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Wavefront sensorless adaptive optics methodologies are widely considered in scanning fluorescence microscopy
where direct wavefront sensing is challenging. In these methodologies, aberration correction is performed by se-
quentially changing the settings of the adaptive element until a predetermined image quality metric is optimized.
An efficient aberration correction can be achieved by modeling the image quality metric with a quadratic poly-
nomial. We propose a new method to compute the parameters of the polynomial from experimental data. This
method guarantees that the quadratic form in the polynomial is semidefinite, resulting in a more robust computa-
tion of the parameters with respect to existingmethods. In addition, we propose an algorithm to perform aberration
correction requiring a minimum of N � 1 measurements, where N is the number of considered aberration modes.
This algorithm is based on a closed-form expression for the exact optimization of the quadratic polynomial. Our
arguments are corroborated by experimental validation in a laboratory environment. © 2012 Optical Society of
America

OCIS codes: 010.1080, 010.7350, 110.0113, 220.1000.

1. INTRODUCTION
Adaptive optics is concerned with the active suppression of
disturbances in optical systems. The sources of the distur-
bances can be different, according to the application in ques-
tion. Notable examples are atmospheric turbulence for
astronomy and heterogeneity in the index of refraction within
specimens for microscopy. As a consequence, phase aberra-
tions develop in the pupil of the objective lens, severely affect-
ing the quality of the image [1]. The principle of adaptive
optics is that by measuring such phase variations with a sen-
sor, they can be cancelled by appropriately driving an active
wavefront correction element. In astronomy this practice is
well established with the use of a Shack–Hartmann wavefront
sensor and a deformable mirror [1].

Nonetheless, there are instances where the deployment of a
wavefront sensor is challenging. This is the case for scanning
fluorescence microscopy [2], due to difficulties in the rejec-
tion of out-of-focus light and in the lack of reference-point
sources within specimens [3–9].

Alternatively, sensorless adaptive optics schemes have
been considered, where the fluorescence emission is used as
a feedback signal for the suppression of the aberrations.
One approach involves the rejection of out-of-focus back-
ground [10]. More commonly, instead, aberration correction
is achieved by sequentially modulating the adaptive element
until a selected image quality metric is optimized. The assump-
tion is that the global extremum of the metric is attained when
the aberrations have been maximally suppressed. Examples
of such metrics are, among others, sharpness measures for
images [11] and the amount of fluorescence emission.

In the literature, a number of proposed solutions make use
of model-free optimizations. These include hill-climbing algo-
rithms [12,13], genetic algorithms [13–17], image-based algo-
rithms [18,19], conjugate gradient methods [20], stochastic
parallel gradient descent methods [21], and the Nelder–Mead
simplex algorithm [11,22,23]. Such general methodologies re-
quire a large number of measurements of the metric [2,24,25]
and may not converge to the global optimum [23,26]. Redu-
cing the number of necessary measurements is a critical
factor for the overall image acquisition time [12,13] and
for inhibiting side effects, such as phototoxicity and photo-
bleaching [2].

It has been shown [26] that physical modeling of the image
quality metric allows for direct and deterministic optimization
methods, requiring a reduced number of measurements with
respect to model-free solutions. Initially, model-based meth-
odologies were proposed for optical systems where the object
is a point source. In [26,27], a quadratic polynomial was em-
ployed to model a Strehl-based metric. For small aberrations,
it was shown that the proposedmodel-based approach outper-
forms model-free algorithms. This result was extended to
encompass larger aberrations in [28], by using a metric based
on the Lukosz–Zernike functions and a nonlinear detector.
In [29] a generalization was provided to handle arbitrary
functions other than the Lukosz–Zernike functions. The case
of incoherent imaging was analyzed in [30]. Here first-
principles derivations motivated employing a quadratic poly-
nomial in order to model a metric based on the low spatial
frequency content of the recorded images. Similarly, in [31],
theoretical derivations supported using a quadratic polynomial
to model an image quality metric, which is appropriate for
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structured illumination microscopy. Experimental validation
of model-based approaches was also provided for two-photon
microscopy [32] and for multiharmonic microscopy [33].

One challenge of model-based approaches is found in the
need to compute the parameters of the quadratic polynomial
for a given real optical system. Initially, this task was per-
formed using first principles, i.e., by computing the theoretical
value of each parameter [26–30]. In this way, however, imper-
fections in the real optical system are not accounted for [34].
Also, experimentally computing the parameters is more sui-
ted, for example, in the case of coherent microscopies such
as third-harmonic generation [34]. To address these shortcom-
ings, experimental methods for the computation of the para-
meters were developed [31,34]. Such methods, nevertheless,
fail to guarantee that the quadratic form in the polynomial
used to model the image quality metrics is semidefinite. This
latter property always follows from the theoretical analysis of
the image formation processes [24,27,28,30–34]. In this paper,
we present and validate a new method that guarantees that
the semidefiniteness property is satisfied. We compare our
procedure with the previously proposed methods [31,34]
and show that a more accurate fitting of the experimental
data is achieved. We remark that an inaccurate computation
of the parameters of the polynomial adversely affects the
performance in the correction of the aberrations as shown
elsewhere [24,34].

Once the parameters of the polynomial are known, the
correction of an arbitrary aberration is performed by solving
an optimization problem that exploits the knowledge about
the quadratic polynomial. For the imaging system considered
in [26–29], an approximate solution of the optimization was
proposed in [26–28], using N � 1 measurements. In [29] an
exact solution was provided using N � 1 measurements. For
the remaining imaging systems [24,30–34], an exact solution of
the optimization was provided using a minimum of 2N � 1
measurements. In this paper, we derive an exact solution of
the optimization requiring aminimum ofN � 1measurements.
Because our formulas are derived for a quadratic polynomial in
its most general form, all the model-based approaches men-
tioned so far are encompassed as special cases.

