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SUMMARY

Proportional Integral Derivative (PID) controllers dominate the industry and are used in
more than 90 percent of machines in this era. One of the reason for the popularity of
these controllers is the existence of easy to use frequency-domain analysis tools such as
loop-shaping for this type of controller. Due to the advancement of technology in recent
decades, industry needs machines with higher speed and precision. Thus, an advanced
industry-compatible control capable of a simultaneous increase in precision and speed
is needed. Unfortunately, linear controllers, including integer and fractional order con-
trollers, cannot satisfy this requirement of industry because of fundamental limitations
such as the “water-bed" effect. In other words, precision and speed are conflicting de-
mands in linear controllers, and designers should consider a proper trade-off between
them when they tune these controllers.

The reset control strategy which is one of the well-known non-linear controllers, has
shown a great capacity to overcome the limitation of linear controllers. In our group, a
new type of reset compensator, which is termed “Constant in gain Lead in phase (CgLp)”,
has been proposed as a potential solution for this significant challenge. Considering the
first harmonic of the steady-state response of the CgLp compensator, which is called
the Describing Function (DF) analysis, this compensator has a constant gain while pro-
viding a phase lead. As a result, this novel compensator can improve the precision of
the control system, while simultaneously maintaining the high quality level of transient
response (throughput of the system). As mentioned before, industry favours designing
controllers in the frequency-domain because it provides an easy to use tool for perfor-
mance analysis of control systems. Therefore, in order to interface this compensator well
with the current control design in industry and broaden its applicability, it is important
to study this type of reset compensator in the frequency-domain.

So far, CgLp compensators have been studied in the frequency-domain using the DF
method. However, there are some major drawbacks which have to be solved in order
to make these compensators ready for industry utilization. Essentially, there is a lack
of knowledge about the closed-loop steady-state performance of reset control systems.
In addition, since the high order harmonics generated by CgLp compensators are ne-
glected in the DF method, this method by itself is not an appropriate method for pre-
dicting open-loop and closed-loop steady-state performance, particularly for precision
motion applications. Second, it is necessary to develop an intuitive frequency-domain
stability method to assess the stability of CgLp compensators, similar to the Nyquist plot
for linear controllers. Finally, to achieve a favourable dynamic performance, it is highly
needed to propose a systematic frequency-domain tuning method for this type of reset
compensators.

The aim of this thesis is to address the three aforementioned major questions and
provide a non-linear loop-shaping approach for analyzing CgLp compensators in the
frequency-domain. For this purpose, in the first step, sufficient conditions for the exis-
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tence of the steady-state response for the closed-loop reset control systems driven by pe-
riodic references are given. Furthermore, a framework is developed to obtain the steady-
state response and define a notion of closed-loop frequency response, including high
order harmonics. From the precision perspective, pseudo-sensitivities for reset control
systems are defined which accurately predict the closed-loop performance of reset con-
trol systems.

In the next step, an intuitive frequency-domain method for assessing the stability of
CgLp compensators is developed. Thanks to this developed approach, similar to linear
controllers, it is possible to directly determine the stability of this type of reset control
systems using frequency response measurements. To make this non-linear loop-shaping
easy to use, most of these calculations, which are provided for frequency-domain analy-
sis of reset control systems, are embedded in a user-friendly toolbox.

Finally, to accomplish the non-linear loop-shaping, the defined pseudo-sensitivities
and the frequency-domain stability method are utilized to provide a reliable and system-
atic frequency-domain tuning method for CgLp compensators. Furthermore, different
performance metrics of a CgLp compensator, which is tuned by the proposed method,
are compared with those of a PID controller on a precision positioning stage. The results
show that this method is effective, and the tuned CgLp can achieve more favourable dy-
namic performance than the PID controller for the precision motion stage. In this empir-
ical example, it was demonstrated that using CgLp compensator improve the precision
performance of the stage by 60% without devastating the transient response. Hence, it
was practically shown that CgLp compensators overcome the “water-bed effect".



SAMENVATTING

Proportional Integral Derivative (PID) -regelaars domineren de industrie en worden te-
genwoordig in meer dan 90 procent van de machines gebruikt omdat ze eenvoudig te
gebruiken zijn vanwege de beschikbaarheid van frequentiedomein analyse tools zoals
loop-shaping voor dit type regelaar. De industrie vooruit gemaakt vereist de industrie
machines met steeds hogere snelheid en precisie. Bedrijven zijn dus geïnteresseerd in
geavanceerde, industrie-compatibele regelaars, voor zowel een toename in precisie als
in snelheid. Helaas kunnen lineaire regelaars, zowel de integer als fractional order ty-
pen, niet voldoen aan deze eis van de industrie vanwege hun fundamentele beperking:
het water-bed effect. Met andere woorden, in lineaire regelaars zijn precisie en snel-
heid tegenstrijdig waardoor ontwerpers een goede afweging moeten maken tussen beide
wanneer ze deze regelaars instellen.

Een van de bekende niet-lineaire regelaars, de Reset regelaar, heeft een groot poten-
tie getoond om de beperking van lineaire regelaars te overwinnen. In onze groep is een
nieuw type reset compensator, genaamd de “ Constant in gain Lead in phase (CgLp) aan-
gedragen als mogelijke oplossing voor deze belangrijke uitdaging. Lettend op de eerste
harmonische van de steady-state respons van de CgLp-compensator, genaamd de De-
scribing Function (DF)-analyse, heeft deze compensator een constante versterking en
tegelijkertijd een vasevoorsprong. Hierdoor kan deze nieuwe compensator de precisie
van het regelsysteem verbeteren, terwijl het tegelijkertijd in staat is om het van een hoge
kwaliteit dynamische respons te voorzien (doorvoer van het systeem). Zoals vermeld
geeft de industrie de voorkeur aan het ontwerpen van regelaars in het frequentiedomein
omdat het een eenvoudig te gebruiken hulpmiddel is om de prestatie van regelsysteem
te analyseren. Daarom, om deze compensator goed te laten aansluiten op het huidige
regelontwerp in de industrie en het daardoor breder toepasbaar te maken, is het belang-
rijk om dit type reset compensator in het frequentiedomein te bestuderen.

Tot nu toe zijn CgLp-compensatoren bestudeerd in het frequentiedomein met be-
hulp van de DF-methode. er zijn echter enkele grote nadelen die moeten worden op-
gelost om deze compensatoren geschikt te maken voor de industrie. Er is voorname-
lijk een gebrek aan kennis over de gesloten-keten steady-state-prestaties van reset regel-
systemen. Daarnaast worden de harmonischen van hoge orde die worden gegenereerd
door CgLp-compensatoren verwaarloosd in de DF-methode. Daarom is deze methode
op zichzelf geen geschikte methode voor het voorspellen van steady- state prestaties met
open- keten en gesloten- keten; met name voor toepassingen met precisie-beweging.
Ten tweede is het essentieel om een intuïtieve frequentiedomein-stabiliteitsmethode te
ontwikkelen om de stabiliteit van CgLp-compensatoren te beoordelen welke vergelijk-
baar met de Nyquist-plot voor lineaire regelaars. Ten slotte, om een gunstige dynami-
sche prestatie te bereiken, het is hard nodig om een systematische methode voor het
afstemmen van het frequentiedomein voor dit type reset compensatoren op te stellen.

Het doel van dit proefschrift is om de hierbovengenoemde drie hoofdvragen te be-
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antwoorden en een niet-lineaire loop-shaping-benadering te bieden voor het analyse-
ren van CgLp-compensatoren in het frequentiedomein. Als eerste stap om dit doel te
bereiken worden voldoende voorwaarden gegeven voor het verkrijgen van een steady-
state respons voor het gesloten-keten reset regelsysteem, aangestuurd door periodieke
referenties. Daarna wordt een raamwerk ontwikkeld om de steady- state respons te ver-
krijgen en om een begrip van closed-loop frequentierespons te definiëren, inclusief har-
monischen van hogere orde. Vanuit precisie-perspectief worden pseudo-gevoeligheden
voor reset regelsystemen gedefinieerd die nauwkeurig de gesloten-keten prestatie van
reset regelsystemen voorspellen.

In de volgende stap worden intuïtieve frequentiedomein methoden ontwikkeld om
de stabiliteit van CgLp-compensatoren te beoordelen. Dankzij deze ontwikkelde bena-
dering, welke vergelijkbaar is met lineaire regelaars, is het mogelijk om de stabiliteit van
dit type reset regelsystemen rechtstreeks te bepalen met behulp van de frequentieres-
pons metingen. Om deze niet-lineaire loop-shaping gebruiksvriendelijk te maken, zijn
de meeste berekeningen die bedoeld zijn voor de frequentiedomeinanalyse van reset re-
gelsystemen ingebed in een gebruiksvriendelijke toolbox.

Ten slotte worden de gedefinieerde pseudo-gevoeligheden en de frequentiedomein-
stabiliteits methode gebruikt om een betrouwbare en systematische frequentiedomein
afstemmingsmethoden voor CgLp-compensatoren te bieden om niet-lineaire loop-shaping
te verkrijgen. Bovendien worden verschillende prestatiematen van de CgLp-compensator,
welke is ingesteld met de voorgestelde methode, vergeleken met die van een PID-regelaar
op een precisie-positioneerplatform. De resultaten laten zien dat deze methode effectief
is en dat de afgestemde CgLp gunstiger dynamische prestaties kan bereiken dan de PID-
regelaar voor de bewegingsprecisie het platform. In dit empirische voorbeeld is aange-
toond dat het gebruik van de CgLp-compensator de precisie prestaties het platform met
60% verbetert zonder afbreuk te doen aan de dynamische respons. Het voorbeeld leat
dat de CgLp methode het water-bed effect overwint zowel in theorie als in de praktijk.



PREFACE

The main outcome of my research during four years on "Frequency-Domain Analyzing
of Constant in gain Lead in phase (CgLp) reset compensators" is this thesis, which in-
cludes six chapters and three appendices. Although the scientific contribution during
my PhD study resulted in seven journal and six conference papers, which can be found
the list of publication C, four major of those journal papers are placed in chapters two
till five. Also, two of the conference papers are presented in Appendix B and C. Since
chapters two till five and Appendix B and C mostly contain papers that are published
or submitted for peer review to journals and conferences, there are several repetitions,
particularly in the introduction and preliminaries of those chapters. Moreover, since
the sequence of those chapters does not follow a chronological pattern, there are some
sections in upcoming chapters which are cited in previous chapters. In this regard, the
author apologizes for any inconvenience during reading this thesis.

Ali Ahmadi Dastjerdi
Delft, May 2021
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1
INTRODUCTION

Ali AHMADI DASTJERDI

In this chapter, the significant challenge that linear controllers are faced with is briefly
recalled. Then, the preliminaries about reset controllers, and “Constant in gain Lead in
phase (CgLp)" compensators are provided. Next, the research objective is elaborated, and
the outline of the thesis is presented.

1
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2 1. INTRODUCTION

Today, high-tech industry requires machines with ever increasing speed and precision
which causes the performance specifications of controllers to become extremely de-
manding. Consequently, companies are interested in advanced industry-compatible
control capable of a significant and simultaneous increase in precision and speed. Lin-
ear Proportional-Integral-Derivative (PID) controllers still have been applied in 90% of
the high-tech industry are no longer sufficient to meet these new performance speci-
fications [1–3]. Recently, Fractional Order (FO)-PID controllers have tried to solve this
significant barrier (see Chapter 2). Although FO-PID controller is offering more design
freedom compared to classical PID controller and makes this problem less severe, it is
a type of linear controller and its performance is confined [4]. In fact, this limitation
comes from the inherent linearity of these FO-PID and classical PID controllers which
makes them not suited to handle increasing the precision and speed simultaneously.

1.1. LIMITATION OF LINEAR CONTROLLERS

S INCE there is a relation between Bode’s gain and phase of linear control systems,
linear controllers are not capable of increasing the precision and speed1 simulta-

neously [1–3]. In this section, this limitation is elaborated in both time-domain and
frequency-domain. From the frequency-domain viewpoint, in PID controllers, propor-
tional action controls the tracking speed (also known as "bandwidth"), integral action
controls tracking precision, and derivative action ensures the stability of the system [1–
3].The loop-shaping approach (either manual or automated) is a widespread technique
in the frequency-domain for designing PID controllers because it directly gives a deep
insight into the stability, precision and bandwidth of the control system by looking at
the open-loop of the system.

From the loop-shaping perspective, two requirements have to be fulfilled for control
motion applications. First, the control system should have high open-loop gains at low
frequencies to ensure an acceptable tracking and disturbance rejection performances,
and have low gains at high frequencies to avoid noise amplification. This can be ensured
by a constant large negative slope (-2 or lower) as shown with the green and gray line
in Figure 1.1. Second, the system should have enough phase margin (the amount of
the phase above −180◦) at bandwidth to assure the stability. However, this can only be
achieved by a gain slope of (ν=−1). Obviously, these two requirements directly conflict
with each other. This leads to a trade-off between precision and speed [1].

Recently, FO calculus entails using non-integer orders of derivative and integral ac-
tion (for more details see Chapter 2). This allows for more flexible control design where
the gain slope around the bandwidth is not restricted to -1, but it can be any real num-
ber depending on the required phase margin. Also, nI and nF (gain slope at low and
high frequencies, see Figure 1.1) could be any real number lower than -2. This increased
freedom helps in reducing the effect of the precision-speed trade-off. This trade-off can
be explained by "water-bed" effect in the noise sensitivity frequency response [1–3].

1Note that in this thesis, speed or throughput of a control system means the time it takes that the transient
response of the system dies out (settling time).
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Figure 1.1: Open-loop frequency response of a conventional control system

According to linear control theory,∫ ∞

0
Ln(|S( jω)|)dω= 0, (1.1)

for every stable Linear Time Invariant (LTI) system with no RHP pole and zeros which
has at least two more poles than zeros . Thus, if some control action reduces the sensi-
tivity amplitude in a certain frequency range, then the sensitivity will increase in other
frequency ranges. For example, if the tracking and disturbance rejection performances
of a linear control system are improved using an extra integrator (PI 2D), the phase mar-
gin of the system decreases which results in a higher peak of sensitivity (the modules
margin).
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Figure 1.2: Step response of a conventional control system

This limitation can also be explained in the time-domain. To this end, the step re-
sponse of a precision positioning stage, which is controlled by a PID controller, is shown
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in Figure 1.2. The step response of a control system has important specifications which
give information about the properties of the system. These specifications are:

• Rise time (tr ): the time at which the output of the system becomes equal to the
reference (or in some applications 90% of the reference) for the first time.

• Overshoot (Mp ): the difference between the peak of the response of the system
and the amplitude of reference step input.

• Settling time (ts ): the time at which the output of the system has entered and re-
mained within a specified error band.

• Steady-state error: the deviation of the output of system from reference during
steady-state ( lim

t→∞e(t )).

These specifications have relations with the open-loop frequency response of motion
control systems (Figure 1.1). Rise time (tr ) is inversely dependent on the bandwidth of
the system. Overshoot (Mp ) is inversely related to the phase margin, and settling time
(ts ) has approximately inverse relation by the phase margin and bandwidth of the sys-
tem. The steady-state error of the system is determined by the slope gain of the system
at low and high frequencies (nI and nF ). Thus, if the steady-state error (precision) of the
system is improved by decreasing the slope of the system at high and low frequencies, the
amplitude of overshoot and settling time will increase (throughput decreases). This also
implies the mentioned trade-off between precision and speed in linear controllers [1–3].

1.2. RESET CONTROL SYSTEMS

R ECENTLY, it has been shown that concept of “Constant in gain Lead in phase (CgLp)"
compensator has prospects to reduce this trade-off [5–8]. It is because (unlike differ-

entiator) CgLp can give a phase lead without changing the gain of the system. Since the
CgLp compensator is a type of reset element, it is noteworthy to recall basic principles
of reset elements. The state-space representation of a reset elements is,

ẋr (t ) = Ar xr (t )+Br e(t ), e(t ) 6= 0,

xr (t+) = Aρx(t ), e(t ) = 0,

ur (t ) =Cr x(t )+Dr r (t ),

(1.2)

where Ar , Br , Cr , and Dr are the dynamic matrices of the base linear system of the reset
element, e(t ) and u(t ) are the error input and control output, respectively. When the
reset condition is not satisfied (e(t ) 6= 0), the system has a linear dynamic behaviour, and
when the reset condition becomes true (e(t ) = 0), the states reset to new values by Aρ

(reset matrix). Note that the transfer function BLS(s) =Cr (sI −Ar )−1Br +Dr is called the

base linear transfer function of the reset element and (���
�: Aρ

BLS(s)) denotes that the controller
with the base linear transfer function BLS(s) resets with the reset matrix Aρ .

The first reset element, which is a Clegg Integrator (CI), was introduced by Clegg
in 1958 [9]. A CI is an integrator which resets its state to zero when its input crosses
zero. In comparison with a simple linear integrator, CI provides less overshoot. This
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can be justified by the fact that considering only the first harmonic of the output of
CI (Describing Function (DF) method), it produces less phase lag at the cross-over fre-
quency than the linear one. To have more design freedom, First Order Reset Element
(FORE) [5, 10, 11] and Second Order Reset Element (SORE) have been proposed [5, 12].
In addition, to enhance the performance of reset control systems, several techniques
such as reset band [13, 14], fixed reset instants [15], partial Reset (resetting subset of
states or resetting to non-zero values), and PI+CI approaches [16] have been studied.
Using partial reset technique (Aρ 6= 0) in cases of FORE and SORE, Generalized First Or-
der Reset Element (GFORE) and Generalized Second Order Reset Element (GSORE) have
been introduced [5, 17]. Moreover, in order to soften the non-linearity of reset elements,
new structures have been developed (for more details, see Chapter 4).

1.3. DF OF RESET CONTROL SYSTEMS

R ESET compensators are analyzed using the DF method in the frequency-domain.
To study the reset element (1.2) using the DF method, a sinusoidal reference r (t ) =

a0 sin(ωt ), ω > 0 is applied and the output is approximated by the first harmonic of the
Fourier series expansion of the steady-state response (provided if exists). In order to have
a well-defined steady-state response, it is assumed that Ar has all eigenvalues with neg-

ative real part and Aρe
Ar π
ω has all eigenvalues with magnitude smaller than one [17]. The

DF of the reset element (1.2) is obtained in [17] as

NDF (ω) = a1(ω)e jϕ1(ω)

a0
=Cr ( jωI − Ar )−1(I + jΘ(ω))Br +Dr , (1.3)

where

Θ(ω) = −2ω2

π
(I +e

πAr
ω )

(
(I + Aρe

πAr
ω )−1 Aρ(I +e

πAr
ω )− I

)
(ω2I + A2

r )−1. (1.4)

1.4. CGLP COMPENSATORS

I N this section, the concept of CgLp compensators is introduced. A CgLp compen-
sator (1.5) and (1.6) is constructed utilizing a GFORE or a GSORE with the series com-

bination of a corresponding order of lead filter. Considering the DF analysis of GFORE/
GSORE, the gain behaviour is the same as a first/second order low-pass filter while the
phase lag of these elements are less than the first/second order low-pass filter. Now, if a
first/second order lead filter is put in series with GFORE/GSORE, this reset compensator
has a constant gain with a lead phase (Figure. 1.3) [5, 6, 18–20]. The first order CgLp
compensator is

CC g Lp1(s) =


�
�
��>

Aρ
1

s
ωrα

+1

 ( s
ωr

+1
s
ωt

+1

)
, (1.5)

whereωrα =ωr /α is the corner frequency of the reset element, Aρ = γ is the reset matrix,
and ωr and ωt are the corner frequency of the lead filter. To provide a constant gain,
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Figure 1.3: The DF of a CgLp compensator

Table 1.1: Correction factors of the first and second order CgLp [5, 19]

γ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α 16.71 8.19 5.26 3.85 3.01 2.47 2.09 1.81 1.60 1.44 1.32 1.23 1.16 1.11 1.07 1.04 1.02 1.01 1.0
α1 30.09 14.11 8.66 5.89 4.23 3.11 2.43 1.92 1.52 1.23 1.03 0.93 0.89 0.90 0.92 0.94 0.96 0.98 0.99
α2 3.28 3.20 3.01 2.76 2.49 2.21 2.10 1.91 1.63 1.36 1.14 1.02 1.00 1.03 1.06 1.07 1.07 1.05 1.03

parameters ωrα and ωr are found using Table 1.1), and ωt À ωr . Moreover, the second
order CgLp compensator is

CC g Lp2(s) =

��
�
��

�
��

��*
γI 1

(
s

ω′
rα

)2 +2
βrα

ω′
rα

s +1




(
s

ω′
r

)2

+2
βr

ω′
r

s +1(
s

ω′
t
+1

)2

 , (1.6)

in which ω′
rα = ωr /α1 and βrα = βr /α2 are the corner frequency and damping of the

reset element, respectively, Aρ = γI is the reset matrix, βr is the damping of the lead
filter, and ω′

r and ω′
t are the corner frequency of the lead filter. To provide a constant

gain, correction factors α1 and α2 are provided in Table 1.1 for βrα = 1, and ω′
t À ω′

r .
Since CgLp compensators have a constant gain with a lead phase, they can potentially
eliminate the trade-off which is discussed in Section 1.1.

1.5. RESEARCH GAP

A S was mentioned, loop-shaping is one of the popular methods for designing con-
trollers in industry. However, the loop-shaping approach is only applicable for an-

alyzing linear controllers in the frequency-domain. In addition, the DF method is only
an approximation method and is not reliable enough, particularly in precision motion
applications in which we need have to follow a motion trajectory very fast and precisely.
Therefore, to interface CgLp compensators well with the current control design in in-
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dustry, which favours designing controllers in the frequency-domain, it is important to
precisely design this type of reset compensator in the frequency-domain.

1.6. RESEARCH OBJECTIVES

T HE main contribution of this thesis is to fulfil the mentioned important research gap
by providing a non-linear loop-shaping frame work for analyzing CgLp compen-

sators in the frequency-domain. This is one of the essential scientific gaps which has
to be filled towards making these reset compensators ready for industry. For this pur-
pose, this thesis has to achieve the following three key objectives which are how to study
steady-state performance, assess the stability, and tune parameters of CgLp compen-
sators in the frequency-domain.

So far, CgLp compensators have been studied in the frequency-domain using the DF
method. However, this method has several drawbacks which make this method unre-
liable. First, the closed-loop steady-state performance of reset control systems has not
been yet analyzed in literature. This is challenging because there is no proof of the ex-
istence of the steady-state solution for closed-loop reset control systems. Besides, since
the high order harmonics generated by reset elements are neglected in the DF method,
this method by itself is not an appropriate approach for predicting the open-loop and
closed-loop steady-state performance, particularly for precision motion applications.
Thus, the first objective of this thesis is: to develop theories to analyze the steady-state
response of closed-loop reset controllers.

Stability is one of the important requirements of control systems. However, simi-
lar to other non-linear controllers, the stability analysis of these reset control systems
is complex and often requires parametric models of systems. Moreover, for the loop-
shaping approach is also important to determine the stability of control systems using
the frequency-domain response. Although there are some frequency-domain stability
tools such as the Hβ condition for reset control systems, assessing the conditions of
those methods are complex, particularly for high-dimensional plants. In addition, they
cannot guarantee uniformly bounded-input bounded-state (UBIBS) property for reset
control systems in the case of resetting to non-zero values. Therefore, the second objec-
tive of this thesis is: to propose a non-parametric frequency-domain stability method
to assess the stability of CgLp compensators using Frequency Response Function (FRF)
measurement.

Finally, due to the design flexibility of reset elements, there are different combina-
tions of tuning parameters for CgLp compensators which can provide the same amount
of phase lead at the cross-over frequency based on the DF method. However, all of these
combinations do not necessarily improve the performance of reset control systems due
to the existence of high order harmonics. Hence, it is highly needed to develop a system-
atic and reliable frequency-domain tuning method for this type of reset compensators
to achieve the final important objective: to develop a frequency-domain tuning method
for CgLp compensators to achieve a favourable dynamic performance for the control
system.
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1.7. OUTLINE OF THE THESIS
This thesis includes the main articles either published or submitted to peer review jour-
nals2. Since most of the papers are about CgLp compensators, the reader might find
several repetitions, particularly in the introduction and preliminaries of chapters. The
chapters of this thesis are organized as follows.

In Chapter 2, an overview of linear FO-PID controllers in the frequency domain is
presented. In this chapter, the pros and cons of linear FO-PID controllers are elabo-
rated. Furthermore, it is shown that although FO-PID controllers provide more design
flexibility and improve the performance of control systems, they are faced with the same
limitation as classical PID controllers due to their linearity.

In Chapter 3, first, sufficient conditions for the existence of the steady-state response
for a closed-loop system with a reset element driven by periodic references are given.
Furthermore, a framework to get the steady-state response and define a notion of closed-
loop frequency response, including high order harmonics, is presented. From the preci-
sion perspective, pseudo-sensitivities for reset control systems are defined which accu-
rately predict the closed-loop performance of reset control systems.

In Chapter 4, an intuitive frequency-domain method for assessing the stability of
CgLp compensators is developed utilizing the Hβ condition, analytic geometry relations,
and optimization methods.

In Chapter 5, the defined pseudo-sensitivities and the frequency-domain stability
method are utilized to provide a reliable and systematic frequency-domain tuning method
for CgLp compensators. Furthermore, different performance metrics of a CgLp com-
pensator, which is tuned by the proposed method, are compared with those of a PID
controller on a precision positioning stage.

In Chapter 6, the main conclusions of this research are given. The advantages and
disadvantages of the proposed non-linear loop-shaping framework are discussed. Fi-
nally, some recommendations for future study are provided.
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2
AN OVERVIEW ON LINEAR

FRACTIONAL ORDER CONTROLLERS

Ali AHMADI DASTJERDI

The scope of this chapter is to describe state-of-the-art related to linear fractional order
control system in the frequency-domain. In this chapter, the concept of fractional calculus
and their applications in the control problems are introduced. In addition, basic defini-
tions of the fractional order differentiation and integration are presented. Then, four com-
mon types of fractional order controllers are briefly presented and after that their represen-
tative tuning methods are introduced. Furthermore, some useful continuous and discrete
approximation methods of fractional order controllers and their digital and analogue im-
plementation methods are elaborated. Then, some Matlab toolboxes which facilitate uti-
lizing fractional order calculus in the control field are presented. Finally, advantages and
disadvantages of using fractional order calculus in the control area are discussed. It is
concluded that although fractional order controllers improve the performance of linear
controllers, they could not fill our research gap due to their inherent linearity.

This chapter has been published in Annual Reviews in Control 51, 47 (2019 [1]).
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2.1. INTRODUCTION

F RACTIONAL Order (FO) calculus has attracted attention from academic and industrial
associations because its applications have been increased in many aspects of science

and engineering [2–5]. The control field is no exception and utilizing of FO-calculus has
been raised in the modelling and controlling of dynamic systems. Basically, in control
applications, there are four combinations for closed-loop systems: Integer Order (IO)
plants with IO controllers, IO plants with FO controllers, FO plants with FO controllers
and FO plants with IO controllers [6, 7].

Using FO-calculus in the modelling of system dynamics is increased since many phe-
nomena such as the voltage-current relation of a semi-infinite lossy transmission line,
the diffusion of heat through a semi-infinite solid, viscoelasticity, damping and chaos,
fractals etc. inherently show FO behaviour [6, 8–10]. Particularly, when the dynamic of
a system has a distributed parameter nature, the best solution for modeling is using FO-
calculus [6, 7]. Moreover, it has been reported that FO-calculus models the behaviour of
biomimetic systems the best [7]. Furthermore, in the electrical engineering field, there
are some electrical devices which show intermediate properties between resistances and
capacitances. These devices are known as "fractance" and are modelled by means of FO-
calculus [11]. Hence, FO-models can help engineers to simulate the dynamic behaviour
of many systems more precisely than IO-ones.

FO-calculus has high potential to improve performances of controllers since design-
ers have more flexibility in selecting power of FO-controllers in comparison with IO-
controllers [12–16]. Moreover, since FO-calculus can provide a proper trade-off between
the first and second order integrator or differentiator part of controllers, linear FO-
controllers particularly the FO-PID types become very popular among control engineers.
In this manner, researchers have tried to develop FO-linear controllers in both time
[2, 17–23] and frequency domain [3, 9, 11, 24–27]. In the time domain, most of research
is based on optimization methods and in the frequency domain, the most widely-used
methods are H∞ norm, loop-shaping, iso-damping, etc.

Despite all the comments, IO-controllers are predominately used in the control field
[28]. Apart from the “water-bed" effect from which all linear controllers suffer [29], there
are other significant barriers which confine development of FO-controllers. First, direct
analytical methods for solving FO differential and integral equations are very compli-
cated [6]. Secondly, the implementation of FO-controllers is more difficult than IO ones
owing to certain reasons which are elaborated in the next sections. Finally, the existing
tuning methods are sophisticated and proper for specialists and most of them are appli-
cable for process control problems (first order plant with low bandwidth requirement).

During these years, several investigations have been done about reviewing FO-
controllers [6, 7, 30]. Chen et al. introduced and compared four common types of FO-
controllers [6]. Also, investigation [6] presents several realization methods for FO-
controllers. Moreover, they talked about potential advantages of FO-controllers and
their application in [7]. In [30], aspects of linear and non-linear Fractional Order Pro-
portional Integral and Derivative (FO-PID) controllers such as tuning, history, and tool-
boxes are discussed in both time and frequency domains. These review papers give gen-
eral insight about the FO-controllers; however, some of them are very specific which do
not cover all aspects about these controllers, or some of them are very broad that can-
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not give enough information about each concept. Thus, this article focuses on the linear
FO-controllers in the frequency domain. This paper gives enough information efficiently
and comprehensively about linear FO-controllers in the frequency domain by which be-
ginners can understand FO-calculus, select a proper type for their application, tune and
implement these controllers.

This review paper is organized so that, the basic definitions of the FO derivative and
integral are presented in Section 2.2. Then, common types of FO-controllers which are
introduced in the literature are commented in Section 2.3 and their representative tun-
ing methods are delineated in Section 2.4. Section 2.5 is devoted to the realization of
FO-controllers in which approximation methods in the S, Z and δ domain, and analogue
and digital implementation methods are presented. Then, some useful toolboxes are
introduced which facilitate design, approximation and realization of FO-controllers in
the frequency domain in Section 2.6. Finally, the advantages and disadvantages of FO-
controllers are discussed in Section 2.7 and some conclusions and remarks are given in
Section 2.8.

2.2. DEFINITIONS OF FO DERIVATIVE AND INTEGRAL

A LTHOUGH FO calculus which means the generalization of the integration and differ-
entiation operator to a FO operator is a 300-years-old topic [31], it has only gained

attention in the last two decades to facilitate modelling and control problems. There are
various definitions like Riemann, Letnikov, Liouville, Caputo for FO derivative and inte-
gral [6, 29, 32–34]. Based on Cauchy’s formula, Riemann defined the general FO integral
as below for a general complex order ν [29, 33, 35, 36] as

Iνto
f (t ),

1

Γ(ν)

∫ t

to

f (τ)

(t −τ)1−ν dτ,


t > to ,

to ∈ R,

ν ∈C ,

(2.1)

in which Γ(ν) is the Gamma function

Γ(ν) =
∫ ∞

0
e−x xν−1d x. (2.2)

When ν is a real FO number, (2.1) can be re-written as [29, 33, 35, 36]

Iνto
f (t ),

∫ t

to

f (τ)(t −τ)ν−1

Γ(ν)
dτ=

∫ t

to

gν(t −τ) f (τ)dτ= g ∗ f , (2.3)

where

gν(t −τ) = (t −τ)ν−1

Γ(ν)
. (2.4)

Now, the Laplace transform of the FO integral can be interpolated from the convolu-
tion (2.3) [29]:

L {Iνto
f (t )} =L

{
(t )ν−1u(t )

Γ(ν)
}L { f (t )

}
= 1

sν
F (s). (2.5)
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Lioviolle simply calculated FO derivative. In his method, the exponential presentation

function f (t ) =
∞∑

n=0
cnean t is used for this purpose. In this respect, the FO derivative is

obtained as [33, 35]

Dν f (t ) =
∞∑

n=0
cn aνnean t . (2.6)

The Riemann-Liouville’s definition of the general FO derivative is [6, 29, 33, 35, 36]

Dν
to

f (t ),
1

Γ(n −ν)

d n

d t n

(∫ t

to

f (τ)

(t −τ)1+ν−n dτ

)
, n = [integer real part of ν]+1. (2.7)

The second popular definition of FO derivative is given by Caputo [33, 35, 36] as

Dν
to

f (t ) = 1

Γ(ν−n)

∫ t

to

f (n)(τ)dτ

(t −τ)ν+1−n , (n −1 ≤ ν< n). (2.8)

This definition is improved in [37] as

Dν
to
= M(ν)

1−ν
∫ t

to

ḟ (τ)e−
ν(1−τ)

1−ν dτ, (2.9)

where M(ν) is a normalized function so that M(0) = M(1) = 1. Another general definition
of the FO derivative is given by Grünwald-Letnikov [6, 29, 30, 33, 35, 36]:

Dν f (t ) = lim
h→0

∞∑
k=1

(−1)k
(ν

k

)
f (t −kh)

hν
,

(
ν

k

)
= Γ(ν+1)

k !Γ(ν−k +1)
. (2.10)

Eventually, the Laplace transform of a real FO derivative can be achieved by using the
Riemann-Liouville’s and Caputo’s definition ((2.7) and (2.8)) [6, 29] as

L {Dν
t0

f (t )} = sF (s)−
n−1∑
k=0

sν−k−1Dk
t0

f (t )
∣∣∣

t=0
, (n −1 < ν≤ n). (2.11)

By considering definitions of the FO derivative and integral which are described above,
the continuous integro-diffrential operator for a general complex value ofν is introduced
in [6] by

Dν
to
=


dν

d tν
, Re(ν) > 0,

1, Re(ν) = 0,∫ t

to

(dτ)−ν, Re(ν) < 0.

(2.12)

The two main properties of the continuous integro-diffrential operator are listed [6, 29]:

1. This is a linear operator:

Dν
to

(a f (t )+bg (t )) = aDν
to

f (t )+bDν
to

g (t )

2. It follows the additive index law:

Dν
to

Dα
to

f (t ) = Dα
to

Dν
to

f (t ) = Dα+ν
to

f (t )
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2.3. COMMON TYPES OF LINEAR FO CONTROLLERS

I N this section, four common types of linear FO-controllers which are represented in
the literature are described shortly. In what follows, Tilted Integral Derivative (TID)

controllers, CRONE controllers, FO lead/lag compensators and (FO-PID) controllers shall
be introduced.

2.3.1. TID CONTROLLER

By substituting the proportional component in the PID controller with the FO integra-

tor (s−
1
n ,n ∈ N ), the TID controller was introduced [38]. The configuration of TID con-

trollers is shown in Figure. 2.1. Figure. 2.2 compares the frequency response of TID and
PID controllers such that both controllers provide the same phase margin and gain val-
ues at high frequencies. As was shown, the TID controller has better performance in
rejecting disturbances than the PID controller since it has higher gain before the cross-
over frequency (i.e ωi−T I D ≤ω≤ωd ). A method for tuning of TID controller parameters
will be elaborated in Section 2.4.1. From practical viewpoint, this controller must be
used with a low-pass filter to make it a proper transfer function, so the lag phase of the
low-pass filter have to be considered in tuning process.

r (t ) y(t )+++−−− Plant
kT

sn

TID

∑∑∑

kD s

kI

s

Figure 2.1: Block diagram of TID controller
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Figure 2.2: Bode diagram of TID controller
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2.3.2. CRONE CONTROLLERS
CRONE (French abbreviation for Commande Robuste d’Ordre Non Entier, which means
non-integer robust control) controllers have been established by Oustaloup since the
1980s in tracking fractal robustness [29]. Three CRONE generations were proposed in the
frequency domain in which the open-loop transfer function has FO integrators and dif-
ferentiators. These three generations are used for controlling robustly against plant un-
certainties. The first generation of CRONE has the simplest configuration among CRONE
generations and can be considered as a simple FO-PID controller. As it is shown in Fig-
ure. 2.3, the open-loop transfer function of the second generation is shaped following
the Bode’s ideal cut-off frequency characteristic.
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n
F

Figure 2.3: Open-loop transfer function in the second generation of CRONE while nF = nI

The third generation of CRONE widens the application of the second generation of
CRONE so that it is applicable to plants which have general uncertainties than just gain-
like perturbations. The configurations and tuning methods of CRONE generations will
be delineated in Section 2.4.2.

2.3.3. LEAD/LAG COMPENSATORS
The generalization of classical lead/lag compensators to FO lead/lag compensators has
been studied in some investigations [6, 7, 29]. FO lead/lag compensators are obtained
by

C (s) = kp

( 1+ s
ωL

1+ s
ωh

)µ
, ωL <ωh ,

{
Lead, µ ∈ (0,+∞),

Lag, µ ∈ (−∞,0).
(2.13)

Sometimes, FO lead/lag compensators are also defined in [3, 39] as

C (s) = kp xµ
( 1+∆s

1+∆xs

)µ
, 0 < x < 1,

{
Lead, µ> 0,

Lag, µ< 0.
(2.14)
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Another configuration of these compensators is [40]

C (s) = kp

(
1+x∆sµ

1+∆sµ

)
, 0 <µ< 2,

{
Lead, 1 < x,

Lag, 0 < x < 1,
(2.15)

where∆ is a tuning knob which determines corner frequencies of these compensators. It
must be recalled that it is not possible to consider µ≥ 2 because the transfer function of
the controller is not bounded-input bounded-output (BIBO) stable [41]. The bode plot
of a lead compensator is shown in Figure. 2.4.
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Figure 2.4: Bode diagram of FO-lead compensator

In the lead compensators, the more distance between ωL and ωh , the more robust-
ness and stability (phase margin) for the controller. Also, the phase margin can be in-
creased by increasing µ and the maximum achievable phase by FO lead compensators is
µ90◦. However, increasing µ or the distance between the corner frequencies (ωL andωh)
leads to have high magnitudes in high frequencies. Consequently, the controller has less
noise rejection characteristic which may cause practical complications. So, similar to
integer lead/lag compensators, the stability and robustness have conflict with the preci-
sion in this type of FO-controllers. In Section 2.4.3, tuning methods of these controllers
will be discussed.

2.3.4. FO-PIλDµ CONTROLLERS
Podlubny introduced the first FO-PID controller in 1994 [42]. FO-PID controllers are the
general form of the conventional integer order PID controllers. The parallel or ideal form
of this controller is

C (s) = kp + ki

sλ
+kd sµ, λ,µ ∈ R. (2.16)

Figure. 2.5 shows the various types of controller (2.16) versus λ and µ. It can be stated
that all families of (PID) controller can be derived from (2.16) as follows:

1. P controllers can be obtained when λ=µ= 0:

C (s) = kp . (2.17)
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1 2 3 n

1

2

3

m

FO-PD

FO-PI

FO-PID

IO-PID
IO-PD
IO-PI
P

λ

µ

Figure 2.5: Various types of PID controllers

2. IO-PI controllers can be obtained when µ= 0,λ= n ∈ N ;

C (s) = kp

(
1+ ki

sn

)
. (2.18)

3. FO-PI controllers can be obtained when µ= 0,λ 6∈ N :

C (s) = kp

(
1+ ki

sλ

)
. (2.19)

4. IO-PD controllers can be obtained when λ= 0,µ= m ∈ N :

C (s) = kp
(
1+kd sm)

. (2.20)

5. FO-PD controllers can be obtained when λ= 0,µ 6∈ N :

C (s) = kp
(
1+kd sµ

)
. (2.21)

6. IO-PID controllers can be obtained when (λ= n,µ= m) ∈ N :

C (s) = kp + ki

sn +kd sm . (2.22)

There are some drawbacks of parallel FO-PID controllers. First, if λ ∈ (0,1) in the inte-

gration part of this controller, the settling time is very high. So, sometimes
1

sλ
is replaced

with
1

s
s1−λ to decrease the settling time value [3, 29, 43]. Also, it is necessary to tame the

derivative part of the parallel FO-PID controller for avoiding saturation phenomenon
and having the better noise rejection feature. Hence, (2.16) becomes

C (s) = kp + ki

sλ
+ kd sµ

1+τ f sγ
, γ≥µ. (2.23)
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If µ 6= γ a memory with a high capacity is required for implementing the discrete time
or continuous-time approximation of this controller. So, it is better to consider (γ−µ=
n, n ≥ 0) [29]. By increasing n, the phase margin decreases and the system has the
better noise rejection feature and vice versa. In most cases, n is equal to zero. The most
widely-used parallel FO-PID controller is

C (s) = kp + ki

sλ
+ kd sµ

1+τ f sµ
. (2.24)

Moreover, for the ease of practical implementation, FO-PID controllers can be repre-
sented in the series form as

C (s) = kp

(
1+ ki

sλ

) 1+ s

ωl

1+ s

ωh


µ

. (2.25)

Bode plot of FO-PID controllers is shown in Figure. 2.6. As was shown, the maximum
phase which is achievable by these controllers is about 90µ degree. In [44, 45], the FO-
[PD] and and FO-[PI] controller is defined as

C (s) = kp (1+kd s)µ, (2.26)

C (s) = kp

(
1+ ki

s

)λ
, (2.27)

respectively. The comparison between FO-PD (2.21) and FO-[PD] controller is performed
in Figure. 2.7. It is concluded that the FO-[PD] controller outperforms the FO-PD con-
troller for FO-systems [44] while the FO-PI and FO-[PI] do not have significant differ-
ences in the performance for the FO process plants [45].
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Another type of FO-controllers which is presented in the literature is D1−λIλ [43, 46,
47]:

C (s) = ki +kd s

sλ
. (2.28)

The bode plots of controller (2.28) for several values of λ are drawn in Figure. 2.8. It is
obvious that when λ = 0, this is an IO-PD controller and when λ = 1 this is an IO-PI
controller. So, the D1−λIλ controller is a trade-off between IO-PD and IO-PI controllers.
When λ increases, the gain at low frequencies increases while the phase at cross-over
frequency decreases. Having higher gains at low frequencies (increasing integral action
of the controller) leads to improving the tracking performance of this controller. Con-
sequently, stability decreases and precision improves for this controller by increasing λ
and vice versa. Therefore, it can be said that this controller is a trade-off between stability
and precision.
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2.4. TUNING METHODS OF FO-CONTROLLERS

I N this section, representative tuning methods for FO-controllers which are developed
in the frequency domain are discussed. Similar to Section 2.3, tuning methods are

fallen down into four categories including tuning methods for TID controllers, tuning
methods for CRONE generations, tuning methods for FO lead/lag compensators, and
tuning methods for PIλDµ controllers. Let’s describe some general equations and con-
straints which are used in a lot of literature in order to tune FO-controllers [9, 18, 29, 39,
48–51]. These constraints are:

1. The phase margin definition:

Arg[G( jωc )C ( jωc )] =−π+ϕm , (2.29)

where G( jω) and C ( jω) are the plant and control transfer functions, respectively.

