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Abstract— Electrical smart microgrids equipped with small-scale renewable-energy generation systems 7 

are emerging progressively as an alternative or an enhancement to the central electrical grid: due to the 8 

intermittent nature of the renewable energy sources, appropriate algorithms are required to integrate 9 

these two typologies of grids and, in particular, to perform efficiently dynamic energy demand and 10 

distributed generation management, while guaranteeing satisfactory thermal comfort for the occupants. 11 

This paper presents a novel control algorithm for joint energy demand and thermal comfort optimization 12 

in photovoltaic-equipped interconnected microgrids. Energy demand shaping is achieved via an 13 

intelligent control mechanism for heating, ventilating, and air conditioning units. The intelligent control 14 

mechanism takes into account the available solar energy, the building dynamics and the thermal comfort 15 

of the buildings’ occupants. The control design is accomplished in a simulation-based fashion using an 16 

energy simulation model, developed in EnergyPlus, of an interconnected microgrid. Rather than focusing 17 

only on how each building behaves individually, the optimization algorithm employs a central controller 18 

that allows interaction among the buildings of the microgrid. The control objective is to optimize the 19 

aggregate microgrid performance. Simulation results demonstrate that the optimization algorithm 20 

efficiently integrates the microgrid with the photovoltaic system that provides free electric energy: in 21 

particular, for each building composing the microgrid, the energy absorbed from the main grid is 22 

minimized, the energy demand is balanced with the solar energy delivered to each building, while taking 23 

into account the thermal comfort of the occupants.     24 

Index Terms— Interconnected microgrids, demand response, thermal comfort. 25 

I. INTRODUCTION26 

Increasing energy demand and more strict environmental regulations are enabling the transition from 27 

traditional electrical grids with centralized power plants to smart electrical microdgrids where the existing 28 

power grid is enhanced with distributed, small-scale renewable-energy generation systems [1]. This so-called 29 

smart grid paradigm is emerging progressively: currently, many microgrids are connected to the existing grid, 30 

allowing the two grids to coexist until eventually the load will migrate to the new grid [2]. In this hybrid 31 

intermediate state, the energy produced from the microgrid renewables can be used to reduce dependence on 32 

grid-supplied energy. On the other hand, the use of renewables inserts uncertainty into the system, due to their 33 

stochastic output profile. In some cases electric utilities raise reservations on distributed energy generation since 34 
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the lack of monitoring and control of these energy sources might contribute to the instability of the electric grid 35 

[3]. For these reasons, one of the main challenges in the development of microgrids is to deploy control systems 36 

that take the appropriate decisions for energy distribution and consumption: these tasks are also referred to as 37 

distributed generation (DG) and demand response (DR) tasks, and a strategy addressing these tasks can be 38 

referred to as DG/DR management strategy or DG/DR control strategy. 39 

The management of distributed generation and demand response in microgrids implies interactions between 40 

the demand and the supply side. The power provider must dynamically change the load for their users, otherwise 41 

energy might be wasted by some users (because of redundant power), while lack of power will occur for other 42 

users [4]. A typical way through which the demand side interacts with supply side is via intelligent load 43 

managing and scheduling [5]. Several approaches to optimal scheduling of microgrid energy consumption have 44 

been proposed: the evaluation of the effectiveness of DG/DR solutions is based on performance metrics like 45 

service quality, electricity consumption and price [6]. Without aiming at being exhaustive, only approaches that 46 

rely on simulation-based optimization procedures to maximize the microgrid performance are addressed in this 47 

work: with simulation-based optimization it is meant an approach that exploits the availability of a model of the 48 

microgrid to perform simulations and to assess the performance of a particular DG/DR management strategy. 49 

Two main families can be identified: DG/DR management based on receding horizon optimization and DG/DR 50 

management based on co-simulation. 51 

In DG/DR management based on receding horizon optimization a model of the microgrid is used at every 52 

time step in a receding horizon fashion to evaluate and optimize the performance of the management strategy: in 53 

[7] minimization the cost of electricity and natural gas for building operation while satisfying the energy balance 54 

and operating constraints of energy supply equipment and devices is considered. The uncertainties are captured 55 

and their impact is analyzed by the scenario tree method. In [8] a mixed integer linear programming (MILP) 56 

approach is used to schedule distributed energy resources operation and electricity-consumption household tasks 57 

so as to minimize a one-day forecasted energy consumption cost. In [9] the model predictive control (MPC) 58 

approach is applied for achieving economic efficiency in a microgrid with storages and controllable loads. In 59 

[10] an energy management algorithm based on mixed-integer nonlinear programming (MINLP) schedules the 60 

microgrid generation in a local energy market so as to maximize the utilization of distributed energy resources. 61 

In DG/DR management based on co-simulation elaborate microgrid models, developed using EnergyPlus [11], 62 

TRNSYS [12], and other programs [13], are coupled together with gradient-free optimization methods, using 63 

software environments like BCVTB [14].  Gradient-free optimization methods (e.g. genetic algorithms, Nelder-64 



Mead method, particle swarm optimization, pattern search) are used to evaluate and optimize the performance of 65 

the management strategy. In [15] a simulation based control scheme is used to improve management rules for a 66 

low-energy building controlled by a hierarchical fuzzy rule-based controller. The authors of [16] adopt co-67 

simulation to reduce energy consumption and occupant discomfort via management of heating, ventilating, and 68 

air conditioning (HVAC) systems. The controller of [17] utilizes an optimizer to minimize an electric cost-based 69 

objective function whose evaluation involves simulation of the building energy system. In [18] power imbalance 70 

between supply and demand sides is regulated via an interactive building power demand management strategy 71 

for the interaction of commercial buildings with a smart grid. In [19] a modified simulated annealing triple-72 

optimizer is introduced to find the optimal energy management strategy in terms of financial gain maximization 73 

in photovoltaics-supplied microgrids in a variable grid price scenario. 74 

Both receding horizon-based and co-simulation-based approaches rely on some model to predict the effect of 75 

a control policy in the future: in general, the energy-efficient control is performed in an open-loop fashion in the 76 

receding horizon case, and in a closed-loop feedback fashion using parameterized policies in the co-simulation 77 

case. In both approaches the curse of dimensionality emerges as the main problem. In fact, receding-horizon 78 

control needs simplified (often linearized) models so as to address the real-time requirements of the control 79 

problem: the adoption of more realistic nonlinear models makes the computations impossible to be solved in 80 

real-time. In the co-simulation case the problems are associated to the large number of policy parameters to be 81 

optimized and to the fact that gradient-free optimization methods do not scale to large-scale instances. 82 

Furthermore, while the vast majority of literature addresses minimizing of microgrid running costs, power 83 

consumption and reduction of the peak demand from the central grid, only a subset of DG/DR management 84 

strategy performs the DG/DR tasks while taking into account the end-user (building occupant) thermal comfort. 85 

It is recognized that end-user thermal comfort is a critical factor in determining the energy consumption in a 86 

microgrid. Local sensation [20] and comfort [21] of individual body parts, as well as whole-body sensation and 87 

comfort [22], influence the behavior of occupants: a large proportion of energy must be used for building 88 

climate control purposes to keep occupants thermally satisfied [23]. According to the EN15251 standard [24] 89 

and to the Renewable Energy Road Map [25] thermal comfort should not be violated except for small intervals 90 

during the building operation. In that sense, thermal comfort constraints should be satisfied by all acceptable 91 