This paper is organized as follows. Section 2 provides a
first-principles derivation showing that a quadratic polynomial
can model the image quality metric used in our experimental
validation. Section 3 considers the experimental computation
of the parameters of a quadratic polynomial used to model an
image quality metric. Section 4 focuses on the algorithms used
for aberration correction. Section 5 provides a description of
the optical system used in the experimental validation. Experi-
mental results are reported in Section 6. Finally, conclusions
are found in Section 7.

2. QUADRATIC MODELING OF A
WAVEFRONT SENSORLESS ADAPTIVE
OPTICS SYSTEM
A. Problem Formulation
Consider the problem of correcting a static aberration in a
wavefront sensorless adaptive optics system. Such a problem
can be formulated as follows:

max
u�k�

~y�k�; (1)

where ~y�k� ∈ R is the value of a metric quantifying the image
quality, k ∈ Z is the discrete time index, and u�k� ∈ RN is the
control signal applied to an active element with N degrees of
freedom. An instance of this problem is found when imaging a
single focal spot in a fluorescence scanning microscope
[35,36], where static specimen-induced aberrations are to
be suppressed. In this case, the value of metric ~y�k� depends
on the amount of fluorescence emission originating from the
focal spot. A phase deformation can be applied to the illumi-
nation light in the pupil of the objective lens, for instance by
employing a deformable mirror that is controlled via vector
u�k�. When the deformation induced by the deformable mirror
maximally suppresses the specimen-induced aberration, a
solution of Eq. (1) is found.

In general we have that ~y�k� � f �u�k��, where f �·� is a func-
tion with a global maximum and possibly multiple local
extrema. For this reason, a general nonlinear optimization al-
gorithm can be employed in order to solve Eq. (1) as discussed
for the model-free methodologies in the introduction. Instead,
model-based methodologies exploit the fact that within a
suitable neighborhood of the global maximum, f �·� can be
approximated by a quadratic polynomial. Here, metric ~y�k� �
f �u�k�� can be modeled with an approximate metric y�k� �
q�u�k��, where q�·� is a quadratic polynomial. The knowledge
about q�·� allows us to efficiently solve Eq. (1). In the next
section we provide a derivation for q�·� based on first princi-
ples for the optical system that was used in our experimental
validation. This serves as an example in order to highlight the
advantage of experimentally determining q�·� as proposed in
this paper.

B. Modeling of a Wavefront Sensorless Adaptive Optics
Imaging System
Consider the optical configuration in Fig. 1. A disturbance in
the entrance pupil of L1 induces an unknown time-invariant
aberration to the wavefront. The entrance pupil is reimaged
by lenses L1 and L2 onto the membrane of the deformable mir-
ror. An image is formed by lens L3 onto a photodiode, which is
covered by a pinhole aperture. Let ~y denote the integral over
the pinhole aperture of the intensity distribution in the focal
plane of L3. Such quantity will be hereafter referred to with the
general term “intensity,” as is commonly done in the literature
[26,27,37]. The intensity is taken to be proportional to the vol-
tage recorded at the output of the photodiode. As outlined in
[26,27,37], it is assumed that ~y is a valid image quality metric,
i.e., maximizing ~y minimizes the aberration of the wavefront.

Fig. 1. Schema representing a sensorless adaptive optics system. An
unknown aberration applied at the entrance pupil of the system must
be corrected by a deformable mirror that is conjugated to the entrance
pupil. The measurement ~y�k� made with a photodiode covered by a
pinhole is an indicator of the residual aberration in the wavefront. The
controller changes control signal u�k� in order to maximize ~y�k�.
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In Section 6 such a conjecture is experimentally verified by
measuring the residual aberration with a Shack–Hartmann
wavefront sensor.

The intensity ~y�k� can be modeled [38] by

~y�k��
�
A
λf

�
2
Z
Σ2

×

����
Z
Σ1

exp
�
j
2π
λ
W�ξ;η;k�−j2π

λf
�ξα�ηβ�

�
dξdη

����2dαdβ�w�k�;

(2)

where k is the time index, A and λ are, respectively, the am-
plitude and wavelength of the monochromatic wave, f is the
focal distance of L3, Σ2 is the pinhole aperture, Σ1 is the pupil,
j �

������
−1

p
, W�ξ; η; k� is the wavefront aberration, and w�k� is

the measurement noise.
If the effects due to the finite size of the pinhole are

neglected (see [26,27]),

~y�k� ≈
�
A
λf

�
2
����
Z
Σ1

exp
�
j
2π
λ
W�ξ; η; k�

�
dξdη

����2 �w�k�: (3)

Let ~Φ�ξ; η; k�≔ �2π∕λ�W�ξ; η; k� and S≔
R
Σ1

dξdη. As done in
[39,40] for k fixed, the exponential in Eq. (3) is expanded into
a Taylor series and the terms of order higher than 2 are
neglected. The approximation becomes

~y�k� ≈
�
AS
λf

�
2

×
�
1−

�
1
S

Z
Σ1

~Φ�ξ;η; k�2dξdη−
�
1
S

Z
Σ1

~Φ�ξ;η; k�dξdη
�
2
��

�w�k�: (4)

We assume that ~Φ can be expanded into the following
series:

~Φ�ξ; η; k� �
X∞
i�1

Ψi�ξ; η�vi�k�: (5)

Possible choices for Ψi�·; ·� include, among others, Zernike
polynomials [41], mirror modes [42], or simply the influence
functions of the actuators of a deformable mirror [43].
Let F �ξ; η�≔ �Ψ1 �ξ; η� … ΨN �ξ; η� �T and v�k�≔ � v1�k� …
vN�k��T ; then the Nth order truncation of Eq. (5) is denoted
as

~Φ�ξ; η; k� ≈ F �ξ; η�Tv�k�: (6)

Substituting Eq. (6) into Eq. (4) and performing the integra-
tions leads to the following quadratic approximation:

