cluster decorations 𝛾′ in which one B species is substituted
by a vacancy. The single site term in the second sum, 𝛾′ = 𝐶 (vacancy), pertains to the
vacancy formation enthalpy in pure A 𝐽𝐶 and the probability of finding a vacancy 𝑝𝐶 .
Of course, eqns. 4.10 and 4.11 can be written equally well in terms of the Gibbs energy
excluding the configurational entropy part in terms of temperature dependent effective
interactions [56].

The enthalpy of the random binary alloy is easily obtained from the cluster expansion
because all the cluster decoration probabilities are products of single site decoration
probabilities, that is, atomic concentrations. On the fcc lattice, considering nearest neighbor
pair and nearest neighbor equilateral triangle ECIs only, this gives

𝐻𝑟𝑛𝑑(𝑥𝐵) = 𝐽0 + 𝑥𝐵𝐽 (𝐵)
1 + 𝑥2

𝐵𝑛2,1𝐽 (𝐵𝐵)
2,1 + 𝑥3

𝐵𝑛3,1𝐽 (𝐵𝐵𝐵)
3,1 , (4.12)

where 𝐽0 is a so-called empty cluster “interaction” which serves to define the enthalpy of
pure A and 𝑛𝛾 is the number of clusters of type 𝛾 per lattice site; 𝛾 indicates the number of
sites in a cluster, followed by a type, e.g. (2,1) for a nearest neighbor pair, (2,2) for a second
nearest neighbor pair [57]. For the fcc lattice, 𝑛2,1 = 6 and 𝑛3,1 = 8. The enthalpy of
mixing and the formation energy of any structure 𝜎, is obtained by subtracting the enthalpy
from the pure end members 𝐻𝐴(𝐻𝐵),

𝐻𝑚𝑖𝑥(𝑥𝐵) = 𝐻𝑟𝑛𝑑(𝑥𝐵) − 𝑥𝐵𝐻𝐵 − 𝑥𝐴𝐻𝐴, (4.13)
𝐻𝑓𝑜𝑟𝑚,𝜎(𝑥𝐵) = 𝐻𝜎(𝑥𝐵) − 𝑥𝐵𝐻𝐵 − 𝑥𝐴𝐻𝐴. (4.14)

The T=0 K chemical potentials of A and of B are extracted from the random enthalpy,

𝜇𝐴(𝑥𝐵) = 𝐽0 − 6𝑥2
𝐵𝐽 (𝐵𝐵)

2,1 − 16𝑥3
𝐵𝐽 (𝐵𝐵𝐵)

3,1 (4.15)

𝜇𝐵(𝑥𝐵) = 𝐽0 + 𝐽 (𝐵)
1 + 6𝑥𝐵(2 − 𝑥𝐵)𝐽 (𝐵𝐵)

2,1 + 8𝑥2
𝐵(3 − 2𝑥𝐵)𝐽 (𝐵𝐵𝐵)

3,1 . (4.16)

If the solid solution is not random, one can generate configurations that satisfy predefined
degrees of long- or short range order [58], e.g. through Monte Carlo algorithms. The
ECIs are obtained by inverting eqn. 4.10, through the so-called structure inversion method,
described in detail elsewhere [57, 59, 60]. An expression for the formation enthalpy of a
vacancy in an alloy is derived from eqn. 4.11, by considering which bonds are broken and
which bonds are created when an A or B atom is replaced by a vacancy while imposing
the requirement of keeping the number of atoms constant. To include the effect of the
neighborhood, we consider an atom surrounded by a particular neighborhood 𝛼 formed
by 1𝑠𝑡, and optionally more distant neighbor shells, embedded in the alloy. Considering the
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nearest neighbor shell only as a neighborhood, this gives

Δ𝐻(𝛼)
𝑣𝑎𝑐(𝐴)(𝑥𝐵) = 𝐽 (𝐶)

1 + 𝑛(𝛼)
1 𝐽 (𝐵𝐶)

2,1 + 𝑛(𝛼)
2 𝐽 (𝐵𝐵𝐶)

3,1 + 𝜇𝐴(𝑥𝐵) − 𝐽0

Δ𝐻(𝛼)
𝑣𝑎𝑐(𝐵)(𝑥𝐵) = 𝐽 (𝐶)

1 + 𝑛(𝛼)
1 𝐽 (𝐵𝐶)

2,1 + 𝑛(𝛼)
2 𝐽 (𝐵𝐵𝐶)

3,1 + 𝜇𝐵(𝑥𝐵)
− (𝐽0 + 𝐽 (𝐵)

1 + 𝑛(𝛼)
1 𝐽 (𝐵𝐵)

2,1 + 𝑛(𝛼)
2 𝐽 (𝐵𝐵𝐵)

3,1 ), (4.17)

where the subscript 𝑣𝑎𝑐(𝑖)(𝑖 = 𝐴 or 𝐵) indicates whether the vacated central atom is A
(or B), 𝐽 (𝐶)

1 is the enthalpy needed for forming a vacancy in pure 𝐴, 𝐽 (𝑃𝑄)
2,1 is the effective

nearest neighbor pair interaction per PQ atom pair, 𝐽 (𝑃𝑄𝑅)
3,1 is the effective nearest neighbor

equilateral triangle interaction per 𝑃𝑄𝑅 atom triangle and 𝑛(𝛼)
1 (𝑛(𝛼)

2 ) is the number of B
atoms (BB nearest neighbor pairs) in the nearest neighbor shell around the vacancy with
neighborhood 𝛼. It is trivial to include more neighbor shells, and clusters with more sites.
The 144 distinct nearest neighbor shell configurations [47] in fcc solid solutions in a binary
alloy in this approximation are actually energetically distinguished by the numbers 𝑛(𝛼)

1 and
𝑛(𝛼)

2 only. Therefore, just 41 distinct vacancy formation enthalpies emerge for each central
vacated atom A (or B) from eqn. 4.17, see table 4.1. Of course, eqn. 4.17 can be generalized
to the Gibbs energy of vacancy formation by using temperature dependent ECIs that account
for thermal excitation effects provided that the contribution from the ideal configurational
entropy is excluded. Moreover, within the cluster expansion approach the effect of short
range order can be incorporated by using the cluster expansion within a lattice gas model,
which can be solved using Monte Carlo [31, 32] or cluster variation methods [30, 48].

Table 4.1: Types of nearest neighbor shells (𝛼) in an fcc A-B alloy: corresponding indices k from table XIII in
Ref. [47], degeneracy (𝑚(𝛼)), number of B atoms and BB pair (𝑛(𝛼)

1 and 𝑛(𝛼)
2 ) in the nearest neighbor shell.

𝛼 index k [47] 𝑚(𝛼) 𝑛(𝛼)
1 𝑛(𝛼)

2
1 1 1 0 0
2 2 12 1 0
3 3–5 42 2 0
4 6 24 2 1
5 7–9 44 3 0
6 10–12 120 3 1
7 13,14 48 3 2
8 15 8 3 3
9 16,17 9 4 0
10 18,19 96 4 1
11 20–28 240 4 2
12 29–31 96 4 3
13 32,33 54 4 4
14 34–38 108 5 2
15 39–44 264 5 3
16 45–52 264 5 4
17 53–55 120 5 5
18 56,57 36 5 6
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Table 4.1 (continued)
𝛼 index k [47] 𝑚(𝛼) 𝑛(𝛼)

1 𝑛(𝛼)
2

19 58–66 216 6 4
20 67–72 240 6 5
21 73–83 336 6 6
22 84,85 96 6 7
23 86,87 36 6 8
24 34–38 108 7 6
25 39–44 264 7 7
26 45–52 264 7 8
27 53–55 120 7 9
28 56,57 36 7 10
29 16,17 9 8 8
30 18,19 96 8 9
31 20–28 240 8 10
32 29–31 96 8 11
33 32,33 54 8 12
34 7–9 44 9 12
35 10–12 120 9 13
36 13,14 48 9 14
37 15 8 9 15
38 3–5 42 10 16
39 6 24 10 17
40 2 12 11 20
41 1 1 12 24

As seen above in eqns. 4.17, the enthalpy of a vacancy defect depends on the environ-
ment 𝛼, and on which atom species i is removed, A or B. The vacancy formation enthalpy
in the alloy is therefore a weighted sum over environments and over removed atom species,

Δ𝐻 = ∑
𝛼,𝑖

𝑥(𝛼)
𝑣𝑎𝑐(𝑖)Δ𝐻(𝛼)

𝑣𝑎𝑐(𝑖), (4.18)

where 𝑥𝛼
𝑣𝑎𝑐(𝑖) is the concentration of each type of vacancy. It is now evident also that the

removed atom species index i is really needed, because the likelihood of finding an A or a B
atom in environment 𝛼 is not the same for the two atom species. Of course, after the atom
i is removed, it is no longer possible to determine what species originally was there. The
concentration of vacancy types 𝑥𝛼

𝑣𝑎𝑐(𝑖) is a product of concentration (or probability) 𝑥(𝛼)
𝑖 of

finding an i atom in an 𝛼 environment and of the probability of removing that i atom from
that environment 𝑓 (𝛼)

𝑣𝑎𝑐(𝑖). Naturally, 𝑓 (𝛼)
𝑣𝑎𝑐(𝑖) should be a function of Δ𝐻(𝛼)

𝑣𝑎𝑐(𝑖) because if the
latter is large the corresponding probability should be low. There must also be an entropy
associated with 𝑓 (𝛼)

𝑣𝑎𝑐(𝑖). As the vacancy defects are few and generally far apart, the entropy
can be represented by an ideal entropy,

Δ𝑆 = − ∑
𝛼,𝑖

𝑘𝐵𝑥(𝛼)
𝑖 Ξ(𝑓 (𝛼)

𝑣𝑎𝑐(𝑖)), (4.19)
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with
Ξ(𝑓 (𝛼)

𝑣𝑎𝑐(𝑖)) = 𝑓 (𝛼)
𝑣𝑎𝑐(𝑖) ln(𝑓 (𝛼)

𝑣𝑎𝑐(𝑖)) + (1 − 𝑓 (𝛼)
𝑣𝑎𝑐(𝑖)) ln(1 − 𝑓 (𝛼)

𝑣𝑎𝑐(𝑖)). (4.20)

It then follows that at finite temperature, the Gibbs energy due to the formation of vacancies
can be written as,

Δ𝐺 = ∑
𝛼,𝑖

𝑥(𝛼)
𝑣𝑎𝑐(𝑖)Δ𝐻(𝛼)

𝑣𝑎𝑐(𝑖) + 𝑘𝐵𝑇 𝑥(𝛼)
𝑖 Ξ(𝑓 (𝛼)

𝑣𝑎𝑐(𝑖)). (4.21)

Once Δ𝐻(𝛼)
𝑣𝑎𝑐(𝑖) and the short range order as given by 𝑥(𝛼)

𝑖 are known, the concentration
of each type of vacancy 𝑥𝛼

𝑣𝑎𝑐(𝑖) can be computed by minimizing eqn. 4.21. However, the

minimization of Δ𝐺𝑣𝑎𝑐 with respect to 𝑥(𝛼)
𝑣𝑎𝑐(𝑖) does not generally satisfy preservation of

both A and B atoms. The apparent number of vacated A atoms might differ from what is to
be expected on the basis of the composition. Hence, a constraint must be imposed:

∑𝛼 𝑥(𝛼)
𝑣𝑎𝑐(𝐵)

∑𝛼 𝑥(𝛼)
𝑣𝑎𝑐(𝐴)

= 𝑥𝐵
𝑥𝐴

. (4.22)

Using a Lagrange multiplier 𝜆 this gives a Lagrangian

Λ = Δ𝐺 + 𝜆[𝑥𝐴 ∑
𝛼

𝑥(𝛼)
𝑣𝑎𝑐(𝐵) − 𝑥𝐵 ∑

𝛼
𝑥(𝛼)

𝑣𝑎𝑐(𝐴)], (4.23)

and the values of 𝑥𝛼
𝑣𝑎𝑐(𝑖) are then found by solving

𝜕Λ
𝜕𝑥(𝛼)

𝑣𝑎𝑐(𝑖)
= Δ𝐻(𝛼)

𝑣𝑎𝑐(𝑖) − 𝜆[𝛿𝑖𝐴𝑥𝐵 − 𝛿𝑖𝐵𝑥𝐴] + 𝑘𝐵𝑇 ln(
𝑓 (𝛼)

𝑣𝑎𝑐(𝑖)

1 − 𝑓 (𝛼)
𝑣𝑎𝑐(𝑖)

) = 0, (4.24)

where 𝛿 is the Kronecker delta. When vacancy concentrations are small, the denominators
inside the logarithm can be neglected, yielding

𝑥(𝛼)
𝑣𝑎𝑐(𝑖) = 𝑥(𝛼)

𝑖 exp(−𝛽{Δ𝐻(𝛼)
𝑣𝑎𝑐(𝑖) − 𝜆[𝛿𝑖𝐴𝑥𝐵 − 𝛿𝑖𝐵𝑥𝐴]}), (4.25)

where 𝛽 = (𝑘𝐵𝑇 )−1. By substituting eqns. 4.25 into eqn. 4.22 an analytical solution for 𝜆
is obtained,

𝜆 = 1
𝛽 ln(

𝑥𝐴 ∑𝛼 𝑥(𝛼)
𝐵 𝑒−𝛽∆𝐻(𝛼)

𝑣𝑎𝑐(𝐵)

𝑥𝐵 ∑𝛼 𝑥(𝛼)
𝐴 𝑒−𝛽∆𝐻(𝛼)

𝑣𝑎𝑐(𝐴)
). (4.26)

In the random alloy case, 𝑥(𝛼)
𝑖 is a simple function of the composition

𝑥(𝛼)
𝑖 = 𝑚(𝛼)𝑥𝑖𝑥12−𝑛(𝛼)

1
𝐴 𝑥𝑛(𝛼)

1
𝐵 , (4.27)

where 𝑚(𝛼) is the degeneracy of a particular neighborhood, see table 4.1. In non-random
alloys, a Monte Carlo method can be used to impose a certain degree of short- or long range
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order on the probabilities 𝑥(𝛼)
𝑖 . Of course, the sum of 𝑥(𝛼)

𝑖 over all 𝛼 yields the concentration
𝑥𝑖. The total vacancy concentration is obtained from

𝑥𝑣𝑎𝑐(𝑥𝐵, 𝑇 ) = ∑
𝛼,𝑖

𝑥(𝛼)
𝑣𝑎𝑐(𝑖). (4.28)

It is evident that the total vacancy concentration does not necessarily follow a simple
Arrhenius equation because each neighborhood has its own vacancy formation enthalpy, see
eqn. 4.25. At low temperature, only those𝛼with the lowest formation enthalpies contribute,
while at high temperature 𝛼 with higher formation enthalpies contribute also. Therefore,
when the total vacancy concentration is fit to an Arrhenius equation, it is to be expected
that the effective vacancy formation energy shifts towards higher values as the temperature
increases. Although Δ𝐻(𝛼)

𝑣𝑎𝑐(𝐴) is in this derivation temperature independent, the effective
energy for vacancy formation is better represented as a temperature dependent Gibbs energy

Δ𝐺𝑒𝑓𝑓
𝑣𝑎𝑐 (𝑥𝐵, 𝑇 ) = −𝑘𝐵𝑇 ln(𝑥𝑣𝑎𝑐(𝑥𝐵, 𝑇 )) (4.29)

The temperature dependence of Δ𝐺𝑒𝑓𝑓
𝑣𝑎𝑐 can be used to determine an effective vacancy

formation entropy Δ𝑆𝑒𝑓𝑓
𝑣𝑎𝑐 and enthalpy Δ𝐻𝑒𝑓𝑓

𝑣𝑎𝑐 ,

Δ𝑆𝑒𝑓𝑓
𝑣𝑎𝑐 (𝑥𝐵) = −[Δ𝐺𝑒𝑓𝑓

𝑣𝑎𝑐 (𝑥𝐵, 𝑇1) − Δ𝐺𝑒𝑓𝑓
𝑣𝑎𝑐 (𝑥𝐵, 𝑇2)]/[𝑇1 − 𝑇2], (4.30)

Δ𝐻𝑒𝑓𝑓
𝑣𝑎𝑐 (𝑥𝐵) = Δ𝐺𝑒𝑓𝑓

𝑣𝑎𝑐 (𝑥𝐵, 𝑇1) + 𝑇1Δ𝑆𝑒𝑓𝑓
𝑣𝑎𝑐 (𝑥𝐵), (4.31)

where 𝑇1 and 𝑇2 indicate the temperature range of interest. Another vacancy property of
interest is the average number of B neighbors around a vacancy,

⟨𝑛𝐵⟩ = 1
𝑥𝑣𝑎𝑐

∑
𝛼,𝑖

𝑥(𝛼)
𝑣𝑎𝑐(𝑖)𝑛

(𝛼)
1 , (4.32)

In the above derivation, it is assumed that the fraction of neighborhoods 𝑥(𝛼)
𝑖 is not affected

by the vacancy concentrations 𝑥𝛼
𝑣𝑎𝑐(𝑖). This should be true as long as 𝑥𝛼

𝑣𝑎𝑐(𝑖) is much smaller

than 𝑥(𝛼)
𝑖 , i.e. 𝑓𝛼

𝑣𝑎𝑐(𝑖) << 1. It breaks down when e.g. the lowest energy neighborhood 𝛼′

is very rare. Say, if an all A surrounded vacancy is strongly favored in an almost pure B
alloy. In such a case we must expect a coupling of short- or long range ordering with the
occurrence of vacancies. Fortunately one can explicitly verify whether 𝑓𝛼

𝑣𝑎𝑐(𝑖) is small.

4.3. Method
The thermodynamics of fcc Cu-Ni solid solutions was investigated by means of SQSs with
16 atoms per cell with compositions Cu4Ni12 , Cu12Ni4 (both structures listed as SQS-1 in
ref.[61]), and Cu8Ni8 (two variants listed as SQS-2 and SQS-3 in ref.[61]). The pure Cu
and Ni phases are considered also using the same type cell as for the Cu4Ni12 and Cu12Ni4
compositions. Generalized gradient approximation [62, 63] projector augmented wave
pseudopotentials as implemented in VASP [64–66], version 4.6, are used with collinear spin
polarization. Integrations in reciprocal space use a Γ-centered Monkhorst-Pack grid with
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the number of k-points determined through N𝑎𝑡𝑜𝑚N𝑘−𝑝𝑜𝑖𝑛𝑡 ≈10000 in the 1𝑠𝑡 Brillouin
zone. Precision was set to “accurate.” In all calculations, the electronic wave functions
were expanded in terms of plane waves up to a cutoff kinetic energy of 320 eV. The Hermite-
Gauss smearing method of Methfessel and Paxton of order 1 has been used, with a smearing
parameter of 0.1 eV. All structures are fully relaxed. The convergence criteria for energy,
force magnitude, and stress component, were 0.1 meV, 10meV/nm, and 1 kBar respectively.
Structural optimizations were reinitiated at least twice. With these convergence settings
energy changes between the last ionic iterations are a few 𝜇eV/atom only. All ab initio
calculations pertain to T=0 K with zero-point vibrational corrections being neglected. In
the 4 types of SQSs every site was once replaced by a vacancy, giving rise to 4x16=64
supercells with a single vacancy. A cluster expansion using point, nearest neighbor pair,
and nearest neighbor equilateral triangle clusters was fit to in total 71 structures; 2 pure
elements, vacuum,4 SQSs, and 64 single vacancy SQS derived structures. The ECIs were
used in a ternary cluster variation method [67, 68] (CVM) calculation in the tetrahedron
approximation to determine the Cu-Ni phase diagram, and the vacancy concentration as
function of composition and temperature. In the CVM calculations the ratio of Cu to
Ni atoms is held constant, but the concentration of the vacancy species is freely varied.
The equilibrium vacancy concentration is determined by minimizing the Gibbs energy with
respect to the vacancy concentration.

4.4. Results and Discussion
Vacancy properties in concentrated Cu-Ni alloys are reported and discussed. Next, we seek
to generalize our findings to other alloy types, where we consider alloys that are of ordering
type, unlike Cu-Ni, and alloys in which the vacancy formation enthalpy in the end members
differs even more, or significantly less than for Cu-Ni.

4.4.1. Alloy with phase separation: the case of fcc Cu-Ni

The ab initio computed supercell properties are listed in table 4.2. In the supercells with
vacancies, the letters following the structure indicate which atom has been vacated, “a”
(“p”) indicates that the 1𝑠𝑡 (16𝑡ℎ) atom in the structure is vacated. Enthalpy of formation
of the SQS, computed as described in ref.[61], is used as a proxy for the mixing enthalpy
Δ𝐻𝑚𝑖𝑥. Figure 4.1 illustrates that the compositional dependence of the mixing enthalpy
can be approximated by subregular solution model. The chemical potential of Cu and
Ni is extracted from the mixing enthalpy as function of the alloy composition. It should
be remarked that small 16 atom supercells do not give very accurate vacancy formation
energies, but the objective here is not high accuracy but insight in vacancy properties in
alloys. For the pure elements a comparison with literature values is given in table 4.3. It is
evident that the results are comparable to other PBE-GGA [62, 63] calculations with small
supercells. We chose the PBE implementation of the GGA because a recent study [69]
suggests that the PBE-GGA xc-potential performs at least as well as the newer AM05-
GGA [70] xc-potential in describing vacancy formation energies.
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Table 4.2: Computed enthalpies (∆𝐻) and magnetic moments (𝑀) for supercells as described in the text, the
number of Cu atoms in the nearest neighbor shell around the vacant site, the chemical potentials, and the vacancy
formation enthalpy according to eqn 4.6.

Structure formula ∆𝐻 𝑀 𝑛(𝐶𝑢)
1

𝜇𝑁𝑖 𝜇𝐶𝑢 ∆𝐻𝛼
𝑣𝑎𝑐

(eV/cell) (𝜇𝐵/cell) (eV/atom) (eV/atom) (eV)
SQS-1 Ni16Cu0 -89.167 10.031 -5.573 -3.538
SQS-1 Ni15Cu0 -82.185 9.499 0 -5.573 1.409
SQS-1 Ni0Cu16 -59.563 0.000 -5.585 -3.723
SQS-1 Ni0Cu15 -54.781 0.000 12 -3.723 1.059
SQS-1 Ni12Cu4 -81.381 6.054 -5.555 -3.674
SQS-1a Ni11Cu4 -74.489 5.529 3 -5.555 1.337
SQS-1b Ni11Cu4 -74.438 5.658 1 -5.555 1.388
SQS-1c Ni11Cu4 -74.388 5.531 1 -5.555 1.437
SQS-1d Ni11Cu4 -74.588 5.613 4 -5.555 1.237
SQS-1e Ni11Cu4 -74.607 5.688 6 -5.555 1.219
SQS-1f Ni11Cu4 -74.534 5.680 5 -5.555 1.292
SQS-1g Ni11Cu4 -74.430 5.623 3 -5.555 1.395
SQS-1h Ni11Cu4 -74.342 5.741 1 -5.555 1.483
SQS-1i Ni11Cu4 -74.424 5.635 2 -5.555 1.402
SQS-1j Ni11Cu4 -74.410 5.680 2 -5.555 1.415
SQS-1k Ni11Cu4 -74.392 5.664 3 -5.555 1.434
SQS-1l Ni11Cu4 -74.536 5.736 5 -5.555 1.289
SQS-1m Ni12Cu3 -76.343 6.588 2 -3.674 1.363
SQS-1n Ni12Cu3 -76.352 6.580 3 -3.674 1.354
SQS-1o Ni12Cu3 -76.359 6.537 4 -3.674 1.347
SQS-1p Ni12Cu3 -76.304 6.606 3 -3.674 1.402

SQS-1 Ni4Cu12 -66.873 0.000 12 -5.524 -3.730
SQS-1a Ni4Cu11 -61.879 0.000 9 -3.730 1.264
SQS-1b Ni4Cu11 -62.044 0.001 11 -3.730 1.099
SQS-1c Ni4Cu11 -62.032 0.000 11 -3.730 1.111
SQS-1d Ni4Cu11 -61.842 0.000 8 -3.730 1.301
SQS-1e Ni4Cu11 -61.777 0.054 6 -3.730 1.366
SQS-1f Ni4Cu11 -61.859 0.000 7 -3.730 1.283
SQS-1g Ni4Cu11 -61.959 0.000 9 -3.730 1.184
SQS-1h Ni4Cu11 -62.113 0.000 11 -3.730 1.030
SQS-1i Ni4Cu11 -61.987 0.000 10 -3.730 1.156
SQS-1j Ni4Cu11 -62.023 0.000 10 -3.730 1.120
SQS-1k Ni4Cu11 -61.968 0.000 9 -3.730 1.175
SQS-1l Ni4Cu11 -61.866 0.000 7 -3.730 1.277
SQS-1m Ni3Cu12 -60.160 0.000 10 -5.524 1.188
SQS-1n Ni3Cu12 -60.113 0.000 9 -5.524 1.235
SQS-1o Ni3Cu12 -60.043 0.000 8 -5.524 1.305
SQS-1p Ni3Cu12 -60.192 0.000 9 -5.524 1.157

SQS-2 Ni8Cu8 -73.990 2.243 -5.527 -3.726 1.297
SQS-2a Ni8Cu7 -68.865 3.081 3 -3.726 1.400
SQS-2b Ni8Cu7 -68.864 3.081 3 -3.726 1.400
SQS-2c Ni8Cu7 -68.989 2.801 7 -3.726 1.275
SQS-2d Ni8Cu7 -69.013 2.834 7 -3.726 1.252
SQS-2e Ni8Cu7 -68.973 2.764 7 -3.726 1.291
SQS-2f Ni8Cu7 -68.989 2.810 7 -3.726 1.275
SQS-2g Ni8Cu7 -68.974 2.760 7 -3.726 1.290
SQS-2h Ni8Cu7 -69.013 2.827 7 -3.726 1.251
SQS-2i Ni7Cu8 -67.081 1.886 5 -5.527 1.382



4

82 4. Vacancy properties in concentrated alloys

Table 4.2 (continued)

Structure formula ∆𝐻 𝑀 𝑛(𝐶𝑢)
1

𝜇𝑁𝑖 𝜇𝐶𝑢 ∆𝐻𝛼
𝑣𝑎𝑐

(eV/cell) (𝜇𝐵/cell) (eV/atom) (eV/atom) (eV)
SQS-2j Ni7Cu8 -67.116 2.117 5 -5.527 1.347
SQS-2k Ni7Cu8 -67.125 1.990 5 -5.527 1.338
SQS-2l Ni7Cu8 -67.081 1.876 5 -5.527 1.382
SQS-2m Ni7Cu8 -67.127 1.980 5 -5.527 1.336
SQS-2n Ni7Cu8 -67.117 2.108 5 -5.527 1.347
SQS-2o Ni7Cu8 -67.368 2.124 9 -5.527 1.095
SQS-2p Ni7Cu8 -67.368 2.124 9 -5.527 1.095

SQS-3 Ni8Cu8 -73.995 2.208 -5.527 -3.726
SQS-3a Ni8Cu7 -68.849 3.071 3 -3.726 1.420
SQS-3b Ni8Cu7 -68.848 3.070 3 -3.726 1.422
SQS-3c Ni8Cu7 -69.045 2.847 7 -3.726 1.225
SQS-3d Ni8Cu7 -69.045 2.838 7 -3.726 1.224
SQS-3e Ni8Cu7 -69.043 2.882 7 -3.726 1.226
SQS-3f Ni8Cu7 -69.044 2.844 7 -3.726 1.225
SQS-3g Ni8Cu7 -69.043 2.882 7 -3.726 1.226
SQS-3h Ni8Cu7 -69.044 2.841 7 -3.726 1.225
SQS-3i Ni7Cu8 -67.149 2.010 5 -5.527 1.319
SQS-3j Ni7Cu8 -67.149 1.991 5 -5.527 1.319
SQS-3k Ni7Cu8 -67.155 2.206 5 -5.527 1.314
SQS-3l Ni7Cu8 -67.149 2.010 5 -5.527 1.320
SQS-3m Ni7Cu8 -67.154 2.206 5 -5.527 1.314
SQS-3n Ni7Cu8 -67.149 1.989 5 -5.527 1.320
SQS-3o Ni7Cu8 -67.422 1.993 9 -5.527 1.047
SQS-3p Ni7Cu8 -67.420 1.978 9 -5.527 1.049

Figure 4.1: ∆𝐻𝑚𝑖𝑥/[𝑥𝐶𝑢(1−𝑥𝐶𝑢)] as function of the atomic concentration Cu; a) as computed with eqn 4.14
using SQS formation enthalpies (diamond symbols), b) as interpolated through a least squares linear fit (solid line).

