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Summary 

Design optimization is paramount for aerospace designs. High fidelity aerodynamic solvers are 

computationally expensive and should be summoned as little as possible with the best results as possible. 
Gradient descent optimization techniques are generally fast to find local minimum, but only explore a limited 

design space. Ideally the global design optimum is found with the least amount of aerodynamic solver calls.  
 

Surrogate model based optimization can be used to outperform gradient based optimizations for high 

dimensional and high fidelity complex problems. The quality of the surrogate model differs based on the 
parameterization, initial and sequential sampling plans and the surrogate model chosen.  

The goal of this thesis is to research the applicability of surrogate model based optimization for CST, Bezier-
Parsec and NURBS parameterization for transonic airfoil optimization. The surrogate models converged to 

better airfoil designs for all parameterization except Bezier-Parsec. Bezier-Parsec parameterization contains 

equations that are unfeasible for evaluating sampling plans. Higher dimensionality parameterization required 
more time, but generally created better airfoils.   

 
Five different sequential samplings have been researched. The LOLA-Voronoi and knowledge gradient of 

feasibility methods seemed most consistent for providing accurate surrogate models. Three different 

surrogate models have been researched. Ordinary Kriging generally outperformed GPML and RBF. Only when 
the sample size increased GPML starts to become competitive with Kriging. 

 
The surrogate model based optimizations were able to find significantly different design spaces and as a 

result were able to achieve better optima than SQP descent optimization could. The surrogate model based 
optimizations mostly required more time to converge to an optimum than the gradient descent methods. 

NURBS without weights provided more accurate surrogate models than without weights. The CST 

parameterization proofed most robust. Bezier-Parsec was unable to evaluate an initial sampling plan due to 
poor interaction with airfoil design space surrounding a flat leading edge camber curve.
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 Introduction 1

In today’s engineering world conceptual and preliminary designs are often created with the help of 
optimization strategies and algorithms. The ideal optimization strategy is able to find the global minimum with 

as little computational cost possible. Finding the global minimum is important as a better design results in a 
better final product. Reducing computational costs allow the engineers to evaluate more viable interesting 

designs in shorter time. This thesis focuses on airfoil shape optimization for drag minimization. The aim of the 

thesis is to increase the understanding of different optimization strategies and their applicability to airfoil 
optimization.  

 
Airfoil shape optimizations require aerodynamic solvers. Good quality aerodynamic solvers are 

computationally expensive. Airfoil optimization is subject to a thickness constraint and a pitching moment 
constraint. The aerodynamic solver obtains an airfoil design as input and calculates an angle of attack such 

that a set value for the lift-coefficient is achieved. The corresponding drag coefficient and pitching moment 

constraints are used for the objective function and constraint. The design parameters depend on the 
parameterization method used. 

The parameterization method has large influence on the design landscape and complexity of the problem. 
Different parameterization have different qualities such as the complex designs that can be created, flawed 

unfeasible designs that can be created, number of parameters that increase the dimensionality of the 

optimization problems and intuitiveness. Selecting a fitting optimization strategy is paramount for reaching 
successful results. 

 
Gradient descent optimization is often used for airfoil optimization. The descent optimization starts at an 

initial design and calculates gradient information. The gradient information is used to make a step towards a 

better design. This is repeated until a minimum is found. Whilst being a relatively fast optimization methods 
there are two main problems with this optimization strategy for high-fidelity complex problems. Gradient 

descent optimizations are highly reliant on the initial starting design and only explore a relative small part of 
the design space is explored before finding a minimum. 

 
Surrogate model based optimization is more useful when global optimization is performed. The optimization 

strategy used for this research works as follows: First an initial sampling plan is created. The design samples 

selected by the sampling plan are evaluated by the high-fidelity solver. A surrogate model is fitted through 
the evaluated sample points. The surrogate model estimates the objective function value with the parameters 

as input. The surrogate model is updated with sequential samples until a stopping criterion is met. 
The surrogate model is cheap and fast to evaluate. A genetic optimization is applied to the surrogate model 

that attempts to find the estimated global minimum. This estimated global minimum points towards 

interesting design space that will be investigated further by applying the same aforementioned gradient 
descent optimization. The gradient descent optimization is the final step and uses the estimated global 

minimum as initial starting point and uses the high-fidelity solver to find the estimated global minimum.  
The surrogate model based optimization strategy attempts to understand the full design space by the user 

and when done properly can result in fewer high-fidelity solver summons whilst finding a better design than 
gradient descent optimization can do.  

 

This thesis researches 3 parameterization methods, 5 sequential sampling strategies and 3 different surrogate 
models. The resulting surrogate models are validated with error analysis. The surrogate models with the most 

promising validation error scores are further optimized with the genetic optimization and gradient descent 
search. The final results are compared to a direct gradient descent optimization. The different optimizations 

are rated on robustness, efficiency, effectiveness and design space they converge to. 

Surrogate model based optimization has been researched before with regards to airfoils [1][2][3][4].  The 
research presented in this thesis adds to the field of research as multiple parameterizations are and 

sequential samples design are compared and researched. The main research question is formulated as: how 
applicable is surrogate model based optimization for different parameterization methods and what strategy is 

recommended regarding effectiveness, efficiency and robustness. 
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The thesis report is structured such that initially the required background information required for airfoil 
shape optimization is presented in chapter 2. Chapter 3 presents the airfoil parameterization techniques used. 

Chapter 4 describes how to build a surrogate model and presents the surrogate model methods used. 
Chapter 5 is the test case application chapter and describes how the research is performed and presents the 

results. A discussion is presented in chapter 6. Finally the conclusions and recommendations are given in 

chapter 7. 
 

At the end of the report the reader should have a clear understanding of how surrogate model based 
optimization works and which trade-offs should be made with regards to select an optimization strategy, 

airfoil parameterization, sampling plan and surrogate model in order design a successful optimization strategy 
for airfoil shape optimization.
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 Airfoil optimizations problem 2

Optimization problems require an objective function to minimize and are often subject to constraints. For 
airfoil drag optimization the objective function is defined as the normalized drag value shown in equation 1.  

The airfoil optimization is performed by setting the lift coefficient (Cl) to a specific value and the solver 
calculates the angle of attack (AoA). Two constraints are used for this optimization problem. Only the 

objective function and the pitching moment constraint require a high-fidelity solver. 

 
The first constraint is the thickness constraint shown in equation 2, the optimized airfoil should have not have 

a smaller maximum thickness due to fuel space. The second constraint is the pitching moment constraint 
shown in equation 3. The optimized airfoil should not have a larger pitching moment than the initial airfoil. 

The pitching moment should remain below 0 for stability reasons, but not get a larger negative value. Drag 
minimization optimizations usually have an active pitching moment constraint thus the stability criterion does 

not have to be forced.  

 
 

  
  

   
  (1) 

  
 

   
(                 )

          
 

 

  (2) 

                  
(      )

|   |
 

 

 (3) 

 
   ,           and     are the initial design drag coefficient, maximum thickness and pitching moment 

coefficient. These are different for each parameterization. Chapter 5.1 and 5.2 specify how the initial values 
are computed. 
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 Airfoil Parameterizations 3

Selecting an appropriate airfoil parameterization is important when considering optimization. This subsection 
initially explains some criterion to consider when selecting an airfoil parameterization. Afterwards the airfoil 

parameterizations selected for this research are discussed.  
There are 5 criteria to consider when selecting a parameterization technique for optimization techniques [5].  

 

 Parsimoniousness. Parsimoniousness depends on the amount of variables that are required to 

describe the airfoil. More parameters implies a larger dimensionality. Following the curse of 
dimensionality [6] a lower variable count can be paramount to an efficient optimization. 

 Completeness. A parameterization method that can cover a large design space is often able to create 

better and more complex airfoils. Keep in mind that being able to cover a large design space often 
goes hand in hand with the ability to create unfeasible uninteresting exotic airfoils. Evaluating these 

airfoils is computational waste. 
 Orthogonality. Orthogonality guarantees that each airfoil shape corresponds to an unique set of 

parameters. This is specifically important to reduce the computational time used for evaluating 

identical airfoils.  

 Flawlessness. A flawless method does not create faulty airfoil designs. Evaluating faulty airfoils can be 

considered wasteful. Reducing worthless design space is beneficial for surrogate model based 
optimization. 

 Intuitiveness. An intuitive method contains easy to understand parameters that relate to the airfoil 

created. Examples of intuitive parameters are leading edge radius and maximum thickness. With 
regards to optimization intuitiveness allows the user to set appropriate bounds on the parameters 

easier. 

 
This thesis researches three different airfoil parameterizations for surrogate model based optimization. The 

methods are Class-Shape Transformation (CST) [7], Bezier-PARSEC (BP) [8] and Non-Unirform Rotational B-
Splines (NURBS) [9].  

3.1 CST 

The CST method represents a two-dimensional geometry by the product of a class function,  (
 

 
), a shape 

function  (
 

 
) and a term that characterizes the trailing edge thickness. 
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)   (

 

 
)  
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)  (
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*  
 

 
+
  

        
 

 
   (5) 

 
Where for airfoil    = .5 and    = 1. 

To get to the shape function is based on weighted Bernstein binominals shown in figure 1: 
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Figure 1 - Bernstein Polynomials. [7] 

The values of the weighted factors are the design parameters. The order can be increased to increase the 
flexibility, completeness and accuracy.  

The CST method always produces smooth surfaces and flexible method such that it rarely creates faulty airfoil 

designs. A downside of the method is that any change made is felt over the entire airfoil, thus not allowing 
small local changes. 

 

3.2 Bezier-PARSEC 

There is a third degree Bezier curve and a fourth degree Bezier curve Bezier-PARSEC method. For this 
research the fourth degree Bezier curve method is used and is referred to as BP3434. BP3434 uses 10 

intuitive parameters and 5 Bezier parameters. The method has 15 parameters in total. Figure 2 presents a 

visual representation of the parameters. The Bézier-PARSEC method is a relatively new method [8] that has 
been developed to extend and improve the typical Bezier parameterization. The motivation for the 

development of this method is a reduction in nonlinear interaction of parameters and to have the parameters 
more directly linked to the objective function. This will enable the optimizer to converge more quickly. The 

Bezier-Parsec uses a second order continuity. There are 2 different Bezier-PARSEC methods.  
A fourth degree Bezier curve is given by: 

 

  ( )    (   )
      (   )

      
 (   )      

 (   )     
  (6) 

And 

 
  ( )    (   )

      (   )      
 (   )      

 (   )     
  (7) 
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Figure 2 - BP3434 Airfoil geometry and control points [8] 

 

The curves are presented in the following order: leading edge thickness curve, trailing edge thickness curve, 

leading edge camber curve and trailing edge camber curve respectively. 
The leading edge thickness curve control points are given by: 

 
     
     
       

       
      

     
      
      
      

(8) 

 

With bs limited to: 
 

         (   √         ) (9) 

 
The trailing edge thickness curve control points are given by: 

 
      
   (       

      )   
           

       
       
     

      
      
   (     )   
        (     )    (   ) 
        

(10) 

 
The leading edge camber curve control points are given by: 

     
      
      
      

     
        (   ) 
      
      

(11) 

 

The trailing edge camber curve control points are given by equation 12: 

 

      
   (         (   ))   
   (       (   )) 
       
     

      
      
         
       (     )    (   ) 
       

(12) 
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3.3 NURBS 

The NURBS parameterization creates a spline using B-spline basis functions and weighted control points [9].  

A p-th degree of B-spline basis functions and a vector-valued function given by: 

 
 

 ( )  ∑    ( )  

 

   

 (13) 

With 

 
    ( )  

    ( )  
∑     ( )  
 
   

 (14) 

 

Where Pi are the control points, ωi the weights of the control points, Ni,p are the p-th B-spline basis functions 

and y(x) is the position of a point on the curve. An airfoil created with NURBS geometry is presented in the 
figure 3. 

 
 

 

 
Figure 3 - NURBS Airfoil parameterization. [9] 

The basis functions are determined through a knot vector. The knot vector defines the break points of the 

function. The knot vector is in the form of: 
 

 *      ⏟    
 

                    +⏟    
 

 
(15) 

 

Increasing the order of the basis functions increases the order of continuity. With basis functions degree of 3 
all the curves will be C2 continuous outside of leading and trailing edge. 

The NURBS method provides accurate results for optimization for a variety of airfoils with 13 control points or 

less. For every control point there are 3 design variables namely x, y coordinates and the weighting factor. 
For typical transonic airfoils at least 13 control points are required. With 13 control points the amount of 

design variables for an airfoil is equal to 34 including the angle of incidence [9].   
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 Surrogate model building 4

This chapter addresses the theoretical background of building a surrogate model. The theoretical background 
is limited to the options used for this research. Firstly a surrogate model building scheme is presented. 

Section 4.2 presents the initial sampling strategy. Section 4.3 presents the sequential sampling plans. Section 
4.4 shows the surrogate models used. And finally the validation methods are shown in section 4.5.  

4.1 General surrogate model building 

To create a surrogate model various steps have to be performed. Figure 4 shows the surrogate model flow 

chart used by SUMO [10].  

Firstly sample points are generated with an initial sampling plan. The initial sample points are evaluated with 
the high-fidelity solver. A surrogate model is created using the initial training data. The surrogate model 

attempts to fit the data points accurately and estimates the objective function and constraint behavior at 
intermediate design space.  

The toolbox updates the model until it cannot improve the root relative square error of the model. If no 
stopping criterion is met an iterative process is started. The sequential sampling process places new points 

that are evaluated with the high-fidelity solver. The surrogate model is fitted to the new points and validated 

with root relative square error again until a stopping criterion is met. 
 

Figure 4 - Surrogate model building flowchart. [10]  
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4.2 Initial Sampling 

For initial sampling plans there are multiple options. Understanding the impact of the initial sampling plan on 

the rest of the surrogate model building helps with selecting an appropriate sampling plan. The initial 

knowledge on which the surrogate model and sequential sampling make decisions is based on the initial 
sampling. A good initial sampling plan gives the sequential sampling and surrogate modeling a good starting 

direction and provides good coverage over the chosen design space. A poor initial design provides poor 
information and the sequential sampling and surrogate modeling process will require resources to recover 

from this. The computational cost for a poor initial sampling plan is thus two-fold. The initial sample and the 

extra samples that are required to obtain the information the initial sampling plan should have provided. And 
due to the lack of information it might be troublesome for the sequential sampling plan to understand where 

to place samples to obtain the required information. 
 

A good spread of data points is preferred for the surrogate model to obtain a better understanding of the 
interactions between parameters and objective function. Depending on the problem formulation extreme 

corner points might be avoided as these are can be unfeasible designs. 

 
Two different initial sampling strategies are used. The space-filling Latin-Hypercube Design (LHD) [16] and a 

variation of LHD using a Translational Propagation algorithm (TPLHD) [11] are used. Latin-Hypercube Design 
divides the design space for each parameter in columns equal to the sample size. LHD sample plans can 

result in cluster of points and large portions of designs space left unsampled as seen in figure 5.  

TPLHD divided the design space in extra boxes following equation 16.  Figure 6 shows a TPLHD process with 
seed number ns set at 1, and the number of points, np at 16 for a dimensionality of nv of 2. 

 
    

  

  
 (16) 

 
With each dimension being partitioned into equal number of divisions nd given by: 

 
    (  )

     (17) 

 

The design than starts with 1 box and for each dimensional adjacent box the new sample point is placed on 
the next column respective to that parameter. The process is shown in figure 6. 

 

 
Figure 5 - Two different valid Latin-Hypercube Designs. [11] 
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Figure 6 - Stepwise procedure of TPLHD. [11] 

TPLHD requires more time to compute the optimal sampling design. Increased dimensionality results in 

ineffective computational times for the initial sampling plan. LHD is preferred over TPLHD for larger 
dimensional problems. 
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4.3 Sequential Sampling 

The selected method for sequential sampling is important as this process selects the new data points to fit 

the model through. An important trade-off when selecting a sequential design is the trade-off between 

exploration and exploitation. Exploration equates to covering the entire design space and sampling at 
unsampled design space. A sequential sampling plan that lacks exploration qualities is prone to miss 

interesting design space. Exploitation implies investigating a smaller design space, especially interesting and 
feasible design space should be exploited. Sequential sampling techniques without exploitation qualities risk 

misunderstanding complicated design space. 

 
Five different sequential sampling methods have been selected to research. Take note of the respective 

letters to the sequential sampling plans as the results will use these letters to refer to the sampling plan. 
 

 
A. LOLA-Voronoi 

LOLA-Voronoi sampling has exploitation and exploration qualities [12]. The exploitation is based on local 

linear approximations (LOLA). This approximation serves that less points are placed at linear predictable 
design space and more points are allocated at non-linear design space. The local linear approximation is the 
gradient of function   given by equation 18. 

 
 

 
   (

  

   
 
  

   
     

  

   
) (18) 

 
 

The gradient is estimated using least square regression on neighborhood samples. The difference between 

the actual location of neighborhood samples and the estimation through the gradient depicts the linearity. 
Only using exploitation as a sequential sampling method will result in a convergence at the highest initially 

estimated non-linear area. This is where the Voronoi criterion comes in, as it offers exploration qualities. The 
Voronoi tessellation estimates the cell size of all the samples. Samples with a large cell size have respectively 

much unsampled design space surrounding them and this design space is thus selected to be sampled. 
All points are ranked based on a weighted measure of the LOLA error and Voronoi cell size. The highest 

points are either in unsampled region, non-linear region or both. New points are then allocated to these 

regions and computed. 
 

 
B. Generalized Probability of Feasibility 

The generalized probability [13] of feasibility sequential sampling allows the user to specify a range for the 

objective function in which the selected samples are estimated to lie. This allows the user to exclude regions 
of exotic unfeasible airfoils. The generalized probability follows the Gaussian distribution using maximum 

likelihood to estimate the objective function.  
 

 

 
C. Expected Improvement 

Expected improvement [14] compares possible new points estimation with the current best evaluated point. If 
the evaluated point is expected to be better the point will be sampled. This method strongly depends on the 

initial samples location and objective function. The method maximizes equation 19. 
 

 
  {

    
   ̂( )     

   ̂( )    

                         
   ̂( )   

 (19) 

 

Expected improvement contains mainly exploitation qualities as unsampled areas are unlikely to be 
investigated. 
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D. Knowledge Gradient 

The knowledge-gradient policy uses the computed samples and model information to calculate where the 
next sample points should be located [15]. The samples are placed at locations that have the estimated 

largest information value for the surrogate model. The result is that knowledge gradient samples away from 
earlier sampled points and provides a good coverage in the process. The knowledge gradient is defined as 

 

 
 

       [
          ( )|    
                                      

]  
        ( )
                   

 (20) 

 

 
The sequential samples     are selected as the maximum over the knowledge gradient: 

   
           ( )

   
  (21) 

 

The Knowledge gradient has exploring and exploiting properties. The exploitation quality stems from the 
sampling in areas where   is maximized. The exploration qualities are obtained as it does not want to sample 

in places the method already sampled at.   
 

 
E. Default 

The default sequential sampling strategy is a mix between error based sampling and LOLA-Voronoi (30-70 

ratio). The SUMO toolbox allows for a mixture of sequential sampling with weights. The default recommended 
setting for this is error-based sampling with LOLA-Voronoi. LOLA-voronoi has been explained above. Error 

sampling tries to sample points where the error is the largest using 5-fold cross validation on a dense grid. 
The error method samples at location where the model error is estimated to be the largest [16]. The mixture 

of error and LOLA-Voronoi contains higher exploration qualities than LOLA-Voronoi has.  
 