DG/DR control strategies. The DG/DR management approaches that try to take thermal comfort into account 92 

often rely on dry-bulb temperature tracking as a comfort-maintaining criterion: a few examples include the 93 

model-based predictive controllers of [26], the stochastic model predictive controller of [27], the parallel model-94 



based predictive controller based on Lagrangian dual method of [28], or the multi-objective genetic algorithm of 95 

[29]. By relying only on dry-bulb temperature tracking, they neglect humidity and radiant temperatures that can 96 

lead in practice to insufficient estimation of actual thermal comfort. An exception is represented by the model 97 

predictive controller of [30], where the occupants’ thermal comfort sensation is addressed by the comfort index 98 

known as predicted mean vote (PMV): however, here the management problem is limited to one thermal zone 99 

with one actuator. More realistic estimate of thermal comfort can be achieved via: the predicted mean vote, also 100 

known as Fanger index, adopted both in the ASHRAE 55-2004 standard [31] and in the ENISO 7730 standard; 101 

the two-node model of human thermoregulation [33]; or the adaptive thermal comfort model added in the 102 

ASHRAE-55 2010 standard and based on mean outdoor temperature [34]. 103 

This work proposes a novel algorithm for optimal management of heating, ventilation, and air conditioning 104 

units in photovoltaic-equipped interconnected microgrids. Demand response management is achieved since, via 105 

regulation of the HVAC set point, the energy demand of the HVAC units and thus of the buildings is regulated 106 

(HVAC operation account for 50% of the energy demand of a building [35]). Distributed generation 107 

management or solar energy is achieved since every building, equipped with its own photovoltaic panel, is 108 

allowed to exchange energy with the other buildings. Demand response and distributed generation are optimized 109 

while guaranteeing acceptable thermal comfort conditions for the end users in terms of the Fanger index. A test 110 

case consisting of a microgrid with three buildings connected both to photovoltaic arrays and to the central 111 

electrical grid is used to evaluate the effectiveness of the proposed algorithm. The microgrid test case has been 112 

developed in EnergyPlus and it assumes the presence of a central controller that allows exchange of information 113 

and interaction among the buildings of the microgrid (fully-interconnected microgrid): rather than focusing on 114 

how each building behaves individually, the objective of demand response and distributed generation control 115 

strategy is to optimize the aggregate microgrid performance. The buildings should try to satisfy their needs 116 

using only the solar energy from the photovoltaic panels: a building that does not receive enough solar energy 117 

will have to buy extra energy from the central grid. The final objective is not only to manage the HVAC set 118 

points so as to reduce the energy absorbed from the central electrical grid, but also to guarantee acceptable 119 

thermal comfort conditions. The work has both a theoretical and an applied intent. From the theoretical side, the 120 

proposed system uses a simulation-based optimization procedure which aims at solving adaptively the 121 

Hamilton-Jacobi-Bellman (HJB) equation associated with the optimal control problem: the DG/DR tasks are 122 

parameterized in terms of the value function, and the proposed algorithm, namely Parameterized Cognitive 123 

Adaptive Optimization (PCAO) updates the value function in such a way to approach the solution of the HJB 124 



equation, thus achieving the optimal DG/DR control strategy. From the applied side, the energy demand and 125 

thermal comfort optimization is performed jointly: the proposed algorithm is shown to be able to handle the 126 

nonlinear and mutually interconnected nature of the tasks, and to be able to exploit the interconnections so as to 127 

optimize the microgrid aggregate performance. In order to explain the complex and interconnected nature of the 128 

problem it is shown that any optimization of the demand response side that does not take into account the 129 

distributed generation side (i.e. buildings optimize the HVAC set points without exchanging solar energy among 130 

each other) and any optimization of the distributed generation side that does not take into account the demand 131 

response side (i.e. buildings exchange solar energy under simple HVAC rule-based control) leads to far from 132 

optimal solutions. The simulation-based optimization used in this application is based on an adaptive 133 

optimization algorithm that has been developed and tested by the authors in different real-life large scale 134 

applications: traffic light management [36], control of robotic swarm [37], HVAC regulation in single thermal 135 

zones [38], conventional [39] and high-inertia office buildings [40]. The paper is organized as follows: Section 136 

II describes the problem setting and the control objectives. In Section III the optimization algorithm is 137 

presented. Section IV shows the simulation results. Section V concludes the paper.    138 

II. PROBLEM DESCRIPTION 139 

The microgrid used for the evaluation of the proposed control algorithm is composed of three commercial 140 

buildings which are connected both to photovoltaic panels and to the central electrical grid. The microgrid uses 141 

the electricity of the photovoltaic panels to fulfil its needs: if such power is not enough, the microgrid must 142 

absorb the necessary power from the central electrical grid. As shown in table I, each building of the microgrid 143 

is composed of ten thermal zones; each building is equipped with an HVAC unit whose operation can be 144 

regulated via ten temperature set points (one for each thermal zone). Each building has different energy needs. 145 

This is mainly due to the fact the buildings have different sizes. In particular, as can be seen in table I, the 146 

buildings cover a surface of 200 m
2
, 365 m

2
, and 100 m

2
, respectively. Because of the different sizes, each 147 

building mounts a different HVAC system, absorbing a maximum of 8.000, 15.000 and 4.000 BTU per hour, 148 

respectively. The second building, being the largest one, is equipped with a more powerful HVAC system that is 149 

able to satisfy the thermal needs of larger thermal zones. The HVAC system of the third building, on the other 150 

side, is less powerful than the other HVAC systems.  151 

It is assumed that the HVAC units are the only controllable loads of the buildings: the HVAC units can be 152 

controlled via the temperature set point. During occupancy hours, an uncontrollable base load also is present. 153 

Since the buildings host commercial activities, the occupancy schedule is 7.30am-4pm, and the base load is a 154 



constant load of 2 kW, 4 kW and 1 kW respectively, from 6am to 6pm. The uncontrollable base load is constant 155 

as typically happening in commercial activities [41]. The base load acts for some time outside the occupancy 156 

schedule in order to take into account extended operational time of appliances and machines. For similar reasons 157 

the HVACs are operated from 6am to 6pm, in order to accommodate for precooling actions and for possibly 158 

early/late workers. All the elements of the microgrid have been modelled and simulated using EnergyPlus; the 159 

microgrid is supposed to be located in Athens, Greece. Historical weather data collected during summer 2011 160 

and retrieved form the EnergyPlus website [42] are used in the simulations. 161 

 162 
Table I. Microgrid test case (commercial buildings, occupancy schedule 7.30am-4pm) 163 

 
Size 

No. 

Thermal 

zones 

No. 