2. The cross-over frequency definition:

|G( jωc )C ( jωc )| = 1. (2.30)

3. The flatness of the phase curve of the open-loop transfer function near the cross-
over frequency which leads to the robustness of the system against gain variations
in a specific range (iso-damping):

d(Arg[G( jω)C ( jω)])

dω

∣∣∣
ω=ωc

= 0. (2.31)

4. The gain margin definition:

Arg(G(ωcp )C (ωcp )) =−π⇒|G(ωcp )C (ωcp )| = −1

Mg
. (2.32)

5. The complementary sensitivity constraints [29]:

inf

∣∣∣∣T ( jω) = CG

1+CG

∣∣∣∣≥ Tl (ω), (2.33)

Mr = sup |T ( jω)| ≤ Tu(ω). (2.34)

Low frequency characteristics of bound Tl and Tu are used to avoid slow response
of the system to a step variation of reference signals or disturbances. Middle fre-
quency behaviours of Tl and Tu confine the highest value of the settling time (en-
hance the speed of the system) and high values of the resonant peak. Sometimes,
high frequency properties of Tu increase the noise rejection feature of the system.

6. The modulus margin constraint (the sensitivity function constraint):

Ms = sup

∣∣∣∣S( jω) = 1

1+CG

∣∣∣∣≤ Su(ω), (2.35)

where S( jω) is the sensitivity transfer function and Su is a desire bound. This con-
straint can be used for improving the disturbance rejection characteristic of the
system. The lower values of the modules margin, the more robustness of the sys-
tem against disturbances.
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7. The control sensitivity constraint:

sup |C S( jω)| ≤C Su(ω), (2.36)

where C Su is a desire bound.This constraint limits the control effort in respect of
noises and disturbances, so this increases the energy efficiency of the controller.

8. The process sensitivity constraint:

sup |GS( jω)| ≤GSu(ω), (2.37)

where GSu is a desire bound. This constraint improves disturbance rejection of
the plant, so it leads to enhancing the precision of the system.

2.4.1. TUNING METHODS FOR TID CONTROLLER
As discussed in section 2.3.1, TID controller has the simplest configuration among FO-
controllers. It is noteworthy to recall that auto-tuning methods for PID controllers are
applicable for TID controllers since they are very similar to PID controllers. Apart from
this fact, there is one explicit tuning method in the frequency domain for this type of
FO-controllers [38]. As it was shown in Figure. 2.1, three parameters kI ,kT and kD must
be tuned for these controllers. In this respect, these three simple steps must be followed:

1. Assume kI = kD = 0 and set kT in order to satisfy constraint (2.30)

2. kI = kT

4

(ωc

2π

)(
1−

1

n

)

3. At the end, considering the phase margin 5◦ above the desired phase margin, kD is
obtained using (2.29)

2.4.2. TUNING METHODS FOR CRONE GENERATIONS
As was described in section 2.3.2, three generations of CRONE controllers exist and each
generation has its tuning method and can be used in a special condition. The first gen-
eration of CRONE is used to robustly control a plant with an uncertain gain but constant
phase around the cross-over frequency. In other words, if the cross-over frequency (ωc )
of a controlled system changes due to gain variation of the plant in a frequency range
[ωA ,ωB ], its phase stays unchanged within this frequency range. The configuration of
the first generation of CRONE controllers is provided in [29, 48] as

CR1 (s) = k
(
1+ ωI

s

)nI

 1+ s

ωL

1+ s

ωh


n  1

1+ s

ω f


nF

,

nI ,n f ∈ N , n ∈ R, ωI <ωL <ωA <ωB <ωh <ω f .

(2.38)

It is suggested that ωL and ωh must be set so that they ensure a constant phase for the
open loop response within the range of [ωA ,ωB ] (for more details, see [29]). Parameters
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n and k are obtained by using constraints (2.29) and (2.30) [29] as

n =
−π+ϕm −arg(G( jωc ))+nF arctan

(
ωc

ω f

)
+nI

(
π

2
−arctan

(
ωc

ωI

))
arctan

(
ωc

ωL

)
−arctan

(
ωc

ωh

) , (2.39)

k =

(
1+ ω2

c

ω2
F

)0.5nF

|G( jωc )|
(
ωh

ωL

)0.5n
(

1+ ω2
I

ω2
c

)0.5nI
. (2.40)

When the gain and phase of a plant change in a frequency range [ωA ,ωB ], the second
generation of CRONE must be used to make the system robust against uncertainties.
The configuration of the second generation of CRONE controller [29, 48, 52, 53] is

CR2 (s) = kG−1(s)
(
1+ ωI

s

)nI

1+ s

ωh

1+ s

ωL


ν 1

1+ s

ω f


nF

,

nI ,n f ∈ N , ν ∈ R, ωI <ωL <ωA <ωB <ωh <ω f .

(2.41)

Similar to the first generation of CRONE, ν and k are obtained using (2.29) and (2.30) as

ν=
−π+ϕm +nF arctan

(
ωc

ω f

)
+nI

(
π

2
−arctan

(
ωc

ωI

))
arctan

(
ωc

ωh

)
−arctan

(
ωc

ωL

) , (2.42)

k =

(
1+ ω2

c

ω2
f

)0.5nF

(
ωL

ωh

)0.5ν
(

1+ ω2
I

ω2
c

)0.5nI
. (2.43)

Parameters nI and nF must be set so that nI ≥ npl and nF ≥ nph if the order of plant at
low frequencies (ω<ωI ) and high frequencies (ω>ω f ) is npl and nph , respectively (for
more details see [29]).

Although the second generation of CRONE controller extends the frequency range
for choosing the cross-over frequency, in some cases such as existing delay on the sys-
tem, this configuration is not able to ensure robustness of a system. Hence, the third
generation of CRONE is utilized when uncertainties of a plant are more general than just
gain-like perturbations. In the basic idea of the third generation of CRONE, the open-
loop transfer function (2.44) has a complex integration order (ν= a + i b) which leads to
have a general template in the Nichols chart [29, 48] as

β= k
(
cosh(b

π

2
)
)(ωc

s

)a
(
Re/i

(
(
ωc

s
)i b))−sign(b)

. (2.44)
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Tuning of the third generation of CRONE controller is very complicated (for more infor-
mation see [29]). A designer can set the number of tuning parameters by considering
more general templates based on how a plant is sophisticated as

βT =
N∑

j=1
β j ⇒C R3(s) =G−1βT . (2.45)

When the number of tuning parameters are determined, a designer must select a proper
cost function and solve an optimization problem under some constraints which def-
initely include constraints (2.29) and (2.30). Four optimization problems are recom-
mended for tuning the third generation of CRONE controller [29, 54].

1. Considering J = sup |T ( jω)| −Mr as the cost function in which Mr is the desired
resonant peak. Minimization must be done under constraint (2.33) to (2.37).

2. Considering J = 20
2π l og (

∫ ωmax

ωmi n

max|e( jω)|2dω) as the cost function in which e(t ) =
yr e f (t )− y(t ). Minimization must be done under the constraints (2.36).

3. Considering J = maxsup

∣∣∣∣G( jω)S( jω)

jω

∣∣∣∣
dB

. Minimization must be done under the

constraints (2.33) to (2.37).

4. Considering J = maxsup

∣∣∣∣S( jω)

jω

∣∣∣∣
dB

. Minimization must be done under the con-

straints (2.33) to (2.37).

CRONE generations have been successfully applied to some practical systems [55]. The
second generation was implemented mechanically to a suspension system of a vehicle
[26]. The third generation was applied to a resonant plant (flexible transmission) [25], a
four mass-spring system with low damping [56], and a nonlinear hydraulic actuator [24].
To sum up, it appears that the CRONE generations are very useful for designing a robust
controller against plant uncertainties.

2.4.3. TUNING METHODS FOR FO LEAD/LAG COMPENSATORS
In this part, tuning methods which are applicable for tuning FO-lead lag compensators
are presented. Monje et al. obtained a method for auto-tuning of these compensators
(2.14) [39]. The magnitude of |G( jωc )| and arg(G( jωc )) are found by using the relay test
(see [39] for more information). For this purpose, the constraints (2.29), (2.30), and the
definition of the static error constant

kss = lim
s→0

snC (s)G(s), (2.46)

where n is type of the plant are used for tuning of an FO-lead/lag compensator. There are
four unknown parameters (x,µ,∆,kp ) with three equations, so an optimization problem
has to be solved. The objective function has been chosen to minimize µ since the less
value ofµ, the less value of x which results in more robust compensator. Following a trial
and error approach is taken to solve this optimization problem:
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1. Consider a minimum value for µ (for instance, µ= 0.05).

2. Calculate x, ∆, and kp .

3. If x is positive, the compensator is tuned. Otherwise, µ is increased with a fixed
value and repeat steps (2)-(3).

In a similar way, Tavazoei and Tavakoli-Kakhki obtained a general method for tuning
controller (2.15). In this way, the constraints (2.29), (2.30) and the definition of the static
error constant (2.46), and the maximum value of the controller output (to avoid satura-
tion) are considered for tuning of its four parameters [40].

2.4.4. TUNING METHODS FOR PIλDµ

As discussed before, the most popular type of FO-controller is the FO-PID controller. In
this section, tuning methods for these controllers in the frequency domain are reviewed.

Several researchers proposed tuning methods using optimization techniques. Zhao
et al. tuned FO-PID controller (2.16) for one type of FO-plant (G(s) =

1

a1sα+a2sβ+a3
) [9]. For a given phase and gain margin, (2.29), (2.30), and (2.32) are

accounted for tuning. This leads to four equations with seven unknown parameters
(ωc ,ωcp ,kp ,ki ,kd ,µ,λ) as

( i ) f (ωc ,ωcp ,µ,λ,ϕm , Mg ) = 0,

( ii ) kp = g (ωc ,ωcp ,µ,λ,ϕm , Mg ),

(iii) ki = y(ωc ,ωcp ,µ,λ,ϕm , Mg ),

(iv) kd = z(ωc ,ωcp ,µ,λ,ϕm , Mg ).

This problem is solved through an optimization method in which four parameters (ωc ,
ωcp , µ, λ) form a desired cost function J =L(ωc ,ωcp ,µ,λ) based on the required perfor-
mance (robustness, stability, etc). The optimization problem is solved under constraint
(i). After finding these four parameters through a suitable optimization algorithm, pa-
rameters (kp ,ki ,kd ) are obtained using equations (ii)-(iv). This method is flexible and
users are able to add their requirements as an objective function in the optimization
part. They also concluded that FO-PID controller has better performance than IO-one
for FO-plants.
In addition, Zhong and Li proposed a tuning method for FO-PID controllers for a spe-

cific type of FO-plants (G(s) = 1

a1sα1 +a2sα2 +a3sα3 +a4
, ai > 0) [57]. In this method,

constraints (2.29), (2.30), and (2.31) are used for tuning, so there are seven unknown pa-
rameters (ωc ,ϕm ,kp ,kd ,ki ,µ,λ) and three equations. Then, the feasible region for un-
known parameters based on the stability analyses is found. Next, one of the suggested

cost functions including (IAE=J =
∫ ∞

0
|e(t )|d t ) , (2.33), and (2.35) is used for optimiza-

tion under constraints (2.29), (2.30), and (2.31). A fixed-step search method is utilized
for solving. If the obtained controller satisfies the desired performances, the tuning is
finished; otherwise, two narrow intervals for µ and λ are taken so that previous obtained
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optimal λ and µ are placed in the middle of intervals. After that, the step-size is reset to
a smaller value the procedure is repeated, and the controller is finally tuned.
Valério and da Costa obtained a tuning method similar the Ziegler-Nichols method for
FO-PID controllers (2.16) [49]. It is assumed that each plant frequency response can

be approximated by an S-shaped response (G(s) = e−Ls

1+Ts
). Then, to solve the prob-

lem, (2.29) is supposed as the minimization cost function and (2.30), (2.31), (2.34), and
(2.35) are counted for constraints. For many different L and T , the Nelder-Mead’s sim-
ple optimization method is applied to solve this optimization problem for a specific re-
quirement and then the least-squares method is used to find a relation between L, T and
tuning parameters for the given specifications. For any requirement, this procedure can
be done to find a relation between dynamic parameters of the system and tuning knobs.
They reported that the FO-PID which is tuned by this method is more robust against gain
variations than IO-PID (2.22) which is tuned by the Ziegler-Nichols method.
Similarly, Saidi et al. proposed a tuning method for FO-PID controllers for any general
plant [58]. In the proposed approach, (2.29), (2.30), (2.31), (2.34), and (2.35) are consid-
ered for tuning. Also, they assumed flatness of the phase in a desired band [ωl ,ωh] and
then considered N frequencies belonging to this band. They changed constraints (2.29)
and (2.31) to (2.47) and (2.48), respectively.

N∑
i=1

(arg[C ( jωi )G(ωi )]+π−ϕm)2 = 0, ∀ωi ∈ [ωl ,ωh], (2.47)

N∑
i=1

(
d arg[C ( jω)G( jω)]

dω

∣∣∣
ω=ωi

)2

= 0, ∀ωi ∈ [ωl ,ωh]. (2.48)

Then, they supposed (2.30) as the minimization cost function under constraints (2.29),
(2.31), (2.34), and (2.35) to tune the controller.
Chen et al. generalized Modulus margin constrained Integral Gain Optimization (MIGO)
based controller tuning method for FO-PI controllers (2.19) and called it the F-MIGO
method [59]. In this respect, they faced with an optimization problem which is:

• R = Ms +Mr −1

2Ms (M 2
r −1)

. Mr and Ms are respectively the resonant peak (2.34) and the

modules margin (2.35).

• f (kp ,ki ,ω,λ) = |1+C ( jω)G( jω)|2.

• Objective function: max{ki }

• Constraints: f (kp ,ki ,ω,λ) ≥ R2

This optimization problem is solved for a fixed value of λ through

f (kp ,ki ,ω,λ) = R2,
∂ f

∂ω
= 0,

∂ f

∂kp
= 0,

d 2 f

dω2 > 0. (2.49)

Then, this procedure is performed for a range of λ and best λ is selected to minimize

(ISE =
∫ ∞

0
e2(t )d t ) for a step response. This method is applied to a first order system
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plus time delay (G(s) = ke−Ls

1+Ts
) and relations between controller parameters and pro-

cess parameters (L and T ) are obtained. This method is compared with IO-PI controllers
(2.18) tuned by the Ziegler-Nichols, modified Ziegler-Nichols and AMIGO [60] for six dif-

ferent plants. It is concluded that if the relative dead time (
L

L+T
) is very small, the FO-PI

controllers are better than IO-PI controllers, for systems with a balanced lag and delay
value (L ≈ T ), there is no difference between IO-PI and FO-PI controllers and for systems
with high relative dead time, FO-PI controller responses are faster with higher values of
the overshoot than IO-PI controller responses.
Vu and Lee developed this tuning method and introduced a new tuning guideline [61].

In this approach, the open-loop transfer function is considered as (
s

ωc
)γ, and then, λ

is selected based on the previous method. Next, kp , γ, and ωc are tuned based on one
of the suggested optimization criteria under constraint (2.33). In the end, ki is found

through CG( jω) = (
jω

ωc
)γ.

Padula and Visioli found tuning methods for integral (G(s) = ke−Ls

s
), stable (G(s) = ke−Ls

Ts +1
),

and unstable (G(s) = ke−Ls

Ts −1
) process plants [18, 50]. Three types of controllers includ-

ing the tamed series FO-PID (similar to the controller (2.25)), the tamed series IO-PID
controller ((2.25) with λ = µ = 1 and ωh = 10ωl ) and the ideal or parallel tamed FO-PID
((2.24) with a low-pass filter) are tuned for this purpose. For tuning integral and sta-
ble plant, IAE and (2.35) are respectively selected as the cost function and constraint for
an optimization problem. For tuning the unstable plant, the cost function remains the
same but the constraint is substituted with checking stability. In this respect, the sta-
bility condition of the closed-loop transfer function is checked at the first step for each
trial. If the trial makes the system unstable, the objective function will get a high value,
so it is discarded automatically. This tuning method is performed for a step disturbance
and reference signal response separately and relations between controller parameters, L
and T are found for each controller in each scenario (disturbance rejection or reference
tracking). They recognized that FO calculus has significant effects on differentiator part
of FO-PID and does not provide any advantages for integral part since the integral order
became one in all optimization solutions. In addition, FO-PID controllers outperform
IO-PID controllers in three considered systems.
Monje et al. proposed a method for tuning FO-PI controllers (2.19) robustly against plant
uncertainties and changing the time delay for the second order plus time delay process

systems (G(s) = ke−Ls

(T1s +1)(T2s +1)
) [43]. In the robust design against the time delay vari-

ation (L), (2.30) is assumed as the cost function and (2.29) and (2.31) are considered
as constraints. In the robust design against the variation of time constants (T1 or T2),
the cost function remains the same as time delay variation and constraints are replaced
with (2.29) and (2.32). The nonlinear optimization method (FMINCON in MATLAB) is

used for solving these optimization problems. As it was discussed before,
1

sλ
was re-

placed with
1

s
s1−λ in their controller to improve the settling time. In a similar way, they
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tuned FO-PID controller (2.16) for the first order systems plus time delay (G(s) = ke−Ls

1+Ts
).

In this respect, they use the same cost function under constraints (2.29), (2.31), (2.34),
and (2.35) [3].

Moreover, similar to their method for FO-lead/lag compensator [39], they proposed
an auto-tuning method for series FO-PID controller (2.25) [3]. The magnitudes of |G( jωc )|
and Arg(G( jωc )) are found by using the relay test and FO-PID is reshaped as an FO-PI
controller (2.19) multiplied to an FO-lead compensator (2.14). First, the FO-PI part is
designed so that it makes the slope of the phase of the open loop-transfer function to

zero while ki = 1

ωc
(in order to minimize the value of λ). Next, the FO-lead compensator

is tuned for the plant multiplied FO-PI part using method described in [39] (elaborated
in Section 2.4.3).
In addition, De Keyser et al. developed an auto-tuning for FO-PD (2.21) and FO-PI (2.19)

controllers [62]. In this method,
d(Arg[G( jω)])

dω

∣∣∣
ω=ωc

, Arg[G( jωc )], and |G( jωc )| are found

through a novel experiment for an unknown plant, and then, the controller is tuned us-
ing constraints (2.29), (2.30), and (2.31) (for more details see [62]).

Some people try to tune FO controllers utilizing loop-shaping tools. Krijnen et al.
combined the loop-shaping with optimization methods for tuning a series FO-PID con-
trollers (2.50) for a precision positioning system (a mass-spring damper system) to maxi-
mize crossover frequency (bandwidth frequency) [27]. Controller (2.50) is a FO-PID con-
troller which is multiplied by a FO-low pass filter as

C (s) = kp (1+ ωi

s
)
( 1+ s

ωz

1+ s

ωp

)µ
LP(n,r )(s), (2.50)

in which

LP(n,r )(s) =



n = 1,
1

1+ s

ωl p

,

n = 2,

 1

1+
(

s

ωl p

)r


 1

1+ s

ωl p

 ,

n = 3,

 1

1+
(

s

ωl p

)r

+
(

s

ωl p

)2r


 1

1+ s

ωl p

 .

(2.51)

In their method, tuning parameters x = [kp ,ωi ,ωz ,ωp ,ωl p ,n,r,µ] are found through an

optimization procedure in which min{
ωc,bm

ωc (x)
} (ωc,bm is the target bandwidth) is consid-

ered as a cost function under constraints (2.29), (2.30), and (2.32). The tuned FO-PID
controller is compared with an IO-PID controller ((2.25) with λ = µ = 1) which is tuned
by an empirical method [63] and it is revealed that the FO-PID controller increases the
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achievable bandwidth frequency in comparison with IO-PID controller.
Dastjerdi et al. proposed an industrially applicable tuning method using the loop-
shaping method for controller (2.50) without FO-low pass filter (LP(n,r )) [64]. In that
method, knowing the value of the phase and gain margin, the controller is tuned using
some curves which are obtained based on the loop-shaping approach (for more details
see [64]). The advantage of this method is that it does not need to solve complicated
equations, so it is very convenient for industrial applications.
Moreover, another tuning method based on the combination of Internal Model Con-
trol (IMC), loop-shaping, and second generation of CRONE is proposed in [65]. This
method is very simple and straightforward and FO-PID controllers are tuned for all pro-
cess plants based on the phase margin, cross-over frequency, and type of the plant. In
addition, Cervera et al. considered combination of FO lead compensator
(2.14), FO-PI (2.19), and an IO low-pass filter and tuned it upon constraints (2.29), (2.30),
(2.34), and (2.35) using loop-shaping tools [66].

Some researchers introduced tuning methods based on solving these nonlinear equa-
tions ((2.29) to (2.37)) by utilizing mathematical methods such as the graphical method,
the Newton-Raphson numerical iterative algorithm and so on. Feliu-Batlle et al. carried
out research to tune controller D1−λIλ (2.28) for the second order plus time delay pro-

cess systems (G(s) = ke−Ls

(T1s +1)(T2s +1)
) [46]. It is noteworthy to say that the controller is

multiplied by (1+ α

s
) where α is very small and set by the trial and error method in order

to decrease the settling time value. The constraints (2.29), (2.30) and (2.32) were solved
using the Newton-Raphson numerical iterative algorithm. They assert that D1−λIλ con-
trollers are more robust and stable than IO-PID controllers (2.22) against changes in
T1. Moreover, in [67], an accurate approximation method is used to directly solve con-
straints (2.29), (2.30), and (2.31) to tune FO-PI controllers (2.19) for any general plant.
Luo and Chen tuned three controllers including IO-PID (2.22), FO-PD ((2.21), µ ∈ (0,2)),

and FO-[PD] (2.26, µ ∈ (0,2)) controllers for FO plants (G(s) = 1

s(Tsα+1)
) [44]. The con-

straints (2.29), (2.30) and (2.31) are solved using the graphical method for designing a
robust controller against gain variations. It is concluded that IO-PID controllers are not
proper for some cases because they cause systems to become unstable and also FO-
[PD] controllers are more robust and have better performances than FO-PD ones. More-
over, they used this approach for tuning FO-PI and FO-[PI] for the similar type of FO
plants [45]. They concluded that there are no differences between FO-PI (2.19) and FO-
[PI] (2.27) controllers for this type of plant [45]. Similarly, Luo et al. followed this method
to tune the FO-PD controller for a servo hard disk drive [68]. This method is also used to
tune FO-PI controllers (2.19) for the first order plants [69].

2.5. REALIZATION OF FO CONTROLLERS

C ONTROL engineers are faced with a big difficulty which is the realization of FO-
controllers when they want to utilize this type of controllers. Implementation of

FO-controllers will be done in two steps. First, the irrational function sν must be ap-
proximated with a rational function. There are some methods for obtaining the rational
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approximation functions of sν in the S, Z and δ domain. In other words, there are con-
tinuous approximation functions (S domain) and discrete approximation functions (Z
and δ domain). Second, the rational transfer functions can be implemented by analogue
circuits (for continuous transfer functions) or by special digital devices such as PLC, PIC,
FPGA and so forth (for discrete approximation functions).

2.5.1. CONTINUOUS APPROXIMATION METHODS (S DOMAIN)
One of the important problems in implementing of FO controllers can be addressed as
finding a way for the rational approximation of the irrational transfer function sν. There
are several mathematical methods for the rational approximation of sν. In control the-
ory, the Continuous Fractional Expansion (CFE) method, which is a well-known method
for function evaluation, is a proper way among many other mathematical methods. In
this way, any irrational function G(s) can be expressed as [70, 71]

G(s) ≈ a0(s)+ b1(s)

a1(s)+ b2(s)

a2(s)+ b3(s)

a3(s)+ ...

. (2.52)

This technique yields to approximate the irrational function G(s) by a rational function
which is achieved by dividing two polynomial functions of the variable s as

G(s) ≈ Pn(s)

Qm(s)
= p0 +p1s + ...+pn sn

q0 +q1s + ...+qm sm , (2.53)

which is passed through these points (s1,G(s1)), ..., (s1+a ,G(s1+a)) where a = m +n +1.
A method upon the CFE technique is suggested by Matsuda in selected logarithmically
spaced points (sk ,k = 0,1,2, ...). His approximation method is [70, 71]

H(s) ≈ a0 + s − s0

a1 + s − s1

a2 + s − s2

a3 + ...

, (2.54)

where V0(s) = H(s), Vi+1(s) = s − si

Vi (s)−ai
, ai =Vi (si ).

The most widely applicable method for the approximation of sν in a limited frequency
range is Oustaloup’s method [29, 70–73] which is

sν ≈Co

k=N∏
k=−N

(
1+ s

ω′
k

)
(
1+ s

ωk

) , (2.55)

with Co =
(
ωh

ωb

)0.5ν

, ω′
k = ωb

(
ωh

ωb

) k+N+ 1−ν
2

2N+1

, ωk = ωb

(
ωh

ωb

) k+N+ 1+ν
2

2N+1

, and ωh > ωb are fre-

quency bands on which sν acts. Quality of Oustaloup’s method near frequency bands
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may not be satisfactory when ωh is very high and ωb is very low. So, an extension of
this method is proposed to overcome this problem by combining the Taylor’s series and
Oustaloup’s method [72] as

sν ≈Co

(
d s2 +bωh s

d(1−ν)s2 +bωh s +dν

) k=N∏
k=−N

s +ω′k
s +ωk

, (2.56)

in which Co =
(

dωb

b

)ν k=N∏
k=−N

ωk

ω′k
. The suggested values for b and d are, respectively, 10

and 9 [72].
Similar to the Oustaloup’s method, Chareff proposed an approximation for functions in

the form of G(s) = 1(
1+ s

PT

)ν as [71]

1(
1+ s

PT

)ν ≈
∏N−1

i=1

(
1+ s

zi

)
∏N

i=1

(
1+ s

pi

) , (2.57)

where a = 10
y

10(1−ν) , b = 10
y

10ν , p0 = PT
p

b, pi = p0(ab)i , zi = ap0(ab)i ,

N = Integer

 log
(
ωmax

p0

)
log (ab)

+1, andωmax is the desired bandwidth. These coefficients are

computed such that deviation from the original magnitude response in the frequency
domain becomes less than y(dB). Yüce et al. introduced an approximation method
based on Laplace transform of FO integrator (2.4) by utilizing the least square fitting tool
of Matlab. In this way [74],

L −1
{

1

sν+1

}
= tν

νΓ(ν)
=F (t ). (2.58)

It is assumed that function Y (2.59) is fitted properly to the function F and then mi and
ni parameters are achieved by using the least square fitting tool in Matlab as

F (t ) ≈Y (t ) = m1e−n1t +m2e−n2t +m3e−n3t +m4e−n4t +m5e−n5t + c. (2.59)

Then, the inverse Laplace transform is applied to (2.59) and the approximation function
is obtained as

L {Y } = m1

s +n1
+ m2

s +n2
+ m3

s +n3
+ m4

s +n4
+ m5

s +n5
+ c

s
. ≈ 1

sν+1 (2.60)

Upon Newton’s iterative method for solving nonlinear equations, Carlson introduced an
approximation method for FO transfer functions. In this respect [73, 75, 76]

G(s)ν ≈ Hn(s) = Hn−1(s)
(a −1)(Hn−1(s))a + (a +1)G(s)

(a +1)(Hn−1(s))a + (a −1)G(s)
, (2.61)
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where a = 1

ν
, H0(s) = 1. It is obvious that this method is restricted to that a must be an

integer number. So, some researchers tried to overcome this limitation. Shrivastava and
Varshney considered that Carlson’s method is applicable for ν= 0.1, 0.2, and 0.5. Then,
they built other ν values in the range of [0.1,0.9] by combination of these three values
(for example, 0.3 = 0.1+ 0.2 or 0.8 = 0.3+ 0.5) and obtained a table for approximation
of (sν, ν ∈ [0.1,0.9]) [75]. Moreover, Tepljakov et al. modified the Carlson’s method in
order to approximate sν in a frequency range. They declared that the behaviour of sν in
a frequency band is similar to an FO lead/lag compensator (2.14). If ν−1 is not an integer
number, it will be decomposed by a special algorithm (for more information see [76]) as

ν=
i=k∑
i=1

1

mi
. (2.62)

Then, the approximation function in the frequency band is calculated as

G(s)ν ≈
i=k∏
i=1

( 1+∆s

1+x∆s

) 1
mi ≈

i=k∏
i=1

H
1

mi
n , (2.63)

where H
1

mi
n is calculated through (2.61) while a = mi .

In addition, Aware et al. introduced a new method for approximation of sν in the fre-
quency band of (ωL ,ωH ) [77]. They obtained this method by optimizing the number of
poles and zeros to maintain the phase value of sν within the ε◦ tolerance of its actual
value as follows.

sν ≈ (s − z1)(s − z2)...(s − zn)

(s −p1)(s −p2)...(s −pn)
, (2.64)

in which p1 = 102ν+log(ωL )+1, pn = 10log(pn−1)+2−µ, z1 = 10ωL , zn = 10log(zn−1)+2−µ, µ =
0.64ε, n = min(n)

pn>ωH

.

Lino and Maione obtained an approximation method for FO lead/lag compensator (2.14)
which is [78]

C (s) = kp xµ
( 1+∆s

1+∆xs

)ν
≈

N∑
k=0

BN−k sk

N∑
k=0

AN−k sk

, ν> 0,

{
Lead, 0 < x < 1,

Lag, 1 < x,
(2.65)

where

• AN−k =
N∑

i=1
aN−i LC

ki , BN−k =
N∑

i=1
bN−i LC

ki , LC
ki = T k

j2∑
j= j1

(i
j

)(N−i
k− j

)
xk− j ,

• j1 = max{0,k + i −N }, j2 = min{i ,k},

• ai =
(N

i

)
(N − i +1+ν)(i )(N −ν)(N−i )∗ , bi =

(N
i

)
(i +1+ν)(N−i )(N −ν)(i )∗ ,

• (ν+ i +1)(N−i ) = (ν+ i +1)(ν+ i +2)...(ν+N ),

• (N −ν)(i )∗ = (N −ν)(N −ν−1)...(N −ν− i +1),
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Table 2.1: Discrete Time Conversion Rules

Methods s →→→ z Conversion Taylor series [8]

Backward-Difference
(Euler) [6, 8, 71, 80]

sν ≈
[

1− z−1

T

]ν
(

1

T
)ν

[
1−νz−1 + ν(ν−1)

2!
z−2 + ...

]
Trapezoidal

(Tustin) [6, 8, 71, 80]
sν ≈

[
2(1− z−1)

T (1+ z−1)

]ν
(

2

T
)ν

[
1−2νz−1 +2ν2z−2 + ...

]
Al-Alaoui [6, 80] sν ≈

[
56(1− z−1)

49T (7+ z−1)

]ν
-

Simpson [8] sν ≈
[

3(1− z−1)(1+ z−1)

T (1+4z−1 + z−2)

]ν
(

3

T
)ν

[
1−4νz−1 +2ν(4ν+3)z−2 + ...

]
Table 2.2: β and γ tuning parameters

Methods Forward Euler Tustin Al-Alaoui Backward Euler Implicit Adams

γ 0 0.5
7

8
1 1.5

β 1

• (ν+N +1)(0) = (ν−N )(0) = (N −ν)(0)∗ = 1.

As it asserts that sν in a frequency band can be considered as an FO lead/lag compen-
sator [76], this method can be applied to approximate sν in a frequency range.

2.5.2. DISCRETE APPROXIMATION METHODS (Z DOMAIN)
In this age, using digital logic in some applications such as controller implementation
has been increased because of development of digital computers. FO-controllers are
not exceptional and there are many investigations for digital implementation of these
controllers. Tenreiro Machado was one of the pioneer researchers who proposed an al-
gorithm for the digital implementation of FO-controllers [79]. The first step in digital
implementation is the discretization of the FO-transfer function. For this purpose, there
are several methods which are categorized into two main groups: direct discretization
and indirect discretization methods [80].

DIRECT DISCRETIZATION METHODS

In these methods, two steps must be taken for obtaining a discrete function of FO dif-
ferentiators. At first, it is important to select a proper generating function. Generating
functions express the discretization of FO differentiators (s = ω(z−1)) and usually have
the general configuration [81]

ω(z−1) = 1− z−1

βT
(
γ+ (1−γ)z−1

) , (2.66)

in whichβ, γ, and T are respectively the gain tuning parameter, phase tuning parameter,
and sample period. The most commonly used generating functions are most usable for
the discretization are listed in Table 2.1. Most of these generating functions can be ob-
tained using (2.66) by considering gain and phase tuning parameters listed in Table 2.2.
Obviously, the generating functions which are listed in Table 2.1 are irrational. So, in the
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second step, it is necessary to approximate these irrational formulas with finite order ra-
tional formulas. To obtain this goal, two most applicable mathematics methods (Power
Series Expansion (PSE) and CFE) are utilized in direct discretization methods in many
studies. In other words, it can be said that

D±ν(z) ≈C F E {ω(z−1)ν} or D±ν(z) ≈ PSE {ω(z−1)ν}. (2.67)

As it was shown in Table2.1, Machado et al. proposed some discrete approximation func-
tions by applying the Taylor series, which is one of the mostly used PSE methods, to sev-
eral generating functions [8].
One of the well-known approximation functions is obtained based on the PSE method by
utilizing the Euler generating function and the Grünwald-Letnikov definition (2.10). In
this respect, the discrete approximation of the FO integro-differential operator is gotten
by using the short memory principle [6, 71, 80] as

(s)±ν = T ∓νz−[ L
T ]

[ L
T ]∑

j=0
cνj z[ L

T ]− j , (2.68)

in which L is the memory length, cνj =
(
1− (1+ν)

j

)
cνj−1, and cν0 = 1. In order to improve

the accuracy of the discrete approximation functions in high frequencies, Chen et al.
introduced a new generating function by combining the Tustin and Simpson generating
functions. Their new generating function is [80],

sν ≈ k0

(
1− z−2

1+ r2z−1

)ν
, (2.69)

where k0 = 6r2

T (3−a)
, r2 = 3+a −2

p
3a

3−a
, a ∈ [0,1] is a weighting factor or a tuning knob.

Then, this generating function is expanded rationally by the implementation of the CFE
method using MATLAB Symbolic Toolbox [80].
Chen et al. proposed a discrete approximation method upon the Muir-recursion for-
mula, which is applicable in the geophysical data processing, in order to express the
Tustin generating function rationally [6] and claimed that their method is as accurate as
the Taylor series expansion method. In this method,

sν ≈
(

2

T

)ν (
1− z−1

1+ z−1

)ν
=

(
2

T

)ν
lim

n→∞
An(z−1,ν)

An(z−1,−ν)
, (2.70)

In which: A0(z−1,ν) = 1, An(z−1,ν) = (1− cn zn)An−1(z−1,ν), cn =

ν

n
, n is odd,

0, n is even.
Similar to (2.65), a closed-form formula is obtained for discrete approximation of FO
lead/lag compensators [78] as

C (s) = kp xµ
( 1+∆s

1+∆xs

)ν
≈

N∑
h=0

DN−h zh

N∑
h=0

CN−h zh

, ν> 0,

{
Lead, 0 < x < 1,

Lag, 1 < x,
(2.71)
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with,

• CN−h =
N∑

k=0
AN−k LD

hk , DN−h =
N∑

k=0
BN−k LD

hk , j2 = min{h,k},

• LD
hk = (

2

T
)k

j2∑
j= j1

(−1)k− j
(k

j

)(N−k
h− j

)
xk− j , j1 = max{0,k +h −N },

• AN−k and BN−k are described in (2.65),

INDIRECT DISCRETIZATION METHODS

There are two stages in indirect discretization methods. At the first stage, the irrational
transfer function sν is approximated by a rational transfer function by using methods
which are described in Section 2.5.1. Then, by replacing s in the approximation function
with generating functions which are represented in Table(2.1) (s →ω(z−1)), the discrete
approximation function is obtained. In other words,

sν ≈ Pn(s)

Qm(s)

s=ω(z−1)======⇒ sν ≈G(z). (2.72)

For instance, Folea et al. approximated sν with Oustaloup’s method (2.55) firstly. Then,
to obtain the discrete approximate transfer function, they replaced s with

s = (1+α)(z −1)

T (z +α)
, (2.73)

where T is sampling period and α ∈ [0,1]) is a weighting factor [82, 83]. This method is
generalized for any non-rational continuous-time transfer function by passing following
steps or a general [84]. After replacing s with (2.73), the frequency response is obtained
replacing z = e jωt where ω is a vector of equally-spaced frequencies. Then, the impulse
response of the discrete-time FO system is obtained using the inverse Fast Fourier Trans-
form (FFT) to the previous calculated frequency response. The approximated transfer
function is achieved from the impulse response using some techniques such as Steiglitz-
McBride in the form of

G(z−1) = a0 +a1z−1 + ...+an z−N

b0 +b1z−1 + ...+bn z−n , n is the order of approximation. (2.74)

2.5.3. δ DOMAIN APPROXIMATION METHODS
Although the digital implementation is widely used in this era because of the develop-
ment of digital computers, there is a big concern in discrete approximation methods. As
it is known, stable poles and minimum-phase zeros in the s-plane are lain inside the unit
circle in the z-plane when the bilinear transformation is utilized. So, the high resolution
presentation of compensators with long words are essential for ensuring stability. But, it
is impossible to get infinite accuracy in designing values of coefficients in a software and
hardware implementation because a finite number of bits are available [78]. Further-
more, when the sampling rate is increased, zeros and poles of discrete approximation
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functions get close to each other and concentrate at the point (1,0). Hence, discrete ap-
proximation functions are very sensitive to small variations of coefficients in high sam-
pling rates and even may lose their stability in some cases [78, 85]. To overcome these
dilemmas, the δ operator can be a proper solution because it allows a gradual transfor-
mation from the discrete to continuous time domain. For this purpose, the continuous
transfer function is converted to the δ domain through [78, 85]:

s = 1

T
ln(δT +1) ≈ δ

0.5δT +1
, (2.75)

where T is the sampling period. Similar to indirect discretization methods, it is possible
to approximate irrational transfer functions with presented methods in Section 2.5.1 and
then use the preceding equation to obtain δ domain approximation functions.
Moreover, some researchers introduced some direct methods to obtain rational δ do-
main transfer functions. Similar to (2.71) and (2.65), a closed-form formula is obtained
for the approximation of FO lead/lag compensators δ domain as [78]:

C (s) = kp xµ
( 1+∆s

1+∆xs

)ν
≈

N∑
h=0

FN−hδ
h

N∑
h=0

EN−hδh

, ν> 0,

{
Lead, 0 < x < 1,

Lag, 1 < x,
(2.76)

with EN− j =
j∑

k=0

(N−k
j−k

)
(0.5T ) j−k AN−k , FN− j =

j∑
k=0

(N−k
j−k

)
(0.5T ) j−k BN−k , AN−k and BN−k

are described in (2.65). As it has been explained, all methods (2.65), (2.71), and (2.76)
can be used for sν which acts on a frequency band. In addition, Maione introduced a
formula to approximate sν in δ domain as [85]

sν ≈G (N )
δ

=

N∑
k=0

ckδ
N−k

N∑
k=0

dkδN−k

, (2.77)

In which

• c(N− j )(ν) =
j∑

r=0
p(N−r )(ν)(0.5T ) j−r

(N−r
j−r

)
, d(N− j )(ν) =

j∑
r=0

q(N−r )(ν)(0.5T ) j−r
(N−r

j−r

)
,

• p j (ν) = q(N− j )(ν) = (−1) j
(N

j

)
(ν+ j +1)(N− j )(ν−N )( j ),

• (ν−N )( j ) = (ν−N )(ν−N −1)...(ν−N + j −1), (ν−N )(0) = 1,

• (ν+ j +1)(N− j ) = (ν+ j +1)(ν+ j +2)...(ν+N ), and N is the order of approximation.