4.4 Surrogate Models 

The surrogate model is used to estimate the objective function and pitching moment constraint based on 

parameter input. Three different surrogate models have been researched based on what is available in SUMO 

and recommended in literature. The surrogate models tested are Radial-Basis-Functions (RBF) [17], Kriging 
[17] and Gaussian-Process for Machine Learning (GPML) [18]. 

 
Radial-Basis Functions 

RBF consists of a weighted sum of simple functions that estimate the objective function. Examples of the 

functions used are listed below: 
 

Linear:  ( )    (22) 
Cubic:  ( )     (23) 

Thin Plate Spline:  ( )        (24) 

Gaussian:  ( )     
      (25) 

Multi-Quadric:  ( )  (    )    (26) 

Inverse Multi-  Quadric:  ( )  (    )     (27) 

 

The RBF is in the form of: 

 
 

 ̂( )      ∑  

  

   

 (‖   ( )‖) (28) 
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c(i) is the ith of nc basis function centers, ψ is an nc vector containing the values of the basis functions 

evaluated at the Euclidean distance between the prediction site x and the centers c(i). 
W still needs to be estimated which can be done through interpolating the following condition: 

 
 

 ̂( ( ))  ∑  

  

   

 (‖   ( )‖)   ( )         (29) 

 

One of the conditions to obtain a unique solution of the equation above is that nc = n. If c(i) = x(i) than the 

following equation can be derived. 
 

      (30) 
 

Where ψ is the Gram matrix defined as: 

 
       (‖ 

( )   ( )‖)           (31) 

 

The RBF model used for this research uses Gaussian, Multi-Quadric and an exponential basis functions. 
 

 

Kriging 
The main formula for the Kriging model is the basis-function depicted in equation 32. The Kriging method 

applied is ordinairy Kriging using maximum likelihood to estimate the hyper parameters. 
 

 

 ( )     [ ( ( ))  ( )]     ( ∑  |  
( )    |

  

 

   

) (32) 

 
Where Y(x) are random variables assumed to be the observed responses. The variance of the basis function 

can be controlled in each dimension in the design space by θj, the exponent can be varied in each dimension 

by pj. The parameters θj and pj are still unknown. They are chosen to be moving least squares. The natural 
logarithm of the likelihood without constant terms has to be maximized, this gives the concentrated ln-

likelihood function: 
 

 
  ( )   

 

 
  ( ̂ )  

 

 
  (| |) (33) 

 

With 
 

 
 ̂  

(    )    (    )

 
 (34) 

 

Where ψ is a n x n matrix of correlations between the observed data. With each element given by equation 
32. 

Because of the use of MLE of θj and pj for the parameter estimation some insight of the design landscape is 
obtained. A low value of pj indicates low correlation between points. A higher value for pj indicates correlation 

and continuity through the sample points. 

The parameter θj indicates how active and influential a sample point is. A low value indicates all sample points 
have high correlations. The parameter θj also helps determining which design variables are the most 

important and which variables are not. It is possible to eliminate the variables that have little influence. 
 

Now that θj and pj are estimated the function prediction at unknown x can be created. 

  ̂( )   ̂       (    ̂) (35) 

 
 



       

15 

 

Where 

 
 

 ̂  
      

      
 (36) 

 

Now that the model is known it is important to validate the surrogate model by computing a validation error. 
The moving squared error for a Kriging model is: 

 

 
  ( )    *         

        

    
+ (37) 

 
 

Gaussian-Process for Machine Learning 
GPML is similar to Kriging, however it uses the conjugate gradient in addition to the maximum likelihood 
estimate to calculate the hyper parameters,  , build the surrogate model. The marginal likelihood gradient is 

computed by equation 38. 
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With       , where K is the covariance matrix and y is the training data.  

 

4.5 Model Validation 

After the surrogate model is created three error measurements are taken. These give an indication of the 

models accuracy. However they are not waterproof, meaning that a model with poor error scores could 
outperform a model with good error scores. A good model score means it is more likely to have a good model 

fit. 
The three error measurements presented below are typical validation errors [19]:   

 
 Root-mean squared error (RMS) 

 
    √

 

 
∑(    ̂)

 

 

 (39) 

 Maximum absolute error (MAE) 

         (|    ̂ |) (40) 

 

 Root squared error (r2) 

 
     *

∑ (    ̂)
 

 

∑ (    ̅)
 

 

 + (41) 

 
For good models RMS and MAE should be as close to 0 as possible and r2 should be as close to 1 as possible. 

  



       

16 

 

 Test Case application 5

This chapter explains how the research is set up, which optimizations have been performed and presents the 
results. The surrogate model based optimizations are compared to a gradient descent optimization. Initially in 

section 5.1 a method to compare different parameterization is set up. Secondly in section 5.2 the 
aerodynamic solver settings are shown. Afterwards in section 5.3the gradient descent optimization settings 

are presented.  Section 5.4 shows the various surrogate models built for each parameterization, a selection of 

which surrogate models to further exploit and presents the further exploitation method. The results are 
presented in section 5.5. Section 5.6 compares the different optimization results for each parameterization. 

Finally section 5.7 presents a comparison on the airfoil parameterization results. 
 

5.1 Comparison of different parameterization 

To be able to compare the different parameterization techniques a common initial starting design is selected. 

The airfoil design of the REA2822 airfoil presented in figure 7 is selected. The different parametizations are 
fitted to the REA2822 and each respective fitting is used as initial design throughout the research. Initially the 

fitting method is explained and finally the results are given for CST, BP and NURBS. 

For CST 5 variants have been fitted to investigate the ability of curve manipulation compared to parameter 
count. The lowest CST variant has 10 parameters and the largest 18. Two variants will be selected based on 

their fitting error and corresponding parameter count. 
For BP the trailing edge gap is set to 0 such that the total amount of parameters is reduced to 14. 

NURBS is fitted with two variants. A weighted and an unweighted version with 7 upper curve control points 

and 7 lower curve control points. The unweighted version will be referred to as uNURBS. The weighted and 
unweighted variants have 35 and 21 parameters respectively. 

 
The fitting is performed in Matlab using the fminsearch function. The objective function is a squared error 

equation. This evaluates the distance between the y-values of the RAE2822 and the produced airfoil. The 

equation is shown below: 
 

 
  ∑(         )

 
 

   

 (42) 

 
Where n is equal to the amount of points that create the airfoil. J is the objective function of the fitting 
optimization.      are the REA2822 airfoil y values and      are the y values of the airfoil parameterization. 

The REA2822 airfoil including camber line is shown in figure 7. 
 

  
Figure 7 - REA2822 Airfoil with camber line [http://airfoiltools.com/airfoil/details?airfoil=rae2822-il]  
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5.1.1 Fitting results 

The results of the fitted airfoils are shown in table 1. Based on the CST fitting errors CST10 and CST14 are 

chosen for further investigation with regards to surrogate modeling. CST10 as it is the cheapest and CST14 as 

the fitting error does not further reduce significantly for the added parameters. The REA2822 fitted airfoils are 
shown in figure 8 to 12. 

 
Table 1 - Fitting errors 

Parameterization Fitting Error 
RAE2822 

Number of 
parameters 

CST10 1.02e-05 10 

CST12 8.21e-06 12 

CST14 2.76e-06 14 

CST16 1.93e-06 16 

CST18 1.82e-06 18 

BP3434 3.89e-06 14 

uNURBS  9.70e-07 21 

NURBS 1.07e-06 35 
 

 
CST10 

The CST10 fitted airfoil experiences some issues in following the upper and lower crest curvature. The lower 

aft concavity also shows to be problematic. This is an indicator for the lack of completeness of using CST 
method with 10 variables. The results should show if trade-off between parameters is worth the lack of 

completeness. 
 

 
 

 
Figure 8 - CST10 REA2822 Fitted airfoil 
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CST14 

The CST14 method has again a significantly improved fit over CST10. The larger curvature shows less blue 
indicating fewer errors. The CST14 method error is also reasonably closer to the error of the other methods, 

surpassing BP3434. The biggest visible blue lines are still at the lower side trailing edge concavity. The 
increased parameter count results in improved completeness. 

 

 
Figure 9 - CST14 REA2822 fitted airfoil. 

 

BP3434 

The BP3434 error is noticeably above NURBS and comparable to the CST14 method. BP3434 has added 
intuitiveness and a relatively low parameter count. The BP parameterization method creates a front and an aft 

part for the thickness and camber curve. The connection between these curves can result in a loss of 
continuity. 

 

 
Figure 10 - BP3434 REA2822 fitted airfoil. 
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uNURBS 
Surprisingly the unweighted NURBS variant outperformed the NURBS method with weights regarding fitting 

error. With 21 variables it has the best fit of all method presented in the report. There are no areas of the 
airfoil that seem to be problematic. The capability of the NURBS methods to locally manipulate the curve 

proves useful for completeness. 

 
 

 
Figure 11 - uNURBS fitted airfoil. 

 

NURBS 

NURBS obtained a slightly worse fit than uNURBS. The parameterization method has more local control and 
flexibility than the CST parameterization method has.  

 
 

 
Figure 12 - NURBS fitted airfoil. 
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5.2 Aerodynamic solver 

For aerodynamic optimization problems an aerodynamic solver is run numerous times. The 2D aerodynamic 

solver used is MSES [20]. The MSES solver has numerous options to analyze airfoils in different flow 

conditions. With MSES either the lift coefficient is computed for a static angle of attack, or the angle of attack 
is fitted to a specified lift coefficient. 

The solver is used with two different settings for two different reasons. Setting one is used once per 
parameterization on the best fitted REA2822 airfoils to obtain information on the lift coefficient that is used as 

baseline lift coefficient for setting two. 

Setting two takes the aforementioned lift coefficient as input and is used as high-fidelity solver for the 
optimizations. The angle of attack is set free in setting two. 

The input files used are presented in Appendix B. 
 

5.2.1 MSES setting 1 

The goal of setting one is to compute the flow surrounding the REA2822 best fit airfoils at an angle of attack 

of 2°. Each parameterization obtains slightly different aerodynamic values due to small differences in airfoil 
geometry. To be able to compare the different parameterizations the same lift coefficient should be achieved 

throughout the optimizations. The aerodynamic values for each parameterization with these flight settings are 

shown in table 2. The NURBS lift coefficient is chosen as baseline for the optimization as it the closest to the 
average.  

 
 

Table 2 - Best fit airfoil characteristics 

Method Cl Cd Cm t/cmax 

CST10 0.5987 0.0113 -0.0765 0.1208 

CST14 0.6134 0.0113 -0.0794 0.1209 

NURBS 0.6082 0.0113 -0.0786 0.1211 

uNURBS 0.6087 0.0112 -0.0784 0.1210 

BP3434 0.5971 0.0110 -0.0757 0.1209 
 

 
MSES Settings 1 

 

• M = 0.73 

• Cl is set free 

• Re = 2.7e6 

• far-field vortex strength,  

• AoA = 2°  

• LE stagnation.  

• LE & TE Kutta condition 

• S-momentum equation, with isentropic condition only near leading edge 

• vortex+source+doublet airfoil far-field BCs 

• Inviscid Calculations 

• Ncrit = 9 

• Forced transition at 0.01% of chordlength 

• Critical Mach number set to 0.99 (weak shocks) 

• The artificial dissipation coefficient = -1.0 (negative number disables 2nd order dissipation for better 

robustness. 
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5.2.2 MSES setting 2 

MSES settings two is used as high-fidelity solver for the optimizations. At each function evaluation the MSES 

takes the input of the current evaluation airfoil coordinates and the flow conditions Mach, Reynold and Cl into 

consideration and computes the corresponding angle of attack, drag coefficient, pitching coefficient and 
pressure distribution. The drag coefficient is used for the objective function, pitching moment coefficient is 

used for the second constraint and the pressure distribution is used for post analysis. 
The REA2822 fitted airfoils using Cl = 0.6082 produces and MSES settings two produce the initial values for 

the drag coefficient, maximum thickness and pitching moment coefficient used for the objective function and 

constraints. These values are shown in table 3. 
 

 
Table 3 – Aerodynamic values of initial design 

Parameterization Cdi t/cmax Cmi Cl AoA 

CST10 0.0114 0.1208 -0.0763 0.6082 2.0504 

CST14 0.0112 0.1209 -0.0793 0.6082 1.9728 

BP3434 0.0111 0.1209 -0.0757 0.6082 2.0565 

uNURBS 0.0113 0.1210 -0.0785 0.6082 2.0002 

NURBS 0.0113 0.1210 -0.0804 0.6082 1.9506 
 

 

 
MSES Settings 2 

 

• M = 0.73 

• Cl = 0.6082 

• Re = 2.7e6 

• far-field vortex strength,  

• freestream angle of attack,  

• LE stagnation.  

• LE & TE Kutta condition 

• S-momentum equation, with isentropic condition only near leading edge 

• vortex+source+doublet airfoil far-field BCs 

• Inviscid Calculations 

• Ncrit = 9 

• Forced transition at 0.01% of chordlength 

• Critical Mach number set to 0.99 (weak shocks) 

• The artificial dissipation coefficient = -1.0 (negative number disables 2nd order dissipation for better 

robustness. 
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5.3 Gradient descent optimization: 

To be able to compare the pros and cons of the surrogate model based optimization a gradient descent 

optimization is performed for each parameterization. The gradient descent optimization scheme is shown in 

figure 13. The optimization starts at the best fitted REA2822 aifoil. The gradient descent optimization tweaks 
the design variables and finds a design that has an improvement on the objective function. This process is 

iterated until a stopping criteria has been met which can be amount of iterations, time, stepsize or 
improvement increment.  

 

The gradient descent optimization is performed in Matlab using the fmincon function [21]. The settings for 
the optimization are shown in table 4. The initial starting is the REA2822 best fit. The upper and lower bounds 

are presented in appendix A.  
 

Table 4 - Gradient Descent optimization settings. 

Parameterization Algorithm DiffMinChange DiffMaxChange TolFun TolCon TolX 

CST10 SQP 1e-3 1e-2 1e-6 1e-3 1e-6 

CST14 SQP 1e-3 1e-2 1e-6 1e-3 1e-6 

BP3434 SQP 1e-3 2e-1 1e-6 1e-3 1e-6 

uNURBS SQP 9e-3 6e-2 1e-6 1e-3 1e-6 

NURBS SQP 1e-3 1e-2 1e-6 1e-3 1e-6 
 

The results for the various optimizations are presented in section 5.5.  
 

 
Figure 13 - Gradient Descent optimization flowchart. 
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5.4 Surrogate models based optimization 

Researching surrogate model based optimization requires several intermediate steps. Initially a large amount 

of surrogate models are created. Based on the validation errors of the created models a subset of models is 

selected for further optimization. The selected surrogate models are optimized with a genetic algorithm. The 
resulting estimated global optimum is then used as an initial design for a final exploitation using gradient 

descent optimization with the high fidelity solver. The entire surrogate modeling and surrogate model 
exploitation process is depicted in figure 14 on page 24. 

 

5.4.1 Surrogate models 

The surrogate model building is performed with the SUMO toolbox [10]. Several surrogate modeling options 

are explored in this research. These options are the sample size, sequential sampling plan and surrogate 
model.  The options researched per parameterization are portrayed in table 5. The objective function and 

pitching moment constraint use similar settings for each surrogate model.  
 

The Bezier-PARSEC parameterization method experienced robustness issues during the evaluation of the 
sample plan. These issues are addressed in subsection 5.4.2. As a result BP3434 is excluded from the 

surrogate model based optimization part of the thesis. 

 
Table 5 - Surrogate Models build. 

Parameterization CST10 CST14 BP3434 uNURBS NURBS 

Sample Size 5n, 10n, 
20n, 30n 

5n, 10n, 20n  N/A 5n, 10n, 
20n 

5n, 10n 

Initial Sampling TPLHD TPLHD N/A LHD LHD 

Sequential 
Sampling 

a, b, c, d, e a, b, c, d, e N/A a, b, c, d, 
e 

a, b, c, d, 
e 

Surrogate model RBF, Krig, 
GPML 

RBF, Krig, 
GPML 

N/A RBF, Krig, 
GPML 

RBF, Krig, 
GPML 

Total surrogate 
models 

60 45 N/A 45 30 

  
 

There is a difference in what sample size is researched per parameterization. This is due larger dimensional 

problems causing robustness issues with the SUMO solver with larger sample sizes.  
CST10 and CST14 are able to uses the TPLHD initial sampling strategy effectively. For uNURBS it required too 

much computational effort to find the optimal LHD through TPLHD. For 21 parameters 22 hours are required 
compared to the 5 minutes that are required for 14 parameters. For NURBS TPLHD is also unfeasible. 

 

All the presented sequential sampling methods and surrogate model options have been explored. By creating 
a large amount of surrogate models trends should appear more apparent than with smaller data sets. The 

sequential sampling methods are referenced by the letter they got appointed in section 4.3.  
 

The surrogate models are referenced in the following manner: parameterization method, sample size, 
sequential sampling and surrogate model. I.E. CST10 5n_a_Krig is a surrogate model build for CST10 using 

5n samples, LOLA-Voronoi as sequential sampling and Kriging to compute the surrogate model. 
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5.4.2 BP3434 

The intuitive Bezier-Parsec method created problematic airfoils throughout the sampling procedure. The third 

trailing edge camber control point created by equation 12 in chapter 3.2 shows the parameterization equation 

that leads up to the failure.  
 

Due to the interaction between the relative random sampling and the leading edge camber direction (γLE) of 
the RAE2822 the range for this value is too close to 0. The equation uses the cotangent of the leading edge 

camber direction. This causes a large sensitivity for the control point itself. The problematic control point 

often ends up in front or aft of the airfoil. This results in oscillations in the camber curve and thus the airfoil. 
The oscillation causes MSES to crashes which interrupt the surrogate modeling process. 

 
Figure 15 shows the thickness curve, camber curve and resulting airfoil of such a problematic instance 

respectively.  The red lines depict the position and order of the control points and the blue lines are the 
resulting curve. BP3434 performed worse than the other methods for the gradient descent search and the 

method could not handle the randomness in the sampling. For BP3434 the costs of intuitiveness seem to be 

disproportionate. For the method to work certain equation would require a rework or a different design space 
further away from flat leading edge camber curve needs to be explored. 

 
 

 
Figure 15 - BP3434 failure 
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5.4.3 Model selection criterion 

For each parameterization surrogate models are created with the different sample settings, sequential 

sampling plans and surrogate models. As a result 180 different surrogate models have been created for the 

objective function and the pitching moment constraint. Only a subset of these surrogate models can be 
further exploited. Some criteria has to be established based on which the eligible surrogate models are 

selected. This criterion is established in this section. 
 

Each different setting produces 6 validation error scores, three for the objective function model and three for 

the constraint model. The three different validation errors are the RMS, MAE and r2 errors as presented in 
section 4.5. All resulting error scores are available in appendix D. 

Comparing 6 data points per surrogate model setting is difficult. To reduce the amount of data required to 
select the surrogate models for further exploitation a comparison is made how well the objective function is 

understood compared to the pitching moment constraint. In figure 16 the RMS error for the objective function 
is plotted against the constraint validation errors. The x-axis shows the error scores for the objective function 

and the y-axis shows the error scores for the pitching moment constraint. 