HVAC 

set points 

Power HVAC units 
Size solar 

panel 

Base load 

(uncontrollable) 
6am-6pm  

Building #1 200 m2 10 10 8.000 BTU per hour 30 m2 2 kW 

Building #2 365 m2 10 10 15.000 BTU per hour 55 m2 4 kW 

Building #3 100 m2 10 10 4.000 BTU per hour 15 m2 1 kW 

 164 

The fact that each building has a different energy demand has been assembled intentionally so as to make the 165 

DG/DR control problem more challenging. As a matter of fact, the distribution of the solar energy among the 166 

three buildings plays a very important role. It is assumed that each building is equipped with its own solar panel, 167 

of 30 m
2
, 55 m

2
, and 15 m

2
, respectively. The proportion 30%-55%-15% has been chosen to match the 168 

proportion of the size of the buildings (200 m
2
, 365 m

2
, and 100 m

2
, respectively). In this work, two settings will 169 

be considered with respect to the solar energy distribution. In the first setting, each building will use exclusively 170 

the energy from its own panel without sharing any portion of energy with the other buildings. This setting is 171 

referred to as the isolated setting. In the second setting, the buildings can share their energy with the other 172 

buildings (according to the Kirchhoff's circuit laws). Since the buildings are assumed to be close to each other, 173 

no transportation losses in exchanging solar energy are considered. This second setting is referred to as the 174 

connected setting. When the solar power delivered to a building exceeds the building demand, it is assumed that 175 

the excess of power is dissipated as heat in the devices of the buildings (wasted redundant power) or that some 176 

safety device will be activated to dissipate it. No excess of electric power from the main grid is considered, since 177 

it is assumed that such excess is managed and regulated by the power utility. Intuitively, the isolated and 178 

connected settings will lead to very different results. In particular, the isolated setting is expected to waste more 179 

power. The connected setting allows for more flexibility since, depending on the requirements of each building, 180 

the photovoltaic energy can be distributed to the buildings in the right amount needed. The isolated setting 181 

represents an individual microgrid where each customer communicates with the energy source individually and 182 



individually controls its energy demand. In the connected setting it is assumed that the grid is fully-183 

interconnected, so that there is a central control unit that knows the thermal state of all buildings, as well as the 184 

external weather conditions and the available solar energy: via interactions among users and information 185 

exchange, a demand response/distributed generation program has the objective to optimize the aggregate 186 

microgrid performance. In the following, the demand response/distributed generation program of the microgrid 187 

is defined and the control actions that can be taken by the program in order to optimize the aggregate microgrid 188 

performance are explained. 189 

 190 

Figure 1. Demand response and distributed generation in a building of the microgrid 191 

 192 

1. Manipulable Inputs 193 

As the microgrid is tested during summer, the HVAC is used purely for cooling purposes. In the proposed 194 

microgrid, the task of a controller is to regulate thirty manipulable control inputs, i.e. the HVAC temperature set 195 

points in each thermal zone of the microgrid, for a total of thirty set points (figure 1). Via the regulation of the 196 

temperature set points, the controller is responsible (directly and indirectly) for two tasks: 197 

1. Demand response task (DR): the controller influences directly the energy demand of the HVAC 198 

systems, and thus a big portion of the energy demand of the buildings (in real life HVAC operation 199 

account for 50% of the total energy used in a building); 200 



2. Distributed generation task (DG): the controller influences indirectly the way energy will be 201 

absorbed from the main grid and from the photovoltaic panels (either in the isolated or in the 202 

connected setting) or the way energy will be shared among buildings (in the connected setting). 203 

 204 

It must be underlined that the DG and DR tasks are strongly interconnected and influence each other. In the 205 

connected setting, a building with a big energy demand will require a large amount of solar energy from the 206 

photovoltaic arrays, and might prevent the microgrid from satisfying the aggregate energy need using only solar 207 

energy: as a consequence, the microgrid will need to absorb energy from the central electrical grid. Through an 208 

optimal DG and DR management, the controller must achieve the following goals: 209 

 210 
a. Energy consumption: dynamically shape the energy demand of each building; 211 

b. Energy distribution: dynamically exploit the photovoltaic energy among the buildings; 212 

c. Energy cost: match the demand with the supply of solar energy so as to minimize the energy 213 

absorbed from the central grid; 214 

d. User thermal comfort: guarantee thermal satisfaction of the buildings’ occupants. 215 

 216 
These tasks are quantified in the next section introducing the aggregate performance index of the microgrid. 217 

2. Performance Index 218 

The solution to the optimization problem of consumption - distribution - cost - comfort can be translated to 219 

finding the global minimum of a given objective function. The function expresses the performance of building #i 220 

and of the aggregate microgrid, and consists of a power cost term and of a thermal comfort term: 221 

 𝑇𝑜𝑡𝑖(𝑡) = 𝐸𝑖(𝑡) + 𝐶𝑖(𝑡),             𝑇𝑜𝑡(𝑡) =  ∑ 𝐸𝑖(𝑡) + 𝐶𝑖(𝑡)3
𝑖=1   (1) 222 

At time t, 𝐸𝑖 is given in kW and 𝐶𝑖 in percentage of dissatisfied persons. As the daily power consumption of the 223 

microgrid is of the order of tens of kW, and the thermal comfort is a percentage typically lying between 0 and 224 

15%, the two terms are of a similar order of magnitude and no additional scaling is adopted. In principle, a 225 

scaling factor between the two terms in (1) can be introduced in order to emphasize a term with respect to the 226 

other. The cost in (1) is then summed up for every building, and then integrated over the entire day. The integral 227 

of the power cost term over time will give the energy consumption: for this reason, the notation 𝐸𝑖 is used in (1), 228 

where 𝐸 stands for energy. In the following, the terms energy demand and power demand will be used almost 229 

interchangeably. It must be noticed that, generally speaking, the two terms in (1) play an antagonistic role: in 230 

order to keep the user satisfied (from a thermal comfort point of view) large amounts of energy are typically 231 



required. Vice versa, management strategies giving emphasis to the reduction of the energy consumption 232 

typically need to sacrifice the thermal comfort of the users. However, these are just general considerations, since 233 

the total cost in (1) is not a static function, but it is subjected to the thermal dynamics of the buildings. Two 234 

management strategies that require very similar amounts of energy might achieve totally different comfort 235 

scores, according to how the energy is distributed throughout the day and among the buildings. 236 

1) Power Cost 𝐸𝑖 237 

The power cost of each building depends on the power demand 𝑑𝑖 of the building (e.g. the power requested 238 

by the HVAC unit and by the uncontrollable load) and on the solar power 𝑠𝑖 delivered to the building. Formally: 239 

 𝐸𝑖 =  𝑚𝑎𝑥 (0, 𝑑𝑖 − 𝑠𝑖)   (2) 240 

Equation (2) shows that, when the power consumption of a certain building is higher than the solar power 241 

that is delivered to it, the power cost is the difference between these two quantities. This difference can be called 242 

effective power, since it represents the power which is effectively paid in the bill. Otherwise, if the power 243 

consumption of the building is smaller than the solar power that is delivered, the cost is 0, because the building 244 

can completely satisfies its needs using only the solar power. The solar power is assumed to be free of charge 245 

(no charge in the bill), while only the power absorbed from the central electrical grid is paid (when 𝑑𝑖 > 𝑠𝑖). 246 

Note that 𝑠𝑖 is determined according to the particular adopted DG strategy: for example, a building can use 247 

exclusively the power generated by its own photovoltaic panel (in the isolated setting) or absorb a portion of the 248 

total solar power of the microgrid according to the Kirchhoff’s circuit laws (in the connected setting). It is 249 

important to notice that, in the isolated setting, the sum of (2) over every building in the microgrid is different 250 

than the difference between the total power demand of the microgrid and the total solar power. In fact, (2) 251 

considers the possibility that power might be in excess in some buildings (when 𝑑𝑖 < 𝑠𝑖), while lack of 252 

power might occur in other ones (when 𝑑𝑖 > 𝑠𝑖). When 𝑑𝑖 < 𝑠𝑖, the excess of power is redundant power or 253 

wasted redundant power. In fact, it is assumed that the redundant power in one building is completely wasted 254 