In the SQSs single vacancies were introduced by removing a single atom at a time,
followed by a structural relaxation. The computed enthalpies are used in eqn. 4.6 to extract
vacancy formation enthalpies for various vacancy neighborhoods, see figure 4.2. It is
evident that the greater the number of Cu atoms in the nearest neighbor shell, the smaller the
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Table 4.3: Vacancy formation enthalpy in fcc Cu and fcc Ni as computed with eqn 4.9, and as reported in the
literature.

method 𝐻𝐶𝑢
𝑣𝑎𝑐(eV) 𝐻𝑁𝑖

𝑣𝑎𝑐(eV) reference
LDA 1.26 [69]
PW91 0.99 [69]

PBE [62, 63] 1.06 1.41 this work
PBE [62, 63] 16-atom cell 1.03 1.46 [71]
PBE [62, 63] 32-atom cell 1.02 1.46 [71]
PBE [62, 63] 32-atom cell 1.04 1.44 [72]
PBE [62, 63] 108-atom cell 1.06 [69]
AM05 [70] 32-atom cell 1.28 1.75 [71]
AM05 [70] 32-atom cell 1.26 1.69 [72]
AM05 [70] 108-atom cell 1.29 [69]

experiment 0.92∼1.27 1.45∼1.8 [20]
experiment 1.04∼1.49 [73]
experiment 1.2∼1.68 [74]

experiment(LGT DD+PAS) 1.06 [69]

vacancy formation enthalpy. This is in keeping with the greater vacancy formation enthalpy
in pure Ni in comparison with that in pure Cu.

The SQS calculations with, and without vacancies, are used also for obtaining a cluster
expansion. The computed ECIs, shown in table 4.4, have been extracted in terms of 𝑛-
body clusters(𝑛 = 1, 2, 3). Although a much smaller number of ECIs is used than there are
structural energies to be fitted to, nevertheless a rather good fit is obtained with a predictive
error [67], or cross-validation score [75] of less than 4.5 meV/atom. The good performance
of the CE is apparent also, when the formation energies are computed from the ECIs, listed
in table 4.4, using eqn. 4.11 and plotted versus the ab initio computed formation energies
from eqn. 4.14, as shown in figure 4.3. The CE reproduces the ab initio data with a root
mean square error of less than 4 meV/atom.

Table 4.4: Effective cluster interactions (ECIs) in Cu-Ni system from cluster expansion.

Cluster ECI(meV/cluster)
𝐽𝑣 1505.5
𝐽𝐶𝑢 166.7
𝐽𝑣-𝐶𝑢 -53.5
𝐽𝐶𝑢-𝐶𝑢 -50.0
𝐽𝑣-𝐶𝑢-𝐶𝑢 4.08
𝐽𝐶𝑢-𝐶𝑢-𝐶𝑢 16.3

The mixing enthalpy of Cu-Ni alloys as function of composition is computed using the
ECIs with eqn. 4.13. Figure 4.4 illustrates that the mixing enthalpy as estimated through
figure 4.1, as computed through the formation energy of SQS, and as obtained by a phase
diagram assessment using experimental data [76], are all in fair agreement. The tendency
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Figure 4.2: Vacancy formation enthalpy ∆𝐻𝛼
𝑣𝑎𝑐 as function of the number of Cu atoms in the nearest neighbor

shell (𝑛𝐶𝑢) as computed with eqn. 4.6 at various compositions; solid circles: in pure Cu and Ni; squares: in
SQS-1 at 𝑥𝐶𝑢=0.25; crosses: in SQS-2 at 𝑥𝐶𝑢=0.5; diamonds: in SQS-3 at 𝑥𝐶𝑢=0.5; open circles: in SQS-1 at
𝑥𝐶𝑢=0.75.

Figure 4.3: A comparison of formation energies calculated ab initio through eqn. 4.14 and as calculated with the
cluster expansion.

towards phase separation is strongest at about 𝑥𝐶𝑢 = 0.4.
The ECIs can be used also in a cluster variation method calculation of the phase

diagram, see figure 4.5. The ab initio computed phase diagram displays a miscibility
gap with a maximum temperature of 680 K at Cu0.35Ni0.65 in excellent agreement with
the assessement of experimental data by an Mey in figure 7 of Ref. [76], which gives a
maximum temperature of 640 K at Cu0.4Ni0.6, and as assessed by Chakrabarti et al. [77]
which gives a maximum temperature of 628 K at Cu0.33Ni0.67. It should be remarked that
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Figure 4.4: Mixing enthalpy of fcc Cu-Ni alloys as function of the atomic fraction Cu; using the cluster expansion
through eqn. 4.13 (solid line), using the SQS formation enthalpies from eqn. 4.14 (circles), and the mixing enthalpy
at T=298 K as assessed on the basis of experimental data by an Mey [76] (dashed line).

the concentration of vacancies is so low, that even when the phase diagram were computed
strictly as a binary Cu-Ni alloy without considering vacancies, the changes would have been
completely imperceptible.

Figure 4.5: Low temperature part of Ni-Cu phase diagram as computed with the ECI in table 4.4 in the tetrahedron
approximation of the CVM (solid line), as assessed by an Mey [76] (dashed line), and as assessed by Chakrabarti
et al. [77] (dash-dotted line).

Local environment dependent vacancy formation enthalpies Δ𝐻(𝛼)
𝑣𝑎𝑐(𝑖)(𝑥𝐶𝑢) at T = 0

K can be obtained by substituting the ECIs into eqn. 4.17, see figure 4.6. It is evident
that two energy terms contribute to the formation enthalpy of a vacancy: a) the energy to
break the bonds between the vacated atom and its neighbor atoms; b) the chemical potential
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of the vacated atom. The chemical potential represents the energy for putting the vacated
atom back into the alloy, and this term makes the vacancy formation enthalpy composition
dependent, see eqn. 4.17. As the mixing enthalpy is concave with respect to composition
in Cu-Ni, it follows that the chemical potential of Cu (Ni) decreases as the composition
gets richer in Cu (Ni), see figure 4.7. In other words, putting back a Cu (Ni) atom in a
Cu-rich alloy is less (more) costly than putting it back in a Ni-rich alloy. For this reason all
the Cu-vacated vacancy formation enthalpies are rigidly shifted higher in Cu0.25Ni0.75 in
comparison to Cu0.75Ni0.25.

Figure 4.6: Vacancy formation enthalpy ∆𝐻(𝛼)
𝑣𝑎𝑐(𝑖) at T = 0 K as a function of the number of Cu atoms in the

nearest neighbor shell 𝑛𝐶𝑢, Ni-vacated (open circles), Cu-vacated (open squares): (a) in Cu0.25Ni0.75, (b) in
Cu0.50Ni0.50, (c) in Cu0.75Ni0.25.

Figure 4.7: Chemical potential of Cu (solid line) and Ni (dashed line) as a function of composition at T = 0 K

Of course, the distinction between Cu- and Ni vacancies is artificial: in the alloy one
cannot know what atom has previously occupied the position of the vacancy site. Therefore
the 𝜆 Lagrange multiplier must be considered. Considering Cu0.50Ni0.50 (figure 4.6b)
it is clear that vacancies are most favorable at Ni occupied sites surrounded by many Cu
atoms. The 𝜆 parameter makes sure that just as many Ni atoms get vacated as Cu atoms
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(in an equiatomic alloy). Therefore, the 𝜆 parameter should make the Cu-vacated vacancies
energetically a little less costly, and the Ni-vacated ones a little more costly. Eqn. 4.25 shows
that this occurs when 𝜆 takes a negative value. At very high temperature, the Boltzmann
factor for all vacancy types moves towards unity. Then, the combinatorial factor 𝑥(𝛼)

𝑖
(eqn. 4.27) plays a dominant role. For the random alloys this implies that 𝜆 moves towards
zero, as is seen in figure 4.8. The 𝜆 parameter is a function of composition also. At a
given, not too high, temperature, 𝜆 is strongly negative at Ni-rich compositions while 𝜆
is weakly positive at Cu-rich compositions. Looking at figure 4.6a, it is evident that the
high Cu coordinated Ni sites are much more likely to be vacated in Cu0.25Ni0.75 than in the
equiatomic alloy, so that an even more negative 𝜆 value is required to balance Ni and Cu
vacated sites. Figure 4.6c, on the other hand, shows that for Cu-rich alloys the favorable high
Cu coordinated Ni and Cu sites have about equal vacancy formation enthalpies. Therefore,
𝜆 must take very small values, and it needs to be slightly positive because the majority of
vacancies must derive from Cu vacated sites.

Figure 4.8: Lagrange multiplier 𝜆 in Cu0.50Ni0.50 as given by eqn. 4.26 as function of the inverse temperature
𝛽.

Now that𝜆 behaviour has been rationalized, the total vacancy concentration𝑥𝑣𝑎𝑐(𝑥𝐵, 𝑇 )
is examined. Figure 4.9 displays the Cu- and Ni-vacated vacancy concentrations 𝑥𝑣𝑎𝑐(𝑖)
summed over all neighborhoods 𝛼, and it shows the total vacancy concentration 𝑥𝑣𝑎𝑐 =
𝑥𝑣𝑎𝑐(𝑁𝑖) + 𝑥𝑣𝑎𝑐(𝐶𝑢), as function of the composition. Clearly, in the equiatomic alloy
𝑥𝑣𝑎𝑐(𝑁𝑖) = 𝑥𝑣𝑎𝑐(𝐶𝑢), as imposed by the Lagrange multiplier 𝜆. It is also obvious that at
higher Cu content, the vacancy concentration is much larger because the vacancy formation
energies decrease as the number of Cu nearest neighbors around a vacancy increases.

Fitting the total vacancy concentrations to an Arrhenius equation, eqn. 4.29, yields
the effective vacancy formation Gibbs energy, Δ𝐺eff

𝑣𝑎𝑐, see figure 4.10. It should be
emphasized that only configurational excitations have been considered here so that for the
pure elements (𝑥𝐶𝑢=0,𝑥𝐶𝑢=1) Δ𝐺𝑒𝑓𝑓

𝑣𝑎𝑐 is found to be temperature independent. Δ𝐺𝑒𝑓𝑓
𝑣𝑎𝑐

is not well represented by a linear interpolation w.r.t. composition between the pure
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Figure 4.9: Vacancy concentration 𝑥𝑣𝑎𝑐(𝑖) (dashed line: Cu-vacated; dash-dotted line: Ni-vacated) and 𝑥𝑣𝑎𝑐
(solid line) at T=1200 K as given by eqn. 4.28 as function of the Cu concentration 𝑥𝐶𝑢.

element values because it takes significantly lower values in concentrated alloys than the
concentration weighted average. This is explained by the multitude of local neighborhoods
that exist within an alloy, so that vacancies will be formed in the most favorable locations.
Moreover, the deviation of Δ𝐺𝑒𝑓𝑓

𝑣𝑎𝑐 from the linear interpolated value, Δ𝐺𝑒𝑓𝑓−𝑥𝑠
𝑣𝑎𝑐 , gets

smaller when temperature increases because there is then aweaker preference for low energy
neighborhood vacancies. Nevertheless, Δ𝐺𝑒𝑓𝑓−𝑥𝑠

𝑣𝑎𝑐 remains negative for alloys with phase
separation tendency. The high temperature limit of Δ𝐺𝑒𝑓𝑓

𝑣𝑎𝑐 is the statistical average of the
vacancy formation enthalpy of all types of vacancies ∑𝛼,𝑖 𝑥(𝛼)

𝑖 Δ𝐻(𝛼)
𝑣𝑎𝑐(𝑖)(𝑥𝐶𝑢), which may

be above the linear interpolation value for Cu-rich alloys.

Figure 4.10: Effective vacancy formation enthalpy at T=0 K (solid line) and Gibbs energies at T=600 K (dashed
line) and at T=1200 K (dash-dotted line) as function of composition.
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In concentrated alloys, Δ𝐺𝑒𝑓𝑓
𝑣𝑎𝑐 increases with temperature which suggests a negative

effective vacancy formation entropy Δ𝑆𝑒𝑓𝑓
𝑣𝑎𝑐 . Δ𝑆𝑒𝑓𝑓

𝑣𝑎𝑐 is computed with eqn. 4.30 using 𝑇1 =
600 K and 𝑇2 = 1200 K. The negative value ofΔ𝑆𝑒𝑓𝑓

𝑣𝑎𝑐 too, is a consequence of the multitude
of local vacancy neighborhoods in concentrated alloys. At low temperature vacancies occur
in the most favorable neighborhoods only, while at elevated temperature less favorable
neighborhoods also provide vacancies. Of course, this concerns the configurational aspect
only. Non-configurational excitations, such as the vibrational contribution to the entropy of
vacancy formation, tend to give significantly positive effective vacancy formation entropy
contributions, see e.g. table 2 in ref. [11]. Nevertheless, the configurational contribution
to Δ𝑆eff

𝑣𝑎𝑐 is quite large at about 0.4 𝑘𝐵 in Cu0.25Ni0.75, see figure 4.11. The magnitude of
Δ𝑆𝑒𝑓𝑓

𝑣𝑎𝑐 is decided by the formation energy difference between vacancies at most and least
favorable positions. For this reason, Δ𝑆𝑒𝑓𝑓

𝑣𝑎𝑐 increases when the vacancy formation energy
in the pure end-member elements differ strongly or when the SRO tendency gets stronger.

Figure 4.11: Effective vacancy formation entropy as a function of composition as computed with eqn. 4.30.

The effective vacancy formation enthalpy, as computed with eqn. 4.31, is displayed
in figure 4.10. Like Δ𝐺𝑒𝑓𝑓

𝑣𝑎𝑐 , it shows the strongest deviation from a linear composition
dependence near 𝑥𝐶𝑢=0.25 because at the Ni-rich side the strongest shift of vacancy
neighborhood occurs when the temperature is changed. At low temperature only high
Cu coordinated vacancies can occur because they are energetically favored, but in a Cu-
poor alloy such neighborhoods are rare. At high temperature also energetically much
less favorable, but combinatorially much more prevalent, high Ni-coordinated vacancies
occur. Thus in Ni-rich alloys the largest change in vacancy formation energies occurs as
the temperature increases. This is illustrated in figure 4.12 where the average number of Cu
nearest neighbors around a vacancy ⟨𝑛𝐶𝑢⟩ in Cu0.25Ni0.75, as computed with eqn. 4.32, is
shown as function of the inverse temperature 𝛽. In the vicinity of 𝛽=0, the number of Cu
neighbors converges to the random value of 12×0.25=3, but at large values of 𝛽 vacancies
occur only there where they are exclusively surrounded by 12 Cu atoms, in spite of Cu atoms
being in the minority.

The strong preference of vacancies for Cu coordination occurs across the whole
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Figure 4.12: The average number of Cu neighbors around a vacancy ⟨𝑛𝐶𝑢⟩ in Cu0.25Ni0.75 as a function of the
inverse temperature 𝛽.

composition range, as is shown in figure 4.13. Our findings agree very well with an
earlier embedded atom method (EAM) study [24], which included vibrational effects also.
Apparently the vibrational effects play a minor role.

Figure 4.13: The average number of Cu neighbors around a vacancy ⟨𝑛𝐶𝑢⟩ at T=200 K (dash-dotted line), at
T=800 K (solid line), and as extrapolated to infinite temperature (dashed line), as function of the composition. The
results predicted by Zhao et al. [24] are indicated as symbols: T=200 K data (circles); T=800 K data (squares).

Instead of using themodel introduced here, the CVMcan be used to compute the vacancy
concentration. The CVM in the tetrahedron approximation was used in conjuction with the
CE listed in table 4.4. The computed vacancy concentrations differ a few percent only
from those computed with the current random model over a wide range of temperatures and
compositions, see figure 4.14, in spite of the fact that the CVM includes the effect of short-
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range order. The current model can be compared also with the quasi-chemical model as
studied in much detail by Schapink [38]. The quasi-chemical approach too, like the CVM,
yields vacancy concentrations that differ by a few percent from the values obtained with the
current model. Other properties differ little between current and quasi-chemical, in the case
of the vacancy formation free energy the difference is just 5 meV or less. In contrast to the
earlier work [24, 30, 36, 38], the current model can be implemented using a spreadsheet, no
special software required.

Figure 4.14: Vacancy concentration𝐶𝑅𝑁𝐷
𝑣 as computedwith the current model as function of inverse temperature

𝛽 in Cu0.25Ni0.75 (solid line), Cu0.5Ni0.5 (dotted line), Cu0.75Ni0.25 (dashed line). Comparison between
current model and CVM is indicated with symbols with reference to the axis on the right: Cu0.25Ni0.75
(diamonds), Cu0.5Ni0.5 (squares), Cu0.75Ni0.25 (triangles).

4.4.2. Alloy with ordering tendency

It is of interest to examine whether the trends revealed for vacancy formation in phase
separating alloys, such as Cu-Ni, also apply to alloys with ordering tendencies. Therefore,
we examine an alloywith nearest neighbor pair interactions betweenA andB atoms such that
the enthalpy of mixing at equiatomic composition is -300 meV/atom. These interactions,
listed in table 4.5, are not ab initio and do not pertain to any real alloy system. They
are selected to serve as illustration only. The interactions give the “classical” fcc phase
diagram [78–81] for the solid state A-B alloy with a critical order-disorder temperature of
about 1100 K at equiatomic composition. Concerning the vacancy formation energies in
pure A and B, we consider two cases: a) the strong asymmetric case with vacancy formation
energies in pure A (B) of 2 (1) eV; and b) the weak asymmetric case with vacancy formation
energies in pure A (B) of 1.2 (1) eV.

The vacancy formation enthalpies Δ𝐻(𝛼)
𝑣𝑎𝑐(𝑖) at equiatomic composition as computed

with eqn. 4.17 are shown in figure 4.15. Due to the elimination of nearest neighbor
equilateral triangle ECIs, Δ𝐻(𝛼)

𝑣𝑎𝑐(𝑖) of A-vacated and B-vacated vacancies for different 𝛼
have become linear functions of the number of B atoms in the nearest neighbor shell, 𝑛𝐵,
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Table 4.5: Effective cluster interactions (ECIs) in a hypothetical ordering A-B alloy.

Cluster ECI(meV/cluster)
Case (a) Case (b)

𝐽𝑣 2000 1200
𝐽𝐵 -1200 -1200
𝐽𝑣-𝐵 16.7 83.3
𝐽𝐵-𝐵 200 200

crossing at 𝑛𝐵 = 6. Unlike a phase separating system like Cu-Ni, for a specific shell,
Δ𝐻(𝛼)

𝑣𝑎𝑐(𝑖) of A-vacated vacancies is higher (lower) than that of B-vacated vacancies in B-
rich (A-rich) shells because A-B bonds require more energy to be broken than the weighted
average of A-A and B-B bonds. Furthermore, as expected, in case b) the A and B vacated
energies are much more similar than in case a).

Figure 4.15: Vacancy formation enthalpy ∆𝐻(𝛼)
𝑣𝑎𝑐(𝑖)(𝑥𝐵 = 0.5) at T = 0 K according to eqn. 4.17 as a function

of the number of B atoms in the nearest neighbor shell 𝑛𝐵, A-vacated (open circles), B-vacated (open squares)
vacancy. Panels correspond to cases a) and b) described in the text.

The effective Gibbs energy of vacancy formation, Δ𝐺𝑒𝑓𝑓
𝑣𝑎𝑐 (eqn. 4.29) as function of

the composition is curved upward, quite unlike the phase separating case, from the linear
interpolation between the pure A and B end members. The deviation is rather similar in
magnitude to the negative of the mixing enthalpy, −Δ𝐻𝑚𝑖𝑥, both for case (a) and for case
(b)(Fig.4.16). As in the phase separating Cu-Ni alloy, the configurational contribution to
the vacancy formation entropy (eqn. 4.30) is negative. The reason for this is entirely the
same as in the case of phase separation, at higher temperatures energetically less favorable
configurations come into play.

The asymmetry in the endmember vacancy formation energy does have a very pro-
nounced effect on the short range order around a vacancy. Vacancy properties such as the
configurational contribution to the entropy shift to more negative value when the pure end
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Figure 4.16: Effective vacancy formation Gibbs energy in an A-B ordering alloy as a function of the composition
at T = 4000 K (solid line) and T = 2000 K (dashed line). Dotted line is the linear interpolation between the pure
elements. Panels correspond to cases a) and b) described in the text.

Figure 4.17: Effective vacancy formation entropy of an A-B ordering alloy as function of composition: case a)
(solid line) and case b) (dashed line).

member difference is larger (see figure. 4.17).

Ordering systems, with interactions of the same magnitude as phase separating systems,
develop vacancy-vacancy-pairs already at a lower temperature. Therefore, the comparison
between the current model and a more accurate methodology such as the cluster variation
method or latticeMonte Carlo begins to break down at a lower temperature than was the case
for phase separating systems. For alloys with ordering tendencies vacancy-vacancy-pairs
begin to play a role above about twice the highest order-disorder temperature.
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4.5. Conclusions
A formalism for the computation of vacancy formation energies in substitutional alloys has
been presented. It is shown that composition and temperature play an important role in
the thermodynamics of vacancies in alloys. The current approach, consisting of a cluster
expansion coupled with a simple statistical thermodynamics model, has been shown to
reproduce accurately the features of more sophisticated lattice gas models such a the quasi-
chemical or cluster variation methods. The effective vacancy formation free energy deviates
from the linear interpolation between that of the terminal pure phases in a manner opposite
to the mixing enthalpy between those end members. Therefore, phase separating alloys
have vacancy formation free energies that are less than the composition-weighted average
of the end members, while the opposite holds in ordering type alloys. At low temperatures,
the configurational contribution to the vacancy formation entropy is negative. This is
caused by the fact that at low temperature vacancies will occur only in the energetically
most favorable local neighborhoods in the alloy, while at higher temperatures also less
energetically favorable neighborhoods come into play. In addition to ordering and phase
separating tendencies, the asymmetry in the vacancy formation energy in the pure end-
members plays a significant role also. When the vacancy formation energies of the pure
end members differ more strongly from one another, the excess vacancy properties in the
alloy become more significant. Particularly, the configurational contribution to the entropy
of vacancy formation becomesmore negative, and the vacancy coordination departs stronger
from the average, as the asymmetry in vacancy formation energies between the pure end-
members increases. In the current model pure vacancy clusters are not considered, so that at
high temperature deviations from more accurate lattice gas models occur. These deviations
are more significant for ordering type alloys than for phase separating alloys. It must be
noted that in order to understand vacancy formation in substitutional alloys a few arbitrarily
selected ab initio calculations on alloy supercells with vacancies generally will not suffice.
A proper statistical thermodynamic analysis is required. As this work has shown, such a
thermodynamic analysis need not be very complex fortunately.