~y�k� ≈ ~c0 − v�k�T ~Qv�k� �w�k�; (7)

where ~c0 � �AS∕λf �2 and

~Q � ~c0

�
1
S

Z
Σ1

F �ξ; η�F �ξ; η�Tdξdη

−

�
1
S

Z
Σ1

F �ξ; η�dξdη
��

1
S

Z
Σ1

F �ξ; η�Tdξdη
��

: (8)

Note that the elements of F need not be orthogonal over the
pupil. If such elements are chosen among N Zernike polyno-
mials, the Strehl ratio can be recognized and ~Q is diagonal. It
can be seen that ~Q must be positive semidefinite, i.e., ~Q≽ 0.
Vector v�k� accounts for both the contribution due to the
unknown aberration x in the entrance pupil of L1 and the aber-
ration u�k� induced by the deformable mirror. Letting
v�k� � x − u�k�, Eq. (7) is rewritten into

~y�k� ≈ ~c0 − �x − u�k��T ~Q�x − u�k�� �w�k�: (9)

Quadratic polynomials, such as the right-hand side of
Eq. (9) without the noise term w�k�, have been used in order
to model image quality metrics in a variety of different imaging
techniques [24,26–34]. This suggests that Eq. (9) can be em-
ployed as a generalized approximate metric. In each of these
publications, a thorough analysis of the image formation
process led to a quadratic polynomial where matrix ~Q was po-
sitive semidefinite [respectively negative semidefinite if opti-
mization (1) is formulated as a minimization problem as in
[28], for example]. The semidefiniteness property of ~Q
stems from the fact that ~y exhibits a global extremum. Never-
theless, when applying the experimental computations pro-
posed in [31,34], such a property can be violated. This
shortcoming is addressed in the procedure proposed in
Section 3.

3. IDENTIFICATION OF THE PARAMETERS
FOR QUADRATIC APPROXIMATE METRICS
Once metric ~y has been selected, depending on the imaging
system (see [24,27,28,30–34]), parameters ~c0 and ~Q must be
computed before aberration correction can be applied. This
operation is required once only. As in [31,34], the unknown
aberration x is assumed to be zero throughout this calibration
procedure.

One possibility is to compute ~c0 and ~Q from their first prin-
ciples definitions, e.g., Eq. (8) for ~Q. Such an approach can be
cumbersome. First, accurately measuring a number of quan-
tities in a real system is both prone to errors and inconvenient.
Also additional equipment may be necessary. In Eq. (8), am-
plitude A and the surface of the pupil S must be measured.
Second, a different numerical integration must be solved
for each different choice of the basis functions Ψi�·; ·� in
Eq. (5). In addition, a first-principles computation of the para-
meters does not account for defects in the real optical system,
such as misalignment, imperfect illumination profile, noncir-
cular pupils, etc. (see the discussion in [34]). A final drawback
is related to the fact that the overall modeling error is neither
explicitly defined nor minimized. As remarked earlier, an in-
accurate choice for ~Q leads to a decreased performance in the
correction of aberrations [24,34]. The alternative followed in
this paper, instead, is to select the values of ~c0 and ~Q by mini-
mizing the fitting error, e.g., Σk�~c0 − u�k�T ~Qu�k� − ~y�k��2, over
some set of real input–output measurements. For this reason
an experimental computation of ~c0 and ~Q is desirable.
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A. Débarre’s Experimental Identification Procedure
We briefly report the latest, most accurate experimental pro-
cedure to compute ~Q, which was proposed in [34], in order to
compare it with our proposed method. The idea is to compute
~Q by independently estimating each of its elements ~qi;j . First,
the diagonal elements are recovered. Afterward, the of-
diagonal elements are computed by estimating each of the
N�N − 1�∕2 submatrices of ~Q of dimension 2 × 2.

As an example, consider Eq. (9) when N � 3,

y�u1; u2; u3� � ~c0 −

"u1

u2

u3

#T
2
4 ~q1;1 ~q2;1 ~q3;1
~q2;1 ~q2;2 ~q3;2
~q3;1 ~q3;2 ~q3;3

3
5"u1

u2

u3

#
: (10)

By keeping u2 and u3 fixed to zero, an input–output data set
is collected. Subsequently, element ~q1;1 and ~c0 can be esti-
mated by fitting the resulting parabola y�u1� � ~c0 − ~q1;1u2

1. Re-
peating this step allows us to recover ~c0 and all the diagonal
elements of ~Q. This demands p1N input–output data points
altogether, where p1 � 2.

The estimation of ~q2;1 can be achieved by taking input–
output data sets where u3 is fixed to zero and u2 is fixed
to a constant ū. A parabola in u1 results in

y�u1; ū� � ~c1 −
hu1

ū

iT� ~q1;1 ~q2;1
~q2;1 ~q2;2

�hu1

ū

i
: (11)

The extremum of Eq. (11) is reached when u1 � −�~q1;2∕~q1;1�ū.
Fitting this latter linear relation allows us to compute ~q1;2. This
demands p3 � 3 input–output data points for p2 � 1 different
fixed values of ū. This step needs to be repeated N�N − 1�∕2
times. Altogether, ~c0 and ~Q can be estimated using p1N �
p2p3N�N − 1�∕2 input–output data points.

One shortcoming of such a methodology is that the
total amount of necessary measurements can be large (see
Section 6). Measurements in each input–output data set are
only exploited for estimating a subset of the parameters in-
stead of all the parameters at once. Most importantly, this
procedure cannot ensure that the resulting matrix ~Q be
semidefinite, as predicted by the theoretical derivations
[24,27,28,30–34]. Indeed, noise in the measurements of ~y
and numerical errors can lead to computing an indefinite
~Q. A more robust estimation of ~Q (see Section 6) is achieved
including the semidefinite constraint in the estimation. In this
way indefinite matrices are excluded a priori.

B. Data-Driven Identification Procedure
In [44], we first proposed using semidefinite programming [45]
for estimating ~Q and ~c0. This allows us to recast the computa-
tion of the parameters into a single mathematical optimiza-
tion. The constraint ~Q≽0 is also satisfied.