It must be noted that for the implementation of the δ transfer functions [85], relation

δ−1 = Tz−1

1− z−1 (2.78)

can be used.
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2.5.4. DIGITAL IMPLEMENTATION
The first step in the digital implementation is getting the finite difference equation which
is achieved by the discrete approximation methods elaborated in Sections 2.5.2 and 2.5.3.
Then, all discrete approximation of FO transfer functions can be implemented directly to
any microprocessor based devices like as PLC, PIC, PCL I/O card, FPGA, FPAA, switched
capacitors, etc [86, 87]. Figure. 2.9 shows the implementation of the canonical form (2.74)
of discrete approximation of FO transfer functions. To implement this form, two codes
are needed: initialization and loop code (see the pseudo-code in [6, 88]).

e
+ a0 b0

z−1

a1 b1

z−1

+

+ an bn

z−1

+

+

+
U

Figure 2.9: Block diagram of the canonical representation

2.5.5. ANALOGUE IMPLEMENTATION
Although digital controllers are used widely nowadays because of the revolution of cost-
effective digital computers, they have some limitations in some aspects. The first prob-
lem comes from the nature of the discretization. This is related to the sampling period
which must be significantly more than the time of computation length. Also, a memory
with high capacity is needed for high order discrete approximations. Digital controllers
are not as fast as analogue controllers. As a result, although several digital controllers
have been recently used to control relatively high modes of systems, they are not proper
for very fast processes such as vibration control [70]. As some limitations are mentioned,
analogue realization is the only solution in some cases.

Y2n

Z2n−1

Y2

Z1

Y4

Z3

Figure 2.10: Finite ladder circuit

A circuit which represents FO behaviour is termed a "fractance". Basically, there are
three fractance devices: domino ladder network, tree structure of electrical elements
and transmission line circuit [6]. It asserts that ladder lattice networks can approximate
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FO transfer functions more accurate than the lumped networks [89]. Consider the finite
ladder circuit which is depicted in Figure. 2.10, in which Z2k−1(s), Y2k (s), k = 1, ...,n are
the impedance of circuit elements. The equivalent impedance of the whole circuit Z (s)
is obtained by [70]

Z (s) = Z1(s)+ 1

Y2(s)+ 1

Z3(s)+ 1

Y4(s)+ 1

...
1

Y2n−2(s)+ 1

Z2n−1(s)+ 1

Y2n(s)

, (2.79)

so, first, continuous approximation function of FO-controllers must be expressed in the
form of (2.79). Then, Z2k−1(s) and Y2k (s), k = 1, ...,n will give the type of necessary elec-
trical elements using the first Cauer’s canonic LC circuit [90] (for more information, see
examples in [70]). If bi < 0, then the circuit is depicted in Figure. 2.11 is considered [70].
The entire circuit has equivalent impedance of −Z in which Z can be a resistor, capacitor
or coil.

+
−−−

R

Ii n

Z

Iout

R

Figure 2.11: Negative-impedance converter

There are also some methods for the direct implementation of FO derivatives sν

which lead to increase the accuracy of the realization of FO controllers. In these meth-
ods, there is no need for approximation of FO transfer functions. Bohannan found some
electrical elements, named as "fractor", exhibit fractance attributes [91]. It is revealed
that Lithium Hydrazinium Sulfate (Li N2H5SO4) behaves in a wide range of temperatures
and frequencies like an electrical element with the impedance of [91]

ZF = k

s0.5 . (2.80)

Figure. 2.12 shows a circuit which implements the half order integrator by using a frac-
tor made from (Li N2H5SO4) material [91]. It is hoped that many investigations will be
done in the future in materials to build fractors with a wide range of exponents. Then,
it facilitates introducing FO control elements to engineering applications without using
approximation methods.
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+

−−−
Vout

R
ZF

Vi n

Figure 2.12: Schematic of a simple circuit of half order integrator

Another way for direct realization of FO controllers is using a new electrical element
whose name is ”Memristor” [92]. Memristor is an electrical element which exhibits a FO
behaviour with the impedance of [92]

ZMS = K sν, (ν,K ) ∈ R. (2.81)

Two configurations which are shown in Figure. 2.13a and 2.13b are considered for the
analogue implementation of FO controllers. The equivalent impedance of the entire

circuit Figures 2.13a and 2.13b are respectively Z (s) = −M

K
s−ν and Z (s) = − K

M
sν, (ν ∈

R) in which M called memristance with the physical unit of Ohm [92]. Although this
method is promising, further research has to be conducted to prove this method can
implement the FO transfer functions.

+++
−−−

VoutZMS

Vi n

M

(a) Type I

+++
−−−

Vout

ZMS

Vi n
M

(b) Type II

Figure 2.13: Analogue fractional-order operators

In addition, Aware et al. developed an analogue implementation technique based
on their approximation method (2.64) [77]. In this technique, first, sν is approximated
using (2.64), and then, each set of zero and pole (zi , pi ) is implemented as shown in
Figure. 2.14. In Figure. 2.14, firstly, any available capacitor (Ci ) is selected. Then,


Ri = 1

pi Ci
, R ′

i =
1

zi −pi
, ν< 0,

Ri = 1

zi Ci
, R ′

i =
1

pi − zi
, ν> 0.

(2.82)
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+++
−−−

VI (si )
VO (si )

R ′
i

R ′
iCi

Ri

Figure 2.14: Schematic of implementing each set of zero-pole pair of sν

2.6. SEVERAL USEFUL CODES FOR FO CONTROLLERS

N OW, it is noteworthy to introduce some Matlab codes which simplify using FO cal-
culus in the control field. One of these toolboxes is the CRONE CSD toolbox which

is designed for tuning all generations of CRONE controllers [29]. The online version of
this toolbox is available through this link.
Valério and Sa da Costa introduced a general and user friendly toolbox which is termed
Ninteger [73]. It has three identification methods. Also, it has many approximation
methods which have been described in this article. Moreover, it is proper for tuning
all generations of CRONE and FO-PID controllers (2.16) in both time and frequency do-
main.
One of the useful software for tuning FO-PID controllers (2.16), FO-lead lag compen-
sators and all IO-filters in both time and frequency domain is designed at the mecha-
tronic system design group of TU Delft University by S.H. HosseinNia et al. Also, it has
several approximation methods like Ninteger software and is free and available through
the following link.
Furthermore, there are some simple codes for the frequency domain analysis of FO func-
tions in [6]. Lachhab et al. designed a FO toolbox which automatically tune an FO-PID
controller based on given specifications and dynamics of the plant. Moreover, this soft-
ware includes some approximation methods [93]. Tepljakov et al. developed a very gen-
eral toolbox whose name is FOMCON [94] which has several options including both time
and frequency analysis, FO controllers in the state-space, CRONE controllers, approxi-
mation methods, optimization criteria for tuning FO-controllers, and identification with
FO-models. In addition, it has some FO-blocks which can be added in Simulink library
of Matlab. It can be downloaded through this link.
Dingy wrote a book about FO controllers and also designed a toolbox which contains
every method which is described in his book [95]. This toolbox which is termed FOTF
includes several approximation methods, functions for analyzing FO controllers in both
time and frequency domain, Simulink blocks for FO functions, and tuning methods for
FO controllers. This toolbox is available through this link.

2.7. DISCUSSION

I N this section, the advantages and disadvantages of using FO calculus in the control
area are commented based on the literature reviewed in this article. Many researchers

believe that FO controllers outperform IO ones [11, 43, 49, 96–101]. In the case of linear
controllers, on the one hand, it can be asserted that FO-PID controllers give more flex-
ibility to designers to select the tuning parameters due to two important factors. First,

http://archive.ims-bordeaux.fr/CRONE/toolbox/pages/accueilSITE.php?guidPage=home_page
https://www.researchgate.net/publication/325442440_FLOreS_-_Fractional_Order_Loop_Shaping_toolbox_for_MATLAB
http://fomcon.net/fomcon-toolbox/download/
https://nl.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox
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the orders of integration and differentiator of the controller are not restricted to integer
numbers. Second, the stability region of tuning knobs (kp , ki , and kd in controller (2.16))
which guarantees the stability of the whole system for a specific phase margin value is
bigger than one for IO-PID controllers as proposed by Hamamci in [102]. On the other
hand, the tuning knobs of FO-PID controllers are more than classical IO ones, so, de-
signers can consider more efficient constraints for tuning FO-PID compared to classical
IO ones. In comparison with high order IO-PID controllers, since FO-PID controllers are
approximated with several zeros-and poles, their performances are similar with high or-
der IO-PID. But the tuning of FO-PID is easier because two extra orders must be tuned in
FO-PID instead of determining places of several zeros-poles in high order IO-PID con-
trollers.

Among several constraints, iso-damping behaviour (constraint (2.31)) has attracted
a lot of attention from researchers in tuning FO controllers. It is reported that FO-PID
controllers are more robust against plant uncertainties than IO-PID ones [11, 43, 49, 103].
It is asserted that the third generation of CRONE is one of the most appropriate solutions
when uncertainties of a plant are more general than just gain-like perturbations [24, 25,
56]. Hence, from robustness viewpoint, FO controllers are more effective in comparison
with IO ones.

Furthermore, some researchers believe that it is possible to consider the energy effi-
ciency constraint for tuning FO-PID controllers [104–106]. As a result, from the energy
perspective, FO-PID can outperform classical IO-PID controllers; for instance, using FO-
PID decreases averagely 20% power consumption of a DC motor [104]. Another example,
it is shown that using FO-PID controllers for a magnetic levitation system leads to a bet-
ter fuel efficiency in comparison with classical IO-PID controllers [105].

In addition, FO controllers can properly compensate disturbances due to undesired
nonlinearities such as dead zone, backlash, hysteresis, and static distortion in the sys-
tems which results in increasing the precision of the system [107–109]. Moreover, some
research manifests that using FO transfer functions for describing the dynamic charac-
teristics of some special plant is more precise than IO ones [6–9, 110]. Also, it is con-
cluded that FO controllers are more proper than IO controllers for FO plants [11, 102].
Therefore, for some special plants, it is necessary to use FO calculus in both modelling
and control.

It can be concluded that FO controllers have better performance than IO ones and
improve significantly the performance of systems. However, there are two big barriers
which confine the adoption of FO controllers in the industry. Firstly, tuning of the FO
controllers is more complex than IO ones. This problem is solved to some extent by
present tuning methods and toolboxes which are elaborated in Sections 2.4 and 2.6, re-
spectively. Even though, based on the knowledge of the author, there are few reports
about tuning of FO controllers for motion systems (high cross-over frequency is required).
Secondly, realization of FO controllers need devices with high memory capacity because
FO controllers are approximated with high order transfer functions. Since there is no di-
rect method for realization of FO controllers, approximation methods must be used for
this purpose. In order to increase accuracy of the approximation methods, the order of
estimated functions must be increased which leads to a high order controller. Although
some researchers are trying to solve this problem, their methods need further efforts to
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be complete [91, 92]. It is hoped that researchers can propose a direct method for realiza-
tion of FO controllers using some special materials such as Memristor and (Li N2H5SO4).

To wrap up, FO calculus advances the control area in many aspects. It can be claimed
that FO calculus facilitates modelling of complicated dynamic systems such as distributed
parameter systems, biomimetics materials, smart materials, etc. [7, 97, 98, 111]. More-
over, it improves performance of both linear and nonlinear controllers particularly from
the robustness viewpoint. In addition, it is claimed that FO calculus has potential to
shape the phase and gain of the frequency response independently and achieve the Bode
ideal transfer function [7]. However, nobody attempted to solve this significant problem.
All in all, it is predicted that overcoming mentioned barriers leads to substitution of IO-
PID controllers with FO ones in the near future.

2.8. CONCLUSION

F O controllers have attracted much attention from academia and industrial associ-
ations. In this article, linear FO controllers are reviewed with the focus on the fre-

quency domain. In this respect, FO calculus including basic definitions of FO derivative
and integrator were introduced. Next, four well-known linear FO controllers which are
TID controller, CRONE generations, FO lead/lag compensators, and FO-PID controllers
were commented and after that, their representative tuning methods were elaborated.
Although many simple tuning methods for FO controllers were reported, most of them
are useful for process control problems (low bandwidth and high time delay systems)
and motion control problems (high bandwidth systems) have not been considered much
in the literature yet. Then, continuous and discrete approximation methods of FO con-
trollers and their analogue and digital implementation were explained. Approximation
methods lead to high order functions which makes the implementation of FO controllers
to be more difficult than IO ones. Although much of recent research resolved this prob-
lem to some extent, further investigations are required. Then, some useful codes which
facilitate using FO calculus in the control field were presented. Finally, it is anticipated
that IO-PID controllers are replaced with FO ones in the near future by finding a direct
method for implementation of FO controllers. All in all, this review paper helps begin-
ners to get started rapidly and learn how to select, tune, approximate, and implement
FO-controllers.
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3
CLOSED-LOOP FREQUENCY

ANALYSIS OF RESET CONTROL

SYSTEMS

Ali AHMADI DASTJERDI

As was mentioned, to increase the applicability of CgLp compensators in industry, it is
necessary to provide a solid frequency-domain frame work for analyzing reset control sys-
tems. This chapter introduces a closed-loop frequency analysis tool for reset control sys-
tems. To begin with, sufficient conditions for the existence of the steady-state response for
a closed-loop system with a reset element driven by periodic references are provided. It is
then shown that, under specific conditions, such a steady-state response for periodic in-
puts is periodic with the same period as the input. Furthermore, a framework to obtain
the steady-state response and define a notion of closed-loop frequency response, including
high order harmonics, is presented. Finally, pseudo-sensitivities for reset control systems
are defined. All of these calculations are embedded in a user-friendly toolbox to make this
approach easy of use. To show the effectiveness of the proposed analysis method, the posi-
tion control problem for a precision positioning stage is studied. In particular, comparison
with the results achieved using methods based on the Describing Function shows that the
proposed method predicts the closed-loop performance more precisely.

This chapter has been submitted to IEEE-Transaction on Automatic Control.
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3.1. INTRODUCTION

P ROPORTIONAL Integral Derivative (PID) controllers are used in more than 90% of in-
dustrial control applications [1–3]. However, cutting-edge industrial applications

have control requirements that cannot be fulfilled by PID controllers. To overcome this
problem linear controllers may be substituted by non-linear ones. Reset controllers are
one such non-linear controllers which have attracted attention due to their simple struc-
ture and their ability to improve closed-loop performance [4–20].

A traditional reset controller consists of a linear element the state of which is reset
to zero when the input equals zero. The simplest reset element is the Clegg Integrator
(CI), which is a linear integrator with a reset mechanism [4]. To provide design freedom
and applicability, reset controllers such as First Order Reset Elements (FORE) [21, 22]
and Second Order Reset Elements (SORE) have also been introduced [14]. These reset
elements are utilized to construct new compensators to achieve significant performance
enhancement [17, 23–27]. In order to further improve the performance of reset control
systems several techniques, such as the considerations of non-zero reset values [9, 22],
reset bands [28, 29], fixed reset instants, and PI +C I configurations [30–32] have been
introduced.

Frequency-domain analysis is preferred in industry since this allows ascertaining
closed-loop performance measures in an intuitive way. However, the lack of such meth-
ods for non-linear controllers is one of the reasons why non-linear controllers are not
widely popular in industry. The Describing Function (DF) method is one of the few
methods for approximately studying non-linear controllers in the frequency-domain and
this has been widely used also in the literature of reset controllers [9, 17, 27, 33, 34]. The
DF method relies on a quasi-linear approximation of the steady-state output of a non-
linear system considering only the first harmonic of the Fourier series expansion of the
input and output signals (assumed periodic). The general formulation of the DF method
for reset controllers is presented in [33], which however does not provide any informa-
tion on the closed-loop steady-state response.

In this chapter, first, sufficient conditions for the existence of the steady-state re-
sponse for a closed-loop system with a reset element and driven by a periodic input
are given. Then, a notion of closed-loop frequency response for reset control systems,
including high order harmonics, is introduced. Pseudo-sensitivities to combine har-
monics and facilitate analyzing reset control systems in the closed-loop configuration
are then defined. All of these ideas can be utilized to develop a toolbox which is briefly
discussed. Furthermore, the method is used to analyze the performance of a precision
positioning stage. Note finally that, contrary to the DF method, which provides only
approximations for the periodic steady-state response of reset control systems, the pro-
posed tools allow computing exact steady-state responses to periodic excitations.

The chapter is organized as follows. Preliminaries on the frequency analysis for re-
set controllers are presented in Section 3.2. In Section 3.3 sufficient conditions to define
a notion of frequency response are presented. Then, a method to obtain closed-loop
frequency responses for reset control systems, including high order harmonics, is devel-
oped, and pseudo-sensitivities are defined. In Section 3.4 the steady-state response of
reset controllers to periodic inputs is studied. In Section 3.5 the performance of our pro-
posed methods is assessed on an illustrative example. Finally, some concluding remarks
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and suggestions for future studies are given in Section 3.6.

3.2. PRELIMINARIES

I N this section frequency-domain descriptions for reset controllers are briefly recalled.
The state-space representation of a reset element is given by equations of the form

ẋr (t ) = Ar xr (t )+Br r (t ), r (t ) 6= 0,

xr (t+) = Aρx(t ), r (t ) = 0,

ur (t ) =Cr x(t )+Dr r (t ),

(3.1)

in which xr (t ) ∈ Rnr are the reset states, r (t ) ∈ R is an external signal, ur (t ) is the con-
trol input, Ar , Br , Cr and Dr are the dynamic matrices of the reset element, and matrix
Aρ determines the value of the reset states after the reset action. The transfer function
Cr (sI − Ar )−1Br +Dr is called the base transfer function of the reset controller. To study
the reset controller (3.1) in the frequency-domain one could use various approaches. For
example, in order to find the DF, a sinusoidal reference r (t ) = a0 sin(ωt ), ω> 0 is applied
and the output is approximated by means of the first harmonic of the Fourier series ex-
pansion of the steady-state response (provided if exists). In order to have a well-defined
steady-state response we assume that Ar has all eigenvalues with negative real part and

Aρe
Ar π
ω has all eigenvalues with magnitude smaller than one [33]. In this case, the state-

space representation of the reset element (3.1) can be re-written as
ẋr (t ) = Ar xr (t )+a0Br sin(ωt ), t 6= tk ,

xr (t+) = Aρx(t ), t = tk ,

ur (t ) =Cr x(t )+a0Dr sin(ωt ),

(3.2)

with ω> 0, in which tk = kπ
ω , with k ∈N, are the reset instants. According to [33], the DF

associated to system (3.2) is given by

NDF (ω) = a1(ω)e jϕ1(ω)

a0
=Cr ( jωI − Ar )−1(I + jθ(ω))Br +Dr , (3.3)

where

θ(ω) = −2ω2

π
(I +e

πAr
ω )

(
(I + Aρe

πAr
ω )−1 Aρ(I +e

πAr
ω )− I

)
(ω2I + A2

r )−1. (3.4)

Recently, a new tool, called Higher-Order Sinusoidal Input Describing Functions (HOSIDF),
for studying non-linearities in the frequency-domain has been introduced in [35]. In
this method a non-linear system is considered as a virtual harmonic generator and the
HOSIDF is defined as [35]:

Hn( jω) = an(ω)e jϕn (a0,ω)

a0
, (3.5)

in which an(ω) and ϕn(a0,ω) are the nth components of the Fourier series expansion of
the steady-state output of the system to a sinusoidal input. This framework has been
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a0 sin(ωt +ϕ0)

a0 sin(2(ωt +ϕ0))

a0 sin(n(ωt +ϕ0))
Hn

H2

H1

a1(ω)sin(ωt +ϕ0 +ϕ1(ω))

a2(ω)sin(2(ωt +ϕ0)+ϕ2(ω))

an(ω)sin(n(ωt +ϕ0)+ϕn(ω))

∑∑∑ y(t ) ===
∞∑∑∑

n=1
an(ω) sin (n(ωt +++ϕ0)+++ϕn(ω))

Reset
Controller

+++−−− CR G
e(t ) u(t )

Plant
r (t ) === a0 sin (ωt +++ϕ0)

y(t ) ===
∞∑∑∑

n=1
an(ω) sin (n(ωt +++ϕ0)+++ϕn(ω))

Non-Linear
System

CL1

Linear
Controller

++++++

d (t )

eR (t ) uR (t )
CL2

Linear
Controller

L

Figure 3.1: Closed-loop architecture with reset controller (top). HOSIDF representation of the closed-loop
configuration (bottom).

extended to the reset controller (3.1) in [36] as

Hn( jω) =


Cr ( jωI − Ar )−1(I + jθ(ω))Br +Dr , n = 1,

Cr ( j nωI − Ar )−1 jθ(ω)Br , n > 1 odd,

0, n even.

(3.6)

Note that the above frequency analysis is made simple by the fact that the reset instants
are known, that is the reset controller is studied in the open-loop. Frequency properties
of reset controllers as part of a closed-loop system in the presence of a periodic reference
or disturbance input are much more difficult to study, and are the subject of the next
section.

3.3. CLOSED-LOOP FREQUENCY RESPONSE OF RESET CONTROL

SYSTEMS

C ONSIDER the single-input single-output (SISO) control architecture in the top dia-
gram of Figure. 3.1. This includes as particular cases all schemes discussed in Sec-

tion 3.1. The closed-loop system consists of a linear plant with transfer function G(s),
two linear controllers with proper transfer function CL1 (s) and CL2 (s), and a reset con-
troller with base transfer function CR(s). Let L be the LTI part of the system and assume
that G(s) is strictly proper. The state-space realization of L is described by the equations

L :


ζ̇(t ) = Aζ(t )+B w(t )+BuuR (t ),

u(t ) =Cuζ(t )+Dur (t ),

eR (t ) =CeR ζ(t )+DeR r (t ),

y(t ) =Cζ(t ),

(3.7)

where ζ(t ) ∈ Rnp describes the states of the plant and of the linear controllers (np is the
number of states of the linear part), A, B , C , Bu , CeR , Cu , Du and DeR are the correspond-
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ing dynamic matrices, y(t ) ∈ R is the output of the plant and w(t ) = [r (t ) d(t )]T ∈ R2 is
an external input. The state-space representation of the reset controller is given by the
equations 

ẋr (t ) = Ar xr (t )+Br eR (t ), eR (t ) 6= 0,

xr (t+) = Aρxr (t ), eR (t ) = 0,

uR (t ) =Cr xr (t )+Dr eR (t ).

(3.8)

The closed-loop state-space representation of the overall system can, therefore, be writ-
ten as 

ẋ(t ) = Āx(t )+ B̄ w(t ), eR (t ) 6= 0,

x(t+) = Āρx(t ), eR (t ) = 0,

u(t ) = C̄u x(t )+ D̄ur (t ),

eR (t ) = C̄eR x(t )+DeR r (t ),

y(t ) = C̄ x(t ),

(3.9)

where x(t ) = [xr (t )T ζ(t )T ]T ∈Rnp+nr , and Ā =
[

Ar Br CeR

BuCr A+BuDr CeR

]
, C̄ = [

01×nr C
]
,

B̄ =
[

0nr ×2

B

]
+

[
Br DeR 0nr ×1

BuDr DeR 0np×1

]
, Āρ =

[
Aρ 0nr ×np

0np×nr Inp×np

]
, C̄eR = [

01×nr CeR

]
, C̄u =[

Cr DL2 CeR Dr DL2 +Cu
]
, and D̄u = DuDeR Dr with DL2 the feedthrough matrix of CL2 (s).

3.3.1. STABILITY AND CONVERGENCE

In this section sufficient conditions for the existence of a steady-state solution for the
closed-loop reset control system (3.9) driven by periodic inputs is provided. This is based
on the Hβ condition [5, 37–39], which we recall in what follows. Let

C0 =
[
ρ βCeR

]
, B0 =

[
Inr ×nr

0np×nr

]
, ρ = ρT > 0, ρ ∈Rnr ×nr , β ∈Rnr ×1. (3.10)

The Hβ condition states that the reset control system (3.9) with w = 0 is quadratically
stable if and only if there exist ρ = ρT > 0 and β such that the transfer function

H(s) =C0(sI − Ā)−1B0 (3.11)

is Strictly Positive Real (SPR), (Ā,B0) and (Ā,C0) are controllable and observable, respec-
tively, and

AT
ρ ρAρ −ρ < 0. (3.12)

Definition 1. A time T̄ > 0 is called a reset instant for the reset control system (3.9) if
eR (T̄ ) = 0. For any given initial condition and input w the resulting set of all reset instants
defines the reset sequence {tk }, with tk ≤ tk+1, for all k ∈N. The reset instants tk of the reset
control system (3.9) have the well-posedness property if for any initial condition x0 and
any input w, all reset instants are distinct, and there exists a λ> 0 such that for all k ∈N,
λ≤ tk+1 − tk [9, 40].
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Remark 1. If the Hβ condition holds, then the reset control system (3.9) has the uniform
bounded-input bounded-state (UBIBS) property and the reset instants have the well-
posedness property (see Lemma 5 in Chapter 4). Therefore, the reset control system (3.9)
has a unique well-defined solution for t ≥ t0 for any initial condition x0 and input w(t )
which is a Bohl function [9, 40].

To develop a frequency analysis for the reset control system (3.9), the following as-
sumption is required.

Assumption 1. The initial condition of the reset controller is zero. In addition, there are
infinitely many reset instants and lim

k→∞
tk =∞.

The second term in Assumption 1 is introduced to rule out a trivial situation. In fact,
if lim

k→∞
tk = TK , then for all t ≥ TK the reset control system (3.9) is a stable linear system.

Two important technical lemmas, which are used in the proof of the following theorem,
are now formulated and proved.

Lemma 1. Let {tk } and {t̃k } be the reset sequences of the reset control system (3.9) for two
different initial conditions ζ0 and ζ̃0 of the linear part and for the same input. Suppose
Assumption 1 and the Hβ condition hold and w is a Bohl function. Then lim

k→∞
(tk − t̃k ) = 0.

Proof. To begin with note that, for any initial condition x0 =
[
0T ζT

0

]T
, the signal eR (t )

in (3.9) can be obtained through the equation (see Lemma 3 in the Appendix 3.A)
ẋI (t ) = ĀxI (t )+ B̄ w(t )+

[
Br

0np×2

]
w I (t ), eR (t ) 6= 0,

xI (t+) = ĀρxI (t ), eR (t ) = 0,

eR (t ) = C̄eR xI (t )+DeR r (t )+ [1 0]w I (t ),

(3.13)

with xI (0) = 0 and 
Ż (t ) = AZ (t ),

w I (t ) =
[

CeR

0

]
Z (t ),

Z (0) = ζ0. (3.14)

Since the linear part of the system contains the internal model (3.14) of w I , and w(t )
is a Bohl function, based on [5, 38] eR (t ) is asymptotically independent of w I (t ). This
implies that lim

k→∞
(tk − t̃k ) = 0.

Lemma 2. Consider the reset control system (3.9). Suppose Assumption 1 holds, w is a
Bohl function, and the Hβ condition is satisfied. Then the reset control system (3.9) is
uniformly exponentially convergent.

Proof. To begin with note that the property of uniformly exponentially convergence is as
given in [41]. Since the Hβ condition is satisfied, according to Remark 1, the reset control
system (3.9) has a unique well-defined solution for any initial condition x0 and any w
which is a Bohl function. Let x and x̃ be two solutions of the reset control system (3.9)
corresponding to the some input w and to two different initial conditions. Since the Hβ
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condition is satisfied x(t ) and x̃(t ) are bounded for all t . Let ∆x := x(t )− x̃(t ), and let {tk }
and {t̃k } be the reset sequences of x(t ) and x̃(t ). Define M= {t ∈ R+| t 6= tk ∧ t 6= t̃k }. By
Lemma 1

∀ δ> 0, ∃Π> 0 such that k >Π⇒|tk − t̃k | < δ. (3.15)

Moreover, by the well-posedness property, there exists a λ> 0 such that λ≤ tk+1− tk and
λ≤ t̃k+1 − t̃k . Thus, selecting δ sufficiently small yields

x(tk +δ) = e Āδ Āρx(tk )+
∫ tk+δ

tk

e Ā(tk+δ−τ)B̄ w(τ)dτ, (3.16)

for all tk sufficiently large. By (3.15), t̃k = tk +δ′, with 0 ≤ δ′ ≤ δ. Thus

x̃(tk +δ) = e Ā(δ−δ′) Āρ

(
e Āδ′ x̃(tk )+

∫ tk+δ′

tk

e Ā(tk+δ′−τ)B̄ w(τ)dτ

)
+

∫ tk+δ

tk+δ′
e Ā(tk+δ−τ)B̄ w(τ)dτ.

(3.17)
Now, by (3.16) and (3.17)

∆x(tk +δ)=Āρ∆x(tk )+ (e Āδ Āρ −e Ā(δ−δ′) Āρe Āδ′ )x̃(tk )
∫ tk+δ′

tk

e Ā(tk+δ−τ)B̄ w(τ)dτ

−e Ā(δ−δ′) Āρ

∫ tk+δ′

tk

e Ā(tk+δ′−τ)B̄ w(τ)dτ− (e Āδ− I )Āρ∆x(tk )

= Āρ∆x(tk )+O(δ, x̃(tk ), x(tk )), (3.18)

and, using (3.15), lim
k→∞

O(δ, x̃(tk ), x(tk )) = 0. The same discussion applies for t̃k . Hence,

for t sufficiently large we have{
∆ẋ(t ) = Ā∆x(t ), t ∈M,

∆x(t+) = Āρ∆x(t ), t ∉M.
(3.19)

Due to the satisfaction of the Hβ condition [5, 37, 38], there exist a matrix P = P T > 0,
P ∈R(np+nr )×(np+nr ), and a scalar α> 0 such that

P Ā+ ĀT P ≤−2αP, (3.20)

ĀT
ρ P Āρ −P ≤ 0. (3.21)

Using the candidate Lyapunov function V (∆x) = 1

2
(∆x)T P (∆x) yields{

V̇ ≤−αV , t ∈M,

V (∆x(t+)) =V (∆x(t ))+Ξ(t ,δ), t ∉M.
(3.22)

Thus, using (3.19) and (3.21) for t sufficiently large yields Ξ(t ,δ) ≤ 0. Hence, since ∆x is
bounded, there exist αm > 0 and K> 0 such that

||x2(t )−x1(t )||2P ≤Ke−αm t , (3.23)

for all t ≥ 0 (see Lemma 4 in the Appendix 3.B). This implies that the reset control sys-
tem (3.9) is uniformly exponentially convergent.



3

58 3. CLOSED-LOOP FREQUENCY ANALYSIS OF RESET CONTROL SYSTEMS

Theorem 1. Consider the reset control system (3.9). Suppose Assumption 1 holds, w(t ) =
w0 sin(ωt )1, and the Hβ condition is satisfied. Then the reset control system (3.9) has a
periodic steady-state solution which can be expressed as x̄(t ) = S(sin(ωt ),cos(ωt ),ω) for
some function S :R3 →Rnr +np .

Proof. Since the Hβ condition holds and w(t ) = w0 sin(ωt ) is a Bohl function, by Re-
mark 1 the reset control system (3.9) has a unique solution for any initial condition x0.
In addition, the reset control system (3.9) has the UBIBS property and, according to
Lemma 2, it is uniformly exponentially convergent. Hence, the proof of the existence
of the function S relies on the results in [41]. We only need to show that S is unique.
To this end, similarly to [42], assume that the reset control system (3.9) has two steady-
state solutions x̄2(t ) =S2(sin(ωt ),cos(ωt ),ω)(t ) and x̄1(t ) =S1(sin(ωt ),cos(ωt ),ω)(t ), for
w(t ) = w0 sin(ωt ). Since the Hβ condition holds, by Lemma 2 there exist αm > 0 and
K> 0 such that

||x̄2(t )− x̄1(t )||2P ≤Ke−αm t , (3.24)

hence, the claim.

Corollary 1. Consider the reset control system (3.9) with r (t ) = r0 sin(ωt ) and d = 0, for all
t ≥ 0. Then the even harmonics and the subharmonics of the steady-state response have

zero amplitude, and the sequence of reset instants is periodic with period
π

ω
.

Proof. The response of (3.9) for r = r0 sin(ωt ) and d = 0, for all t ≥ 0, is given by

x(t ) = r0

(
e Ā(t−tk )

(
ξk +ψ(tk )

)
−ψ(t )

)
, t ∈ (tk , tk+1], (3.25)

where

ψ(t ) = (ωI cos(ωt )+ Ā sin(ωt ))F , F = (ω2I + Ā2)−1B̄

[
1
0

]
,

tk = {tk ∈R+, k ∈Z+ | eR (tk ) = 0}, ξk = 1

r0
x(t+k ) = 1

r0
Āρx(tk ).

(3.26)

Thus
x̄(t ) = r0

(
e Ā(t−ts )

(
ξs +ψ(ts )

)
−ψ(t )

)
, t ∈ (ts , ts+1], (3.27)

with

ξs=Āρe Ā(ts−ts−1)
(

Āρe Ā(ts−1−ts−2) . . . Āρe Ā(t1−t0)(ξ0 +ψ(t0))+ Āρe Ā(ts−1−ts−2) . . . Āρe Ā(t2−t1)

(I − Āρ)ψ(t1)+ Āρe Ā(ts−1−ts−2) . . . Āρe Ā(t2−t1)(I − Āρ)ψ(t2)+·· ·+ (I − Āρ)ψ(ts−1)

)
− Āρψ(ts ). (3.28)

According to [43], uniformly convergent systems forget their initial conditions. By Lemma 1
and Lemma 2, ξs and the reset instants are unique for any t0 and ζ0. Hence, the transient

1For ease of the notation we consider w(t ) = w0 sin(ωt ). However, Theorem 1 is also applicable in the case in
which w(t ) = [r0 sin(ωt +φ1) d0 sin(ωt +φ2)]T .
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t
0 ts

τ1︷︸︸︷ ...
ts+1 ts+q−1 ts+q

τq︷︸︸︷
π

ω

Figure 3.2: Steady-state reset instants of the reset control system (3.9)

response of ξs converges to zero which implies that

ξs=Āρe Ā(ts−ts−1)
(
(I − Āρ)ψ(ts−1)+ Āρe Ā(ts−1−ts−2)(I − Āρ)ψ(ts−2)

+ Āρe Ā(ts−1−ts−2) Āρe Ā(ts−2−ts−3)(I − Āρ)ψ(ts−3)+ . . .

+ Āρe Ā(ts−1−ts−2) . . . Āρe Ā(ts−m+1−ts−m )(I − Āρ)ψ(ts−m)

)
− Āρψ(ts ). (3.29)

Therefore, since reset occurs when

C̄eR x̄(t )+DeR r0 sin(ωt ) = 0, (3.30)

if {ts , ts−1, ..., ts−m} are reset instants and satisfy (3.30), then {ts , ts−1, ..., ts−m} + π

ω
also

satisfy (3.30), which implies that the sequence of reset instants is periodic with period
π

ω
. Using this property in (3.27) shows that x̄(t ) = −x̄(t + π

ω
) and ts+q − ts = π

ω
, hence

ξs =−ξs+q . This means that the even harmonics of the steady-state response of the reset

control system (3.9) have zero amplitude. In addition, x̄(t ) = x̄(t + 2π

ω
), which implies

that the steady-state response of the reset control system (3.9) does not contain any sub-
harmonic.

Remark 2. The reset sequence {tk } and the reset values ζk are independent of the input
amplitude for r (t ) = r0 sin(ωt ).

We now show that the function S can be derived explicitly for r (t ) = r0 sin(ωt ) and

d = 0. Suppose there are q − 1 reset instants between ts and ts + π

ω
(Figure. 3.2). As-

sume sin(ωts ) = κ, then cos(ωts ) =±
p

1−κ2 (without loss of generality we consider the
positive value). Using trigonometry relations, one has that

ψ(ts )= f0(κ),

ψ(ts +τ1)= f1(κ,τ1),

...

ψ(ts +τ1 + ...+τq )= fq (κ,τ1,τ2, ...,τq ). (3.31)

Moreover,

ξs+i=Āρ

(
e Āτi (gi−1(κ,ξs ,τ1, ..,τi−1)+ fi−1(κ,τ1, ..,τi−1))− fi (κ,τ1,τ2, ...,τi )

)
︸ ︷︷ ︸

gi (κ,ξs ,τ1,τ2,...,τi )

, (3.32)
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with i = 1,2, ..., q and g0(κ,ξs ) = ξs . Now, since eR (t ) is zero at reset instants, one has that

Ei (κ,ξs ,τ1, ...,τi )=C̄eR

(
e Āτi (gi−1(κ,ξs ,τ1, ..,τi−1)+ fi−1(κ,τ1, ..,τi−1))− fi (κ,τ1,τ2, ...,τi )

)
+DeR sin(ω(ts +τ1 + ...+τi )) = 0 (3.33)

with i = 1,2, ..., q . In addition,

τ1 +τ2 + ...+τq = π

ω
,

ξs =−ξs+q ⇒ gq (κ,ξs ,τ1,τ2, ...,τq )+ξs = 0.
(3.34)

Moreover, by the well-posedness property of reset instants (see Definition 1), reset in-
stants are distinct. Hence, there are q +2 independent equations and q +2 parameters
(κ,ξs , q,τ1,τ2, ...,τq ), q ∈ N. In addition, the well-posedness property implies that the
reset intervals are lower bounded [9]. Hence,

∃ λ≤ τi ⇒ q ≤ π

λω
−1. (3.35)

Furthermore, for q = 1, the equations have always a unique solution. Thus, there exists a
bounded non-empty set Q = {Qi ∈N|Qi ≤ qmax} such that for q ∈ Q, the equations have
a solution. Hence, x̄(t ), the steady-state response of the reset control system (3.9) to
r (t ) = r0 sin(ωt ), is the solution of (3.33)-(3.34) for q = qmax. Since x̄(t ) is periodic with

period
2π

ω
, one has

x̄(t ) =
∞∑

n=1

an cos((2n +1)ωt )+bn sin((2n +1)ωt ). (3.36)

According to Theorem 1, x̄ is unique and equal to the function S . Thus,

x̄(t )=
∞∑

n=1

an cos((2n +1)ωt )+bn sin((2n +1)ωt ) =S(sin(ωt ),cos(ωt ),ω). (3.37)

Finally, one could also use De Moivre’s formula to find a formal polynomial expansion
for S in terms of sin(ωt ) and cos(ωt ).

3.3.2. HOSIDF OF THE CLOSED-LOOP RESET CONTROL SYSTEMS
In Section 3.3.1 sufficient conditions for the existence of the steady-state solution for the
reset control system (3.9) driven by periodic inputs have been presented. Moreover, the
steady-state solution has been explicitly calculated. In this section the HOSIDF tech-
nique [35] is applied to the steady-state response of the system to derive a notion of
frequency response for the reset control system (3.9), which allows analyzing tracking
and disturbance rejection performance (see the bottom diagram of Figure. 3.1).

TRACKING PERFORMANCE

Consider the reset control system (3.9) with r (t ) = r0 sin(ωt ) and d(t ) = 0, for all t ≥
0. We now derive relations between the input r (t ) and the steady-state response of the
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output y , of the error e, and of the control input u. To this end, consider the steady-state
reset instants ts , ts+1, ..., ts+q and their associated reset values ξs ,ξs+1, ...,ξs+q which are
calculated through (3.33) and (3.34).

Theorem 2. Consider the reset control system (3.9) with r (t ) = r0 sin(ωt ) and d(t ) = 0, for
all t ≥ 0. Let Tn( jω) be the ratio of the nth harmonic component of the output signal y to
the first harmonic component of r . Then

Tn( jω) =



2 jωC̄

π
(Ā− jωI )−1(

q∑
i=1

R(i ,1,ω))− C̄ ( jωI + Ā)F , n = 1,

2 jωC̄

π
(Ā− j nωI )−1(

q∑
i=1

R(i ,n,ω)), n > 1 odd,

0, n even,

(3.38)

in which

R(i ,n,ω)=
(

e Ā(ts+i−ts+i−1)

e j nωts+i
− I

e j nωts+i−1

)(
ξs+i−1 +ψ(ts+i−1)

)
. (3.39)

Proof. By [33, 35]

Tn( jω) =

∫ ts+ 2π
ω

ts

y(t )e− j nωt d t∫ ts+ 2π
ω

ts

r0 sin(ωt )e− jωt d t

. (3.40)

Using (3.27), (3.40) is rewritten as

Tn( jω)= jωC̄

π

( 2q∑
i=1

(∫ ts+i

ts+i−1

Xi (t )e− j nωt d t
)−∫ ts+ 2π

ω

ts

ψ(t )e− j nωt d t

)
, (3.41)

where
Xi (t ) = e Ā(t−ts+i−1)

(
ξs+i−1 +ψ(ts+i−1)

)
. (3.42)

For n even the first part of (3.41) is zero by Corollary 1, while for n odd one has∫ ts+i

ts+i−1

Xi (t )e− j nωt d t=
∫ ts+i

ts+i−1

e Ā(t−ts+i−1)
(
ξs+i−1 +ψ(ts+i−1)

)
e− j nωt d t

=
∫ ts+i+ π

ω

ts+i−1+ π
ω

e Ā(t−ts+i−1)
(
−ξs+i−1 −ψ(ts+i−1)

)e− j nωt

e− j nπ
d t

=
∫ ts+i+ π

ω

ts+i−1+ π
ω

Xi (t )e− j nωt d t = (A− j nωI )−1R(i ,n), (3.43)

while the second term in (3.41) is given by∫ tssm

tss0

ψ(t )e− j nωd t =
π(I − j Ā

ω
)F , n = 1,

0, n > 2.
(3.44)

Thus, substituting (3.43) and (3.44) to (3.41) yields the claim.
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Definition 2. The family of complex valued functions Tn( jω), n = 1,2, ... is the comple-
mentary sensitivity of the reset control system (3.9).