(via heat in appliances or via safety devices that dissipate excess of power). To reduce the amount of wasted 255 

redundant power and improve grid stability, we impose the constraint: 256 

 (𝑠𝑖 − 𝑑𝑖)/𝑑𝑖 < 15%   (3) 257 

at each timestep. Adopting the model described in [43], the photovoltaic generation is modelled according to the 258 

following equation: 259 



 𝑠𝑖 =  𝜂 𝑆𝑖  𝛼 𝐼𝛼  (1 − 0.005 (𝑡0 − 25)) (4) 260 

where, 𝜂 is the conversion efficiency of photovoltaic array (%), 𝑆𝑖   is the array area (in m
2
) of the array #i, 𝐼𝛼  is 261 

the solar radiation (in kW/m
2
), 𝑡0 is the outside air temperature (in °C). No transportation losses between 262 

buildings are assumed. Conversion losses are modelled via the conversion efficiency 𝜂. It is also assumed that 263 

the photovoltaic panels are oriented in the same direction and receive the same amount of solar radiation 264 

(different orientations can be taken into account by modifying the solar radiation 𝐼𝛼  with the position of the 265 

sun). The power demand of the microgrid is the sum of the HVACs power demand and the uncontrollable loads: 266 

several studies reveal that in most commercial application HVAC units are the only controllable loads, and that 267 

HVAC operation accounts for 50% the total building energy demand, with peaks of 70% during summer [35]. It 268 

is finally emphasized that the microgrid test case does not consider the presence of distributed electric storage 269 

devices. This is an intentional choice led by both practical and theoretical reasons. From the practical side, state-270 

of-the-art electric storage devices have a short life [44] and technological research on storage devices is still 271 

going on [45]. From the theoretical side, it is interesting to study to what extent an optimal DG/DR control 272 

strategy can shape the demand of the microgrid and reduce dependence on the central grid-supplied energy 273 

without the aid of storage devices. Summarizing, minimization of (2) takes into account the goals of energy 274 

consumption (a) and energy cost (c) directly, and the goal of energy distribution (b) indirectly. 275 

2) Thermal Comfort Cost 𝐶𝑖 276 

Povl Ole Fanger (1934-2006) elaborated in the 70’s a model for general thermal satisfaction called Predictive 277 

Mean Vote (PVM). The PMV is the index that provides the average thermal sensation through voting by a large 278 

group of people, expressed in the 7-point ASHRAE scale (+3 till -3, where +3=hot and -3=cold), for each 279 

combination of thermal environmental variables, their activity and clothing. The PMV model is based on the 280 

Fanger’s comfort equation, derived by combining six parameters (air temperature, mean radiant 281 

temperature, relative humidity, air speed, metabolic rate, and clothing insulation). According to EN15251 282 

standard [24] and to the Renewable Energy Road Map [25], in order to ensure a comfortable indoor 283 

environment, the PMV must be maintained at 0 in the 7-point ASHRAE scale, with a tolerance of ± 0.5 units. 284 

These limits should not be violated except for small intervals during the building operation. Instead of the PMV 285 

scale, it is more convenient to calculate the number of persons that are dissatisfied with a certain indoor 286 

environment: to this purpose the Predicted Percentage of Dissatisfied people (PPD) is defined via:  287 

 𝐶𝑖 = 𝑃𝑃𝐷 = 100 − 95 × 𝑒(−0.03353× 𝑃𝑀𝑉4)−0.2179× 𝑃𝑀𝑉2) (5) 288 



To achieve acceptable thermal conditions (± 0.5 units of PMV), the PPD must be kept approximately below 289 

10%, as shown in figure 2. Only temporary violations are admitted, while the average PPD should be kept below 290 

the 10% threshold. In order to limit temporary violation of PPD we impose the constraint:  291 

 𝐶𝑖 < 15% (6) 292 

at each timestep. This is suggested because otherwise dissatisfied people would overrule the decision of the 293 

DG/DR controller and alter the operation of the HVAC (e.g. by opening windows or by manually changing set 294 

points). Summarizing, minimization of (5) takes directly into account the goal of thermal comfort (d). 295 

 296 

 297 

Figure 2. Relationship between PMV and PPD 298 

3. Base Case Scenarios 299 

For comparison purposes, apart from the proposed method, four other DG/DR strategies have been tested. 300 

These four scenarios are summarized as follows: 301 

• Scenario 24-isolated: For every thermal zone, set the temperature set points of each HVAC unit at 24
o
 C 302 

(during the period from 6 am to 6 pm). Besides, deliver 30% of the total solar energy to the first building, 303 

55% to the second building, and the remaining 15% to the third; 304 

• Scenario 25-isolated: For every thermal zone, set the temperature set points of each HVAC unit at 25
o
 C 305 

(during the period from 6 am to 6 pm). Besides, deliver 30% of the total solar energy to the first building, 306 

55% to the second building, and the remaining 15% to the third. 307 

• Scenario 24-connected: For every thermal zone, set the temperature set point of each HVAC unit at 24
o
 C 308 

(during the period from 6 am to 6 pm). Besides, distribute the total solar energy proportionally to the 309 

energy demand of each building; 310 



• Scenario 25-connected: For every thermal zone, set the temperature set point of each HVAC unit at 25
o
 C 311 

(during the period from 6 am to 6 pm). Besides, distribute the total solar energy proportionally to the 312 

energy demand of each building. 313 

The terms “isolated” and “connected” indicate two different distributed generation strategies, while “24
o
 C” and 314 

“25
o
 C” indicate two different demand response strategies. The combination of these strategies gives rise to four 315 

different DG/DR control scenarios. With respect to the distributed generation strategies, it can be seen that the 316 

first two scenarios (24-isolated and 25-isolated) distribute the solar energy according to the proportion of the 317 

size of the solar panels, which mimes the proportion of the size of each building. That is, it is assumed that 318 

buildings use solar energy from their own panel without sharing solar energy among each other. This is a 319 

popular solution in most microgrids. However, it will be demonstrated that these two scenarios lead far from 320 

optimal results, since the optimal distribution cannot be constant but it must change during the day according to 321 

the energy demand of each building. The last two scenarios (24-connected and 25-connected) assume that the 322 

total solar energy will be distributed proportionally to the energy demand of each building, according to the 323 

Kirchhoff's circuit laws. That is, each building can share the energy generated by its own panel with the other 324 

buildings of the microgrid. The solar energy coming from this unique pool will be drawn by each building 325 

proportionally to their energy demand, according to the Kirchhoff's circuit laws. It will be demonstrated that, 326 

despite the improved performance of these two scenarios, results are far from optimal if the demand response of 327 

each building is not appropriately managed.  328 

With respect to the HVAC set points, it can be seen that the four control strategies suggest easy and common 329 

usage of HVACs, consisting of keeping the set point constant during office hours. These simple strategies are 330 

actually adopted in many real buildings. Some scenarios are more oriented toward thermal comfort at the 331 

expenses of energy consumption (24
o
 C); some other scenarios sacrifice thermal comfort so as to have reduced 332 

energy consumption (25
o
 C). It has to be noticed that in the four scenarios only the set points 24

o
 C and 25

o
 C 333 

have been chosen, because they lead to an acceptable trade-off energy/comfort: in fact, a constant set point at 334 