Metric (9) can be slightly generalized by including a linear
term. This allows to relax the assumption that no aberration is
present during the experimental computation of the param-
eters. Hence Eq. (9) is redefined as

y�k� � c0 � cT1 �x− u�k��− �x − u�k��TQ�x − u�k���w�k�; (12)

where c0 ∈ R, c1 ∈ RN , Q ∈ RN×N , Q≽0. Term w�k� repre-
sents the uncertainty in approximating ~y with Eq. (12), and
as such it cannot be measured by definition. Quantities
c0, c1 and Q are the new set of parameters that must be
estimated.

Again, as in Section 3, we temporarily assume that x � 0. A
collection of input vectors fu�k� ∈ RN jk � 1;…; Dg is applied
as the input to the deformable mirror and the corresponding
measurement of ~y is recorded. This results into the identifica-
tion data set f�y�k�; u�k��jk � 1; :::::; Dg. Such a collection of
input vectors can be selected arbitrarily, in contrast with
the methods proposed in [31,34], where specific pupil func-
tions must be generated. In addition all the data points are
used at once to estimate all the parameters.

Minimal fitting error could be attained by solving a linear
least-squares problem [46]. However, such an approach does
not guarantee that the constraint Q≽0 be satisfied. For this
purpose, the following constrained optimization problem is
defined:

min
c0 ;c1;Q

XD
k�1

jy�k� − �c0 − cT1 u�k� − u�k�TQu�k��j2

s:t: Q≽0; (13)

where c0 ∈ R, c1 ∈ RN , and Q ∈ RN×N are decision variables.
Optimization (13) belongs to the realm of semidefinite pro-
gramming [45]. A convenient tool for formulating Eq. (13)
is the modeling suite YALMIP [47]. The widely used numerical
solver SeDuMi [48] is employed to solve Eq. (13).

In [44], we included a regularization condition on Eq. (13).
This leads to a matrix Q, which is strictly positive definite.
Such a constraint, however, should be removed as some
modes naturally correspond to a null space in Q. Examples
of these modes are the piston mode if Zernike polynomials
are used, or high-frequency aberrations that deform the Airy
disk while keeping the encircled energy stationary. A better
approach is to include regularization only when inverting
Q, for instance truncating negligible singular values.

The computational complexity of SeDuMi is a function of
the number of scalar decision variables and of the number
of rows in the total linear matrix inequality constraint [49].
This latter is related to D in Eq. (13). A QR factorization
can be used in order to compress the second-order cone con-
straint implicit in the cost function of Eq. (13). For this pur-
pose, it is convenient to rewrite the least-squares cost function
in Eq. (13) as

min
z
‖b − Az‖2

2; �14�

where b � � y�1� … y�D� �T ,

A �

2
64
1 −u�1�T −u�1�T ⊗ u�1�T
..
. ..

. ..
.

1 −u�D�T −u�D�T ⊗ u�D�T

3
75 ∈ RD×�1�N�N2�; (15)

and z � � c0 cT1 vec�Q�T �T . Here, function vec�·� denotes
the vectorization transformation and ⊗ the Kronecker pro-
duct [46]. Assuming the rank r of A is 1� N � N2, let A �
Q̄� R̄T 0T �R be the QR factorization of A, where Q̄ ∈ RD×D

is an orthogonal matrix and R̄ ∈ Rr×r is an upper triangular
matrix. Left multiplication by Q̄T inside the norm in
Eq. (14) lead to the following equivalent formulation
for Eq. (13):
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min
z
‖b1 − R̄z‖2

2s:t: Q≽0; (16)

where b1 � � Ir×r 0 �Q̄Tb. Solving Eq. (16) is preferable to
Eq. (13) as that leads to a smaller semidefinite programme
(see Section 6).

4. ABBERATION CORRECTION FOR
QUADRATIC APPROXIMATE METRICS
With the parameters c0, c1, and Q known, we now discuss cor-
recting for the unknown aberration x. In the scanning micro-
scope example, this situation corresponds to introducing the
specimen and recording the fluorescence emitted from a given
focal volume.

A. Independent Parabolic Optimization Algorithm
We briefly outline the correction method proposed in [30]
and used in [27,28,30–33]. For simplicity, we take both c1
and w�·� to be zero. Since Q � QT , there exists an orthogo-
nal matrix V such that Q � VΔVT , where Δ is a diagonal
matrix. Let z � VTx and p � VTu and let zi, pi, λi;j denote
respectively the elements of z, p and Δ. Equation (12) can
be rewritten as

y�p� � c0 −
XN
i�1

λi;i�zi − pi�2: (17)

The diagonalization of Q is referred to as “linear crosstalk
removal” in [34] and has the purpose of reformulating the N -
dimensional optimization of Eq. (12) into N independent
one-dimensional parabola optimizations. If Q is semidefinite,
a global optimum of Eq. (17) is found by composing the re-
sult of the one-dimensional optimizations. Consider the ith
parabola optimization. As p is the independent variable, we
can set pj � 0 for i ≠ j so that optimizing Eq. (17) results in

max
pi

α1p2i � α2pi � α3; (18)

where the coefficients α1, α2, α3 are unknown as they de-
pend on z. If three measurements are taken—y1 for
pi � −b, y2 for pi � 0, and y3 for pi � b, where b ∈ R�
is a bias—a Vandermonde system can be solved giving

8<
:
α1 � �y1 − 2y2 � y3�∕�2b2�
α2 � �y1 − y3�∕�2b�
α3 � y2

: �19�

Consequently the extremum of the parabola is found by
setting pi � −α2∕�2α1�, which evaluates to

−b�y1 − y3�∕�2y1 − 4y2 � 2y3� (20)

(Eq. (33) in [30]). If the measurement for pi � 0 is shared
among all the modes, this requires a minimum of 2N � 1
measurements.