Corollary 2. Consider the reset control system (3.9) with r (t ) = r0 sin(ωt ) and d(t ) = 0, for
all t ≥ 0. Let Sn( jω) be the ratio of the nth harmonic component of the error signal e to the
first harmonic component of r . Then

Sn( jω)+Tn( jω) =
{

1, n = 1,

0, n > 1.
(3.45)

Corollary 3. Consider the reset control system (3.9) with r (t ) = r0 sin(ωt ) and d(t ) = 0,
for all t ≥ 0. Let C Sn( jω) be the ratio of the nth harmonic component of the control input
signal u to the first harmonic component of r . If the plant is stable, then

C Sn( jω) = Tn( jω)

G(n jω)
. (3.46)

Definition 3. The families of complex valued functions Sn( jω) and C Sn( jω), n = 1,2, ...,
are the sensitivity and the control sensitivity of the reset control system (3.9), respectively.

DISTURBANCE REJECTION

In this section relations between d(t ) = sin(ωt ) and the error e(t ) and the control input
u(t ) are found in the case in which r (t ) = 0 for the reset control system (3.9) using the
same procedure provided in Section 3.3.2. The matrix ψ(t ) has to be replaced by

ψD(t )=(ωI cos(ωt )+ Ā sin(ωt ))FD ,

FD=(ω2I + Ā2)−1B̄

[
0
1

]
. (3.47)

Let t ′s , t ′s+1, ..., t ′s+q ′ and ξ′s ,ξ′s+1, ...,ξ′s+q ′ be the steady-state reset instants and their asso-

ciated reset values for the reset control system (3.9) with d(t ) = d0 sin(ωt ) and r (t ) = 0,
respectively. In addition, since r (t ) = 0, (3.33) is changed to

C̄eR

(
e Āτ′i (gi−1(κ′,ξ′s ,τ′1, ..,τ′i−1)+ fi−1(κ′,τ′1, ..,τ′i−1))− fi (κ′,τ′1,τ′2, ...,τ′i )

)
︸ ︷︷ ︸

Ei (κ′,ξ′s ,τ′1,...,τ′i )

= 0, (3.48)

with i = 1,2, ..., q ′. Now, substituting ψ(t ) with ψD(t ) in relations (3.31) and (3.32), and
considering (3.48) instead of (3.33), the steady-state response of the reset control system
(3.9) for d(t ) = d0 sin(ωt ) and r (t ) = 0 can be found using the same procedure provided
in Section 3.3.1.

Corollary 4. Consider the reset control system (3.9) with d(t ) = d0 sin(ωt ) and r (t ) = 0,
for all t ≥ 0. Let PSn( jω) be the ratio of the nth harmonic component of the error signal e
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to the first harmonic component of d. Then

PSn( jω) =



2 jωC̄

π
( jωI − Ā)−1(

q ′∑
i=1

RD(i ,1,ω))+ C̄ ( jωI + Ā)FD , n = 1,

2 jωC̄

π
( j nωI − Ā)−1(

q ′∑
i=1

RD(i ,n,ω)), n > 1 odd,

0, n even,

(3.49)

in which

RD(i ,n,ω)=
(

e Ā(t ′s+i−t ′s+i−1)

e j nωt ′s+i

− I

e j nωt ′s+i−1

)(
ξ′s+i−1ψD(t ′s+i−1)

)
. (3.50)

Corollary 5. Consider the reset control system (3.9) with d(t ) = d0 sin(ωt ) and r (t ) = 0,
for all t ≥ 0. Let C Sdn ( jω) be the ratio of the nth harmonic component of the control input
signal u to the first harmonic component of d. If the plant is stable, then

C Sdn ( jω) =


−PS1( jω)

G( jω)
−1, n = 1,

−PSn( jω)

G(n jω)
, n > 1.

(3.51)

Definition 4. The families of complex valued functions PSn( jω) and C Sdn ( jω), n = 1,2, ...,
are the process-sensitivity and the control sensitivity due to the presence of the disturbance
of the reset control system (3.9), respectively.

3.3.3. PSEUDO-SENSITIVITIES FOR RESET CONTROL SYSTEMS

The analysis of the error signal e and of the control input u is one of the main fac-
tors while designing a controller. In linear systems this analysis is performed using the
closed-loop transfer functions [44]. As discussed in Section 3.1, although reset control
systems may be analyzed using the DF of the reset controller in the closed-loop sensitiv-
ity equations, this yields an approximation which is not precise due to the existence of
high order harmonics. On the other hand, it is not trivial to analyze reset controllers con-
sidering all harmonics. In order to perform the analysis of reset control systems straight-
forwardly we combine all harmonics into one frequency function for each closed-loop
frequency response. In the literature, there are several studies about definition of Bode
plot for non-linear systems [45, 46]. However, all of these focus only on the gain of the
system. In the following, pseudo-sensitivities, which have both gain and phase compo-
nents, are defined.

It has been proven that the error and the control input signals of the reset control
system (3.9) are periodic with period 2π

ω (Figure. 3.3) under provided conditions Theo-
rem 1. We define the pseudo-sensitivity as the ratio of the maximum error of the reset
control system (3.9), for r (t ) = r0 sin(ωt ) and d(t ) = 0, for all t ≥ 0, to the amplitude of
the reference at each frequency.
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0
T = 2π

ω

−−−emax

0

emax

em(t ) = emax sin(ωt +ϕmax ) e(t )
em(t )
eω(t )
e3ω(t )
e5ω(t )

Figure 3.3: The error signal e(t ) with its 1st, 3rd, and 5th harmonics. em (t ) is fitted to e(t ) and it is an indicator
of the maximum error of the system.

Definition 5. The Pseudo-sensitivity S∞ is, for all ω ∈R+,

S∞( jω) = emax(ω)e jϕmax(ω),

where ϕmax = π
2 −ωtmax,

emax(ω)=
max

ts≤t≤ts+2q
(r (t )− y(t ))

r0
= sin(ωtmax)− 1

r0
C̄ x̄(tmax),

tmax∈{text | ė(text ) = 0, ts ≤ text ≤ ts+2q }∪{ts+i | i ∈Z, 0 ≤ i ≤ 2q}.

Using (3.9) and (3.27) text can be obtained from

ė(text ) = 0 ⇒ωcos(ωtext )− C̄ B̄

[
1
0

]
sin(ωtext ) = C̄ Ā

(
e Ā(text−ts+i )

(
ξs+i +ψ(ts+i )

)−ψ(text )
)
,

text ∈ (ts+i , ts+i+1], i = {i ∈Z+ | i < 2q}.

Similarly, the pseudo-process sensitivity is defined as the ratio of the maximum error
signal of the reset control system (3.9) for d(t ) = d0 sin(ωt ) and r (t ) = 0, for all t ≥ 0, to
the amplitude of the disturbance at each frequency.

Definition 6. The Pseudo-process sensitivity PS∞ is, for all ω ∈R+,

PS∞( jω) = emaxd (ω)e jϕmaxd
(ω),

where ϕmaxd = π
2 −ωtmaxd ,

emaxd (ω)=
max

t ′s≤t≤t ′s+2q

− y(t )

d0
=− 1

d0
C̄ x̄(tmaxd ), tmaxd ∈ {textd }∪ {t ′s+i , i ∈Z,0 ≤ i ≤ 2q ′}.
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In a similar way textd is obtained from

ė(textd ) = 1

d0
C̄ ˙̄x(textd ) = 0 ⇒ C̄ B̄

[
0
1

]
sin(ωtextd ) = C̄ Ā

(
ψD(textd )−e Ā(textd

−t ′s+i )(ξ′s+i +ψD(t ′s+i )
))

,

textd ∈ (t ′s+i , t ′s+i+1], i = {i ∈Z+ | i < 2q ′}.
(3.52)

In order to analyze the noise rejection capability of the system the pseudo-complementary
sensitivity is defined as the ratio of the maximum output of the reset control system (3.9)
for r (t ) = r0 sin(ωt ) and d = 0, for all t ≥ 0, to the amplitude of the reference at each
frequency.

Definition 7. The Pseudo-complementary sensitivity T∞ is, for all ω ∈R+,

T∞( jω) = ymax(ω)e jϕmaxy (ω),

where ϕmaxy = π
2 −ωtmaxy ,

ymax(ω) =
max

ts≤t≤ts+2q
y(t )

r0
= 1

r0
C̄ x̄(tmaxy ), tmaxy ∈ {texty }∪ {ts+i , i ∈Z,0 ≤ i ≤ 2q}.

Similarly,

ẏ(texty ) = 1

r0
C̄ ˙̄x(texty ) = 0 ⇒ C̄ B̄

[
1
0

]
sin(ωtexty ) = C̄ Ā

(
ψ(texty )−e Ā(texty −ts+i )(ξs+i +ψ(ts+i )

))
,

texty ∈ (ts+i , ts+i+1], i = {i ∈Z+ | i < 2q}.
(3.53)

The pseudo-control sensitivity is defined as the ratio of the maximum control input sig-
nal of the reset control system (3.9) for r (t ) = r0 sin(ωt ) and d = 0, for all t ≥ 0, to the
amplitude of the reference at each frequency.

Definition 8. The Pseudo-control sensitivity C S∞ is, for all ω ∈R+,

C S∞( jω) = umax(ω)e jϕmaxu (ω),

where ϕmaxu = π
2 −ωtmaxu ,

umax(ω) =
max

ts≤t≤ts+2q
u(t )

r0
= 1

r0
C̄u x̄(tmaxu )+ D̄u sin(ωtmaxu ),

tmaxu ∈ {textu }∪ {t ′s+i , i ∈Z,0 ≤ i ≤ 2q ′}.

In addition, textu can be found utilizing the relation u̇(textu ) = 0 as

D̄uωcos(ωtextu )+ C̄u B̄

[
1
0

]
sin(ωtextu ) = C̄u Ā

(
ψ(textu )−e Ā(textu −ts+i )

(
ξs+i +ψ(ts+i )

))
,

textu ∈ (ts+i , ts+i+1], i = {i ∈Z+ | i < 2q}.
(3.54)

In linear control theory, the transfer function of the closed-loop system from the distur-
bance input d to the control input u is equal to minus the transfer function from the
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reference signal r to the output signal y . However, this relation does not hold for the
pseudo-sensitivities due to the non-linear nature of the controller. Hence, the pseudo-
control sensitivity of the disturbance is defined as the ratio of the maximum amplitude
of the control input, for d(t ) = d0 sin(ωt ) and r = 0 for all t ≥ 0, to the amplitude of the
disturbance, at each frequency.

Definition 9. The Pseudo-control sensitivity of the disturbance C Sd∞ is, for all ω ∈R+,

C Sd∞ ( jω) = umaxd (ω)e jϕmaxud
(ω),

where ϕmaxud
= π

2 −ωtmaxud
,

umaxd (ω) =
max

t ′s≤t≤t ′s+2q

u(t )

d0
= 1

d0
C̄u x̄(tmaxud

), tmaxud
∈ {textud

}∪ {t ′s+i , i ∈Z,0 ≤ i ≤ 2q ′}.

Finally, textud
is calculated through the relation

u̇(textud
) = 0 ⇒ C̄u B̄

[
0
1

]
sin(ωtextud

) = C̄u Ā
(
ψD(textud

)−e Ā(textu −t ′s+i )(ξ′s+i +ψD(t ′s+i )
))

,

textud
∈ (t ′s+i , t ′s+i+1], i = {i ∈Z+ | i < 2q ′}.

(3.55)
We conclude this series of definitions with the following result.

Corollary 6. Consider the reset control system (3.9). The pseudo-sensitivities and the
closed-loop HOSIDFs are independent of the amplitude of the harmonic excitation input.

3.3.4. HIGH FREQUENCY ANALYSIS
The evaluation of the sensitivities and the pseudo-sensitivities may be computationally
expensive, particularly at high frequencies. In order to simplify these relations the re-
set instants at high frequencies can be approximated. For sufficiently large frequencies,
since the open-loop transfer function is strictly proper and (3.38) and (3.25) hold, one
has

lim
ω→∞

max
ts≤t≤ts+q

|eR (t )−eR1 (t )|
max

ts≤t≤ts+q
|eR1 (t )| = 0, (3.56)

where eR1 (t ) = R1 sin(ωt +ϕeR1
) is the first harmonic of eR (t ) (see Appendix 3.C). Thus,

∀ε ∈ (0,1) ∃ ωh ∈R+ | ∀ ω≥ωh :

max
ts≤t≤ts+q

|eR (t )−eR1 (t )|
max

ts≤t≤ts+q
|eR1 (t )| ≤ ε. (3.57)

Therefore, if ε is chosen sufficiently small, the steady-state reset instants for ω≥ωh can
be approximated as

tk ≈
kπ−ϕeR1

ω
, (3.58)
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in which

ϕeR1
≈ CL1 ( jω)

1+CL1CRDF CL2G( jω)
, (3.59)

where CRDF is the DF of CR obtained using (3.3).

Remark 3. The accuracy of the approximation depends on the magnitude of ε. The
smaller the value of ε, the more accurate the approximation is.

Let ω≥ωh and r (t ) = sin(ωt −ϕeR1
). Then (3.9) can be re-written as

˙̄x(t ) = Āx̄(t )+ B̄ sin(ωt −ϕeR1
), t 6= kπ

ω
,

x̄(t+) = Āρ x̄(t ), t = kπ

ω
,

y(t ) = C̄ x̄(t ).

(3.60)

Thus, ψ(t ) in (3.25) is given by

ψϕ(t ) = (ωI cos(ωt −ϕeR1
)+ Ā sin(ωt −ϕeR1

))F . (3.61)

The steady-state reset instants are { (2k)π
ω , (2k+1)π

ω }, k ∈N. Therefore,

ξs =−ξs+1 =
−Āρ(I +e

Āπ
ω )ψϕ(0)

I + Āρe
Āπ
ω

⇒R(1,n,ω) =−(e
Āπ
ω + I )(ξs +ψϕ(0)). (3.62)

Hence, for ω≥ωh , Tn( jω) for the reset control system (3.9) are approximated by
C̄ (Ā− jωI )−1θϕ(ω)− C̄ ( jωI + Ā)F , n = 1,

C̄ (Ā− j nωI )−1θϕ(ω), n > 1 odd,

0, n even,

(3.63)

in which

θϕ(ω) = −2 jωe
jϕeR1

π
(I +e

Āπ
ω )

(
I − (I + Āρe

Āπ
ω )−1(Āρ(I +e

Āπ
ω ))

)
ψϕ(0). (3.64)

A similar analysis holds for the steady-state response of the reset control system (3.9) to
a disturbance input. Similarly, let d = sin(ωt −ϕed1

). Then

ϕed1
≈ −CL1 ( jω)G( jω)

1+CL1CRDF CL2G( jω)
, (3.65)

and ψD in (3.47) is given by

ψDϕ
(t ) = (ωI cos(ωt −ϕed1

)+ A sin(ωt −ϕed1
))FD . (3.66)
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Similarly,

ξ′s=−ξ′s+1 =
−Āρ(I +e

Āπ
ω )ψDϕ

(0)

I + Āρe
Āπ
ω

⇒RD(1,n,ω) =−(e
Āπ
ω + I )(ξ′s +ψDϕ

(0)). (3.67)

Therefore, for ω sufficiently large PSn( jω) for the reset control system (3.9) are approxi-
mated as 

C̄ ( jωI − Ā)−1θDϕ
(ω)+ C̄ ( jωI + Ā)FD , n = 1,

C̄ ( j nωI − Ā)−1θDϕ
(ω), n > 1 odd,

0, n even,

(3.68)

in which

θDϕ
(ω)=−2 jωe

jϕed1

π
(I +e

Āπ
ω )

(
I − (I + Āρe

Āπ
ω )−1(Āρ(I +e

Āπ
ω ))

)
ψDϕ

(0). (3.69)

Remark 4. The presented results have been integrated into an open source toolbox,
which has been developed using Matlab, see [47]. This toolbox facilitates the analysis
and design for reset control systems.

3.4. PERIODIC INPUTS

I N Section 3.3 a notion of frequency response and pseudo-sensitivities for reset control
systems have been defined. These serve as graphical tools for performance analysis of

reset controllers. The pseudo-sensitivities determine how a system amplifies harmonic
inputs at various frequencies, information which is essential for control designers. How-
ever, this information is obtained for a single harmonic excitation and since the super-
position principle does not hold, it provides only an approximation in the case of multi-
harmonics excitation. In this section the steady-state performance in the presence of
multi-harmonics excitation and periodic inputs is investigated. This is reasonable since
most references and disturbances are periodic [12, 48].

For ease of notation let lcm

(
a1

b1
,

a2

b2
, ...,

ai

bi

)
denote the least common multiple of

a1

b1
,

a2

b2
,

..., and
ai

bi
and gcd

(
a1

b1
,

a2

b2
, ...,

ai

bi

)
denote the greatest common divisor of

a1

b1
,

a2

b2
, ..., and

ai

bi
in which ai ∈N and bi ∈N.

Theorem 3. Consider the reset control system (3.9). Suppose the Hβ condition and As-
sumption 1 hold. Then for any periodic excitation of the form

w(t ) = w0 sin(
2π

T0
t )+w1 sin(

2π

T1
t )+ ...+wN sin(

2π

TN
t ), (3.70)

with wi = [ri , di ]T , the reset control system (3.9) has a periodic steady-state solution of the
form

x̄(t ) = a0 +
∞∑

n=1

an cos(nωM t )+bn sin(nωM t ), ωM = 2π×gcd(
1

T0
,

1

T1
, ...,

1

TN
).
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Proof. Let tsM+i be the steady-state reset instants of the reset control system (3.9) for w
is given in (3.70). By (3.9) the steady-state solution for w as in (3.70) is given by

x̄(t ) = e Ā(t−tsM )
(
ξsM +ψM (tsM )

)
−ψM (t ), t ∈ (tsM , tsM+1], (3.71)

where

ψM (t ) =
N∑

i=0

ψi (t ), ψi (t ) = (ωi I cos(ωi t )+ Ā sin(ωi t ))Fi , Fi = (ω2
i I + Ā2)−1B̄ wi .

By Lemma 2 the reset control system (3.9) forgets the initial condition; thus, using as
similar procedure as the one in Section 3.3.1, yields

x̄(t )=e Ā(t−tsM )
(
(I − Āρ)ψM (tsM )+e Ā(tsM −tsM −1)

(
(I − Āρ)ψM (tsM−1)+ . . .

+ Āρe Ā(tsM −1−tsM −2) . . . Āρe Ā(tsM −m+1−tsM −m )(I − Āρ)ψM (tsM−m)

))
−ψM (t ), t ∈ (tsM , tsM+1].

Since the reseting condition is

C̄eR x̄(t )+DeR [1 0]wM (t ) = 0, (3.72)

if {tsM , tsM−1, ..., tsM−m} are reset instants and satisfy (3.72), then t ∈ {tsM , tsM−1, ..., tsM−m}+
2π

ωM
are such that (3.72) holds, which implies that the sequence of reset instants is peri-

odic with period
2π

ωM
; hence, x̄(t ) = x̄(t + 2π

ωM
), and using the Fourier series representa-

tion yields

x̄(t ) = a0 +
∞∑

n=1

an cos(nωM t )+bn sin(nωM t ). (3.73)

Corollary 7. Consider the reset control system (3.9). Suppose the Hβ condition and
Assumption 1 hold. Then for any periodic input wP (t ) = wP (t +TP ) the reset control

system (3.9) has a steady-state periodic solution with the same period time TP .

Proof. A periodic function can be written as

wP (t ) = a′
0 +

∞∑
n=1

a′
n cos(n

2π

TP
t )+b′

n sin(n
2π

TP
t ). (3.74)

Using Theorem 3 the steady-state solution of (3.9) for the input (3.74) is

x̄(t ) = a0 +
∞∑

n=1

an cos(nωM t )+bn sin(nωM t ), ωM = 2π× g cd(
1

TP
,

2

TP
, ...,

n

TP
) = 2π

TP
,

hence the claim.
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Figure 3.4: A 3 DOF planar precision positioning Spyder stage. The voice coil actuators 1A, 1B and 1C control
three masses (labelled as 3) which are constrained by leaf flexures. The three masses are connected to a central
mass (labelled as 2) through leaf flexures. A Linear encoder (labelled as 4) is placed under mass 3 to provide
the position feedback

3.5. ILLUSTRATIVE EXAMPLE

I N this section an illustrative example showing the effectiveness of the developed re-
sults is presented. A 3DOF precision positioning system, see Figure. 3.4, [1] and [49],

is selected for this purpose. In this system we only consider mass 3 and actuator 1A (see
Figure. 3.4) which can be modelled via the transfer function, see [50],

G(s) = 8695

s2 +4.36s +7627
. (3.75)

Note that all of the controllers in the following subsections are designed such that the
Hβ condition holds.

3.5.1. THE OPTIMAL STRUCTURE FOR CI
The closed-loop frequency responses of the system with two reset controllers are com-
pared against the closed-loop frequency responses achievable with a “tamed" PID con-
troller [1] with base linear transfer function

CPI D (s) = kp

(
1+ ωi

s

)
s

ωd
+1

s

ωt
+1

 . (3.76)

The first reset controller is obtained by replacing the integrator in (3.76) with a CI yielding

CSP (C I )D (s) = kp

(
1+
�
���
ωi

s

)
s

ωd
+1

s

ωt
+1

 , (3.77)

and the second reset controller is the parallel form of (3.77), that is

CPP (C I )D (s) = kp

1+
�
���
ωi

s
+

s

ωd
s

ωt
+1

 . (3.78)
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Figure 3.5: The DFs and the amplitudes of the third harmonics of the open-loop system with the controllers
CSPI (C I )D and CPPI (C I )D , and open-loop frequency response of the system with the controller CPI D

Note that, unlike the case of linear controllers, the parallel and series configuration of
reset controllers can result in totally different responses. In this example we show that in
contrast with the DF method, our method is capable of exposing this difference. Setting
100 Hz as the crossover frequency ωc , the control parameters have been tuned based

on the method proposed in [1, 44, 51] as Kp = 1

3|G( jωc )| = 14.35, ωt = 3ωc = 600π,

ωi = ωc

10
= 20π, and ωd = ωc

3
= 66.6π. All frequency responses are obtained utilizing

the toolbox in [47].

The open-loop frequency response of the system with the controller CPI D , and the
DFs and the amplitudes of third harmonics of the system with the controllers CSP (C I )D ,
CPP (C I )D are shown in Figure. 3.5. Based on the DF analysis it is expected that the track-
ing performances and the disturbance rejection capabilities of the system with con-
trollers CPP (C I )D and CSP (C I )D are the same, and these performance capabilities are su-
perior to those of the system with the controller CPI D . In addition, the control inputs
and the noise attenuation capabilities of the system with these controllers are expected
to be almost the same. However, the magnitude of high order harmonics of the reset
controllers is different.

The time-domain results (Figure. 3.6) disprove the predictions which rely on the DF
method. In this figure the tracking errors and the amplitude of the control inputs of the
system with these controllers are displayed for r (t ) = 100sin(2πt ). It is seen that the con-
trol input of the system with the controller CSP (C I )D is much larger than the amplitude
of the control inputs of the system with the controllers CPI D and CPP (C I )D , whereas the
tracking performance of the system with the controller CSP (C I )D is worse than the track-
ing performances of the system with the controllers CPI D and CPP (C I )D . Note that similar
to results presented in [17, 25, 52, 53], the amplitudes of even harmonics of the response
are zero.
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Figure 3.6: Time histories of the tracking errors and of the control inputs of the system with the controllers
CPP (C I )D , CSP (C I )D and CPI D for r (t ) = 100sin(2πt )
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Figure 3.7: The DFs (._ DF), amplitudes of the third harmonics of the sensitivities (._3), and amplitudes of
pseudo-sensitivities (._ ∞) of the closed-loop system with the controllers CSP (C I )D , CPP (C I )D , and closed-
loop sensitivities of the system with the controller CPI D
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Unlike the DF method, the pseudo-sensitivities (Figure. 3.7) allows justifying why the
performance of the system with the controller CPI D is superior to the performances of
the system with the controllers CPP (C I )D and CSP (C I )D in terms of precision and control
effort. As illustrated in Figure. 3.7a, at low frequency the tracking performance of the
system with the controller CPI D is better than that of the system with the controllers
CPP (C I )D and CSP (C I )D . Moreover, the tracking performance of the system with the con-
troller CPP (C I )D is better than the tracking performance of the system with the controller
CSP (C I )D at frequencies around the cross-over frequency. As it can be seen in Figure. 3.7b,
the amplitude of the function C S∞ of the system with the controller CSP (C I )D is much
higher than that of the system with the controller CPP (C I )D and of the control sensitiv-
ity of the system with the controller CPI D . Thus, to avoid saturation problems designers
should use the function C S∞ instead of using the result obtained from the DF method
when reset controllers are used.

In addition, as shown in Figure. 3.7c, the low frequency disturbance rejection capa-
bility of the system with the controller CPI D is better than that of the system with the
controllers CPP (C I )D and CSP (C I )D . Furthermore, as illustrated in Figure. 3.7d, the noise
attenuating capabilities of the system with these three controllers are the same. The
differences between the performances of the system with the controllers CPP (C I )D and
CSP (C I )D are due to the differences in the amplitude and phase of the high order har-
monics produced by these controllers.

To sum up, although it has been shown that using CIs, instead of linear integrators,
improves the transient response of the system, the proposed results show that this dete-
riorates the tracking performance of the system, and the system needs a “stronger" ac-
tuator. Moreover, the actual implementation of the CI has significant effects on the per-
formance of the system which cannot be exposed by using the results obtained with the
DF method. This analysis reveals that the CI should be used in the parallel architecture
(3.78), yielding a system with better precision and lower control input once compared
with the system with the CI in the series architecture (3.77).

3.5.2. PERFORMANCE OF CGLP COMPENSATORS
Reset elements are utilized to introduce new compensators to enhance performance of
control systems [17, 23–27]. In this section a new reset compensator called Constant in
gain Lead in phase (CgLp) is analyzed. It consists of a reset filter FORE and a Propor-
tional Derivative (PD) filter in series [17, 25]. The DF of a CgLp compensator is given in
Figure. 3.8. Note that the combination of a PD and a FORE produces a compensator with
a constant gain, while providing a phase lead. To study the effects of the “position" of the
control elements on the performance of systems with reset controllers, two controllers
(see Figure. 3.9) with CgLp compensators are considered. Both controllers are described
by

Cgi (s) = kp

FORE︷ ︸︸ ︷
�
�
���
γ

1
s
ωr

+1


Lead︷ ︸︸ ︷( s
ωd

+1
s
ωt

+1

)
︸ ︷︷ ︸

CgLp

PI︷ ︸︸ ︷(
1+ ωi

s

) Lead︷ ︸︸ ︷( s
ωl

+1
s
ω f

+1

)
︸ ︷︷ ︸

Tamed PID

. (3.79)
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Figure 3.9: Block diagrams of the Spyder plant with controllers Cg1 (top), and Cg2 (bottom)

The parameters of these two controllers are the same and tuned optimally based
on the method described in [52], yielding kp = 25.5, ωr = 111π, ωd = 105.2π, ωt =
1640π, ωi = 20π, ωl = 105.2π, ω f = 260π, and γ= 0.3. The only difference between these
two controllers is in the “position" of the filters. For Cg1 is FORE-lead-proportional-
integrator, while for Cg2 one has lead-FORE-proportional-integrator. The DFs and the
amplitudes of the third harmonic of the open-loop system with both controllers are
given in Figure. 3.10. The DFs of the open-loop system with both controllers are the
same, but the amplitudes of their third harmonic are different which yields different per-
formances. In Figure. 3.11 the closed-loop frequency responses of the system with both
controllers, including the amplitudes of the third harmonics, the DFs and amplitudes of
pseudo-sensitivities, are presented. Note that there are significant differences between
the results obtained using the DF method and the proposed tools.
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Unlike the DF method, the proposed tools reveal the effects of the “position" of the
control filters on the performance of the reset control systems. The differences in mag-
nitude and phase of the high order harmonics of the open-loop system with these con-
trollers (Figure. 3.10) leads to discrepancies between the closed-loop frequency responses.
As shown in Figure. 3.11a, the system with the controller Cg2 has better tracking perfor-
mance than that of the system with the controller Cg1 . In addition, the amplitude of
the third harmonic of the sensitivity of the system with Cg2 is smaller than that result-
ing from the use of the controller Cg1 around the cross-over frequency. Moreover, as
illustrated in Figure. 3.11b, the system with the controller Cg2 has better disturbance re-
jection capability than the system with the controller Cg1 . As shown in Figure. 3.11c and
Figure. 3.11d, the system with the controller Cg1 has larger control input in comparison
with the system with the controller Cg2 . As discussed, unlike the case of linear controller
and the results obtained using the DF method, the control sensitivity due to the dis-
turbance C Sd∞ is different from the complementary sensitivity, particularly at middle
frequencies.
In addition, the tracking error and the error due to the presence of disturbance of the
system with the controller Cg1 at 5 Hz are obtained experimentally (Table 3.1). As was
shown, there are negligible differences between experimental and our proposed results.
These small differences between the theoretical and the experimental results are due to
quantization, digitalization of the controller, numerical approximations, and the pres-
ence of noise.

In summary the proposed methods allow predicting the closed-loop performance
of reset control systems more accurately than the DF method. In addition, it reveals
important features of reset controllers which are not exposed by the DF method.

Table 3.1: Comparison between the theoretical and experimental results in terms of tracking performance and
disturbance rejection

Performance
Cg1

Theory Experiment

Tracking
er

|r | (dB) -37.57 -35.8

Disturbance rejection
ew

|w | (dB) -33.1 -34

3.6. CONCLUSION

T HIS chapter has proposed an analytical approach to obtain closed-loop frequency
responses for reset control systems, including high order harmonics. To this end,

sufficient conditions for the existence of the steady-state solution of the closed-loop re-
set control systems driven by periodic inputs have been presented. Moreover, pseudo-
sensitivities, which serve as a graphical tool for performance analysis of reset controllers,
have been defined: these relate the error and control input of the system to the refer-
ence and the disturbance. All calculations can be performed in a user-friendly toolbox
to make this approach easy of use. To show the effectiveness of the proposed method,
the performances of a high-precision positioning stage with reset controllers have been
assessed using the DF method and our proposed method. The results confirm that the
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proposed method predicts the closed-loop performance of reset control systems more
accurately than the DF method.

3.A. LEMMA 3
Lemma 3. Consider the linear systems ẋp1 (t ) = Ap xp1 (t )+Bp u(t ), yp1 (t ) =Cp xp1 (t ), with
xp1 (0) = x0, ẋp2 (t ) = Ap xp2 (t )+Bp u(t ), yp2 (t ) = Cp xp2 (t )+WI (t ), with xp2 (0) = 0, and
ż(t ) = Ap z(t ), WI (t ) =Cp z(t ), with z(0) = x0, in which Ap , Bp , and Cp describe a realiza-
tion of transfer function P (s) (see Figure. 3.12). Then yp1 (t ) = yp2 (t ), for all t ≥ 0.

z(0) = x0

u(t )

P(s)
y1(t )

y2(t )

P(s)

+
WI (t )x(0) = 0

P(s)

x(0) = x0

Figure 3.12: Diagram of the result in Lemma 3

Proof. Note that WI (t ) =Cp e Ap t x0. Thus,

yp2 (t ) = yp1 (t ) =Cp e Ap (t )x0 +
∫ t

0
e Ap (t−τ)Bp u(τ)dτ.

3.B. LEMMA 4
Lemma 4. Consider a positive and bounded function V (t ). Suppose that there exists a
α> 0 such that {

V̇ ≤−αV t ∈M,

V (∆x(t+)) =V (∆x(t ))+Ξ(t ,δ), t ∉M.
(3.80)

If for t sufficiently large
Ξ(t ,δ) ≤ 0, (3.81)

then there exist αm > 0 and K> 0 such that

V (t ) ≤Ke−αm t , for all t ≥ 0. (3.82)

Proof. Since V is bounded, by (3.80) and (3.81), V achieves its maximum value at some
time tvm <∞. In other words, there exists a time 0 ≤ tvm <∞ such that{

V (tvm ) ≥V (t ), t ≤ tvm ,

V (tvm ) >V (t ). t > tvm ,
(3.83)
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Therefore, by (3.81) and well-posedness property, there exists a bounded set T = {ti >
tvm | ti ∉M∧Ξ(ti ,δ) > 0, i ∈N}. Thus, using (3.83) there exists a bounded set A= {αi >
0| V (ti ) = e−αi (ti−tvm )V (tvm ), ti ∈ T }. Since the set A is bounded, there exists a α′ > 0
such that for all αi ∈A one has that α′ ≤αi . Now considering αm = min(α,α′), based on
(3.80) and (3.81), yields

V (t ) ≤ e−αm (t−tvm )V (tvm ) =Ke−αm t , for all t ≥ 0. (3.84)

Finally, if T and A are empty sets, then selecting αm =α the claim yields.

3.C. LIMIT CALCULATION FOR HIGH FREQUENCY ANALYSIS
Note that by (3.25) and (3.38), lim

ω→∞ ȳ(t ) = 0 and lim
ω→∞Tn( jω) = 0. In addition, since y(t ) =

r0

∞∑
n=1

Tn( jω), lim
ω→∞

∞∑
n=1

Tn( jω) = 0. On the other hand, if the transfer function of the con-

troller CL1 is proper, then lim
ω→∞CL1 (n jω) = Kc1; otherwise, lim

ω→∞(n jω)nc CL1 (n jω) = 1,

with nc ≥ 1. In the case in which CL1 is proper.

lim
ω→∞

max
ts≤t≤ts+q

|eR (t )−eR1 (t )|
max

ts≤t≤ts+q
|eR1 (t )| ≤ lim

ω→∞

Kc1r0|
∞∑

n=3
Tn( jω)|

Kc1r0
⇒ lim

ω→∞

max
ts≤t≤ts+q

|eR (t )−eR1 (t )|
max

ts≤t≤ts+q
|eR1 (t )| = 0.

(3.85)
In the case in which CL1 is strictly proper.

lim
ω→∞

max
ts≤t≤ts+q

|eR (t )−eR1 (t )|
max

ts≤t≤ts+q
|eR1 (t )| < lim

ω→∞

r0

ωnc
|
∞∑

n=3

Tn( jω)

nnc
|

r0

ωnc

⇒ lim
ω→∞

max
ts≤t≤ts+q

|eR (t )−eR1 (t )|
max

ts≤t≤ts+q
|eR1 (t )| = 0.

(3.86)
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4
FREQUENCY-DOMAIN STABILITY

METHODS FOR RESET CONTROL

SYSTEMS

Ali AHMADI DASTJERDI

As was discussed in the previous chapter, satisfaction of the Hβ condition is necessary for
the existence of a steady-state solution. Moreover, a frequency-domain stability method
is highly needed for providing non linear loop-shaping for reset control systems. In this
chapter, an intuitive frequency-domain method for assessing the stability of reset elements
based on the Hβ condition is proposed. To this end, the Hβ method, analytic geometry,
and optimization methods are utilized to develop a frequency-domain method for stabil-
ity analysis for different configurations of the first and second order reset elements. The
method can also guarantee an uniformly bounded-input bounded-state (UBIBS) prop-
erty for reset control systems in the case of resetting to non-zero values. Finally, an illus-
trative example is presented to demonstrate the effectiveness of the proposed approach to
use frequency response measurements directly to assess the stability of the closed-loop reset
control systems.

The preliminary results of this chapter are presented in CDC 2020 (see appendix A), and the extended version
(this chapter) has been submitted to Automatica.
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4.1. INTRODUCTION
High-tech precision industrial applications have control requirements which are hard to
fulfil by means of linear controllers. One way to increase the performance of these sys-
tems is to replace linear controllers with non linear ones, for instance reset controllers.
Owing to their simple structure, these controllers have attracted significant attention
from academia and industry [1–10]. In particular, reset controllers have been utilized to
improve the performance of several mechatronic systems (see, e.g. [11–20]).

The first reset element was introduced by Clegg [1] in 1958. The Clegg Integrator (CI)
is an integrator which resets its state to zero whenever its input signal is zero. To pro-
vide additional design freedom and flexibility, extensions of the CI including First Order
Reset Elements (FORE) [11, 21], Generalized First Order Reset Elements (GFORE) [17],
Second Order Reset Elements (SORE) [12], Generalized Second Order Reset Elements
(GSORE) [17], and Second Order Single State Reset Elements (SOSRE) [22] have been de-
veloped. Moreover, to improve the performances of these controllers several methods
such as reset bands [23, 24], fixed reset instants, partial reset techniques (resetting to a
non-zero value or resetting a selection of the controller states) [25], use of shaping filters
in the reset instants line [26], and the PI+CI approach [25] have also been investigated.

Similar to every control system, stability is one of the most essential requirements of
reset control systems [2, 6, 7, 9, 27–30]. Stability properties for reset control systems have
been studied using quadratic Lyapunov functions [6, 9, 31, 32], reset instants dependent
methods [29, 33, 34], passivity, small gain, and IQC approaches [27, 35–37]. However,
most of these methods are complex, require parametric models of the system and the
solution of LMI’s, and are only applicable to specific types of systems. Thus, since in-
dustry often favors the use of frequency-domain methods, these methods are not well
matched with the current control design requirements in industry. To overcome this
challenge, some frequency-domain approaches for assessing stability properties of reset
control systems have been proposed [2, 7, 38]. A method for determining stability prop-
erties of a FORE in closed-loop with a mass-spring-damper system has been developed
in [38]. However, this sector-bounded method is only applicable to a specific type of sys-

tems. Under the specific reset condition e(t )u(t ) < u2(t )

ε
, for some ε> 0, in which e and

u are the input and the output of the reset element, respectively, the approach in [7] is
applicable to reset control systems. However, this method is not applicable to architec-
ture illustrated in Figure. 4.1. In addition, in the case of traditional reset control systems
in which the reset condition occurs at e(t ) = 0, the base linear system of the closed-loop
must be positive which implies that it is not appropriate for plants with the relative order
more that one.

The Hβ condition is one of the widely-used methods for assessing stability properties
of reset control systems [2, 9, 29]. In particular, when the base linear system of the re-
set element has a first order transfer function, it gives sufficient frequency-domain con-
ditions for uniform bounded-input bounded-state (UBIBS) stability. However, assess-
ing the Hβ condition in the frequency-domain is not intuitive, especially for plants with
high order transfer functions. In addition, the effect of a shaping filter in the reset line
on the Hβ condition has not been studied yet. Furthermore, there is a lack of methods
to assess the Hβ condition for GSORE using Frequency Response Function (FRF) mea-
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Figure 4.1: The closed-loop architecture of a reset control system

surements. Finally, the Hβ condition is not applicable to assess UBIBS stability of reset
control systems in the case of partial reset techniques. Hence, obtaining a general easy-
to-use frequency-domain method for assessing UBIBS stability of reset control systems
is an important open question.

In this paper, on the basis of the Hβ condition, novel frequency-domain stability con-
ditions for control systems with first and second order reset elements with a shaping fil-
ter in the reset line are proposed. This approach allows for assessing UBIBS stability of
reset control systems in the frequency-domain. In this approach, the Hβ condition does
not have to be explicitly tested and stability properties are directly determined on the
basis of the FRF measurements of the base linear open-loop system. In addition, the
approach can be used in the case of partial reset techniques.

The remainder of the paper is organized as follows. In Section 4.2 preliminaries about
reset elements are presented and the problem is formulated. The frequency-domain ap-
proaches for assessing stability properties of control systems with first and second order
reset elements are presented in Section 4.3 and Section 4.4, respectively. In Section 4.5
the effectiveness of these approaches is demonstrated via a practical example. Finally,
conclusions and suggestions for future studies are given in Section 4.6.

4.2. PRELIMINARIES
In this section the description of reset elements and the Hβ condition are breifly recalled
and some preliminaries are given. The focus of the paper is on the single-input single-
output (SISO) control architecture illustrated in Figure. 4.1. The closed-loop system con-
sists of a linear plant with transfer function G(s) (which we assume strictly proper), linear
controllers with proper transfer functions CL1 (s) and CL2 (s), a reset element with base
transfer function CR (s), and a shaping filter with a proper stable transfer function Cs (s).