23
o
 C leads to high energy consumption, while the constant set point 26

o
 C leads to unacceptable thermal 335 

conditions. The objective of this work is to find the optimal DG/DR strategy that minimizes (1). It will be 336 

demonstrated that the optimal DG/DR strategy is none of the four base case scenarios.  The reason for this is 337 

that, in order to minimize (1), an intelligent DG/DR strategy must be developed that dynamically distributes the 338 

solar energy proportionally to the energy demand of each building, and at the same time dynamically changes 339 

the HVAC set points taking into account the building dynamics and the available solar energy. The control 340 



algorithm aiming at minimizing (1) is proposed in the following section. 341 

III. THE PCAO ALGORITHM 342 

Most of conventional control techniques that operate in real buildings achieve far from optimal performance: 343 

one of the main reason is that they employ decentralized control strategies for a single thermal zone, and they do 344 

not exchange information about what is happening in the other zones. This is also the case of the four scenarios 345 

that have been presented, which keep the HVAC set point in a thermal zone constant, no matter what is 346 

happening in the other thermal zones. Another important problem leading to far from optimal performance is 347 

that model-based control approaches typically employ very simple building models, mostly linear or based on 348 

the thermal resistance-capacitance (RC) paradigm. Such models are not always able to catch the complex 349 

building dynamics, thus leading to sub-optimal solutions. In order to address and possibly overcome such 350 

drawbacks, the objective is to develop a novel DG/DR control strategy under the following settings: 351 

 The control strategy is centralized, thus it operates according to a global state vector containing the thermal 352 

state of the entire microgrid (temperature and humidity of the thermal zones), as well as external weather 353 

conditions.  354 

 The control strategy is optimized via a simulation-based iterative procedure composed of: evaluating the 355 

current control strategy via an elaborate building simulation environment (EnergyPlus in our case), and; 356 

updating of the control strategy in such a way to improve performance at the next iteration. 357 

Both these settings requires more complex and difficult programming methods than decentralized methods: 358 

however, they give the possibility to catch and exploit in an optimal way the energy transfer between the 359 

thermal zones, thus achieving better performance. Similarly to all simulation-based procedures, the model is 360 

exploited to run simulations and to predict the future performance of a given control strategy. The control 361 

strategy proposed in this work, namely Parameterized Cognitive Adaptive Optimization (PCAO), enjoys the 362 

following features: (1) the solution to the Hamilton-Jacobi-Bellman (HJB) equation [46] associated with the 363 

optimal control problem is found iteratively; (2) the DG/DR tasks are parameterized in terms of the value 364 

function, and the proposed algorithm uses simulations to update the value function in such a way to approach 365 

the solution of the HJB equation. 366 

PCAO is a data-driven optimization procedure that can handle models built in elaborate simulations 367 

environments; the optimization is performed by accessing the thermal states of the microgrid in a “plug-n-play” 368 

fashion. Furthermore, PCAO has demonstrated to be able to handle large-scale optimization problems, which 369 



cannot be handled efficiently using other global optimizers: comparisons with the Nelder-Mead method are 370 

shown in [47], while comparisons with the genetic algorithm are carried out in [48]. In the following sections 371 

the problem formulation, algorithm and dimension of the problem at hand are presented in details. 372 

1. Problem formulation  373 

The analysis of the optimization algorithm is carried out supposing that the state can be measured. Based on 374 

these assumptions, the building dynamics are taken in the following form 375 

       
𝑑

𝑑𝑡
𝑥 (𝑡) = 𝐹(𝑥(𝑡), 𝑢(𝑡))        (7)  376 

𝐻(𝑥, 𝑢) ≤ 0 

where x, u are the state and the control vectors, respectively; F, H correspond to the dynamics and constraints of 377 

the system, respectively (implemented via the EnergyPlus simulator). The state comprises external weather 378 

conditions, weather forecasts, zone temperature and humidity: the control input comprises the HVAC set-points. 379 

The following constraints have been considered: 380 

 Constraint (6): instantaneous PPD value in each building < 15%; 381 

 Constraint (3): instantaneous excess of power (𝑠𝑖 − 𝑑𝑖)/𝑑𝑖 in each building < 15%; 382 

The constraints act at the level of each building. The first constraint has been considered since, even if 383 

temporary violations of the 10% threshold are considered, it is preferred such violations not being greater than 384 

15% (cf. figure 2). The second constraint has been considered since most equipment is designed to operate 385 

within ± 5-10% of nominal power; the "extra power" usually gets dissipated as heat in the device itself. 386 

Assuming that some extra dissipation mechanisms are implemented in the grid, excess of energy less than 15% 387 

is considered in order to avoid going beyond the tolerance of the devices, which might overheat or burn. The 388 

dynamics and constraints of the system are implemented via the EnergyPlus simulator. The system performance 389 

in a simulation period can be described as follows: 390 

 J =  ∫ 𝛱(x(s), u(s))ds
∞

0
      (8) 391 

where 𝛱 is the analytical form of the cost function in (1). After simple mathematic manipulations similarly to 392 

[49] (i.e. the introduction of a fictitious filtered version of the input 𝑢), the system is transformed into: 393 



 
𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡)) + 𝐵𝑢(𝑡)   (9) 394 

where x, u are transformed state vector and control, and f contains the transformed nonlinear dynamics (which 395 

are assumed to be unknown). The vector B =[0 I]
T
 is known. The performance index becomes 396 

 J =  ∫ 𝛱(x(s))ds
∞

0
    (10) 397 

where the constraints 𝐶(𝑥, 𝑢) in (7) are included in (10) as penalty functions. The following analysis is carried 398 

out based on (9) and (10). 399 

2. Control equations 400 

Although the approach that is presented can be implemented in a variety of nonlinear controllers (PieceWise 401 

Linear Control, PieceWise Nonlinear Control, etc.), for simplicity it is presented for the case where a linear 402 

controller can achieve satisfactory performance. The interested reader is referred to [50,52] for more general 403 

formulations. In fact, a linear controller has been verified to bring relevant improvements in the microgrid. The 404 

basic form of the linear controller to be optimized is as follows: 405 

 𝑢 = −𝐵𝑇𝑃 𝑥     (11) 406 

where x, u are the states (external weather conditions, indoor temperature and humidity) and control inputs 407 

(HVAC set points, percentage of delivered solar energy) of the system; P is a positive definite matrix to be 408 

optimized. In fact, following a dynamics programming approach [46], according to HJB equation, the controller 409 

optimizes the performance of the system is the solution of the following differential equation (The * indicates 410 

the optimal value): 411 

 𝑉∗(𝑥(𝑡)) = (
𝑑𝑉∗

𝑑𝑥
)

𝑇

(𝑓(𝑥) + 𝐵𝑢∗) = −𝛱(𝑥)  (12) 412 

where 𝑉∗ = 𝑥𝑇𝑃∗𝑥 is the optimal cost function and 𝑢∗ = −𝐵𝑇𝑃∗ 𝑥 is the optimal control. The optimal control 413 

matrix 𝑃∗ is found adaptively, by employing the algorithm described in table II and figure 3, and briefly 414 

introduced in the next section. 415 

Table II. The PCAO algorithm 416 

Initialize 

a) Set t =0.  

b ) select two positive constants  𝑒1 ≤ 𝑒2  and a positive number 𝑇ℎ 



c ) The matrix  𝑃̂(0) is initialized with a positive definite matrix satisfying: 𝑒1𝐼 ≤  𝑃̂(0) ≤ 𝑒2𝐼 

d ) Set a positive function 𝑎(𝑡), which is a constant positive 

function or a function relative to the time that satisfies : 

𝑎(𝑡) > 0, ∑ 𝑎(𝑡) = ∞,

∞

𝑡=0

∑ 𝑎(𝑡)2 < ∞ 

∞

𝑡=0

 

Step 1 
At time t, apply the controller of eq. (13) during the time interval [t, t + δt] and calculate 

𝜀(𝑥(𝑡), 𝑃̂) in eq. (15) 

Step 2 

Create a Linear In the Parameters (LIP) approximator of 𝜀(𝑥(𝑡), 𝑃̂): 