We note that in this way not all information derived from
Q � VΔVT has been exploited. In fact, α1 is known a priori

as the opposite of the ith eigenvalue of Q, namely, −λi;i.
Henceforth, only two coefficients α2 and α3 are unknown
for each mode. Sharing one measurement among all the

modes, one sees that N � 1 measurements are sufficient to
exactly optimize Eq. (17).

We illustrate this fact by examining Eq. (17) for N � 1.
Taking 0 and p̄ ≠ 0 for the independent variable p, we
have

�
y�0� � c0 − λz2

y�p̄� � c0 − λz2 � 2λp̄z − λp̄2
: �21�

Considering the difference δ≔y�p̄� − y�0� between two mea-
surements of ~y, we have p� � �δ� λp̄2�∕�2λp̄�. A generaliza-
tion to N dimensions is reported in the next section. Note
that this result is achieved via a closed-form expression,
i.e., without resorting to an approximate solution as was
proposed in [26–28].

B. Linear Least-Squares Optimization
In this section we provide formulas for the exact optimization
of Eq. (12) in a minimum of N � 1 measurements of ~y. In our
proposed solution, there is no need to diagonalize Q and the
optimization is solved simultaneously for all the modes in a
linear least-squares sense.

The system is excited with M input vectors
fu�k� ∈ RN jk � 1;…; Mg, where M ∈ N�, M � 2, and the
rank of �u�1� … u�M� � is min�N;M�. The corresponding out-
put values are collected fy�k� ∈ Rjk � 1; :::::; Mg.

Define δy�k; l�≔y�k� − y�l�. Then, we obtain

δy�k; l� � −cT1 �u�k� − u�l�� � 2�u�k� − u�l��TQx
� u�l�TQu�l� − u�k�TQu�k� �w�k� −w�l�: (22)

It can be seen that Eq. (22) is linear in the unknown x. By
stacking a number of such expressions together, a linear
set of equations in x is established.

From fy�k� ∈ Rjk � 1;…; Mg, M − 1 values of δ�·; ·� can be
computed, i.e., δ�M; 1�;…; δ�M;M − 1�. The linear set of
equations in x is arranged as

FMx� LMeM � dM; �23�

where

FM �

2
64

2�u�M� − u�1��TQ
..
.

2�u�M� − u�M − 1��TQ

3
75 ∈ R�M−1�×N; (24)

LM � �−I�M−1�×�M−1� 1M−1 � (1M−1 denoting a vector of ones),
eTM � �w�1� … w�M� � ∈ RM , and

dM�

2
666664

δy�M;1��cT1 �u�M�−u�1��−u�1�TQu�1��u�M�TQu�M�
..
.

δy�M;M−1��cT1 �u�M�−u�M−1��
−u�M−1�TQu�M−1��u�M�TQu�M�

3
777775

∈RM−1: (25)
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The solution x̂M of the weighted least-squares problem

min
x

eTMeM

s:t: FMx� LMeM � dM (26)

satisfies the normal equation

�FT
MWMFM �x̂M � FT

MWMdM; (27)

where WM � �LMLT
M �−1.

We consider the case where the set of equations (23) is not
underdetermined, i.e., M � N � 1. Between time k � 1 and
k � N � 1 inclusive, the system is excited with an N � 1 input
sequence. In Section 6, the column vectors of b� 0 V � were
used for such an input sequence, where b is a bias and V a
base of eigenvectors of Q as in Section 4. At time
k � N � 2, output y�N � 1� has been acquired and x̂N�1 is
computed. Hence, an estimate of the input u�N � 2� maximiz-
ing the intensity y�N � 2� is

u�N � 2� � x̂N�1 −
1
2
Q−1c1: (28)

Similarly, in the following time instants, a refined estima-
tion of x is obtained by solving the overdetermined system,
where M > N � 1. The control law for sample time k > N �
1 is

u�k� � x̂k−1 −
1
2
Q−1c1: (29)

Note that if the additive noisew�k� ∈ R is assumed to be white
noise with zero mean and covariance E�w�k�w�j�� � δ�k − j�,
where δ�·� is the unit pulse, then x̂N�1 is the minimum variance
unbiased linear estimator of x (see [46] for further details).
The choice of fixing index k in Eq. (22) to M is arbitrary,
and different arrangements are possible as long as at least
M − 1 nonzero values of δy�·; ·� can be computed.

Equation (12) models the image quality metric for small
aberrations, e.g., when the approximations made in Eq. (4)
are valid (see Section 6). For larger aberrations, the error
in modeling ~y with a quadratic polynomial is not negligible
and therefore applying Eq. (29) fails to maximally suppress
the aberration. Nevertheless, experimental evidence suggests
that applying multiple iterations of Eq. (29) enables us to gra-
dually suppress large amounts of aberration. This experimen-
tal observation is also reported in [24]. One feasible approach
is to implement a window-based aberration correction. Let i
denote the ith iteration. Each iteration consists of a data ac-
quisition part followed by a correction part. In the first part,
input–output data is collected by exciting the system with in-
put vectors taken from a neighborhood centred at the esti-
mate of x in the previous iteration. In the second part,
aberration correction takes place by solving Eq. (26) over
the input–output data acquired in the first part. This process
is illustrated in Fig. 2.