By plotting the RMS errors against each other it becomes clear that for each tested setting the pitching 
moment is better understood by the surrogate models than the objective function.  This can be seen from the 

magnitude of the error score, a lower score is better for RMS.  
The same trend continues in figure 17 and 18 where the MAE and r2 errors are plotted against each other.   

 

This comparison shows us that the objective function surrogate models are the determining factor for a 
successful genetic optimization. Regardless of the surrogate models chosen the pitching moment constraint is 

better understood than the objective function. Thus the following subchapters will only compare the objective 
function validation errors to make a selection for further exploitation. 

Figure 16, 17 and 18 all show an extra trend. The surrogate models created with lower dimensional 
parameterizations are better understood. The extra parameters add design space and increase the complexity 

of the design space, which becomes more challenging for the surrogate models to understand. 

 
 

 
Figure 16 - RMS pitching constraint against RMS objective function 
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Figure 17 - MAE pitching constraint against MAE objective function 

 
 

 

 
Figure 18 - r2 pitching constraint against r2 objective function 



       

28 

 

5.4.4 Validation error analysis 

In this section a selection of surrogate models is made for each parameterization to further optimize. Per 

parameterization a selection is made for different sample size setting. The models with the best objective 

function validations errors for their respective sample size and parameterizations are eligible for further 
optimization. At each parameterization a table is given with their respective most promising surrogate models. 

 
For each parameterization 2 figures are shown. The first figure shows the MAE vs RMS validation errors. Both 

MAE and RMS scores are better towards 0, thus the better models are in the bottom left area. The second 

figure shows r2 versus RMS*MAE for the surrogate models. The RMS*MAE value can be used as both 
individual errors aim for lower scores. Hence the lowest score on RMS*MAE are the models that perform well 

for both RMS and MAE errors. Models with a r2 as close as possible to 1 generally perform the best. In figure 
20 the upper left corner contains the better model. Note that for readability not all error scores are contained 

in figures 19 to 26. 
 

CST 10 

Figure 19 and 20 show the objective function validation errors for the CST10 parameterization. The models 
with favorable error scores generally seem to be using either LOLA-Voronoi (a), Generalized probability of 

Feasibility (b) or default (e) sequential sampling. These models generally used Kriging or GPML. Specifically 
higher sample size surrogate models seem to be more accurate with GPML. Lower sample size models obtain 

better scores with Kriging. The selected surrogate models are portrayed in table 6. 

 
 

 
Figure 19 - CST10 MAE objective against RMS objective. 
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Figure 20 - CST10 r2 objective against RMS*MAE objective. 

 

The table below shows the models selected based on the error scores. In figure 19 the better models are in 
the bottom left corner and in figure 20 the better models are in the top left corner. 

 

 
Table 6 - Selected CST10 surrogate models. 

CST10 
Surrogate 
model 

    

5n 5n_a_Krig 5n_b_Krig 5n_e_Krig  

10n 10n_a_Krig 10n_b_Krig 10n_e_GPML  

20n 20n_a_Krig 20n_e_Krig   

30n 30n_b_Krig 30n_a_GPML 30n_b_GPML 30n_e_GPML 
 

 

 
CST14 

The error plots are shown in figure 21 and 22. The results of the exploited surrogate models are shown in 
table 7.  Surrogate models using RBF show more feasible for CST14 than CST10. Again mainly the sequential 

sampling plans of LOLA-Voronoi (a), generalized probability of Feasibility (b) and default (e) sequential 

sampling dominate the better error scores. In contrast to CST10 certain 5n sample size surrogate models are 
in comparable error wise to 10n and 20n models. One RBF surrogate model is selected as well. 
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Figure 21 - CST14 MAE objective against RMS objective. 

 

 
 

 

 
Figure 22 - CST14 r2 objective against RMS*MAE objective. 
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Table 7 - CST14 selected surrogate models. 

CST14 
Surrogate 
model 

    

5n 5n_a_Krig 5n_b_Krig 5n_e_Krig 5n_b_GPML 

10n 10n_a_Krig 10n_b_Krig 10n_e_Krig  

20n 20n_a_Krig 20n_b_GPML 20n_e_RBF  
 

 

uNURBS 
Likewise with CST10 and CST14 the better models for sample sizes 5n, 10n and 20n shown in figure 23 and 

24 have been selected for further exploitation. For uNURBS the combination of LOLA-Voronoi (a), generalized 
probability of Feasibility (b) or default (e) combined with Kriging seem to be the better models. The selected 

models for further optimization are shown in table 8. One model created with expected improvement 
sequential sampling is selected. 

 

 
Table 8 - uNURBS selected surrogate models. 

uNURBS 
Surrogate 
model 

    

5n 5n_a_Krig 5n_b_Krig 5n_d_Krig 5n_e_Krig 

10n 10n_a_Krig 10n_b_Krig 10n_c_Krig  

20n 20n_a_Krig 20n_b_Krig 20n_e_Krig  
 
 

 

 
Figure 23 - uNURBS MAE objective against RMS objective. 
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Figure 24 - uNURBS r2 objective against RMS*MAE objective. 

 

 

 
NURBS 

The error plots for NURBS are shown in figure 25 and 26. The selected surrogate models for further 
optimization are portrayed in table 9. NURBS with weights showed the most struggle to find successful 

surrogate models that managed to estimate the complex design space. The method also required significant 
amount of time to compute the hyper parameters and the surrogate model. The added time and inaccuracy 

of the models are unwanted side effects of the extra flexibility provided by the weight parameters. 

 
 

Table 9 - NURBS selected surrogate models. 

NURBS 
Surrogate 
model 

     

5n 5n_a_Krig 5n_b_Krig 5n_d_Krig 5n_e_Krig  

10n 10n_a_Krig 10n_b_Krig 10n_d_Krig 10n_e_Krig 10n_b_RBF 
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Figure 25 - NURBS MAE objective against RMS objective. 

 
 

 

 
Figure 26 - NURBS r2 objective against RMS*MAE objective. 
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5.4.5 Optimizing the surrogate model 

Optimizing the surrogate model is the final step to be taken to obtain an optimum design. The selected 

surrogate models are optimized with a genetic optimization. This results in an estimated global optimum. The 

estimated global optimum achieved is used as initial starting point for the final exploitation. The final 
exploitation performs a gradient descent optimization with the high-fidelity solver to find the true optimum in 

the appointed design space. 
 

Genetic optimization  

The selected surrogate models are further exploited. The goal of this step is to find design space that 
contains a possible global minimum. The resulting estimated global minimum is then used as initial input for 

the final exploitation.  
 

The surrogate model contains knowledge over the sampled design space and can estimate the objective 
function and pitching moment constraint in this design space. As the surrogate models are cheap to evaluate 

a genetic algorithm optimization can be performed.  

The genetic optimization starts with an initial population of 10n using parameter values matching the 
successful samples used to build the surrogate model. The algorithm uses the surrogate model to evaluate 

the fitness of objective function and pitching moment constraint values. The thickness constraint is evaluated 
as it does not require the aerodynamic solver and is not as computationally expensive.  

 

Genetic optimization uses crossover, mutation and selection to select a new population [21]. Crossover uses 
fit samples and the new generation maintains shared parameter values between fit samples. Mutation uses a 

fit sample and alters parameter values such that the next generation can be sampled in unsampled design 
space. And selection allows for successful points to be retained to the next generation. There is quite some 

randomness involved with selecting next generations. When unsatisfactory results emerge the genetic 
optimization can be rerun or the surrogate model can be rebuilt. 

 

The genetic optimization algorithm runs until 100n points are evaluated. After this stopping criteria is met the 
genetic optimization stops and the surrogate model is optimized to a possible global minimum. The optimum 

found from this step points towards design space that obtains an interesting minimum. The surrogate model 
genetic optimized minimum is used as input for the final exploitation step. 

 

Final Exploitation 
The final exploitation is performed with a gradient descent optimization using the high-fidelity solver. The 

estimated global optimum from the previous step is used as initial input. The goal of this step is to find the 
local minima in the design space pointed out by the previous step. The method used for this final exploitation 

is a gradient descent optimization using SQP as algorithm. The optimization setup is the same as the 

optimization described in section 5.3 with a different initial design input. The initial design is based on the 
result of the genetic optimization of the surrogate model. The converged optimum found by the final 

exploitation is the final result of the surrogate model based optimization.  
 

Sometimes surrogate model based optimization results in poor or unfeasible designs. This is likely caused by 
a poor design space found by the genetic optimization. The reason for a poor genetic optimization can be due 

to overfitting [22] or a poor surrogate model. Rerunning the genetic optimization can yield different results as 

it contains a lot of randomness. The other option is to salvage the surrogate model by adding more sequential 
sampling steps. The final option is to rebuild the surrogate model from scratch with different settings.  

 

  



       

35 

 

5.5 Results  

This section contains the results. Initially the results of the gradient descent optimization are shown. 

Afterwards the surrogate model based optimization results are shown per parameterization. The results 

shown are the objective function, drag coefficient, number of solver calls, angle of attack, computational time 
and plots of the pressure distribution and airfoils.  

 

5.5.1 Gradient descent optimization results 

The gradient descent optimization results are shown in table 10. Figure 27 and 28 show the resulting 
pressure distributions and airfoils. 

 The objective function value and drag coefficient optimum show the effectiveness. The solver calls and total 

time in combination with the objective function show the efficiency. The angle of attack tells something about 
the design space that the solution has been found in.  

Note that some parameterizations have a lower drag coefficient but a higher objective function. This is due to 
some slight differences in the REA2822 fitted airfoils. As a result the different initial designs operated at 

different angles of attack when computing the initial drag and pitching moment coefficients. 
 

Table 10 - Gradient descent optimization results. 

Parameterization Obj CD 
optimum 

# 
Solver 

AOA Time [min] 

CST10 0.9354 0.010664 233 2.47° 45.62 

CST14 0.9496 0.010635 204 2.47° 51,50 

BP3434 0.9603 0.010667 216 2.23° 40.29 

uNURBS 0.9404 0.010666 373 1.98° 75.71 

NURBS 0.9307 0.010541 1118 1.32° 174.16 
 
The largest difference between the CST and B-spline methods is found in how the lower curvature curves 

after the crest. The resulting pressure difference experience large difference at the lower side. 

The BP3434 upper side pressure distribution shows unusual behavior at the maximum thickness.  
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Figure 27 - Gradient descent optimized airfoil pressure distributions. 

 

 
 

 

 
Figure 28 - Gradient descent optimized airfoils. 
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5.5.2 CST10 Surrogate model optimization results 

The surrogate models selected in section 5.4.4 have been further optimized. Table 11 shows the results, 

figure 29 shows the pressure distribution and figure 30 shows the optimized airfoils. The objective function 

and drag coefficient show the effectiveness. The effectiveness combined with the number of solver calls and 
total time depicts the efficiency. The design space found is depicted by the figures and the angle of attack. 

 
Table 11 - CST10 surrogate model based optimized results. 

CST10 
Surrogate 
model 

Obj CD # Solver 
calls 

AOA Total Time [min] 

5n_a_Krig 0.9418 0.010737 225 2.54° 47.00 

5n_b_Krig 0.9302 0.010604 219 2.57° 40.19 

5n_e_Krig 0.9293 0.010594 223 2.60° 39.31 

10n_a_Krig 0.9413 0.010731 228 2.32° 40.83 

10n_b_Krig 0.9382 0.010695 332 2.52° 86.43 

10n_e_GPML 0.9378 0.010691 333 2.48° 80.59 

20n_a_Krig 0.9342 0.010650 400 2.59° 62.36 

20n_e_Krig 0.9377 0.010690 495 2.56° 84.08 

30n_b_Krig 0.9305 0.010608 536 2.45° 94.88 

30n_a_GPML 0.9368 0.010679 519 2.40° 135.73 

30n_b_GPML 0.9417 0.010735 479 2.66° 153.19 

30n_e_GPML 0.9388 0.010702 488 2.45° 85.56 
 
 

Interestingly all exploitation converged to relatively high angle of attacks. The results also shows that models 
with 30n samples do not necessarily provide better design spaces to exploit than models build with lower 

sample sizes. 
The best performing surrogate model is 5n_e_Kriging. With respect to objective function and time required. 

From figure 29 and 30 it shows that most of the optimized surrogate models found comparable design 

spaces.  
 

Figure 29 and 30 show that the different surrogate models converged to roughly the same design space. The 
differences in the upper side peak pressure, lower curve first halve and upper aft curve are noticeable. All 

CST10 airfoils experience pressure increment on the upper surface which looks like a separation bubble, 

which is interesting as a transition is already forced on the leading edge. The possibility of a weak shock 
could not be researched due to an unfortunate combination of time constraints and interface bug with the 

used windows MSES version. 
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gCST14 

Figure 29 - CST10 surrogate model optimized airfoil pressure distributions. 

Figure 30 - CST10 Surrogate model optimized airfoils. 
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5.5.3 CST14 Surrogate model optimization Results 

The surrogate models selected in section 5.4.4 have been further optimized. Table 12 shows the results, 

figure 31 shows the pressure distribution and figure 32 shows the optimized airfoils.  

 
Table 12 – CST14 surrogate model optimized results. 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

All the optimization seem to have converged to a lower angle of attack than CST10, but still higher than the 
initial 2.0°.  Specifically the surrogate model created with 10n, default sampling and Kriging performed much 

better than its peers. Especially considering the time required. The design space found by this model is similar 
to the converged design space by the gradient descent of the NURBS method considering the lower side 

pressure distribution. 

 
Appendix E shows that the genetic optimization of 10n_e_Krig required significant less time than the other 

CST14 surrogate models. The genetic optimization of CST14_10n_e_Krig stopped on solution convergence 
rather than time.  

 
Figure 31 and 32 show that the different surrogate models also found more varying design spaces compared 

to the CST10 method. The pressure distribution from the GPML surrogate model with 5n samples shows the 

largest deviation. 
 

CST14 
Surrogate 
model 

Obj CD # Solver 
calls 

AOA Total Time 
[min] 

5n_a_Krig 0.9459 0.010594 336 2.20° 73.60 

5n_b_Krig 0.9537 0.010681 334 2.42° 96.69 

5n_e_Krig 0.9486 0.010624 266 2.22° 76.05 

5n_b_GPML 0.9613 0.010766 221 2.40° 187.07 

10n_a_Krig 0.9517 0.010659 361 2.35° 183.85 

10n_b_Krig 0.9533 0.010677 332 2.15° 80.15 

10n_e_Krig 0.9279 0.010393 415 2.22° 69.58 

20n_a_Krig 0.9482 0.010620 525 2.07° 164.10 

20n_b_GPML 0.9425 0.010556 579 2.32° 100.55 

20n_e_RBF 0.9455 0.010590 473 2.32° 159.03 
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Figure 32 - CST14 surrogate model optimized airfoil pressure distributions. 

Figure 31 - CST14 surrogate model optimized airfoils. 
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5.5.4 uNURBS Surrogate model optimization results 

The surrogate models selected in section 5.4.4 have been further optimized. Table 13 shows the results, 

figure 33 shows the pressure distribution and figure 34 shows the optimized airfoils.  

 
Table 13 - uNURBS surrogate model optimized results. 

uNURBS Surrogate 
 model 

Obj CD # Solver 
calls 

AOA Total Time 
[min] 

5n_a_Krig 0.9376 0.010595 379 1.93° 76.73 

5n_b_Krig 0.9361 0.010578 362 1.63° 110.61 

5n_d_Krig 0.9336 0.010550 310 1.64° 71.05 

5n_e_Krig 0.9426 0.010651 261 1.53° 76.73 

10n_a_Krig 0.9693 0.010953 332 1.97° 370.23 

10n_b_Krig 0.9354 0.010570 698 1.57° 136.53 

10n_c_Krig 0.9295 0.010503 629 1.67° 370.22 

20n_a_Krig 0.9327 0.010540 796 1.81° 260.58 

20n_b_Krig 0.9327 0.010540 811 1.81° 240.45 

20n_e_Krig 0.9325 0.010537 835 1.52° 285.52 
 
The uNURBS surrogate model based optimization converged to lower angles of attack. Overall the results 

reached with uNURBS performed quite consistent in convergence to good performing airfoils.   

The outlier in the figures is 10n_a_Krig. It is also the only model with a significantly worse objective function 
compared to the other uNURBS optimizations.  
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 Figure 34 - uNURBS surrogate model optimized airfoil pressure distributions. 

Figure 33 - uNURBS surrogate model optimized airfoils. 
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5.5.5 NURBS Surrogate model optimization results 

The results for the NURBS parameterization are shown in table 14. Figure 35 and 36 show the respective 

pressure distribution and converged airfoils. 

 
 

Table 14 - NURBS surrogate model optimized results. 

NURBS 
Surrogate 

model 

Obj CD # Solver 
calls 

AOA Total Time 
[min] 

5n_a_Krig 0.9359 0.010576 707 1.38° 268.84 

5n_b_Krig 1.0963 0.012388 327 2.02° 184.92 

5n_d_Krig 0.9288 0.010495 857 1.64° 334.62 

5n_e_Krig 0.9280 0.010486 816 1.77° 246.35 

10n_a_Krig 0.9334 0.010547 1124 1.83° 481.78 

10n_b_Krig 0.9278 0.010484 1499 1.91° 437.53 

10n_d_Krig 0.9327 0.010540 828 1.90° 450.44 

10n_e_Krig 0.9755 0.011024 720 1.78° 450.04 

10n_b_RBF 0.9319 0.010531 1390 2.11° 479.14 
 

The NURBS method leaned the most on the SQP descent to converge to good scoring objective functions. 
NURBS found lower drag coefficient designs than the other parameterizations have. The added parameters 

allowed for extra pathways during the gradient descent optimization. The optimization converged to higher 
angles of attack than uNURBS. 

 

There is a lot more variance with the NURBS method than the uNURBS method. The increment in complexity 
caused by the added weights resulted in higher inconsistency in design space found by the genetic 

optimization of the surrogate models. Besides the larger amount of required training data the added weights 
resulted in significant longer computational time required for the model building and the genetic optimization. 
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  Figure 36 - NURBS surrogate model optimized airfoil pressure distributions. 

Figure 35 - NURBS surrogate model optimized airfoils. 
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5.6 Comparison of optimization methods 

This section compares the result found for each parameterization with the different optimization strategies. 

The gradient descent results are compared to the better surrogate model based optimization results. The data 

as section 5.5 is used. 

5.6.1 CST10 

The best performing surrogate model for CST10 is the model build using a minimum of 50 samples, 15 
samples for the initial TPLHD sampling plan and 39 sequential samples to build a Kriging surrogate model. 

The sequential sampling has been performed with a mixture of error and LOLA-Voronoi sampling (30-70 ratio 
respectively). The results are repeated in the table 15, figure 37 and figure 38. Unexpectedly the surrogate 

model based approach required less computational time than the gradient descent method. 

 
Table 15 - CST10 optimization result comparison 

Optimization 
CST10 

Obj CD  # 
Solver 

AOA Time [min] 

Gradient 
descent 

0.9354 0.010664 233 2.47° 45.62 

5n_e_Krig 0.9293 0.010594 223 2.60° 39.31 
 
The results show that the surrogate model approach has outperformed the gradient descent method in terms 

of effectiveness and efficiency. The surrogate model converged to a different design space than the gradient 
descent method. A higher peak pressure, smoother upper side pressure increase and a larger curve on the 

lower side. 
 