The state-space representation of the reset element is
ẋr (t ) = Ar xr (t )+Br u1(t ), er (t ) 6= 0,

xr (t+) = Aρxr (t ), er (t ) = 0∧ (I − Aρ)xr (t ) 6= 0,

ur (t ) =Cr xr (t )+Dr u1(t ),

(4.1)

in which xr (t ) ∈ Rnr is the vector containing the reset state, Ar , Br , Cr , and Dr are the
dynamic matrices of the reset element, Aρ is the reset matrix, which determines the val-
ues of the reset state after the reset action, and u1(t ) ∈ R and ur (t ) ∈ R are the input and
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output of the reset element, respectively. The transfer function Cr (sI − Ar )−1Br +Dr is
called the base transfer function of the reset element. The base transfer function in case
of GFORE is (in all cases ωr > 0)

CR (s) = 1
s

ωr
+1

, (4.2)

for CI and Proportional Clegg Integrator (PCI) one has

CR (s)=1

s
, (4.3)

CR (s)=1+ ωr

s
, (4.4)

and for GSORE one has

CR (s) = 1

s2 +2ξωr s +ω2
r

, ξ> 0. (4.5)

Thus, for GFORE, Ar = −Cr = −ωr (ωr is the so-called corner frequency), Dr = 0, and
Br = 1, whereas for the PCI, Ar = 0, Cr =ωr , and Br = Dr = 1. In the case of CI, Ar = Dr =
0, Br =Cr = 1, and if we consider the controllable canonical form realization for GSORE,
we obtain

Ar =
[−2ξωr −ω2

r
1 0

]
, Br =

[
1
0

]
, Cr =

[
0 1

]
, and Dr = 0. (4.6)

Let L be the linear time-invariant (LTI) part of the system, see Figure. 4.1, with input

ur (t ) ∈R, external disturbance w(t ) = [
r (t ) d(t )

]T ∈R2, and outputs y(t ) ∈R, er (t ) ∈R,
and u1(t ) ∈R. The state-space realization of L is given by equations

L :


ζ̇(t ) = Aζ(t )+Buur (t )+B w(t ),

y(t ) =Cζ(t ),

er (t ) =Ceζ(t )+De r (t ),

u1(t ) =Cuζ(t )+D1r (t ),

(4.7)

where ζ(t ) ∈ Rnp describes the states of the plant and of the linear controllers (np is the
number of states of the whole linear part), and A, B , Bu , and C are the corresponding
dynamic matrices. The closed-loop state-space representation of the overall system can,
therefore, be written as

ẋ(t ) = Āx(t )+ B̄ w(t ), er (t ) 6= 0,

x(t+) = Āρx(t ), er (t ) = 0∧ (I − Āρ)x(t ) 6= 0,

y(t ) = C̄ x(t ),

er (t ) = C̄e x(t )+De r (t ),

(4.8)

where x(t ) = [
xr (t )T ζ(t )T ]T ∈ Rnr +np , Ā =

[
Ar Br Cu

BuCr A+BuDr Cu

]
, C̄ = [

01×nr C
]
,

B̄ =
[

0nr ×2

B

]
+

[
Br D1 0nr ×1

BuDr D1 0np×1

]
, C̄e =

[
01×nr Ce

]
, and Āρ =

[
Aρ 0nr ×np

0np×nr Inp×np

]
.
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Definition 10. A time T̄ > 0 is called a reset instant for the reset control system (4.8) if
eR (T̄ ) = 0∧ (I − Āρ)x(T ) 6= 0. For any given initial condition and input w the resulting
set of all reset instants defines the reset sequence {tk }, with tk ≤ tk+1, for all k ∈ N. The
reset instants tk have the well-posedness property if for any initial condition x0 and any
input w, all the reset instants are distinct, and there exists λ > 0 such that, for all k ∈ N,
λ≤ tk+1 − tk [6, 39].

One of the methods for determining stability properties of reset control systems is
the Hβ condition [2, 6, 9, 29, 40], which is briefly recalled. Let

C0 = [% βC ], B0 =
[

Inr ×nr

0np×nr

]
, %= %T > 0, % ∈Rnr ×nr , β ∈Rnr ×1. (4.9)

The Hβ condition [2, 6, 9, 29, 40] states that the zero equilibrium of the reset control
system (4.8) with CL1 = Cs = 1 and w = 0 is globally uniformly asymptotically stable if
and only if there exist %= %T > 0 and β such that the transfer function

H(s) =C0(sI − Ā)−1B0 (4.10)

is Strictly Positive Real (SPR), (Ā,B0) and (Ā,C0) are controllable and observable, respec-
tively, and

AT
ρ %Aρ −% ≤ 0. (4.11)

Evaluating the Hβ condition requires finding the parameters % and β, which may be very
difficult when the system has a high order transfer function. Furthermore, in the case
of GSORE there is no direct frequency-domain method to assess this condition. Besides,
the UBIBS property of GSORE and GFORE have not yet been studied, and the effects
of the shaping filter on the Hβ condition have not been considered yet. In the current
paper, frequency-domain methods to determine stability properties without finding %
and β for GFORE and GSORE with considering the shaping filter are proposed.

Assumption 2. There are infinitely many reset instants and lim
k→∞

tk =∞.

Assumption 2 is introduced to rule out a trivial situation. In fact, if there is a finite
TK as the last rest instant, then for all t ≥ TK the reset control system (4.8) is a linear
stable system if the Hβ condition is satisfied. In addition to Assumption 2, we need the
following assumption, which is instrumental to study the UBIBS property of reset control
systems.

Assumption 3. In the case of partial reset technique, if Aρ has the structure

Aρ =
[

Iñr 0
0 A′

n′
r

]
,

then Ar has the structure

Ar =
[

Ar1 Ar2

0ñr ×n′
r

Ar3

]
.
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Remark 5. In the case of GFORE, GSORE, PCI, and CI in which all states of the reset
element reset, Assumption 3 holds.

Before stating the main theorem, an important technical lemma, which is instru-
mental for all proofs, is formulated and proved.

Lemma 5. Consider the reset control system (4.8). Suppose that

• Assumption 2 holds;

• AT
ρ %Aρ −%< 0;

• the Hβ condition holds;

• at least one of the following conditions holds:

1. Cs = 1 and Assumption 3 holds;

2. the reset instants have the well-posedness property.

Then the reset control system (4.8) has a well-defined unique left-continuous solution for
any initial condition x0 and any input w which is a Bohl function1. In addition, this
solution is UBIBS and the reset instants have the well-posedness property.

Proof. See Appendix 4.A.

4.3. STABILITY ANALYSIS OF RESET CONTROL SYSTEMS WITH

FIRST ORDER RESET ELEMENTS
In this section frequency-domain methods for assessing stability properties of the reset
control system (4.8) with GFORE (4.2), CI (4.3), and PCI (4.4) are proposed on the basis
of the Hβ condition. To this end, the Nyquist Stability Vector (NSV=

#»N (ω) ∈R2) in a plane
with axis χ−Υ (see Figure. 4.2) is defined as follows.

Definition 11. The Nyquist Stability Vector is, for all ω ∈R+, the vector

#»N (ω)=[Nχ NΥ]T

=[ℜ(L( jω)Cs ( jω)κ( jω)) ℜ(κ( jω)CR ( jω))]T ,

in which L(s) = CL1 (s)CR (s)CL2 (s)G(s), L( jω) = a(ω) + b(ω) j , and κ( jω) = 1 + L∗( jω)
(L∗( jω) is the conjugate of L( jω)).

For simplicity, and without loss of generality, let
#»N (ω) = θN ∈ [−π

2 , 3π
2 ) and define

the open sets

I1 =
{
ω ∈R+| 0 < #»N (ω) < π

2

}
,

I2 =
{
ω ∈R+| π

2
< #»N (ω) <π

}
,

1See definition Bohl function in [39]
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Figure 4.2: Representation of the NSV in the χ−Υ plane

I3 =
{
ω ∈R+| π< #»N (ω) < 3π

2

}
,

I4 =
{
ω ∈R+| − π

2
< #»N (ω) < 0

}
.

Let L(s)Cs (s) = Km sm +Km−1sm−1 + ...+K0

sn +K ′
n−1sn−1 + ...+K ′

0

and Cs (s) = Ksm snm +Ksm−1 sms−1 + ...+Ks0

K ′
sn

sns +K ′
sn−1

sns−1 + ...+1
.

On the basis of the definition of the NSV, systems of Type I and of Type II, which are used
to assess stability properties of the reset control system (4.8), are defined.

Definition 12. The reset control system (4.8) is of Type I if the following conditions hold.

( 1 ) If CL1 (s)CL2 (s)G(s) has at least one pole at the origin, then Ks0 > 0.

( 2 ) In the case of CI (4.3), Ks0 < 0.

( 3 ) For all ω ∈M= {ω ∈R+|Nχ(ω) = 0} one has NΥ(ω) > 0.

( 4 ) For all ω ∈Q= {ω ∈R+|NΥ(ω) = 0} one has Nχ(ω) > 0.

( 5 ) At least one of the following statements is true:

(a) ∀ ω ∈R+ : NΥ(ω) ≥ 0.

(b) ∀ ω ∈R+ : Nχ(ω) ≥ 0.

(c) Let δ1 = max
ω∈I4

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣ andΨ1 = min
ω∈I2

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣. Then δ1 <Ψ1 and I3 =∅.

Remark 6. Let
θ1 = min

ω∈R+
#»N (ω) and θ2 = max

ω∈R+
#»N (ω). (4.12)

Then the conditions identifying Type I systems are equivalent to the following condi-
tions.

( 1 ) If CL1 (s)CL2 (s)G(s) has at least one at the origin, then Ks0 > 0.
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( 2 ) In the case of CI (4.3), Ks0 < 0.

( 3 ) The condition(
−π

2
< θ1 <π

)
∧

(
−π

2
< θ2 <π

)
∧ (θ2 −θ1 <π) (4.13)

holds.

Definition 13. The reset control system (4.8) is of Type II if the following conditions hold.

( 1 ) If CL1 (s)CL2 (s)G(s) has at least one at the origin, then Ks0 < 0.

( 2 ) In the case of CI (4.3), Ks0 > 0.

( 3 ) For all ω ∈M one has NΥ(ω) > 0.

( 4 ) For all ω ∈Q one has Nχ(ω) < 0.

( 5 ) At least, one of the following statements is true:

(a) ∀ ω ∈R+ : NΥ(ω) ≥ 0;

(b) ∀ ω ∈R+ : Nχ(ω) ≤ 0;

(c) Let δ2 = max
ω∈I3

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣ andΨ2 = min
ω∈I1

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣. Then, δ2 <Ψ2 and I4 =∅.

Remark 7. The conditions identifying Type II systems are equivalent to the following
conditions.

( 1 ) If CL1 (s)CL2 (s)G(s) has at least one at the origin, then Ks0 < 0.

( 2 ) In the case of CI (4.3), Ks0 > 0.

( 3 ) The condition (
0 < θ1 < 3π

2

)
∧

(
0 < θ2 < 3π

2

)
∧ (θ2 −θ1 <π) (4.14)

holds.

Theorem 4. The zero equilibrium of the reset control system (4.8) with GFORE (4.2), or
CI (4.3), or PCI (4.4) is globally uniformly asymptotically stable when w = 0, and the sys-
tem has the UBIBS property for any input w which is a Bohl function if all of the following
conditions are satisfied.

• The base linear system is stable and the open-loop transfer function does not have
any pole-zero cancellation.

• In the case of CI (4.3), CL1 (s)CL2 (s)G(s) does not have any pole at the origin and
n −m = 2 (i.e. the slope gain at high frequency is equal to -2).

• The reset control system (4.8) is either of Type I and/or of Type II.
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Figure 4.3: The block diagram of the Hβ condition for the closed-loop architecture Figure. 4.1 with GFORE or
PCI

• Aρ = γ, −1 < γ< 1.

• Cs (s) = 1 and/or the reset instants have the well-posedness property.

Proof. For w(t ) = 0, for all t ≥ 0, reset happens when x(t ) ∈ ker(C̄e ). Looking at the proof
of the Hβ condition, which is given in [2, 6, 9], when there is a shaping filter in the reset
line, C0 in the Hβ condition is changed to

C0 = [% βC̄e ]. (4.15)

Theorem 4 is now proved in several steps.

• Step 1: It is shown that there is a β and %> 0 such that ℜ(H( jω)) > 0, for allω ∈R+.

• Step 2: For systems with poles at the origin it is shown that lim
ω→0

ℜ(H( jω)) > 0.

• Step 3: It is shown that either lim
s→∞H(s) > 0 or lim

ω→∞ω
2ℜ(H( jω)) > 0.

• Step 4: It is shown that (A,C0) and (A,B0) are observable and controllable, respec-
tively.

Step 1: For simplicity take β′ = −β and %′ = %

Cr
. The transfer function (4.10) with the

modified C0 as in (4.15) can be rewritten as (see also Figure. 4.3)

H(s) = y

r
= β′L(s)Cs (s)+%′CR (s)

1+L(s)
. (4.16)

Thus2

ℜ(H( jω)) = β′Nχ+%′Nυ

(a +1)2 +b2 . (4.17)

Define now the vector
#»

ξ in theχ−υplane as
#»

ξ = [β′ %′]T . Using Definition 11, equation
(4.17) can be re-written as

ℜ(H( jω)) =
#»

ξ · #»N
(a +1)2 +b2 . (4.18)

2Omitting arguments for simplicity
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Therefore
∀ω ∈R+ : ℜ(H( jω)) > 0 ⇐⇒ #»

ξ · #»N > 0 ⇐⇒
−π

2 < (
#»

ξ ,
#»N ) < π

2 ∧
∣∣∣#»N

∣∣∣ 6= 0 ∧
∣∣∣#»

ξ
∣∣∣ 6= 0.

(4.19)

The rest of the proof of this step are the same as the proof of Step 1 provided in [41] (see
Appendix A).
Step 2: When the open-loop system has poles at the origin and CR is a GFORE, equation
(4.16) becomes

lim
ω→0

ℜ(H( jω)) = Ks0β
′ > 0, (4.20)

whereas in the case of PCI and CI when CL1 (s)CL2 (s)G(s) does not have any pole at the
origin, (4.16) becomes

lim
ω→0

ℜ(H( jω)) = Ks0β
′+%′ ωr

CL1 (0)CL2 (0)G(0)
> 0. (4.21)

Setting
#  »

N ′ = [Ks0

ωr

CL1 (0)CL2 (0)G(0)
]T , yields

lim
ω→0

ℜ(H( jω)) = #»

ξ · #  »

N ′. (4.22)

In addition
#  »

N ′ = lim
ω→0

#»N (4.12)====⇒ θ1 ≤
#  »

N ′ ≤ θ2. (4.23)

As a result, by Step 1, lim
ω→0

ℜ(H( jω)) = #»

ξ · #  »

N ′ > 0. For PCI, when CL1 (s)CL2 (s)G(s) has

poles at the origin,
lim
ω→0

ℜ(H( jω)) = Ks0β
′ > 0. (4.24)

Note that for CI in equations (4.21)-(4.23), ωr = 1. It is therefore concluded that if
CL1 (s)CL2 (s)G(s) has poles at the origin, then Ks0β

′ > 0. If CL1 (s)CL2 (s)G(s) does not have
any pole at the origin, β can be either positive or negative.

Step 3: In the case of GFORE with n −m = 2, setting
#   »

N ′′ = [−Kn ω2
r ]T yields

lim
ω→∞ω

2ℜ(H( jω)) =−β′Kn +%′ω2
r =

#»

ξ · #   »

N ′′. (4.25)

In addition,
#   »

N ′′ = lim
ω→∞

#»N (4.12)====⇒ θ1 ≤
#   »

N ′′ ≤ θ2. (4.26)

Thus, by Step 1 lim
ω→∞ω

2ℜ(H( jω)) = #»

ξ · #   »

N ′′ > 0. For GFORE with n − m > 2,

lim
ω→∞ω

2ℜ(H( jω)) = %′ω2
r > 0. For PCI lim

s→∞H(s) = %′ > 0. Moreover, in the case of CI

when n −m > 2,
lim
ω→∞ω

2ℜ(H( jω)) = 0, (4.27)

which implies that H(s) is not SPR in the case of n −m > 2. Whereas in the case of CI
with n −m = 2,

lim
ω→∞ω

2ℜ(H( jω)) =−Ks0β
′ > 0, (4.28)
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which means that in the case of CI, CL1 (s)CL2 (s)G(s) must not have any pole at the origin.
Step 4: In order to show that the pairs (A,C0) and (A,B0) are observable and controllable,
respectively, it is sufficient to show that the denominator and the numerator of H(s) do
not have any common root. Let a0 + j b0 be a root of the denominator. Then

1+RL(a0,b0)+ j IL(a0,b0) = 0 ⇒
{

RL(a0,b0) =−1,

IL(a0,b0) = 0.
(4.29)

Now, the numerator must not have a root at a0 + j b0, that is

β′ (RCs (a0,b0)+ j ICs (a0,b0)
) 6= %′ (RCR (a0,b0)+ j ICR (a0,b0)

)
⇒β′RCs (a0,b0) 6= %′RCR (a0,b0) ∨ β′ICs (a0,b0) 6= %′ICR (a0,b0).

(4.30)

Therefore, using Step 1 and (4.30) it is possible to find a pair (β′,%′) such that H(s) does
not have any pole-zero cancellation. According to Step 1-4, H(s) is SPR [27], (Ā,C0) is
observable and (Ā,B0) is controllable, and the base linear system is stable. Moreover,
since −1 < γ < 1, one has that AT

ρ %Aρ −% < 0. As a result, the Hβ condition is satisfied
for the reset control system (4.8) with GFORE (4.2), or CI (4.3), or PCI (4.4). Hence, the
zero equilibrium of the reset control system (4.8) is globally uniformly asymptotically
stable when w = 0, and according to Lemma 5, it has the UBIBS property for any initial
condition x0 and any input w which is a Bohl function.

Corollary 8. Let Cs (s) = 1, θL = L( jω), and θCR = CR ( jω). Suppose that the base linear
system of the reset control system (4.8) is stable, Aρ = γ, −1 < γ < 1, L(s) and the open-
loop system does not have any pole-zero cancellation. Then the zero equilibrium of the
reset control system (4.8) with GFORE (4.2), or CI (4.3), or PCI (4.4) is globally uniformly
asymptotically stable when w = 0, and the system has the UBIBS property for any input w
which is a Bohl function if at least one of the following conditions hold.

1. For all ω ∈R+, sin(θL) ≥ 0.

2. For all ω ∈R+, cos(θL −θCR ) ≥ 0 and the reset element is not CI (4.3).

Proof. When Cs (s) = 1, Nχ(ω) = a(ω)2 +b(ω)2 +b(ω). By Hypothesis 1, b(ω) ≥ 0, for all
ω ∈ R+, which implies that Nχ(ω) > 0. Thus, the reset control system (4.8) is of Type I.
In addition, defining CR ( jω) = aR (ω)+ j bR (ω), yields NΥ(ω) = a(ω)aR (ω)+b(ω)bR (ω)+
aR (ω). By Hypothesis 2,

∀ ω ∈R+ : cos(θL −θCR ) ≥ 0 ⇒ a(ω)aR (ω)+b(ω)bR (ω)

|L( jω)CR ( jω)| ≥ 0, (4.31)

and since aR (ω) > 0 in the cases of PCI and GFORE, NΥ(ω) > 0, for all ω ∈R+. Therefore,
the reset control system (4.8) is of Type I and/or Type II, hence the claim.

In [42] the GFORE, CI and PCI architectures have been modified to improve the per-
formance of reset control systems. Using the same procedure as Theorem 4 a frequency-
domain method to assess stability properties of these reset control systems illustrated in
Figure. 4.4 is proposed.
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Figure 4.4: The closed-loop architecture of a modified reset element

Corollary 9. Let the NSV vector for the reset control system shown in Figure. 4.4 be

#»NMF (ω)=[NMFχ NMFΥ ]T

=
[
ℜ(

L′( jω)κ( jω)

Cs ( jω)
) ℜ(κ( jω)CR ( jω))

]T

, (4.32)

in which L′(s) =CL1 (s)CR (s)CL2 (s)Cs (s)G(s). Then, the zero equilibrium of the reset con-
trol system (4.8) in the configuration of Figure. 4.4 with GFORE (4.2), or CI (4.3), or PCI (4.4)
is globally uniformly asymptotically stable when w = 0, and the system has the UBIBS
property for any input w which is a Bohl function if all of the following conditions are
satisfied.

• The base linear system is stable and the open-loop transfer function does not have
any pole-zero cancellation.

• In the case of CI (4.3), CL1 (s)CL2 (s)G(s) does not have any pole at the origin and
n −m = 2 (i.e. slope gain at high frequency is equal to -2).

• The reset control system (4.8) is either of Type I and/or of Type II.

• Aρ = γ, −1 < γ< 1.

• Cs (s) = 1 and/or the reset instants have the well-posedness property.

Proof. See Appendix 4.B.

4.4. STABILITY ANALYSIS OF RESET CONTROL SYSTEMS WITH

SECOND ORDER RESET ELEMENTS

4.4.1. RESET CONTROL SYSTEMS WITH GSORE
In this section a frequency-domain method for assessing stability properties of the reset
control system (4.8) with GSORE (4.5), which has the canonical controllable form state-
space realization (4.6), is proposed. In this method the Hβ condition is combined with
optimization tools to provide sufficient conditions to guarantee stability properties of
the reset control system (4.8). Before presenting the main result, one preliminary fact,
which is useful for assessing stability properties of the reset control system (4.8) with
GSORE (4.5), is presented.
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Proposition 1. Let
#»Q ∈ R2 and

#»F ∈ R2 be defined as
#»Q = [

Q1 Q2
]T

and
#»F (ω) = [

F1(ω) F2(ω)
]T

. Let
#»Q,

#»F (ω) = ϑ(ω,
Q2

Q1
), ωp = {ω ∈ R+| F3(ω) ≥ 0},

ωN =R+−ωp , gp =
{

Q2

Q1
∈R| ∀ω ∈ωp : Q1F1(ω)+Q2F2(ω) > 0

}
, and

gN =
{

Q2

Q1
∈R| ∀ω ∈ωN : Q1F1(ω)+Q2F2(ω) > 0

}
.

Then the condition

Q1F1(ω)+Q2F2(ω) >F3(ω), (4.33)

holds for all ω ∈R if and only if

• η1(
Q2

Q1
) <

√
Q2

1 +Q2
2 < η2(

Q2

Q1
),

•
Q2

Q1
∈

{
Q2

Q1
∈ gp | η1(

Q2

Q1
) < η2(

Q2

Q1
)

}
,

where

η1(
Q2

Q1
)=


−∞ ωp =∅,

max
ω∈ωp

F3(ω)

cos(ϑ)
√
F2

1 (ω)+F2
2 (ω)

, ωp 6=∅,

η2(
Q2

Q1
)=


+∞ Q2

Q1
∈ gN ∨ ωN =∅,

min
ω∈ωN

F3(ω)

cos(ϑ)
√
F2

1 (ω)+F2
2 (ω)

,
Q2

Q1
∉ gN .

(4.34)

Proof. See Appendix 4.C.

Remark 8. The sets gp and gN can be easily obtained using the method described in [41].
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Define now

f1(X1,X2,X3,ω)=X1ℜ(CR ( jω)κ(ω) jω)+X2ℜ(CR ( jω)κ(ω))+X3ℜ(Cs ( jω)(a2 +b2 +a)),

f2(X1,X2,X3,ω)=X1ℜ(CR ( jω)κ(ω)( jω+2ξωr ))+X3ℜ(L( jω)κ(ω)Cs ( jω)( jω+2ξωr ))

+X2ℜ(CR ( jω)κ(ω)(2 jξωrω−ω2)− (a +1)2 −b2),

G1(Q1,Q2,Q3,Q4)= sup
ω∈(0,∞)

[
f1(Q1,Q2,1,ω)

f1(Q2,
Q2Q3

Q4
,

Q2

Q4
,ω)+ f2(Q2,Q1,1,ω)

× f2(Q3,Q4,1,ω)

f1(Q4,Q3,1,ω)+ f2(Q4,
Q1Q4

Q2
,

Q4

Q2
,ω)

]
,

G2(Q1,Q2,Q3,Q4)= sup
ω∈[0,∞)

[
f1(1,Q2,Q1,ω)

f1(Q2,
Q2

Q4
,

Q2Q3

Q4
,ω)+ f2(Q2,1,Q1,ω)

× f2(1,Q4,Q3,ω)

f1(Q4,1,Q3,ω)+ f2(Q4,
Q4

Q2
,

Q1Q4

Q2
,ω)

]
,

Γ(γ1,γ2)= (γ1γ2 −1)2

(γ2
1 −1)(γ2

2 −1)
.

We define systems of Type III, of Type IV, and of Type V to assess stability properties of
the reset control system (4.8) with GSORE (4.6).

Definition 14. The reset control system (4.8) with GSORE (4.6) is of Type III if the following
conditions hold.

( 1 ) M < 4, where M = min
Q1,Q2,Q3,Q4

G1(Q1,Q2,Q3,Q4), in which Q1, Q2, Q3, and Q4 are

such that the following constraints hold:

S1 : ∀ω ∈ (0,∞) : Ks0 f1(Q1,Q2,1,ω) > 0,

S2 : ∀ω ∈ (0,∞) : Ks0 f2(Q3,Q4,1,ω) > 0,

S3 : Ks0

(
2ξωr

Q1
+ Q2

Q1Q4
+ 2

Q1

√
2Q2ξωr

Q4
− Q2

Ks0

)
> 1,

S4 : Ks0

(
2ξωr

Q1
+ Q2

Q1Q4
− 2

Q1

√
2Q2ξωr

Q4
− Q2

Ks0

)
< 1,

S5 :
ω2

r Q1

Q2
+2ωr

(
ξ+2

√
2Q1ξωr

Q2
−1

)
> Q3

Q4
,

S6 :
ω2

r Q1

Q2
+2ωr

(
ξ−2

√
2Q1ξωr

Q2
−1

)
< Q3

Q4
,

S7 : Ks0Qi > 0, 2ξωr > Q4

Ks0

, 2ξωr > Q2

Q1
,

Q1Q3

Q2Q4
> Γ(γ1,γ2).

(4.35)
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( 2 ) The pairs (Ā,C0) and (Ā,B0) where C0 =
 1

Q2

Q4

C̄e

Q1 Q2

Q2
Q2Q3

Q4

 and B0 =[
0np×2

I2

]
are observable and controllable, respectively.

( 3 ) The open-loop system has at least one pole at the origin and Ks0 6= 0.

Definition 15. The reset control system (4.8) with GSORE (4.6) is of Type IV if the following
conditions hold.

( 1 ) M < 4, where M = min
Q1,Q2,Q3,Q4

G2(Q1,Q2,Q3,Q4), in which Q1, Q2, Q3, and Q4 are

such that the following constraints hold:

S1 : ∀ω ∈ [0,∞) : f1(1,Q2,Q1,ω) > 0,

S2 : ∀ω ∈ [0,∞) : f2(1,Q4,Q3,ω) > 0,

S3 : ω2
r +2ωr

(
ξQ2 +2

√
2Q2ξωr −Q2

2

)
> Q2

Q4
,

S4 : ω2
r +2ωr

(
ξQ2 −2

√
2Q2ξωr −Q2

2

)
< Q2

Q4
,

S5 : Q4 > 0, 0 <Q2 < 2ξωr , Q2Q4 < 1

Γ(γ1,γ2)
, Q1 ∈R, Q3 ∈R.

(4.36)

( 2 ) The pairs (Ā,C0) and (Ā,B0) where C0 =
 Q1

Q2Q3

Q4

C̄e

 1 Q2

Q2
Q2

Q4

 and B0 =[
0np×2

I2

]
are observable and controllable, respectively.

( 3 ) The open-loop system does not have any pole at the origin.

( 4 ) n −m > 3 (the slope gain at high frequencies is less than -3).

Definition 16. The reset control system (4.8) with GSORE (4.6) is of Type V if the following
conditions hold.

( 1 ) M < 4, where M = min
Q1,Q2,Q3,Q4

G2(Q1,Q2,Q3,Q4), in which Q1, Q2, Q3, and Q4 are
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such that the following constraints hold:

S1 : ∀ω ∈ [0,∞) : f1(1,Q2,Q1,ω) > 0,

S2 : ∀ω ∈ [0,∞) : f2(1,Q4,Q3,ω) > 0,

S3 : ω2
r −KnQ1 +2ξωr Q2 +2

√
2ξω3

r Q2 +
Q2

2Q3Kn

Q4
−ω2

r Q2
2 > Q2

Q4
,

S4 : ω2
r −KnQ1 +2ξωr Q2 −2

√
2ξω3

r Q2 +
Q2

2Q3Kn

Q4
−ω2

r Q2
2 < Q2

Q4
,

S5 : 2ξω3
r Q2 +

Q2
2Q3Kn

Q4
>ω2

r Q2
2 ,

S6 : Qi ∈R, Q2 < 2ξωr , KnQ3 <ω2
r Q4, 0 <Q2Q4 < 1

Γ(γ1,γ2)
.

(4.37)

( 2 ) The pairs (Ā,C0) and (Ā,B0) where C0 =
 Q1

Q2Q3

Q4

C̄e

 1 Q2

Q2
Q2

Q4

 and B0 =[
0np×2

I2

]
are observable and controllable, respectively.

( 3 ) The open-loop system does not have any pole at the origin.

( 4 ) n −m = 3 (the slope gain at high frequency is equal to -3).

Theorem 5. The zero equilibrium of the reset control system (4.8) with GSORE (4.6) is
globally uniformly asymptotically stable when w = 0, and the system has the UBIBS prop-
erty for any input w which is a Bohl function if all of the following conditions are satisfied.

• The base linear system is stable.

• Aρ =
[
γ1 0
0 γ2

]
and −1 < γi < 1, for i = 1, 2.

• The reset control system is either of Type III, or of Type IV, or of Type V.

• Cs (s) = 1 and/or the reset instants have the well-posedness property.

Proof. Theorem 5 is proved in the following steps.

• Step 1: The transfer function H(s) in (4.10) for the reset control system (4.8) with
GSORE (4.6) is calculated. Then, it is shown that AT

ρ %Aρ −%< 0.

• Step 2: It is shown that lim
ω→∞ω

2(H( jω)+H(− jω)T ) > 0.

• Step 3: For systems with poles at the origin it is shown that lim
ω→0

H( jω)+H(− jω)T >
0.

• Step 4: It is shown that H( jω)+H(− jω)T > 0, for all ω ∈R+.
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−r1 y1e − 1

s

2ωrα

1

s

γ1

ω2
rα

+

CL2 G+ CL1 Cs

%1

β1 +

r2 +γ2 %2

−r1 y2e − 1

s

2ωrα

1

s

γ1

ω2
rα

+

CL2 G+ CL1 Cs

%2

β2 +

r2 +γ2 %3

Figure 4.5: The block diagram of the Hβ condition for the closed-loop architecture Figure. 4.1 with GSORE

Step 1: In the case of GSORE let β=−[
β1 β2

]
and %=

[
%1 %2

%2 %3

]
> 0 be such that

βi ∈R, %3 > 0, %1 > 0, %1%3 > %2
2. (4.38)

In addition, since Aρ =
[
γ1 0
0 γ2

]
, we have the condition

AT
ρ %Aρ −%=

[
(γ2

1 −1)%1 (γ1γ2 −1)%2

(γ1γ2 −1)%2 (γ2
2 −1)%3

]
< 0. (4.39)

Since −1 < γi < 1, using (4.38) and (4.39), yields

%1%3

%2
2

> Γ(γ1,γ2) = (γ1γ2 −1)2

(γ2
1 −1)(γ2

2 −1)
≥ 1. (4.40)

With the considered matrix % and vector β, H(s) in (4.10) with C0 as in (4.15) is equal to
(see also Figure. 4.5)

H(s) =
[

transfer function from r1 to y1 transfer function from r2 to y1

transfer function from r1 to y2 transfer function from r2 to y2

]
. (4.41)

Thus,

H( jω)+H(− jω)T =

 2ℜ(
y1

r1
) ℜ(

y1

r2
+ y2

r1
)

ℜ(
y1

r2
+ y2

r1
) 2ℜ(

y2

r2
)

> 0 ⇒

1

|κ(ω)|2
[

2 f1(%1,%2,β1,ω) f1(%2,%1,β2,ω)+ f2(%2,%1,β2,ω)
f1(%2,%1,β2,ω)+ f2(%2,%1,β2,ω) 2 f2(%3,%2,β2,ω)

]
> 0.

(4.42)
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Step 2: Since the transfer functions
yi

r j
, with i , j = 1,2, are strictly proper, lim

s→∞H(s) = 0.

Therefore, it is necessary to have lim
ω→∞ω

2(H( jω)+H(− jω)T ) > 0. Note that in the case of

SORE, n −m ≥ 3. By (4.42), if n −m > 3,

lim
ω→∞ω

2(H( jω)+H(− jω)T ) =
[

4%1ξωr −2%2 ω2
r%1 +2%2ξωr −%3

ω2
r%1 +2%2ξωr −%3 2ω2

r%2

]
. (4.43)

Therefore, the condition lim
ω→∞ω

2(H( jω)+H(− jω)T ) > 0 is equivalent to

2%1ξωr > %2, %2 > 0, (4.44)

and
4(2%1ξωr −%2)(ω2

r%2) > (ω2
r%1 +2%2ξωr −%3)2

⇓
%2

3 −2%3(ω2
r%1 +2ξωr%2)+ (ω2

r%1 −2ξωr%2)2 +4ω2
r%

2
2 < 0

⇓(
%3 > (ω2

r%1 +2ξωr%2)−2ωr

√
2ξωr%1%2 −%2

2

)
∧(

%3 < (ω2
r%1 +2ξωr%2)+2ωr

√
2ξωr%1%2 −%2

2

)
.

(4.45)

When n −m = 3, condition (4.43) is re-written as[
4%1ξωr −2%2 ω2

r%1 +2%2ξωr −%3 −Knβ1

ω2
r%1 +2%2ξωr −%3 −Knβ1 2ω2

r%2 −2Knβ2

]
> 0, (4.46)

which is equivalent to
2%1ξωr > %2, ω2

r%2 > Knβ2, (4.47)

and

4(2%1ξωr −%2)(ω2
r%2 −Knβ2) > (ω2

r%1 +2%2ξωr −%3 −Knβ1)2

⇓(
%3 > (ω2

r%1 −Knβ1 +2ξωr%2)−2
√

2ξω3
r%1%2 +Kn%2β2 −ω2

r%
2
2

)
∧(

%3 < (ω2
r%1 −Knβ1 +2ξωr%2)+2

√
2ξω3

r%1%2 +Kn%2β2 −ω2
r%

2
2

)
∧(

2ξω3
r%1%2 +Kn%2β2 >ω2

r%
2
2

)
.

(4.48)

Step 3: When L(s) has at least one pole at the origin, by (4.42)

lim
ω→0

H( jω)+H(− jω)T =
[

2Ks0β1 Ks0β2 +2Ks0β1ξωr −%1

Ks0β2 +2Ks0β1ξωr −%1 4Ks0β2ξωr −2%2

]
> 0, (4.49)

which is equivalent to
Ks0β1 > 0, 2Ks0β2ξωr > %2, (4.50)

and

4(Ks0β1)(2Ks0β2ξωr −%2) > (Ks0β2 +2Ks0β1ξωr −%1)2

⇓
%2

1 −2%1(2Ks0β1ξωr +Ks0β2)+ (2Ks0β1ξωr −Ks0β2)2 +4Ks0β1%2 < 0
⇓(

%1 > Ks0 (2β1ξωr +β2)−2
√

2K 2
s0
ξωrβ1β2 −Ks0β1%2

)
∧(

%1 < Ks0 (2β1ξωr +β2)+2
√

2K 2
s0
ξωrβ1β2 −Ks0β1%2

)
.

(4.51)
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Step 4: In the case in which L(s) has poles at the origin, denote Q1 = %1

β1
, Q2 = %2

β1
, Q3 =

%3

β2
and Q4 = %2

β2
. Furthermore, since Ks0β1, Ks0β2, and |κ(ω)|2 are positive, condition

(4.42) is equal to 2Ks0 f1(Q1,Q2,1,ω) f1(Q2,
Q2Q3

Q4
,

Q2

Q4
,ω)+ f2(Q2,Q1,1,ω)

f1(Q4,Q3,1,ω)+ f2(Q4,
Q1Q4

Q2
,

Q4

Q2
,ω)

2

Ks0

f2(Q3,Q4,1,ω)

> 0.

(4.52)
Therefore, for all ω ∈ (0,∞), there exist Q1, Q2, Q3, and Q4 such that

Ks0 f1(Q1,Q2,1,ω) > 0, Ks0 f2(Q3,Q4,1,ω) > 0, (4.53)

and since f1(Q1,Q2,1,ω) f2(Q3,Q4,1,ω) > 0,

( f1(Q2,
Q2Q3

Q4
,

Q2

Q4
,ω)+ f2(Q2,Q1,1,ω))( f1(Q4,Q3,1,ω)+ f2(Q4,

Q1Q4

Q2
,

Q4

Q2
,ω))

f1(Q1,Q2,1,ω) f2(Q3,Q4,1,ω)
< 4.

(4.54)
Thus, since the condition (4.54) must hold for all ω ∈ (0,∞), min

Qi
G1(Q1,Q2,Q3,Q4) < 4,

with i = 1,2,3,4. Moreover, re-writing equations (4.38), (4.40) (4.45), and (4.51) using the
variables Q1, Q2, Q3, and Q4, the constraints S3 −S7 of Definition 14 are obtained.

When L(s) does not have any pole at the origin, let Q ′
1 = β1

%1
, Q ′

2 = %2

%1
, Q ′

3 = β2

%3
and

Q ′
4 = %2

%3
. With this change of variables, since %3, %1 and |κ(ω)|2 are positive, condition

(4.42) is equivalent to
2 f1(1,Q ′

2,Q ′
1,ω) f1(Q ′

2,
Q ′

2

Q ′
4

,
Q ′

2Q ′
3

Q ′
4

,ω)+ f2(Q ′
2,1,Q ′

1,ω)

f1(Q ′
4,1,Q ′

3,ω)+ f2(Q ′
4,

Q ′
4

Q ′
2

,
Q ′

1Q ′
4

Q ′
2

,ω) 2 f2(1,Q ′
4,Q ′

3,ω)

> 0.

(4.55)
Therefore, for all ω ∈ [0,∞),

f1(1,Q ′
2,Q ′

1,ω) > 0, f2(1,Q ′
4,Q ′

3,ω) > 0, (4.56)

and since f1(1,Q ′
2,Q ′

1,ω) f2(1,Q ′
4,Q ′

3,ω) > 0,

( f1(Q ′
2,

Q ′
2

Q ′
4

,
Q ′

2Q ′
3

Q ′
4

,ω)+ f2(Q ′
2,1,Q ′

1,ω))( f1(Q ′
4,1,Q ′

3,ω)+ f2(Q ′
4,

Q ′
4

Q ′
2

,
Q ′

1Q ′
4

Q ′
2

,ω))

f1(1,Q ′
2,Q ′

1,ω) f2(1,Q ′
4,Q ′

3,ω)
< 4.

(4.57)
Therefore, since condition (4.57) must hold for all ω ∈ [0,∞), min

Q ′
i

G2(Q ′
1,Q ′

2,Q ′
3,Q ′

4) < 4,

with i = 1,2,3,4. Re-writing equations (4.40) and (4.45) with the variables Q ′
1, Q ′

2, Q ′
3, and
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Q ′
4, the constraints S3 −S5 of Definition 15 are achieved. Similarly, using these variables

in equations (4.40) and (4.48), the constraints S3 −S6 of Definition 16 are obtained.
By Steps 1-4, AT

ρ %Aρ −%< 0, H(s) is SPR [27], (Ā,C0) is observable and (Ā,B0) is control-
lable, and the base linear system is stable. Thus, the Hβ condition is satisfied for the reset
control system (4.8) with GSORE (4.6). Hence, the zero equilibrium of the system is glob-
ally uniformly asymptotically stable when w = 0 and according to Lemma 5, it has the
UBIBS property for any initial condition x0 and any input w which is a Bohl function.

Remark 9. The minimum value of the function Γ(γ1,γ2) occurs when γ1 = γ2. In other
words, if γ1 = γ2 ⇒ Γ(γ1,γ2) = min

γ1, γ2
Γ(γ1,γ2) = 1. Thus, if Theorem 5 holds for a pair of

(γ1, γ2), it also holds for Aρ = γI , −1 < γ< 1.

Note that unlike linear controllers, the GSORE (4.5) with a different state-space re-
alization yields different performance, and Theorem 5 can not be used for such realiza-
tions. For example, the GSORE (4.5) can also be realized in observable canonical form,
that is with

Ar =
[

0 −ω2
r

1 −2ξωr

]
, Br =

[
1
0

]
, Cr =

[
0 1

]
, Dr = 0, (4.58)

or it can be realized with two GFORE yielding the realization (provided ξ≥ 1)

Ar =
[−ωr1 0

1 −ωr2

]
, Br =

[
1
0

]
, Cr =

[
0 1

]
, Dr = 0, ωr1 +ωr2 = 2ξωr , ωr1ωr2 =ω2

r ,

(4.59)
which results in different closed-loop performance.

Corollary 10. Suppose hypotheses of Theorem 5 hold for the reset control system (4.8)
with the GSORE (4.5) in the controllable canonical form (4.6) for a pair (γ1, γ2). Then
the reset control system (4.8) with GSORE (4.5) with realization (4.58) or (4.59) and Aρ =
γI , −1 < γ < 1 has the following property. For each initial condition x0 such that x0 =[
0 0 ζT

0

]T
and each bounded input w which is a Bohl function, there exists ε> 0 such

that ||x(t , x0, w(t ))|| < ε for t ≥ 0.

Proof. See 4.D.