Vacancies in the Cu-Ni system were shown to prefer Cu neighbors, regardless of
the composition of the alloy. The vacancy formation free energy was shown to be
strongly composition dependent, with lower values towards the Cu-rich side. Since
the vacancy formation energy in binary disordered alloys strongly depends on local
environment, a cluster expansion was shown to be the optimal approach. Effective cluster
interactions(ECIs) in terms of point, nearest neighbor pair and nearst neighbor equilateral
triangle clusters were extracted from a ternary cluster expansion by fitting the energies
of 71 structures. The ECIs were used also to calculate the mixing enthalpy of the solid
solution and the solid portion of the Cu-Ni phase diagram, which both agreed well with
previous assessments. The CE approach coupled with a simple thermodynamic model made
it possible to compute vacancy concentrations as a continuous function of temperature and
composition. Fitting the vacancy concentration to an Arrhenius equation allowed us to
extract the effective Gibbs energy of vacancy formation as function of temperature and
composition. The effective Gibbs energy of vacancy formation was found to be a non-linear
function of composition with a deviation from linearity between the endmembers that was
roughly equal to the negative value of the mixing enthalpy. The effective configurational
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entropy of vacancy formation was found to be composition dependent and negative with
values ranging from about 0 to -0.5×𝑘𝐵.
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5
Cluster expansions for
realistic precipitation

kinetics: An application to
Guinier-Preston zone

formation in an Al-Cu alloy

A method for performing kinetic lattice gas Monte Carlo simulations for
the early stages of clustering and precipitation in substitutional alloys is
presented and applied. Cluster expansions are used both for the thermo-
dynamic states and for configuration dependent diffusion activation barriers
in order to simulate realistically both thermodynamic driving forces and
kinetic pathways. The method is applied to an aluminium 2 atomic percent
copper alloy. The cluster expansion is shown to be capable of describing the
morphology of Guinier-Preston (GP) zones of type I and II although it requires a
large set of effective cluster interactions. The configuration dependence, and
thereby the local composition dependence, of diffusivities is investigated in
detail. It is found that in Al-Cu diffusion activation energies vary by a factor of
five depending on the local distribution of Al and Cu atoms. The kinetics and
evolution of clustering and precipitation is shown to differ significantly when
modeled using constant or local configuration dependent activation barriers
for diffusion. Although both constant and local configuration dependent
activation diffusion barriers yield the experimentally observed succession
of GP-I and GP-II zones in Al-Cu alloys, the details of the early stages of
precipitation differ significantly.
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5.1. Introduction

U nderstanding and realistically modeling the kinetics of precipitation has been an
objective for many years in part because of precipitation hardening is used is many

metallic materials [1, 2]. A great variety of computational approaches exist, range from
continuum [3–5] to atomistic [6]. Experimentally too, it has been realized that still,
important improvements in the precipitation hardening are possible [7–9]. Recent focus
has been on temporarily trapping and later controlled releasing of excess vacancies that
are retained in the solid solution after quenching from the solutionizing treatment [9–11].
Especially for retardation of natural aging vacancy trapping by impurity atoms has proven
useful, such as via Sn impurities in Al-Mg-Si alloys. The idea is that vacancies are trapped
at room temperature and below, and are released again when the alloy, after quenching and
storage at ambient, is brought to aging temperature. It requires an impurity with a specific
vacancy binding energy, neither too weak nor too strong, and with sufficient solubility in
the matrix without overly strong intermetallic formation with the other constituents of the
alloy. Clearly, impurity-vacancy binding must be included into an atomistic description of
precipitation kinetics to get realistic results. Therefore, precipitation in an alloy with two
constituents must be considered as a ternary, the two atomic species, and the vacancy as a
third species [12, 13].

The energetics of distributing various atomic species on a lattice is nowadays routinely
modeled using cluster expansions (CEs) [14–17] which provides an expedient coupling
between ab initio electronic density functional energy calculations and configurational
thermodynamics [18]. It has become also possible to model diffusion activation barriers
through local CEs [19–21]. It has been found that diffusion in solid solutions is highly
dependent on the local configuration around a vacancy [20, 21]. This makes a common
assumption [3, 6, 22] that diffusivity in an alloy can be approximated by dilute impurity
diffusion highly suspect. Van der Ven and Ceder [20] showed that vacancy concentrations
varied with alloy composition and with state of order. Moreover, recently it was shown that
the local configurational dependence of diffusion activation barriers can give rise to transient
ordered states even if thermodynamically the alloy is of pure phase separating type [23].
These findings suggest that modeling precipitation with knowledge of configurational
thermodynamics of the alloy and of vacancy-impurity interaction is not sufficient.

In this study we will consider a particularly challenging alloy, Al-Cu, that has been well
studied from both the experimental [24, 25] and the thermodynamic aspects [6, 26, 27]. A
proper description of the configurational thermodynamics of Guinier-Preston (GP) [25, 28]
zones that form during the initial stages of precipitation requires a complicated CE [26,
27], while the local atomic configuration near a vacancy is known to strongly affect the
kinetics in this alloy [21]. Although describing the GP zones properly is a sine qua non,
our main focus will be on a proper accounting of the configurational dependence of the
diffusivity in the alloy and how this affects both the time scale of the precipitation process
and the morphology. These latter two are also, of course, of great practical importance for
all precipitation hardened alloys.
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5.2. Theory and methodology
We use the cluster expansion formalism to efficiently evaluate the energetics of atomic
configurations and of activation barriers for diffusion [20, 21]. Although the formalism is
applied to a binary alloy, it is applicable tomulticomponent systemswithoutmuch additional
computational effort [21].

The kinetics of the precipitation evolution is determined by the rate at which configu-
rations evolve. According to the transition state theory (TST), the transition rates between
state 𝑖 and state 𝑗 are computed as,

𝑟𝑖↔𝑗 = 𝜈 exp[−𝛽(𝐸KRA + 1
2Δ𝐸𝑖↔𝑗

conf)], (5.1)

where 𝜈 is the atomic jump attempt frequency, 𝛽 is the reciprocal temperature 1
𝑘𝐵𝑇 , Δ𝐸𝑖↔𝑗

conf
refers to the configurational energy change between state 𝑖 and state 𝑗 and 𝐸KRA is the
kinetically resolved activation (KRA) barrier [19, 20]. When transition rates are known,
the configuration evolution and the kinetics can be monitored by tracking the vacancy in a
kinetic Monte Carlo (KMC) simulation with 𝑛-fold way algorithm [29].

5.2.1. Cluster expansion for the configurational energetics,

At the early stages of precipitation in fcc Al-based alloys, GP zones are generally coherent
with the parent matrix. Such a feature greatly reduces the degrees of freedom in describing
the interatomic potential. Atom-vacancy exchanges can therefore be restricted on a fixed
(fcc) crystalline lattice. It follows that the effective interatomic interactions can be obtained
by cluster expansions. Therefore we elaborate the A-B-C ternary CE to describe the
configurational energy, 𝐸conf.

𝐸conf = ∑
𝛼

𝑛𝐴𝐵𝐶
𝛼 𝐽𝐴𝐵𝐶

𝛼 , (5.2)

where A refers to aluminum, B to copper and C to vacancies [13, 19], 𝛼 indicates a particular
cluster selected from an “N4R8” cluster pool [21], 𝑛𝛼 is a counter for the number of 𝛼-type
clusters per lattice site, and 𝐽𝛼 is the corresponding effective cluster interaction (ECI). We
neglect vacancy-vacancy interactions sincemulti-vacancy clusters are rare at the early stages
of precipitation.

The structures used for extracting ECIs are selected through an “evolutionary” proce-
dure. Initially, energies of a small set of about 60 supercell structures are obtained via ab
initio DFT calculations. An initial CE is then obtained from the set of structural energies
(SSE). This CE is then used to search for low energy structures in a pre-defined “structure
pool” (SP), i.e., a large set of some 30000 structures. The SP is generated automatically with
the restrictions that a) each primitive unit cell contains 16 atoms or less, and b) that all three
primitive translations can be selected simultaneously such that their length is two fcc lattice
parameters or less. When low energy structures are found, their energies are computed ab
initio and the ab initio energies are added to the SSE. The new, expanded SSE is used to
generate a new CE, and again we search for low energy structures in the SP. We repeat
this, until no new low energy structures are found and the leave-one-out cross validation
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(LOOCV) score of the CE is sufficiently small. Using this procedure, 80 ECIs are extracted
from 228 ab initio energies; 160 structures without vacancy and 68 structures with a single
vacancy. The LOOCV score of the CE is less than 2.8 meV/atom.

5.2.2. Local cluster expansions for KRA barriers

Having addressed the calculation of the configurational energetics, the main remaining issue
in Eq. (6.3) is the evaluation of the kinetically resolved activation barriers 𝐸KRA which
play a critical role in the kinetics. Eq. (6.3) reveals that decreasing the KRA barrier by
0.1 eV accelerates the exchange between atom and vacancy by a factor of 50 at room
temperature. To determine the local configurational dependence of the KRA barriers as
reported in Ref. [19, 21, 30], we examined the KRA barriers for 42 typical structures in Al-
Cu alloys using the climbing image nudged elastic band (CI-NEB)method [31, 32] and show
the results in Fig. 5.1. Fig. 5.1 shows that KRA barriers vary over a wide range from about
0.2 eV to 1 eV. This means that for different local atomic configurations the KRA barriers
in Al-Cu alloys are likely to vary by a factor of 5 or more. The constant activation barrier
assumption employed in previous studies [33–35] is therefore quite severe. The diffusion
activation barriers for Al self diffusion and Cu impurity diffusion in pure fcc Al have been
reported theoretically as 0.51 eV and 0.44 eV respectively [36]. In this study slightly larger
barriers were found, 0.64 eV and 0.55 eV for Al self diffusion and Cu impurity diffusion in
pure fcc Al, respectively. It is apparent that the local configuration can both decrease and
increase the KRA barriers in concentrated alloys.

Figure 5.1: A comparison of KRA barriers from ab initio DFT calculations and as calculated with the local cluster
expansion in Al-Cu alloys. Red open circles (blue open squares) represent the KRA barriers for Cu (Al) as the
jumping atom. Two examples of supercells with very small and very high KRA barriers are shown also. Red (blue)
spheres: Cu (Al), large pink (light blue) spheres: Cu (Al) in a transition state, small green spheres: half vacancy.
The numbers below the supercells are the corresponding KRA barriers.

To achieve an accurate and computationally efficient description of local configuration
dependent KRA barriers, a local cluster expansion appears a sensible approach. However,
in the activated state the jumping atom is positioned at the saddle point between two lattice
sites (see Fig. 5.2), and it is no longer uniquely associated with a single lattice site. This
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violates the lattice gas concept, that forms the basis for CEs, where every site is associated
with one, and only one, atomic species. Fortunately, such a lattice gas violation problem
can also be resolved by introducing a new atomic species for the vacancy-jumping atom
pair, “swapping pair” for brevity, as displayed in Fig. 5.2. In the present low vacancy

Figure 5.2: schematic diagram of the concept “vacancy-jumping atom pair”(left side). Transition states (middle
side) in a binary alloy with vacancies are mapped onto a lattice gas featuring two distinct ternaries(right side).

concentration simulations, it is reasonable to introduce only a single vacancy in the alloy
because the number vacancy-vacancy pairs are assumed to be negligible. When a single
vacancy is present in an 𝑁 -component alloy (here 𝑁=3: species A, B and vacancy “C”),
replacing the swapping pair by two “atoms” of a new atomic species, results in 𝑁 − 1 new
𝑁 -component systems. Thus the complexity of the problem is not significantly increased.
Namely, the “A(B)-vac” pair is replaced by a “D-D” (“E-E”) pair to establish an A-B-
D(E) ternary system (see Fig. 5.2, right side). A local CE should depend only on atomic
occupancy right near the swapping pair. This is easily achieved by selecting only correlation
functions that encompass the swapping pair. We emphasize that the whole pair should
be included because otherwise correlation functions may not be properly distinguished, as
illustrated in Fig. 5.3. The reason for this is that the introduction of the swapping pair has
eliminated many operations from the symmetry group of the underlying disordered crystal
structure. Only symmetry operations that preserve the swapping pair can be retained. As
the local CE retains only correlations that contain the swapping pair, it is apparent that such
a local CE is NOT complete [37], because subclusters that contain only one or no sites of
the swapping pair, are excluded. The local CE can be expressed as

𝐸KRA = ∑
𝛼

𝜎𝛼∪𝛾𝐽𝛼∪𝛾 (5.3)

Where 𝛼 represents a cluster decoration corresponding to the empty cluster, or a point
cluster, etc. but not part of the swapping pair, 𝛾 represents the swapping pair, 𝜎𝛼∪𝛾 is a
counter for the number of cluster decorations of type 𝛼∪𝛾, and 𝐽 is the corresponding ECI.
𝜎𝛼∪𝛾 has a maximum value 𝜇𝛼∪𝛾 that is determined by its symmetry, e.g. for the decorations
encircled by the blue oval in Fig. 5.3 it is 4 (left side) and 2 (right side).

Another aspect of the 𝐸KRA local CE is that it should generally yield positive values
for all possible local neighborhoods. Unlike configurational energies which can be both
positive and negative, here only positive energies are desired. In the local CE occurrences
of cluster decorations are counted. As these occurrences can be counted using positive
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Figure 5.3: Green spheres indicate the swapping pair on a (100) plane in fcc. In the local CE, the pair (indicated
by the red line) on the left and the pair on the right are not equivalent but are not properly distinguished when
applying the symmetry of the underlying lattice gas. However, when the swapping pair is completely included, as
in the clusters enclosed by the blue lines, the inequivalence is readily apparent.

numbers only, it is tempting to assume that a strictly positive expansion can be obtained
by requiring all ECI non-negative. However, this is a too severe restriction for obtaining a
good CE. A less severe restriction can be designed when it is recognized that in pure Al a
positive 𝐸KRA exists. It implies that interaction 𝐽𝛼∗ corresponding to the empty cluster 𝛼∗

must be positive. Now, we can assure positive definite 𝐸KRA provided that

𝐽𝛼∗ + 1
2∑

𝛼

′𝜇𝛼∪𝛾 (𝐽𝛼∪𝛾 − |𝐽𝛼∪𝛾|) > 0 (5.4)

where prime in the sum indicates that the empty cluster is excluded. This condition is easily
implemented in the so-called aufbau and enumeration methods for finding good CEs [21].

An alternate method is to generate a testing set: a large number of local configurations
around the swapping pair, and test that each configuration yields a positive 𝐸KRA. One then
determines a CE that optimally represents the ab initio 𝐸KRA while satifying that the testing
set gives positive CE predicted𝐸KRA only. The testing set configurations that yield the most
extreme predicted 𝐸KRA values can then be calculated ab initio. When the ab initio and CE
predicted𝐸KRA are not sufficiently close to one another, the new ab initio computed extreme
configurations are added to the fitting set and a new CE is generated and the loop repeats.
The iterations stop when the most extreme CE predicted 𝐸KRA are sufficiently close to the
ab initio values. In our calculations a testing set with a thousand local configurations was
used.

5.2.3. Efficiency improvement: removing oscillations

The strong configuration dependence of 𝐸KRA leads frequently to anomalously low barriers
during the KMC simulations such as sketched in Fig. 5.4 between states 𝑜1 and 𝑜2. This
causes rattling, rapid but unproductive back and forth oscillations, that greatly reduce the
efficiency of the simulation. Efficiency can be restored with the “absorbing Markov chain”
algorithm [38]. Namely, two positions (𝑜1 and 𝑜2 in Fig. 5.4) between which the vacancy
oscillates are transient positions while the other neighboring positions (e.g., position 1 and
2) are absorbing positions. Then the average residence oscillation time can be calculated as,

tosc = c ⋅ F (5.5)
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where tosc is a 1 × 2 row vector whose 𝑖th entry 𝑡𝑖 is the average oscillation time given that
the chain starts in state 𝑖, c is also a 1 × 2 row vector with each element equals to unity and
F is the fundamental matrix given by,

F = (I − Q)−1

= ( ∑𝑗 𝑟𝑜1→𝑗 −𝑟𝑜2→𝑜1

−𝑟𝑜1→𝑜2
∑𝑘 𝑟𝑜2→𝑘

)
−1

(5.6)

Where I is a 2 × 2 identity matrix, 𝑜1 and 𝑜2 are two oscillation positions, 𝑗 and 𝑘 represent
the 𝑛−1 nearest neighbor positions associated with 𝑜1 and 𝑜2(for fcc, 𝑛 = 12) respectively.
The probabilities that the vacancy can escape to one of the absorbing positions 𝑠 given that
its initial position is at 𝑜1 or 𝑜2 are calculated by,

P = (𝑝𝑜1
, 𝑝𝑜2

) = R ⋅ F (5.7)

Where R is a 𝑑 × 2 matrix (𝑑 is number of absorbing positions, 𝑑 = 18 for fcc) whose
𝑖th column is composed by the rate 𝑟𝑜𝑖→𝑠. Once rattling has been detected during the
simulation, the inefficiency is removed by directly forwarding the vacancy to one of the
absorbing positions with the probability computed by Eq. (5.7). The corresponding elapsed
time is evaluated with Eq. (5.5).

Figure 5.4: Schematic description of rattling of a jumping atom. Vacancy (jumping atom) represented as □ ( ),
𝐸p and 𝑟p→q (p,q = 1, 2, 𝑜1, 𝑜2) refer to energy of state p and transition rate between p and q, the curved arrows
indicate the directions of jumps. Rattling occurs when the vacancy-jumping atom energy barrier is much smaller
than surrounding barriers.

5.3. Results and discussion
We apply the aforementioned formalism to a dilute Al-Cu alloy with 2 a/o Cu and simulate
the GP zones morphology and precipitation kinetics at room temperature (300 K). The
simulation is performed in a supercell with periodic boundary conditions containing 20 ×
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Figure 5.5: Kinetic Monte Carlo simulation of early stage precipitation in Al-2at.%Cu alloy at 300 K. Only Cu
atoms(white balls) and vacancy(red ball) are shown within a simulation box formed by 20 × 20 × 20 fcc cubes.
(a) GP-I (single pure Cu (100) plane) after about 1 ks; (b) GP-II (sandwich structure consisted by (100) planes with
sequence “Cu-Al-Al-Al-Cu”) after about 6 ks; (c) calculated structure factor of Cu pertaining to (b).

20 × 20 conventional fcc cubes with 4 × 203 = 32000 lattice sites. The quenched-in
vacancy concentration inherited from solutionizing (usually around 800 K) is estimated to
be∼ 4⋅10−5. Introducing a single vacancy in the supercell is therefore a reasonable estimate
of the real vacancy concentration. The jump attempt frequencies for Al atom and Cu atoms
have been estimated from the Einstein vibrational frequency 𝜈 as follows: 𝜈 = 1

2𝜋 √𝑘/𝑀 ,
where 𝑀 is the mass of the atom, and 𝑘 the spring constant. We obtained 𝜈𝐴𝑙 (𝜈𝐶𝑢) = 7.4
(2.7) THz. For local CEs of the KRA barriers, ECIs are extracted by fitting for each type
of jumping atom 20 CI-NEB KRA barriers. Only clusters up to and including four sites
(including the “swapping pair”) are selected with the restriction that no two sites within a
cluster are further apart than the 4th nearest neighbor. Optimized positive definite local CE
for Al yields a fitting error of 55 meV and 40 meV for Cu.

Figures. 5.5(a) and 5.5(b) show the morphology of GP zones in Al-2 a/o Cu alloy at
300 K from the present kMC simulation. A particularly challenging issue for any CE
without explicit treatment for long-ranged elastic interactions is the prediction of GP zone
shapes [39]. In dilute Al-Cu alloys GP-I zones are known to be single pure Cu on {100}
planes while GP-II zones form as pure Cu on {100} planes separated by 3 atomic planes of
pure Al [25, 28]. GP-II zones can rapidly evolve to 𝜃’ precipitates by absorbing vacancies on
the Al positions between the {100} Cu planes, so that then only 2 atomic Al layers remain
between the Cu planes [40–42]. This evolution to 𝜃’ violates the fcc underlying lattice
and therefore we will restrain ourselves to GP-II formation. Describing the precipitation
evolution from the single Cu {100}planes [GP-I, see Fig. 5.5(a)] to the Cu-Al-Al-Al-
Cu sandwich morphology [GP-II, see Fig. 5.5(b)] requires a highly optimized CE with a
LOOCV of just 2.78 meV/atom, with about 200 fitted structural energies and 80 ECIs.
Consistency of the simulated GP-II structure with the experimental observation can also
be verified, see Fig. 5.5(c), by the calculated Cu structure factor. The diffraction peaks are
separated by a half bcc cube edge, right between the Bragg peaks, indicating that the spacing
of consecutive {100}Cu planes is 2 fcc lattice parameters.

Fig. 5.6 shows the Cu clustering at the early stages of natural aging as obtained with
local configuration dependent KRA barriers (CEKRA) and as obtained with constant KRA
barriers (CKRA: 𝐸KRA[𝐴𝑙] = 0.58 eV, 𝐸KRA[𝐶𝑢] = 0.53 eV). The CKRA values are
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Figure 5.6: Clustering in Al-2 a/o Cu alloy at 300 K: a comparison of CEKRA and CKRA. 𝑁(𝑚)
𝐶𝑢 (see text) for

𝑚 = 0, 1, 2, 3, 4 is plotted as a function of time (s). Solid lines (CEKRA) and dotted lines (CKRA) correspond
to lower horizontal axes and upper horizontal axes.

derived from the CEKRA values for the cases of Al self diffusion and Cu impurity diffusion
in pure fcc Al. It should be remarked that the ab initio calculated CKRA barriers are about
0.06 eV higher, which at 300 K would retard the growth kinetics by a factor of 10. For each
Cu atom the number of Cu nearest neighbors is determined. The number of Cu atoms with
𝑚 (𝑚 = 0, 1, 2, 3, 4) Cu atoms in the nearest neighbor shell are indicated as 𝑁 (𝑚)

𝐶𝑢 . In total
there are 0.02×32000 = 640Cu atoms. In order tominimize the statistical error, the Fig. 5.6
shows the average of 50 independent runs. Initially, after high temperature solutionizing at
800 K, most Cu atoms have 12 Al nearest neighbors and no Cu nearest neighbors, 𝑚 = 0.
Cu atoms that are part of {100}Cu planes have 4 Cu neighbors, so that 𝑁 (4)

𝐶𝑢 is a measure
for GP-I and GP-II formation.

As natural aging proceeds the number of isolated Cu atoms (𝑚 = 0) decreases and Cu
atoms with one or more Cu neighbors (𝑚 = 1, 2, 3, 4) increases. The most remarkable
feature in Fig. 5.6 is that clustering as computed with CEKRA proceeds more than twice as
fast as with CKRA (note the distinct time scales below and above the figure). Except for an
overlap of 𝑁 (1)

𝐶𝑢 curve at the very beginning of the precipitation, CEKRA and CKRA curves
corresponding to the same 𝑚-value diverge with time as is apparent from the horizontal gap
between the curves. These horizontal gaps for𝑁 (𝑚)

𝐶𝑢 ,𝑚=2, 3, and 4, are shown as horizontal
bars labelled (a), (b), and (c), respectively, in Fig. 5.6. The bars are drawn for 𝑁 (𝑚)

𝐶𝑢 values
that are 19 greater than that for the competely random state, thus for𝑁 (2)

𝐶𝑢 = 33, 𝑁 (3)
𝐶𝑢 = 20,

and 𝑁 (4)
𝐶𝑢 = 19. It is apparent that this time gap increases at later times, and that larger 𝑚

are more accelerated than smaller 𝑚. Thus the acceleration associated with CEKRA over
CKRA is more pronounced for larger 𝑚 and hence also for larger pure Cu clusters. This
means that the CEKRA and CKRA show distinct evolutions of Cu clustering and GP zone
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formation. Therefore, it is not possible to rescale the time axis and the CKRA 𝐸KRA values
such that CEKRA evolution is reproduced as was confirmed by repeated attempts. This
means that realistic modeling of clustering and precipitation cannot generally be achieved
by using configuration independent KRA barriers. Specifically we conclude that it is not
possible to reproduce precipitate evolution using KRA barriers from impurity diffusivities.

5.4. Summary
Summarizing, a method for atomistically simulating the early stages of clustering and
precipitation is presented. The method is based on a local cluster expansion for the
kinetically resolved activation barrier for diffusion, taking into account that this cluster
expansion may yield positive barriers only. The method is applied to GP zone formation
in Al-Cu alloys. The kinetically resolved activation barriers for diffusion is shown to be
strongly dependent on the local configuration around the swapping vacancy-jumping atom
pair, with highest and lowest barriers differing by a factor of five in fcc based Al-Cu alloys.
The morphology of the GP zones in Al-Cu alloys is correctly predicted during the kinetic
Monte Carlo simulations. Our results for precipitation kinetics in Al-Cu alloys show that
the assumption of constant, configuration independent, diffusivity activation barriers does
not yield the same kinetics as a local configuration dependent form.
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6
Kinetically driven ordering in

phase separating alloys

It is shown that in substitutional alloys peculiar ordered patterns can result
from neighborhood dependent diffusion activation barriers even when there
are no metastable ordered phases. Lattice gases with pure phase separation
character are shown to exhibit transient ordered structures that can be
retained almost indefinitely although not at thermodynamic equilibrium. It
is shown that such structures can come about relatively easily by quenching
from the high temperature configurationally random solid solution.
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6.1. Introduction

T he thermodynamic properties of the Ising model have been studied intensely for almost
a century. The role of dimensionality, the occurrence of order-disorder transitions,

and many other features of this model and its generalizations are now well understood [1,
2]. Among the most interesting applications of the Ising model and its generalizations
is the study of substitutional alloys [3–5]. With the advent of ab initio methods to
compute the effective interatomic interactions, the practical utility of the model has greatly
expanded [6–12]. When the generalized Ising model is applied to alloys, the kinetics
of these alloys is at least as interesting as the study of thermodynamic equilibrium.
After all, real alloys are usually at a kinetically determined intermediary stage evolving
towards thermodynamic equilibrium, rather than at equilibrium [13, 14]. Kinetics in
substitutional alloys generally is driven by vacancy mediated diffusion. While vacancies,
because of their typically low equilibrium concentration, rarely play a role in equilibrium
thermodynamics, they are crucial for kinetics. Experimentally too, the intricate details of
vacancy behavior in substitutional alloys has attracted attention again lately [15–19]. A
number of studies exist on Ising model kinetics, some which neglect vacancies [20] and
therefore unrealistic kinetics, others which include vacancies but which employ simplifying
assumptions concerning diffusion activation energies [21–23], and recently some studies
where multiple issues surrounding vacancies and diffusion barriers are considered [24–
27]. These latter studies generally appear able to provide realistic time scales and evolution
histories. Here, we take a special interest in the evolution history, particularly the occurrence
of transient phases [28–31].