5. EXPERIMENTAL SETUP
Experimental validation was performed with the system de-
picted in Fig. 3. As was done in [24,28,30], a deformable mirror
was simultaneously used as the source of the aberration
and as the correcting element. Aberrations were generated

by adding an offset x to the control signal of the deformable
mirror. Assuming x to be unknown, an aberration correction
algorithm was subsequently applied. The performance of the
aberration correction was quantitatively assessed by measur-
ing the residual aberration with a Shack–Hartmann wavefront
sensor. Obviously, the measurements from the photodiode
were the only information that was supplied to the aberration
correction algorithms. With reference to Fig. 3, light from a
He–Ne laser source (632.8 nm wavelength) is spatially filtered
and collimated using lens L1 (11 mm), pinhole P1 (30 μm), lens
L2 (500 mm), and I1 in order to fill two thirds (10 mm) of the
membrane of the deformable mirror DM (MMDM37,
OKOTech, The Netherlands). The pupil is demagnified and
reimaged by L3 (200 mm) and L4 (100 mm) onto the hexagonal
microlens array MLA (127 microlenses, 18 mm focal distance,
300 μm pitch, OKOTech, The Netherlands). The image of
the microlens array is recorded with the camera C1 (svs340,
648 × 492 pixels, 7.4 μm pixel size, SYS-VISTEK, Germany).
The beam splitter BS2 divides light between the Shack–
Hartmann wavefront sensor and the pinhole-photodiode

Fig. 2. Timeline of the iterative aberration correction algorithm.
Each iteration consists of a data acquisition part where N � 1 data
points are acquired and a correction part where correction is per-
formed using Eq. (29) for C time instants. The vectors in the ith
data acquisition are taken from a neighborhood of the estimate of
x at iteration i − 1, i.e., x̂�i−1�.

Fig. 3. The spherical wavefront is generated by spatially filtering a
laser beamwith lens L1 and pinhole P1. The beam is collimated by lens
L2 and clipped by iris I1 to fill 10 mm of the aperture of the deformable
mirrorDM. The membrane ofDM is reimaged by lenses L3 and L4 onto
a microlens array MLA. C1 and MLA implement a Shack–Hartmann
wavefront sensor. Lens L5 focuses the beam onto a photodiode that
is covered by a pinhole P2. Flat mirror M1 is used to calibrate the
Shack–Hartmann wavefront sensor. An aberration is introduced as
an unknown offset x to the control signal of DM. An aberration cor-
rection experiment consists of suppressing x when only the measure-
ments of the photodiode are available. Afterward, a measurement of
the residual aberration is obtained with the wavefront sensor to assess
the performance of the correction.
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sensor. Lens L5 (200 mm) focuses the beam onto the photo-
diode (TSL250R-LF, TAOS, Korea), which is covered by the
50 μm pinhole P2. Voltage to the electrodes of the deformable
mirror is supplied by a high-voltage amplifier (OKOTech, The
Netherlands) with 40 channels. An external power supply pro-
vides 150 V to the high-voltage amplifier. The system is oper-
ated using a desktop PC running Linux. The high voltage
amplifier is controlled with a 16 bit analog output card
(PD2-AO-96/16A, United Electronic Industries, United States).
Voltage from the photodiode is acquired with a 16 bit
analog input card (PCI-6220, National Instruments, United
States). A framegrabber card (Leonardo CL Full, Arvoo, The
Netherlands) is used to acquire images from camera C1.
Customized software written in C and MATLAB (Version
R2011a, The MathWorks, United States) is used to perform
the experiments.

A modal wavefront reconstruction method was implemen-
ted [50] using the first 15 Zernike polynomials defined and
enumerated as in [41]. We estimated with a least-squares fit
a linear relationship between the square root of the voltage
applied to the electrodes of the deformable mirror and the
Zernike coefficients [51]. As done in [24,31], 11 Zernike coef-
ficients (Z5 to Z15, see [41]) were controlled, so that N � 11 in
the previous formulas. As suggested by OKOtech, bidirec-
tional operation of the deformable mirror was achieved by
slightly misaligning L3 to compensate for the defocus that
is introduced when the mirror is biased [51].

6. EXPERIMENTAL RESULTS
Experimental validation has been performed using the system
described in the previous section.

A. Comparison of the Identification Procedures for the
Approximate Metric
A comparison was made between Débarre’s experimental
computation method (see Section 3) and our proposed proce-
dure (see Section 3). First the system was initialized by
flattening the deformable mirror with the Shack–Hartmann
wavefront sensor. Subsequently, the Nelder–Mead simplex
method [23] was briefly applied to correct for relativemisalign-
ment between the Shack–Hartmann wavefront sensor and
thepinhole-photodiodedetector. In thisway, any residual aber-
ration was removed from the system so that both x and c1 are
zero in Eq. (12). From this initial condition, Débarre’s method
and Eq. (16) were repeatedly applied to compute c0 and Q.

The result of each identification experiment was assessed
by evaluating the variance accounted for (VAF). This is de-
fined as VAF�y; ŷ� � max �1 − �var�y − ŷ�∕var�y��; 0� × 100%,
where the elements of vector y are taken from real output
measurements of the system, whereas the elements of vector
ŷ are the corresponding output predictions computed using
the right-hand side of Eq. (12). If the VAF is 100% for one iden-
tification experiment, then that indicates that metric ~y has
been perfectly modeled. Forty different identification experi-
ments were executed. In each, an input–output data set was
collected and both Débarre’s procedure and Eq. (16) were
applied in order to compute c0 and Q. The VAF was computed
using this identification data. Afterward, a second input–
output data set was collected in order to perform a cross vali-
dation. In this second set, the input was randomly selected.
The VAF was then computed using this cross-validation data.

In Fig. 4(a), the mean value, maximum, minimum, and stan-
dard deviation of the VAFs computed with the identification
data sets are reported. These show that using Eq. (16) guaran-
tees a higher mean value for the VAFwith respect to Débarre’s
procedure. The maximum values for the VAFs show compar-
able performance between the two procedures. Instead the
minimumvalues and standard deviations for theVAF show that
a robust performance is achieved by including the semidefinite
constraint in the identification procedure. In fact an indefinite
matrixQwas recovered using Débarre’s procedure in 32 out of
the 40 trials. In Fig. 4(b), the mean value, maximum, minimum,
and standard deviation of the VAFs computed with the cross-
validation data sets are reported. These numbers also support
that our identification procedure produces an accurate result.
Figure 4(c) shows the mean value of Q for both identification
procedures. As expected, bothmatrices have large elements in
the diagonal. Nonetheless, some cross-talk elements are also
present due to the finite size of the detection pinhole (see
[52]). Whereas the diagonal elements are quite similar for both
identification procedures, differences are found in the off-
diagonal elements. The consequences of employing an inaccu-
rate matrix Q in the correction of aberrations have already
been discussed elsewhere [24,34].