 
Figure 37 - CST10 optimized airfoil pressure distribution comparison. 
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Figure 38 - CST10 optimized airfoil comparison. 

 

The difference in pressure distributions shows that roughly the same design space is found with regards to 

the shape of pressure distribution. The surrogate model based optimized airfoil (left) finds a steeper peak at 

the leading edge and slightly more extreme division of front and aft loading. The CST methods parameters 
effect the full curve. The characteristic lack of local control shows at the thickest point of the airfoils, where 

an increase in pressure at the upper surface is noticeable.  

5.6.2 CST14 

CST14 managed to find an impressive minimum through surrogate model based optimization. The 10n 
sample, default sequential sampling combined with Kriging performance is unparalleled by any of its peers.  

 
Table 16 - CST14 optimization result comparison 

Optimization 
CST14 

Obj CD  # 
Solver 

AOA Time [min] 

Gradient 
descent 

0.9496 0.010635 204 2.47° 51,50 

10n_e_Krig 0.9279 0.010393 415 2.22° 69.58 
 

Figure 39 and 40 shows the different pressure distributions and airfoils. The surrogate model optimized airfoil 
shows a steeper peak pressure on the upper side leading edge and a smoother pressure curve on the lower 

side. The lower crest also moved forward. The difference in upper pressure distribution between CST10 and 
CST14 is noticeable. CST14 managed to smooth out the upper side pressure distribution kink. The added four 

parameters seem to be worth the computational cost.  
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Figure 39 - CST14 optimized airfoil pressure distribution comparison. 

 

 
 

 

 
Figure 40 - CST14 optimized airfoils comparison. 
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5.6.3 uNURBS 

The unweighted NURBS surrogate model optimization showed a variety of results. The NURBS methods 

required significantly more time for the genetic optimization of the surrogate model.  The distribution of time 

for the different steps are presented in appendix E. There are two reasons why this step required significantly 
more time compared to the respective step for the CST10 and CST14 method. The first reason is a larger 

parameter count. The second reason is the difference in computational time for creating a NURBS airfoil 
compared to a CST airfoil. When more computationally expensive aerodynamic solvers are being applied the 

time difference will shift in favor of the surrogate model based optimizations. 

 
Table 17 - uNURBS optimization result comparison 

Optimization 
uNURBS 

Obj CD  # 
Solver 

AOA Time [min] 

Gradient 
Descent 

0.9404 0.010666 373 1.98° 75.70 

5n_d_Krig 0.9336 0.010550 310 1.64° 71.05 

10n_c_Krig 0.9295 0.010503 629 1.67° 370.22 

20n_e_Krig 0.9325 0.010537 835 1.52° 285.52 
 

     

 

The Kriging surrogate model with 10n samples, expected improvement and Kriging found the best optimum. 

However the computational time is the highest, most of the computation time (222 minutes out of 370 
minutes) was used for the genetic algorithm optimization for the surrogate model.  

The surrogate models present in table 17 all show significantly improved objective functions at a variety of 
design spaces that the gradient descent method could not explore.  

 

The uNURBS SM optimized airfoils converged to airfoils that generally have a smoother upper pressure 
distribution seen in figure 41. The airfoil with best objective function also shows the smoothest lower surface 

pressure gradient. The uNURBS airfoils have more local control compared to the CST methods. This allows 
the method to obtain a smoother upper surface pressure gradient as it can locally manipulate the surface to 

improve the objective function. 

 

 
Figure 41 - uNURBS optimized airfoil pressure distribution comparison. 
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Figure 42 - uNURBS optimized airfoils comparison. 

 

5.6.4 NURBS 

The NURBS parameterization has the most flexibility of all the methods researched. The acquired optima have 

the lowest drag coefficient values. The gradient descent and surrogate model based optimization results are 
shown in table 18 and the resulting airfoils and pressure distributions are shown in figure 44 and 43.  

 
Table 18- NURBS optimization result comparison 

Optimization 
NURBS 

Obj CD  # 
Solver 

AOA Time [min] 

Gradient 
Descent 

0.9307 0.010541 1118 1.32° 174,16 

5n_e_Krig 0.9280 0.010486 816 1.76° 246.35 

10n_b_Krig 0.9277 0.010484 1499 1.91° 437.53 
 

The design space found by the gradient descent and the surrogate models is judging from the pressure 
distribution not wildly different as other parameterization methods experienced. This also shows the strength 

of the weights for gradient descent optimization. The weights add extra dimensional pathways to better a 
better optimum. The reduction in orthogonality can work is a pro for gradient descent, but as a con for 

surrogate modeling. 

 
5n_e_Krig required significantly less solver calls compared to the gradient descent method, but required more 

computational time. Computing the surrogate model at each sequential sampling stage and the genetic 
optimization required 38 and 120 minutes respectively. 
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Figure 43 - NURBS optimized airfoil pressure distribution comparison. 

 
 

 

 
Figure 44 - NURBS optimized airfoil comparison 

 

 



       

51 

 

5.7 Comparison of parameterization results 

As a final data comparison the best results from the various optimizations are shown. This comparison 

showcases the influence of selecting a parameterization method on the results. Table 19 shows the result 

data and figure 45 and 46 show the pressure distribution and airfoils respectively. The CST14 method 
produced the airfoil with the least drag. 

 
Table 19 – Surrogate model optimized results. 

Parameterization 
Optimization 

Obj CD # 
Solver 

AOA Time [min] 

CST10        
5n_e_Krig 

0.9293 0.010594 223 2.60° 39.31 

CST14      
10n_e_Krig 

0.9279 0.010393 415 2.22° 69.58 

uNURBS  
10n_c_Krig 

0.9295 0.010503 629 1.67° 370.22 

NURBS    
10n_b_Krig 

0.9277 0.010484 1499 1.91° 437.53 

 
The CST parameterization method requires significantly less time to converge to an optimum than the NURBS 

methods. The increment in variables increase the computational time required in three ways. Firstly more 
solver calls are required when building the surrogate model and when performing the final gradient descent 

search. Secondly computing the hyperparameters of the surrogate models requires more time at each 

sequential sampling stage. And thirdly the genetic optimization requires more time for higher dimensional 
problems and becomes less likely to find a global optimum. 

 
Figure 46 show that the CST airfoils converged with a deeper lower side crest than the NURBS airfoils did. 

Due to robustness issues the parameter range on the NURBS airfoil had to be restricted in that area, hence 

that particular design space might not have been available to the NURBS methods. This can also explain why 
CST14 managed to find a better performing airfoil than the NURBS parameterization methods.  

Regardless of the specific bounds the CST methods kept converging to airfoils above the initial 2° angle of 
attack and the NURBS method kept generally converging to lower angles of attack.  
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Figure 45 - Surrogate model optimized airfoil pressure distributions. 

 

 

 
Figure 46 - Surrogate model optimized airfoils. 
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 Discussion 6

This chapter provides a discussion based on the results and experienced gained throughout the research. The 
discussion starts in section 6.1 with the effect of the parameter range. Afterwards the a discussion is 

presented in section 6.2 on the different optimization strategies with regards to effectiveness, efficiency, 
robustness, feasibility and the dependency of the initial design. Section 6.3 provides an in-depth discussion on 

the different sampling strategies researched. Section 6.4 discussions the pros and cons of the different 

parameterization methods with regards to optimization. And finally the effect of the sample size is discussed. 

6.1 Parameter range 

The parameter range set for the parameterization methods is set by an upper and lower bound. This range 
depicts the design space in which the optimization methods operate. The larger design space influences 

surrogate model based optimization differently than how it influences gradient descent optimization. These 
influences are hypothetical as no data proofing these influences has been collected in this research; however 

the influence is scarcely mentioned in papers but important enough to warrant its own discussion section.  
First the interaction between parameter range and gradient descent optimization is discussed, afterwards the 

interaction with surrogate model based optimization and the possible influence on the results are discussed.  

 

6.1.1 Parameter range influence on SQP optimization 

When setting bounds for gradient descent optimizations the user can keep the design space quite large 
without much downside. This does not include bounds that need to be set for manufacturing reasons etc. 

Generally the gradient descent will not converge to unfeasible designs and limits on bounds are not always 
reached. Hence a large parameter range just increases the design space in which the optimizer can operate, 

which may or may not be used without extra costs. Unfeasible design space that is included in the large 

parameter range is usually not converged towards.  
 

The downside for a wide parameter range for gradient descent optimization happen when the optimizer finds 
a very good correlation between one parameter and the objective function and this parameter keeps 

converging to extreme values. This causes the optimizer to delve deep into a design space that might or 

might not be good. In these cases the user can adjust bounds to prevent this from happening.  
 

6.1.2 Parameter range influence on SM based optimization 

The influence of the parameter range is larger for surrogate model based optimization. The user sets a 

certain design space surrounding the initial airfoil with the parameter range. The surrogate model building 
process aims to understand the design space set by the user. A larger design space brings to problems for 

the surrogate model two understand the correlation between parameters and objective function. Not only 
does the surrogate model contain fewer samples per design space, but a larger design space is more likely to 

include complex unfeasible design space that the surrogate model is trying to understand.  

 
The impact of fewer samples per design space is fairly straight forward to understand. Larger design space 

per sample reduces the accuracy of the overall model as there are relatively larger unexplored design spaces 
between the samples. 

 

The influence of including extra unfeasible design space with high complexity influence can be more 
detrimental to the surrogate model building process depending on the sampling strategy chosen. For example 

LOLA-Voronoi sequential sampling places samples at non-linear design space. For airfoils unfeasible complex 
design space is often non-linear. This can result in an unnecessary large portion of samples being located in 

unfeasible design space. Besides these samples being computational waste they also influence the surrogate 
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model. The surrogate model might build itself to understand the unfeasible design space at the cost of 

accuracy on interesting design space. 
 

Both of these influences are difficult to predict without knowledge on the design space beforehand. The 
influences are also different for different parameterization and difficult to measure. The parameter range 

chosen should be a conscious trade-off between computational efficiency, surrogate model quality and the 

wanted size of the design space.  
 

Higher dimensional problems should experience more problems with large parameter range as the added 
design space per parameter is increased among all dimensions.  

 

6.1.3 Parameter range used for this research 

The parameter range used for this research, presented in appendix A is, in hindsight, on the large side. The 
bounds used for the gradient descent were quite large to widen the design space. The same bounds were 

initially applied to the surrogate model building process. Besides fine-tuning to avoid crashes from unfeasible 

designs the bounds have been largely kept the same.  
 

A smaller parameter range can lead to different results and conclusions due to the aforementioned influences 
of the parameter range on the surrogate model building process. The effect of this influence depends on the 

sequential sampling space. Some discussion is presented below on how these effects interact with the results 

presented in this thesis. 
 

The effect of larger design space per sample should have a negative effect on the quality of the surrogate 
models. LOLA-Voronoi sequential sampling is equipped to deal with large unsampled design space as the 

Voronoi cell strategy offers exploring qualities. Hence all the models with an A or an E suffer respectively less 
from this effect. Surrogate models created with Generalized Probability of Feasibility (B), Expected 

Improvement (C) and Gradient Knowledge (D) are more dependent on the initial sampling plan and should 

experience more loss in quality as the limited information per design space is not counteracted by explorative 
qualities that LOLA-Voronoi offers. 

 
The effect caused by inclusion of unfeasible complex design space implies that the following models can 

perform better than they did based off the results.  

The surrogate models created with LOLA-Voronoi (A), Knowledge Gradient (D), and the mixture between 
error and LOLA-Voronoi (E) all can suffer in quality from the inclusion of highly non-linear unfeasible design 

space. The surrogate models with Knowledge Gradient should suffer less than the LOLA-Voronoi models as 
Knowledge Gradient locate samples at favorable gradients and LOLA-Voronoi would explore the design space 

in favorable and unfavorable direction surrounding complex unfeasible design space. Generalized Probability 

of feasibility (B) and Expected Imporvement (C) would not exploit sampled complex unfeasible design space 
further. And experience less loss in surrogate model quality as a result for this effect. Specifically generalized 

probability of feasibility managed provide good design space coverage by excluding probable unfeasible 
design space. 

 
Overall it is difficult to pinpoint which models experience larger penalties and in which quantity from the 

relatively large parameter bound used. Throughout the results LOLA-Voronoi based sampling and generalized 

probability of feasibility performed the most consistent in creating models with good fitting errors. This could 
very well be due to the explorative qualities from the LOLA-Voronoi that explore the large unsampled design 

space between samples that the other sampling methods were struggling with. This in turn makes LOLA-
Voronoi (A) a good sequential sampling strategy for when the design landscape is unknown.  
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6.2 Surrogate model optimization versus gradient descent optimization 

From the results it shows that the surrogate model based optimization found better designs than the gradient 

descent method did. However this is not the only criteria an optimization strategy should be chosen. The best 

design is the goal of an optimization but it is always a trade-off between costs and results. This subsection 
discusses effectiveness, efficiency, robustness and feasibility. 

 

6.2.1 Effectiveness 

Effectiveness describes how effective the method is for obtaining the best optimum. Since chapter 5 showed 
that all parameterization techniques obtained lower drag values with the surrogate model based approach. It 

is safe to say the effectiveness for surrogate model based optimization is higher than the gradient descent 

optimization.  
 

The main reason why surrogate model based optimization is more effective than gradient descent 
optimization for airfoil drag optimization is due to the complexity of the problem. Gradient descent 

optimization only explores a very limited part of the design space before it gets stuck in a local minimum and 
is heavily reliant on the initial starting design. Table 11 shows various optima found for the CST10 method. 

The different results show that each different starting point provided a different optimum. The different 

converged minima show the complexity of the design landscape and how important the initial starting design 
is for gradient optimization. 

 
The ability to explore larger sections of the design space is paramount to the successful results of the 

surrogate model based optimizations. Besides better objective function value the added benefit of exploring 

different designs allows an engineer gain extra insight in the problem and re-adjust 
constraints/bounds/problem formulation avoiding mistakes that could have gone undetected otherwise. 

 

6.2.2 Efficiency 

Finding a good optimum with minimal computational costs equates to an efficient optimization strategy. The 
surrogate model based method had different results regarding the efficiency criteria. Chapter 5 shows that 

CST10, CST14, uNURBS and NURBS all found a better optimum with surrogate model based optimization. The 
gradient descent method showed to be generally faster.  

 

The surrogate models build with 5n training data for CST10 and CST14 performed competitive time-wise with 
the gradient descent optimization. uNURBS and NURBS required more computational time for evaluating the 

hyperparameters at each sequential sampling stage and the genetic optimization.  
The increment in time required for the genetic optimization is due to the larger dimensionality and the 

increased cost of computing a NURBS airfoil compared to a CST airfoil.  

 
The time efficiency can shift more towards surrogate model based optimization when more expensive solvers 

are being applied. As the computational effort for the evaluating hyperparameters and genetic optimization 
become a smaller fraction of the total computational time. 

 

6.2.3 Robustness 

A robust method does not create errors or crashes. With regards to robustness the gradient descent 

optimization is better than the surrogate model based optimization. The randomness involved in the sampling 
process can create unfeasible/crash worthy designs. uNURBS and NURBS both required tweaking to their 

bounds to avoid the lower and upper surface to stop crossing near the trailing edge. These problematic 
airfoils were resulting from unfavorable stacking of parameters, where the control point coordinates and 

weight all manipulated the curve in the same direction.  
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BP3434 succeeded to run a gradient descent search, but failed to evaluate the initial sample plan regardless 
of tweaks made to the bounds. The BP3434 parameterization method failed to evaluate the initial sampling 

plan due to poor interaction between the methods equations and a flat leading edge camber curve direction.  
 

CST method did not require any tweaking with regards to robustness and are incredibly user friendly.  

 

6.2.4 Feasibility 

Feasibility is not as straight forward than the other criteria. Feasibility takes efficiency, effectiveness and 
robustness into consideration. Depending on the nature of the optimization problem the gradient descent 

method can still be more feasible than a surrogate model based optimization strategy would be.  
A surrogate model based optimization requires more time and thought to set up compared to a gradient 

descent optimization, hence the pay-off should be large enough. This is often the case for high-fidelity 
problems and problems with complex design landscapes where the area of global minimum is not known yet.  

The problem should also be capable of dealing with the randomness added during the sampling phase.  

 
This research showed that CST and NURBS methods are feasible for both optimization strategies. BP3434 was 

not feasible for surrogate model based optimization due to robustness issues.  
 

6.2.5 Influence of initial design 

Both optimization strategies use the REA2822 airfoil as starting point which influences the optimized design, 

however only the gradient descent optimizations result is dictated by the initial design. Surrogate model 

based optimization is influenced to a lesser extent by the initial design. This subsection explains the 
importance of the initial design for both strategies. 

 
The marble metaphor depicts this well for the gradient descent optimization. Releasing a marble on a 

landscape with numerous curves will make the marble roll to the first local minima it finds. Depending on the 
landscape different initial design will roll to a different minimum. 

 

Surrogate model based optimization uses the initial design in a much different way. The initial design 
combined with the parameter bounds set the design space the surrogate model needs to understand. The 

size of the design space surrounding the initial design is set by the bounds. The initial design only decides 
where the center of that design space is located. Surrogate model based optimization results are dependent 

on the initial design but not decided by it. 
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6.3 Sequential Sampling Strategy 

The sequential sampling strategy is paramount for a surrogate model to be able to understand the given 

design space to a useful extent. Multiple factors should be considered when selecting a sequential sampling 

strategy. This subsection discusses exploitation versus exploration and dependency on initial sampling. The 
influence on the applied sequential sampling strategies is discussed as well.  

 

6.3.1 Exploitation versus Exploration 

A good sequential sampling method should aim for a good balance between exploration and exploitation. The 
required balance is dependent on the problem. Factors that should be taken into consideration computational 

sources available compared to solver cost, design space size selected and the complexity of the problem.  

 
Exploration refers to the capability of obtaining a broader view of the whole design space set by the user. 

Large parts of unsampled design space can be a risk to the models accuracy. Large gaps in information that 
remain unaddressed can result in missing possible interesting design space that could obtain an global 

optimum, or could be competitive with the global minimum. Even if the unsampled design space does not 
entail interesting optima the information obtained from sampling that design space can lead to increased 

regression qualities for the surrogate model. Good explorative qualities are required when the design space is 

largely unknown. When the design space is understood and an estimation of in which design space the global 
optimum may lay explorative qualities become redundant.  

 
Exploitation describes a deeper understanding of a specific design space. Often interesting design spaces 

should be exploited further. Thus either design spaces that can increase the overall understanding of 

objective-parameter interaction, or design space that possesses interesting minima. Good exploitative 
qualities results in the design space surrounding interesting minima being well understood. Good exploitation 

qualities are nearly always welcome, but are specifically required for small design spaces that could possess a 
global optimum.  

 
Given the relative large design spaces used for the optimization presented in the thesis it is no surprise that 

LOLA-Voronoi based sampling proofed most consistent as it has both exploration and exploitation qualities. 

The danger with LOLA-Voronoi is mostly one of computational waste. Especially problems with high 
dimensionality and large parameter range. The large design space is likely to have unfeasible design space 

that show non-linear behavior. LOLA-Voronoi samples at non-linear design space to increase the 
understanding of that design space. Cutting unfeasible design space by reducing the range on the bounds 

should increase efficiency of the surrogate models. 