4.4.2. RESET CONTROL SYSTEMS WITH SOSRE
In this section stability analysis for the reset control system (4.8) with the SOSRE [22] is

presented. In [22] GSORE (4.6) with Aρ =
[
γ 0
0 1

]
, which is termed SOSRE, is used to

improve the performance of the reset control system (4.8). In the case of SOSRE one
state of GSORE is reset and the other state is utilized to reduce the high order harmonics
of the reset element.

Corollary 11. Consider the reset control system (4.8) with SOSRE. Define the NSV vector
as

#»N SOS (ω) = [NSOSχ NSOSΥ ]T =[ℜ(L( jω)κ( jω)Cs ( jω)) −ℑ(ωκ( jω)CR ( jω))
]T

.
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Suppose that the reset instants have the well-posedness property and −1 < γ < 1. Then,
with this definition of NSV the zero equilibrium of the reset control system (4.8) with
SOSRE is globally uniformly asymptotically stable when w = 0, and the system has the
UBIBS property for any input w which is a Bohl function if all of the following conditions
are satisfied.

• The base linear system is stable and the open-loop transfer function does not have
any pole-zero cancellation.

• The reset control system (4.8) is either of Type I and/or of Type II.

Proof. Let β′ = −β. The transfer function (4.10) with C0 as in (4.15) can be rewritten as
(see also Figure. 4.5, transfer function from r1 to y1 with %2 = 0)

H(s) = β′L(s)Cs (s)+%sCR (s)

1+L(s)
. (4.60)

Step 1 and Step 4 of the proof of Theorem 4 are repeated with small modifications. When
the open-loop system has poles at the origin

lim
ω→0

ℜ(H( jω)) = Ks0β
′ > 0. (4.61)

In the case of SOSRE one has n −m ≥ 3. Consequently,

lim
ω→∞ω

2ℜ(H( jω)) = 2%ξωr > 0, (4.62)

and the proof is complete.

Note that it is impossible to satisfy Assumption 3 for this configuration. Thus, the
reset instants must have the well-posedness property.

4.5. ILLUSTRATIVE EXAMPLES
In this section two examples showing how the proposed methods can be used to study
stability properties of reset control systems are presented. In particular, stability prop-
erties of a precision positioning system [17] (knows as a spider stage) controlled by a
reset controller are considered. In this system (see Figure. 4.6), three actuators are angu-
larly spaced to actuate three masses (labeled as B1, B2, and B3) which are constrained
by parallel flexures and connected to the central mass D through leaf flexures. Only one
of the actuators (A1) is considered and used for controlling the position of the mass B1
attached to the same actuator, which results in a SISO system. For using these stability
methods the FRF measurement of the plant (Figure. 4.7) is needed. In [17] a non linear
phase compensator, which is termed “Constant in gain Lead in phase" (CgLp) (for more
detail see [15, 17, 43]), has been used to improve the performance of this precision po-
sitioning stage. CgLp compensators, consisting of a first/second order lead filter and a
GFORE/GSORE, have been utilized along with a PID controller to enhance the precision
of the system. In the following, stability properties of two CgLp+PID controllers, one of
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Figure 4.6: Spider stage
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Figure 4.7: FRF measurement of Spyder stage

which has GSORE and the other has SOSRE, are assessed with the proposed methods.
The general structure of the controller is

C (s) = Kp

GSORE︷ ︸︸ ︷
��

���
���:

Aρ1

s2 +2ξωr s +ω2
r


Lead︷ ︸︸ ︷(

s2 +2ξdωd s +ω2
d

s2 +20ωc +100ω2
c

)
︸ ︷︷ ︸

CgLp

PI︷ ︸︸ ︷(
1+ ωc

10s

) Lead︷ ︸︸ ︷( 3s
ωc

+1
s

3ωc
+1

)
︸ ︷︷ ︸

PID

, (4.63)

in which ωc is the cross-over frequency and Kp , γ, ωd , ωr , ξ, and ξd are tuning param-
eters. The PID part is tuned on the basis of [44, 45] and the CgLp part is tuned on the
basis of [17, 22, 46], and Kp is set so thatωc = 200π, considering the Describing Function
(DF) method [17]. In addition, no shaping filter is used for modifying the performance
of the reset controller (i.e. Cs (s) = 1). Note that the tuning of the CgLp compensator is
not within the scope of this paper, and we only discuss how to assess stability properties
of reset control systems with these compensators.
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Remark 10. Suppose that the Hβ condition is/is not satisfied for the reset control sys-
tem (4.8) with Cs (s), CL1 (s), CL2 (s), CR (s), G(s), and Aρ . Then the Hβ condition is/is not
satisfied for the reset control system (4.8) with Cs (s), C ′

L1
(s), C ′

L2
(s), CR (s), G ′(s), and Aρ if

C ′
L1

(s)C ′
L2

(s)G ′(s) =CL1 (s)CL2 (s)G(s) and G ′(s) is strictly proper. In other words, the “po-
sition" of the reset element does not change in the Hβ condition. However, the “position"
of the reset element has effects on the performance of the reset control systems [26] (see
Appendix B). In the two following examples, the sequence of control filters is such that
the tracking error is the input of the reset element and other linear parts following in
series.

4.5.1. A RESET CONTROL SYSTEM WITH GSORE
In the case of GSORE, the control parameters are γ1 = γ2 = 0.5, ωr = 800π, ωd = 720π,
Kp = 8.5273e7, and ξ = ξd = 1. Since the controller has a pole at the origin, we use Def-
inition 14 to assess stability properties of this reset control system. Using Proposition 1

yields 340 < Q2

Q1
< 5057 and 1132 < Q3

Q4
for S1 and S2, respectively. Thus, we have to solve

the optimization problem

M = min
Q1,Q2,Q3,Q4

G1(Q1,Q2,Q3,Q4)

S1 : ∀ω ∈ (0,∞) : f1(Q1,Q2,1,ω) > 0

S2 : ∀ω ∈ (0,∞) : f2(Q3,Q4,1,ω) > 0

S3 :
1600π

Q1
+ Q2

Q1Q4
+ 2

Q1

√
1600πQ2

Q4
−Q2 > 1

S4 :
1600π

Q1
+ Q2

Q1Q4
− 2

Q1

√
1600πQ2

Q4
−Q2 < 1

S5 :
640000π2Q1

Q2
+1600π

(
1+2

√
1600πQ1

Q2
−1

)
> Q3

Q4

S6 :
640000π2Q1

Q2
+1600π

(
1−2

√
1600πQ1

Q2
−1

)
< Q3

Q4

S7 : Qi > 0, 1600π>Q4, 1600π< Q2

Q1
< 5057, 1132 < Q3

Q4
,

Q1Q3

Q2Q4
> 1,

(4.64)

This optimization problem is solved using Genetic Algorithm and Proposition 1. The
optimal solution is Q1 = 13172, Q2 = 12001144, Q3 = 8113151, and Q4 = 1055, yielding
M = 3.5. Furthermore, (Ā,C0) is observable and (Ā,B0) is controllable. Hence, the reset
control system is of Type III and using Theorem 5 this GSORE has the UBIBS property for

Aρ = γI , −1 < γ < 1. Furthermore, since
Q1Q3

Q2Q4
> Γ(−0.5,0.5) and

Q1Q3

Q2Q4
> Γ(0.5,−0.5),

Theorem 5 holds for the considered closed-loop system with Aρ =
[

0.5 0
0 −0.5

]
or Aρ =[−0.5 0

0 0.5

]
. In Figure. 4.8 the step responses of the closed-loop Spider stage (Figure. 4.6)
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Figure 4.8: Step response of the closed-loop system with designed GSORE for different values of γi

with the designed controller for different values of γi are displayed. As it can be ob-
served, the values of γi have effect on the performance of the system. In the sense of
transient response, the reset controller with γ1 = γ2 = 0.5 has better performance among
other configurations (for more detail see [17, 22]).

4.5.2. A RESET CONTROL SYSTEM WITH SOSRE
In the case in which the controller is a SOSRE the control parameters are −1 < γ < 1,
ωr = 150π, ωd = 96π, Kp = 1.135e6, and ξ = ξd = 1. Since the controller has a pole at
the origin, we use Definition 12 with the NSV defined in Corollary 11 to assess stability
properties. The phase of the NSV for this example is shown in Figure. 4.9. Since the

phase of the NSV for this example is between (−π
2

,π) and the difference between its

maximum and its minimum is less than π, by Remark 6 the reset control system is of
Type I. Moreover, the time regularization technique (to prevent successive reset instants,
i.e. if the reset happened at one sample time before, the system does not reset) is used
to guarantee the well-posedness property. Consequently, by Corollary 11 the designed
SOSRE yields a closed-loop system which has the UBIBS property. The step responses of
the closed-loop Spider stage (Figure. 4.6) with the designed controller for different values
of γ are shown in Figure. 4.10. In the sense of transient response, reset control system
with γ= 0.5 has better performance among other controllers. For deeper insights on the
performance of closed-loop reset control systems with SOSRE see [22, 46].

4.6. CONCLUSION
In this paper a novel frequency-domain approach based on the Hβ condition for assess-
ing stability properties of reset control systems has been proposed. This method can
be used to determine stability properties of control systems with first and second order
reset elements using FRF measurements of their base linear open-loop system. Conse-
quently, the methods do not need an accurate parametric model of the system and the
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Figure 4.10: Step response of the closed-loop system with designed SOSRE for different values of γ

solution of LMIs. In addition, these methods are applicable to the case in which partial
reset techniques are used. The effectiveness of the proposed methods have been illus-
trated with a practical example.

4.A. PROOF OF LEMMA 5
It has been shown in [2] that when Aρ = 0, Cs (s) = 1, Assumption 3 holds, and the Hβ

condition is satisfied, the reset control system has the UBIBS property. In what follows,
we provide a slight modification of the proof in [2] to deal with the case Aρ 6= 0. The base
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linear dynamic of the reset control system is given by{
ẋl (t ) = Āxl (t )+ B̄ w(t ),

yl (t ) = C̄ xl (t ),
(4.65)

where xl (t ) = [xrl (t )T ζl (t )T ]T ∈ Rnp+nr . Denoting z(t ) : x(t )− xl (t ) = [zp (t )T zr (t )T ]T ,
yields {

ż(t ) = Āz(t ), e(t ) 6= 0,

z(t+) = Āρz(t )+ (Āρ − I )xl (t ), e(t ) = 0.
(4.66)

According to [2], it is sufficient to show that z(t ) is bounded. Since the Hβ condition is
satisfied, there exists a matrix P = P T > 0 such that

P =
[

P1 (βC̄e )T

βC̄e %

]
, P1 = P T

1 > 0. (4.67)

Consider now the quadratic Lyapunov function V (t ) = z(t )T P z(t ). Using the same pro-
cedure as in [2] yields

V (t ) ≤ e−ε(t−ti )V (ti ), t ∈ (ti , ti+1], ε> 0, (4.68)

and

V (t+i ) =V (ti )+xT
r (ti )(AT

ρ %Aρ −%)xr (ti )+2(AT
ρ − I )xT

r (ti )βC̄e zp (ti )−2xT
r (ti )AT

ρ %xrl (ti ),
(4.69)

in which ti are the reset instants. Now, let the maximum eigenvalue of AT
ρ %Aρ −% be

λmax and note that λmax < 0 since AT
ρ %Aρ −%< 0. As a result

V (t+i ) ≤V (ti )−|λmax|xT
r (ti )xr (ti )+2(AT

ρ − I )xT
r (ti )βC̄e zp (ti )−2xT

r (ti )AT
ρ %xrl (ti ),

V (t+i ) ≤V (ti )+2‖xr (ti )‖(||AT
ρ − I ||∥∥βC̄e zp (ti )

∥∥+||Aρ%xrl (ti )||).
(4.70)

At the reset instants |C̄e zp (ti )| ≤ |De r (t )| which implies that |C̄e zp (ti )| is bounded. More-
over, since the base linear system is stable, xrl (ti ) is bounded. Assume now that xr (ti )
is unbounded. By (4.68) and (4.70), we conclude that lim

i→∞
V (ti ) = 0. This is a contra-

diction because z(t ) = 0 ⇒ x(t ) = xl (t ) which implies that the system is a stable linear
system with bounded state. Therefore, xr (ti ) is bounded. Now, we prove that ẋr (ti ) is
bounded. If reset happens when the input of the reset element is zero (i.e. Cs (s) = 1) and
Assumption 3 holds, then

d xr (t )

d t

∣∣∣
t=t−i

= Ar

(
e Ar (ti−ti−1)xr (ti−1)+

∫ ti

ti−1

e Ar (ti−τ)Br e(τ)dτ

)
= Ar xr (ti ) ⇒ ∣∣ẋr (t−i )

∣∣= |Ar xr (ti )|.
(4.71)

Thus, since |xr (ti )| is bounded,
∣∣ẋr (t−i )

∣∣ is bounded. As a result, since |xr (t+i−1)| ≤
|Aρ ||xr (ti−1)|, |xr (ti )| and

∣∣ẋr (t−i )
∣∣ are bounded,

∃ K1 > 0, α> 0 such that |xr (ti )| ≤ K1
(
1−eα(ti−ti−1)) , ∀ ti . (4.72)
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Figure 4.11: The block diagram of Hβ condition for the modified architecture Figure. 4.4 with GFORE or PCI

Now assume that there exist ti and ti−1 such that for any ε> 0, ti−ti−1 < ε. Thus, by (4.72)
and for sufficient small ε, xr (ti ) → 0. This is a contradiction because (I − Āρ)xr (ti ) → 0
which means that ti is not a reset instant. Thus, there exists λ> 0 such that, for all k ∈N,
λ ≤ tk+1 − tk . Therefore, the reset instants have the the well-posedness property (see
Definition 10).
In the case in which Cs = 1 or Assumption 3 does not hold, (4.71) can not be concluded.
However, if the well-posedness property of the reset instants holds, then there exists
λ > 0 such that, for all k ∈ N, λ ≤ tk+1 − tk . In addition, since |xr (t+i−1)| ≤ |Aρ ||xr (ti−1)|
and |xr (ti )| are bounded, we conclude (4.72). Since the system has the well-posedness
property, the reset control system (4.8) has an unique well-defined solution for any ini-
tial condition x0 and any input w which is a Bohl function [39]. The rest of the proof is
the same as the proof in [2].

4.B. PROOF OF COROLLARY 9

Let β′ = −β and %′ = %

Cr
. By the proof of the Hβ condition in [2] the transfer func-

tion (4.10) for the configuration shown in Figure. 4.4) can be rewritten as (see also Fig-
ure. 4.11)

H(s) =
β′ L′(s)

Cs (s)
+%′CR (s)

1+L′(s)
. (4.73)

Let CL1 (s)CL2 (s)CR (s)G(s) = km sm +km−1sm−1 + ...+k0

sn +k ′
n−1sn−1 + ...+k ′

0

. Using the NSV defined in (4.35),

one could repeat Steps 1 to 4 of the proof of Theorem 4. Note that Ks0β
′ in (4.20)-(4.24)

and (4.28) has to be replaced by
β′

Ks0

and Kn has also to be replaced by kn in (4.25).

4.C. PROOF OF PROPOSITION 1
Consider Q1F1(ω)+Q2F2(ω) as the scalar product of the two vectors

#»F (ω) and
#»Q. Thus,

for all ω ∈R+, the condition (4.33) can be re-written as√
Q2

1 +Q2
2

√
F2

1 (ω)+F2
2 (ω)cos(ϑ) >F3(ω). (4.74)
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CR1

u(t )

CR2

y1(t )

y2(t )

Figure 4.12: Two reset controllers CR1 and CR2 with different realization configurations

As a result, when F3(ω) ≥ 0, cos(ϑ) must be positive and√
Q2

1 +Q2
2 > max

ω∈ωp

F3(ω)

cos(ϑ)
√
F2

1 (ω)+F2
2 (ω)

= η1(
Q2

Q1
). (4.75)

Positivity of cos(ϑ) implies
Q2

Q1
∈ gp . When F3(ω) < 0, there are two solutions for condi-

tion (4.74). cos(ϑ) ≥ 0 which requiers
Q2

Q1
∈ gN , or

√
Q2

1 +Q2
2 < min

ω∈ωN

F3(ω)

cos(ϑ)
√
F2

1 (ω)+F2
2 (ω)

= η2(
Q2

Q1
). (4.76)

Therefore, by (4.75) and (4.76) η2(
Q2

Q1
) > η1(

Q2

Q1
) and the proof is complete.

4.D. PROOF OF COROLLARY 10
First, a preliminary result is stated and proved.

Lemma 6. Consider the reset controllers CR1 and CR2 shown in Figure. 4.12. Suppose CR1

and CR2 have the same base linear system, are strictly proper, and have different state-
space realizations. Then if Aρ = γI and their initial conditions are zero, y1(t ) = y2(t ), for
t ≥ 0.

Proof. Let Ar1 , Br1 , and Cr1 be the state-space realization of CR1 (s) and Ar2 , Br2 , and Cr2

be the state-space realization of CR2 (s). Since the base transfer function of CR1 (s) and
CR2 (s) are the same,

Cr1

∫ t

t0

e Ar1 (t−τ)Br1 u(τ)dτ=Cr2

∫ t

t0

e Ar2 (t−τ)Br2 u(τ)dτ. (4.77)

Let tk , k ∈N, be the reset instants of CR1 and CR2 . Since the initial condition is zero,

y1(t ) =Cr1

(∫ t

tk

e Ar1 (t−τ)Br1 u(τ)dτ+γ
∫ tk

tk−1

e Ar1 (t−τ)Br1 u(τ)dτ+·· ·+γk
∫ t1

t0

e Ar1 (t−τ)Br1 u(τ)dτ

)
,

(4.78)

y2(t ) =Cr2

(∫ t

tk

e Ar2 (t−τ)Br2 u(τ)dτ+γ
∫ tk

tk−1

e Ar2 (t−τ)Br2 u(τ)dτ+·· ·+γk
∫ t1

t0

e Ar2 (t−τ)Br2 u(τ)dτ

)
.

(4.79)
As a result, y1(t ) = y2(t ), for all t ≥ 0 by (4.77).
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The corollary is now proved. Using Lemma 6, since the initial condition of the re-
set part are zero and Aρ = γI , the states ζ(t ) are the same for different state-space real-
izations of CR (s) of the reset control system (4.8). Thus, since Theorem 5 holds for the
reset control system (4.8) with GSORE (4.5) with the controllable realization (4.6), ζ(t ),
which contains u1(t ) and ur (t ), is also bounded in the reset control system (4.8) with
GSORE (4.5) with realization configurations (4.58) and (4.59). Therefore, it is just needed
to show that the reset state xr (t ) is bounded. Consider the reset controller (4.1). Now
assume that xr (t ) is unbounded, since u1(t ) is bounded and by state-space realization
(4.58) and (4.59), ur (t ) becomes unbounded which is a contradiction. Therefore, xr (t )
must be bounded and the proof is complete.
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5
A FREQUENCY-DOMAIN TUNING

METHOD FOR CGLP

COMPENSATORS

Ali AHMADI DASTJERDI

In this chapter, the frequency-domain framework and the frequency-domain stability
method, which are described in previous chapters, are utilized based on the loop-shaping
approach to provide a reliable frequency-domain tuning method for CgLp compensators.
Furthermore, different performance metrics of a CgLp compensator, which is tuned by the
proposed method, are compared with those of a PID controller on a precision positioning
stage. The results show that this method is effective, and the tuned CgLp can achieve more
favourable dynamic performance than the PID controller for the precision motion stage.
It is observed that the precision of the system is improved by 60% without devastating the
transient response of the system (throughput). In addition, by calculating the integral of
the sensitivity numerically, it has been shown that the “water-bed" effect is broken using
the CgLp compensator.

This chapter has been published in IEEE-Access (2021 [1]).
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5.1. INTRODUCTION

P ROPORTIONAL Integral Derivative (PID) controllers have been used in the industry
for several decades. However, since they suffer from fundamental limitations such

as "water-bed" effect, satisfying the ever-increasing demands for high precision and ac-
curacy operations calls for a better alternative [2–4]. Among non-linear controllers, it has
been widely demonstrated that reset controllers have prospects to reduce the limitation
of linear control systems [5–17].

The first reset element, which is Clegg Integrator (CI), was introduced by Clegg in
1958 [8]. CI is an integrator which resets its state to zero when its input crosses zero. Next,
to have more design freedom and applicability, First Order Reset Element (FORE) [5,
18, 19] and Second Order Reset Element (SORE) have been proposed [12, 18]. Besides,
to enhance the performance of reset control systems, several techniques such as reset
band [20, 21], fixed reset instants [22], Partial Reset, and PI+CI approaches [23] have
been studied.

Considering only the first harmonic of the steady-state output of reset elements (De-
scribing Function (DF) analysis [24]) reveals that reset elements provide less lag phase
in comparison with their base linear structures. Based on this phase advantage, several
new phase compensators have been proposed [6, 18, 25–27]. One of these novel reset
compensators is “Constant in gain Lead in phase" (CgLp) which has a constant gain
with a phase lead considering DF [6, 18, 26]. As a consequence of replacing derivative
part in PID by CgLp [18, 26], the open-loop of the system gets higher gains at low fre-
quencies and lower gains at high frequencies which leads to enhance the closed-loop
performance of the system.

There are few studies which investigate tuning of CgLp compensators [18, 26, 28, 29].
In those studies, CgLp is mainly tuned to achieve a specific amount of phase lead at
the cross-over frequency considering the DF method. In addition, the High Order Sinu-
soidal Input Describing Function (HOSIDF) method is used in some of those studies to
increase the accuracy of their approaches. However, these methods have several signif-
icant drawbacks which make them unreliable. First and foremost, the condition for the
existence of the steady-state performance of the closed-loop, which is essential for rely-
ing on the closed-loop performance prediction, has not been checked. Second, the DF
method, which is conventionally used for tuning, can not precisely predict the closed-
loop performance even considering the open-loop high order harmonics of reset control
systems [30–39]. Finally, stability could only be assessed after the tuning process. Hence,
obtaining a reliable frequency-domain tuning method for CgLp compensators that han-
dles these challenges is still an important open question.

Recently, the sufficient condition for the existence of the steady-state response of
the closed-loop reset control systems has been given in Chapter 3. Also, in that work,
pseudo-sensitivities for reset control systems are defined which combine high order har-
monics to well predict the closed-loop steady-state performance of reset control sys-
tems. Furthermore, a frequency-domain method for assessing the stability of reset con-
trol systems has been proposed which allows for determining the stability during the
tuning process (see Chapter 5).

The contributions of this paper to tune CgLp elements are:

• Based on the loop-shaping approach, we utilize the pseudo-sensitivities (see Chap-
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ter 3) and the frequency-domain stability method (see Chapter 5) to provide a re-
liable frequency-domain tuning method for CgLp compensators.

• To show the effectiveness of the proposed tuning method, a CgLp compensator is
tuned and implemented on a high-tech precision positioning stage. Furthermore,
the paper delves deeper into the precision position stage performance metrics,
like disturbance rejection, noise rejection, tracking performance, obtained using
the CgLp compensator.

• Although it is not proven theoretically, we practically show that “water-bed" effect
is beaten for this application.

In the remainder of this paper, an overview of CgLp compensators is presented in Sec-
tion 5.2. In Section 5.3, the frequency-domain tuning procedure is elaborated. In Sec-
tion 5.4, the tuned CgLp is applied to the precision positioning stage, and its perfor-
mance is compared with a PID controller. Conclusions are provided in Section 5.5.

5.2. OVERVIEW OF CGLP COMPENSATORS

I N this section, frequency-domain descriptions of reset elements, CgLp compensators,
the Hβ condition, pseudo-sensitivities, and effects of the sequence of filters of reset

control systems on the performance of systems are briefly recalled.

5.2.1. FREQUENCY-DOMAIN DESCRIPTIONS FOR RESET ELEMENTS
The state-space representation of reset elements is,

ẋr (t ) = Ar xr (t )+Br e(t ), e(t ) 6= 0,

xr (t+) = Aρx(t ), e(t ) = 0,

ur (t ) =Cr x(t )+Dr r (t ),

(5.1)

where Ar , Br , Cr , and Dr are the dynamic matrices of the base linear system of the reset
element, e(t ) and ur (t ) are the input and control input, respectively. States’ values after
reset action are determined by the resetting matrix Aρ . In the case of Generalized First
Order Reset Element (GFORE), Aρ = γ while in the case of Generalized Second Order
Reset Element (GSORE), Aρ = γI , with −1 < γ < 1 [18]. Note that the transfer function
Cr (sI − Ar )−1Br +Dr is called the base linear transfer function of the reset element.

Similar to other non-linear controllers, the DF analysis is popularly used in literature
to study frequency-domain behaviour of reset elements. To have a well-defined steady-
state response for a sinusoidal reference input r (t ) = a0 sin(ωt ), it is assumed that Ar

has all eigenvalues with a negative real part and Aρ has all eigenvalues with a magnitude
smaller than one [7]. The sinusoidal input DF of reset elements (5.1) is given in [7] as

Nr ( jω) =Cr
(

jωI − Ar
)−1 Br

(
I + jΘ(ω)

)+Dr , (5.2)

in whichΘ is

Θ(ω) = −2ω2

π
(I +e

πAr
ω )

(
(I + Aρe

πAr
ω )−1 Aρ(I +e

πAr
ω )− I

)
(ω2I + A2

r )−1. (5.3)
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In [30], the DF method is extended to HOSIDF method in which a non-linear controller
is considered as a virtual harmonic generator, and HOSIDF is defined as

Hn( jω) = an(ω)e jϕn (a0,ω)

a0
, (5.4)

where an and ϕn are the nth component of the Fourier series expansion of the steady-
state output of the controller for a sinusoidal input. HOSIDF of reset elements in the
open-loop configuration is provided in [33] as

Hn( jω) =


Cr ( jωI − Ar )−1(I + jΘ(ω))Br +Dr , n = 1,

Cr ( j nωI − Ar )−1 jΘ(ω)Br , n > 1 odd,

0, n even,

(5.5)

where n is the order of harmonics.

5.2.2. CGLP COMPENSATOR
A CgLp compensator (5.6) is constructed utilizing a GFORE or a GSORE with the series
combination of a corresponding order of a lead filter. Considering the DF analysis, this
compensator has a constant gain with a lead phase (Figure. 5.1) [6, 18, 40]. In this paper,
without loss of generality, we consider the first order CgLp which is

CC g Lp (s) =


�
�
��>

Aρ

1
s

ωrα
+1

( s
ωr

+1
s
ωt

+1

)
, (5.6)

where ωr is the corner frequency of DF of the reset element, Aρ = γ is the reset matrix

((��>
Aρ

• ) denotes the controller resets with the reset matrix Aρ), and ωd and ωt are the cor-
ner frequency of the lead filter. To provide a constant gain, ωrα = ωr /α, where α is a
correction factor which is provided in Table 5.1, and ωt Àωr .
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Figure 5.1: The DF of a CgLp compensator
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Table 5.1: Correction factor α of first order CgLp [18]

γ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α 16.71 8.19 5.26 3.85 3.01 2.47 2.09 1.81 1.60 1.44 1.32 1.23 1.16 1.11 1.07 1.04 1.02 1.01 1.0

5.2.3. Hβ CONDITION
There exist several approaches to determine the stability of reset control systems [9,
23, 41–47]. Among these methods, the Hβ condition method [23, 45] received a lot of
attention due to its simplicity and its frequency-domain applicability. In Chapter 5, a
method is proposed to test the Hβ condition using the frequency response of the plant
directly. Let L( jω) and CR( jω) be the frequency response of the base linear system of
the open-loop and of the reset element, respectively. Then, the Nyquist Stability Vector
(NSV=

#»N (ω) ∈R2), for all ω ∈R+, is
#»N (ω) = [Nχ NΥ]T in which

Nχ =
∣∣∣∣L( jω)+ 1

2

∣∣∣∣2

− 1

4
, NΥ =ℜ(L( jω) ·CR( jω))+ℜ(CR( jω)).

Now, considering θ1 = min
ω∈R+

#»N (ω) and θ2 = max
ω∈R+

#»N (ω), the Hβ condition can be exam-

ined by the following theorem, which is provided in Chapter 5.

Theorem 6. Suppose −1 < γ ≤ 1. Then, the Hβ condition for a reset control system is
satisfied and its response is uniformly bounded-input bounded-state (UBIBS) stable for
any bounded input if(

−π
2
< θ1 <π

)
∧

(
−π

2
< θ2 <π

)
∧ (θ2 −θ1 <π). (5.7)

5.2.4. PSEUDO-SENSITIVITIES FOR RESET CONTROL SYSTEMS
For Linear Time Invariant (LTI) systems, the tracking error and required control action
are calculated by sensitivity transfer functions. Although reset control systems may be
analyzed using the DF method in the closed-loop, this yields an approximation which
is not precise due to the existence of high order harmonics. In order to analyze reset
control systems more accurately, pseudo-sensitivity functions for a sinusoidal reference
r (t ) = r0 sin(ωt ) are defined in Chapter 3 to combine all high order harmonics to a sin-
gle function. To this end, the sufficient condition for the existence of the steady-state
solution is asserted in Chapter 3.

Theorem 7. A closed-loop reset control system has a well-defined steady-state solution for
any Bohl function input if the Hβ condition is satisfied and reset instants have the well-
posedness property (see Chapter 3).

Also, the tracking error and control input of a reset control system for r (t ) = sin(ωt )
is a periodic function with the period of 2π/ω if the Hβ condition is satisfied. Therefore,
from the precision viewpoint, the pseudo-sensitivity can be defined as the ratio of the
maximum error of the reset control system with r (t ) = r0 sin(ωt ) to the amplitude of the
reference at each frequency.

Definition 17. Pseudo-sensitivity S∞

∀ω ∈R+ : S∞( jω) = emax(ω)e jϕmax ,
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where

emax(ω) =
 max

tss0≤t≤tssm

(r (t )− y(t ))

r0

= sin(ωtmax)− y(tmax)

r0
, ϕmax = π

2
−ωtmax ,

y(t ) is the steady-state response of the closed-loop reset control system, and tss0 and
tssm = tss0 +2π/ω are the steady-state reset instants of the closed-loop reset control sys-
tem (e(tss0 ) = e(tssm ) = 0). Similarly, pseudo-control sensitivity C S∞( jω) (transfer func-
tion from reference to control input), pseudo-complementary sensitivity T∞( jω) (trans-
fer function from reference to output of the system), and pseudo-process sensitivity
PS∞( jω) (transfer function from disturbance to error of the system) are defined in Chap-
ter 3.

5.2.5. SEQUENCE OF RESET ELEMENTS
Unlike linear controllers, the sequence of filters of reset control systems affects the per-
formance of reset control systems, which is investigated in Appendix B. It is revealed
that if the sequence of the control parts is lead elements of the linear controller, reset
element, and lag elements of the linear controller, then, the system has a better track-
ing performance in some frequencies than other sequences. Also, using this sequence,
the reset control system has an over-damp step response, and its rise time is increased
(also seen in [48]). However, the performance of the system is drastically hampered in
this sequence if the signal to noise ratio is low. To solve this issue, a shaping filter Cs is
used to roll-off the noise from the reset instants of the reset control system as shown in
Figure. 5.2.

CR(s)
Cs

e(t )

eR (t )

Figure 5.2: Structure of the shaping filter

The transfer function of the shaping filter is described in Appendix B as

Cs =
(

1

1+ s
2ωc

)(
1+ 1.62s

ωc

1+ s
1.62ωc

)
, (5.8)

in which ωc is the cross-over frequency of the open-loop considering the DF method.
In this research, we use the traditional configuration, in which the tracking error is the
input of the reset element. Also, we will analyze the performance of different sequences
of filters of a reset control systems experimentally.

5.3. TUNING PROCEDURE

I N this section, the pseudo-sensitivities and the frequency-domain stability method
are utilized based on the loop-shaping approach [49–57] to provide an appropriate
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frequency-domain tuning method for CgLp compensators. The structure of the con-
troller CR is CgLp.PID as

CR = Kp

FORE︷ ︸︸ ︷
�
�
�
��
γ

1
αs

ωr
+1


Lead1︷ ︸︸ ︷
s

ωr
+1

s

ωt
+1


︸ ︷︷ ︸

CgLp

PI︷ ︸︸ ︷(
1+ ωi

s

)
Lead2︷ ︸︸ ︷
s

ωd
+1

s

ω f
+1


︸ ︷︷ ︸

PID

, (5.9)

in which set (Kp , ωr , γ, ωd , ωt , ω f , ωi ) is the tuning parameter set, and α is provided in
Table 5.1. Following the loop-shaping method described in [49], to have an acceptable
rise time, control effort level, tracking performance, and disturbance and noise rejection
capabilities, four frequency-domain inequality constraints (Figure. 5.3)

|T∞( jω)|≤|Tu(ω)|, (5.10)

|S∞( jω)|≤|Su(ω)|, (5.11)

|C S∞( jω)|≤|C Su(ω)|, (5.12)

|PS∞( jω)|≤|PSu(ω)|, (5.13)

have to be fulfilled, for all ω ∈R+.
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Figure 5.3: Loop-shaping constraints

As shown in Figure. 5.3a, Su( jω) restrains the lowest value of the cross-over fre-
quency, limits the magnitude of the peak of sensitivity, and guarantees an acceptable

tracking performance. Tu( jω) (Figure. 5.3b) limits the effect of noise on the performance
of the system. Moreover, PSu( jω) (Figure. 5.3c) places a limit on the effects of the dis-
turbance on the system performance, and C Su( jω) (Figure. 5.3d) confines the control
effort level. Besides, to assure stability and be allowed to use pseudo-sensitivities, the
tuning parameter set has to satisfy the conditions of Theorem 6. Furthermore, to make
the controller robust against gain variations (iso-damping), the tuning parameter set is
selected such that

d( NC g Lp ( jω)PID( jω)G( jω))

dω

∣∣∣
ω=ωc

= 0, (5.14)

in which

NC g Lp ( jω) =Nr ( jω)


jω

ωr
+1

jω

ωt
+1

 , (5.15)
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and ωc is obtained by
|NC g Lp ( jωc )PID( jωc )G( jωc )| = 1. (5.16)

All in all, the considered constraints for tuning the control structure (5.9) are summa-
rized as:

( I ) The Hβ condition: Equation (5.7) and −1 < γ≤ 1

( II ) Iso-damping Behaviour: Equation (5.14)

(III) Loop-shaping constraints: Equations (5.10)-(5.13)

Now, it is needed to define a suitable cost function to accomplish the tuning proce-
dure of the control structure (5.9). According to [49], to have a more favourable track-

ing performance in the interested region of frequencies, the following cost function is
obtained.

J = max
ω≤ωl

∣∣∣S∞( jω)

ω

∣∣∣
dB

, (5.17)

where ωl ≤ωc determines the interested region of frequencies over which the reset con-
trol system is expected to track references and reject disturbances.

5.3.1. SOLVING THE OPTIMIZATION PROBLEM
For simplicity, the control structure (5.9) is re-written as

CR(s) = Kp

FORE︷ ︸︸ ︷
�
�
�
���

γ

1
αχ1s

ωc
+1


Lead1︷ ︸︸ ︷
χ1s

ωc
+1

s

χ2ωc
+1


︸ ︷︷ ︸

CgLp

PI︷ ︸︸ ︷(
1+ ωc

χ3s

)
Lead2︷ ︸︸ ︷
χ4s

ωc
+1

s

χ5ωc
+1


︸ ︷︷ ︸

PID

, (5.18)

in which χi > 0 and −1 < γ ≤ 1. In addition, limits for ωc is found based on Su( jω)
and Tu( jω). Here, we use Genetic Algorithm (GA) method for solving this optimization
problem. To speed up the process, we propose the following procedure:

• For each potential solution (ωc ,γ,χ1,χ2,χ3,χ4,χ5) produced by GA, α and Kp are
obtained by γ (Table 5.1) and (5.16), respectively.

• Check constraint (I), (II), and (III) in tandem to reduce computational efforts.

• If all constraints are satisfied, calculate J (5.18).

• Continue until the stop criterion of GA method are satisfied.

PROVIDE AN APPROPRIATE INITIAL GUESS

Here, we provide a method to obtain an appropriate initial guess for the GA method. To
this end, we suggest using a grid search method to explore an appropriate feasible solu-
tion. First, provide a wide range forχi considering Su( jω), Tu( jω), PSu( jω), and stability
of the base linear of the system. Suppose we obtain vectors lB and uB which set the lower
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and higher limits for the tuning parameter set (i.e. lB < [ωc γ χ1 χ2 χ3 χ4 χ5]T < uB ).
Then, with a small resolution, we grid the parameters and provide a parameter space.
Now, we check constraints (I)-(III) in tandem for every point in this space, and eliminate
the points which do not satisfy the constraints. Finally, suppose there are N parame-
ter sets which satisfy the aforementioned constraints, then the parameter set with the
minimum J value is selected as the initial guess for the optimization problem proposed
in Section 5.3.1. Since the performance of the controller is not so sensitive to a small
change of the tuning set parameter, it is highly possible that this initial guess does not
have far distance from the final solution of the GA method.

5.4. APPLICATION TO A PRECISION MOTION STAGE

T O show the effectiveness of the proposed tuning method, a precision positioning
stage (Figure. 5.4), which is termed "Spider", is considered as a benchmark. In this

system, three actuators are angularly spaced to actuate three masses (labelled by B1, B2,
and B3) which are constrained by parallel flexures and connected to the central mass
D through leaf flexures. Only one of the actuators (A1) is considered and used for con-
trolling the position of mass B1 attached to the same actuator which results in a SISO
system. A linear power amplifier is utilized to drive the Lorentz actuator, and Mercury
M2000 linear encoder is used to obtain position feedback with the resolution of 0.1 µm.

ComputerCompactRIOIsolator Table

3 DOF Stage
Power Supply

Amplifier

Sensor Power

B3

A3
C1

A2

A1

B2

B1

D

Figure 5.4: The whole setup including computer, CompactRio, power supply, sensor power, amplifier, isolator,
sensor and, stage

The identified frequency response data of the system is shown in Figure. 5.5.
As illustrated in Figure. 5.5, although the plant is a collocated double mass-spring

system, the identified frequency response data is well approximated by a mass-spring-
damper system via the transfer function

G(s) ≈ K e−τs

s2

ω2
r
+ 2ζs

ωr
+1

= 1.14e−0.00014s

s2

7627 + 0.05s
87.3 +1

. (5.19)

Note that to use relations provided in Chapter 3, the time delay (e−0.00014s ) is approx-
imated by the first order Pade method [58] as (−s + 14400)/(s + 14400). To provide an
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Figure 5.5: Identification of the stage

acceptable closed-loop performance for the positioning stage, without loss of generality,
we consider similar constraints as in [49]:

Tu(ω) =


5 dB, ω≤ 200π,(

850

ω

)2

, ω> 200π,
Su(ω) =


ω

300
, ω≤ 160π,

4.5 dB, ω> 160π,

PSu(ω) =


ω

600
, ω≤ 30π,

−15 dB, ω> 30π,
and C Su(ω) = 60 dB. Figure 5.6 shows the frequency be-

haviour of Tu , Su , PSu , and C Su . Since the cut-off frequency of Tu and Su are 150 Hz and
50 Hz, respectively, ωc is limited to 50 Hz <ωc < 150 Hz. Moreover, we take ωl = 20π as
the maximum limit of the interest frequency region for tracking. Now, the control struc-
ture (5.9) is tuned based on the described method in Section 5.3. To simplify constraint
(II), according to phase plot of the stage (Figure. 5.5) and the variation range of ωc (50

Hz,150 Hz), we can approximate
d( G( jω))

dω

∣∣∣
ω=ωc

≈−τ. Therefore, constraint (II) can be

re-written as
d( NC g Lp ( jω)+ PID( jω))

dω

∣∣∣
ω=ωc

≈ τ= 0.00014. (5.20)

To this end, as described in Subsection 5.3.1, we consider a wide parameter range for
tuning parameters as [100π−1 1 2 2 2 2]T < [ωc γχ1 χ2 χ3 χ4 χ5]T < [300π 1 20 20 20 10 20]T

to find an appropriate initial guess for the GA method. The initial guess is obtained as
[190π 0.5 2 10.8 7.5 3.4 1.7]T . Then, the control structure (5.9) is tuned by the method
presented in Subsection 5.3.1. The tuned CgLp.PID controller is:

CR(s) = 17.05


�
�
�
��

0.3
1

s

86π
+1




s

100π
+1

s

1440π
+1

(
1+ 20π

s

)
s

66π
+1

s

300π
+1

 . (5.21)
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Figure 5.6: The DFs (._ DF) and pseudo-sensitivities (._ ∞) of the closed-loop of the system with the controllers
CR, and the closed-loop sensitivities of the system with the controller CPID

As predicted before, the optimum point is not so far from the initial guess. This happens
because the closed-loop performance is not so sensitive to a small change of the tuning
set parameter which implies that a grid search with a small resolution also can converge
to the optimum point.
In order to compare the performance of the tuned controller with a linear controller, a
PID structure is also tuned with the same method explained in Section 5.3. To have a fair
comparison, the structure of the PID controller is similar to the control structure (5.9) in
which FORE is replaced with a low-pass filter. Finally, the CPID is tuned as:

CPID = 7.28

 1
s

1480π
+1




s

105π
+1

s

360π
+1

(
1+ 46.5π

s

)
s

90π
+1

s

300π
+1

 . (5.22)

Figure 5.7 presents the open-loop frequency response of the system with controllers CPID

and the DF of the open-loop of the system with the controller CR. As it is observed, the
system with the controller CR has a higher cross-over frequency in comparison with the
one with the controller CPID. Moreover, the system with these controllers must indicate
iso-damping behaviour as a result of the flatness region around the cross-over frequency.