We define transient phases as non-equilibrium phases that can occur during the evolution
towards equilibrium for an extended, but finite, period of time. It is well understood that
transient ordered phases can form from a disordered, or random-like, solid solution with
unmixing tendencies if they are metastable ordered phases that are much more stable than
the disordered solid solution, such as occur in various semiconductor alloys [32]. These
observations have been explained in terms of strain energy minimization by atomic size
mismatch [32–34]. Even in the absence of strain effects, metastable ordered phases can be
transient as has been found in Monte Carlo simulations of phase separating alloys [31, 35–
37] or in concentration wave simulations [38]. In all these cases transient ordered phases
appear under the constraint of limited atomic mobility, free energy can be reduced more
quickly by metastable ordering, than by macro-scale phase separation. This explanation
for the occurrence of transient phases has proven so alluring that quite generally transient
phases in bulk alloys are ascribed to thermodynamic metastability, often in conjunction
with limited atomic mobility [39–45]. The importance of purely kinetic effects in phase
selection has been seen in colloidal system simulations [46] where metastable NaCl type
ordering occurs prior to, or instead of stable CsCl type ordering. A less clear scenario
occurs when preferred nucleation is in play, particularly when heterogeneous nucleation for
a metastable phase happens more readily than nucleation of the stable phase [47]. However,
here too, thermodynamic competition remains an important factor. Purely kinetic factors
have not been reported for metallic alloys. With the increasing awareness that vacancy
formation and substitutional diffusion in concentrated alloys is strongly dependent on the
local environment [24, 25, 48–51], it is of interest to examine whether this local environment



6.2. Kinetically driven ordering on two-dimensional square lattice

6

117

dependence of the kinetics could lead to new, hitherto not recognized, phenomena.
In this work we report transient order in a configurationally random alloy upon

quenching into the two phase region pertaining to phase separation. Here, we show that
without any thermodynamic causative factor, there also may be a purely kinetic origin of
transient phases. For clarity, first we will analyze a 2-D case, and subsequently show that
analogous phenomena occur in 3-D.

6.2. Kinetically driven ordering on two-dimensional
square lattice

6.2.1. Model description

Figure 6.1: Clusters and effective cluster interactions (in eV) used for expanding the configuration dependence of
the KRA barrier. Cluster type 𝛾 is indicated by the green digit, 𝐽𝛾 (in eV/cluster) by the number printed in black.
Red circles indicate B species, purple circles E species, and A species are present at all grid points, but are not
drawn for clarity.

Intentionally, the simplest thermodynamic model is used with two atomic species on
a rigid lattice with effective interatomic interactions limited to the nearest neighbors.
The interactions favor phase separation into the pure constituents, but configurational
entropy leads to intermixing as temperature is raised. Vacancies are assumed to have
the same effective interactions with both atomic species, so that their concentration is
not dependent on (local) composition or order. However, the activation energy for atom-
vacancy interchange is made dependent on the local environment. We employ the formalism
of Ref. [51], where the kinetics of vacancy mediated diffusion in a binary A-B alloy can
be described by resorting to a 5-component lattice gas: the atomic species A and B, the
vacancy species C, the A atom and vacancy in the transition state represented as two D
species, and finally the B atom and vacancy in the transition state represented as two E
species. The D and E species must be introduced in order to account for the diffusion
activation energetics. A great simplification can be made if we assume that within our
material vacancies are so rare that they never exist within each others vicinity. Then, the
C, D and E species can never occur simultaneously and their interactions are not needed.
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The only interactions on the lattice gas are then those between A-B-C or A-B-D or A-B-E
species, i.e. three ternaries. Furthermore, D (and E) species occur only as D-D (E-E) nearest
neighbor pairs. If we assign the most abundant species to A, it turns out that a very sparse
interaction Hamiltonian can account for the energetics of atomic configurations and their
intermediary transition states [51]. First, we elaborate the A-B-C cluster expansion (CE) to
describe the configurational energy 𝐸𝑐𝑜𝑛𝑓 .

𝐸𝑐𝑜𝑛𝑓 =
2

∑
𝛼=1

𝑛𝐴𝐵𝐶
𝛼 𝐽𝐴𝐵𝐶

𝛼 , (6.1)

where 𝛼 indicates a particular cluster, 𝛼 = 1(2) refers to the B point cluster (BB nearest
neighbor pair), 𝑛𝛼 is a counter for the number of 𝛼-type clusters per lattice site, and 𝐽𝛼
is the corresponding effective cluster interaction. In order to see if transient order occurs
without there being a metastable ordered structure lurking just above the convex hull of
ground states, we consider a square lattice (2D) with nearest neighbor interactions only.
We arbitrarily select 𝐽𝐴𝐵𝐶

1 = +0.4 eV/point and 𝐽𝐴𝐵𝐶
2 = −0.2 eV/pair, so that 𝐸𝑐𝑜𝑛𝑓 is a

parabola as function of the composition with a maximum of +0.1 eV/atom in the equiatomic
A-B alloy, and 𝐸𝑐𝑜𝑛𝑓 = 0 eV for pure A and pure B. These interactions give rise to a
miscibility gap with a critical temperature of about 10533 K at equiatomic composition [52].
To keep the model as simple as possible, the vacancy interactions between C and A, and C
and B are all the same and equal to zero. The vacancy prefers neither A nor B neighbors.
The vacancy formation energy is not of concern because we impose that there is but a single,
conserved, vacancy in our system. Concerning the A-B-D local cluster expansion (LCE),
needed to evaluate the kinetically resolved activation [24, 48] (KRA) barriers 𝐸𝐾𝑅𝐴 for
atoms trading places with the vacancy, we again select the simplest possibility: for all
configurations around a DD pair 𝐸𝐾𝑅𝐴 = 0.7 eV. It follows that 𝐸𝐾𝑅𝐴 for a majority
A atom trading places with a vacancy is always 0.7 eV. The A-B-E LCE describes the KRA
barriers for B atom diffusion. We opt here for configuration dependence,

𝐸𝐾𝑅𝐴 = 𝐽0 +
4

∑
𝛾=1

𝑛𝐴𝐵𝐸
𝛾 𝐽𝐴𝐵𝐸

𝛾 , (6.2)

where 𝐽0 = 0.6 eV is the KRA barrier for a B atom surrounded by A atoms trading places
with a vacancy and 𝛾 represents a cluster labeled 1 through 4, shown in figure 6.1. The
clusters have been chosen carefully: the negative value for the 𝛾 = 1 cluster lowers the
barriers for forming linear arrays of B atoms, while the other clusters are designed to limit
the growth of side branches on such linear B arrays. The rate at which configurations evolve
can be simulated by tracking the vacancy in a kinetic Monte Carlo simulation where the
transition rate 𝑟𝑖→𝑗 between states 𝑖 and 𝑗 is given by

𝑟𝑖→𝑗 = 𝜔 exp[−𝛽(𝐸𝐾𝑅𝐴 + 1
2𝐸𝑗

𝑐𝑜𝑛𝑓 − 1
2𝐸𝑖

𝑐𝑜𝑛𝑓)], (6.3)

where 𝜔 is the jump attempt frequency, 𝛽 = 1/(𝑘𝐵𝑇 ), 𝐸𝐾𝑅𝐴 is given by the ABD (ABE)
LCE when an A (B) atom trades places with a vacancy, and 𝐸𝑖(𝑗)

𝑐𝑜𝑛𝑓 is the configurational
energy before (after) the jump as given by the ABC CE. For simplicity we assume that
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Figure 6.2: Schematic diagram of an energy landscape with low barriers between states 2 and 3. Black square
represents a vacancy, species C, while orange and green solid circles refer to atomic species A and B.

𝜔 is configuration and temperature independent and takes a value of 1 THz. When KRA
barriers are configuration dependent, it follows that anomalously low barriers can occur
such as sketched in Fig. 6.2 between states 𝑝2 and 𝑝3. This will give rise to many back and
forth oscillations within the actual configuration evolving. Fortunately, to a large degree
such “unproductive oscillations” can be integrated out by using the absorbing Markov chain
algorithm [53]. Fig. 6.2 also illustrates the principle of kinetic ordering: while the lowest
energy occurs for the vacancy jumping towards position 𝑝1, the transient state represented
by position 𝑝4 is more likely to be reached within short time spans. In order to clearly
identify the effect of the local environment dependence of the KRA (EDKRA) barrier of
the B-vacancy swap as expressed in the ABE LCE, we compare results with the case where
all 𝐸𝐾𝑅𝐴 for a B-vacancy swap is set to 0.6 eV (CTKRA). Of course, as described above
the 𝐸𝐾𝑅𝐴 for an A-vacancy swap is always 0.7 eV. In order to describe the evolution of
the state of order we define an order parameter 𝑁 (𝑚)

𝐵 , which is the number of B atoms that
has 𝑚 B neighbors. As we have designed our ABE LCE such that linear arrays of B atoms
are preferred, we will define a special order parameter 𝑁 (2∗)

𝐵 which counts the number of B
atoms that have precisely two B atoms in a straight line as neighbors.

6.2.2. Results and discussion

Precipitation kinetics of an A1279B320C alloy (T = 300 K) on a 2D 40×40 square lattice with
periodic boundary conditions are shown in Fig. 6.3. Starting from a random configuration,
the short range order in the alloy is monitored through the𝑁 (𝑚)

𝐵 order parameters as function
of time. The kinetics in the EDKRA and the CTKRA cases are remarkably different.
The CTKRA case exhibits the expected kinetics of B clusters forming from the random
mixture, isolated B atoms rather quickly connect with other B atoms to form clusters which
coarsen over time. The number of 2-fold coordinated B atoms (𝑁 (2∗)

𝐵 ) initially very rapidly
increases, but then decreases as more B atoms join. The number of 4-fold coordinated
B atoms (𝑁 (4)

𝐵 ) follows a similar trend, but at a much slower pace. The EDKRA case,
on the other hand, follows a completely different path. The inset shows a characteristic
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Figure 6.3: Kinetic Monte Carlo simulation of short range order evolution in an A-B-vac alloy on a square
lattice. Order parameters𝑁(2∗)

𝐵 and𝑁(4)
𝐵 are shown as function of time for environmentally dependent kinetically

resolved activation barriers (EDKRA) and configuration independent kinetically resolved activation barriers
(CTKRA). The black circle on the vertical axis indicates the initial value of𝑁(2∗)

𝐵 . The inset shows a characteristic
configuration that is obtained with EDKRA after 2 Ms.

configuration after 2 Ms which features the linear B arrays with rather few side branches.
As the value of 𝑁 (2∗)

𝐵 ≈ 160 shows, about half of all the B atoms (320) are in a linear
configuration. After 2 Ms 𝑁 (2∗)

𝐵 is about 30 times larger in the EDKRA than in the CTKRA
case. The number of B atoms with 4 B neighbors in the inset is in the single digits and about
one order of magnitude lower than in the CTKRA case. While there is no thermodynamic
driving force that stabilizes the linear B arrays, these arrays nevertheless are robust for
extremely long time periods, considering that 2 Ms corresponds to 2 ⋅ 1018 jump attempts.
The finding that the EDKRA kinetically drives the alloy towards transient states, motivated
us to investigate whether it would persist in more realistic cases, such as on an fcc lattice in
3D.

6.3. Kinetically driven ordering on fcc lattice

6.3.1. Model description

Similarly as shown in Eq. (6.1) for the square lattice, we use an A-B-C (A=majority atom,
B=minority atom and C=vacancy) ternary cluster expansion to describe the configurational
energy of the phase separating system on fcc lattice. B point cluster (𝛼 = 1) and BB
nearest neighbor pair (𝛼 = 2) are used to describe a parabolic type configurational energy
as a function of composition. The corresponding effective cluster interactions are 𝐽1 =
+1.2 eV/point and 𝐽2 = −0.2 eV/pair. The vacancy interactions between C and A, and
C and B are all the same and equal to zero.

We use an A-B-D (A-B-E) local cluster expansion (LCE) to describe the kinetically
resolved activation (KRA) barriers 𝐸𝐾𝑅𝐴 for A (B) atom trading places with the vacancy.
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Figure 6.4: Illustration of the clusters (𝛾) and the corresponding decorations used in the local cluster expansions
A-B-D and A-B-E for (c) A atom and (a, b) B atom as the jumping atom. The number attached to each colored
atom is used for describing the corresponding clusters in Table 6.1. Fcc cubes (black solid lines) have been added
for clarity.
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Table 6.1: Effective cluster interactions (ECIs) in A-B-D and A-B-E local cluster expansions for kinetically
resolved activation (KRA) barriers. Numbers connected by “-” indicate a cluster 𝛾. The positions of the atoms
within each cluster 𝛾 can be found in the corresponding figures.

Clusters (𝛾) for B atom diffusion Figure ECI (eV/cluster)
1 - 2 - 3 - 4

6.4(a)
-0.3

1 - 2 - 3 - 5 -0.2
1 - 2 - 3 - 6 -0.25

7 - 8 - 9 - 10 - 14

6.4(b) 0.4

7 - 8 - 9 - 10 - 25
7 - 8 - 9 - 11 - 15
7 - 8 - 9 - 11 - 16
7 - 8 - 9 - 11 - 17
7 - 8 - 9 - 11 - 25
7 - 8 - 9 - 12 - 21
7 - 8 - 9 - 12 - 22
7 - 8 - 9 - 12 - 23
7 - 8 - 9 - 12 - 24
7 - 8 - 9 - 12 - 25
7 - 8 - 9 - 13 - 16
7 - 8 - 9 - 13 - 17
7 - 8 - 9 - 13 - 18
7 - 8 - 9 - 13 - 19
7 - 8 - 9 - 13 - 20
7 - 8 - 9 - 13 - 21
7 - 8 - 9 - 13 - 22

Clusters (𝛾) for A atom diffusion Figure ECI (eV/cluster)
26 - 27 - 28 - 29 - 30

6.4(c)

-0.1
26 - 27 - 28 - 29 - 31 -0.1
26 - 27 - 28 - 29 - 32 -0.15
26 - 27 - 28 - 29 - 33 -0.2

The configuration dependent of the KRA barriers are then written as,

𝐸𝐾𝑅𝐴 = 𝐽𝐴𝐵𝐷(𝐸)
0 + ∑

𝛾
𝑛𝐴𝐵𝐷(𝐸)

𝛾 𝐽𝐴𝐵𝐷(𝐸)
𝛾 , (6.4)

where 𝐽𝐴𝐵𝐷
0 = +0.8 eV and 𝐽𝐴𝐵𝐸

0 = +1.0 eV refer to the KRA barriers for an A (B) atom
trading places with the vacancy when the jumping atom and the vacancy are surrounded
purely by A atoms. 𝛾 represents a cluster illustrated in Fig. 6.4. All the clusters 𝛾 as well
as the associated ECIs used in the present work are shown in Fig. 6.4 and Table 6.1.

6.3.2. Results and discussion

We found here too, a completely different behavior for EDKRA and CTKRA kinetics.
Fig. 6.5 shows the short range order evolution starting from the random configuration in
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Figure 6.5: Kinetic Monte Carlo simulation of short range order evolution in a phase separating A0.95B0.05 alloy
with a single vacancy at 300 K. The simulation box consists of 20 × 20 × 20 conventional fcc cubes. The inset
shows B atoms that are part of linear arrays of B atoms along the < 110 > direction after a simulation of 0.12 Ms
in the EDKRA case.

a phase separating A0.95B0.05 alloy with a single vacancy at 300 K. The simulation is
performed on a fixed fcc lattice containing 4 × 203 lattice sites with periodic boundary
conditions. As shown in the inset of Fig. 6.5, there are many linear arrays of B atoms in
< 110 > directions. This feature can be seen also from the peak of 𝑁 (2∗)

𝐵 after a time of
about 0.12 Ms. In the random configuration 𝑁 (2∗)

𝐵 ≈ 1600 ⋅ 6 ⋅ (0.052) ⋅ (0.9510) ≈ 14,
a number that is seen for the CTKRA case rather independent of time. As the barriers for
B migration are not identical in the EDKRA and CTKRA case, it is worthwhile to consider
if the two cases differ mostly in terms of time scale. Therefore the time required for the
CTKRA case to reach the same order parameter 𝑁 (𝑚)

𝐵 as the EDKRA at a particular time
was examined. Two timeswere considered: EDKRA at t = 42Ms and at t = 150Ms as shown
in Fig. 6.6. Data points below (above) the horizontal axis occur for B-atom coordinations
that occur faster (slower) with EDKRA kinetics than with CTKRA kinetics. It is readily
apparent that most configurations occur more quickly with EDKRA than with CTKRA
kinetics, while the isolated B atoms, as indicated by 𝑚 = 0, decay more rapidly. These
findings occur both after 42 Ms and after 150 Ms have passed. However, B atoms with
3 B neighbors occur much quicker with CTKRA than with EDKRA kinetics. Therefore
EDKRA does not result in a general acceleration of kinetics, but in a different type of short
range order evolution. The overall kinetics of the system described via EDKRA does not
coincide with CTKRA, although initial and final equilibrium states are identical. This is
similar to what was already observed for the 2D case.

From Eq.(6.3), it can be easily estimated that lowering the height of KRA barrier about
0.1 eV can speed up the vacancy-atom swapping by 50 times at room temperature. In
several substitutional alloys, such as Al-Li [48, 54] and Al-Cu [51] ab initio calculations
have shown that KRA barriers are very sensitive to local configuration. In Al-Cu alloys
KRA barriers might vary by as much as a factor 3 [51]. Especially at lower temperatures
this would result in kinetic pathways that strongly deviate from predictions obtained using
configuration independent KRA barriers.

Another remarkable difference between EDKRA and CTKRA kinetics concerns va-
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Figure 6.6: The ratio of time required for EDKRA and CTKRA reaching the same values of 𝑁(𝑚)
𝐵 as a function

of 𝑚 after 42 Ms and after 150 Ms have passed with EDKRA kinetics.

cancy mobility. In Fig. 6.7 the distance that a vacancy has moved after 32000 atom swaps
is shown for both EDKRA and CTKRA kinetics. It is apparent that the vacancy travels
larger distances during CTKRA kinetics than during EDKRA kinetics. The reason for this
behavior is that below average activation barriers in EDKRA kinetics have the tendency to
trap vacancies while no such trapping occurs in CTKRA. An example of such trapping can
be seen in Fig. 6.2 where the vacancy, at least initially, will spend more time in positions
𝑝2, 𝑝3, and 𝑝4 than in position 𝑝1. The below average barriers in EDKRA occur in the
neighborhood of B atoms, and not in areas consisting purely of A atoms. As a consequence
the unproductive vacancy presence in pure A areas is much less in EDKRA then in CTKRA
kinetics and the attachment of B atoms to B clusters proceeds at a greater rate with EDKRA
kinetics.

Figure 6.7: Distance traveled by a vacancy after every 32000 successive jumps in units of the fcc lattice parameter.
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6.4. Conclusion
Summarizing, we proposed a new ordering mechanism in alloy systems where phase
stability is thermodynamically characterized by phase separation. The essential requirement
is that diffusion activation barriers in an alloy depend on the local environment. Ab
initio density functional calculations support this claim [48, 51, 54]. Furthermore, specific
features in the local environment dependence of the diffusion activation barriers can give
rise to peculiar short range ordered patterns that are not in any way related to a (meta)stable
thermodynamic state. Such short range ordered configurations can exist and appear stable
for extended time periods and thus can be considered transient phases. Our results also
show that configurationally dependent activation barriers give rise to short range order
evolution that can not be reproduced by configuration independent activation barriers by
e.g. rescaling of time. A purely kinetic phenomenon of vacancy trapping has emerged
from these simulations that in itself accelerates the evolution of the short range order in
the alloy. It appears that in order to obtain realistic descriptions of the kinetics of short
range ordering and precipitation in substitutional alloys the environmental dependence of
the diffusion activation barriers cannot be ignored.
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7
Ab initio energetics beyond
𝑇=0K: Accurate electronic

free energies of the transition
metals at high temperatures

Free energies of bulk materials are nowadays routinely computed by den-
sity functional theory. In particular for metals, electronic excitations can
significantly contribute to the free energy. For an ideal static lattice, this
contribution can be obtained at low computational cost, e.g., from the
electronic density of states derived at 𝑇 =0K or by utilizing the Sommerfeld
approximation. The error introduced by these approximations at elevated
temperatures is rarely known. The error arising from the ideal lattice approx-
imation is likewise unexplored, but computationally much more challenging
to overcome. In order to shed light on these issues we have computed the
electronic free energies for all 3𝑑, 4𝑑, and 5𝑑 transition elements on the ideal
lattices of the bcc, fcc, and hcp structures using finite-temperature density-
functional-theory. For a subset of elements we have explored the impact of
explicit thermal vibrations on the electronic free energies by using ab initio
molecular dynamics simulations. We provide an analysis of the observed
chemical trends in terms of the electronic density of states and the canonical
𝑑 band model, and quantify the errors in the approximate methods. The
electronic contribution to the heat capacities and the corresponding errors
due to the different approximations are studied as well.
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7.1. Introduction

F ree energies determine thermodynamic phase stabilities and phase diagrams and are,
therefore, a key ingredient to materials design. In the past years extensive efforts have

been undertaken to develop ab initio methods, mainly based on density-functional-theory
(DFT), for computing accurate free energies [1–7]. A particular challenge in doing so is
the inclusion of all relevant excitation mechanisms up to the melting temperature related
to atomic, electronic, and, for magnetic materials, spin degrees of freedom. Neglecting
the non-adiabatic coupling between the different degrees of freedom, such an approach can
be systematically developed on top of the free energy Born-Oppenheimer approximation
[8, 9]. Although atomic vibrations (quasiharmonic part) dominate the free energy at elevated
temperatures, the neglect or an inaccurate evaluation of seemingly minor contributions
(e.g., electronic, magnetic or anharmonic) can result in falsely predicted phase stabilities
or inaccurate phase transition temperatures.

Table 7.1: Compilation of several previous ab initio studies on electronic free energies for ideal lattices,
highlighting the employed methodology: SCF=self-consistent field method; DOS=fixed DOS approximation;
SOM=Sommerfeld approximation; “x” indicates the used method, whereas “c” means that results by this method
were shown for comparison only.

Year Ref. Material Method
SCF DOS SOM

1986 [10] Fe x
1995 [11] Ni-V, Pd-V x c
1996 [12] Fe x
1996 [13] Sc, Ti, V, Cr, Y, Zr, Nb, Mo x
1998 [14] Al-Mn-Pd, Al-Re-Pd x
1998 [15] Nb3Sn x x
2002 [16] Ce x
2004 [17] Al, Ni, NiAl, Ni3Al x
2005 [18] Ni-Al x
2005 [19] Ni-Al x c
2006 [20] YB6 x
2007 [21] Al, Pb, Cu, Ag, Au, Pd, Pt, Rh, Ir x
2007 [22] Ti x
2008 [23] Al, Cu, Ag, Au, Ni, Pt, W, Ti x c
2010 [24] Al, Cu, Ni, Mo, Ta, Ni-Al, Ni3Al x
2011 [25] Ca x
2011 [26] Model study x x
2016 [27] High entropy alloys x

In this work we focus on approaches for computing electronic free energies. For
atoms on ideal lattice positions the electronic free energy can be computed rather effi-
ciently. Available approaches are (a) a self-consistent field (SCF) finite temperature DFT
calculation, (b) the fixed density of states (DOS) approximation that neglects the implicit
temperature dependence of the electronic DOS of the self-consistent formalism, or (c) a
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further approximation that considers only the effective, temperature independent DOS at the
Fermi level (Sommerfeld approximation) [11]. These approaches are introduced in detail
in Sec. 7.2. The literature survey in Tab. 7.1 reveals that the two approximate methods
(DOS and SOM) prevail in actual applications over the SCFmethod. This is understandable
because the latter requires multiple self-consistent cycles to derive the full temperature
dependence of the electronic free energy, even if the atoms are restricted to their ideal lattice
sites. The other two methods are computationally more appealing because either a single
self-consistent calculation (fixed DOS approximation) or even a single value of the DOS at
the Fermi level (Sommerfeld approximation) are sufficient. Despite the widespread use of
these two approximate methods over the last decades, their actual, quantitative performance
is not known.

Besides the fixed DOS and Sommerfeld approximation, a typical implicit assumption
is that the atoms are restricted to their ideal 𝑇 =0K lattice positions. At high temperatures,
however, lattice vibrations become significant and may alter the electronic states and thus
the electronic free energy [5]. In order to fully incorporate the impact of lattice vibrations on
the electronic free energy, compuationally expensive ab initio molecular dynamic (AIMD)
simulations are required. This fact has drastically limited the number of corresponding
studies [28, 29], and so far the importance of explicit vibrations remains elusive.