 
Generalized probability of Feasibility also contains a reasonable mixture of exploration and exploitation 

qualities. The method covers a broad design space whilst reducing possible computational waste by avoiding 
sampling in estimated unfeasible design space. This results in the surrogate model mostly attempting to 

understand design spaces that proofed to be feasible. However an inherent risk exists; interesting design 

space can be skipped when unfeasible samples are evaluated nearby. 
 

Expected improvement performed the least consistent which can be explained by its poor exploration 
qualities. Expected improvement should perform better with smaller design spaces. For airfoil optimization 

expected improvement can be used effectively by adding another stage of surrogate model building 
surrounding the genetically optimized estimated optimum. Another explanation for the poor performance of 

expected improvement lays within the ability to recover from poor initial sampling. The initial sample size of 

3n may have been too small for the size of the design space set by the parameter range. The poor 
explorative qualities from expected improvement make the surrogate model building process highly reliant on 

the initial sampling in contrast to other sequential sampling methods. 
 

Knowledge Gradient did not perform well. Sampling at positions with that have the largest expected 

incremental value of information gained seems to not work well with this specific problem. The lack of 
performance can be explained due to the high dimensionality, large parameter range or a combination of 
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both. All of these factors result in a large design space that includes many unfeasible areas. However these 

unfeasible areas are likely to be sampled due to high expected value of information gained. A reason for the 
error scores of the 10n_d_Krig for NURBS were good is likely due to the amount of randomness involved 

during the initial and sequential sampling process. 
 

The final sequential sampling design used is the mixture of LOLA-Voronoi and error based sampling. This 

method performed consistently well. The mixed exploration and exploitation qualities from LOLA-Voronoi are 
accompanied by the error based sampling which aims to sample at location where the model error is 

estimated to be the largest. The combination is able to cover a large design space well and seems too able to 
recover from poor initial designs. 
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6.4 Parameterization method 

The parameterization methods have large influence on the converged airfoil and optimization process. 

Depending on the parameterization selected a different optimization strategy can be preferred. This section 

first describes the BP3434 failure. Afterwards the effect of dimensionality is discussed. In section 6.4.3 a 
discussion on CST versus NURBS is presented.  

 

6.4.1 BP3434 failure 

The fact that BP3434 parameterization crashes the solver during the initial sampling process does not 
invalidate the BP3434 for all optimization use. The specific combination of the REA2822 as initial airfoil 

accompanied by the randomness in sampling resulted in a cotangent function operating near the vertical 

asymptote. The BP3434 method can still be used for surrogate modeling with different initial airfoils that have 
a higher leading edge camber curve direction.  

 

6.4.2 Dimensionality 

The parameterizations CST10, CST14, uNURBS and NURBS have 10, 14, 21 and 35 parameters respectively. 
The amount of parameters equate to the dimensionality to the problem. Each added parameter increases the 

design space more than the previous one. The higher dimensionality also adds more unfeasible design 
spaces. This is specifically the case where the curve can be manipulated in the same way by different 

parameters. NURBS is the largest violator in this case; a curve can be manipulated in a certain direction by 

moving X, Y or the weights. These effects can stack up unfavorably and can be difficult to contain by lowering 
bounds. Lowering the bounds to avoid unfavorable stacking has a side effect of removing valid design spaces 

where these parameters do not cause unfavorable stacking. The larger design space and the added 
unfeasible design spaces both contribute to increased computational costs. 

 

Another effect of increasing dimensionality is the feasibility of TPLHD as initial sampling instead of LHD. The 
risk of clustering of sample points is largely avoided with TPLHD sampling as explained in section 4.2. CST10 

and CST14 have low enough dimensionality such that the computational time spent on computing the initial 
sampling plan is justified. uNURBS and NURBS used LHD as a result of the large parameter count. The 

negative effect of the reduced quality of the initial sampling depends on how well the sequential sampling 
plans exploration quality. Regardless of the sequential sampling plan LHD is more likely to produce 

computational waste than TPLHD.  

 

6.4.3 CST versus NURBS 

The two main parameterization methods researched are CST and NURBS. The NURBS method is capable of 
making local changes to the shape of the airfoil curves. The CST method lacks this quality; any change made 

to a parameter with CST is experienced over the entire curve. The NURBS method is thus more flexible than 
the CST method in terms of manipulating the airfoil. The increased flexibility correlates with an increased 

complex design space and increased computational costs. 

 
CST 

The lack of local control and reduction in parameters make CST easier to understand for surrogate models. 
This reduced complexity of the design space increases the accuracy of the surrogate model. Both of these 

effects help the genetic optimization to converge to design spaces that are likely to contain feasible good 

designs. The CST methods converged to angles of attack higher than the 2.0° in contrast to the NURBS 
methods that mostly converged to angles of attack lower than 2.0°. 
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CST10 vs CST14 
The four added parameters proofed their worth. The increase in control and flexibility on the curves for the 

CST14 method allowed for design spaces that the CST10 method could not achieve. The increased 
computational costs are noticeable but worthwhile. 

 

NURBS 
The local control in the NURBS method with increased dimensionality increases complexity and design space 

for the surrogate model to estimate. This reduces the accuracy of the surrogate model and the design space 
found by the genetic optimization can vary more in terms of successfulness. The optima’s found with the 

NURBS method are largely thanks to the final exploitation in combination with the flexibility of the weights.  
NURBS did not manage to achieve a low drag coefficient as CST14 did. One reason for this result can be 

found in the bounds. The bounds set on NURBS during debugging of the MSES solver were quite strict 

regarding how deep the lower curve could go. The bounds are shown in appendix A. The CST14 optimum 
explored the design space with the lower curve dragged down. With NURBS this design space caused some 

robustness issues with the MSES solver. Hence the design space where CST14 found the best design was as 
accessible for the NURBS methods. 

This shows that higher robustness allows for more completeness. 

 
 

uNURBS versus NURBS 
The difference between weighted and unweighted NURBS is noticeable in the optimum found. The extra 

flexibility of the weights allows the gradient descent optimization find different pathways to better designs. 
For surrogate model based optimization the added flexibility can be more of a liability than an asset. The 

extra flexibility increases the design space, complexity and the added flexibility also allows for the different 

parameters to stack in a specific ways that creates unfeasible design spaces.  
A recommendation for NURBS surrogate model optimization is to reduce the complexity of building the 

surrogate model and genetically optimize by using the unweighted variant. The found design space can then 
be optimized with the weighted NURBS variant. This strategy maintains the pros of both methods whilst 

avoiding the largest cons. 

 

  



       

61 

 

6.5 Sample Size 

Based on the different sample sizes used for the surrogate model building some observation can be made on 

the interaction of sample size with error score, surrogate models, sequential sampling and what kind of trade-

off an engineer has to make with regards to selecting an appropriate sample size. 

6.5.1 Error score 

From chapter 5.4.3 it is evident that a larger sample size benefits the error score for the surrogate models. 
The difference in error score is generally larger for the best models from 5n to 10n samples. The difference in 

error score between 20n and 30n shown in figure 18 and 19 is relatively small. The extra computational cost 
for the added samples do not seem worthwhile compared to the error score benefits from 20n to 30n. 

For all parameterizations the difference in error score between 10n and 20n seems relatively significant. 

Specifically the exploited 20n models converged to significantly better designs than the 10n models on 
average. For uNURBS the difference in quality of the converged airfoils between the 10n and 20n models is 

too small to warrant the computational costs. 
The 5n models have the lowest score, but can be surprising in the design space they find. However for 

consistency a 10n-20n sample size would be better for the model score and the likeliness of finding a good 
design. 

6.5.2 Surrogate Models and sample size 

Across all sample sizes Kriging seems to be the most consistent surrogate model in producing good model 

error scores. For the 5n surrogate models Kriging seems to perform much better than RBF and GPML. For 

larger sample sizes GPML starts to become a viable alternative to Kriging. The increased sample size helps the 
machine learning computation for the hyperparameters for the Gaussian process. For larger sample sizes 

artificial neural networks can also be a viable choice besides GPML and Kriging. RBF had trouble to be a viable 
alternative to Kriging regardless of sample size. 

When increasing the sample size further the risk of overfitting [22] can become a problem. A trade-off 

between overfitting and underfitting needs to be made.  
 

6.5.3 Sequential sampling and sample size 

The error plot results shown in chapter 5.4.3 do not show any noticeable changes in preferred sequential 

sampling strategy for changing sample sizes. For 5n, 10n and higher the better sequential sampling 
techniques are LOLA-Voronoi (A), Generalized Probability of Feasibility (B) and the error LOLA-Voronoi 

mixtures (E). This could be due to these sampling strategies performing well with the relatively large design 

space per sample point caused by the parameter range used. 
 

6.5.4 Sample size trade-off 

When using the sample size as stopping criteria some trade-off should be made between computational costs 

and model accuracy. The effectiveness of the samples on the surrogate model depends on the size of design 
space created by the parameter range, initial and sequential sampling and which surrogate model is used. 

Ideally sufficiently few samples are used as the sample size is responsible a large part of the computational 
cost. A smaller sample size does result in a weaker model score. Besides adding more samples the model 

score can be improved by tightening the bounds or selecting different sampling strategy/surrogate models.  
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 Conclusions and Recommendations 7

The conclusions and recommendations for this research are presented in this chapter. Initially the conclusions 
are shown. The conclusions first show results and conclusions for each parameterization and finally some 

general conclusions are presented. The recommendations first present recommendations on selecting options 
for successful surrogate model building. Afterwards recommendations on continuing the research presented 

are given. 

Conclusions 

The main research question is how applicable is surrogate model based optimization for different 

parameterization methods and what strategy is recommended regarding effectiveness, efficiency and 
robustness. The conclusion shows the results obtained per parameterization method researched and provides 

conclusions that can be drawn from them. The conclusions are structured per parameterization in the 
following order: CST10, CST14, BP3434, unweighted NURBS and NURBS. Afterwards a few general 

conclusions are given. 
 

The result tables listed below refer to surrogate models built with the following settings:  

 5n, 10n, 20n and 30n refer to the amount of samples used with n being the dimensionality. 

 CST10 and CST14 initial sampling are done with TPLHD 

 uNURBS and NURBS initial sampling are done with LHD 

 The second letter refers to the sequential sampling plan used where; 

A = LOLA-Voronoi 
B = Generalized Probability of Feasibility 

C = Expected Improvement 
D = Knowledge Gradient 

E = Default (70-30 mixture of Lola-Voronoi and Error sampling) 

 Finally RBF, Kriging and GPML refer to their respective surrogate model used. 

CST10 

The results for gradient descent optimization and surrogate models with best error scores respective to their 

sample are shown in table 20. The following conclusions can be drawn from the results. 
 

 The surrogate model optimization with 5n and 10n sample points performed most 

comparable with the gradient descent search in terms of effeciency.  

 The surrogate model based optimizations managed to find different designs spaces including 

optima with better objective functions. 

 The CST method is robust for both optimization strategies.  

 Surrogate models with larger sample sizes performed more consistent.  

 CST10 optimizations converged to relatively high angles of attack. 
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Table 20 - CST10 Optimization results 

Optimization 
CST10 

Obj CD  # 
Solver 

AOA Time [min] 

Gradient 
descent 

0.9354 0.010664 233 2.47° 45.62 

5n_a_Krig 0.9418 0.010737 225 2.54° 47.00 

5n_b_Krig 0.9302 0.010604 219 2.57° 40.19 

5n_e_Krig 0.9293 0.010594 223 2.60° 39.31 

10n_a_Krig 0.9413 0.010731 228 2.32° 40.83 

10n_b_Krig 0.9382 0.010695 332 2.52° 86.43 

10n_e_GPML 0.9378 0.010691 333 2.48° 80.59 

20n_a_Krig 0.9342 0.010650 400 2.59° 62.36 

20n_e_Krig 0.9377 0.010690 495 2.56° 84.08 

30n_b_Krig 0.9305 0.010608 536 2.45° 94.88 

30n_a_GPML 0.9368 0.010679 519 2.40° 135.73 

30n_b_GPML 0.9417 0.010735 479 2.66° 153.19 

30n_e_GPML 0.9388 0.010702 488 2.45° 85.56 

 

CST14 

The second parameterization researched is a CST method with 14 parameters. The results for the gradient 
and surrogate model based optimization are listed in the table below. 

 
Table 21 - CST14 Optimization results 

Optimization 
CST14 

Obj CD # 
Solver 

AoA Time [min] 

Gradient 
descent 

0.9496 0.010635 204 2.47° 51,50 

5n_a_Krig 0.9459 0.010594 336 2.20° 73.60 

5n_b_Krig 0.9537 0.010681 334 2.42° 96.69 

5n_e_Krig 0.9486 0.010624 266 2.22° 76.05 

5n_b_GPML 0.9613 0.010766 221 2.40° 187.07 

10n_a_Krig 0.9517 0.010659 361 2.35° 183.85 

10n_b_Krig 0.9533 0.010677 332 2.15° 80.15 

10n_e_Krig 0.9279 0.010393 415 2.22° 69.58 

20n_a_Krig 0.9482 0.010620 525 2.07° 164.10 

20n_b_GPML 0.9425 0.010556 579 2.32° 100.55 

20n_e_RBF 0.9455 0.010590 473 2.32° 159.03 
 

 Optimizations performed with CST14 converged to lower angles of attack than CST10, but higher 

than the NURBS methods.  

 10n_e_Krig obtained the design with the lower drag coefficient of the entire research. 

 Especcially the sequential sampling plans depicted with a, b and e in combination with Kriging 

proved successful for CST14. 
 CST14 is very robust for both optimization strategies.  

 The 4 added parameters over CST10 allowed for extra design space and extra control that showed 

necessary in obtaining better designs. 



       

65 

 

BP3434 

BP3434 has been tested as an intuitive method. Due to unfortunate interaction between the initially chosen 

airfoil (RAE2822) and the randomness during the sampling process unfeasible airfoils are created that crash 

the solver. The Bezier-Parsec method has its merits for gradient descent optimization and could work in 
surrogate model based optimization, however a different type of base airfoil should be taken, or some of the 

base equations in the parameterization would have to be revisited. 

uNURBS 

The unweighted NURBS variant performed adequately as a parameterization technique with intermediate 
dimensionality compared to CST and NURBS. The final results are shown in the table 22 and are followed up 

by conclusions regarding the uNURBS method. 

 
 uNURBS performed very consistent with the surrogate model based optimization.  

 uNURBS is less robust than CST as it required specific tweaking on bounds to avoid the upper and 

lower curve intersecting near the trailing edge. uNURBS is more robust than NURBS as the 

opportunity for unfavorable stacking of parameters is excluded. 
 uNURBS converged to lower angles of attack than CST. 

 uNURBS has a good trade-off between effectiveness and efficiency regarding surrogate model 

building. 

  
 

Table 22 - uNURBS optimization results 

uNURBS Surrogate 
model 

Obj CD # Solver 
calls 

AoA Total Time 
[min] 

Gradient Descent 0.9404 0.010666 373 1.98° 75.70 

5n_a_Krig 0.9376 0.010595 379 1.93° 76.73 

5n_b_Krig 0.9361 0.010578 362 1.63° 110.61 

5n_d_Krig 0.9336 0.010550 310 1.64° 71.05 

5n_e_Krig 0.9426 0.010651 261 1.53° 76.73 

10n_a_Krig 0.9693 0.010953 332 1.97° 370.23 

10n_b_Krig 0.9354 0.010570 698 1.57° 136.53 

10n_c_Krig 0.9295 0.010503 629 1.67° 370.22 

20n_a_Krig 0.9327 0.010540 796 1.81° 260.58 

20n_b_Krig 0.9327 0.010540 811 1.81° 240.45 

20n_e_Krig 0.9325 0.010537 835 1.52° 285.52 
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NURBS 

With 35 parameters the NURBS method reached the upper dimensionality limits of the NURBS toolbox. This 

caused the surrogate model building process to become inefficient as the toolbox is not optimized for these 

problems. Regardless of these issues the NURBS method managed to converge to the best drag coefficient 
scores. Table 23 shows the results for the NURBS method. 

 
 

Table 23 - NURBS optimization results 

NURBS 
Surrogate 
model 

Obj CD # Solver 
calls 

AOA Total Time 
[min] 

Gradient 
Descent 

0.9307 0.010541 1118 1.32° 174,16 

5n_a_Krig 0.9359 0.010576 707 1.37° 268.84 

5n_b_Krig 1.0963 0.012388 327 2.01° 184.92 

5n_d_Krig 0.9288 0.010495 857 1.63° 334.62 

10n_a_Krig 0.9334 0.010547 1124 1.83° 481.78 

10n_b_Krig 0.9277 0.010484 1499 1.91° 437.53 

10n_d_Krig 0.9350 0.010565 828 1.90° 450.44 

10n_e_Krig 0.9755 0.011024 720 1.78° 450.04 

10n_b_RBF 0.9319 0.010531 1390 2.10° 479.14 
 

 NURBS showed to be quite inconsistent in providing efficient and effective surrogate models. 

 The added weight parameters increased the design space and the complexity of it. The added 

weights allowed for unfavorable stacking of parameters which led to inclusion of unfeasible designs 

space in the surrogate model. 

 The unfavorable stacking of parameters caused robustness issues and NURBS required the most 

tweaking to work. 
 The added weights do work well for gradient descent optimization. The weights allow pathways in the 

design space to other designs that would otherwise not be found.  

 

General Conclusions 

 Surrogate model based optimization converged to better designs than gradient descent optimization 

for all CST and NURBS.  
 Sequential sampling proved most effective with LOLA-Voronoi, Generalized Probability of Feasibility or 

the Default setting.  

 20n and 30n surrogate models did not offer much better design spaces than 10n models did. The risk 

of overfitting and the increased cost suggest that surrogate models with less than 20n samples are 
preferred. 

 Ordinary Kriging outperformed RBF and GPML consistently. 

 CST converges to higher angles of attack than NURBS methods do. 

 Surrogate model based optimization provided better optima for CST, NURBS 

 Gradient descent optimization requires generally less computational costs than surrogate model 

based optimization. 
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Recommendations 

Due to the nature of the research question the recommendation will be split into two parts. The first part 

addresses the recommendations for performed an airfoil optimization using surrogate model based 

optimization based on the results and conclusions. The second part contains recommendations regarding 
continuing this research. 

 

Recommendations for SM based optimization 

For a successful surrogate model based optimization a parameterization method, initial sampling plan, 
sequential sampling plan and surrogate model needs to be selected. The resulting strategy should be 

effective, efficient and robust. A recommendation is given for a NURBS parameterization and a CST 

parameterization. 
 

NURBS 
When using NURBS for SM optimization the use of weights for surrogate model building and genetic 

optimization of the surrogate model is not recommended. The added weights increase flexibility, but also 
increase the design space, increase the complexity and add unfeasible design spaces through unfavorable 

stacking of design parameters. The unweighed variant performed much in consistently finding interesting 

design spaces with the use of surrogate models. 
The weights can be used after the design space is found that will be further exploitation of the interesting 

design space. The added flexibility of the weights increase the costs of computing gradient information, but 
allow for extra pathways to better optimums that are not found without weights. 

 

A sample size of between 10n samples should suffice for reasonable accuracy from the surrogate model. More 
samples increased the error scores, but did not lead to better final optima. If computational resources are 

limited lower sample sizes can work, but can be less reliable. 
 