5

126 5. A FREQUENCY-DOMAIN TUNING METHOD FOR CGLP COMPENSATORS

-40

-20

0

20

40

60

M
a

g
n

it
u

d
e(

d
B

)

L
R

L
PID

10
0

10
1

10
2

10
3

Frequency (Hz)

-100

0

100

P
h

a
se

(°
)

L
R

L
PID

Iso-Damping

Figure 5.7: Open-loop frequency responses of the system with controllers CPID and CR

The closed-loop frequency responses of the systems with the controller CR includ-
ing the pseudo-sensitivities and the DF methods, and the closed-loop sensitivities of the
system with the controller CPID are also shown in Figure. 5.6. These frequency responses
are obtained utilizing the toolbox in [59]. As illustrated in Figure. 5.6a, the disturbance
rejection capability of the system with the controller CR is better than that of with the
controller CPID. Besides, the control input of the system with the controller CR is more
than the one with the controller CPID. This is explained by the fact that reset elements
produce jumps in their output signal and differentiation of jumps produces a large con-
trol input. Moreover, there are discrepancies between the results obtained by the DF
method and pseudo-sensitivities at certain frequency ranges which are due to the exis-
tence of high order harmonics. This implies that using pseudo-sensitivities for tuning
CgLp compensators is more reliable than using the DF method, particularly for preci-
sion motion applications.
As shown in Figure. 5.6c, the noise rejection capabilities of the system with these two
controllers are the same (the same roll-off at high frequencies). Furthermore, as shown
in Figure. 5.6d, the system with the controller CR has a better tracking performance than
that of with the controller CPID at frequencies less than 100Hz while the peak value of
the sensitivity of the system with the controller CR is less than that of with the controller
CPID.

5.4.1. BREAKING WATER-BED EFFECT
To recall, according to linear control theory,∫ ∞

0
Ln(|S( jω)|)dω= 0, (5.23)

for every stable linear control systems without RHP poles and zeros which has at least
two more poles than zeros. Thus, if the sensitivity amplitude is reduced by some control
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Figure 5.8: The magnitude of the integral of the sensitivity versus frequency

actions in a certain frequency range, then the sensitivity will increase in other frequency
ranges. We calculate this integral numerically for the system with both controllers CR

and CPID (Figure. 5.8). For the case of CR, this integral is calculated using the DF method
and pseudo-sensitivity. As observed in Figure. 5.8, the integral (5.23) for the system
with the controller CPID converges to zero as expected by linear control theory. Note
that, for linear systems with RHP poles and zeros, the water-bed effect situation is even
worse because integral (5.23) converges to a positive value [60]. In our system, although
time delay can be modelled as a zero-pole transfer function with RHP zero, this integral
approximately converges to zero since the time-delay is very small for our system (i.e.
140 µs). Whereas, the integral (5.23) for the system with the controller CR converges to
−160 and −250 using the pseudo-sensitivity and the DF method, respectively. This im-
plies that the sensitivity is decreased in a certain frequency range without increasing in
other frequency ranges. Note that calculating relation (5.23) using the DF method is the
ideal performance which can be obtained using CgLp compensators. However, using
pseudo-sensitivity for calculating this integral for the controller CR consider all high or-
der harmonics. Although high order harmonics leads to deviation from the ideal case,
CgLp compensator is still better than the PID controller and breaks the water-bed effect.

5.4.2. TIME-DOMAIN RESULTS

In this part, the time domain results of the system with these two designed controllers
are compared with each other. To implement these designed controllers (Figure. 5.9),
each controller is discretized with the sample time Ts = 100 µs using the Tustin method
[49, 61]. Furthermore, to provide the well-posedness property (see [23, 45]), we prevent
consecutive reset instants.

In Figure. 5.10, the step responses (step of 20 µm) of the system with these controllers
are shown. The step responses have almost the same rise and settling time while the
overshoot of the system with the controller CR is less than that of with the controller
CPID as the peak of the sensitivity of the system with the controller CR is less than the
one with the controller CPID. To examine the iso-damping behaviour of the system, the
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Figure 5.9: The block diagram of the whole system for implementing the designed controllers (reset matrices
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Figure 5.10: The step responses of controllers with gain variation between 80% to 120% of their nominal values

Kp values of the controllers are changed between 80% to 120% of their nominal values.
As it is observed, step responses of these perturbed systems show the same overshoot.
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Figure 5.11: The pseudo-sensitivity and sensitivity of the system with the CgLp and PID controllers which are
deduced experimentally, ESR∞ and ESPID are practical sensitivity of the system with the controller CR and
CPID, respectively

In order to compare the tracking performances of the systems with both controllers,
we draw the sensitivity responses practically (Figure. 5.11). In other words, Figure. 5.11
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Figure 5.12: Tracking performance of the system with the designed controllers for a triangular and a sinusoidal
references. SPR and SPPID are obtained using super-position law and sensitivity responses for three harmonics
of Rtri which resembles the triangular reference, respectively.

shows (maxe(t ))/r0 for the sinusoidal reference in several frequencies. As shown in Fig-
ure. 5.11, S∞ precisely predicts the maximum error of the system with the controller
CR for the sinusoidal references. Besides, it shows that the tracking performance of the
system with the controller CR is better than the one with the controller CPID for the si-
nusoidal reference for all frequencies less than 100H z. In order to have a closer look, we
show the time response of the system with these controllers for a sinusoidal reference
(Figure. 5.12a) at 5 Hz in Figure. 5.12b. Moreover, a triangular trajectory with the ampli-
tude of 800 µm (Figure. 5.12c) is applied to the system. As shown in Figure. 5.12d, the
system with the controller CR also has a better tracking performance than that of with
the controller CPID for the triangular reference, which consists of several frequencies.
For this trajectory and sinusoidal references, the tracking performance of the system is
improved by 60% using the controller CR. As was seen in Figure. 5.13, there is a small de-
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Figure 5.13: The process pseudo-sensitivity and process sensitivity of the system with the CgLp and PID con-
trollers which are deduced experimentally, EPSR∞ and EPSPID are practical process sensitivity of the system
with the controller CR and CPID, respectively

viation between pseudo-process sensitivity and the practical results at low frequencies.
This deviation is because of quantisztion and sensor noise of the precision stage, which
fortunately reduce effects of disturbances at low frequencies in this case.

To have a closer look, we show time response of the system with these controllers for
a sinusoidal disturbance (Figure. 5.14a) at 15 Hz in Figure. 5.14b. Moreover, a step distur-
bance is applied to the system and the amplitude of the error is shown in Figure. 5.14c.
It can be said that the disturbance rejection capability of the system is enhanced by 70%
using the controller CR for sinusoidal disturbances. As it is shown, the system with the
controller CR attenuates the step disturbance better than that of with the controller CPID.
To study the noise rejection capabilities of the system with these controllers, a white
noise with a maximum amplitude of 5 µm is applied to the system (Figure. 5.14d). The
Power Spectrum Density (PSD) of the output of the system with these controllers are
shown in Figure 5.15. Although it was predicted by Figure. 5.6c that the system with
these controllers have the same noise rejection capability, the noise rejection capability
of the system with the controller CR is slightly better than the one with the controller
CPID (Figure. 5.10b).

To sum up, the system with the tuned CgLp compensator has a smaller overshoot,
the same rise time, better tracking performance and disturbance rejection capability for
frequencies less than 100 Hz, a smaller peak of the sensitivity, and a better noise rejection
capability than those of the system with the controller PID.



5.4. APPLICATION TO A PRECISION MOTION STAGE

5

131

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

-800

-600

-400

-200

0

200

400

600

800
A

m
p

li
tu

d
e 

(
m

)

(a) Sinusoidal disturbance

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

-6

-3

0

3

6

A
m

p
li

tu
d

e 
(

m
)

C
R

C
PID

(b) Error of the sinusoidal disturbance

0 0.02 0.04 0.06 0.08 0.1 0.12

Time (s)

0

5

10

15

20

25

30

35

40

A
m

p
li

tu
d

e 
(

m
)

C
R

C
PID

(c) Error of the step disturbance

0 0.5 1 1.5 2 2.5 3

Time (s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

A
m

p
li

tu
d

e 
(

m
)

C
R

C
PID

(d) Noise rejection

Figure 5.14: Disturbance rejection capability of the system for a step and a sinusoidal disturbance, and noise
rejection capability of the system
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Figure 5.15: PSD of the output of the system with controllers CR and CPID for a white noise
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tization and noise for system with CR

5.4.3. INVESTIGATION OF SUPER-POSITION LAW
In this section, we evaluate that how much the output of the system with the controller
CR follows the super-position law. To this end, we consider the triangular trajectory (Fig-
ure. 5.12c), which is the combination of several harmonics. As it is shown in Figure. 5.12c,
the reference is accurately approximated with

Rtri(t )=363.7sin(5.1t −1.54)+31.27sin(15.3t −1.5)+6sin(25.5t −1.45)+400.(5.24)

Since the Hβ condition is satisfied and controller CR has a PI, the steady-state error of
tracking is independent of the constant value [9]. In Figure. 5.12d, the predicted errors,
which are obtained using super-position law and sensitivity responses for these three
harmonics, for both controllers CR (SPR) and CPID (SPPID) are drawn. As it is observed,
there are differences (16% maximum relative error) between predicted errors by super-
position law and practical errors for both controllers CR and CPID. These differences are
mainly due to quantization and noise of sensor (for more details about effects of noise
and quantization on the performance of reset control systems, see [62]). Fortunately, in
this application, noise and quantization positively affect the performance and reduce
the tracking error. In Figure. 5.16, we compare the simulation error, in which we do not
consider the noise and quantization, and the predicted error obtained by super-position
law for controller CR. As it is seen, when noise and quantization do not exist, the total
error almost follows the super-position law for this trajectory. The identification of the
closed-loop system with the controller CR is demonstrated in Figure. 5.17. The coher-
ence plot is an indicator of existed noise and non-linearity in the output of the closed-
loop system in the presence of the input signal r (t ). Since the coherence is almost one
at low and high frequencies ( f < 40 and f > 120), the relation between r (t ) and y(t ) can
be well approximated as a linear system in this range of frequency. This can be justified
by the fact that in the frequency range (40 < f < 120) the high order harmonics ampli-
tudes of the complementary-sensitivity are maximum near the cross-over frequencies,
and they are filtered out outside of this frequency range (Figure. 5.18). In this figure,∣∣∣∣∣∣ ∞∑

n=3
Tn( jω)

∣∣∣∣∣∣∞ : sup
tss0≤t≤tssm

∞∑
n=3

|Tn( jω)|sin(nωt + Tn( jω)),
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Figure 5.17: Identification of the closed-loop of the system with controller CR
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system with the controller CR

for all ω ∈ R+, which is an appropriate indicator of effects of high order harmonics on
the output of the systems (for more details about Tn( jω), see Chapter 3). Indeed, there
is a relation between the amplitudes of high order harmonics of the complementary-
sensitivity and the coherence of identification which should be investigated in future
studies.

5.4.4. CHANGING SEQUENCE OF RESET ELEMENT

In this subsection, we investigate the effects of changing the sequence of control fil-
ters CR on the performance of the precision positioning stage. The controller CR has
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Figure 5.19: Step responses of the system with CgLp compensators

the traditional sequence which is FORE-Lead-PI (for the sake of simplicity, Lead means
Lead1.Lead2 in (5.18)). Let’s assume CR, CR′ , and CR′′ have the same base linear system.
The sequence of filters in controllers CR′ and CR′′ is Lead-FORE-PI. In addition, CR′′ has a
shaping filter in the reset-instants line as explained in Subsection 5.2.5. Note that since
changing the sequence does not alter the Hβ condition (see Remark 10 in Chapter 4), the
Hβ condition is also satisfied for the system with the controller CR′ , and the stability of
the system with the controller CR′′ is assured with the method described in Chapter 4.

In Figure. 5.19, the step responses (step of 20 µm) of the system with these CgLp
controllers are shown. As it is shown, the system with the controller CR′′ has less over-
shoot than that of with the controller CR. Furthermore, the system with the controller
CR′ has an over-damp response with the highest rise and settling time. It can be said that
this configuration is similar to a reset system which resets when the differentiation of the
tracking error is zero (ė(t ) = 0). Consequently, the reset control system resets sooner than
the case in which the resetting law is e(t ) = 0. This can be reason the over-damp response
with high settling time. It is noteworthy to recall that the open-loop DFs of the system
with controllers CR and CR′ are exactly the same. However, the step response specifica-
tions, including rise time and over-shoot, are totally different due to different amplitudes
of high order harmonics. Thus, the effect of the structure of reset elements on the accu-
racy of the DF method can be considered as an interesting topic for future study. The
disturbance rejection capabilities of the system with these CgLp controllers for the step
disturbance and the sinusoidal disturbance at 15 Hz are shown in Figure. 5.20a and Fig-
ure. 5.20b, respectively. Besides, a white noise with a maximum amplitude of 5 µm is
applied to examine the noise rejection capabilities of the system with these CgLp con-
trollers (Figure. 5.20c). The system with controller CR has the best disturbance and noise
rejection capabilities among these CgLp controllers. Similarly, using the shaping filter
significantly improves the disturbance and noise rejection capabilities of the system with
controller CR′ . To see effects of the changing sequence on the tracking performance, the
triangular reference and the sinusoidal reference at 5 Hz are applied to the system (Fig-
ure. 5.21). As shown in Figure. 5.21a and Figure. 5.21b, the system with the controller
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(b) Sinusoidal disturbance error
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(c) Noise rejection capability

Figure 5.20: Disturbance and noise rejection capability of the system with CgLp controllers
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(b) Error of the sinusoidal reference

0 0.1 0.2 0.3 0.4

Time (s)

-60

-40

-20

0

20

40

60

C
o
u

n
t

C
R

C
R

'

C
R

"

0.1 0.11 0.12
-3

-2

-1

0

1

2

3

(c) The input of the reset instant line

Figure 5.21: Tracking performance of the system with CgLp controllers and the input of the reset instant line
of the reset element of CgLp controllers

CR has the best tracking performance for the triangular and the sinusoidal references.
As discussed in Appendix B, for low frequency references, when the lead element of the
controller comes first, the existing noise and quantization error are amplified and dom-
inate the tracking error. Consequently, the reset instants are changed considerably by
amplified noise which deteriorates the tracking performance of the system. In this case,
as suggested in Appendix B, using the shaping filter (CR′′ ) solves the problem to some
extent. To show this, in Figure. 5.21c, we draw the signal that enters to the reset line of
the reset element for these CgLp controllers as a result of the sinusoidal input at 5 Hz in
the presence of noise. For a deeper insight, in Table 5.2, the Signal to Noise Ratio (SNR)
of these there signals are provided. In this paper, SNR is calculated using

SN R = Psi g nal

Pnoi se
, (5.25)

where Psi g nal and Pnoi se are power of signal (considering till the fifth harmonic) and
noise, respectively. As it can be seen from Table 5.2, the SNR value in the case of CR is
significantly higher than the case of CR′ . Although using the shaping filter (CR′′ ) leads to
reducing the effect of the noise, it is still far from the case of CR in which the reference
frequency dominates the reset instants line.
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Table 5.2: SNR of the entered signal to the reset line of the reset element for these CgLp controllers

Signal CR CR′ CR′′

SNR (dB) 20.26 0.10 1.14

It can be concluded that CR has the best steady-state performance, CR′ has the best
transient response, and CR′′ can be considered as a trade-off between CR and CR′ . This
trade-off can be set by tuning the cut-off frequency of the shaping filter. Increasing the
cut-off frequency brings CR′′ near to CR′ which means improving the transient response.
While reducing the cut-off frequency brings CR′′ near to CR which results in improving
the steady-state response.

5.5. CONCLUSION

T HIS paper has proposed a frequency-domain tuning method for CgLp compensators
based on the defined pseudo-sensitivities for reset control systems. In this method, a

PID.CgLp structure was considered, and its parameters were tuned such that the pseudo-
sensitivity was minimized under several loop-shaping and stability constraints. To show
the effectiveness of the proposed approach, the performance of this tuned CgLp was
compared with a linear PID. The results showed that the proposed method achieved
more favourable dynamic performance than the PID controller for the precision mo-
tion stage. The tracking performance, the disturbance rejection capability, and the noise
rejection capability of the system were improved using the CgLp compensator. In addi-
tion, it was practically shown that the water-bed effect was broken for this application.
Also, without considering quantization and noise, the super-position law almost held
for the specified reference. Finally, among different sequences, it was demonstrated that
the traditional sequence of reset control systems has the best steady-state performance
while putting lead filters first has an over-damped response. For future study, effects of
noise and quantization error on the super-position law and tuning and configuration of
the shaping filter should be deeply investigated.
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6
CONCLUSIONS AND

RECOMMENDATIONS

This thesis has proposed a non-linear loop-shaping framework to allow frequency-domain
analyzing of CgLp reset compensators. This final chapter draws the main relevant con-
clusions of this study presented in the preceding chapters. In addition, the limitations of
this research approach are discussed, and recommendations for solving those in future
studies are provided.
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6.1. CONCLUSIONS

T HIS research contributed to solving a significant challenge which is providing a method
to enhance the precision of the steady-state performance without devastating the

transient response (throughput) of motion systems. The main aim of this thesis was to
develop a non-linear loop-shaping framework to enable analyzing CgLp compensators
in the frequency-domain. For this purpose, three major questions, which are how to
study steady-state performance, assess the stability, and tune parameters of CgLp com-
pensators in the frequency-domain, have been answered through Chapter 3 to Chap-
ter 5.

As was explained in Chapter 1, this performance limitation is irrespective of how
optimally linear controllers are tuned and comes from the inherent linearity of these
controllers. As a result, linear controllers are not suited to increase precision and speed
simultaneously. In order to show that even using advanced FO calculus in linear con-
trollers can not impressively solve this problem, a comprehensive literature study on
linear FO controllers in the frequency-domain was carried out in Chapter 2. In that chap-
ter, the structures and tuning methods of four well-known types of FO controllers were
discussed. These controllers need approximation methods for realization which leads to
high order transfer functions that make the implementation of FO controllers more diffi-
cult than IO ones. In fact, it can be anticipated that IO-PID controllers are replaced with
FO ones in the near future if a direct method for implementation of FO controllers will
be found. Finally, it was concluded that even ignoring the implementation problem, al-
though FO-PID controllers are offering more design freedom compared to classical PID
controllers and improve the performance of motion systems (see our work in [1]), they
are a type of linear controller and their performance are confined. Thus, to further in-
crease in precision performance without reducing the speed of the system, non-linear
controllers like CgLp compensators had to be considered.

In Chapter 3, an analytical approach was proposed to accurately obtain closed-loop
frequency responses of reset control systems, including high order harmonics. Unlike
linear controllers, proving stability by itself does not guarantee the existence of the steady-
state solution for non-linear control systems. Without proving the existence of the steady-
state solution, it is not even allowed to utilize the DF method for predicting the closed-
loop performance of non-linear control systems. First, this crucial problem was solved
asserting that satisfying the Hβ condition [2, 3] is sufficient for the existence of the steady-
state solution of the closed-loop reset control systems driven by periodic inputs. In ad-
dition, it was proved that if the Hβ condition is satisfied, the response of reset control
systems for a sinusoidal reference r (t ) = r0 sin(ωt ) only contains the odd harmonics
((2n − 1)ω, n ∈ N), and the system does not produce any subharmonics. In addition,
satisfying the Hβ condition assured that the response of the reset control system for a
periodic input wP (t ) = wP (t +TP ) is periodic with the same period time TP . This prop-
erty is important because looking at a time frame of steady-state response with duration
TP gives all essential information about the performance of the reset control system for
that periodic input.

After that, the steady-state solution was obtained for a sinusoidal reference, and the
closed-loop frequency responses including high order harmonics were formalized using
HOSIDF technique [4]. Besides, to study reset control systems more efficiently, all har-



6.1. CONCLUSIONS

6

143

monics were combined to define pseudo-sensitivities, which serve as a graphical tool
for performance analysis of reset control systems. The defined frequency responses and
pseudo-sensitivities are independent of the input amplitude. Therefore, considering x̃r

as the steady-state solution of a reset control system for reference r implies that kx̃r ,
with k ∈R, is the solution of the systems for the reference kr .

After comparing results of pseudo-sensitivity results with results obtained by the DF
method in several practical examples, it was demonstrated that pseudo-sensitivities can
predict the closed-loop performance of reset control systems more accurately that the
DF method (in some examples up to 60%) due to consideration of high order harmonics.
Actually, that pseudo-sensitivities revealed important features of reset control systems
which could not be exposed by the DF method. One of these features is effects of filter
sequence of reset control systems on their performance. Although different sequences
of filters result in the same DF, their high order harmonics are different which results in
different closed-loop performances. Moreover, another feature was that the actual im-
plementation of reset elements has significant effects on the performance of the system
which cannot be understood by the DF method. Pseudo-sensitivities revealed that a CI
should be used in the parallel architecture, yielding a system with better precision (up to
25% in one example) and lower control input (up to 80% in one example) once compared
to the system with the CI in the series architecture.

As it was explained in Chapter 3, satisfaction of the Hβ condition not only guaran-
tees the stability of reset control systems, but also it is the sufficient condition for the
existence of the steady-state solution. Thus, in Chapter 4, a novel frequency-domain
method for assessing the stability of reset control systems was proposed based on the
Hβ condition. Note that since the method was developed based on the Hβ condition, it
is able to assure the existence of the steady-state solution of reset control systems. The
method is applicable for all reset elements with the first and second order base linear
transfer functions which are introduced in this thesis. Apart from the applicability of this
method in the case of partial reset technique (resetting to non-zero values), another ad-
vantage of this method in comparison with the conventional Hβ condition is that in the
case of resetting one state, it provides a graphical tool for determining stability of reset
control systems. Similar to the Nyquist plot in the linear control systems, this approach
simplifies the stability analysis of reset control systems in the frequency-domain.

Another important result of Chapter 4 was that satisfying the Hβ condition results in
the well-posedness property of reset instants (according to the definition provided in [5])
for CI, PCI, GFORE, and GSORE. In addition, it was obtained that if the Hβ condition is/is
not satisfied for a reset control system, the Hβ condition is/is not satisfied for other reset
control systems with the same base linear and reset matrix but with the different se-
quence of their filters. In the case of the reset element with the second order base linear
transfer function, if the Hβ condition is/is not satisfied for a reset control system with a
specified state-space realization (e.g. controllable or observable) of the reset element, it
does not imply that the Hβ condition is/is not satisfied for other reset control systems
with the same base linear and reset matrix but with the different state-space realization
of the reset element. In short, since the proposed method can directly verify the stability
of reset control systems using frequency responses of their base linear open-loop trans-
fer functions, it does not need an accurate parametric model of the system and solving
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LMI equations. The developed theories in Chapter 3 and Chapter 4 were embedded in a
user-friendly toolbox, which is presented in the appendix C.

In Chapter 5, pseudo-sensitivities and the frequency-domain stability method, which
were described in the preceding chapters, were utilized to form a non-linear loop-shaping
approach for tuning CgLp compensators. To show the effectiveness of non-linear loop-
shaping, different performance metrics of a tuned CgLp were compared with a linear
PID, which was also tuned optimally using the same constraints. The results showed that
the tuned CgLp achieved more favourable dynamic performance than the PID controller
for a precision motion stage. The tracking performance and the disturbance rejection
capability of the system were improved by 60% using the CgLp compensator.

In addition, it was practically shown that the “water-bed" effect was broken in this
application. To show this, the integral of the pseudo-sensitivity of the system with the
CgLp compensator was calculated numerically. Using the CgLp compensator, the in-
tegral of the pseudo-sensitivities converged to a negative value which means that the
sensitivity was decreased in a certain frequency range without increasing in other fre-
quency ranges. Therefore, the steady-state precision was increased while the transient
response was not changed.

Furthermore, it was demonstrated that without considering quantization and noise
errors, super-position almost holds (with the maximum relative error 2%) for a specified
reference in this practical example. The closed-loop identification of the system with the
CgLp compensator was performed which showed that the coherence was around 1 in a
wide range of frequencies. This implied that super-position law approximately holds
at that wide range of frequencies. It can be said that setting the corner frequency of a
GFORE near the cross-over frequency of the system and considering a positive value for
the reset matrix, reduce effects of the non-linearity on the output of the GFORE. This
was also demonstrated by the identification of a GFORE in [6]. Looking at the coher-
ence function provided in [6], it was understood that GFORE compensator can be well
approximated by a linear element at a wide range of frequencies.

In this thesis, effects of changing the filter sequence on the closed-loop performance
of reset control systems were studied. It was demonstrated that putting the lead ele-
ments of controllers first and then the reset element and other linear parts following in
series has an over-damped transient response. However, since noise and quantization
errors are amplified before entering the reset element which leads to a drastic change
of reset instants in this structure, the steady-state performance of this sequence is not
favourable. Although this problem was solved to some extent using the proposed shap-
ing filter [7], the traditional sequence, in which the tracking error is the input of the reset
element and other linear parts following in series, has shown a better steady-state perfor-
mance. It can be said that using the proposed shaping filter provided a trade-off between
these two sequences.

All in all, based on several experiments, it can be concluded that using a CgLp com-
pensator, which is tuned based on this non-linear loop-shaping approach, is able to
improve the precision of linear motion systems while it does not change the transient
response. In particular, as shown in several practical examples, properly replacing part
of D action of PID with a CgLp compensator can provide the same rise time, the same
overshoot, the same settling time, a better tracking performance (up to 60% in precision
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motion applications), a better disturbance rejection capability, and a better noise rejec-
tion capability than those of the system with the PID controller. In addition, based on the
closed-loop identification, it can be concluded that non-linearity of CgLp compensators
at low frequencies is small enough such that systems with these novel compensators can
be considered as a linear system at that range of frequencies. Based on our observations,
the noise and quantization errors enhance the precision performance of CgLp compen-
sators instead of reducing it in several cases. It is noteworthy to recall that all of these
mentioned advantages are obtainable if the CgLp compensator is tuned appropriately
according to guidelines provided in this thesis. Otherwise, it may provide a performance
worse than linear controllers. Finally, the developed non-linear loop-shaping method
in this thesis makes the CgLp compensator an advanced industry-compatible controller
such that:

• It improves the precision and speed of motion systems simultaneously.

• Similar to linear controllers, their performance and stability can be analyzed in the
frequency-domain.

• Similar to linear controllers, it almost follows super-position law in a wide range of
frequencies.

Hence, it is anticipated that D-action part of linear controllers will be substituted with
this type of reset compensators in the precision motion systems.

6.2. RECOMMENDATIONS
This research has proposed a non-linear loop-shaping approach for frequency-domain
analysis of CgLp compensators. However, during this research, several new aspects have
been identified which where excluded form this thesis. Here, most of those important
aspects which might be tackled in future are mentioned.

• Predicting coherence of the closed-loop system upon open-loop HOSIDF is an
outstanding topic which helps engineers to design CgLp compensators such that
they follow the super-position law that is important in industrial applications.

• Although the deviation between the DF method and pseudo-sensitivities can be
related to HOSIDF, the relation should be mathematically formalized to enable
tuning CgLp compensators on the basis of the open-loop HOSIDF.

• Finding a method for assessing the Hβ condition using the open-loop HOSIDF is
a future step toward tuning CgLp compensators in the open-loop configuration.

• The Hβ condition is a conservative method to analyze stability and existence of the
steady-state solution. Based on our observations, when the base linear of the sys-
tem was stable and the maximum absolute eigenvalues of the reset matrix was less
than one, the reset control system was stable, and it had a steady-state solution. It
is an extraordinary achievement to prove this hypothesis mathematically.



6

146 REFERENCES

• An optimization solution was provided for assessing the stability of reset control
systems with GSORE, which is computationally expensive. Finding a simple method
for solving that optimization problem leads to wider the applicability of the pro-
posed method.

• It is believed in literature that when the open-loop filters out high-order harmon-
ics, the DF approximation is reliable. However, in this work, it has been demon-
strated that while DFs of several cases are the same, their performances are com-
pletely different. For example, different sequences of filters of reset control sys-
tems and parallel or series placement of reset elements have different performances
while their DFs are the same. These initial results open a path for further study of
effects of the structure of non-linear elements on the accuracy of the DF method.

• In some applications, it has been practically demonstrated that the “water-bed"
effect was overcome using CgLp compensators. However, it is not a general result
and needs to be proved mathematically that using CgLp compensators will over-
come this limitation for motion systems.

• The focus of this thesis was mostly on the performance of CgLp compensators de-
signed by GFORE. However, the performance of different types of CgLp compen-
sators, which have been introduced based on modified GFORE, GSORE, FOSRE,
and SOSRE in our group, has not been studied. Thus, it is needed to carry out a
comprehensive comparison between the performance of different types of CgLp
compensators.

• Based on our observations in several practical examples, the noise and quantiza-
tion effects reduced the tracking error of the system. One study can be performed
to see under which conditions noise and quantization have advantages for reset
control systems.
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A
A FREQUENCY-DOMAIN STABILITY

METHOD FOR RESET SYSTEMS

Ali AHMADI DASTJERDI

In this appendix, an intuitive frequency-domain approach is proposed for assessing sta-
bility of reset control systems with reset elements with the first order base linear transfer
function, which is the primary results of Chapter 4. Furthermore, the effectiveness of the
proposed approach is demonstrated through a practical example.

This appendix has been presented in in Conference on Decision and Control (CDC 2020) [1].
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A.1. INTRODUCTION

T ECHNOLOGY developments in cutting edge industries have control requirements that
cannot be fulfilled by linear controllers. To overcome this problem, linear controllers

should be substituted with non-linear ones, for example reset controllers. These con-
trollers have attracted significant attention due to their simple structure [2–10]. The ad-
vantages of reset controllers have been utilized to enhance the performance of several
mechatronic systems (see, e.g. [11–17]). In 1958, the first reset element was introduced
by Clegg [2]. The Clegg Integrator (CI) is an integrator which resets its state to zero when
its input signal crosses zero. Extensions of the CI, which provide additional design free-
dom and flexibility, include First Order Reset Elements (FORE) [11, 18], Generalized First
Order Reset Element (GFORE) [17], Second Order Reset Elements (SORE) [12], and Gen-
eralized Second Order Reset Element (GSORE) [17]. Several reset techniques, such as
those based on reset bands [19, 20], fixed reset instants, partial reset (resetting to a non-
zero value or resetting a selection of the controller states) [21], and the PI+CI approach
[21] have also been studied to improve the performances of these controllers.

Stability is one of the most important requirements of every control system, and reset
control systems are no exception [3, 7, 8, 10, 22–25]. Several researchers have analyzed
the stability of reset controllers using quadratic Lyapunov functions [7, 10, 26, 27], reset
instants dependant methods [24, 28, 29], passivity, small gain, and IQC approaches [22,
30–32]. However, most of these approaches are complex, need parametric models of
the system, require solving LMI’s, and are only applicable to specific types of plants. As
a result, these methods do not interface well with the current control design in industry
which favours the use of frequency-domain methods. Several researchers have proposed
frequency-domain approaches for assessing stability of reset controllers [3, 8, 33]. In
[33], an approach for determining stability of a FORE in closed-loop with a mass-spring
damper system has been proposed. The result in [8] is applicable to reset control systems

under the specific condition e(t )u(t ) < u2

ε
, ε> 0, in which e(t ) and u(t ) are the input and

the output of the reset controller, respectively. This method is not usable in the case of
partial reset techniques.

The Hβ condition has gained significant attention among existing approaches for
assessing stability of reset systems [3, 10, 24]. When the base linear system of the re-
set controller is a first order transfer function, it provides sufficient frequency-domain
conditions for uniform bounded-input bounded-state (UBIBS) stability. However, as-
sessing the Hβ condition in the frequency-domain is complex, especially for high di-
mensional plants. Moreover, it cannot be used to assess UBIBS stability of reset control
systems in the case of partial reset techniques. As a result, obtaining a general easy-
to-use frequency-domain method for assessing stability of reset control systems is an
important open problem.

In this chapter, based on the Hβ condition, a novel frequency-domain method for
reset controllers with first order base linear system is proposed. This can assess UBIBS
stability of reset control systems in the frequency-domain. In this method, stability is
determined on the basis of the frequency response of the base linear open-loop trans-
fer function, and the Hβ condition does not have to be explicitly tested. Besides, this
method is applicable to partial reset techniques.
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Figure A.1: The closed-loop architecture of a reset controller

The remainder of this chapter is organized as follows. In Section A.2 the problem is
formulated. In Section A.3 the frequency-domain approach for determining stability of
reset control systems is presented. In Section A.4 the effectiveness of this approach is
demonstrated via a practical example. Finally, some remarks and suggestions for future
studies are presented in Section A.5.

A.2. PROBLEM FORMULATION

I N this section the well-known reset structures GFORE and Proportional Clegg Integra-
tor (PCI) are recalled. Then, the problem under investigation is posed. The focus of

this chapter is on the single-input-single-output (SISO) control architecture illustrated
in Figure. A.1. The closed-loop system consists of a linear plant with transfer function
G(s), a linear controller with transfer function CL(s), and a reset controller with base lin-
ear transfer function CR (s). The state-space representation of the first order reset con-
troller is 

ẋr (t ) = Ar xr (t )+Br e(t ), e(t ) 6= 0,

xr (t+) = γx(t ), e(t ) = 0,

ur (t ) =Cr x(t )+Dr e(t ),

(A.1)

in which xr (t ) ∈R is the reset state, Ar , Br , and Cr are the dynamic matrices of the reset
controller, −1 < γ< 1 determines the value of the reset state after the reset action, r (t ) ∈R
is the reference signal, y(t ) ∈ R is the output of the plant, and e(t ) = r (t )− y(t ) is the
tracking error. The focus of this chapter is on GFORE and PCI, which have been mostly
used in practice. In the case of GFORE one has

CR (s) = 1
s

ωr
+1

, (A.2)

whereas for PCI one has
CR (s) = 1+ ωr

s
. (A.3)

Thus, for GFORE, Ar = −Cr = −ωr (ωr is the so-called corner frequency), Dr = 0 and
Br = 1, whereas for the PCI, Ar = 0, Cr =ωr and Br = Dr = 1.
Let now L(s) = CL(s)G(s) and assume that G(s) is strictly proper. Let the state-space
realization of L(s) be {

ζ̇(t ) = Aζ(t )+Bur (t )+Bd d(t ),

y(t ) =Cζ(t ),
(A.4)
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where ζ(t ) ∈ Rnp describes the state of the plant and of the linear controller (np is the
number of states of the whole linear part), A, B , and C are the dynamic matrices, and
d(t ) ∈ R is an external disturbance. The closed-loop state-space representation of the
overall system can, therefore, be written as

ẋ(t ) = Āx(t )+ B̄r (t )+ B̄d d(t ), e(t ) 6= 0,

x(t+) = Āρx(t ), e(t ) = 0,

y(t ) = C̄ x(t ),

(A.5)

where x(t ) = [xr (t )T ζ(t )T ]T ∈ Rnp+1, and Ā =
[

Ar −Br C
BCr A−BDr C

]
, B̄ =

[
1

Dr B

]
,

B̄d =
[

0
Bd

]
, Āρ =

[
γ 0
0 Inp×np

]
, and C̄ = [

0 C
]
. The main goal of this chapter is to pro-

vide frequency-domain sufficient conditions to assess UBIBS stability of the reset control
system (A.5) with the control structure depicted in Figure. A.1.

A.3. FREQUENCY-DOMAIN STABILITY ANALYSIS

I N this section the main results, which are based on the so-called Hβ-condition [3, 7,
10], are presented. Let

C0 = [ρ βC ], B0 =
[

1
0np×1

]
, ρ > 0, β ∈R. (A.6)

The Hβ condition, in the case of the PCI and of the GFORE, states that the reset control
system (A.5) with −1 ≤ γ≤ 1, and r = d = 0 is quadratically stable if and only if there exist
ρ > 0 and β such that the transfer function

H(s) =C0(sI − Ā)−1B0 (A.7)

is Strictly Positive Real (SPR). This condition requires finding the parameters ρ and β,
which may be very difficult when the system has a high order transfer function. In the
following, a method to determine stability without finding ρ and β is proposed.

To this end, define the Nyquist Stability Vector (NSV=
#»N (ω) ∈R2) in a plane with axis

χ−Υ (see Figure. A.2) as follows.

Definition 18. The Nyquist Stability Vector is, for all ω ∈R+, the vector

#»N (ω) = [
Nχ NΥ

]T =
[∣∣L( jω)+ 1

2

∣∣2 − 1
4 ℜ(L( jω) ·CR ( jω))+ℜ(CR ( jω))

]T
,

L(s) =L(s)CR (s).

Let, for simplicity and without loss of generality,
#»N (ω) = θN ∈ [−π

2 , 3π
2 ), and define

the open sets

I1 =
{
ω ∈R+| 0 < #»N (ω) < π

2

}
, I2 =

{
ω ∈R+| π

2
< #»N (ω) <π

}
,
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Figure A.2: Representation of the NSV in the χ−Υ plane

I3 =
{
ω ∈R+| π< #»N (ω) < 3π

2

}
, I4 =

{
ω ∈R+| − π

2
< #»N (ω) < 0

}
.

Define now the Hβ circle in the complex plane with centre (− 1
2 , 0) and radius 1

2 (see
Figure. A.3). Then, the following statements hold.

• For all ω such that L( jω) is outside the Hβ circle Nχ > 0.

• For all ω such that L( jω) is on the Hβ circle Nχ = 0.

• For all ω such that L( jω) is inside the Hβ circle Nχ < 0.

ℜ

ℑ

− 1
2

R = 1
2

Nχ(ω) > 0

Nχ(ω) < 0

Nχ(ωχ0 ) = 0

Nχ(ωχ0 ) = 0

L( jω)

Hβ Circle

Figure A.3: Hβ circle in the Nyquist diagram

On the basis of the definition of the NSV, systems of Type I and of Type II, which are used
to assess the stability of the reset control systems, are defined.

Definition 19. The reset control system (A.5) is of Type I if the following conditions hold.
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( 1 ) For all ω ∈M= {ω ∈R+|Nχ(ω) = 0} one has NΥ(ω) > 0.

( 2 ) For all ω ∈Q= {ω ∈R+|NΥ(ω) = 0} one has Nχ(ω) > 0.

( 3 ) At least one of the following statements is true:

(a) ∀ ω ∈R+ : NΥ(ω) ≥ 0.

(b) ∀ ω ∈R+ : Nχ(ω) ≥ 0.

(c) Let δ1 = max
ω∈I4

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣ andΨ1 = min
ω∈I2

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣. Then δ1 <Ψ1 and I3 =∅.

Remark 11. Let

θ1 = min
ω∈R+

#»N (ω) = #»N 1 and θ2 = max
ω∈R+

#»N (ω) = #»N 2, (A.8)

where
#»N 1 and

#»N 2 are implicitly defined by equation (A.8). Then, the conditions identi-
fying Type I systems are equivalent to the condition(

−π
2
< θ1 <π

)
∧

(
−π

2
< θ2 <π

)
∧ (θ2 −θ1 <π). (A.9)

Definition 20. The reset control system (A.5) is of Type II if the following conditions hold:

( 1 ) L(s) does not have any pole at origin.

( 2 ) For all ω ∈M one has NΥ(ω) > 0.

( 3 ) For all ω ∈Q one has Nχ(ω) < 0

( 4 ) At least, one of the following statements is true:

(a) ∀ ω ∈R+ : NΥ(ω) ≥ 0.

(b) ∀ ω ∈R+ : Nχ(ω) ≤ .0

(c) Let δ2 = max
ω∈I3

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣ andΨ2 = min
ω∈I1

∣∣∣∣NΥ(ω)

Nχ(ω)

∣∣∣∣. Then, δ2 <Ψ2 and I4 =∅.

Remark 12. The conditions identifying the Type II systems are equivalent to the follow-
ing conditions.

( 1 ) L(s) does not have any pole at origin.

( 2 ) (
0 < θ1 < 3π

2

)
∧

(
0 < θ2 < 3π

2

)
∧ (θ2 −θ1 <π). (A.10)

On the basis of the above definitions the main result of this chapter, which is a frequency-
domain tool for determining stability of reset control systems, is presented.

Theorem 8. The reset control system (A.5) with GFORE or PCI is UBIBS stable if all the
following conditions are satisfied.
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• The base linear system is stable and the open-loop transfer function does not have
any pole-zero cancellation.

• The reset control system (A.5) is either of Type I and/or of Type II.

Proof. Theorem 8 is proved in several steps.

• Step 1: It is shown that, by Hypothesis (II) of Theorem 8, it is possible to find β and
ρ > 0 such that ℜ(H( jω)) > 0, ∀ ω ∈R+.

• Step 2: For systems with poles at origin, it is shown that lim
ω→0

ℜ(H( jω)) > 0.

• Step 3: It is shown that either lim
s→∞H(s) > 0 or lim

ω→∞ω
2ℜ(H( jω)) > 0.

• Step 4: It is shown that (A,C0) and (A,B0) are observable and controllable, respec-
tively. Thus, H(s) is SPR and the Hβ condition is satisfied, and reset control system
(A.5) with GFORE or PCI is UBIBS stable.