In the present work we address these issues by performing a study of ab initio electronic
free energies and heat capacities for all 3𝑑, 4𝑑, and 5𝑑 transition elements on the ideal lattices
of the bcc, fcc, and hcp phases. For a subset of relevant elements and phases we perform
explicit AIMD calculations. We provide an analysis of the observed chemical trends in
terms of the electronic DOS and the canonical 𝑑 band model [30–32], and quantify the error
introduced by the different approximations.

7.2. Theory
7.2.1. SCF finite temperature DFT approach

The finite temperature extension to DFT was developed by Mermin [33]. Mermin
[33] extended the original Hohenberg-Kohn theorem [34] by proving the existence of
a functional of the electronic density which uniquely determines the thermodynamic
equilibrium ensemble at finite temperatures. This theorem implies that—given the exact
temperature-dependent exchange-correlation functional—the free energy contribution due
to the electronic degrees of freedom is exactly determined for a fixed set of atomic
coordinates. In practice one is presently restricted to approximations which only implicitly
depend on temperature, via the charge density, but which do not include explicit temperature
effects [35].

Despite this inherent approximation, finite temperature DFT has been shown to capture
a major part of the electronic contribution to the free energy and thus to thermodynamic
properties [21, 36]. Therefore it can be considered as a highly accurate ab initio method.
The key quantity in such an approach is the electronic charge density,

𝜌(r, 𝑇 ) = ∑
𝑖

𝑓(𝜀𝑖, 𝑇 ) |𝜙𝑖(r)|2, (7.1)

where r is a 3-dimensional real space vector, 𝑇 the temperature, andwhere the sum runs over
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Kohn-Sham single particle orbitals 𝜙𝑖 [37] weighted with Fermi-Dirac occupation numbers,

𝑓(𝜀𝑖, 𝑇 ) = [exp(𝜀𝑖 − 𝜀F
𝑘𝐵𝑇 ) + 1]

−1
, (7.2)

where 𝜀𝑖 is the energy of 𝜙𝑖, 𝜀F the Fermi energy or level, and 𝑘𝐵 the Boltzmann constant.
The temperature dependent charge density, 𝜌(r, 𝑇 ), enters the self-consistency cycle by
determining the effective potential, thereby the Hamiltonian, and thus the 𝜙𝑖, i.e., 𝜙𝑖 =
𝜙𝑖[𝜌(r, 𝑇 )]. The electronic free energy is given by

𝐹 el(𝑇 ) = 𝑈el(𝑇 ) − 𝑇 𝑆el(𝑇 ), (7.3)

with the internal energy 𝑈el(𝑇 ) often written as [38] 𝑈el(𝑇 ) = ∑𝑖 𝑓𝑖 𝜀𝑖 − 𝐸dc, where
𝑓𝑖 = 𝑓(𝜀𝑖, 𝑇 ) and𝐸dc are double counting corrections, and with the configurational entropy

𝑆el(𝑇 ) = −𝛾𝑘𝐵 ∑
𝑖

[𝑓𝑖 ln 𝑓𝑖 + (1 − 𝑓𝑖) ln(1 − 𝑓𝑖)] , (7.4)

where 𝛾 equals 1 for spin-polarized systems and 2 for spin-unpolarized systems.
The above self-consistency procedure yields eigenvalues that, as the 𝜙𝑖 = 𝜙𝑖[𝜌(r, 𝑇 )],

are implicitly depending on temperature, 𝜀𝑖 = 𝜀𝑖[𝜌(r, 𝑇 )], and therefore an implicitly
temperature dependent electronic DOS:

𝐷(𝜀)[𝜌(r, 𝑇 )] = ∑
𝑖

𝛿(𝜀 − 𝜀𝑖[𝜌(r, 𝑇 )]). (7.5)

7.2.2. Fixed density-of-states approximation

If one assumes that the electronic DOS is temperature independent, the electronic free
energy can be approximately computed via Eq. (7.3) by utilizing the 𝑇 =0K electronic DOS,
𝐷(𝜀) = 𝐷(𝜀)[𝜌(r, 𝑇 = 0K)], as

𝐹 el
DOS(𝑇 ) = 𝑈el

DOS(𝑇 ) − 𝑇 𝑆el
DOS(𝑇 ), (7.6)

𝑈el
DOS(𝑇 ) = ∫

∞

−∞
𝐷(𝜀)𝑓 𝜀d𝜀 − ∫

𝜀F

−∞
𝐷(𝜀)𝜀d𝜀, (7.7)

𝑆el
DOS(𝑇 ) = 𝛾𝑘𝐵 ∫

∞

−∞
𝐷(𝜀)𝑠(𝜀, 𝑇 )d𝜀, (7.8)

where
𝑠(𝜀, 𝑇 ) = − [𝑓 ln 𝑓 + (1 − 𝑓) ln(1 − 𝑓)] (7.9)

and 𝑓 = 𝑓(𝜀, 𝑇 ) [Eq. (7.2)]. The tilde over the thermodynamic variables indicates the
approximate evaluation. Note that in practical calculations often an artificial electronic
temperature, such as for example in the Methfessel-Paxton scheme [39], is used to stabilize
the electronic charge self-consistency when calculating 𝐷(𝜀)[𝜌(r, 𝑇 = 0K)].
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7.2.3. Sommerfeld approximation

For low temperatures, the first integral of Eq. (7.7) can be expanded following the
Sommerfeld expansion [40], yielding an even more simplified expression for the internal
energy

𝑈el
SOM(𝑇 ) = 𝜋2

6 𝑘2
𝐵𝑇 2𝐷(𝜀F) + 𝑂(𝑇 4), (7.10)

with the subscript “SOM” indicating the Sommerfeld approximation. The electronic entropy
and free energy are then obtained from their fundamental thermodynamic relations to the
internal energy [41]:

𝑆el
SOM(𝑇 ) = ∫ 𝑑𝑇 1

𝑇
𝜕𝑈el

SOM
𝜕𝑇 = 𝜋2

3 𝑘2
𝐵𝑇 𝐷(𝜀F) + 𝑂(𝑇 3), (7.11)

𝐹 el
SOM(𝑇 ) = −𝜋2

6 𝑘2
𝐵𝑇 2𝐷(𝜀F) + 𝑂(𝑇 4). (7.12)

The electronic contribution to the heat capacity (at constant volume), 𝐶el
𝑉 ,SOM, can be

computed as:

𝐶el
𝑉 ,SOM(𝑇 ) = 𝜕𝑈el

SOM
𝜕𝑇 = 𝜋2

3 𝑘2
𝐵𝑇 𝐷(𝜀F) + 𝑂(𝑇 3). (7.13)

7.2.4. Electronic free energies including lattice vibrations
The methodology discussed in Secs. 7.2.1 to 7.2.3 applies to a set of fixed atomic
coordinates. A convenient choice are the ideal lattice sites (e.g., bcc, fcc, or hcp lattice)
that correspond to the 𝑇 =0K equilibrium positions of the atoms. Such an ideal lattice
approximation yields the electronic free energy neglecting a possible impact of explicit
thermal vibrations of the atoms.

To go beyond one needs to consider the electronic free energy derived from AIMD
simulations. The formal background is provided by the free energy Born-Oppenheimer
approximation [8, 9], in which the atomic motion is determined adiabatically by the
electronic free energy surface. For each AIMD snapshot, the electronic free energy, 𝐹 el

𝑖 , is
calculated by the SCF procedure from Sec. 7.2.1 averaged according to

𝐹 el−vib(𝑇 ) = 1
𝑁

𝑁
∑

𝑖
Δ𝐹 el

𝑖 (𝑇 ), (7.14)

with
Δ𝐹 el

𝑖 (𝑇 ) = 𝐹 el
𝑖 (𝑇 ) − 𝑈el

𝑖 (𝑇 = 0K), (7.15)

and 𝑖 running over 𝑁 AIMD snapshots representing a statistically converged thermal
distribution at 𝑇 . In Eq. (7.15), 𝑈el

𝑖 (𝑇 = 0K) is the potential energy of snapshot 𝑖 at
an electronic temperature of 𝑇 =0K. With this reference, 𝐹 el−vib gives the electronic free
energy including the coupling to explicit vibrations, but excluding the potential energy of the
lattice degrees of freedom. Note that, in principle,Δ𝐹 el

𝑖 could be also computed using either
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the fixed DOS or Sommerfeld approximation (as done below in Sec. 7.4.4 for test purposes).
However, since AIMD requires a self-consistent cycle in any case, these approximations are
not computationally beneficial.

7.3. Methodological details
We used the projector augmented wave method [42] and the PBE functional [43] as
implemented in VASP [44, 45], in combination with the provided potentials [38]. For the
early transition metals (up to Mn, Tc, and Re), the 𝑝 states were treated as valence states
[46]. For the ideal static lattice calculations, the plane-wave cutoff was set to twice the
suggested maximum value, and the 𝑘-point meshes were set to 40 × 40 × 40 for the 1-
atom bcc and fcc cells (64,000 𝑘-points ⋅ atom), and to 40 × 40 × 24 for the 2-atom hcp cell
(76,800 𝑘-points ⋅ atom). For all the𝑇 =0K calculations, the tetrahedronmethodwith Blöchl
corrections [47] was used to improve the convergence with respect to the 𝑘-point sampling.
For the hcp structure an ideal 𝑐/𝑎 ratio was used. For comparing the different levels of
approximations, the volume was set to 1.08 times the equilibrium volume at 𝑇 =0K, 𝑉0, to
approximately incorporate the thermal expansion at the temperatures of interest (1500 K and
melting temperature). The actual dependence of the electronic excitations on the volume is
discussed in Sec. 7.4.1.2. We determined 𝑉0 by fitting the Vinet equation [48] to at least
12 energy-volume points in a range of ±5% around 𝑉0. Most of the calculations were
performed without spin-polarization to enable an interpretation of chemical trends. Bcc
Fe, fcc Co and fcc Ni were additionally computed in the ferromagnetic state to elucidate
the impact of magnetism. In order to obtain a smooth DOS 𝐷(𝜀) from the discrete set of
computed eigenvalues 𝜀𝑖 for visualization purposes and for deriving the DOS at the Fermi
level 𝐷(𝜀𝐹 ) for the Sommerfeld approximation, we replaced the delta function in Eq. (7.5)
by smooth Gaussian functions:

𝐷(𝜀) = 1
𝜎√𝜋 ∑

𝑖
exp(−(𝜀 − 𝜀𝑖)2

𝜎2 ) , (7.16)

with the broadening/smearing parameter 𝜎 set generally to 0.1 eV. For the Sommerfeld
approximation we also used 𝜎 = 0.2 eV to test the influence on 𝐷(𝜀𝐹 ).

For a subset of elements, namely bcc Nb, W; fcc Rh, Pt and hcp Re, Ru, we
performed explicit AIMD simulations at different temperatures to investigate the impact
of lattice vibrations. We used supercells with 54, 32, and 36 atoms for bcc, fcc, and
hcp, respectively. Following the concept of the upsampled thermodynamic integration
using Langevin dynamics (UP-TILD) method [49], in a first step these calculations were
performed based on relatively low DFT convergence parameters to provide an efficient, but
still accurate enough sampling of the configuration space. The cutoff energy was set to the
default value of the potential from the VASP library and a 2 × 2 × 2 𝑘-point mesh was
used (432, 256, 288 𝑘-points ⋅ atom for bcc, fcc, hcp, respectively). The AIMD simulations
were performed for about 5000 steps with a time step of 5 fs. The Langevin thermostat
was used with a friction parameter of 0.01 fs−1. In a following step, uncorrelated snapshots
were extracted from the trajectories and recalculated with a denser k-point mesh (8 × 8 × 8;
27,648, 16,384, 18,432 𝑘-points ⋅ atom for bcc, fcc, hcp) to determine accurate electronic
free energies for the averaging. For each element and at each temperature, ten uncorrelated
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snapshots extracted fromwell equilibratedAIMD simulations were sufficient for a statistical
error below 1 meV/atom in Eq. (7.14). The reason for this is that each supercell in itself is
the average over many distinct atomic sites.

7.4. Results and discussion

7.4.1. SCF electronic free energies for ideal lattices

7.4.1.1. Temperature dependence
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Figure 7.1: Ideal lattice SCF electronic free energies in meV/atom at (a-c) 1500 K and (d-f) the respective melting
points (𝑇melt, cf. Tab. 7.3) referenced with respect to the internal energy at 𝑇 =0K. (g-i) show the electronic
free energy change upon a volume increase of 8% with respect to the equilibrium volume 𝑉0. The insets in (a-c)
show the electronic DOS (arbitrary units) for some of the elements (emphasized by slightly larger symbols in the
respective plots) in the three different structures (bcc, fcc, hcp). The Fermi levels 𝜀F are indicated by the red
dashed lines. For bcc Nb and fcc Rh, the numbers 1-4 indicate peaks that are relevant for the discussion in the text.
For bcc Mo, the entropy distribution 𝑠(𝜀, 𝑇 = 1500K) [Eq. (7.9)] is plotted (green line). Throughout the figure,
results correspond to non-magnetic calculations, except for the ferromagnetic (FM) results for bcc Fe, fcc Co, and
fcc Ni (blue open circles). Exact numbers for all free energy values shown in (a-f) are given in Tab. 7.3.

Figure 7.1(a-c) shows the electronic free energies for all investigated elements and
structures with atoms on the ideal lattice sites at an electronic temperature of 1500 K,
calculated self-consistently using Eq. (7.3), but referenced to the extrapolated internal
energy at 𝑇 =0K, i.e., showing 𝐹 el −𝑈el(𝑇 =0K). For interpreting the observed trends, the
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fixed DOS approximation is helpful. From Eqs. (7.6–7.8) it is apparent that the electronic
free energy is directly linked to the electronic DOS. In fact, a closer look reveals that only
the DOS close to the Fermi level contributes to 𝐹 el. For the internal energy, this can be seen
by considering that the first integral in Eq. (7.7) is cancelled by the second one whenever
𝑓 ≈ 1, i.e., at energies sufficiently below the Fermi level. For energies sufficiently above
the Fermi level, i.e., 𝑓 ≈ 0, both integrals give a negligible contribution. Regarding the
entropy, note that the function 𝑠(𝜀, 𝑇 ) in Eq. (7.9) is only peaked around the Fermi level as
exemplified by the green line in the inset of Fig. 7.1(a). The Sommerfeld approximation,
Eq. (7.12), gives an even more specific relation between the electronic DOS and electronic
free energy: a large DOS at the Fermi energy implies a largely negative free energy.
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Figure 7.2: Electronic densities of states for all 3𝑑 (blue), 4𝑑 (red), and 5𝑑 (green) elements on the ideal lattices of
bcc, fcc, and hcp in the non-magnetic state, and at an electronic temperature of 𝑇 =0K and a volume of 1.08𝑉0,
referenced with respect to the Fermi level (marked by the vertical dashed lines). The shift due to an increase in
the electronic temperature up to the melting point is negligible on the shown scale. The black solid lines show the
effective mean DOS’ from the AIMD simulations at the melting temperature for the investigated cases. All DOS’
were obtained with a smoothing parameter of 𝜎 = 0.1 eV.

Consider the two examples shown in the insets of Fig. 7.1(a), bcc Nb and Mo. The DOS
is higher at the Fermi level for bcc Nb than for bcc Mo yielding a more negative free energy
at 1500 K for Nb: −47 vs. Mo: −20 meV/atom [cf. large red squares in Fig. 7.1(a)]. For
the subsequent 4𝑑 bcc elements [see Fig. 7.1(a)], the free energy decreases strongly to the
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right of Mo. This enhancement in magnitude is related to the peak in the DOS located above
the Fermi level for Nb and Mo (marked with “2” in the Nb inset).

Indeed, according to the canonical 𝑑 bandmodel [30–32], the DOS does not significantly
change across the 𝑑 elements. We can therefore employ the DOS of Nb and Mo for
statements about the other 𝑑 elements. Increasing the number of valence electrons [i.e.,
going from left to right in Fig. 7.1(a)] only shifts the Fermi level to higher energies. The
dependence of the electronic free energy for the bcc elements as a function of the 𝑑 valence
number hence reflects the peak structure of a generic bcc DOS. This applies to the 3𝑑, 4𝑑,
and 5𝑑 transition elements, all having a very similar generic DOS and consequently a similar
electronic free energy dependence [Fig. 7.1(a)].

The canonical 𝑑 band model can similarly be used to correlate the dependence of
the electronic free energy for the fcc and hcp elements with their generic DOS. As each
geometry (bcc, fcc, hcp) leads to a different specific generic DOS [insets in Fig. 7.1(a-c)],
the corresponding electronic free energy trends [Fig. 7.1(a-c)] likewise differ from each
other. (See Fig. 7.2 for the complete set of the computed non-magnetic densities of states.
The corresponding DOS values at the Fermi level are given in Tab. 7.2.)

The electronic free energy at a fixed absolute (electronic) temperature is, as just
discussed, useful for analyzing the correlation to the DOS. When computing free energies
one is, however, often interested in temperatures up to the respective melting point. The
corresponding electronic free energies (still within the ideal lattice approximation) are
shown in Fig. 7.1(d-f). The dependencies clearly change with respect to those at a fixed
absolute temperature, because of the strongly varying melting points across the 𝑑 elements
(see Tab. 7.3). This is nicely illustrated for the example of Rh fcc and Pd fcc. At 1500K, the
relative magnitude of the free energy for Pd and Rh is determined exclusively by the DOS
near the Fermi level, and hence the free energy of Pd has a magnitude 38% larger compared
to Rh. At the respective (experimental) melting temperature, the trend reverses: Rh has
a melting temperature of 2236 K [50], larger by 22% than that of Pd (1828 K [50]). As
the free energy scales approximately quadratically with temperature, the temperature effect
dominates and reverts the order of relative magnitudes.

Figure 7.1(d-f) clearly shows that the magnitude of the electronic free energy at the
melting point can be significant, ≈ −250 meV/atom (bcc Os, 𝑇melt=3306K). Comparing
the data for the same element but for different structures reveals that the magnitudes can be
quite different, e.g., Ir bcc: −218, Ir fcc: −113, Ir hcp: −136 meV/atom. This highlights
the importance of electronic contributions for determining phase stabilities and transition
temperatures as the latter are known to strongly depend even on changes in the range of a
few meV/atom in the free energy [25, 51, 52].

7.4.1.2. Volume dependence

Since at high temperatures, especially at the melting point, the volume change of the system
can be significant, the impact of volume on the electronic free energy needs to be carefully
addressed. In Fig. 7.1(g-i) we show the change in the ideal lattice SCF electronic free
energies at the melting point upon increasing the volume from the equilibrium volume at
𝑇 =0K, 𝑉0, to a volume of 1.08𝑉0, which reflects a reasonable estimate of the thermal
expansion at the melting point. An important finding is that the electronic free energy
decreases with increasing volume for all investigated elements. The overall magnitude
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Table 7.2: Electronic densities of states at the Fermi level in states/eV⋅atom for all investigated elements and
structures in the non-magnetic state at a volume of 1.08𝑉0. The first row for each element shows the DOS for
the ideal static lattice at an electronic temperature of 𝑇 =0K and the second row at an electronic temperature
corresponding to the respective melting point. For a few selected elements and phases, the third row indicates the
effective DOS at the Fermi level including the impact of thermal vibrations at the melting point. The subscripts
“sv” and “pv” indicate the inclusion of semi-core 𝑠 and 𝑝 electrons into the valence of the employed potentials.

3𝑑 bcc fcc hcp 4𝑑 bcc fcc hcp 5𝑑 bcc fcc hcp
Scsv 2.8 2.3 2.5 Ysv 2.9 1.8 2.4 Lu 2.5 1.8 2.1

2.8 2.2 2.5 2.8 1.8 2.4 2.5 1.8 2.1

Tipv 2.5 1.9 1.1 Zrsv 2.0 1.7 1.1 Hfpv 2.1 1.6 0.8
2.5 1.9 0.9 2.0 1.7 0.8 2.1 1.6 0.7

Vpv 2.0 1.9 2.3 Nbpv 1.7 1.6 1.7 Tapv 1.5 1.3 1.5
1.8 1.8 2.2 1.4 1.6 1.7 1.2 1.3 1.5

1.2
Crpv 0.8 2.2 2.6 Mopv 0.7 1.4 1.9 Wsv 0.5 1.6 1.6

0.6 1.9 2.6 0.6 1.3 1.9 0.4 1.3 1.6
0.8

Mnpv 2.7 1.7 1.5 Tcpv 1.7 1.3 1.1 Re 1.3 1.0 0.8
2.4 1.7 1.5 1.5 1.3 1.0 1.0 0.9 0.8

0.9
Fe 3.7 1.9 1.5 Ru 2.3 1.2 1.0 Os 1.6 1.0 0.7

3.6 1.9 1.4 2.3 1.2 0.9 1.6 0.8 0.7
1.1

Co 5.0 2.5 3.2 Rh 3.3 1.5 1.9 Ir 3.6 1.0 1.4
3.9 2.4 2.9 2.2 1.5 1.8 3.2 1.1 1.3

1.7
Ni 2.3 4.4 5.0 Pd 1.5 3.0 3.5 Pt 1.2 2.4 2.8

2.2 3.0 2.8 1.5 2.0 2.3 1.2 2.1 2.6
1.6

Cu 0.4 0.4 0.4 Ag 0.3 0.3 0.3 Au 0.3 0.3 0.3
0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3

Zn 0.4 0.3 0.3 Cd 0.4 0.4 0.4 Hg 0.2 0.1 0.0
0.3 0.3 0.3 0.4 0.3 0.4 0.2 0.0 0.0
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Table 7.3: Ideal lattice electronic free energies in meV/atom at 1500 K and at the indicated melting points
(𝑇melt=experimental melting point in K from Ref. [50]) for all 3𝑑, 4𝑑, and 5𝑑 transition metals for the bcc,
fcc, and hcp structures computed using the SCF approach, Eqs. (7.1–7.4). Values correspond to non-magnetic
calculations except for the ferromagnetic (FM) results for bcc Fe, fcc Co, and fcc Ni. The subscripts “sv” and “pv”
indicate the inclusion of semi-core 𝑠 and 𝑝 electrons into the valence of the employed potentials.

Element 𝑇melt bcc fcc hcp
1500 K 𝑇melt 1500 K 𝑇melt 1500 K 𝑇melt

Scsv 1814 -72 -103 -59 -84 -61 -85
Tipv 1943 -70 -116 -52 -86 -35 -62
Vpv 2183 -53 -106 -52 -111 -61 -125
Crpv 2180 -22 -49 -55 -112 -65 -131
Mnpv 1519 -67 -69 -47 -48 -43 -44
Fe 1811 -99 -141 -54 -79 -42 -63
Fe(FM) 1811 -30 -44
Co 1768 -110 -146 -71 -98 -83 -112
Co(FM) 1768 -33 -46
Ni 1728 -65 -86 -87 -109 -95 -118
Ni(FM) 1728 -51 -67
Cu 1358 -9 -7 -9 -7 -9 -8
Zn 693 -9 -2 -9 -2 -8 -2
Ysv 1795 -72 -100 -50 -72 -58 -81
Zrsv 2127 -58 -115 -46 -92 -31 -67
Nbpv 2750 -45 -138 -45 -151 -47 -155
Mopv 2895 -19 -75 -40 -146 -50 -171
Tcpv 2430 -43 -112 -34 -89 -31 -83
Ru 2606 -63 -182 -34 -105 -26 -83
Rh 2236 -73 -150 -44 -99 -54 -116
Pd 1828 -40 -60 -63 -87 -71 -97
Ag 1235 -8 -5 -8 -5 -8 -5
Cd 594 -11 -2 -10 -1 -11 -2
Lu 1936 -63 -101 -48 -78 -52 -83
Hfpv 2506 -59 -159 -44 -120 -25 -80
Tapv 3290 -40 -179 -36 -176 -43 -201
Wsv 3687 -13 -89 -38 -204 -43 -238
Re 3458 -32 -169 -26 -143 -25 -139
Os 3306 -46 -227 -25 -128 -20 -102
Ir 2719 -76 -207 -31 -104 -39 -126
Pt 2041 -34 -63 -55 -94 -64 -107
Au 1337 -9 -7 -8 -7 -8 -7
Hg 234 -5 0 0 0 0 0
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Figure 7.3: Influence of volume and temperature on the electronic DOS. (a) Change of the DOS for bcc Nb upon
increasing the volume from 𝑉0 (equilibrium volume at 𝑇 =0K, black line and gray shading) to 1.08𝑉0 (red line).
The resulting compression is emphasized by the arrows, and the Fermi level (the same for both DOS’) is marked
by the black dashed line. (b) Change of the DOS directly at the Fermi level, 𝜀F, with volume for two examples.
(c) Change of the DOS for bcc Ta upon increasing the (electronic) temperature from 𝑇 =0K (black line and gray
shading) to 𝑇melt = 3290K (red dashed line) within the self-consistent finite temperature DFT calculation. The
black and red dashed lines mark the respective Fermi levels; the red line for the 𝑇melt calculation being shifted
by about 0.1 eV with respect to the black one. (d) Fermi level shift with temperature for three examples showing
different dependencies (positive, small, negative).

of the free energy decrease due to the 8% volume change is for most of the investigated
elements about 10% of the total electronic free energy [Fig. 7.1(d-f)], and consequently the
general chemical trends are similar.