𝜀(𝑥(𝑡), 𝑃̂) = 𝜃𝑇𝜑 (𝑥(𝑡); 𝑃̂(𝑡)) 

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ∑ (𝜀 (𝑥(𝑖); 𝑃̂(𝑖)) − 𝜃𝑇𝜑 (𝑥(𝑖); 𝑃̂(𝑖)))
2

𝑡

𝑖=𝑡−𝛿𝑡𝑇

 

 𝜃 and 𝜑 are the vectors of parameter estimator and regression, respectively, while 𝑇 = 𝑚𝑖𝑛 (
𝑡

𝛿𝑡
, 𝑇ℎ) 

Step 3 

Apply the controller of eq. (11) throughout the whole duration of the simulation and calculate 

𝑃̂𝑏𝑒𝑠𝑡(𝑡), which is the best matrix that has been found, until that point: 

𝑃̂𝑏𝑒𝑠𝑡(𝑡) = arg 𝑚𝑖𝑛

𝑃𝑗(𝑠),𝑠=0,𝛿𝑡,2𝛿𝑡,…,𝑡

{∑ 𝜀𝑘 (𝑥(𝑡); 𝑃̂𝑘(𝑠))
2

𝑇

𝑡=0

} 

So that 𝑃̂𝑏𝑒𝑠𝑡 is the best matrix found so far that minimize the performance of the entire microgrid. 

Step 4 

Create N candidates (random perturbations ) of the matrix 𝑃̂𝑏𝑒𝑠𝑡(𝑡): 

 𝑃̂𝑐𝑎𝑛𝑑
(i)

= (1 − 𝑎(𝑡))𝑃̂𝑏𝑒𝑠𝑡(𝑡) + 𝑎(𝑡)𝛥𝑃̂(𝑖), i=1,2,…,N 

𝛥P̂(i) : random symmetric positive definite matrices P, that satisfy : 𝑒1𝐼 ≤ 𝛥P̂(i) ≤ 𝑒2𝐼  

Step 5 

The matrix that will be used by the controller (13) in the next time step is: 

𝑃̂(𝑡 + 𝛿𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑃̂𝑐𝑎𝑛𝑑

(i){𝜀(𝑥(𝑡), 𝑃𝑐𝑎𝑛𝑑
i)}

2
 

Step 6 Set t = t + δt and go to Step 1 

 417 

3. The algorithm 418 

It should be stressed here that, the previous equations are valid, a part from an approximation error o(1/L) 419 

due to the fact that the HJB equation is not solved exactly. When an approximation error is added in a gradient-420 

based algorithm, it should be small enough so as not to destroy its convergence properties. The algorithm PCAO 421 

however "bypasses" the above problem, minimizing the effect of the approximation term. Therefore, PCAO can 422 

provide good solutions also in cases where the term o(1/L) is large. As mentioned earlier, to get to the optimal 423 

controller 𝑢∗, the optimal matrix 𝑃∗ must be found. To do this, the algorithm first applies the control law 424 



 𝑢̂ = 𝑢̂(𝑥(𝑡); 𝑃̂)     (13) 425 

where 𝑃̂ provides an estimation of the unknown matrix P*. The next step is to find a way of measuring how far 426 

is this matrix from the optimal P*. Integrating equation (12), the optimal performance of the system controller 427 

can be calculated, for a time [t, t + δt], (where δt > 0, is a small discretization step): 428 

 𝛥𝑉(𝑥(𝑡)) ≈ − ∫ 𝛱(𝑥(𝑠))𝑑𝑠 + 𝑜(1
𝐿⁄ )

𝑡+𝛿𝑡

𝑡
    (14) 429 

where 𝛥𝑉(𝑥(𝑡)) = 𝑉(𝑥(𝑡 + 𝛿𝑡)) − 𝑉(𝑥(𝑡)). The error term, which results from the use of any other controller 430 

different from the optimum is defined as: 431 

  𝜀(𝑥(𝑡), 𝑃̂) = 𝛥𝑉̂(𝑡) + ∫ 𝛱(𝑥(𝑠))𝑑𝑠
𝑡+𝛿𝑡

𝑡
     (15) 432 

Equation (15) can be interpreted as a way to know the distance of the matrix 𝑃̂ from the optimum 𝑃∗. In order to 433 

minimize the term in (15) and consequently, the performance index, the matrix 𝑃̂̂ is updated at every iteration 434 

via the algorithm described in table II. The flow diagram of the PCAO algorithm is shown in figure 3. Figure 3 435 

highlights the presence of a primary online feedback loop where the DG/DR decisions are tested in real-time, 436 

and of a secondary simulation-based feedback loop where the performance of candidate DG/DR strategies are 437 

assessed via the (EnergyPlus) simulation model of the microgrid. It can be shown that the PCAO algorithm 438 

converges asymptotically to the optimal matrix 𝑃∗. The interested reader is referred to [51,52] for the stability 439 

properties of the proposed algorithm.   440 

 441 

 442 

Figure 3. PCAO flow diagram 443 



 444 

4. Dimension of the microgrid problem 445 

In the microgrid under consideration the optimization algorithm must be able to handle the following state of 446 

106 components: 447 

• 3 external conditions: outdoor temperature, humidity and radiation; 448 

• 12 predictions for the mean outside temperature and solar radiation for the next six hours; 449 

• 60 measurements of temperature and humidity in each thermal zone of each building; 450 

• 1 constant term (on the balance of the building); 451 

• 30 operating set point temperatures of each HVAC in each thermal zone. 452 

The total number of parameters that must be optimized corresponds to the elements of the symmetric matrix 𝑃 453 

in the optimal quadratic Lyapunov function, which are 454 

106 ×
106+1

2
= 5671   455 

Thus the problem classifies as a large-scale one: besides it is nonlinear, due to the nonlinear microgrid 456 

dynamics. 457 

IV. SIMULATION RESULTS 458 

This section is devoted to analyse the performance of the proposed PCAO-based DG/DR control strategy as 459 

compared with the four base case scenarios presented in section II.3. The four scenarios are useful to highlight 460 

trade-offs between energy consumption and comfort (24
o
 C vs. 25

o
 C) and also to highlight the advantage of 461 

sharing energy among buildings (isolated vs. connected setting). The performed simulations highlight the strong 462 

interconnection between energy demand and generation, since the energy demand is dynamically changed in 463 

such a way to exploit to the maximum extent the available solar energy. Energy consumption and thermal 464 

comfort are strongly connected since the HVAC operation influence directly the energy absorbed, but also the 465 

indoor climate. The figures and tables of this section will show the power consumption (in kW) and thermal 466 

comfort (%) for each building and for the whole microgrid. The simulations have been run using historical data 467 

from 3 days of July 2011 (July 5
th

 - 6
th

 - 7
th

). The figures show the results only for one day (July 5
th

), while the 468 

tables collect the performance of the microgrid during the entire 3-day period. The results are organized 469 

according to two groups: comparison of PCAO with the 24-isolated and the 25-isolated scenarios (with solar 470 

energy delivered according to 55%-30%-15%), and comparison of PCAO with the 24-connected and 25-471 



connected scenarios (with solar energy distributed proportionally to the energy demand). The comparisons are 472 

made with respect to the controller obtained via the PCAO algorithm. Finally, in section IV.3 a more advanced 473 

DG/DR control strategy based on a genetic algorithm is used for comparisons. 474 

1. Comparison with 24-isolated and 25-isolated 475 

In this comparison the two base case scenarios distribute the solar energy according to the fixed proportion 476 