For sequential sampling LOLA-Voronoi, Generalized Probability of Feasibility or a mixture of LOLA-Voronoi and 
error based sampling is recommended. These three sequential sampling strategies showed consistently 

effective throughout the variety of tested surrogate models. 

 
For the surrogate model Kriging is recommended over GPML and RBF. Kriging is capable of understanding 

complex design spaces with limited resources. 
 

CST 

If the computational resources are available the CST variant with 14 parameters is recommended over the 
variant with 10 parameters for optimization. The extra flexibility and control provided by the 4 extra 

parameters proved to be worthwhile throughout this research. With 14 parameters the initial sampling plan 
can still be efficiently created with TPLHD.  

 

Kriging performed the best overall for the CST methods accompanied by LOLA-Voronoi, generalized 
probability of feasibility or the mixture of LOLA-Voronoi with error based sequential sampling.  

 
The CST methods performed well with sample ranges of 5n to 10n. Larger sample sizes can improve accuracy 

of the surrogate model but showed inefficient in this research. 
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Recommendation for continuing the research 

To increase further understanding regarding surrogate model based optimization the following bullet points 

can be researched. 

 
 Different surrogate model based optimization schemes. After the genetic algorithm optimization is 

performed a surrogate model can be created with a narrow parameter range surround that optimum. 

Due to the narrow design space selected different sampling plans might be preferred such as 
expected improvement. The surrogate model of the narrowed down design space can then be further 

exploited.  

 The effect of increasing and decreasing the parameter range. How does the increased design space 

effect different surrogate models. 
 Different parameterizations 

 Different Kriging variants and different optimization strategies to determine the hyper parameters 

 Different initial sample sizes and plans 

 Different combination of sequential sampling plans. This research had LOLA-Vornoi mixed with error 

based sampling at a 70-30 ratio. 

 Which settings can be recommended for the surrogate model representing the pitching moment 

constraint. 
 Investigation of generalized probability of feasibility versus LOLA-Voronoi for larger parameter bound 

settings.  
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Appendix  

There are 5 different Appendices.  

 Appendix A contains the REA2822 parameter values for different parameterization and the lower and 

upper bounds used.  
 Appendix B contains the MSES aerodynamic Solver settings 

 Appendix C contains the SUMO configuration file 

 Appendix D contains the collected raw data on the created surrogate models. 

 

Appendix A – REA2822 parameter values and bounds 

This appendix presents the REA2822 best fit parameter values, gradient descent and surrogate model lower 

and upper bounds and the parameter values for the final optimized airfoils.. This presentation is done for 
each parameterization method. The bounds are based on normalized REA2822 best fit values. 

CST10 

REA2822 best fit 

 

 
 

 
 

 

Gradient Descent optimization lower & upper bounds. 
 

 
 

 

 
 

 
Surrogate model optimization lower & upper bounds. 

 
 

 

 
 

 
 

 

 
 

 
 

Gradient descent optima 

CST10 
Coefficient 

1 2 3 4 5 

Upper 0.1120 0.1213 0.1782 0.1590 0.1768 
Lower -0.0737 -0.1653 -0.2752 -0.0669 0.0382 

 

CST10 
Coefficient 

1 2 3 4 5 

Upper 0.1267     0.1427     0.1843     0.1996     0.1975    
Lower -0.1302    -0.1312    -0.2334    -0.0669     0.0324 

CST10 
Coefficient 

1 2 3 4 5 

Upper 0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     
Lower 0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     

CST10 
Coefficient 

1 2 3 4 5 

Upper 0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     
Lower 0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     
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5n_e_Krig optimia 

CST 
10Coefficient 

1 2 3 4 5 

Upper 0.0995 0.1166 0.1766 0.1242 0.1769 
Lower -0.0680 -0.1583 -0.3257 -0.0347 0.0470 

 

CST14 

REA2822 best fit 

 

Gradient Descent optimization lower & upper bounds. 

 
Surrogate model optimization lower & upper bounds. 

 
Gradient descent optima 

CST 
14Coefficient 

1 2 3 4 5 6 7 

Upper 0.1099 0.1090     0.1514     0.1440     0.1808     0.1164     0.2169    
Lower -0.1029    -0.1423    -0.1414    -0.3442    -0.0098 -0.1188 0.0851 

 

10n_e_Krig optima 

CST 
14Coefficient 

1 2 3 4 5 6 7 

Upper 0.0958 0.1246 0.1082 0.1827 0.1394 0.0893 0.2335 
Lower -0.0668 -0.1868 -0.2428 -0.2101 -0.0096 -0.1205 0.1489 

 

uNURBS 

REA2822 best fit 

Control 
points 

1 2 3 4 5 6 7 

Upper X 0     0.0005     0.1774     0.5079     0.7523     0.9165 1.0000 
Upper Y 0     0.0220     0.0576     0.0679     0.0438     0.0171 0 
Lower X 0     0.0018     0.2924     0.5169     0.7529     0.9272 1.0000 

CST14 
Coefficient 

1 2 3 4 5 6 7 

Upper 0.1259     0.1389     0.1608     0.1635     0.2226     0.1693     0.2147    
Lower -0.1277    -0.1467    -0.1217    -0.2759    -0.0096 -0.1261     0.0781 

CST14 
Coefficient 

1 2 3 4 5 6 7 

Upper 0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     
Lower 0.5-1.5     0.5-1.5     0.5-2.0     0.5-1.5     0.5-1.5     0.5-1.5     0.5-2.0     

CST14 
Coefficient 

1 2 3 4 5 6 7 

Upper 0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     
Lower 0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     0.7-1.3     
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Lower Y 0    -0.0297         -0.0683 -0.0522 -0.0134     0.0045 0 
 

Gradient Descent optimization lower & upper bounds. 

Control 
points 

1 2 3 4 5 6 7 

Upper X - 0.5-10.0    0.5-1.5 0.5-1.5 0.5-1.22    0.5-1.04    - 
Upper Y - 0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     0.5-1.5     0.95-1.05 
Lower X - 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.33 0.5-1.08 - 
Lower Y - 0.5-1.5         0.5-1.1         0.5-1.1         0.5-1.5         0.5-1.5         0.95-1.05 

 

Surrogate model optimization lower & upper bounds. 

Control 
points 

1 2 3 4 5 6 7 

Upper X - 0.8-4.5     0.8-1.2     0.8-1.2     0.8-1.16     0.95-1.02 - 
Upper Y - 0.85-1.2     0.85-1.15     0.85-1.15     0.88-1.15     0.94-1.15     0.98-1.03     
Lower X - 0.5-5.5     0.75-1.5     0.85-1.2     0.85-1.25     0.85-1.03 - 
Lower Y - 0.85-1.2         0.85-1.1 0.85-1.1 0.85-1.1 0.85-1.2 0.98-1.03     

 

Gradient descent optima 

Control 
points 

1 2 3 4 5 6 7 

Upper X 0     0.0007     0.2136 0.4935 0.6644 0.9371 1.0000 
Upper Y 0     0.0270 0.0561 0.0607 0.0410 0.0148 0.0006 
Lower X 0     0.0019 0.2629 0.3887 0.6739 0.7904 1.0000 
Lower Y 0    -0.0230 -0.0710 -0.0635 -0.0114 0.0040 0.0006 

 

10n_c_Krig optima 

Control 
points 

1 2 3 4 5 6 7 

Upper X 0     0.0008     0.1817 0.4878 0.6718 0.9506 1.0000 
Upper Y 0     0.0248 0.0538 0.0618 0.0401 0.0160 0.0976 
Lower X 0     0.0079 0.2880 0.4275 0.7871 0.8892 1.0000 
Lower Y 0    -0.0190 -0.0703 -0.0632 -0.0070 0.0043 0.0976 

 

NURBS 

REA2822 best fit 

Control 
points 

1 2 3 4 5 6 7 

Upper X 0     0.0005 0.1888 0.5253 0.7619 0.8988 1.0000 
Upper Y 0        0.0228 0.0591 0.0674 0.0417 0.0202 0.0001 
Upper 
weights 

0.9999 0.9938 1.0026 1.0071 0.9954 1.0002     1.0010 

Lower X 0     0.0017     0.2786     0.4983     0.7544     0.9272     1.0000 
Lower Y 0    -0.0294   -0.0663    -0.0553    -0.0129     0.0044          0.0001 
Lower 
Weights 

1.0074     0.9885     0.9993     1.0071     0.9967     1.0011     0.9999     

 
Gradient Descent optimization lower & upper bounds.  

Control 1 2 3 4 5 6 7 
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points 

Upper X - 0.5-1.5     0.5-1.5 0.5-1.27 0.5-1.29 0.5-1.03 - 
Upper Y - 0.5-1.3 0.8-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0. 95-1.05 
Upper 
weights 

0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.1-2.0 

Lower X - 0.1-2.0 0.1-2.0 0.12.0 0.1-1.33 0.1-1.08 - 
Lower Y - 0.1-2.0 0.5-1.05 0.5-1.05 0.5-1.5 0.5-1.1 0.95-1.05 
Lower 
Weights 

0.1-20 0.1-20 0.1-20 0.1-20 0.1-2.0 0.1-2.0 0.1-2.0 

 
 

Surrogate model optimization lower & upper bounds. 

Control 
points 

1 2 3 4 5 6 7 

Upper X - 0.8-4.5     0.8-1.2 0.8-1.2 0.9-1.16 0.95-1.02 - 
Upper Y - 0.85-1.2 0.85-1.15 0.85-1.15 0.85-1.15 0.94-1.15 0.98-1.03 
Upper 
weights 

0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 

Lower X - 0.5-5.5 0.75-1.5 0.85-1.2 0.85-1.25 0.85-1.03 - 
Lower Y - 0.85-1.2 0.85-1.1 0.85-1.1 0.85-1.2 0.85-1.03 0.98-1.03 
Lower 
Weights 

0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 0.5-1.5 

 

Gradient descent optima 

Control 
points 

1 2 3 4 5 6 7 

Upper X 0     0.0006     0.1705 0.4530 0.6614 0.9121 1.0000 
Upper Y 0     0.0279 0.0567 0.0614 0.0419 0.0152 -0.0049 
Upper 
weights 

0.8361 0.9732 0.8158 1.0316 0.9545 1.0094 1.0138 

Lower X 0     0.0020 0.3049 0.4088 0.7382 0.8617 1.0000 
Lower Y 0    -0.0247 -0.0677 -0.0606 -0.0128 0.0041 -0.0049 
Lower 
Weights 

1.0463 0.8165 1.2264 0.9961 0.9294 1.0139 1.0077 

 
 

 
10n_b_Krig optima 

Control 
points 

1 2 3 4 5 6 7 

Upper X 0     0.0019     0.2107 0.5080 0.6626 0.9151 1.0000 
Upper Y 0     0.0236 0.0623 0.0555 0.0430 0.0157 0.0983 
Upper 
weights 

1.0832 1.1250 0.7994 1.3256 0.8333 0.6909 0.6947 

Lower X 0     0.0074 0.3220 0.4707 0.7034 0.8920 1.0000 
Lower Y 0    -0.0253 -0.0675 -0.0635 -0.0135 0.0042 0.0983 
Lower 
Weights 

0.8751 0.5566 1.3408 0.5519 0.7094 1.0651 1.23333 
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Appendix B - MSES Aerodynamic Solver 

This appendix covers the input file for the MSES. There are three input files used as input. The MSES.XXX file 

contains the solver conditions and flow information. A different MSES.XXX is used for MSES setting 1 and 2 as 

discussed in section 5.2. The BLADE.XXX file describes the size of the box and the airfoil. GRIDPAR.XXX file 
contains the information on the grid settings used for the computation. For further information on the 

workings of MSES the reader is referred to the MSES guide [20]. 
 

MSES Setting 1 

MSES.XXX 
3  4  5    DCIRC   DALFA  DSBLE 

3  4 5    LE Kutta conditions TE Kutta Conditions ALFAIN 
0.73  0.8  2.0    MACHIN  CLIFIN  ALFAIN 

3  2     ISMOM  IFFBC 
2.7e6  9.0     REYNIN  ACRIT 

0.01  0.01     XTRSn  XTRPn 

0.99  -1     MCRIT  MUCON 
 

 
MSES Setting 2 

MSES.XXX 

3  4  5    DCIRC   DALFA  DSBLE 
3  4 6    LE Kutta conditions TE Kutta Conditions CLIFIN 

0.73  0.6082 2.0    MACHIN  CLIFIN  ALFAIN 
3  2     ISMOM  IFFBC 

2.7e6  9.0     REYNIN  ACRIT 
0.01  0.01     XTRSn  XTRPn 

0.99  -1     MCRIT  MUCON 
 

BLADE.XXX 

'-3.0  4.0  -4.0  4.5      XINL XOUT YBOT YTOP 
X(1) Y(1) 

X(2) Y(2) 
X(.) Y(.) 

. . 

. . 

. . 

X(end)Y(end) 
 

A small trailing edge gap is enforced that stops the solver from crashing. The origin of these crashes is 

unknown. But the small gap fixes the crashses. 
 

GRIDPAR.XXX 

141                    Points 

0.4               Exponent for point division 
37                     Vertical lines in front of airfoil 

37                     Vertical lines aft of airfoil 
27                     Streamlines above airfoil 

18                     Streamlines below airfoil 

0                      Streamlines between elements 
1.3             Smoothing Parameter 

2.5              Aspect ratio of each cell at stagnation point 
0.85             X spacing parameter 

AoA       Angle of attack 

0.4  0.8  1.0     Spacing parameters element 1 
0.03  0.07  1.0  1.0  1.0  0.0  Spacing Refinement  
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Appendix C - SUMO Toolbox Configuration files 

This appendix contains a relevant xml input files for the SUMO toolbox [10]. Due to the large amount of 

difference xml files used only one example will be given. The example is based on NURBS 10n a Kriging. The 
toolbox requires a main configuration file and a simulator configuration file. 

The main configuration file contains the information about the sampling techniques, surrogate model and 

stopping criteria used. Most of the configurations in the main configuration file have been left to the default 
settings. Plotting options are set to false to speed up the surrogate model building. Numbers of samples have 

been adjusted to the correct values for the research. NURBS is the only method that samples 30 new points 
at each sequential sampling stage due to the long time required to build a surrogate model in 35 dimensions. 

The simulator configuration file contains the input, output, parameters, parameter range and the high-fidelity 
solver used. 

 

Main Configuration file 
<?xml version="1.0" encoding="ISO-8859-1" ?> 

<ToolboxConfiguration version="2016a"> 

        <Plan> 

        <ContextConfig>default</ContextConfig> 

        <SUMO>default</SUMO> 

        <LevelPlot>default</LevelPlot> 

         

        <Simulator>NURBSSM/NURBSSM.xml</Simulator> 

         

        <Run name="" repeat="1"> 

 

            <InitialDesign>lhd</InitialDesign> 

 

            <SequentialDesign>lola-voronoi</SequentialDesign> 

             

            <DataSource>matlab</DataSource> 

             

            <ModelBuilder>kriging</ModelBuilder> 

             

            <Measure type="CrossValidation" target="0.01" 

errorFcn="rootRelativeSquareError" use="on" /> 

 

            <Outputs> 

                <Output name="Obj" constraintLB="0.8" constraintUB="1.8"> 

                </Output> 

                <Output name="c2" constraintLB="-1000" constraintUB="0.05"> 

                </Output>  

            </Outputs> 

        </Run> 

    </Plan> 

    <ContextConfig id="default"> 

        <OutputDirectory>output</OutputDirectory> 

        <PlotOptions> 

            <Option key="saveBestModel" value="true"/> 

            <Option key="saveIntermediateModels" value="false"/> 

            <Option key="plotModels" value="false"/> 

            <Option key="WindowStyle" value="normal"/>  

             

            <Option key="withContour" value="true"/> 

            <Option key="plotContour" value="false" /> 
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            <Option key="plotUncertainty" value="false"/> 

            <Option key="outputType" value="png"/> 

        </PlotOptions> 

        <Option key="keepOldModels" value="off"/> 

        <Option key="parallelMode" value="off"/> 

        <Option key="classificationMode" value="false"/> 

        <Option key="numberOfClasses" value="0"/> 

        <Option key="preserveOrder" value="true"/> 

        <Profiling> 

            <Profiler 

name=".*SampleMinimum.*|.*Measure.*|.*BestModel.*|.*ElapsedTime.*|.*MemoryUse.*" 

enabled="true"> 

                <Output type="toPanel"/> 

                <Output type="toImage"/> 

                <Output type="toTable"/> 

                <Output type="toFile"/> 

            </Profiler>      

        </Profiling> 

         

    </ContextConfig> 

     

    <Logging> 

        <RootLogger> 

            <Option key="runsInMainLog" value="true"/> 

            <Option key="Level" value="INFO"/> 

            <Handlers> 

                <ConsoleHandler> 

                    <Option key="Level" value="INFO"/> 

                </ConsoleHandler> 

                <FileHandler> 

                    <Option key="Level" value="ALL"/> 

                    <Option key="Pattern" value="Sumo.log"/> 

                </FileHandler> 

            </Handlers> 

        </RootLogger> 

        <Option key="iminds.sumo" value="FINEST"/>  

        <Option key="Matlab" value="FINEST"/>  

    </Logging> 

    <LevelPlot id="default" type="LevelPlot" combineOutputs="true"> 

        <Option key="makeLevelPlots" value="off"/> 

        <DataSource 

type="iminds.sumo.datasources.datasets.ScatteredDatasetDataSource"> 

        </DataSource> 

    </LevelPlot>     

 

    <SUMO id="default" type="SUMO"> 

        <Option key="createMovie" value="no"/> 

        <Option key="minimumTotalSamples" value="0"/> 

        <Option key="maximumTotalSamples" value="350"/> 

        <Option key="maximumTime" value="Inf"/> 

        <Option key="maxModelingIterations" value="Inf"/> 

        <Option key="stopOnError" value="true"/> 

        <Option key="minimumInitialSamples" value="100%"/> 

        <Option key="minimumSamples" value="1"/> 

        <Option key="maximumSamples" value="30"/> 

        <Option key="minimumAdaptiveSamples" value="0" /> 

        <Option key="newSamplesMustSatisfyConstraints" value="yes"/> 

   

        <Option key="adaptiveModelingInitialDesignOnly" value="no"/> 

    </SUMO> 
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    <DataSource id="matlab" type="MatlabDirectDataSource"/>       

    <DataSource id="matlabOld" 

type="iminds.sumo.datasources.matlab.MatlabDataSource"> 

        <Option key="maxResubmissions" value="1"/> 

        <Option key="sampleTimeout" value="-1"/> 

    </DataSource> 

 

    

    <!-- A highly adaptive sampling algorithm which performs a trade-off between 

exploration (filling up the design space as equally as possible) 

    and exploitation (selecting data points in highly nonlinear regions). lola-

voronoi is the only sample selector which currently supports 

    multiple outputs, auto-sampled inputs and constraints. --> 

    <SequentialDesign id="lola-voronoi" type="LOLAVoronoiSequentialDesign" 

combineOutputs="false"> 

        <!-- Number of frequency values returned for each submitted sample. Only 

used with auto-sampled inputs. --> 

        <Option key="frequencies" value="11"/> 

        <!-- Whether a directed search should be performed while performing 

exploitation. Allows for more aggressive exploitation. --> 

        <Option key="directedSearch" value="false" /> 

        <!-- Distance metric to use. Note: distance metrics of the individual 

rankers will be overruled! --> 

        <Distance type="EuclideanDistance" /> 

         

        <ExploitationSampleRanker type="LOLASampleRanker"> 

            <!-- Integer between 2 and 20 --> 

            <Option key="neighbourhoodSize" value="2"/> 

        </ExploitationSampleRanker> 

        <ExplorationSampleRanker type="VoronoiSampleRanker" /> 

    </SequentialDesign> 

     

         

    <!-- Build kriging models using the maximum likelihood to set the thetas --> 

    <ModelBuilder id="kriging" type="ModelBuilder" combineOutputs="false"> 

        <Option key="nBestModels" value="1" /> 

         

        <!-- See the documentation for possible regression and correlation 

functions --> 

        <ModelFactory type="KrigingFactory"> 

            <Option key="regressionFunction" value="regpoly0"/> 

            <Option key="multipleBasisFunctionsAllowed" value="false" /> 

             

            <!-- Use slice sampling to estimate the hyperparameters. 