Step 1: The transfer function (A.7) can be rewritten as

H(s) = y

r
= βL(s)+ρ′CR (s)

1+L(s)
, (see also Figure. A.4). (A.11)

−r y
CR CL G

L

ρ′ = ρ

Cr

+β

Figure A.4: The block diagram representative of H(s)

Let L( jω) = a +b j and CR ( jω) = aR +bR j . Then,

ℜ(H( jω)) = β
(
(a + 1

2 )2 +b2 − 1
4

)+ρ′ (aR a +br b +aR )

(a +1)2 +b2 . (A.12)

Define now the vector
#»

ξ ∈ R2 as
#»

ξ = [β ρ]T in the χ−Υ plane. Using Definition 18,
equation (A.12) can be re-written as

ℜ(H( jω)) =
#»

ξ · #»N
(a +1)2 +b2 . (A.13)

Then, the Hβ condition reduces to

∀ω ∈R+ : ℜ(H( jω)) > 0 ⇐⇒ #»

ξ · #»N > 0 ⇐⇒ −π
2 < (

#»

ξ ,
#»N ) < π

2 ∧
∣∣∣#»N

∣∣∣ 6= 0 ∧
∣∣∣#»

ξ
∣∣∣ 6= 0.

(A.14)
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By (A.8), ∀ω ∈ R+,
#»N (ω) is placed between the vectors

#  »N1 and
#  »N2 illustrated in Figure.

A.5. In other words,
∀ ω ∈R+ : θ1 ≤ #»N (ω) ≤ θ2. (A.15)

χ

Υ

#»

ξ

#  »N1

#  »N2

θ1

θξ
θ2

Figure A.5: Representation of ~N (ω) and~ξ in the χ−Υ plane

If β > 0, since 0 < #»

ξ = θξ < π
2 , then θ1 ∈ (−π

2
,π) and θ2 ∈ (−π

2
,π). This implies

the conditions (1) and (2) in Definition 19 and I3 = ∅. If β ≤ 0, then θ1 ∈ (0,
3π

2
) and

θ2 ∈ (0,
3π

2
), which implies the conditions (1) and (2) in Definition 20 hold and I4 =∅. If

θ1 ∈ [0,
π

2
] and θ2 ∈ [0,

π

2
], then

ℜ(H( jω)) > 0 ⇐⇒
θξ ∈ (0,

π

2
) ⇐⇒ β> 0,

θξ ∈ [
π

2
,
π

2
+θ1) ⇒β≤ 0 ∧ θ1 > 0.

(A.16)

If θ1 ∈ [0,
π

2
] and θ2 ∈ [

π

2
,π], then

ℜ(H( jω)) > 0 ⇐⇒
θξ ∈ (θ2 − π

2
,
π

2
) ⇒β> 0∧ θ2 <π,

θξ ∈ [
π

2
,
π

2
+θ1) ⇒β≤ 0 ∧ θ1 > 0.

(A.17)

If θ1 ∈ [
π

2
,π] and θ2 ∈ [

π

2
,π], then

ℜ(H( jω)) > 0 ⇐⇒
θξ ∈ (θ2 − π

2
,
π

2
) ⇒β> 0∧ θ2 <π,

θξ ∈ [
π

2
,π) ⇐⇒ β≤ 0.

(A.18)

If θ1 ∈ [
π

2
,

3π

2
) and θ2 ∈ [π,

3π

2
), then

ℜ(H( jω)) > 0 ⇐⇒ θξ ∈ (θ2 − π

2
,π) ⇒β< 0. (A.19)
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If θ1 ∈ (0,
π

2
] and θ2 ∈ [π,

3π

2
), then ℜ(H( jω)) > 0 if and only if

(
θξ ∈ (θ2 − π

2
,θ1 + π

2
) ∧ θ2 −θ1 <π

)
⇒β< 0. (A.20)

As a result.
θ2 −θ1 <π ⇐⇒ δ2 <ψ2. (A.21)

Hence, by (A.16)-(A.21), Condition (3) of Definition 20 and Condition (2) of Remark 12

are obtained. If θ1 ∈ (−π
2

,0] and θ2 ∈ (−π
2

,
π

2
], then

ℜ(H( jω)) > 0 ⇐⇒ θξ ∈ (0,θ1 + π

2
) ⇒β> 0. (A.22)

If θ1 ∈ (−π
2

,0] and θ2 ∈ [
π

2
,π), then ℜ(H( jω)) > 0 if and only if

(
θξ ∈ (θ2 − π

2
,θ1 + π

2
) ∧ θ2 −θ1 <π

)
⇒β> 0, (A.23)

hence
θ2 −θ1 <π ⇐⇒ δ1 <ψ1. (A.24)

Therefore, by (A.16)-(A.18) and (A.22)-(A.24), Condition (3) of Definition 19 and Remark
11 are obtained.

Step 2: Let L(s) = L′(s)

sn , with n ≥ 1, L′(0) 6= 0. Equation (A.12) yields

lim
ω→0

ℜ(H( jω)) = lim
|L|→∞

β|L|2 +ρ′
(
|L||CR (0)|cos(

#  »
CR (0),

#     »
L(0))+ℜ(CR (0))

)
|L|2 . (A.25)

For GFORE, equation (A.25) becomes

lim
ω→0

ℜ(H( jω)) =β+ρ′ lim
|L|→∞

cos(
#  »
CR (0),

#     »
L(0))

|L| + 1

|L|2 =β> 0, (A.26)

whereas in the case of PCI with n = 1 (A.25) becomes

lim
ω→0

ℜ(H( jω)) =β+ρ′ lim
ω→0

( |CR |
|L| + 1

|L|2
)
=β+ ρ′ωr

|L(0)| (A.27)

which, setting
#  »

N ′ = [1
ρ′ωr

|L(0)| ]T , yields

lim
ω→0

ℜ(H( jω)) = #»

ξ · #  »

N ′. (A.28)

In addition,
#  »

N ′ = lim
ω→0

#»N (A.15)====⇒ θ1 ≤
#  »

N ′ ≤ θ2. (A.29)
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As a result, by Step 1, lim
ω→0

ℜ(H( jω)) = #»

ξ · #  »

N ′ > 0. For PCI with n > 1

lim
ω→0

ℜ(H( jω)) =β+ρ′ lim
ω→0

ωn cos(
#  »
CR (0),

#     »
L(0))

ω
=β> 0. (A.30)

It is therefore concluded that for systems with poles at the origin (i.e. L(s) = L′(s)

sn , n ≥
1, L′(0) 6= 0), β > 0. If L(s) does not have any pole at origin, β can be either positive or
negative. As a result, by Step 1 and Step 2, if Hypothesis (II) holds

∃ (β ∈R, ρ′ > 0) | ∀ ω ∈R+ : ℜ(H( jω)) > 0, (A.31)

and also, the claims in Remark 11 and Remark 12 are true.

Step 3: Since L(s) is strictly proper, it is possible to consider lim
ω→∞ |L| = |a∞+ j b∞|

|ω|n , n ≥ 2.

For GFORE, |CR | ≈ ωr

|ω| and aR ≈ ω2
r

ω2 for ω sufficiently large, hence, for n = 2 and setting
#   »

N ′′ = [a∞ ω2
r ]T , yields

lim
ω→∞ω

2ℜ(H( jω)) = (βa∞+ρ′ω2
r ) = #»

ξ · #   »

N ′′. (A.32)

In addition
#   »

N ′′ = lim
ω→∞

#»N (A.15)====⇒ θ1 ≤
#   »

N ′′ ≤ θ2. (A.33)

Thus, by Step 1, lim
ω→∞ω

2ℜ(H( jω)) = #»

ξ ·#   »

N ′′ > 0. For GFORE with n > 2, lim
ω→∞ω

2ℜ(H( jω)) =
ρ′ω2

r > 0. For PCI, lim
s→∞H(s) = ρ > 0. Hence, by Hypothesis (II), lim

s→∞H(s) > 0 or

lim
ω→∞ω

2ℜ(H( jω)) > 0.

Step 4: In order to show that the pairs (A,C0) and (A,B0) are observable and controllable,
respectively, it is sufficient to show that the denominator and the numerator of H(s) do
not have any common root. Let a0 + j b0 be a root of the denominator. Then

1+RL(a0,b0)+ j IL(a0,b0) = 0 ⇒
{

RL(a0,b0) =−1,

IL(a0,b0) = 0 ⇒ b0 =P(a0).
(A.34)

If the numerator does not have a root at a0 + j b0, then

β
(
1+RL(a0,b0)+ j IL(a0,b0)

)+ρ′ (RCR (a0,b0)+ ICR (a0,b0)
) 6= 0

(A.34)====⇒β 6= ρ′RCR (a0,b0) ∨ ICR (a0,b0) 6= 0.
(A.35)

For GFORE, by (A.35), this yields

β 6= ρ′ωr

a0 +ωr
∨ b0 6= 0, (A.36)

and for PCI

β 6= ρ′(a0 +ωr )

a0
∨ b0 6= 0. (A.37)
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Figure A.6: Spider stage

Therefore, by Step 1, (A.36) and (A.37), it is possible to find a pair (β,ρ′) such that H(s)
does not have any pole-zero cancellation.
Step 5: By Steps 1-4 and Hypothesis (I), we concluded that H(s) is SPR, and (A,C0) and
(A,B0) are observable and controllable, respectively. Hence, according to the Hβ condi-
tion [3, 7, 10], the system is quadratically stable. To complete the proof we have to show
that the system is UBIBS stable. In [3], it has been shown that, for GFORE and PCI , when
γ = 0 and the Hβ condition is satisfied, the system is UBIBS. If −1 < γ < 1, that proof is
true and the system is UBIBS.

Remark 13. Since this frequency-domain theorem is based on the Hβ condition, if one
of the conditions (I) and (II) is not satisfied, then the system is not quadratically stable.

A.4. ILLUSTRATIVE EXAMPLE

I N this section an example is used to show how Theorem 8 can be used to study stabil-
ity of reset control systems. For this purpose, the stability of a precision positioning

system [17] controlled by a reset controller is considered. In this system (Figure. A.6),
three actuators are angularly spaced to actuate 3 masses (indicated by B1, B2, and B3)
which are constrained by parallel flexures and connected to the central mass D through
leaf flexures. Only one of the actuators (A1) is considered and used for controlling the
position of mass B1 attached to the same actuator which results in a SISO system. This
positioning stage with its amplifier is well modelled by the second order mass-spring-
damper system [17] as following.

G(s) = 1.429×108

175.9s2 +7738s +1.361×106 (A.38)

In [17], a non-linear phase compensator, which is termed Constant in gain Lead in phase
(CgLp) (for more details see [15, 17, 34]), has been used to improve the performance of
the precision positioning stage. CgLp compensators, consisting of a lead filter and a
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Table A.1: Tuning parameters of controller (A.39) [17]

Tuning
Parameters

C1 C2 C3 C4 C5

Kp 0.070 0.163 0.201 0.197 0.183
γ 0 0.2 0.4 0.6 0.8
d 1.44 1.23 1.11 1.04 1.01
g 1.98 2.12 2.27 2.43 2.63

GFORE, have been utilized along with a PID controller to give the overall controller

C (s) = Kp

GFORE︷ ︸︸ ︷
�
�
���
γ

1
d s
ωc

+1


Lead︷ ︸︸ ︷( s
ωc

+1
s

10ωc
+1

)
︸ ︷︷ ︸

Reset Compensator

PI︷ ︸︸ ︷(
1+ ωc

10s

) Lead︷ ︸︸ ︷( g s
ωc

+1
s

gωc
+1

) Low−Pass︷ ︸︸ ︷(
1

s
10ωc

+1

)
︸ ︷︷ ︸

PID

. (A.39)

in which ωc is the cross-over frequency and Kp , γ, d , and g are tuning parameters. In
[17], five controllers with different values of Kp , γ, d , and g (see Table A.1) have been
designed to provide 45◦ phase margin at ωc = 200π(rad/s). This results in

Li (s) =

 Kp (
s

200π
+1)(10s +200π)(

g s

200π
+1)1.429×108

s(
s

200π
+1)(

s

200πg
+1)(

s

2000π
+1)(175.9s2 +7738s +1.361×106)

 , (A.40)

CRi (s) =
(

1
d s

200π +1

)
, (A.41)

Li (s) =CRL. (A.42)

As the reset element used in these controllers is a GFORE and Li have a pole at the ori-
gin, we use Definition 19 to assess stability. The properties of Nχ(ω) and NΥ(ω) for these
controllers are listed in Table A.2. On the basis of this table all of these reset control
systems are of Type I. To provide a better insight, the angels

#»N (ω) for these reset sys-
tems are plotted in Figure. A.7. As demonstrated by the figure, for all of these systems

θ1 ∈ (−π
2

,π), θ2 ∈ (−π
2

,π) and θ2 −θ1 < π, therefore, the condition in Remark 11 holds.

Furthermore, the base linear systems of these controllers are stable and do not have any
pole-zero cancellation in the open-loop transfer functions. Hence, by Theorem 8, all of
these controllers give UBIBS stable reset control systems.
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Figure A.7: ~N (ω) for the five considered reset control systems

Table A.2: Properties of ~N (ω) for the five considered reset control systems

Systems L1 L2 L3 L4 L5

L has a
pole at origin

Yes Yes Yes Yes Yes

M 279.2-6945.0 495.7-7090.7 630.0-7225.6 686.8-7354.4 718.3-7488.7
Q 80.9-256.3 80.7-370.2 81.2-398.9 81.8-388.1 82.6-368.0

Sign(NΥ(ω ∈M)) + + + + +
Sign(Nχ(ω ∈Q)) + + + + +

I3 ∅ ∅ ∅ ∅ ∅
δ1 <ψ1 0.11 < 0.44 0.12 < 0.45 0.14 < 0.47 0.18 < 0.61 0.34 < 1.42

Type (I) (I) (I) (I) (I)

In order to verify the results, the Hβ parameters for each reset system are listed in
Table A.3. As demonstrated by the table, the Hβ condition is satisfied which is consis-
tent with our conclusion. The step responses of the reset control systems are plotted in
Figure. A.8 which demonstrates the performances of these controllers. In summary, as
shown by Table A.2 and Figure. A.7, the proposed results allow us determining stability
of these reset control systems without computing values for the pair (ρ,β).

Table A.3: Pairs (ρ′,β) for the five considered reset control systems

Systems L1 L2 L3 L4 L5

Equivalent Hβ

(β> 0)
2.24 < ρ′

β
< 8.77 2.19 < ρ′

β
< 8.7.94 2.12 < ρ′

β
< 6.85 1.63 < ρ′

β
< 5.36 0.7 < ρ′

β
< 2.91



A

164 REFERENCES

0 0.02 0.04 0.06 0.08 0.1

Time (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
m

li
tu

d
e 

(
m

)

L
1

L
2

L
3

L
4

L
5

Figure A.8: Step responses of the five considered reset control systems

A.5. CONCLUSION

I N this chapter a novel frequency-domain method for determining stability properties
of reset control systems has been proposed. This method is based on the Hβ condi-

tion and it can assess stability of reset control systems using the frequency response of
their base linear open-loop transfer function. Consequently, this method does not need
an accurate parametric model of the system and solving LMIs. The effectiveness of the
proposed method has been illustrated by one practical example. This method may in-
crease usage of reset controllers in high-precision industry to improve performances of
control systems.
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B
THE OPTIMAL SEQUENCE FOR

RESET CONTROLLERS

Ali AHMADI DASTJERDI

Unlike linear controllers, the performance of reset control systems vary depending on the
relative sequence of their filers. In this appendix, the effects of sequence of filters on the
performance of reset control systems are investigated utilizing High Order Sinusoidal In-
put Describing Function (HOSIDF) method. Note that, since these results were obtained
before completing Chapter 3 and 4, the Hβ constraint was not considered for tuning reset
control systems in this appendix.

This appendix has been presented in European Control Conference (ECC 2020) [1].
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B.1. INTRODUCTION

P RECISION positioning is an important topic in the high-tech industry with applica-
tions such as photolithography machines and atomic force microscopes. In these

applications, nano-precision controllers with high bandwidth and stability are required
to ensure high production quality and speeds. PID controllers, which are one of the most
used controllers in the industry owing to their simplicity and ease of tuning, cannot fulfil
these control requirements due to their linear nature. This is explained by the water-bed
effect which confines the performance of linear controllers so that it is impossible to
achieve high bandwidth, stability and precision simultaneously [2–5]. Reset controllers
are a popular nonlinear alternative and have attracted a lot of attention from academia
and industry due to their simple structure [6–13].

Reset control is a nonlinear control strategy which was introduced in 1958. A tradi-
tional reset element resets its state/s to zero when the input signal crosses zero. Clegg
introduced the first reset controller by applying reset strategy on a linear integrator [6]. In
[14] and [15], reset controllers have been extended to First Order Reset Element (FORE)
and Second Order Reset Element (SORE) respectively, enabling greater tune-ability and
hence applicability in complex systems. Also, several additional strategies have been
developed to tune the degree of non-linearity of reset elements such as partial reset
and PI+CI [16–19]. Reset control has been used to introduce new compensators such
as CgLp, CLOC, etc. [11, 20–23].

One of the frequency domain tools for the study of nonlinear controllers is Describ-
ing Function (DF), in which the nonlinear controller output is approximated with the
first harmonic of Fourier series expansion. Although DF is widely used to analyze and
tune reset controllers as well, neglecting of the high order harmonics can be seen in the
deviation between expected and measured performance [21, 23]. To investigate the in-
fluence of high order harmonics in general nonlinear systems, the concept of high order
sinusoidal input describing functions (HOSIDF) was proposed in [24], which was applied
for reset controllers in [25].

The HOSIDF tool shows that the plant, as well as the linear parts of the controller,
influence the high order harmonics. Further, although traditionally the nonlinear re-
set element is placed to receive error signal as its input, changing the sequence of lin-
ear parts and nonlinear reset elements results in different high order harmonic shapes
which should result in different resetting laws and closed-loop performance. However,
the effects of this sequence on the performance of reset systems have not been investi-
gated so far. In this paper, the effects of different sequences of controller parts on the
performance of reset systems are studied using the HOSIDF tool. The best sequence is
selected from HOSIDF theory to achieve the highest precision while also ensuring the
lowest magnitude control input. This sequence is then tested for closed-loop perfor-
mance in simulation and on a high precision positioning setup.

In section B.2, relevant preliminaries of reset control and frequency domain tools
are presented. Theoretical investigation of different sequences of controller parts is pre-
sented in section B.3. In section B.4, the simulation results from closed-loop for the dif-
ferent sequences are analysed. The experimental results and conclusion are described
in sections B.5 and B.6, separately.
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B.2. PRELIMINARIES

B.2.1. RESET CONTROL

A general SISO reset element is defined by the following state-space equations according
to [10] as 

ẋr (t ) = Ar xr (t )+Br ur (t ), ur (t ) 6= 0,

xr (t+) = Aρxr (t ), ur (t ) = 0,

yr (t ) =Cr xr (t )+Dr ur (t ),

(B.1)

where Ar , Br , Cr and Dr are state-space matrices of the corresponding base linear sys-
tem, Aρ is the reset matrix determining the states’ value (xr (t+)) after reset action, ur (t )
is the input and is traditionally the error signal e(t ) and yr (t ) is the output. To simplify
the design of the reset element, reset matrix Aρ is often defined as a diagonal matrix as

Aρ = γInr ×nr , γ ∈ [−1,1], (B.2)

where nr is the order of the reset controller. Although several reset laws exist in literature,
we utilize the zero input crossing, i.e., ur (t ) = 0 as the reset law in this paper. To avoid
Zeno behaviour, two consecutive reset instants are prevented.
DF of the defined reset element for a sinusoidal input is obtained in [26] as

NDF =C T
r ( jωI − Ar )−1(I + jΘρ(ω))Br +Dr , (B.3)

where

Θρ =
2
(
I +e

πAr
ω

)
(I − Aρ)

π
(
I + Aρe

πAr
ω

)(
( Ar
ω )2 + I

) . (B.4)

In addition, HOSIDF for general reset elements are obtained in [25] as

Hn( jω) =


Cr ( jωI − Ar )−1(I + jΘρ(ω))Br +Dr , n = 1,

Cr ( jωnI − Ar )−1 jΘρ(ω)Br , odd n ≥ 2,

0, even n ≥ 2,

(B.5)

where n is the order of the harmonic.

The linear part of the controller which receives the error input is defined as CL1 and
the linear part following the reset element is defined as CL2 . This is as shown in Figure.
B.1. If the input of reset element is error (CL1 = 1), then it results in the zero error crossing
as introduced by Clegg. If the plant is defined as G , then the DF and HOSIDF of the open-
loop L is obtained as

Ln( jω) =CL1 ( jω)Hn( jω)CL2 (n jω)G(n jω). (B.6)
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e(t ) = a0 sin(ωt ) ur (t ) y(t ) =
∞∑

n=1
an(ω)sin(nωt +ϕn(ω))

Nonlinear Part

Virtual
Harmonic
Generator

e(t ) = a0 sin(ωt )

b0 sin(ωt +θ0)

b0 sin(2ωt +θ0)

b0 sin(nωt +θ0)

H1
b1(ω)sin(ωt +θ0 +θ1)

b2(ω)sin(2ωt +2θ0 +θ2)

bn(ω)sin(nωt +nθ0 +θn)

∑∑∑ y(t ) =
∞∑

n=1
an(ω)sin(nωt +ϕn(ω))H2

Hn
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Linear Part
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CL2

CL1 ( jω)

CL2 ( jω)
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an(ω)sin(nωt +ϕn)

b0 sin(ωt +θ0)

Figure B.1: HOSIDF Representation

B.2.2. PSEUDO SENSITIVITY FUNCTIONS
In linear systems, tracking error is obtained through sensitivity function which is defined
as:

e

r
= S( jω) = 1

1+L( jω)
(B.7)

where L( jω) is the open loop frequency response of the linear system. In order to get sen-
sitivity function of nonlinear systems, DF can be used to get L1( jω). However, DF only
considers the first harmonic. To take into account the influence of high order harmon-
ics, from a precision perspective, a pseudo-sensitivity function is defined for nonlinear
systems as the ratio of the maximum tracking error of the system to the magnitude of the
reference at each frequency. In other words,

∀ω ∈R+ : S∂(ω) = max(|e(t )|)
|r | , for t ≥ tss , (B.8)

where tss is the time when system reaches steady state and r is the amplitude of sinu-
soidal reference input. Since max(|e(t )|) is the summation error of all the harmonics, this
pseudo sensitivity function is more reliable than (B.7) for nonlinear controllers and will
be used for closed-loop performance analyses.

B.3. METHODOLOGY

I N linear controllers, the sequence of the different linear filters does not affect the per-
formance since they result in the same transfer function. However, when reset ele-

ments are used, the performance of the system can vary depending on the relative se-
quence of controller parts because the magnitude of high order harmonics depends on
the chosen sequence and this in-turn influences the closed-loop performance. As shown
in (B.6), while the DF (when n = 1) is not affected by the sequence, the magnitude of high
order harmonics of the whole controller are influenced by CL1 , CL2 and even the plant G .
Therefore, HOSIDF tool is used to investigate and compare the magnitude of high order
harmonics of different sequences.

In general, linear controllers can be divided into lead Clead and lag Cl ag filters. With
the inclusion of the reset element, resulting in three controller parts, there are six dif-
ferent sequences possible. However, if linear lead and lag elements are interchanged, no
difference will be seen in performance. Hence the number of sequences for investigation
reduces to four and these are listed in TABLE B.1.
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Table B.1: Different sequences of general case

No. Sequence nth order harmonic
1 Lead-Reset-Lag Cl ead ( jω)Hn( jω)Cl ag (n jω)G(n jω)
2 Lag-Reset-Lead Cl ag ( jω)Hn( jω)Clead (n jω)G(n jω)
3 Reset-Lead-Lag Hn( jω)Cl ead (n jω)Cl ag (n jω)G(n jω)
4 Lead-Lag-Reset Cl ead ( jω)Cl ag ( jω)×Hn( jω)G(n jω)

Based on the equations in TABLE B.1, the first harmonic (n = 1) or DF for all 4 se-
quences are the same. However, for high order harmonics, since lead filters are ascend-
ing functions in magnitude while lag filters are descending functions with respect to the
frequency, it is obvious that the first (No.1) and second (No.2) sequence has the smallest
and largest magnitude of high order harmonics, respectively.
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Figure B.2: The magnitude of the third order harmonic for different sequences of FORE

For a simple example, let us combine a FORE with a first-order lead filter (1+ s
ωd

) and

a first-order lag filter: (1+ωi
s ), with the magnitude of the third order harmonic for the four

different sequences visualized in Figure. B.2. It is clear that before ωi , the lag filter plays
a role so that No.1 and No.3 have a smaller magnitude of high order harmonics. After
ωi , the lag filter effect has been terminated and the lead filter comes into play, therefore,
No.1 and No.4 become smaller. In all range of frequencies, No.1 always has the smallest
magnitude while No.2 has the largest magnitude of high order harmonics. The other
two sequences are a trade-off between the extremes. Since the high order harmonics
deteriorate the closed-loop performance, the optimal sequence is hypothesized to be
the one with the lowest magnitude of high order harmonics. Based on HOSIDF theory,
we can say that the optimal sequence for reset systems results in all linear lead elements
preceding and all linear lag elements following the reset element i.e., No.1.

B.4. CLOSED-LOOP PERFORMANCE

T O validate our hypothesis and investigate the closed-loop performances of different
sequences, a Lorentz-actuated precision positioning stage is used as a benchmark.



B

172 B. THE OPTIMAL SEQUENCE FOR RESET CONTROLLERS

Figure B.3: Precision positioning stage actuated by a loud speaker

B.4.1. SYSTEM OVERVIEW
The system shown in Figure. B.3 consists of a mass guided using flexure cross hinge and
actuated by a Visaton FR10-4 loudspeaker. With a Mercury 2000 reflective linear en-
coder, the horizontal position of the stage is measured with a resolution of 100nm. The
controllers are implemented using FPGA module via compact RIO real-time hardware.
Figure. B.4 shows the frequency response of the system.
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Figure B.4: Frequency response of the system identification

This system is identified as a second order mass-spring-damper system with the
transfer function

P (s) = 1

1.077×10−4s2 +0.0049s +4.2218
. (B.9)

B.4.2. CONTROLLER DESIGN
For controlling this system, a Proportional Integration (PI) with a Constant in gain Lead
in phase (CgLp) compensator used. CgLp element is made up of a reset lag filter and a
corresponding linear lead filter as proposed in [21]. Consider a FORE and a linear lead
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part D as given below:

FORE(s) = 1

���
�: γ

s/ωr +1
, (B.10)

and

D(s) = s/ωd +1

s/ωt +1
, (B.11)

where ωr is the corner frequency of reset element, γ determines the reset value (as de-
fined in (B.2)), ωd and ωt are starting and taming frequencies of linear lead filter. By
tuning ωr = ωd /α, where α is a correction factor chosen according to [21], broadband
phase lead can be achieved in the range of [ωd ,ωt ] with constant gain (based on DF) as
shown in Figure. B.5.
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Figure B.5: The DF of a CgLp compensator

By replacing the D part of a traditional PID controller with a CgLp element, PI+CgLp
controller is defined as

ΣRC = Kp

(
1+ ωi

s

)
︸ ︷︷ ︸

PI

1+ s

ωd

1+ s

ωt


�
�
�
�
��
γ 1

s

ωr
+1


︸ ︷︷ ︸

C g Lp

, (B.12)

where ωi is the corner frequency of the integrator element, and Kp is the proportional
gain.

Based on the DF, controllers are designed to have the cross-over frequency ωc =
100Hz with 30◦ phase margin. γ is selected as zero (classical reset), and according to
[21, 27], ωd is chosen to be ωc /4, ωi =ωc /10 and ωt =6ωc , and correction factor α is taken
as 1.62 (ωr = ωd /1.62). Also, Kp is tuned to get the required cross-over frequency. The
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Table B.2: Tuning parameters of PI+CgLp controller

symbol parameter Value
ωc bandwidth 100 Hz
ωd corner frequency of lead filter 25Hz
ωt taming frequency of lead filter 600 Hz
ωr corner frequency of reset lag filter 15.43 Hz
ωi corner frequency of integrator 10 Hz
Kp proportional gain of the controller 3980

parameters of the controller are listed in TABLE B.2. A PI+CgLp consists of a lag ele-
ment (PI), a lead element (D) and a reset element (FORE). As TABLE B.1, four relative
sequences are to be considered.

B.4.3. CLOSED-LOOP PERFORMANCE ANALYSIS IN SIMULATION
The defined pseudo-sensitivity function of (B.8) is used to compare the closed-loop track-
ing performance in simulation. Disturbance and white noise are added to mimic a more
realistic situation as shown in Figure. B.6. Control elements are discretized for a sam-
pling frequency of 20 KHz. A disturbance signal between 0.5H z and 30H z which can
cause 10% positioning deviation is applied for all sequences to mimic floor vibration.
White noise with the magnitude of (1%− 3%) of the reference is considered to imitate
the noise present in the real setup. However, to consider the effect of noise on overall
performance, different levels of noise are used during simulation for analysis.

y(t )
C (z) Pl ant (s)++

++

−+

n

d

r (t ) e(t )

Figure B.6: Block diagram of closed-loop performance analyses

Sinusoidal signal is given as input at different frequencies and the maximum steady-
state value of |e(t )| was recorded and used to plot S∂(ω) with different levels of noise
as shown in Figure. B.7. Also, the DF sensitivity is plotted using DF of reset element
and linear sensitivity relation of (B.7). The first thing that should be noted is that the
DF based sensitivity is not appropriate at estimating closed-loop performance of any
of the sequences. Next, concerning the different sequences, as shown in Figure. B.7a,
the sequence Lead-Reset-Lag (No.1) has the smallest S∂(ω) at all frequencies when the
magnitude of noise signal is 0.1% of reference. When the magnitude of noise increases
to more than 1%, the performances of sequence No.1 and No.4 deteriorate at low fre-
quencies while the sequences No.2 and No.3 do not change a lot. This deterioration
in performance with the increase in noise amplitude can be explained by the fact that
both No.1 and No.4 have a lead filter before the reset element which amplifies noise
which is present at high frequencies. This amplified noise influences the zero crossing
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(b) Sensitivity with 1% noise
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(c) Sensitivity with 3% noise
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(d) Control output with 0.1% noise
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(e) Control output with 1% noise
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(f) Control output with 3% noise

Figure B.7: Pseudo-sensitivity functions and maximum control inputs with different level of noise

instants. This is especially true at low frequencies of the reference where the error signal
in the absence of noise and disturbances would be quite low. In the presence of am-
plified noise, noise starts dominating the combined error signal. As a result, the zero
crossings are dominantly determined by noise resulting in the performance deteriora-
tion seen. At higher frequencies especially aboveωd (25Hz), the error due to reference is
also amplified by the lead filter hence cancelling out the detrimental influence of noise.

In terms of the control input, since the maximum amplitude is important for avoid-
ing saturation, the maximum control input values at each frequency are compared for
all sequences. As shown in Figure. B.7e, Figure. B.7d, and Figure. B.7f, sequences No.2
and No.3 always have much larger control input compared with others. This is because
these two structures have a lead filter after the reset element. In these sequences, the re-
setting action which results in the output of the reset element jumping is fed to the lead
filter whose amplification of jump leads to large control input to the system. Since low
control input is preferred, the optimal sequence from a precision perspective is also the
optimal sequence from the control input viewpoint.

B.4.4. SHAPING FILTER
To attenuate the influence of noise, in sequence No.1 and No.4, a shaping filter Cs is
proposed whose output is used to determine the reset instants as shown in Figure. B.8.

CR
Cs

R(t )

Rs (t )

Figure B.8: Structure of shaping filter
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This shaping filter consists of a low pass filter (LPF) and a tamed lead filter. It is
represented as

Cs =
(

1

1+ s
ω f

)
︸ ︷︷ ︸

LPF

(
1+ s

ωc /a

1+ s
ωc a

)
︸ ︷︷ ︸

Lead

, (B.13)

where ω f is the corner frequency of the LPF,ωc is the bandwidth and a is a tuning knob.
The LPF plays the role of decreasing the magnitude of noise. However, the LPF also
introduces phase lag into the signal used for resetting, which changes the reset instants
and hence deteriorates performance. To compensate for this, a tamed lead filter is used.
The phase of LPF at bandwidth can be calculated by

φc =− tan−1
(
ωc

ω f

)
. (B.14)

To compensate for this phase change, the constant a is tuned such that

tan−1(a)− tan−1
(

1

a

)
=−φc . (B.15)

A smaller ω f results in greater noise attenuation, but a corresponding large value for a,
creating a magnitude peak due to the lead filter. As a trade-off, the corner frequency of
LPF is set as ω f = 2ωc , with the corresponding a = 1.62.

Considering the phase of this shaping filter as φ(ω), the HOSIDOFs of the reset ele-
ment with shaping filter are re-established using a similar process in [26] and [25] as

Hn( jω) =


Cr ( jωI − Ar )−1(I +e jφ jΘs (ω))Br +Dr , n = 1,

Cr ( jωnI − Ar )−1e jφ jΘs (ω)Br , for odd n ≥ 2,

0, for even n ≥ 2,

(B.16)

where

Θs =Θρ
(−Ar sinφ+ωcosφI

ω

)
.

The first and third order DF of the traditional FORE and the FORE with shaping filter
are shown in Figure. B.9. It can be seen that the shaping filter does not change the DF
significantly, but the magnitude of the third order harmonic is reduced after ω f .
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Figure B.9: The first and third order DFs of FORE and FORE with shaping filter
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The pseudo sensitivity S∂(ω) is obtained with the use of shaping filter for sequences
No.1 and No.4 and is shown in Figure. B.10 with 3% noise added. This shaping filter
drastically reduces the effect of noise and improves tracking performance. Although the
performance deteriorates slightly around the bandwidth, this will not affect the tracking
performance of trajectory signals in reality, where high-frequency components are often
pre-filtered out [28]. Simulation performance for noise levels larger than 3% showed
poor performance for the chosen shaping filter and hence are not shown. For larger
levels of noise, shaping filter with smaller ω f needs to be used. However, the 3% noise
level is already quite large for several precision positioning applications and hence this
technique can be successfully used in practice.
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Figure B.10: Sensitivity function with 3% noise when shaping filter is applied on sequence 1 and 4

In summary, the sequence No.1 has the optimal sequence for tracking performance
for noise signal up-to 1% amplitude compared to the reference. For larger noise levels, a
shaping filter can be used to attenuate effects of noise in the performance. Furthermore,
the sequence No.1 has the minimum control input among all possible sequences.

B.4.5. STEP RESPONSE
The step responses of different sequences are compared in Figure. B.11. It can be seen
that steady state error is seen when integrator (lag filter) is in front of the reset element
(the system is not asymptotically stable). Also, overshoot occurs when differentiator
(lead) is located after the reset element. Although putting the lead filter after the reset
element has less rise time than putting it before the reset element, both sequences have
the same settling time. From the time domain perspective, Lead-Reset-Lag (sequence
No.1) is still the optimal sequence.

B.5. EXPERIMENTAL VALIDATION

T O validate the simulation results, a series of experiments are conducted for all the
four sequences without any shaping filters. The maximum error values along with

the maximum control input values are obtained for five different frequencies of refer-
ence input. Further, to avoid problems due to control input saturation, different ampli-
tudes are chosen for the sinusoidal reference signals at different frequencies as given in
TABLE B.3. The amplitude of the noise in the system is found to be (100nm) for the exper-
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Figure B.11: Step responses of different sequences

iments. The maximum steady-state error signal (max(|e(t )|)) and maximum steady-state
digital control input are recorded in TABLE B.4 and TABLE B.5 respectively.

Table B.3: Magnitude of sinusoidal reference and the level of noise

Reference signal level of noise
Frequency(Hz) Magnitude (0.1µm) Percentage

1 100 1%
5 120 0.83%

10 120 0.83%
15 150 0.67%
20 200 0.5%

Table B.4: Maximum steady-state error of four different sequences

Reference max(|e(t )|) (0.1µm)
(Hz) No.1 No.2 No.3 No.4

1 15 73 14 15
5 37 78 56 40

10 42 73 67 48
15 54 84 86 54
20 55 97 86 55

The results in the tables validate the theory and simulation results as sequence No.1
provides the lowest error at almost all tested frequencies except at 1Hz, where No.3 has
a lower error. This is consistent with the simulation results since the noise level being
1% of reference amplitude at this frequency results in performance deterioration. In
addition, at 15H z and 20H z which are both more than ωi , the effect of the integrator

is vanished (
ωi

s
|ω>ωi ≈ 0). Consequently, the sequences No.1 and No.4 have the same

performance.
To check the effect of noise at low frequencies and the effect of shaping filter in over-
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Table B.5: Maximum steady-state control input of four different sequences

Reference Digital control input (count)
(Hz) No.1 No.2 No.3 No.4

1 486 26173 3103 1222
5 884 26806 12785 1513

10 941 24476 16972 1306
15 1364 25718 19539 1473
20 1677 27541 22038 1471

coming this problem, a different set of experiments is conducted at 1Hz with 3% noise.
Since sequence No.2 is the worst sequence in terms of both tracking performance and
control input as seen in Tables. B.4 and B.5, this sequence is not tested for and only
the performance of the other three sequences are compared in TABLE B.6. Without the
shaping filter, the performance of No.1 and No.4 significantly deteriorates, while the
performance of No.3 does not change a lot with an increase in noise levels. When the
shaping filter is applied, the performances of No.1 and No.4 are improved significantly
which means that the effect of noise is effectively suppressed. The efficacy of the shaping
filter is hence verified in practice.

Table B.6: Influence of shaping filter on maximum steady-state error

Configuration level of noise
max(|e(t )|) (0.1µm)

No.1 No.3 No.4
without shaping filter 1% 15 14 15
without shaping filter 3% 49 20 32

with shaping filter 3% 19 19 21

B.6. CONCLUSION

T HIS paper has proposed an optimized strategy for the sequence of controller parts
when a reset element is used. Firstly, the frequency responses of the different se-

quences were investigated by considering high order harmonics using HOSIDF theory.
The optimal sequence is hypothesized to be the one in which the magnitude of high
order harmonics is minimum. Next, the closed-loop performances of a high-tech posi-
tioning stage with PI+CgLp controller were analyzed in both simulation and experiment
for different sequences of controller parts. The results illustrate that when the magni-
tude of noise within the system is smaller than 1% of the reference signal, it is safe to say
that the suggested sequence has the best performance. Otherwise, the performance of
the suggested sequence will deteriorate at low frequencies. In this case, a shaping filter
is proposed to deal with the problem. It is revealed that this shaping filter attenuates the
influence of noise successfully and allows the suggested sequence to provide the best
tracking performance with up to 3% noise. In addition, the suggested sequence also has
the smallest control input, which provides greater flexibility for actuator choice/design.

These results can facilitate the use of reset controllers in a broad range of applica-
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tions in high-tech industry. Application of this approach for other kinds of nonlinear
controllers for improved performances is a promising topic for investigation in the fu-
ture.
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C
TOOLBOX

In order to facilitate using the developed non-linear loop-shaping, most of the compli-
cated relations of this thesis are embedded in a user-friendly toolbox which is produced by
Matlab. In this Appendix, a manual is provided to help how to use in this toolbox.
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Figure C.1: Developed toolbox based on the proposed theory

This toolbox, which is available through the PME’s website of Delft University of
Technology1, can be run in Matlab software (version 2018 or above). As it is shown in
Fig. C.1, it consists of seven panels which are elaborated in following.

• “Plant" panel: In this part, the transfer function of the plant is specified.

• “Control Setup" panel: In this panel, filters of both linear and non-linear parts of
the controller are tuned. Almost linear filters and reset elments consist of both zero
and non-zero reset values of FORE, SORE, and Clegg are available in this panel.
Note that the sequence of filters is the same as you entered in this part.

• “Open-Loop Analysis" panel: In this panel, it is possible to analyze the open-loop
of the reset control system in the frequency-domain considering high order har-
monics. It has to be noted that the Nyquist and Nichols plots in this panel are
depicted using the Df method.

• “Performances (DF)" panel: In this part, the open-loop margins of the system can
be observed in this panel. Note, all open-loop margins in this panel are calculated
using the DF method. Although these margins are not accurate, they give an in-
sight to the performance of the system.

1There is also a movie in the website which elaborates how to use the toolbox through one example

https://www.tudelft.nl/3me/afdelingen/precision-and-microsystems-engineering-pme/research/mechatronic-system-design-msd/msd-research/precision-motion-control/toolbox-frequency-analysis-of-reset-control-systems/
https://www.tudelft.nl/3me/afdelingen/precision-and-microsystems-engineering-pme/research/mechatronic-system-design-msd/msd-research/precision-motion-control/toolbox-frequency-analysis-of-reset-control-systems/
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• “Frequency Response" panel: After tuning the controller and analyzing it in the
open-loop, the frequency responses which have to be calculated are selected in
this panel. Also, the number of closed-loop HOSIDF and the frequency range of
the responses are set in this panel. Note, "DF" options in this panel approximate
the closed-loop frequency responses through the DF method.

• “Solving Properties" panel: In this panel, solving properties for calculating fre-
quency responses are set (for more details, read the help of toolbox).

• “Plot" panel: frequency responses which are selected in “Frequency Response"
panel and obtained by the proposed method can be depicted in this panel.
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