30%-55%-15%, while PCAO distributes the solar energy proportionally to the energy demand of each building, 477 

according to the Kirchhoff's circuit laws. Table III shows the daily mean energy demand and the Fanger index 478 

during July 5
th

 - 6
th

 - 7
th

 for the aggregate microgrid under the different DG/DR control strategies. The total 479 

aggregate cost, which is the sum of the previous two terms, is also shown.  480 

Table III. Simulation results (July 5th - 6th - 7th). The values refer to the daily mean calculated over the three days for the 481 
aggregate microgrid. The red percentages indicate the cost increase with respect to the PCAO cost 482 

Microgrid aggregate 

costs 
PCAO 24-isolated 25-isolated 

Only DR        

(with isolated PV) 

Violation 10% power 

excess [min/day] 
  20 min 25 min        130 min         20 min 

Violation 10% PPD 

threshold [min/day] 
   0 min 0 min         85 min         15 min 

Energy [kWh]    15.8 20.7/31.0% 16.9/7.0% 18.8/19.0% 

Discomfort [%]    4.3   4.5/4.4% 7.9/83.7% 5.8/34.9% 

Total  cost   20.1 25.2/25.4% 24.8/23.4% 24.6/22.4% 

 483 

A comparison of the PCAO strategy with the two scenarios 24-isolated and 25-isolated reveals 484 

improvements (with respect to the total cost) ranging from 23.4% to 25.4%. Note that, because of the presence 485 

of loads that cannot be controlled, the improvements would be even bigger (ranging from 26% to 33% 486 

respectively) if only the power consumption due to controllable loads is considered. The last column of table III 487 

is also of interest: here the PCAO strategy is compared with a control strategy that optimizes the HVAC set 488 

points, but without exchanging any solar energy among the buildings: this is a control strategy that 489 

accomplishes only the demand response task, and it is thus called “Only DR”. Interestingly, despite the fact that 490 

this strategy outperforms the two scenarios 24-isolated and 25-isolated, it is far from optimal: the improvement 491 

of PCAO over this strategy is 22.4%. It is very interesting to note that the PCAO strategy achieves smaller 492 

power consumption and better thermal comfort at the same time: the reason for this performance will be 493 

explained in the section IV.2.  494 

One of the reasons why PCAO can do better than “24-isolated” and “25-isolated” is related to the fact that 495 

sharing solar energy is beneficial to the aggregate microgrids. This can be understood from figure 4, which 496 

shows the 55%-30-15%, solar energy distribution against the energy distribution obtained by PCAO (before 497 



6am and after 6pm the distribution is constant because the optimization is off). Because of the fact that the 498 

demand response of PCAO is highly dynamically changing through the day, the constant percentage of 499 

distributed generation cannot be optimal. The percentage of solar energy delivered to each building should also 500 

dynamically change, and this is one of the reasons why the results of the isolated base case scenarios are not 501 

optimal: figure 4 reveals that, with respect to PCAO, 24-isolated and 25-isolated deliver too much solar energy 502 

to buildings 1 and 3, and not enough solar energy to building 2. At the same time the optimal DG and DR tasks 503 

are highly connected: this is the reason why optimizing the HVAC set points without sharing energy (last 504 

column of table III) gives a far from optimal solution. Table III also reports to what extent some constraints are 505 

violated (in minutes/day): in particular, the constraints under consideration are the violation of 10% in 506 

instantaneous power excess and the violation of 10% in instantaneous PPD. Note that these constraints are 507 

tighter than the constraints (3) and (6): simulations reveal that (3), the violation of 15% in instantaneous power 508 

excess only occurs for 40 minutes in 25-isolated, and (6), the violation of 15% in instantaneous PPD never 509 

occurs. It is found that PCAO shapes the microgrid demand in such a way to have only for 10 minutes an excess 510 

of power of 10%: furthermore, the thermal comfort is always below the recommended threshold of 10%. 511 

 512 

 513 

Figure 4. Solar energy distribution for each building under different control strategies: PCAO strategy (solid line) and 514 
isolated 30%-55%-15% strategy (dashed line). Before 6am and after 6pm the distribution of solar power is constant because 515 

no power consumption is occurring and the PCAO optimization is switched off. 516 

2. Comparison with 24-connected and 25-connected 517 

In this comparison each scenario distributes the solar power proportionally to the power demand of each 518 

building. Figures 4-5-6 show the behavior of the base scenarios as compared with the PCAO control strategy, 519 
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for each single building inside the microgrid. For better readability, the simulations refer only to July 5
th

. Even if 520 

the distribution of the solar energy according to the Kirchhoff's circuit laws lead to improved results over the 521 

proportional distribution 55%-30-15%, the PCAO strategy can still make a difference, due to the fact that it also 522 

dynamically shapes the energy demand of each building. Table IV reveals improvements ranging from 20.4% to 523 

20.9%. The improvements would be even bigger (ranging from 25% to 30%, respectively) if only the power 524 

consumption due to controllable loads was considered. Table IV reveals that PCAO not only improves the total 525 

cost, but also the energy cost and the thermal cost singularly. This seems to violate the idea according to which 526 

improved thermal comfort requires more energy consumption: a close inspection of figures 5-6-7 reveals the 527 

intelligent mechanism that allows the PCAO strategy to improve both power and comfort cost.  528 

 529 

Table IV. Simulation results (July 5th - 6th - 7th). The values refer to the daily mean calculated over the three days for the 530 
aggregate microgrid. The percentage indicates the cost increase (in red) or decrease (in blue) with respect to the PCAO cost 531 

Microgrid aggregate 

costs 
PCAO 

24-

connected 

25-       

connected 

Violation 10% power 

excess [min/day] 
  20 min 0 min        95 min 

Violation 10% PPD 

threshold [min/day] 
   0 min 0 min         85 min 

Energy [kWh]    15.8 19.8/25.3% 16.3/3.2% 

Discomfort [%]    4.3   4.5/4.4% 7.9/83.7% 

Total cost   20.1 24.3/20.9% 24.2/20.4% 

 532 
 533 

 534 

 535 

Figure 5. Building 1. Power demand and thermal comfort under different control strategies: PCAO (black solid line), 24-536 
connected (blue solid line) and 25-connected (red solid line). The PV power is also shown (dashed lines). 537 
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 538 

Figure 6. Building 2. Power demand and thermal comfort under different control strategies: PCAO (black solid line), 24-539 
connected (blue solid line) and 25-connected (red solid line). The PV power is also shown (dashed lines). 540 

 541 

 542 

Figure 7. Building 3. Power demand and thermal comfort under different control strategies: PCAO (black solid line), 24-543 
connected (blue solid line) and 25-connected (red solid line). The PV power is also shown (dashed lines). 544 

 545 

Figures 5-6-7 show that the PCAO strategy shapes the power demand in the following way: late in the 546 

morning, when enough solar power is available, the HVAC units run at increased power so as to overcool the 547 

building and achieve a good PPD score. In the afternoon, when less solar power is available, PCAO sacrifices 548 

(in an optimal sense) the PPD index, because otherwise the buildings would be forced to absorb too much 549 

energy from the central grid. Notice that the power consumption of PCAO in the afternoon is smaller than the 550 
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power consumption of 24-connected and 25-connected.   551 

Thus the PCAO strategy realizes that the buildings have a thermal inertia that can be exploited. This 552 

intelligent mechanism allows the minimization of the energy consumption (improvements ranging from 3.2% to 553 