            Slower but results in a better estimate of the posterior. 

            Very useful for optimization using expected improvement, etc. --> 

            <!-- <Option key="numberOfSlices" value="100"/> --> 

             

            <!--<Option key="hyperparameters0" value="0.5" />--> 

            <BasisFunction>corrmatern32</BasisFunction> 

             

            <!-- Alternative Basis Functions (correlation functions) --> 

            <!--<BasisFunction>correxp</BasisFunction>--> 

            <!--<BasisFunction>corrgaussp</BasisFunction>--> 

             

            <!-- likelihood function to use (default: @marginalLikelihood): --> 

            <!-- <Option key="hpLikelihood" value="@pseudoLikelihood" /> --> 

             

            <!-- Enable the next set of options for noisy data (regression) --> 
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            <!--<Option key="lambda0" value="-5"/>--> <!-- initial value 

(required) --> 

            <!--<Option key="lambdaBounds" value="[-15; 0]"/>--> <!-- bounds 

(optional) --> 

             

            <Optimizer>fminconWithDerivatives</Optimizer> 

        </ModelFactory> 

         

    </ModelBuilder>  

  

    <BasisFunction id="corrgauss" type="BasisFunction" name="corrgauss" > 

        <Parameter name="theta" min="-2" max="2" scale="log" duplicate="true" /> 

    </BasisFunction> 

     

    <BasisFunction id="corrmatern32" type="BasisFunction" name="corrmatern32" > 

        <Parameter name="ell" min="-2" max="2" scale="log" duplicate="true" /> 

    </BasisFunction> 

     

    <BasisFunction id="corrmatern52" type="BasisFunction" name="corrmatern52" > 

        <Parameter name="ell" min="-2" max="2" scale="log" duplicate="true" /> 

    </BasisFunction> 

     

    <BasisFunction id="correxp" type="BasisFunction" name="correxp" > 

        <Parameter name="theta" min="-2" max="2" scale="log" duplicate="true" /> 

    </BasisFunction> 

     

         

    <!-- Latin Hypercube DOE --> 

    <InitialDesign id="lhd" type="LatinHypercubeDesign"> 

        <!-- how many points to generate --> 

        <Option key="points" value="105"/> 

        <!--<Option key="weight" value="0.5"/>--> 

        <!--<Option key="coolingFactor" value="0.9"/>--> 

        <!--<Option key="p" value="5.0"/>--> 

    </InitialDesign> 

 

            

    <!-- Matlab fmincon (active-set) using derivative information (used for  

    models in SUMO-toolbox) --> 

    <Optimizer id="fminconWithDerivatives" type="MatlabOptimizer"> 

        <Option key="gradobj" value="on" /> 

        <Option key="derivativecheck" value="off" /> 

        <Option key="diagnostics" value="off" /> 

        <Option key="algorithm" value="active-set" /> 

    </Optimizer> 

</ToolboxConfiguration> 
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Simulator Configuration File 
<?xml version="1.0" encoding="ISO-8859-1" ?> 

<Simulator> 

    <Name>NURBS MSES REA2822</Name> 

    <Description> 

        NURBS simulator configuration file 

    </Description> 

     

    <!-- The input parameters --> 

    <InputParameters> 

        <Parameter name="uP2X" type="real" value="1.0" minimum="0.8" 

maximum="4.5"/> 

        <Parameter name="uP3X" type="real" value="1.0" minimum="0.8" 

maximum="1.2"/> 

        <Parameter name="uP4X" type="real" value="1.0" minimum="0.8" 

maximum="1.2"/> 

        <Parameter name="uP5X" type="real" value="1.0" minimum="0.9" 

maximum="1.16"/> 

        <Parameter name="uP6X" type="real" value="1.0" minimum="0.95" 

maximum="1.02"/> 

         

        <Parameter name="uP2Y" type="real" value="1.0" minimum="0.85" 

maximum="1.2"/> 

        <Parameter name="uP3Y" type="real" value="1.0" minimum="0.85" 

maximum="1.15"/> 

        <Parameter name="uP4Y" type="real" value="1.0" minimum="0.85" 

maximum="1.15"/> 

        <Parameter name="uP5Y" type="real" value="1.0" minimum="0.85" 

maximum="1.15"/> 

        <Parameter name="uP6Y" type="real" value="1.0" minimum="0.94" 

maximum="1.15"/> 

        <Parameter name="TEY"  type="real" value="1.0" minimum="0.98" 

maximum="1.03"/> 

         

        <Parameter name="uW1"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="uW2"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="uW3"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="uW4"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="uW5"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="uW6"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="uW7"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

         

        <Parameter name="lP2X" type="real" value="1.0" minimum="0.5" 

maximum="5.5"/> 

        <Parameter name="lP3X" type="real" value="1.0" minimum="0.75" 

maximum="1.5"/> 

        <Parameter name="lP4X" type="real" value="1.0" minimum="0.85" 

maximum="1.2"/> 

        <Parameter name="lP5X" type="real" value="1.0" minimum="0.85" 

maximum="1.25"/> 

        <Parameter name="lP6X" type="real" value="1.0" minimum="0.85" 

maximum="1.03"/> 
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        <Parameter name="lP2Y" type="real" value="1.0" minimum="0.85" 

maximum="1.2"/> 

        <Parameter name="lP3Y" type="real" value="1.0" minimum="0.85" 

maximum="1.1"/> 

        <Parameter name="lP4Y" type="real" value="1.0" minimum="0.85" 

maximum="1.1"/> 

        <Parameter name="lP5Y" type="real" value="1.0" minimum="0.85" 

maximum="1.2"/> 

        <Parameter name="lP6Y" type="real" value="1.0" minimum="0.85" 

maximum="1.03"/> 

         

        <Parameter name="lW1"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="lW2"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="lW3"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="lW4"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="lW5"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="lW6"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

        <Parameter name="lW7"  type="real" value="1.0" minimum="0.5" 

maximum="1.5"/> 

  

  

  

    </InputParameters> 

     

    <!-- The output parameters --> 

    <OutputParameters> 

        <Parameter name="Obj" type="real"/>       

        <Parameter name="c2" type="real"/> 

    </OutputParameters> 

     

    <!-- A simulator may have multiple implementations: as an executable, a  

         java main class, a dataset, ...--> 

    <Implementation> 

         

        <Executables> 

            <!-- An arch attribute may make sense here as well --> 

            <Executable platform="matlab">NURBS_MSES_Solver</Executable> 

        </Executables> 

         

    </Implementation> 

</Simulator> 
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Appendix D – Surrogate model error validation data 

 

 
Table 24 - CST10 Error validation data 

Surrogate Model CST10 RMS_Obj MAE_Obj R
2
_Obj RMS_c2 MAE_c2 R

2
_c2 

SM 
building 
time 

Evaluated 
samples 

Failed 
samples 

CST10_05_3_a_GPML 0.1563 0.5133 0.7289 0.0385 0.0941 0.9558 5.81 55 0 

CST10_05_3_a_Krig 0.1053 0.5985 0.8744 0.0240 0.0650 0.9828 13.29 57 4 

CST10_05_3_a_RBF 0.1718 0.5823 0.6707 0.0400 0.1148 0.9525 5.82 56 2 

CST10_05_3_b_GPML 0.1633 0.6164 0.6987 0.0292 0.0718 0.9746 5.93 55 0 

CST10_05_3_b_Krig 0.1169 0.3991 0.8451 0.0290 0.0721 0.9749 5.43 55 0 

CST10_05_3_b_RBF 0.1508 0.6062 0.7426 0.0405 0.0954 0.9511 5.20 55 0 

CST10_05_3_c_GPML 0.1893 0.9554 0.5941 0.0350 0.1107 0.9636 8.16 55 4 

CST10_05_3_c_Krig 0.1370 0.7319 0.7880 0.0390 0.1034 0.9549 9.64 63 12 

CST10_05_3_c_RBF 0.1791 0.7077 0.6410 0.0516 0.1489 0.9212 8.81 51 0 

CST10_05_3_d_GPML 0.2064 1.0249 0.5189 0.0377 0.0998 0.9578 9.99 51 0 

CST10_05_3_d_Krig 0.1527 0.6662 0.7419 0.0388 0.1050 0.9551 7.08 51 0 

CST10_05_3_d_RBF 0.2747 0.8005 0.1528 0.0501 0.1225 0.9260 8.12 60 10 

CST10_05_3_e_GPML 0.1703 0.4935 0.6784 0.0315 0.0736 0.9705 6.98 56 2 

CST10_05_3_e_Krig 0.0909 0.4133 0.9065 0.0284 0.0839 0.9759 5.37 56 2 

CST10_05_3_e_RBF 0.1555 0.5065 0.7294 0.0418 0.1020 0.9483 8.38 55 1 

CST10_1_3_a_GPML 2.2e6 2.5e6 -0.0006 1.1176 1.5101 -0.0010 13.41 110 1 

CST10_1_3_a_Krig 0.0600 0.2010 0.9592 0.0231 0.0557 0.9842 11.47 115 10 

CST10_1_3_a_RBF 0.1132 0.5020 0.8549 0.0310 0.0845 0.9714 18.72 100 0 

CST10_1_3_b_GPML 7.3e6 3.5e7 -12.6865 3.7880 18.1475 -13.3648 18.22 113 6 

CST10_1_3_b_Krig 0.0712 0.2378 0.9426 0.0296 0.1207 0.9739 11.55 117 14 

CST10_1_3_b_RBF 0.1297 0.3959 0.8096 0.0284 0.0673 0.9759 17.85 111 2 

CST10_1_3_c_GPML 0.4394 1.8475 -0.9369 0.0501 0.2674 0.9254 16.21 111 11 

CST10_1_3_c_Krig 0.1230 0.4634 0.8292 0.0271 0.0798 0.9781 11.78 103 2 

CST10_1_3_c_RBF 0.1485 0.6078 0.7533 0.0362 0.0904 0.9611 11.03 103 2 

CST10_1_3_d_GPML 2.4e6 1.1e7 -0.3036 1.2966 5.1994 -0.2166 18.52 117 16 

CST10_1_3_d_Krig 0.1456 0.6931 0.7601 0.0291 0.0885 0.9748 11.62 100 0 

CST10_1_3_d_RBF 1.3114 2.4375 0.0000 0.0390 0.0968 0.9547 22.13 119 18 

CST10_1_3_e_GPML 0.0989 0.2626 0.8893 0.0256 0.0647 0.9805 11.57 112 6 

CST10_1_3_e_Krig 0.0573 0.2195 0.9628 0.0236 0.0534 0.9834 12.04 113 6 

CST10_1_3_e_RBF 0.1191 0.4009 0.8397 0.0326 0.1005 0.9684 13.06 112 5 

CST10_2_3_a_GPML 0.0497 0.1437 0.9720 0.0311 0.0795 0.9712 22.89 212 4 

CST10_2_3_a_Krig 0.0398 0.1029 0.9821 0.0189 0.0431 0.9893 32.38 212 5 

CST10_2_3_a_RBF 0.0862 0.2570 0.9160 0.0227 0.0553 0.9847 35.23 213 6 

CST10_2_3_b_GPML 0.0773 0.4128 0.9326 0.0274 0.1222 0.9776 23.94 212 4 

CST10_2_3_b_Krig 1.2e6 1.2e6 0.0000 0.6048 0.9863 0.0001 24.63 219 18 

CST10_2_3_b_RBF 0.1175 0.4586 0.8440 0.0273 0.0907 0.9778 38.62 213 6 

CST10_2_3_c_GPML 0.1244 0.6547 0.8249 0.0321 0.0749 0.9693 42.70 216 16 

CST10_2_3_c_Krig 1.6e7 6.3e7 -12.0144 8.0411 31.8554 -11.6098 32.65 200 0 

CST10_2_3_c_RBF 0.1010 0.4657 0.8845 0.0281 0.0794 0.9764 29.49 208 8 

CST10_2_3_d_GPML 1.2e6 1.4e6 -0.0013 0.8046 1.1985 -0.0008 42.31 242 42 

CST10_2_3_d_Krig 0.0974 0.5565 0.8927 0.0235 0.0668 0.9836 37.18 212 12 

CST10_2_3_d_RBF 0.4086 2.3133 -0.8393 0.0291 0.0851 0.9748 53.45 241 41 

CST10_2_3_e_GPML 0.3226 1.9192 -0.1278 0.0265 0.0792 0.9791 22.01 214 10 

CST10_2_3_e_Krig 0.0421 0.1513 0.9799 0.0182 0.0448 0.9901 22.73 216 12 

CST10_2_3_e_RBF 0.0900 0.3803 0.9084 0.0281 0.0680 0.9765 22.37 209 2 
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Surrogate Model CST10 
continued 

RMS_Obj MAE_Obj R
2
_Obj RMS_c2 MAE_c2 R

2
_c2 

SM 
building 
time 

Evaluated 
samples 

Failed 
samples 

CST10_3_3_a_GPML 0.0361 0.1028 0.9853 0.0159 0.0491 0.9925 63.55 314 8 

CST10_3_3_a_Krig 0.0829 0.2903 0.9222 0.0227 0.0822 0.9847 51.61 313 6 

CST10_3_3_a_RBF 0.0722 0.2413 0.9410 0.0289 0.0785 0.9752 38.30 317 14 

CST10_3_3_b_GPML 0.0454 0.1598 0.9766 0.0211 0.0612 0.9868 54.37 320 20 

CST10_3_3_b_Krig 0.0347 0.1049 0.9864 0.0152 0.0435 0.9932 51.77 332 24 

CST10_3_3_b_RBF 0.0775 0.2684 0.9320 0.0233 0.0639 0.9839 56.08 318 16 

CST10_3_3_c_GPML 0.2739 1.0012 0.1690 0.0401 0.1038 0.9521 50.15 343 43 

CST10_3_3_c_Krig 0.0498 0.1696 0.9720 0.0244 0.0725 0.9823 111.78 307 7 

CST10_3_3_c_RBF 0.0796 0.3138 0.9282 0.0270 0.0696 0.9783 34.87 310 9 

CST10_3_3_d_GPML 0.2450 1.0814 0.3288 0.0433 0.1480 0.9442 73.01 324 24 

CST10_3_3_d_Krig 0.0482 0.1679 0.9737 0.0231 0.0759 0.9841 63.28 311 10 

CST10_3_3_d_RBF 1.3114 2.4375 0.0000 0.0329 0.1004 0.9677 76.26 339 39 

CST10_3_3_e_GPML 0.0448 0.0891 0.9773 0.0174 0.0454 0.9910 52.41 316 13 

CST10_3_3_e_Krig 0.0513 0.1658 0.9702 0.0217 0.1120 0.9860 54.41 314 9 

CST10_3_3_e_RBF 0.0676 0.2173 0.9483 0.0248 0.0623 0.9817 45.36 312 7 
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Table 25 - CST14 Surrogate model data 

  

Surrogate Model CST14 RMS_Obj MAE_Obj R
2
_Obj RMS_c2 MAE_c2 R

2
_c2 

SM 
building 
time 

Evaluated 
samples 

Failed 
samples 

CST14_05_3_a_GPML 0.2820 1.2620 0.4899 0.0439 0.1857 0.9509 7.60 71 0 

CST14_05_3_a_Krig 0.1822 0.8905 0.7879 0.0445 0.1980 0.9494 10.36 85 8 

CST14_05_3_a_RBF 0.2766 1.2780 0.5152 0.0593 0.2656 0.9105 10.23 72 2 

CST14_05_3_b_GPML 0.2355 0.7329 0.6445 0.0427 0.1313 0.9534 86.77 84 6 

CST14_05_3_b_Krig 0.1717 0.9348 0.8111 0.0496 0.2757 0.9375 33.29 83 4 

CST14_05_3_b_RBF 0.2601 1.2682 0.5775 0.0496 0.1715 0.9374 13.31 83 4 

CST14_05_3_c_GPML 3.5e6 3.8e6 -0.0007 1.8466 2.2065 -0.0008 13.28 91 20 

CST14_05_3_c_Krig 0.2956 1.6539 0.4540 0.0444 0.1413 0.9499 9.44 71 0 

CST14_05_3_c_RBF 0.2841 1.2622 0.4929 0.0607 0.2879 0.9065 8.65 71 0 

CST14_05_3_d_GPML 3.5e6 3.6e6 -0.0003 1.8282 2.2157 -0.0001 10.73 75 4 

CST14_05_3_d_Krig 0.2836 1.6824 0.5020 0.0476 0.1363 0.9422 8.87 75 4 

CST14_05_3_d_RBF 0.2756 1.3104 0.5320 0.0626 0.2025 0.9001 10.10 79 8 

CST14_05_3_e_GPML 0.3000 1.4347 0.4241 0.1695 0.8604 0.2848 12.39 81 9 

CST14_05_3_e_Krig 0.1981 1.0006 0.7480 0.0643 0.2390 0.8950 9.52 72 9 

CST14_05_3_e_RBF 0.2706 1.4006 0.5301 0.0509 0.2094 0.9340 11.85 78 8 

CST14_1_3_a_GPML 0.2042 0.7621 0.7332 0.0372 0.1891 0.9648 16.44 143 2 

CST14_1_3_a_Krig 0.1418 0.8840 0.8709 0.0331 0.1315 0.9720 26.05 155 6 

CST14_1_3_a_RBF 1.4060 3.2069 -0.0013 0.1982 0.9149 0.0000 19.44 155 7 

CST14_1_3_b_GPML 0.2434 1.1062 0.6268 0.0360 0.1848 0.9670 15.71 155 6 

CST14_1_3_b_Krig 0.1366 0.8599 0.8802 0.0368 0.1803 0.9654 16.66 155 7 

CST14_1_3_b_RBF 1.4077 3.2069 0.0000 0.1982 0.9149 0.0000 19.86 142 0 

CST14_1_3_c_GPML 0.1979 1.0452 0.7495 0.0426 0.2017 0.9536 32.12 180 40 

CST14_1_3_c_Krig 0.2171 1.1531 0.6975 0.0462 0.1646 0.9459 21.10 144 4 

CST14_1_3_c_RBF 0.2391 0.9816 0.6336 0.0513 0.2450 0.9330 22.03 143 2 

CST14_1_3_d_GPML 0.2162 1.0672 0.6999 0.0424 0.1905 0.9542 32.17 166 26 

CST14_1_3_d_Krig 0.2281 1.1975 0.6663 0.0445 0.1573 0.9498 25.75 140 0 

CST14_1_3_d_RBF 1.4077 3.2069 0.0000 0.1982 0.9149 0.0000 17.57 144 4 

CST14_1_3_e_GPML 0.2158 1.0745 0.7011 0.0348 0.1735 0.9691 30.10 158 18 

CST14_1_3_e_Krig 0.1427 0.9312 0.8693 0.0378 0.1507 0.9635 31.64 159 15 

CST14_1_3_e_RBF 1.4077 3.2069 0.0000 0.1982 0.9149 0.0000 38.04 162 21 

CST14_2_3_a_GPML 0.2518 1.3106 0.5962 0.0478 0.1792 0.9418 67.92 287 6 

CST14_2_3_a_Krig 0.1094 0.7294 0.9232 0.0432 0.2032 0.9524 64.60 307 26 

CST14_2_3_a_RBF 0.1794 0.7775 0.7963 0.0331 0.1389 0.9720 52.04 301 15 

CST14_2_3_b_GPML 0.1217 0.6509 0.9051 0.0318 0.1141 0.9741 38.68 299 11 

CST14_2_3_b_Krig 2.7e7 1.7e8 -18.8615 12.8132 82.2951 -18.9506 43.86 301 14 

CST14_2_3_b_RBF 0.1899 0.7911 0.7708 0.0313 0.1520 0.9751 39.81 287 6 

CST14_2_3_c_GPML 0.2902 1.4074 0.4597 0.0490 0.1786 0.9390 49.89 299 18 

CST14_2_3_c_Krig 0.2049 0.6457 0.7369 0.0579 0.1814 0.9151 72.68 287 6 

CST14_2_3_c_RBF 0.2190 0.9733 0.6943 0.0427 0.1801 0.9536 34.36 284 4 

CST14_2_3_d_GPML 0.1982 0.9772 0.7490 0.0400 0.2273 0.9592 41.58 301 20 

CST14_2_3_d_Krig 5.4e5 5.4e5 0.0000 0.4303 0.7763 0.0000 39.38 284 4 

CST14_2_3_d_RBF 1.4077 3.2069 0.0000 0.1982 0.9149 0.0000 43.24 291 10 

CST14_2_3_e_GPML 0.2160 0.9664 0.7057 0.0318 0.1397 0.9741 43.55 318 38 

CST14_2_3_e_Krig 1.2e7 6.7e7 -8.3390 13.1002 65.4148 -6.2725 56.49 322 38 

CST14_2_3_e_RBF 0.1735 0.7247 0.8086 0.0333 0.1422 0.9718 47.48 325 39 
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Table 26 - uNURBS Surrogate model data 