B. Empirical Analysis of the Quadratic Approximation
Optimization (16) can also be used to empirically study the
region of validity within which metric ~y can be approximated
with Eq. (12). For this purpose, a large input–output data set
with 50,000 tuples was recorded where the maximum input
aberration was 2 rad rms. Afterward, optimization (16) was
solved by choosing 10 different subsets of the identification
data. In each subset, the maximum rms for the input aberra-
tions, denoted by ρmax, was increased and a quarter of the tu-
ples were reserved for validation. The resulting identification
and validation VAFs are reported in Fig. 5. It can be seen that
between 0.4 and 0.6 rad rms, the effect of the modeling error
becomes appreciable and ~y begins to deviate from its value as
predicted by a quadratic polynomial.

Experimentally, we found that employing an iterative
aberration correction scheme (e.g., the one depicted in Fig. 2)
provided a better performance instead of solving Eq. (26) for
M ≫ N � 1. This empirical observation is in agreement with
Fig. 5. Assuming that after each iteration the residual aberra-
tion is decreased, then from Fig. 5 one can see that the VAF
computed with the input–output tuples within each iteration
increases. Henceforth, the input–output tuples of the previous
iterations should not be reused to solve Eq. (26) as they are
fitted less accurately by Eq. (12).

An additional observation regards the selection of the bias b
in the initial N � 1 excitation sequence (see Section 4). Using
a small bias (e.g., <0.5 rad rms) is preferable as this ensures
that the data points collected during the N � 1 data acquisi-
tion (see Fig. 2) have a similar VAF.

C. Aberration Correction using the Quadratic
Approximate Metric
We report a number of aberration correction experiments
where we compare our proposed method with the model-
based 3N and 5N algorithms (see [24] and Section 4) and
the model-free Nelder–Mead simplex method [23]. For the
model-based algorithms, i.e., the 3N, 5N, and our proposed
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solution, the same parameters c0, c1, and Q were used. Such
parameters were identified by collecting an input–output data
set with 6000 tuples. The input aberrations were randomly
chosen with a maximum rms of 0.5, as motivated in Section 6.
The data set was split into two sets, reserving 4500 tuples for
identification and 1500 tuples for validation. Identification
was completed in a couple of seconds by solving Eq. (16)
using YALMIP [47] and SeDuMi [48]. Note that SeDuMi took
less time to solve Eq. (16) instead of Eq. (13) (the ratio be-
tween the two computation times was 0.17). A VAF of
98.27% and 98.16% was found respectively for identification
and validation.

Figures 6(a)–6(d) show the results of the correction of ran-
dom aberrations with magnitudes of 0.3, 0.4, 0.6, and 0.8 rad
rms. Such magnitudes are of interest in microscopy applica-
tions, where moderate amounts of aberrations are corrected
at intermediate depth levels as one focuses deep within a
sample (see Section 5 of [24]). For each figure, 50 random
aberrations were generated, where the Zernike coefficients
of each aberration were randomly selected so that the result-
ing rms phase profile had a determined value. In the upper
plot, the initial aberration and the final residual aberrations
are plotted. The circles, vertical bars, and horizontal bars

Fig. 4. Comparison of the experimental computation of matrix Q with Débarre’s method (see Section 3) and our proposed procedure (see
Section 3). First a data set of 15246 input–output tuples is acquired (p1 � 21, p2 � 13, and p3 � 21) and Q is computed with Débarre’s method,
resulting in Qd. The same input–output data set is used to compute Q with Eq. (16), resulting in Qsdp. The VAFs for Qd and Qsdp are computed over
the identification data set. Subsequently, a new input–output data set with 15,000 tuples is acquired for cross validation. In this second set the input
aberrations are chosen randomly. The VAFs forQd andQsdp are computed using this latter validation set. Such steps are repeated 40 times. (a) Mean
value μ, maximum max, minimum min, and standard deviation σ of the identification VAFs for Qd and Qsdp. (b) Mean value μ, maximum max,
minimum min, and standard deviation σ of the cross-validation VAFs for Qd and Qsdp. (c) Mean value of Qd and Qsdp over the 40 realizations. The
color map is scaled to the maximum and minimum of the elements of Qsdp in order to preserve contrast between the two matrices. Matrix Qd
resulted indefinite 32 times out of the 40 trials.

Fig. 5. (Color online) Optimization (16) was solved for 10 different
input–output data sets where the maximum rms of the input aberra-
tion (ρmax) is linearly increasing up to 2 rad rms. The VAF is reported
for both identification (3750 data points) and validation (1250 data
points). Between 0.4 and 0.6 rad rms, the difference between ~y and
Eq. (12) becomes noticeable.
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denote respectively the mean value, standard deviation, and
minimum and maximum for the correction of the 50 aberra-
tions. The horizontal dashed–dotted magenta line denotes the
rms corresponding to a Strehl ratio of 0.9. The lower plot re-
ports the mean value of the intensity against sample time for
the 50 correction experiments. The vertical axis is normalized
to the maximum intensity recorded when no aberration is
applied.

Figure 6(a) reports a summary of the correction of 50 ran-
dom aberrations of 0.3 rad rms with one iteration of our pro-
posed method (LS1) [see Eq. (29)], the 3N (3N) algorithm
(see [24] and Section 4) and the model-free Nelder–Mead sim-
plex method [23] (Simplex). The residual aberration is com-
parable for the three algorithms. Nevertheless, a value of
0.95 for the normalized intensity is already achieved at sample
time 13 for (LS1), whereas the other two algorithms reach
about 0.94 at sample time 34. A bias of 0.5 rad is used for
the 3N algorithm, as suggested in [24] for small aberrations.