The negative dependence of the electronic free energy on the volume can be understood
by examining the variation of the electronic DOSwith volume. As a representative example,
the electronic DOS of bcc Nb is shown in Fig. 7.3(a) at 𝑉0 (black line and gray shading)
and 1.08𝑉0 (red line). As the volume increases, the generic features of the electronic
DOS do not change except for an overall compression of the 𝑑 band (exemplified by the
arrows), centered around the Fermi level. This compression is a consequence of the well-
known reduction of 𝑑-band width as the 𝑑-orbital overlap decreases with increasing distance
between the atoms. Since the Fermi level is determined by the conservation of the number of
electrons, it remains in a similar relative position after the volume change, as compared, e.g.,
to the neighboring peak. Further, since the total spectral weight of the 𝑑-band must remain
the same the compression leads to an overall increase of the DOS, inversely proportional to
the reduction in 𝑑-band width, as can be observed by comparing the heights of the peaks in
Fig. 7.3(a). In consequence, increasing the volume leads to an increase of the DOS at the
Fermi level [Fig. 7.3(b)] and hence to an increase in entropy and a corresponding lowering
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the SCF electronic free energy for an ideal lattice. In (d-f) the thick lines with symbols correspond to a smearing
parameter 𝜎 = 0.2 eV and the thin lines without symbols to 𝜎 = 0.1 eV, used to obtain the corresponding DOS at
the Fermi level. Throughout the figure, results correspond to non-magnetic calculations, except for the data shown
by the blue open circles which represent ferromagnetic (FM) calculations for bcc Fe, fcc Co, and fcc Ni.

of the free energy.

7.4.2. Fixed density-of-states approximation

We now turn to the error introduced by the fixed DOS approximation [Eqs. (7.6–7.8)].
We focus on the deviation from the ideal lattice SCF electronic free energy at the melting
point which can be considered as the most severe condition for the validation. As shown
in Fig. 7.4(a-c), for most of the elements the corresponding error is below 1 meV/atom.
Only a few cases, e.g., bcc Tc and Re, show a slightly higher error, up to 2 meV/atom.
The performance of this approximation is best for hcp structures, with errors of less than
0.5 meV/atom. Noting that all errors will decrease upon lowering the temperature, we can
safely conclude that the fixed DOS approximation is in general an excellent approximation
to calculate electronic free energies.

Compared with the SCF method, the fixed DOS approximation neglects the variation of
the electronic DOS with temperature. The validity of this assumption is illustrated in Fig.
7.3(c) for bcc Ta, showing a comparison of the DOS at 𝑇 =0K (black line) and at the melting
temperature (red dashed line) using the identical volume. As the temperature is increased,
the profile of the DOS remains almost the same (i.e., the red dashed curve and the black
solid curve overlap) except for a shift of the Fermi energy (cf. distance between the vertical
black and red lines). The Fermi energy shift, 𝜀shift, can be determined by

∫
∞

−∞
𝐷(𝜀)𝑓(𝜀 − 𝜀shift, 𝑇 )d𝜀 = ∫

𝜀F

−∞
𝐷(𝜀)d𝜀 = 𝑁el, (7.17)
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which ensures the preservation of the total number of electrons, 𝑁el. The shift will be small
[bcc Hf in Fig. 7.3(d)] when the DOS can be expanded reasonably well in even functions
around the Fermi level. In this case, excited electrons will be able to populate energy states
symmetrically around the (original, 𝑇 =0K) Fermi level. The shift will be larger [≈ ±0.1
eV; see bcc Ta and bcc W in Fig. 7.3(d)] for DOS’ that are strongly deviating from an
even description around the Fermi level, because then excited electrons will asymmetrically
populate the empty energy states.

7.4.3. Sommerfeld approximation

The virtue of the Sommerfeld model is that it provides simple analytical formulas for
the thermodynamic potentials [Eqs. (7.10–7.12)], which are for example important for
parameterizations in thermodynamic modeling approaches (such as, e.g., the calphad
approach [53, 54]). Since the Sommerfeld model is based on a low temperature expansion
it is critical to know its performance up to the melting point. Figure 7.4(d-f) shows that
the error in the electronic free energy caused by the Sommerfeld approximation can reach
several tenths of meV/atom at 𝑇melt. An additional difficulty is that the error critically
depends on the technical details of the DOS calculation. The value of the electronic DOS
at the Fermi level, which solely determines the electronic free energy in the Sommerfeld
model, can sensitively depend on the broadening (aka smearing) parameter used to derive
a smooth DOS from the discrete set of eigenvalues [Eq. (7.16)]. As an example, errors for
two different smearing parameters of 0.1 and 0.2 eV are shown in Fig. 7.4(d-f) (thin and
thick lines), indicating that a smaller error is generally associated with a larger smearing
parameter. For a fixed smearing parameter, e.g., 0.2 eV, the magnitude of the error varies
significantly across the 𝑑 series, ranging from less than 1 meV (e.g., for bcc Zr, fcc V) to
several tens of meV (e.g., for bcc Ir, fcc W) per atom.

It is useful to elucidate the origin of the deviations exhibited by the Sommerfeld model.
For that purpose we compare in Fig. 7.5 the DOS of an element revealing a small error
(1 meV/atom, fcc Ru) to an element revealing a large error (48 meV/atom, bcc Ir). One
simplification within the Sommerfeld model is the assumption that the DOS close to the
Fermi energy varies smoothly. It can be seen in Fig. 7.5(a) that the DOS of fcc Ru exhibits
comparably small fluctuations close to the Fermi energy. The Fermi energy (vertical dashed
line) is located close to a shallow valley where the DOS is not sensitive to the employed
smearing parameter (cf. black solid line and blue dashed line). In contrast, as shown in
Fig. 7.5(b), the DOS of bcc Ir has a sharp peak directly at the Fermi energy, the height
of which changes dramatically with the smearing parameter. The observation that the
Sommerfeld approximation exhibits large and sensitive errors when the Fermi energy is
located at a sharp DOS peak is general. The bcc elements with 5 (V, Nb, and Ta) and 9
(Co, Rh, and Ir) valence electrons have large errors, because their Fermi level hits the peaks
labeled 1 and 2 in the inset of Fig. 7.1(a). Similarly, the large errors for fcc Cr, Mo, and W
are connected to the peak labeled 3 in the inset of Fig. 7.1(b) and the errors for fcc Ni, Pd,
and Pt with the peak labeled 4.

A second simplification within the Sommerfeld model is the neglect of the higher-order
terms in the expansions Eqs. (7.10–7.12). To elucidate the importance of these terms we
plot in Fig. 7.6 the temperature dependence of the internal energy and free energy for fcc
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Figure 7.5: Electronic DOS for (a) fcc Ru and (b) bcc Ir at𝑇 =0K, obtainedwith two different smearing parameters,
𝜎, of 0.1 eV (red dashed lines) and 0.2 eV (black lines and gray shading) in Eq. (7.16). The blue solid lines indicate
the Fermi-Dirac occupation function at the respective melting points (Ru: 2606 K and Ir: 2719 K).

Ru and bcc Ir up to the respective 𝑇melt. All solid lines have been calculated using the
SCF procedure, i.e., using Eqs. (7.1–7.4) and performing a full self-consistency cycle at
each temperature. Figure 7.6 also includes the results from the Sommerfeld approximation
(dashed and dash-dotted lines), using Eqs. (7.10) and (7.12), and neglecting all but the
lowest-order term (∼ 𝑇 2 term). For fcc Ru shown in Fig. 7.6(a), the Sommerfeld model
nicely reproduces the SCF dependence even up to themelting point of 2606K [50], revealing
that the electronic internal energy and free energy of fcc Ru depend quadratically on
temperature. However, fcc Ru is a rare case and many elements such as, e.g., bcc Ir reveal
rather strong deviations from the quadratic dependence. In Fig. 7.6(b), the 𝑈el

SOM curve
(dashed line above zero) deviates significantly from the SCF 𝑈el curve at about 30% of the
melting point. The 𝐹 el

SOM curve (dashed line below zero) starts to deviate from 𝐹 el at about
10% of the melting point, with the error changing the sign. For most of the 3𝑑, 4𝑑 and 5𝑑
elements the assumption of a quadratic 𝑇 -dependence is thus not justified for an accurate
determination of the electronic free energy.
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Figure 7.6: Temperature dependence of the SCF electronic internal energy𝑈el (black lines) and the SCF electronic
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lines and orange dash-dotted lines show results of the corresponding Sommerfeld approximation [Eqs. (7.10) and
(7.12)] for two different smearing parameters (𝜎 = 0.1 eV and 𝜎 = 0.2 eV).

7.4.4. Impact of explicit lattice vibrations

All results discussed so far have been obtained with the atoms placed on their ideal lattice
sites. This assumption neglects the impact of atomic vibrations on the electronic free
energy. Investigating the corresponding error requires expensive AIMD simulations and
we therefore restricted our attention to a few representative elements: bcc Nb, W; fcc Rh,
Pt; hcp Re, Ru. This choice represents elements in their experimentally observed, stable
phases, it covers the three investigated lattices and also the 4𝑑 and 5𝑑 elements. See the
study on Fe in Ref. [29] for an example of a 3𝑑 element.

Figure 7.7 shows the change in the electronic free energy upon including the thermal
vibrations at the melting point, where the highest impact can be expected. The black bars
correspond to our reference computed by the SCF procedure for an ideal lattice (more
precisely 𝐹 el − 𝑈el(𝑇 =0K) as in Sec. 7.4.1) and the red bars show the AIMD results
including explicit vibrations according to Eq. (7.14). The changes induced by the atomic
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input.

motion can be positive or negative, with a substantial magnitude ranging from a few
meV/atom (e.g., fcc Rh: –4) to a few tens of meV/atom (e.g., bcc W: –50).

The observed behavior can be understood by analyzing the averaged electronic DOS’
obtained from the AIMD simulations, as shown in Fig. 7.8 by the black solid lines. A
significant broadening and smoothening is visible when compared to the 𝑇 =0K electronic
DOS’ represented by the white solid curves. Sharp peaks are strongly smeared out and
damped, and valleys are filled up with electronic states. These findings are consistent with
previous studies for Mo [28] and Fe [29]. The reason for such a behavior is the loss of
the crystal symmetry—a main ingredient to the pronounced peak profiles of the 𝑇 =0K
DOS’—induced by the thermal vibrations. The disordered atomic positions result in a much
more homogeneous distribution of the energy levels compared to the perfect static lattice.
The homogeneous distribution applies already to each single snapshot and the differences
between the DOS’ of (uncorrelated) snapshots are small as evidenced by the small standard
deviation (orange gradient in Fig. 7.8). This finding suggests that the number of 𝑘-points
required to sample the Brillouin zone could be reduced for high temperature calculations.
Future studies are required to quantify this statement.

The strong smoothening of the electronic DOS has a considerable effect on the electronic
free energy, in full analogy to the discussions of the previous sections. Whenever the Fermi
level is located close to a sharp peak in the original 𝑇 =0K electronic DOS, as for bcc
Nb, the damping of the peak leads to a reduction of the effective DOS at the Fermi level
and consequently to a reduction of the magnitude of the electronic free energy. When the
Fermi level is located inside a valley of the original 𝑇 =0K electronic DOS, as for bcc
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W, the broadening leads to an increase of the effective DOS at the Fermi level and of the
magnitude of the electronic free energy. An interesting side effect of the thermal broadening
is an increase in the accuracy of the Sommerfeld model, provided one employs the high
temperature effective DOS as input. The differences with respect to the full AIMD based
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electronic free energy are in the range of a few meV/atom (blue vs. red bars in Fig. 7.7).
We have also investigated the temperature dependence of the impact of thermal vibra-

tions on the electronic free energy. Figure 7.9 shows respective results for bcc W, fcc Pt
and hcp Ru. A nonlinear temperature dependence can be observed for all three elements.
The changes in the electronic free energy can be again traced back to the broadening of
the electronic DOS with temperature as exemplified for bcc W in the inset. The exact type
of the temperature dependence of the electronic free energy is difficult to deduce, but it is
conceivable that a linear dependence is unlikely to occur due to the complex changes in the
electronic DOS with temperature.

7.4.5. Electronic contribution to the heat capacity

As one of the key thermodynamic properties, heat capacities can be either measured
experimentally or calculated theoretically. They are an important ingredient to thermo-
dynamic modelling approaches of phase stabilities and phase diagrams, such as the calphad
approach [53, 54]. For such a modelling it is useful to have a good estimate of the
magnitude and of the temperature dependence of the different heat capacity contributions.
For low temperatures, it is well-known that the electronic heat capacity contribution depends
linearly on temperature as can be derived from the Sommerfeld model [cf. Eq. (7.13)]
[16, 20, 23, 55]. We focus here on the electronic heat capacity at high temperatures.

Figure 7.10(a-c) shows the electronic heat capacities calculated by the SCF method
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the Sommerfeld approximation at the melting point (𝑇melt) and 1.08𝑉0 for all 3𝑑 (blue dots), 4𝑑 (red squares),
and 5𝑑 (green triangles) transition metals in the (a, d) bcc, (b, e) fcc, and (c, f) hcp structures. The ideal lattice SCF
heat capacity was obtained from a finite difference of the temperature dependence of the electronic internal energy
(using 1 K steps). The Sommerfeld heat capacity was calculated with Eq. (??), using𝜎 = 0.1 eV for smoothing the
required DOS at the Fermi level. Throughout the figure, results correspond to non-magnetic calculations, except
for the data shown by the blue open circles which represent ferromagnetic (FM) calculations for bcc Fe, fcc Co,
and fcc Ni.

for all investigated elements at the respective melting temperatures within the ideal, static
lattice approximation. The magnitude of the electronic heat capacities is in the order of
∼1 𝑘𝐵 with the exception of the late transition elements (valence numbers 11 and 12). A
contribution of ∼1 𝑘𝐵 is significant and is also in the order of other contributions (e.g.,
due to thermal expansion or anharmonic vibrations [7]). In fact, one should note that the
electronic contribution to the heat capacity at constant pressure, which corresponds to the
typical experimental conditions, will be 30 % larger than the here considered contribution
to the constant volume heat capacity [56].

The fixed DOS approximation provides very accurate electronic heat capacities (not
shown) with a maximum error of 0.03 𝑘𝐵 and most of the errors well below 0.01 𝑘𝐵.
One should be however cautious when using the linear Sommerfeld extrapolation up to the
melting temperature. From Fig. 7.10(d-f) it is apparent that the corresponding errors can be
significant, mostly overestimating the SCF heat capacity values. The maximum deviation
can even reach up to a factor of 2 of the corresponding absolute value (e.g., fcc Ni). The
critical cases are characterized by sharp peaks or dips in the DOS near the Fermi level.

Another source of error is the ideal lattice approximation, similarly as for the electronic
free energies. The importance of lattice vibrations on the electronic heat capacity is shown in
Fig. 7.11 for three representative elements bcc W, fcc Pt and hcp Ru. Dashed lines represent
the electronic heat capacity from the SCF procedure for the ideal lattices, and solid lines the
AIMD computed heat capacities. For fcc Pt and hcp Ru the impact of lattice vibrations is
comparably small. In contrast, bcc W shows a strong impact with more than a factor of two
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Figure 7.11: Temperature dependence of the constant volume electronic heat capacity for bcc W (black), fcc Pt
(blue), hcp Ru (red) with (solid lines) and without (dashed lines) the impact of vibrations. To obtain an accurate
heat capacity from the coarse set of free energies (see Fig. 7.9), we used a physically motivated fit as introduced in
Ref. [25] with a second-order polynomial for the energy independent electronic density of states. For consistency,
the same fit was used to obtain the temperature dependence of the ideal lattice SCF heat capacities (dashed lines).
The temperature axis has been normalized by the respective melting temperature.

increase arising from the vibrations at the melting point. This behavior can be traced back
to the significant non-linear temperature dependence of the electronic free energy including
lattice vibrations (Fig. 7.9).

7.5. Conclusions
By conducting a wide-range investigation for all 𝑑 transition elements for various ideal,
static crystal lattices using finite temperature density-functional-theory calculations, we
have systematically quantified general chemical trends of the electronic free energy and
its relation to the electronic density of states. In agreement with previous knowledge,
a high electronic density of states close to the Fermi energy results in a significant,
negative electronic free energy contribution, in qualitative agreement with the Sommerfeld
prediction. The dependence of the electronic free energy on the valence number therefore
reflects the shape of a generic density of states, determined by the geometry of the crystal
structure (bcc, fcc, hcp). The magnitude of the calculated electronic free energies as well
as electronic heat capacities at high temperatures highlights the importance of electronic
contributions in determining phase stabilities and phase diagrams.

Using this set of data and additional ab initio molecular dynamics simulations for



7

152 References

selected cases allowed us to quantitatively assess the performance of three widely used
approximations for computing electronic free energies. (1) The fixed density of states
approximation, which neglects the temperature dependence of the density of states, performs
extremely well for all investigated elements and structures, with errors in the electronic
free energy of mostly below 1 meV/atom at the melting point. Electronic heat capacities
are likewise very well predicted. (2) The Sommerfeld approximation—when fed with the
electronic density of states computed for the ideal static lattice—makes much more drastic
assumptions and thus the corresponding error at high temperatures is about an order of
magnitude larger. (3) The ideal lattice approximation neglects the impact of thermal atomic
vibrations. The latter have a significant smoothening effect on the electronic density of
states, and the resulting thermally averaged electronic free energy can change with respect
to the ideal lattice electronic free energy by several tens of meV/atom. The details of these
changes depend on the original location of the Fermi level with respect to peaks and valleys
in the ideal, static electronic density of states.

Interestingly, the accuracy of the Sommerfeld approximation increases substantially
when the effective electronic density of states from the molecular dynamics simulations
is employed as input. Such an effective Sommerfeld model offers an interesting possibility
for relatively simple, but accurate parameterizations of the electronic free energy including
the impact of thermal vibrations for calphad based phase diagram approaches.

The smoothening of the effective electronic density of states by the thermal vibrations
destroys the crystal structure specific peak profile inherent to the ideal static lattice density
of states. The thermal disorder thus drives the electronic density of states towards a generic
profile, weakly dependent on the crystal structure. We have shown this for a few selected
elements but we believe that this holds for all 𝑑 transition elements.

We expect the insights and results of our study to be an important step towards the
development of high accuracy databases of ab initio free energies for metals.
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In order to efficiently perform kinetic Monte Carlo simulations in conjunction
with CE, a program temporarily called “XKMC” was developed for fcc
multicomponent alloys. One can easily implement either the conventional or
the kinetic Monte Carlo simulations for fcc alloys once a good multicomponent
CE is obtained. For kinetic Monte Carlo studies, if necessary, calculations for
local environment dependent kinetically resolved activation (KRA) barriers
are also implemented in the program. It is then possible to study the real
kinetics, i.e., realistic evolution of order parameters as a function of time.
As one of the output results, structures of the precipitates in real space can
be readily observed in various visualization softwares such as, e.g., Ovito.
Diffraction intensity data in reciprocal space are also available, which can
be exported to other plotting tools, e.g., Techplot. Moreover, configurational
thermodynamic properties at finite temperature, e.g., heat capacity, entropy
and Gibbs energy etc. can also be obtained in the current program.
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A.1. Introduction

W ithout relying on experimental results, ab initio predictions of materials properties are
widely applied in many areas for materials design in recent years. With a dramatic

increase of the computation power, challenge nevertheless remains for ab initio supercell
calculations to treat arbitrary atomic arrangements. The cluster expansion technique
provides an efficient parametrization of the ab initio supercell energies, which enables a
quick evaluation of the energy for arbitrary configurations. With the recently developed
multicomponent CEs, early stage precipitation in alloys can be monitored through kinetic
Monte Carlo (kMC) simulations. In order to describe the realistic diffusion kinetics, it
is crucial to use the realistic activation barriers when estimating different atom-vacancy
swapping rates, i.e., local-atomic-environment dependent KRA barriers. It will be shown in
the current program that multiple KRA barriers can also be efficiently computed from local
cluster expansions.

This appendix provides details concerning the XKMC program, e.g., the background,
example calculations, the input and output files etc., which facilitates users to get a quick
start with the XKMC program.

A.2. Background of the program
The basic theory behind the XKMC program has been introduced in chapter 2. The main
concepts, e.g., cluster expansion (Sec. 2.4), statistical thermodynamics (Sec. 2.5.1 and 2.5.2)
and the (k)MC algorithms (Sec. 2.5.4 and 2.5.5), have been discussed in detail. Readers can
refer to the corresponding sections for definitions or equations if necessary.

A.3. Capabilities
Presently, the program has the following capabilities:

• Currently designed only for fcc structures.

• Two algorithms are implemented in the code, Metropolis Monte Carlo and kinetic
Monte Carlo.

• Cluster expansions for local environment dependent KRA barriers can be imple-
mented in KMC to study realistic kinetics.

• The program can automatically terminate when the preset accuracy is reached or the
preset number of steps is reached.

• For the current version, the following thermodynamic quantities can also be calcu-
lated:

– total energy
– heat capacity
– entropy(if switch on)
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– correlation functions for each ECIs
– Warren-Cowley SRO parameters
– structure factors

• Visualize the microstructure evolution via the Ovito software

• Visualize the diffuse scattering contour for 3-D via the Tecplot software.

A.4. General notes on usage
Before using the XKMC program, the user is assumed to have experience on how to use the
iCVM code since the input files of the current program are partly obtained from iCVM.

A.4.1. Metropolis MC

• For Metropolis MC, program execution is controlled by just 4 input files (not
interactive):

1. an input file [INPUT.txt]
2. a correlation function list file [corrfuntable.txt]
3. a file with cluster information [clusters.txt]
4. a file includes ECIs [eci.txt]

(For KMC, where CEs for KRA barriers are included, extra files are required(see
section A.4.2).

• One can also define the initial configuration from an extra input file, [rebuild.txt],
instead of random configuration.

• All of the writing format for input files should exactly follow the example files
described in section A.5 in case error happens.

• Output files:

1. log file [log.txt] which includes simulation parameters information and energy
data.

2. file for storing correlation functions data[prob.txt]
3. files for visualizing precipitates in ovito software [ovito_#] and [ovitoall_xxxx]
4. file for plotting SRO diffuse scattering [isro.dat]
5. file for plotting diffraction pattern in reciprocal space [strfact.dat]
6. file for entropy data [entropy.txt] (if switch on).

• a hyperlinked manual in PDF and postscript formats (this document) is provided.

• extra softwares or code package are required to implement the following functions:
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1. iCVM software: to generate [corrfuntable.txt] file as one of the input files and
to supply ECIs for [eci.txt] file.

2. code package [getvari]: to generate [clusters.txt] file as one of the input files.
3. ovito software: visualize the microstructure evolution. Output file from XKMC

used: [ovito_#].
4. Tecplot software: visualize the diffuse scattering or diffraction intensity contour

in 3-D. Output files from XKMC used: [isro.dat] and [strfact.dat].

Before performing simulations, all of the required input files must be included in the
same directory.

• The file [INPUT.txt] includes all of the required parameters for a simulation, i.e.
simulation box size, temperature, composition... the value of which are at the
beginning of each line, followed by a “/” and the annotation for this parameter. The
user cannot modify the sequence of lines in the current version. What one needs to do
is just to modify the value before “/”. For multiple values, a space or tab is required
between each value.

• The second input file [corrfuntable.txt] is generated from iCVM software which
includes correlation functions information related to all the clusters in the current
approximation in iCVM, i.e. N4R8, meaning clusters with at most 4 sites and no
interatomic distance is beyond 8th neighbor. This table also depends on the number
of species because under the same approximation, say “N4R8”, more species means
a longer correlation function list. Therefore this file should be consistent with both
the approximation used in iCVM and [csp] in the [INPUT.txt] file.

• The input file [clusters.txt] is generated from an extra package called [getvari]. This
package is from a revised lite version of iCVM code which supplies the coordinate
information of clusters used in the current simulation. In the [getvari] package, one
only needs to modify (a) the type of approximation by setting TOKEN “NAME=”
under CLASS “CLUST” and (b) the # of ECI by setting TOKEN “ECICLUSTERS=”
under CLASS “ECLI” and run the code. The type of approximation defined after
TOKEN “NAME=” should also be specified in IN.CVM or default file. Then the
output file [clusters.txt] will be generated.

• The input file [eci.txt] includes all of the value(in the unit of meV/cluster) of ECIs.

After running the program, the information of the system will be written in the [log.txt]
file, followed by the energy of each step. In the end, the equilibrium information and data
will also be written if [automatic stop] setting is switched on. Correlation functions of
the initial state and that of each block are written in [prob.txt] file. Ovito information of
user specified element will be written in [ovito_#] file(# means the #th element) separately.
The program can automatically terminate when accuracy specified by user is reached. At the
same time, the information for diffuse scattering diffraction analysis and diffraction intensity
are written in [isro.dat] file and [strfact.dat] file. If the [entropy calculation] is switched
on, the program will calculate the entropy for each temperature at the end of the simulation
and store the values in [entropy.txt] file.



A.5. Example calculation

A

161

A.4.2. KMC simulation

Besides all the input files required for conventional MC, additional files are needed for
calculation of KRA barriers in KMC simulation.

1. a file for storing input parameters: [INPUTkra.txt].

2. a file includes information of correlation functions for all clusters: [corrfunkra.txt].

3. files supply the coordinates information of all clusters: [clusterskra_xx.txt](“xx”
refers to the name of each species which should be consistent with the name in
[INPUTkra.txt] file).

4. files contain ECIs: [ecikra_xx.txt].

A.5. Example calculation
As an example, the calculation of binary Al-Cu system with 2 𝑎𝑡% Cu at 300 K has been
provided. The ECIs are obtained from an “N4R8” CE. CE for KRA barriers are obtained
from “N4R5”. The user can reproduce the simulation as following:

1. prepare [corrfuntable.txt] file from log file of iCVM “N4R8” calculation. If one
performs KMC, additional similar file [corrfunkra.txt] can also be prepared from
iCVM “N4R5” calculation.

2. prepare [clusters.txt] file as follows:

• open IN.CVM file of the [getvari] package and find
CLUST NAME=N4R8
N4R8 RMAX=2.01 NSMAX=4 PRNTMAXCL=T NMAX=0
*N3R21 RMAX=3.01 NSMAX=3 PRNTMAXCL=T NMAX=0
.................................
ECLI ECICLUSTERS=1-32,34-43,45-64............
................