 

Surrogate Model CST14 RMS_Obj 
MAE_Obj R

2
_Obj RMS_c2 MAE_c2 R

2
_c2 

SM 
building 
time 

Evaluated 
samples 

Failed 
samples 

uNURBS_05_3_a_GPML 0.1882 0.6303 0.3832 0.0831 0.1778 0.9060 13.50 115 6 

uNURBS_05_3_a_Krig 0.0935 0.2834 0.8473 0.0533 0.1270 0.9612 12.02 113 2 

uNURBS_05_3_a_RBF 0.1469 0.4053 0.6240 0.0743 0.1834 0.9253 13.03 114 4 

uNURBS_05_3_b_GPML 0.1735 0.5717 0.4790 0.0728 0.1681 0.9292 10.23 112 0 

uNURBS_05_3_b_Krig 0.0886 0.2701 0.8624 0.0772 0.2308 0.9194 11.75 113 2 

uNURBS_05_3_b_RBF 0.2614 0.7333 -0.0350 0.0975 0.2821 0.8727 12.03 112 0 

uNURBS_05_3_c_GPML 0.2218 0.7273 0.1441 0.0545 0.1543 0.9596 12.64 106 0 

uNURBS_05_3_c_Krig 0.1578 0.6558 0.5636 0.0598 0.1901 0.9514 14.58 107 2 

uNURBS_05_3_c_RBF 0.1928 0.7723 0.3483 0.0773 0.2047 0.9187 12.19 110 4 

uNURBS_05_3_d_GPML 0.2044 0.7400 0.2689 0.0789 0.2155 0.9175 14.38 106 0 

uNURBS_05_3_d_Krig 0.1631 0.6190 0.5337 0.0619 0.1661 0.9477 16.00 110 4 

uNURBS_05_3_d_RBF 1.3117 2.0737 0.0000 0.3157 0.8079 0.0000 13.60 107 2 

uNURBS_05_3_e_GPML 0.1619 0.5540 0.5445 0.0641 0.1899 0.9446 15.10 129 22 

uNURBS_05_3_e_Krig 0.1154 0.4643 0.7699 0.0578 0.1734 0.9544 13.50 124 16 

uNURBS_05_3_e_RBF 0.1872 0.5920 0.3867 0.0656 0.1611 0.9417 13.23 120 10 

uNURBS_1_3_a_GPML 0.1338 0.4408 0.6871 0.0383 0.1042 0.9800 36.03 215 4 

uNURBS_1_3_a_Krig 0.0993 0.3640 0.8271 0.0379 0.0985 0.9804 32.58 217 8 

uNURBS_1_3_a_RBF 0.1647 0.6222 0.5242 0.0452 0.1514 0.9721 33.86 227 8 

uNURBS_1_3_b_GPML 0.1334 0.6177 0.6896 0.0370 0.1116 0.9813 25.73 231 16 

uNURBS_1_3_b_Krig 0.0770 0.2456 0.8960 0.0398 0.1248 0.9784 26.81 215 4 

uNURBS_1_3_b_RBF 0.1602 0.5550 0.5503 0.0490 0.1624 0.9672 32.41 216 6 

uNURBS_1_3_c_GPML 0.2417 1.0295 0.0735 0.0446 0.1269 0.9729 49.87 212 2 

uNURBS_1_3_c_Krig 0.1330 0.5375 0.6930 0.0439 0.1379 0.9737 77.53 211 0 

uNURBS_1_3_c_RBF 0.1348 0.4910 0.6811 0.0499 0.1560 0.9661 46.40 215 4 

uNURBS_1_3_d_GPML 0.1757 0.5162 0.4843 0.0488 0.1219 0.9675 30.77 219 8 

uNURBS_1_3_d_Krig 0.1672 1.0383 0.5241 0.0449 0.1263 0.9725 54.66 216 6 

uNURBS_1_3_d_RBF 1.3117 2.0737 0.0000 0.3157 0.8079 0.0000 28.69 220 10 

uNURBS_1_3_e_GPML 0.1404 0.4062 0.6628 0.0484 0.1271 0.9680 37.64 247 32 

uNURBS_1_3_e_Krig 0.0767 0.2454 0.8968 0.0387 0.1115 0.9796 43.58 233 21 

uNURBS_1_3_e_RBF 0.1562 0.4800 0.5858 0.0629 0.1727 0.9466 29.53 242 27 

uNURBS_2_3_a_GPML 0.1223 0.3933 0.7382 0.0532 0.1788 0.9616 71.45 430 8 

uNURBS_2_3_a_Krig 0.0565 0.2084 0.9440 0.0351 0.0895 0.9832 126.95 430 8 

uNURBS_2_3_a_RBF 0.1446 0.4824 0.6420 0.0511 0.1214 0.9646 70.66 429 6 

uNURBS_2_3_b_GPML 0.1527 0.4703 0.5986 0.0401 0.1189 0.9781 48.55 446 20 

uNURBS_2_3_b_Krig 0.0629 0.2216 0.9306 0.0464 0.1131 0.9707 109.02 445 18 

uNURBS_2_3_b_RBF CRASHED         

uNURBS_2_3_c_GPML 0.1968 0.7711 0.4009 0.0428 0.1200 0.9751 77.66 432 12 

uNURBS_2_3_c_Krig 0.1502 0.8899 0.6075 0.0409 0.1134 0.9772 349.44 435 15 

uNURBS_2_3_c_RBF 1.3117 2.0737 0.0000 0.3157 0.8079 0.0000 62.50 427 6 

uNURBS_2_3_d_GPML 0.2264 1.2194 0.1973 0.0598 0.1701 0.9519 110.71 428 7 

uNURBS_2_3_d_Krig 0.3384 1.6478 -0.6616 0.0413 0.1203 0.9768 269.25 439 18 

uNURBS_2_3_d_RBF 0.4966 1.8345 -1.7048 0.0756 0.2063 0.9230 99.90 470 49 

uNURBS_2_3_e_GPML 0.1035 0.3553 0.8124 0.0371 0.0950 0.9813 118.57 467 43 

uNURBS_2_3_e_Krig 0.0578 0.1788 0.9413 0.0365 0.0987 0.9818 144.64 469 49 

uNURBS_2_3_e_RBF 0.1255 0.4549 0.7289 0.0435 0.1128 0.9742 85.04 459 39 
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Table 27 - NURBS Surrogate model data 

Surrogate Model 
NURBS 

RMS_Obj MAE_Obj R
2
_Obj RMS_c2 MAE_c2 R

2
_c2 

SM 
building 
time 

Evaluated 
samples 

Failed 
samples 

NURBS_5_3_a_GPML 0.4441 4.0556 0.0624 0.1072 0.6741 0.8911 50.15 212 18 

NURBS_5_3_a_Krig 0.3368 3.8850 0.4396 0.1107 0.9011 0.8838 42.80 207 8 

NURBS_5_3_a_RBF 0.4226 4.1464 0.1176 0.1200 0.7878 0.8635 37.43 208 11 

NURBS_5_3_b_GPML 0.4154 4.0807 0.1620 0.1082 0.7124 0.8890 23.15 209 12 

NURBS_5_3_b_Krig 0.3515 3.9294 0.3924 0.1167 0.9213 0.8710 25.27 207 9 

NURBS_5_3_b_RBF 0.4225 3.6463 0.1175 0.1267 0.7783 0.8479 21.46 310 14 

NURBS_5_3_c_GPML 0.4483 4.1485 0.0054 0.0897 0.5899 0.9237 40.99 189 13 

NURBS_5_3_c_Krig 0.4847 3.7797 -0.1224 0.1121 0.6553 0.8808 53.10 189 13 

NURBS_5_3_c_RBF 0.4127 4.1430 0.1572 0.1253 0.8124 0.8514 27.79 181 5 

NURBS_5_3_d_GPML 2.83E+06 3.78E+06 -0.0091 0.5735 1.5949 0.0036 32.48 194 19 

NURBS_5_3_d_Krig 6.1468 34.6426 -7.3032 0.0970 0.5879 0.9108 72.61 213 38 

NURBS_5_3_d_RBF 1.4387 5.5274 0.0000 0.3692 2.0377 0.0000 41.98 221 46 

NURBS_5_3_e_GPML 0.4297 4.2039 0.0949 0.1023 0.6952 0.9007 49.47 207 26 

NURBS_5_3_e_Krig 0.3481 3.7915 0.4003 0.1093 0.8427 0.8869 35.67 204 20 

NURBS_5_3_e_RBF 0.4101 3.9806 0.1717 0.1182 0.7631 0.8677 34.51 205 22 

NURBS_1_3_a_GPML 0.4008 4.0135 0.2173 0.0983 0.7207 0.9083 214.63 408 36 

NURBS_1_3_a_Krig 0.3233 3.7919 0.4827 0.0976 0.7501 0.9097 142.04 388 27 

NURBS_1_3_a_RBF 0.3904 3.7927 0.2489 0.1091 0.7042 0.8871 134.59 411 43 

NURBS_1_3_b_GPML 6.34E+03 3.29E+04 -2.8638 0.4047 1.6205 0.0000 151.47 410 40 

NURBS_1_3_b_Krig 0.3385 3.9618 0.4352 0.1031 0.8314 0.8994 75.02 392 38 

NURBS_1_3_b_RBF 0.3544 3.1365 0.3799 0.1062 0.6962 0.8930 180.28 410 40 

NURBS_1_3_c_GPML 1.3570 6.7681 -1.2061 0.0925 0.5832 0.9190 76.11 376 21 

NURBS_1_3_c_Krig 2.92E+06 2.81E+07 
-

28.7123 4.2666 44.7140 
-

21.9455 312.00 370 20 

NURBS_1_3_c_RBF 1.4387 5.5274 0.0000 0.3692 2.0377 0.0000 69.21 425 75 

NURBS_1_3_d_GPML 0.4893 3.9153 -0.0365 0.1100 0.5924 0.8854 79.13 398 48 

NURBS_1_3_d_Krig 0.3251 3.7004 0.4771 0.1012 0.8086 0.9032 299.39 380 30 

NURBS_1_3_d_RBF 1.4387 5.5274 0.0000 0.3692 2.0377 0.0000 78.64 374 24 

NURBS_1_3_e_GPML 0.4341 4.1979 0.0830 0.0937 0.5814 0.9167 133.40 404 43 

NURBS_1_3_e_Krig 0.3251 3.7004 0.4771 0.1012 0.8086 0.9032 144.69 313 52 

NURBS_1_3_e_RBF 0.4000 3.7455 0.2083 0.1068 0.6974 0.8919 112.92 377 27 
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Appendix E – Exploited surrogate models result  

Table 28 - Exploited surrogate models results 

Model SM 

descent 

optim 

SM GA 

optim 

SM GA + 

high fidelity 

SQP Optim 

High 

fidelity calls 

to build SM 

High 

fidelity 

calls SQP 
descent 

Time SM 

building 

Time GA 

optim 

Time 

SQP 

Descent 

AoA 

final 

CST10 5n a Krig 0.9792 0.9802 0.9418 57 168 13.3 12.76 20.95 2.54° 

CST10 5n b Krig 0.9617 0.9615 0.9302 55 164 5.43 10.84 23.92 2.57° 

CST10 5n e Krig 0.9640 0.9605 0.9293 56 167 5.37 13.54 20.40 2.60° 

CST10 10n a Krig 0.9730 0.9727 0.9413 115 113 11.5 13.62 15.71 2.31° 

CST10 10n b Krig 1.0074 1.0070 0.9382 117 215 11.5 31.76(-) 43.17 2.52° 

CST10 10n e GPML 0.9658 0.9653 0.9378 112 221 11.6 39.82 29.18 2.48° 

CST10 10n e Krig 0.9731 0.9726 0.9341 113 166 12.0 11.21 22.04 2.55° 

CST10 10n c RBF 0.9751 0.9756 0.9423 103 143 11.0 21.36 17.88 2.20° 

CST10 20n a Krig 0.9697 0.9546 0.9342 212 188 32.4 6.629 23.33 2.59° 

CST10 20n e Krig 0.9687 0.9689 0.9377 216 279 22.7 21.39 39.98 2.56° 

CST10 20n a GPML 0.9874 0.9867 NaN - - - 27.39 - - 

CST10 30n b Krig 0.9778 0.9768 0.9305 332 204 51.8 15.47 27.61 2.45° 

CST10 30n a GPML 0.9729 0.9726 0.9368 314 205 63.6 30.68 41.44 2.40° 

CST10 30n b GPML 0.9949 0.9908 0.9417 320 159 54.4 78.48(-) 20.31 2.66° 

CST10 30n e GPML 0.9756 0.9749 0.9388 316 172 52.4 24.32 18.84 2.45° 

CST10 30n d Krig 0.9596 0.9615 0.9392 311 118 63.3 16.64 17.33 2.76° 

CST10 30n e Krig 0.9645 0.9654 0.9329 314 159 54.4 19.40 23.38 2.38° 

CST14 5n b Krig 0.9845 0.9846 0.9537 83 251 33.3 23.93 39.46 2.42° 

CST14 5n a Krig 1.0427 1.0442 0.9459 85 251 10.4 23.74 39.46 2.20° 

CST14 5n b GPML 1.0347 1.0158 0.9613 84 137 86.8 86.70 13.58 2.40° 

CST14 5n e Krig 0.9680 0.9679 0.9486 72 194 9.52 42.52 24.00 2.22° 

CST14 10n b Krig 0.9765 0.9936 0.9533 155 177 16.7 47.27 31.20 2.15° 

CST14 10n a Krig 0.9765 0.9683 0.9517 155 206 26.1 138.09 19.66 2.35° 

CST14 10n b GPML 0.9589 0.9616 0.9667 155 105 15.7 53.41 23.87 2.32° 

CST14 10n e Krig 0.9731 1.0300 0.9279 113 302 12.0 19.99 37.59 2.22° 

CST14 20n a Krig 0.9795 0.9882 0.9482 307 218 64.6 54.25 45.25 2.07° 

CST14 20n b GPML 0.9729 0.9714 0.9425 299 280 38.7 36.30 25.55 2.32° 

CST14 20n a GPML 0.9697 0.9687 0.9544 287 186 67.9 34.29 41.47 2.19° 

CST14 20n e RBF 0.9815 0.9858 0.9455 209 264 22.4 103.35 33.28 2.32° 

uNURBS5n d Krig 0.9762 0.9641 0.9336 110 200 16.0 33.11 21.94 1.64° 

uNURBS 5n b Krig 0.9873 0.9951 0.9361 113 249 11.8 65.60 33.20 1.63° 

uNURBS 5n a Krig 0.9968 0.9872 0.9376 113 266 12.0 24.14 40.59 1.93° 

uNURBS 5n e Krig 1.0284 1.0193 0.9426 113 148 13.5 66.45 17.52 1.53° 

uNURBS 10n a Krig 1.0074 0.9983 0.9693 217 115 32.6 46.60 13.00 1.97° 

uNURBS 10n c Krig 0.9833 0.9743 0.9295 211 418 77.5 222.31 70.42 1.67° 

uNURBS 10n b Krig 0.9815 0.9698 0.9354 215 483 26.8 25.81 83.92 1.57° 

uNURBS 10n e Krig 0.9999 0.9935 NaN 233 NAN 43.6 68.07 NAN NAN 

uNURBS 20n e Krig 0.9621 0.9535 0.9325 469 366 145 88.56 51.96 1.52° 

uNURBS 20n b Krig 0.9756 0.9690 0.9327 445 366 109 69.50 61.95 1.81° 

uNURBS 20n a Krig 0.9693 0.9592 0.9327 430 366 127 71.72 61.86 1.81° 

NURBS 5n a Krig 1.0330 1.0309 0.9359 207 500 42.8 160.89 65.15 1.37° 

NURBS 5n b Krig 1.1061 1.1608 1.0963 207 121 25.3 145.36 14.26 2.01° 

NURBS 5n d Krig 1.5709 1.3394 0.9288 213 644 72.6 130.16 131.86 1.63° 

NURBS 5n e Krig 0.9844 0.9827 0.9280 204 614 37.7 120.4259 88.2270 1.76° 

NURBS 10n a Krig 0.9889 0.9921 0.9334 388 736 142 221.89 117.89 1.83° 

NURBS 10n b Krig 0.9713 0.9758 0.9277 392 1107 75.0 214.94 147.59 1.90° 
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Model Continued SM 

descent 
optim 

SM GA 

optim 

SM GA + 

high fidelity 
SQP Optim 

High 

fidelity calls 
to build SM 

High 

fidelity 
calls SQP 

descent 

Time SM 

building 

Time GA 

optim 

Time 

SQP 
Descent 

AoA 

final 

NURBS 10n d Krig 1.0036 1.0339 0.9350           380 448 299 98.765 52.67 1.90° 

NURBS 10n e Krig 1.0081 1.0965 0.9755 361 159 159 267.60 23.44 1.78° 

NURBS 10n b RBF 1.0806 1.0806 0.9319 410 980 180 161.30 137.83 2.10° 

 