Instead, a smaller bias of 0.02 rad was used for our proposed
solution, as motivated in Section 6. Such a small bias can be
advantageous in scanning image acquisition processes, as it
leads to less excitation of the dynamics of the deformable
mirror and to a smoother variation of the image as aberration
correction is being applied.

Figure 6(b) shows a summary of the correction of 50 ran-
dom aberrations of 0.4 rad rms with one iteration of our pro-
posed method (LS1), the 3N algorithm (3N), and the simplex
method (Simplex). Also in this case the two model-based
approaches outperform the model-free one. Lower mean
values of the residual aberrations are reached for both (LS1)
and (3N). In addition, the average normalized intensity is also
higher than in (Simplex). This time, at sample time 13, (LS1)
reaches a normalized mean intensity of 0.91, which is ex-
ceeded by (3N) only at sample time 32. (Simplex) instead
stops at 0.9 at sample time 34. Note that both in Fig. 6(a)
and in Fig. 6(b), the mean intensity of (LS1) does not improve

Fig. 6. (Color online) Each figure reports a summary of the correction of a set of 50 random aberrations. In the upper plot, the mean value,
standard deviation, minimum, and maximum of the residual aberrations after the correction are reported in radians. These are denoted, respec-
tively, by a circle, a thick vertical bar, and thin horizontal lines. The same indicators are also reported for the random initial aberrations before
correction. (LS1), (LS2), and (LS4) denote respectively 1, 2, and 4 iterations of Eq. (29) as depicted in Fig. 2. (3N) and (5N) are described in Section 4
and [24]. (Simplex) and (SPL) denote the Nelder–Mead simplex method [23]. The horizontal dashed–dotted magenta line denotes a Strehl ratio of
0.9. The lower plots report the mean value of the normalized intensity against sample time for the 50 aberration correction experiments.
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significantly after the first correction is applied at sample time
N � 2, as was discussed in Section 6.

Figure 6(c) reports a summary of the correction of 50 ran-
dom aberrations of 0.6 rms with two iterations of our pro-
posed method (LS2) (see Fig. 2), the 3N algorithm (3N), and
the simplex method (Simplex). In this case, the 3N algorithm
is underperforming. A similar behavior was also reported in
[24] (see Fig. 4 therein). Nevertheless, a robust performance
is shown by (LS2), as can be seen by the reduced standard
deviation of the residual aberration and the mean value of
the normalized intensity.

In Fig. 6(d), 50 random aberrations with a magnitude of
0.8 rms were corrected. Here, four iterations of our proposed
method (LS4), the 5N (5N) algorithm (see [24]), and the sim-
plex method [23] (Simplex) are applied. The performance of
(5N) is worse than what is reported in [24] (see, for instance,
Fig. 5 in [24]). Such a discrepancy can be explained by three
facts. Firstly, in [24], both the imaging system and the selected
metric were different from our case. Secondly, a maximum
bias of 0.5 rad was used, instead of the suggested maximum
of 2 rad as in [24]. We found that the deformable mirror could
not reproduce such a large deformation without saturating the
actuators or producing an inaccurate phase profile, especially
for coma, spherical aberration, and second-order astigmatism.
Finally, in [24], the square root of a Lorentzian curve was used
instead of Eq. (12) (see also the discussion in the next sec-
tion). Nevertheless, on average, (LS4) reaches a Strehl ratio
higher than 0.9 (see the horizontal dashed–dotted line in
the upper plot) and outperforms (Simplex).

D. Aberration Correction using Nonquadratic
Approximate Metrics
As seen in Section 6, approximating ~y with a quadratic poly-
nomial is accurate within a restricted neighborhood of the
global maximum of ~y. Nonetheless, empirically, it was found
that a broader range of aberrations could be encompassed
when using Gaussian or Lorentzian functions to approximate
~y (see [31,33] and [24,30,32], respectively). Neglecting issues

related to numerical computations and the measurement
noise, the quadratic polynomial is recovered by assuming that
t� ~y�k�� ≈ c0 � cT1 �x − u�k�� − �x − u�k��TQ�x − u�k��, where t�·�
is the logarithm when Gaussian functions are used. The use
of such an output transformations to recover the quadratic
polynomial follows what has been done in [24,30–33].

In Fig. 7 we report a summary of the corrections of 50
random aberrations with a magnitude of 1.0 rad rms. Here
a Gaussian function was used to model ~y and a new identifi-
cation was performed by solving Eq. (16). A comparison is
made between three iterations of our proposed solution
(LS3E) and the simplex method (Simplex). It can be seen that
(LS3E) outperforms (Simplex), since a lower mean value is
achieved for the residual aberration and the mean intensity
is consistently higher than the one of (Simplex) after sample
time 11. A study of the amount of aberration that can be cor-
rected with model-based approaches is found in [24] and is not
worth repeating here. Similar results should be expected if our
aberration correction algorithm is employed.

7. CONCLUSION
In this paper, a new experimental procedure to compute the
parameters of quadratic approximate metrics in wavefront
sensorless adaptive optics has been presented. Such metrics
are applicable to a broad spectrum of different imaging tech-
niques [24,26–34]. Our proposed procedure has been shown to
produce a more robust computation of the parameters with
respect to existing procedures [31,34]. Arbitrary input–output
data can be used without the need to generate specific pupil
functions as in [31,34]. An additional benefit is found in the
possibility to empirically study the region of applicability of
the quadratic approximate metric.

A second contribution is found in the algorithm used for
aberration correction. Formulas have been provided where
aberration correction is achieved by exactly optimizing the
quadratic approximate metric using a closed-form expression
in a minimum of N � 1 measurements. Since these expres-
sions are given for a quadratic polynomial in its most general
form, they are widely applicable [24,26–34] and they represent
an improvement to previously employed algorithms that re-
quired a minimum of 2N � 1 measurements [24,30–34]. Final-
ly, our arguments have been corroborated by experimental
validation in a laboratory environment.
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