• modefy the setting for “NAME=” and “ECICLUSTERS=” (number of ECIs
should start from 1). do not forget to add the corresponding description lines for
the approximation in IN.CVM or default file, i.e.,
N4R8 RMAX=2.01 NSMAX=4 PRNTMAXCL=T NMAX=0

• run the [getvari] code and get output file [clusters.txt].
• If one performs KMC, additional similar files [clusterskra_xx.txt] can also be
obtained in the way described above.

3. prepare the [eci.txt] file. If one performsKMC, additional similar files [ecikra_xx.txt]
are also necessary.

4. modify the [INPUT.txt] file with your own parameters. If one performs KMC,
additional similar file [INPUTkra.txt] should also be modified.

5. [compile] and run the code.
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A.5.1. Example file: [INPUT.txt]

***********************************************

40 / size of simulation box
100 /number of blocks
3 /current number of species
4 /maximum size of the cluster used
100 /number of MC step in one block
0.0001 /accuracy value(eV)
3.29 /ratio of accuracy and sigma
300 /low temperature limit(K)
300 /high temperature limit(K)
100 /temperature interval(K)
Cu Va Al /name of each species
0.02 0.0 /composition of each species: A B C...
.true. /MC=.false.;KMC=.ture.
.false. /CTKRA=.true.;EDKRA=.false.
1 /number of vacancy
.true. /if output the ovito file for all the minor species
1 /output the ovito file for which species
1.0 0.0 0.0/ prefactor for structure factors
.false. /if entropy calculation
10 /number of data used for extrapolation in entropy calculation
.true. /if use different random seed
.false. /if automatically stop
400 /user defined number of blocks for simulation
.true. /if re-build the simulation box from user defined file
.true. /if remove the oscillation
1.67875d13 4.63599d13 /vibrational frequency(Hz)

************************************************
At the beginning of each line, a velue is specified to the corresponding parameter

required in the simulation, followed by the note for this value. Detailed explanation and
suggestion for these settings will be introduced in section A.7.1. None of these lines can be
eliminated in case of errors. Users only need to modify the value to their own settings.

A.5.2. Example file: [INPUTkra.txt]

***********************************************

2 /total number of CE used
Cu Al /type of the diffusing atom
4 4 /maximal size of clusters used in each CE

************************************************ Detailed explanation and sug-
gestion for these settings will be introduced in section A.7.2
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A.5.3. Example file: [corrfuntable.txt]

**********************

S4N4R8
171 486 31049
1 1 1 1
2 1 2 1
3 1 3 1
1 2 4 6
2 2 5 12
5 2 5 12
3 2 6 12
9 2 6 12
6 2 7 6
7 2 8 12
10 2 8 12
11 2 9 6
..........
..........
154 486 31047 12
107 486 31048 24
167 486 31048 24
170 486 31048 24
155 486 31048 24
171 486 31049 6

**********************

• The first line is specified with a compact description of CE, i.e.,“S4” number of
species is 4; “N4” maximal cluster—4-body cluster; “R8” maximal distance 8th
neighbor.

• The second line gives three maximal values of: (1)decoration number, (2)serial
number of clusters and (3)number of correlation functions. These value can generally
be found at the end of the list.

• From the second line on, there are four columns. First column is the possible
decoration number for each cluster, the second column is the serial number of each
cluster, the third and fourth columns show the serial number and degeneracy of each
variant(ECIs).

• User should make the [corrfuntable.txt] file as described above. These informations
can be generally found in the log file of CMAT calculation in iCVM.

A.5.4. Example file: [corrfunkra.txt]

**********************
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S3N4R5
41 52 467
1 1 1 1
2 1 2 1
1 2 3 6
2 2 4 12
4 2 4 12
5 2 5 6
1 3 6 3
2 3 7 6
4 3 7 6
......
......

**********************

A.5.5. Example file: [clusters.txt]

**********************

168 192 20392
1 1 1
0.0 0.0 0.0
2 2 12
0.0 0.0 0.0
-0.5 -0.5 0.0
0.0 0.0 0.0
-0.5 0.5 0.0
0.0 0.0 0.0
-0.5 0.0 -0.5
........
........
1.0 -1.0 -1.0
2.0 0.0 0.0
1.0 1.0 -1.0
0.0 0.0 0.0

***********************

• The first line gives the maximal value of : (1)number of clusters used in current
simulation; (2)number of variants associated with one cluster; (3)total number of
variants.

• From the second line on, information of each cluster is listed as: one line with (a)serial
number of the cluster, (b)number of sites, (c)number of variants, and the following
few lines with the coordinates (x,y,z) of each variant.
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A.5.6. Example file: [clusterskra_xx.txt]

**********************

6 144 528
6 3 24
0.0 0.0 0.0
-0.5 -0.5 0.0
-0.5 0.0 0.5
0.0 0.0 0.0
-0.5 0.5 0.0
-0.5 0.0 -0.5
0.0 0.0 0.0
0.5 -0.5 0.0
0.5 0.0 -0.5
0.0 0.0 0.0
0.5 0.5 0.0
0.5 0.0 0.5
......
......

***********************

A.5.7. Example file: [eci.txt]

**********************

0 1.51702942
1 -500.311276
2 619.57476
3 -328.115498
4 -944.698674
6 39.3430231
9 195.952595
..........
..........
125 179.880285
133 -41.327839
134 138.717311
139 68.1532473
140 -122.538447
147 136.086282

**********************

• The left column is the serial number of correlation function used in the present
simulation(consistent with the third column of [corrfuntable.txt] file). The right
column is the value of ECIs(unit: meV/lattice site)
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A.5.8. Example file: [ecikra_xx.txt]

**********************

0 579.260921
17 -163.925695
29 63.0109916
63 -39.9586824
256 -78.5686417
265 120.833756
343 -49.5893516
......
......

**********************

A.5.9. Example file: [rebuild.txt]

**********************

639 1
Cu 0.000 0.000 0.350
Cu 0.025 0.025 0.400
Cu 0.025 0.000 0.425
Cu 0.025 0.075 0.050
Cu 0.025 0.075 0.350
Cu 0.000 0.125 0.725
Cu 0.025 0.175 0.100
Cu 0.000 0.175 0.425
Cu 0.000 0.150 0.800
Cu 0.000 0.200 0.550
Cu 0.025 0.225 0.550
......
......
Va 0.000 0.675 0.925

• This file is for users who want to specify the initial configuration as their will from a
file.

• The first line includes the number of atoms for each minority species, i.e., for Al-Cu-
vac system, one only needs to specify the number of Cu atoms and Vac.

• The following lines list the type of each atom and their (x,y,z) positions.

A.6. Output files
A.6.1. Example file: [log.txt]

====================================================
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XKMC
Kinetic Monte Carlo for multi-component system

2011 - 2015
Xi Zhang & Marcel Sluiter
X.Zhang-3@TUDelft.NL

Dept. MSE, 3ME, T.U. Delft
Mekelweg 2, 2628CD Delft, the Netherlands

Version: xxxxxxxx
Date:xx-xx-xx,Time:xx:xx:xx, Zone:xxxx

====================================================
Information of the present simulation

-Simulation box size: 20x20x20
-Total number of atoms: 32000
-Elements: Cu Va Al
-Composition: 0.020 0.000
-Kinetic Monte Carlo: T
-CE for energy: S3N4R8
-CE for KRA: S3N4R5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Temperature: 300.00 K
-Initial random state: T
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The initial energy is: -0.00896158 eV/atom
The error bar is +(-) 0.00127359 eV/atom
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
################# block 1 ###################
1 -0.00908592
2 -0.00927557
3 -0.00936294
4 -0.00938473
5 -0.00941431
............
............
............
======================================================
Block average E(eV/atom): -0.00982452 delta: -0.00086294
======================================================
################# block 2 ###################
.........
.........
.........
***************** Equilibrium state ******************

Final system information
******************************************************
-(k)MC steps to equilibrium state: 23767
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-Steps for average: 3432
-Final energy(eV/atom): -0.0112542
-Heat capacity: 0.14121E-09
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Normal termination
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Date:xx-xx-xx,Time:xx:xx:xx, Zone:xxxx
TIMER: Total time cost: total = xxxxx ms
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• following the title section, information about the present simulation are listed, then
the initial energy and error bar.

• the energy of each (k)MC step will be written after the block number.

• when the program finishes the iteration of one block, the block average energy is
shown as well as the value of the energy change compared with the last block .

• finally, equilibrium state information is written at the end of the file if [auto] setting
is switched on.

A.6.2. Example file: [prob.txt]

====================================================
The initial correlation function of ECIs

-Elements: Cu Al
-Composition: 0.020
-Temperature: 300.00 K
====================================================
1 0.20000000E-01
2 0.41666667E-03
3 0.41666667E-03
4 0.40364583E-03
5 0.39583333E-03
6 0.42187500E-03
7 0.35937500E-03
8 0.39322917E-03
9 0.25000000E-03

10 0.00000000E+00
11 0.10416667E-04
12 0.26041667E-05
13 0.14322917E-04
.......
.......

=====================================================
The average correlation function of ECIs of block 1

=====================================================
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1 0.20000E-01 0.00000E+00
2 0.55302E-03 0.23010E-03
3 0.39885E-03 0.55104E-04
4 0.22747E-03 -0.17617E-03
5 0.27552E-03 -0.12031E-03
6 0.33609E-03 -0.76563E-05
7 0.78104E-03 0.40604E-03
8 0.30299E-03 -0.85026E-04
9 0.42854E-03 -0.50625E-04

10 0.39331E-03 -0.25260E-05
11 0.42839E-03 -0.19531E-04
12 0.39516E-03 -0.50156E-04
........
........
***************** Equilibrium state ******************

Equilibrium correlation function of ECIs
******************************************************
1 0.20000E-01 0.00000E-00
2 0.57543E-03 0.45430E-03
3 0.32344E-03 0.54354E-04
4 0.22344E-03 -0.53244E-03
5 0.23424E-03 -0.66345E-03
6 0.35459E-03 -0.42421E-05
7 0.78434E-03 0.65344E-03
8 0.23453E-03 -0.86550E-04

.........

.........

• This file gives the correlation function variation for each block in the simulation.

• Each group of correlation function includes three columns: (1)sequence number of
ECIs, (2)correlation function, (3)the difference between the current block and the last
block.

A.6.3. Example file: [ovito_#]

****************************************************

640
The composition of species 1 is 0.020;T= 300.00
0.00000 0.00000 0.60000
0.02500 0.12500 0.75000
0.00000 0.12500 0.92500
0.02500 0.17500 0.20000
0.00000 0.52500 0.07500
0.02500 0.52500 0.05000
0.00000 0.57500 0.02500
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0.00000 0.62500 0.57500
0.00000 0.60000 0.80000
.........
.........

****************************************************

• The first line is the number of atoms of the #th species, followed by a line including
composition and temperature information.

• for each step, all of the atomic positions of the #th species are listed in (x,y,z).

• This file can be opened in ovito software and one can visualize the microstructure
evolution during the simulation(see Fig. A.1).

Figure A.1: Visualization of microstructure evolution in ovito software (a) inital random state. (b) equilibrium
state.

A.6.4. Example file: [ovitoall_xxxx]

****************************************************

640
The composition is 0.020 0.000;T= 300.00
Cu 0.025 0.025 0.500
Cu 0.000 0.050 0.150
Cu 0.025 0.075 0.800
Cu 0.000 0.150 0.200
Cu 0.025 0.150 0.225
...........
...........
Va 0.050 0.500 0.000
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*****************************************************

• a similar file as [ovito_#] except for an extra column which includes the type
of the atom. “xxxx” here refers to a four-digit number indicating the simulation
temperature, i.e., if the simulation temperature is 300 K, the name of this file will
be [ovitoall_0300].

• This file stores the atomic positions of all types of the minority atoms.

• This file can also be opened in ovito software and each type of atom will be shown in
different colors.

A.6.5. Example file: [isro.dat]

****************************************************

TITLE = ”Diffuse scattering intensity plot”
VARIABLES = ”X”, ”Y”, ”Z”, ”Intensity”
ZONE I=41, J=41, K=41, F=POINT
0.000 0.000 0.000 10.46362
0.050 0.000 0.000 10.17516
0.100 0.000 0.000 9.34720
0.150 0.000 0.000 8.08587
0.200 0.000 0.000 6.54887
0.250 0.000 0.000 4.92020
0.300 0.000 0.000 3.38120
0.350 0.000 0.000 2.08296
0.400 0.000 0.000 1.12506
0.450 0.000 0.000 0.54427
0.500 0.000 0.000 0.31517
...........
...........

****************************************************

• This file is written following the requirement of the Tecplot solftware.

• Coordinates in reciprocal lattice associated with diffuse scattering intensity value are
listed.

• This file can be opened in Tecplot software and one can visualize the 3-D diffuse
scattering contour results(see Fig. A.2).

A.6.6. Example file: [strfact.dat]

• Exact the same format as [isro.dat] file.

• This file gives the calculated diffraction intensity for the selected minority species.
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Figure A.2: Visualization of diffuse scattering contour in Tecplot software (a) random alloys, (b) L12-Cu3Au
ordered structure.

• This file can also be opened in Tecplot software and one can visualize the diffraction
intensity contour(see Fig. A.3).

Figure A.3: Visualization of diffraction intensity contour in Tecplot software: GPII zones in Al-Cu alloys.

A.6.7. Example file: [entropy.txt]

****************************************************

temperature(K) entropy(kB)
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1500.00 0.59693
1600.00 0.61994
1700.00 0.63471
1800.00 0.64504
1900.00 0.65267
2000.00 0.65851
2100.00 0.66311
2200.00 0.66681
2300.00 0.66984
2400.00 0.67236
2500.00 0.67448
2600.00 0.67628
2700.00 0.67783
.........
.........

****************************************************

• The first column gives the temperature while the second lists the entropy value in unit
of 𝑘𝐵.

A.7. Description of required input parameters

A.7.1. Conventional MC

1. nx: The size of simulation box

- Integer, even number, typically greater than 2. For fcc, size 2 is equal to one
lattice constant 𝑎 which yields all integer coordinates.

- Example: 40 means the the simulation box is 20 × 20 × 20 and the total number
of atoms is 4 × 20 × 20 × 20 = 32000

- This parameter also determines the number of movements in one (k)MC step.
So it costs longer CPU time for larger size of simulation box.

2. nblock: The number of blocks

- Integer, even number preferred, typically not smaller than 10.
- This parameter determines the space one would like to open for storing the data
points in the memory.

- Example: 50 means if the [nblstep] equals 100, the space for storing total
number of 50 × 100 = 5000 (k)MC step data is opened.

- Suggestion: 50-200

3. csp: current number of species

- Integer.
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- Vacancy should be considered as an additional species, which means for A-B-
vac system, this value should be 3.

4. maxcl: maximum size of cluster used

- Integer
- the maximal cluster used in [clusters.txt] file.

5. nblstep: number of MC step in one block

- Integer, even number preferred.
- Since correlation time is evaluated in one block, this parameter should go far
beyond the correlation time. If the system is highly correlated or a large number
of ECIs are used, one should set a large value to this item.

- Suggestion: 100-1000

6. prec: accuracy parameter

- Real, typically a small number.
- The program will stop automatically if the energy is within the error bar ± this
parameter, i.e. ± 0.001(eV/atom)

- For large systems or complicated systems(a large number of ECIs), a proper
accuracy parameter is necessary which means if this value is set too small the
program will probably never stop.

- Suggestion: 0.001 or even smaller depends on systems(best try first).

7. zalfa: ratio of prec and sigma

- Real, set for the certainty of error.
- calculated via √

2erf−1(𝑎) (A.1)

where 𝑎 is 0.99 for 99% certainty; 0.999 for 99.9% certainty and so on.

8. tlow(tup): low(up) temperature limit

- Real, in unit of Kelvin.
- If ONLY one temperature is needed, these two limit should be set to be equal.

9. tstep: temperature interval

- Real, in unit of Kelvin, simulation for multiple temperatures.
- i.e., if tstep=10, tlow=100 and tup=1000, the program will do calculations for
100 K, 200 K, 300 K,..., 1000 K.

10. elename: name of each element
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- Character, for each element, the name is capitalized.
- Sequence is consistent with [fatom]

11. fatom: composition of each element

- Real, describe the atomic concentration for each MINORITY species only.
- The number of values here should equal to [csp]-1.

12. kmc: switch bewteen mc and kmc

- logical value(.true. or .false.), if kmc algorithm is implemented, .true. otherwise
it is .false.

13. conskra: switch between EDKRA and CTKRA

- logical value, if constant KRA barriers are used, .true. otherwise it is .false.

14. nvac: number of vacancy

- Integer, set the number of vacancy in the simulation box, typically 1.

15. ovta: ovito output setting

- logical value, if one needs [ovitoall_xxxx] file as one of the output files, .true.,
then the [iov] tag will become invalid, otherwise .false.

16. iov: output the ovito file for which species

- Integer number(s), require the program output the ovito file for the #th species in
[elename] when [ovta] is set to be .false.. Then files [ovito_#] will be generated.

- For multiple values, sequence should be consistent with [fatom]
- Example: 1(space)2 means the 1𝑠𝑡 and 2𝑛𝑑 species.

17. pref: prefactor for structure factors

- Real numbers, define the prefactors for diffraction intensity calculations.
- For multiple values, sequence should be consistent with [fatom]
- Suggestion: zero for majority atoms, unity for minority atoms.

18. calcetp: switch on or off the entropy calculation

- logical value, if entropy calculation is needed, .true. otherwise it is .false.

19. nextra: # of heat capacity data for entropy calculation

- Integer number, for the number of heat capacity data selected to extrapolate the
value at infinite temperature.
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- can not be larger than the number of calculated heat capacity data.

20. newseed: use different random seed

- logical value, when generate initial random configuration, use a different
random seed, .true. otherwise .false.

21. auto: switch on or off automatically stop

- logical value, when one prefers to stop simulation by accuracy criterion, .true.
otherwise .false.

22. ublk: user defined number of block for termination

- Integer, when the [auto] is set to be .false., user can specify the total number of
blocks for termination criterion.

- This value should be [nblock]×2𝑛(𝑛 is an integer and𝑛 ≥ 0),i.e., if [nblock]=100,
then this value should be 100, 200, 400, 800,...

23. rebuild: initialize the configuration from user defined file

- logical value, sometimes user wants to continue the simulation for more steps
from last run, the last configuration when the program stops last time needs to
be stored in [rebuild.txt] file and this tag is set to be .true., otherwise .false.

24. remove: switch on or off the vacancy oscillations

- logical value, if removing the inefficiency from vacancy oscillations is required,
this tag is set to be .true., otherwise .false.

25. omega: vibrational frequency

- Real, set the vibrational frequency for each element, in unit of Hz.

A.7.2. For KMC

1. ices: number of CEs for KRA barriers

- Integer, specify how many CEs are used for KRA barriers, generally it equals
to the number of elements.

2. diffname: the name for each diffusing element

- character, specify the name for each diffusing element, i.e., Cu Al.

3. maxclk: maximal size of cluster used for each CE

- Integer, define maximal clusters used for each CE.
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A.8. Compilation
Makefile is included in the source package for compilation. On unix/linux based machines
with Intel fortran compiler, an executable file named “XKMC” is created by typing:

make XKMC [return]

The Makefile can also be used to concatenate the complete source into a single file named
“all.f90” by entering the command:

make all [return]

When an archive (tar file) is desired of all essential files, simply enter the command:

make tar [return]

then a file named “XKMC.tar” is created.
After creating the executable “XKMC”, it can be run from the prompt by typing

“XKMC” in the appropriate directory where input files are located.
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E q. 3.7 in chapter 3 shows the formulism that ECIs of high order systems can be obtained
from their subsystems, i.e. one can model a ternary alloy A-B-C via reusing the ECIs

of the A-C and B-C binaries. Typically ECIs in terms of pure elements can be trivially
inherited just by copy whereas it is not the case for ECIs among different species. It is
shown in chapter 3 that, for 𝑁 -component system, the latter case can still benefit from the
inheritance if all 𝑁 atomic species are not present in one cluster. In this appendix, we will
give a derivation to show that, for a ternary alloy A-B-C with C as the eliminated species,
the A-B binary ECIs can be exactly preserved provided that the ECIs are limited to pair
interactions.

For a binary𝑃 -𝑄 (𝑃 and𝑄 designate two different species), the energy can be expanded
in the context of CE by up to 3-body clusters as, i.e.,

𝐸 = ∑
𝛼

𝜉(𝛼)𝐽(𝛼)

= 𝐽0 + 𝜉(𝑃)𝐽(𝑃) + 𝜉(𝑄)𝐽(𝑄)
+𝜉(𝑃𝑃)𝐽(𝑃𝑃) + 2𝜉(𝑃𝑄)𝐽(𝑃𝑄) + 𝜉(𝑄𝑄)𝐽(𝑄𝑄)
+𝜉(𝑃𝑃𝑃)𝐽(𝑃𝑃𝑃) + 3𝜉(𝑃𝑃𝑄)𝐽(𝑃𝑃𝑄) + 3𝜉(𝑃𝑄𝑄)𝐽(𝑃𝑄𝑄)
+𝜉(𝑄𝑄𝑄)𝐽(𝑄𝑄𝑄) (B.1)

where 𝜉(𝛼) and 𝐽(𝛼) are correlation functions and the corresponding ECIs associated with
a cluster 𝛼. It should be noticed that the basis used in Eq. B.1, or rather the 𝐽s, are not
independent because of the following sum rules,

𝜉(𝑄) = 1 − 𝜉(𝑃)
𝜉(𝑃𝑄) = 𝜉(𝑃) − 𝜉(𝑃𝑃)
𝜉(𝑄𝑄) = 1 − 𝜉(𝑃𝑃) − 2𝜉(𝑃𝑄)

𝜉(𝑃𝑃𝑄) = 𝜉(𝑃𝑃) − 𝜉(𝑃𝑃𝑃)
𝜉(𝑃𝑄𝑄) = 𝜉(𝑃𝑄) − 𝜉(𝑃𝑃𝑄)
𝜉(𝑄𝑄𝑄) = 1 − 𝜉(𝑃𝑃𝑃) − 3𝜉(𝑃𝑃𝑄) − 3𝜉(𝑃𝑄𝑄) (B.2)

Redundancy can be eliminated by substitution of these sum rules into Eq. B.1, which yields
an expansion in terms of an independent basis,

𝐸 = ∑
𝛼

𝜉(𝛼) ̃𝐽 (𝛼)/𝑃(𝑄)

= [𝐽0 + 𝐽(𝑄) + 𝐽(𝑄𝑄) + 𝐽(𝑄𝑄𝑄)]
+[𝐽(𝑃) + 2𝐽(𝑃𝑄) + 3𝐽(𝑃𝑄𝑄) − 𝐽(𝑄) − 2𝐽(𝑄𝑄) − 3𝐽(𝑄𝑄𝑄)]𝜉(𝑃)
+[𝐽(𝑃𝑃) + 3𝐽(𝑃𝑃𝑄) − 2𝐽(𝑃𝑄) − 6𝐽(𝑃𝑄𝑄) + 𝐽(𝑄𝑄) + 3𝐽(𝑄𝑄𝑄)]𝜉(𝑃𝑃)
+[𝐽(𝑃𝑃𝑃) − 3𝐽(𝑃𝑃𝑄) + 3𝐽(𝑃𝑄𝑄) − 𝐽(𝑄𝑄𝑄)]𝜉(𝑃𝑃𝑃) (B.3)

where ̃𝐽 (𝛼)/𝑃(𝑄) (𝛼 = 0, 𝑃 , 𝑃𝑃 , 𝑃𝑃𝑃 ) are independent with each other. It is apparent that
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̃𝐽 (𝛼)/𝑃(𝑄) and 𝐽(𝛼) has the following relations:

̃𝐽0/𝑃(𝑄) = 𝐽0 + 𝐽(𝑄) + 𝐽(𝑄𝑄) + 𝐽(𝑄𝑄𝑄)
̃𝐽 (𝑃)/𝑃(𝑄) = 𝐽(𝑃) + 2𝐽(𝑃𝑄) + 3𝐽(𝑃𝑄𝑄) − 𝐽(𝑄) − 2𝐽(𝑄𝑄) − 3𝐽(𝑄𝑄𝑄)

̃𝐽 (𝑃𝑃)/𝑃(𝑄) = 𝐽(𝑃𝑃) + 3𝐽(𝑃𝑃𝑄) − 2𝐽(𝑃𝑄) − 6𝐽(𝑃𝑄𝑄) + 𝐽(𝑄𝑄) + 3𝐽(𝑄𝑄𝑄)
̃𝐽 (𝑃𝑃𝑃)/𝑃(𝑄) = 𝐽(𝑃𝑃𝑃) − 3𝐽(𝑃𝑃𝑄) + 3𝐽(𝑃𝑄𝑄) − 𝐽(𝑄𝑄𝑄) (B.4)

where the notation (𝛼)/𝑃(𝑄) refers to the ECI of cluster type 𝛼 in the binary P-Q alloy
with the species Q as eliminated species. Generally, in an alloy with 𝑁 species, the cluster
decoration probabilities involving 𝑁 − 1 species can be used as an independent basis to
fully describe the configurational order.