23.5%, respectively) and of the thermal discomfort (improvements ranging from 4.4% to 83.7%, respectively) at 554 

the same time. With the respect to the violation of constraints, it can be noted how, as expected, the isolated 555 

setting wastes more redundant power than the connected scenario.  556 

3. Comparison with genetic algorithm 557 

The proposed four base case scenarios are common practice DG/DR control strategies which employ simple 558 

rules: in order to compare the PCAO algorithm with a more advanced DG/DR control strategy, a genetic 559 

algorithm (implemented in the Matlab Optimization Toolbox [53] by the function ga) has been adopted to 560 

minimize the cost function (1). A genetic algorithm has been chosen, since this algorithm is adopted in many 561 

simulation-based approaches [54]. The genetic algorithm optimizes the cost function (1) in a simulation-based 562 

fashion, using a similar architecture as in figure 3. Three different implementation of the genetic algorithm have 563 

been tried: in the first one the genetic algorithm attempts to optimize the 5671 elements of the symmetric matrix 564 

P of the quadratic Lyapunov function. In the second implementation the genetic algorithm attempts to optimize 565 

the 106×10=1060 elements of the linear feedback vector K that maps the 106 variables of the feedback vector of 566 

section III.4 into the 10 control inputs. Unfortunately, both implementations led to unsatisfactory results. In fact, 567 

ever after thousands of iterations, the genetic algorithm was not able to provide relevant improvement with 568 

respect to the 24-connected and 25-connected strategies (improvements smaller than 2% have been found). This 569 

is probably due to the huge search space arising from the large number of parameters to be optimized. For this 570 

reason, a less computationally expensive open-loop DG/DR strategy has been implemented: by open-loop 571 

strategy it is meant that the DG/DR decide the daily profile of the HVAC set points not as a function of the state 572 

of the microgrid, but as the result of a receding-horizon optimization. In this third implementation of the genetic 573 

algorithm, the optimization is called to decide, from 6am to 6pm, the profile of 30 HVAC set points every 60 574 

minutes: this profile results in 30×12=360 decision parameters, which can be better handled by the genetic 575 

algorithm. The results of the third implementation of the genetic algorithm are shown in table V. The PCAO 576 

algorithm can outperform the genetic algorithm by 10.1% in energy consumption, 18.6% in thermal comfort and 577 

10.4% in total cost. Similar violations of power excess and PPD constraints are observed. The reasons for the 578 

sub-optimal performance of the genetic algorithm might be that 360 decision parameters is still a big search 579 

space for the genetic algorithm, and that the HVAC set points should be scheduled more often than every 60 580 



minutes (due to its closed-loop feedback nature, the PCAO algorithm can act on the HVAC set points 581 

continuously). 582 

Table V. Simulation results (July 5th - 6th - 7th). The values refer to the daily mean calculated over the three days for the 583 
aggregate microgrid. The red percentage indicates the cost increase with respect to the PCAO cost 584 

Microgrid aggregate 

costs 
PCAO Genetic 

Violation 10% power 

excess [min/day] 
  20 min 20 min 

Violation 10% PPD 

threshold [min/day] 
   0 min 0 min 

Energy [kWh]    15.8 17.4/10.1% 

Discomfort [%]    4.3 5.1/18.6% 

Total cost   20.1 22.5/10.4% 

 585 

4. Computational time 586 

The simulation section is concluded with considerations about the computational time of the proposed 587 

PCAO algorithm. A workstation with quad-core processor at 3.6 GHz, 10MB cache, RAM 8GB has been used 588 

for the simulations. Working with a linear-in-the-parameters estimator of dimension 15000, and with N = 5000 589 

candidate DG/DR controllers, the time required at each iteration to train the estimator (step 2 of table II) is 590 

around 1 minute. The time needed for the simulation-based evaluation of the controller (step 3 of table II) 591 

requires running one EnergyPlus simulation: in 2-3 minutes it is possible to evaluate the performance of a 592 

controller over a horizon of 8-10 days. Finally, steps 4 and 5 of table II require another minute. The overall 593 

update iteration (i.e. the secondary loop of figure 3) is therefore feasibly implementable online adopting a time 594 

step of 10 minutes. It can also be considered that sometimes, because of safety reasons, the grid operator might 595 

prefer not to change DG/DR controller from one time step to the other, and might prefer keeping the same 596 

controller for the entire day. In such a situation, the PCAO strategy can be adopted as an offline optimization 597 

strategy. In this case both loops in figure 3 are performed offline and the optimization can run after 6pm outside 598 

occupancy hours, till convergence, using the data collected during the last day, and possible weather predictions 599 

based on historical data for the next day(s). In this offline mode it has been found that PCAO converges after 600 

around 4 to 5 hours of calculations, after which the optimal DG/DR strategy of the microgrid over the next 2 601 

days is obtained. As compared with a genetic algorithm with a population of 5000 candidate controllers (the 602 

same number of candidate solution evaluated by the PCAO estimator), the computational time required to 603 

evaluate the performance index of the entire population is 2minutes/controller×5000controllers ≈ 7 days. In 604 

fact, the computational advantage of PCAO is that the candidate DG/DR strategies are evaluated by the 605 



estimator, and only the best one is evaluated via an EnergyPlus simulation. The total computational time is thus 606 

drastically reduced. In order to reduce the computational effort of the genetic algorithm, the population of 607 

candidate DG/DR controllers has been reduced to 300 and, in order to obtain the results of table V, the genetic 608 

algorithm has been run for 1 week of calculations. 609 

V. CONCLUSIONS 610 

The paper presented a novel control algorithm for joint demand response and thermal comfort optimization 611 

in photovoltaic-equipped interconnected microgrids. The main contributions of the paper were: (a) contrary to 612 

many state-of the-art approaches that rely on simplified linear models, this paper employed a realistic nonlinear 613 

microgrid modelled, modelled in an elaborate energy building simulation program (EnergyPlus), for the 614 

synthesis and evaluation of the proposed control strategy; (b) the optimization was performed under a realistic 615 

thermal comfort model (Fanger index), and the thermal satisfaction of the end user is part of the performance 616 

index to be optimized;  (c) the optimization of the energy demand via HVAC management is performed jointly 617 

with the solar energy distribution; it was also shown that HVAC management leads to far from optimal results if 618 

solar energy is not shared in the microgrid. Comparisons with rule-based DG/DR strategies have been 619 

performed; the proposed algorithm showed improvements ranging from 23.4% to 25.4% with respect to rule-620 

based DG/DR strategies that do not share solar energy among buildings, and improvements ranging from 20.4% 621 

to 20.9% with respect to rule-based DG/DR strategies that share solar energy among buildings. While the base 622 

case scenarios achieved good thermal comfort only at the expense of very high energy consumption, or low 623 

energy consumption at the expense of unacceptable thermal comfort, the proposed optimization algorithm 624 

integrated the microgrid with the photovoltaic system and sensibly reduced dependence from the central grid. 625 

Improvements of 10.4% with respect to an alternative genetic-based DG/DR strategy have also been achieved. 626 

The proposed DG/DR strategy achieved the optimal between the following tasks; the energy absorbed from the 627 

main grid was reduced, the energy demand of each building was balanced with the solar energy, while taking 628 

into account the thermal comfort of the occupants. The intelligent mechanism leading to improved performance 629 

can be summarized as follows: while dynamically changing the HVAC set points, the proposed algorithm 630 

exploited the thermal inertia of the buildings to reduce the cooling action during the afternoon, when the solar 631 

energy decreases, because otherwise the buildings would be forced to absorb too much energy from the central 632 

grid. This intelligent mechanism was performed while improving at the same time the thermal comfort. 633 
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