Similarly, in A-B-C ternary alloys, we can find an independent basis ̃𝐽 (𝛼)/𝐴𝐵(𝐶) by
eliminating ECIs involving one of the three species, e.g., “𝐶”. Then, as we did for binaries,
we can derive the similar relations between independent basis ̃𝐽 (𝛼)/𝐴𝐵(𝐶) and basis 𝐽(𝛼)
with redundant terms involving species 𝐶:

̃𝐽0/𝐴𝐵(𝐶) = 𝐽0 + 𝐽(𝐶) + 𝐽(𝐶𝐶) + 𝐽(𝐶𝐶𝐶)
̃𝐽 (𝐴)/𝐴𝐵(𝐶) = 𝐽(𝐴) + 2𝐽(𝐴𝐶) + 3𝐽(𝐴𝐶𝐶) − 𝐽(𝐶) − 2𝐽(𝐶𝐶) − 3𝐽(𝐶𝐶𝐶)
̃𝐽 (𝐵)/𝐴𝐵(𝐶) = 𝐽(𝐵) + 2𝐽(𝐵𝐶) + 3𝐽(𝐵𝐶𝐶) − 𝐽(𝐶) − 2𝐽(𝐶𝐶) − 3𝐽(𝐶𝐶𝐶)

̃𝐽 (𝐴𝐴)/𝐴𝐵(𝐶) = 𝐽(𝐴𝐴) + 3𝐽(𝐴𝐴𝐶) − 2𝐽(𝐴𝐶) − 6𝐽(𝐴𝐶𝐶) + 𝐽(𝐶𝐶) + 3𝐽(𝐶𝐶𝐶)
̃𝐽 (𝐵𝐵)/𝐴𝐵(𝐶) = 𝐽(𝐵𝐵) + 3𝐽(𝐵𝐵𝐶) − 2𝐽(𝐵𝐶) − 6𝐽(𝐵𝐶𝐶) + 𝐽(𝐶𝐶) + 3𝐽(𝐶𝐶𝐶)
̃𝐽 (𝐴𝐵)/𝐴𝐵(𝐶) = 2𝐽(𝐴𝐵) + 2𝐽(𝐶𝐶) − 2𝐽(𝐴𝐶) − 2𝐽(𝐵𝐶) + 6𝐽(𝐶𝐶𝐶)

+6J(ABC) − 6𝐽(𝐴𝐶𝐶) − 6𝐽(𝐵𝐶𝐶)
̃𝐽 (𝐴𝐴𝐴)/𝐴𝐵(𝐶) = 𝐽(𝐴𝐴𝐴) − 3𝐽(𝐴𝐴𝐶) + 3𝐽(𝐴𝐶𝐶) − 𝐽(𝐶𝐶𝐶)
̃𝐽 (𝐴𝐴𝐵)/𝐴𝐵(𝐶) = 3𝐽(𝐴𝐴𝐵) − 3𝐽(𝐶𝐶𝐶) − 3𝐽(𝐴𝐴𝐶) − 6J(ABC) + 6𝐽(𝐴𝐶𝐶)

+3𝐽(𝐵𝐶𝐶)
̃𝐽 (𝐴𝐵𝐵)/𝐴𝐵(𝐶) = 3𝐽(𝐴𝐵𝐵) − 3𝐽(𝐶𝐶𝐶) − 6J(ABC) + 3𝐽(𝐴𝐶𝐶) − 3𝐽(𝐵𝐵𝐶)

+6𝐽(𝐵𝐶𝐶)
̃𝐽 (𝐵𝐵𝐵)/𝐴𝐵(𝐶) = 𝐽(𝐵𝐵𝐵) − 3𝐽(𝐵𝐵𝐶) + 3𝐽(𝐵𝐶𝐶) − 𝐽(𝐶𝐶𝐶) (B.5)

Particular interest lies in a comparison of Eq. B.4 and Eq. B.5. The similar relations for
all three subsystems of the ternary A-B-C are trivially obtained by replacing 𝑃 and 𝑄 in
Eq. B.4 with 𝐴, 𝐵 or 𝐶. It is then evident that the pure A ECIs (i.e., ̃𝐽 (𝐴𝑛)/𝐴𝐵(𝐶)) can be
copied from the A-C binary (i.e., ̃𝐽 (𝐴𝑛)/𝐴(𝐶)) and the pure B ECIs (i.e., ̃𝐽 (𝐵𝑛)/𝐴𝐵(𝐶)) can
be copied from the B-C binary (i.e., ̃𝐽 (𝐵𝑛)/𝐵(𝐶)), where subscript 𝑛 means it is valid for all
𝑛-body pure A and pure B clusters. Therefore, Eq. 3.8 is valid.
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If we limit ourselves to pair ECIs, Eq. B.4 and Eq. B.5 will be further simplified to,

̃𝐽0/𝑃(𝑄) = 𝐽0 + 𝐽(𝑄) + 𝐽(𝑄𝑄)
̃𝐽 (𝑃)/𝑃(𝑄) = 𝐽(𝑃) + 2𝐽(𝑃𝑄) − 𝐽(𝑄) − 2𝐽(𝑄𝑄)

̃𝐽 (𝑃𝑃)/𝑃(𝑄) = 𝐽(𝑃𝑃) − 2𝐽(𝑃𝑄) + 𝐽(𝑄𝑄) (B.6)

and

̃𝐽0/𝐴𝐵(𝐶) = 𝐽0 + 𝐽(𝐶) + 𝐽(𝐶𝐶)
̃𝐽 (𝐴)/𝐴𝐵(𝐶) = 𝐽(𝐴) + 2𝐽(𝐴𝐶) − 𝐽(𝐶) − 2𝐽(𝐶𝐶)
̃𝐽 (𝐵)/𝐴𝐵(𝐶) = 𝐽(𝐵) + 2𝐽(𝐵𝐶) − 𝐽(𝐶) − 2𝐽(𝐶𝐶)

̃𝐽 (𝐴𝐴)/𝐴𝐵(𝐶) = 𝐽(𝐴𝐴) − 2𝐽(𝐴𝐶) + 𝐽(𝐶𝐶)
̃𝐽 (𝐵𝐵)/𝐴𝐵(𝐶) = 𝐽(𝐵𝐵) − 2𝐽(𝐵𝐶) + 𝐽(𝐶𝐶)
̃𝐽 (𝐴𝐵)/𝐴𝐵(𝐶) = 2𝐽(𝐴𝐵) + 2𝐽(𝐶𝐶) − 2𝐽(𝐴𝐶) − 2𝐽(𝐵𝐶) (B.7)

where we can derive the relation

̃𝐽 (𝐴𝐵)/𝐴𝐵(𝐶) = ̃𝐽 (𝐴𝐴)/𝐴(𝐶) + ̃𝐽 (𝐵𝐵)/𝐵(𝐶) − ̃𝐽 (𝐴𝐴)/𝐴(𝐵). (B.8)

Unfortunately, if 3-body or larger clusters are included in a ternary alloy the inheritance
seems to be intractable because ECIs mixed with AB type all contain energy terms that
include all three species ABC (see terms in bold in Eq. B.5). Such energy terms cannot
originate from a description of any binaries.
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A s mentioned in Sec. 2.5.2, the configurational entropy is not as trivially accessible as the
internal energy or the heat capacity from MC. According to thermodynamic relations,

the entropy can be obtained by integration of the heat capacity or the internal energy as a
function of temperature (see Eqs. 2.45 and 2.46) where an integration path should be in
prior defined. The value of the entropy at one end of the path should also be known. For the
case that interested temperature is above the transition temperature, a path from the infinite
temperature to a finite value is preferred because the entropy of the high-temperature limit
is known as

𝑆(∞) = −𝑘𝐵[𝑥ln𝑥 + (1 − 𝑥)ln(1 − 𝑥)] (C.1)

which takes the value 𝑘𝐵ln2 at equatomic composition for binary alloys, 𝑥 is the composi-
tion. Then Eq. 2.45 will be written as,

𝑆(𝑇 ) = 𝑆(∞) − ∫
∞

𝑇

𝐶p

𝜏 d𝜏 (C.2)

It is numerically impractical, however, to do the integration if one of the integration limits
is infinity. It is then necessary to substitute the variable to be integrated with one that makes
both integration limits finite values. Moreover, since only finite-temperature heat capacity
data are available from simulations, there must be a cutoff temperature above which the
heat capacity data are extrapolated from the available data. Therefore it is of great interest
to investigate the asymptotic behavior of the integrand going towards 𝑇 = ∞ in Eq. C.2,
𝐹(𝜏) = 𝐶p/𝜏 .

One can resort to one of the simplest solvable cases, a two-state Ising-like model: ↑↑
represents 𝑈 = 0 while ↓↑ is associated with 𝑈 = 𝐽 . The partition function of such a
simple model is straightforwardly written as

𝑍 = 1 + 𝑒−𝛽𝐽 . (C.3)

Combining the following relation,

𝐶p = 𝛽
𝑇

𝜕2ln𝑍
𝜕𝛽2 (C.4)

we can derive the expression of the integrand as a function of 𝜏 ,

𝐹(𝜏) = 𝐶p/𝜏

= 𝐽2𝑒− 𝐽
𝑘𝐵𝜏

𝑘𝐵𝜏3(1 + 𝑒− 𝐽
𝑘𝐵𝜏 )2

(C.5)

The asymptotic behavior of 𝐹(𝜏) is indicated by the series expansion at 𝑇 = ∞,

𝐹(𝜏) ∼ 𝐽2

4𝑘𝐵
𝜏−3 − 𝐽4

16𝑘3
𝐵

𝜏−5 + 𝑂(𝜏−7). (C.6)

We wish to replace 𝜏 by a variable in such a way that (a) both of the integration limits
are finite values and (b) the integrand 𝐹(𝜏) changes as constant as possible. The reason
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is that integrating a constant is the easiest (and the most accurate) numerical integration
one can perform. Apparently, if we only consider the first order term of 𝐹(𝜏) in Eq. C.6,
an approximate 𝜏−3 behavior can be found, which gives us a hint to do the following
substitution,

𝜏−3d𝜏 = d𝑥 (C.7)

which is also equal to

𝑥 = −1
2𝜏−2 (C.8)

Substitution of Eqs. C.7 and C.8 into Eq. C.2 yields,

𝑆(𝑋) = 𝑆(0) − ∫
0

𝑋
𝐹(𝑥)d𝑥

= 𝑆(0) − ∫
0

− 1
2 𝑇 −2

𝐶p(𝑥)
−2𝑥 d𝑥 (C.9)

The validation of the substitution is shown in Fig. C.1 where 𝐹(𝑥) is plotted for the
simplest two-state model. From Fig. C.1, we can see that the present transformation makes
sense for both at the high temperature limit and the low temperature limit. As 𝜏 going
towards infinity (𝑥 → 0), the value of 𝐹 goes, as expected, towards a constant. At the low
𝜏 limit (𝑥 → −∞) the value of 𝐹(𝑥) approaches 0, which means that the entropy is a finite
value.

Figure C.1: Two-state Ising-like model: 𝐹(𝑥) as a function of 𝑥, 𝑥 → 0 indicates 𝜏 → ∞ while 𝑥 → −∞
indicates 𝜏 → 0. 𝐽 = 0.1 and 𝑘𝐵 = 1 for simplicity.
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We implemented the above integration method to our XKMC program and selected a
simple toy fcc system for test. The input parameters for the toy A-B binary fcc system
include: (a) composition 𝑥𝐴 = 0.5 (b) point cluster interaction 𝐽(𝐴) = 0.3265 and nearest-
neighbor-pair interaction 𝐽(𝐴𝐴) = −0.0544(unit: eV/cluster). The interactions used are
simply extracted from a cluster expansion for energies of five common structures—fcc pure
A(B), L12-AB3(A3B) and L10-AB (see Fig. C.2. The calculated 𝐹(𝑥) as a function of 𝑥 is
shown in Fig. C.3.

FCC_A FCC_BL12_A3B L12_AB3L10_AB

Figure C.2: Five common structures in fcc alloys. The energy associated with each structure in the present
calculation is 0, 0.006, 0.008, 0.006, 0 (eV/atom).
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Figure C.3: A test calculation for entropy of a toy binary A-B alloy: 𝐹(𝑥) as a function of 𝑥. The inset shows the
linear fitting of the data near 𝑥 = 0.

The available heat capacity data from MC are up to 5000 K (corresponding to 𝑥 =
−2×108), whichmeans the extrapolation to𝑥 = 0 is necessary to obtain thewhole integrand
curve. In the present calculation, data points of 𝜏 ≥ 3000 K are linearly fitted to obtain the
integrand function between 𝑥 = −2×108 and 𝑥 = 0. The validation of linear extrapolation
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is justified by checking the slope of function 𝐹(𝑥) at 𝑥 → 0,

lim
𝑥→0

𝜕𝐹(𝑥)
𝜕𝑥 = lim

𝑥→0
[ 𝜕𝐹(𝑥)

𝜕𝜏
𝜕𝜏
𝜕𝑥]

= lim
𝑥→0

[( lim
𝜏→+∞

𝜕𝐹(− 𝑐
2 𝜏−2)

𝜕𝜏 )𝜕𝜏
𝜕𝑥]

= 𝑐 (C.10)

where 𝑐 is a constant.
Fig. C.4 shows the calculated configurational entropy from 1500 K to 3000 K (above

the transition temperature) in MC (solid triangle). As a comparison, the CVM results
with a tetrahedron-octahedron (TO) approximation are also shown (open square). A nice
agreement has been found especially at high temperature range.
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Figure C.4: Calculated configurational entropy (in unit of 𝑘𝐵) from MC and CVM as a function of temperature.
The inset shows the difference of the CVM values and the MC values.





Summary

In the present thesis, an ab initio simulation method for the early stages of clustering
and precipitation in substitutional alloys is developed and applied to aluminum alloys.
There are strong indications that the currently achievable mechanical properties of light-
weight aluminum alloys processed via age hardening can be significantly improved.
Understanding precipitation thermodynamics and kinetics in Al-based alloys is thus of
tremendous importance. The formation of the metastable Guinier-Preston (GP) zones at the
early stages of precipitation improves the strength of the alloys and influences the growth
of the final precipitates. It therefore deserves a comprehensive study (chapter 1). Despite
the rapid development of advanced experimental techniques, robust ab initio simulations at
the atomic level are important to relate the materials properties to underlying atomistic and
physical mechanisms.

In the present work we focus ourselves not only on precipitation thermodynamics
(e.g., morphology) but also on the underlying kinetics since under practical experimental
conditions thermodynamic equilibrium might not be reached. For this purpose, a multiscale
computational method is used where the underlying energetics is accurately described from
density functional theory (DFT) and the configuration evolution is monitored employing
atomic kinetic Monte Carlo (kMC) simulations (chapter 2). After a brief introduction to
density functional theory in the first part of chapter 2, various Monte Carlo algorithms are
discussed in detail. The convergence of the MC and the efficiency issues arising from the
KMC are also discussed.

In order to efficiently describe properties in terms of configuration order, the cluster
expansion (CE) method which provides an efficient coupling between ab initio DFT
calculations and configurational thermodynamics is applied. Cluster expansions have
proven to be an efficient and accurate method to investigate alloys thermodynamics.
However, there are various challenges associated with obtaining a reliable CE, e.g., how
to efficiently select the most relevant input structures and correlation functions for an
adequate description of the energy, how to optimize a CE from a limited set of ab initio
energies, etc. While these issues are already significant for binary alloys, they become
even more serious when dealing with multicomponent alloys. In chapter 3, we address
these issues by properly defining the correlation functions and the “cluster pool”, and
by introducing efficient algorithms for determining CEs. With the current definition of
correlation functions, effective cluster interactions (ECIs) of multicomponent systems can
be inherited from their subsystems, i.e., ECIs from the constituent systems can be directly
re-used.

189



190 Summary

Since diffusion in substitutional alloys is typically driven by vacancies, vacancy
properties in concentrated alloys must be carefully addressed. This is usually a highly non-
trivial task for ab initio computations. As shown in chapter 4, a simple model based on CE
and statistical analysis is derived and applied to extract vacancy properties of concentrated
Cu-Ni alloys. An Arrhenius analysis shows that the heat of vacancy formation is well
represented by a linear function of temperature. The effective vacancy formation free
energies deviate from the linear interpolation between that of the terminal pure elements.
The positive slope of the temperature dependence implies a negative configurational entropy
contribution to the vacancy formation free energy in the alloy.

It is shown in this work that diffusion activation barriers for many alloys are sensitive
to local atomic arrangements around the vacancy and the diffusing atom. To realistically
describe the precipitation kinetics, a local cluster expansion formalism which reproduces
the substitutional diffusion energetics at transition states (saddle points) is also developed
in the present work (chapter 5). We implement the local CE for activation barriers and CE for
configurational energies into kMC simulations to monitor the morphology of GP zones and
the their formation kinetics in a dilute Al-Cu alloy. The kinetics and evolution of clustering
and precipitation differs significantly when modeled using constant or local configuration
dependent activation barriers for diffusion. Motivated by these findings, further studies
for investigating the impact of local atomic environment dependent activation barriers on
thermodynamics and kinetics are performed with two model alloy systems (chapter 6). The
remarkable finding is that in substitutional alloys peculiar ordered patterns can result from
diffusion activation barriers depending on different local environment even in purely phase-
separating alloys. Such ordered patterns can exist and appear stable for extended time
periods and thus can be considered transient phases.

For describing finite temperature properties, energetics from DFT calculations at zero
temperature can be improved by adding finite temperature excitation corrections. Among
the important contributions is the electronic contribution which can be significant at high
temperatures. In chapter 7, electronic free energies are computed for all transition elements
on the ideal lattices of the bcc, fcc, and hcp structures using finite-temperature density
functional theory. For a subset of elements the impact of explicit thermal vibrations on
the electronic free energies are explored by using ab initio molecular dynamics simulations
(AIMD). In agreement with previous knowledge, a high electronic density of states (DOS)
close to the Fermi level results in a significant, negative electronic free energy. The
performance of three widely used approximations for computing electronic free energies
is also quantitatively assessed. At high temperatures, from the AIMD results, strong lattice
vibrations alter the electronic energy states and therefore increase or decrease the electronic
free energies. Since these thermal excitations at finite temperatures might significantly alter
the 𝑇 = 0 K energetics and hence the quality of the CE, the inclusion of finite-temperature
excitations in the follow-up studies thus promises more accurate and realistic modeling.

The author hopes the present work may shed light on developing new computational
methods for studying alloy precipitation thermodynamics and kinetics or similar phenomena
in materials in the future.



Samenvatting

In dit proefschrift is een ab initio model ontwikkeld voor de vroege stadia van clustering en
precipitatie in substitutionele legeringen en vervolgens toegepast op aluminiumlegeringen.
Er zijn sterke aanwijzingen dat de momenteel haalbare mechanische eigenschappen van
lichtgewicht aluminiumlegeringen, die hun eigenschappen verkrijgen via precipitatie, nog
aanzienlijk kunnen worden verbeterd. Het begrijpen van de thermodynamica en kinetiek
van precipitatie is daarom van groot belang. De vorming van metastabiele Guinier-
Preston (GP) zones tijdens de vroege stadia van precipitatie verbetert de sterkte van de
legeringen en beïnvloedt ook de vorming van latere precipitaten. Dit onderwerp is daarom
uitvoerig behandeld in hoofdstuk 1. Ondanks de snelle ontwikkeling van geavanceerde
experimentele technieken, zijn robuuste ab initio-simulaties op atoomschaal belangrijk om
de materiaaleigenschappen te kunnen relateren aan onderliggende atomaire mechanismen.

In het huidigewerk concentrerenwe ons niet alleen op de thermodynamica van precipita-
tie, zoals bijv. morfologische kenmerken, maar ook op de onderliggende kinetiek, aangezien
onder praktische experimentele omstandigheden zelden thermodynamisch evenwicht be-
reikt wordt. Voor dit doel wordt een meerschalige computationele methode gebruikt waarbij
de onderliggende energetica nauwkeurig wordt beschreven via dichtheidsfunctionaaltheorie
(DFT) en de configuratie-evolutie wordt gevolgd met behulp van roostergas kinetische
Monte Carlo (kMC) -simulaties op atomair niveau (hoofdstuk 2). Na een korte inleiding
tot de dichtheidsfunctionaaltheorie in het eerste deel van hoofdstuk 2, worden verschillende
Monte Carlo-algoritmen in detail besproken. De convergentie van de Monte Carlo (MC)
simulaties en de efficiëntiekwesties die voortvloeien uit het gebruik van de kMC worden
ook besproken.

Om eigenschappen efficiënt te beschrijven in termen van roostergasconfiguratie, wordt
de clusterexpansie (CE)methode (CE) toegepast die een efficiënte koppeling tussen ab initio
DFT-energieberekeningen en statistische thermodynamica biedt. CEs hebben bewezen
een efficiënte en nauwkeurige methode te zijn om de thermodynamica van legeringen
te onderzoeken. Er zijn echter verschillende uitdagingen verbonden aan het verkrijgen
van een betrouwbare CE, bijv. hoe men efficiënt de meest relevante inputstructuren en
correlatiefuncties kunt selecteren voor een nauwkeurige beschrijving van de energie, hoe
een CE te optimaliseren als slechts een beperkt aantal ab initio-energieën beschikbaar is,
enz. Hoewel deze problemen al significant zijn voor binaire legeringen, worden ze nog
belangrijker als het gaat om multicomponentenlegeringen. In hoofdstuk 3 behandelen we
deze problemen door de correlatiefuncties en de ’cluster-verzameling’ goed te definiëren en
door efficiënte algoritmen voor het bepalen van CE’s in te voeren. Met de huidige definitie
van correlatiefuncties kunnen effectieve clusterinteracties (ECI’s) van multicomponenten-
systemen worden overgenomen van hun subsystemen, d.w.z. ECI’s van de samenstellende
systemen kunnen direct worden hergebruikt.

Aangezien diffusie in substitutionele legeringen meestal verloopt met tussenkomst
van vacatures, moeten vacature-eigenschappen in geconcentreerde legeringen zorgvuldig

191



192 Samenvatting

worden behandeld. Dit is een hoogst niet-triviale taak voor ab initio beschrijvingen.
In hoofdstuk 4 wordt een eenvoudig model afgeleid gebaseerd op CE- en statistische
analyse. Het model wordt toegepast om vacature-eigenschappen van geconcentreerde
Cu-Ni-legeringen te beschrijven. Een Arrhenius-analyse laat zien dat de energie van
vacaturevorming goed wordt weergegeven als een lineaire functie van temperatuur. De
vrije energie van vacaturevorming wijkt af van een lineaire interpolatie tussen die van de
zuivere eindelementen. De positieve helling van de temperatuurafhankelijkheid van de vrije
energie van vacaturevorming impliceert een negatieve configurationele entropiebijdrage in
een legering.

In dit werk wordt aangetoond dat voor veel legeringen energiebarrières voor diffusie
gevoelig zijn voor lokale atomaire configuraties rond de vacature en het diffunderende
atoom. Om de precipitatiekinetiek realistisch te beschrijven, is in het huidige werk
(hoofdstuk 5) ook een formalism uitgewerkt voor lokale CEs met het doel om de energieën
van overgangstoestanden, d.w.z. zadelpunten van de potentiële energie, te reproduceren.
We implementeren de lokale CE voor activeringsbarrières en de gebruikelijke CE voor
configurationele energieën in kMC-simulaties om de morfologie van GP-zones en hun
formatiekinetiek in een verdunde Al-Cu-legering te volgen. De kinetiek en evolutie
van clustering en precipitatie verschilt aanzienlijk wanneer deze gemodelleerd wordt
met behulp van constante of lokale configuratie afhankelijke activeringsbarrières voor
diffusie. Gemotiveerd door deze bevindingen, wordt verder onderzoek van locale atomaire
omgevingsafhankelijke activeringsbarrières op thermodynamica en kinetiek uitgevoerd
met twee model-legeringssystemen (hoofdstuk 6). De opmerkelijke bevinding is dat in
substitutionele legeringen eigenaardige geordende patronen kunnen ontstaan uit omge-
vingsafhankelijke diffusie-activeringsbarrières, zelfs in zuiver fase scheidende legeringen.
Dergelijke geordende patronen lijken stabiel gedurende langere tijdsperioden en kunnen dus
als tussenfasen worden beschouwd.

Om de materiaaleigenschappen bij eindige, d.w.z. niet nul, temperatuur te beschrijven
kunnen DFT-berekende energieën worden aangevuld met bijdragen ten gevolge van tempe-
ratuur afhankelijke excitaties. Een van de bijdragen is de elektronische excitatie bijdrage
die vooral significant zijn bij hoge temperaturen. In hoofdstuk 7 worden elektronische
vrije energieën berekend voor alle overgangselementen op de ideale roosters van de bcc-
, fcc- en hcp-structuren met behulp van eindige-temperatuur DFT. Voor een kleinere groep
van elementen wordt ook de invloed van thermische trillingen op de elektronische vrije
energieën onderzocht door middel van ab initio moleculaire dynamica simulaties (AIMD).
In overeenstemming met theoretische voorspellingen resulteert een hoge elektronische
dichtheid van toestanden (density of states, DOS) dicht bij het Fermi-niveau in een
significante, negatieve elektronische vrije energie. De nauwkeurigheid van drie veel
gebruikte benaderingen voor het berekenen van elektronische vrije energieën worden ook
kwantitatief beoordeeld. De AIMD resultaten laten zien dat bij hoge temperaturen de
sterke roostervibraties de elektronische energietoestanden aanzienlijk veranderen waarbij
de elektronische vrije energieën zowel groter als kleiner kunnen worden. Omdat deze
thermische excitaties bij eindige temperaturen de DFT berekende, T = 0 K, energieën
sterk beïnvloeden, en daarmee ook de kwaliteit van de CE aanzienlijk kunnen veranderen,
belooft de opname van eindige temperatuur excitaties te resulteren in een meer accurate
en realistische modellering. De auteur hoopt dat het huidige werk licht kan werpen
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op de ontwikkeling van nieuwe computationele methoden voor het bestuderen van de
thermodynamica en kinetiek van precipitatie in legeringen of van soortgelijke fenomenen
in toekomstige materialen.
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