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Abstract

Graphs are used to model irregular data structures and serve as models to represent/capture the
interrelationships between data. The data in graphs are also referred as graph signals. Graph signal
processing (GSP) can then be applied which basically extends classical signal processing to solve
problems. Anomaly detection is an example of such a problem. Two hypothetical situations are given,
and a detector has to be designed to distinguish between these. Under the null hypothesis, graph
structures are considered to be untouched. Under the alternative hypothesis, (unknown) topological
changes might have occurred. Now by incorporating a priori knowledge about the graphs, the decision
making process should improve.

In most works, a priori knowledge of the graphs under the null and alternative hypothesis was incorpo-
rated. This means that detectors were designed which were able to anticipate on possible topological
changes. In this thesis, the problem is considered where only a priori knowledge of the graph under the
null hypothesis is exploited. This means that detectors are not able to anticipate on potential changes
and this where blind detection comes into play. Blind detection is important because it considers a
more realistic scenario. In this work, the blind topology change detector (BTCD) and the constrained
blind topology change detector (CTCD) are derived which exploit different properties of the data re-
lated to the known graph structure. For the BTCD, the bandlimitedness of graph signals was exploited
and for the CTCD, the graph signal smoothness. The main question in this work, was to find out what
the potentials are with the blind detection principle for graph change detection.

Different test scenarios are used to evaluate the detectors on both synthetic and real data. For the
BTCD, the obtained results compare well when information about the alternative graph is available.
For this detector, the potential of blind detection was highly visible. For bandlimited graph signals, the
BTCD as good as detectors using full information. For the CTCD, comparable results (with detectors
using full information) are attained for just a few test scenarios. For small changes, the graph signal
smoothness seems to be less powerful as to the graph signal bandlimitedness.

This study showed that graph change detection is still possible without having full information. Some
graph signal properties are more powerful w.r.t. others.
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1
Introduction

In a social media network nowadays, users interact with each other through online relationships. Each
user of such a network can be seen as a node in a complex network which can also be referred to
a graph [1]. The interdependencies between nodes can be modeled using links which, for example,
could represent connections that nodes have in common, such as, friendships. An example of such
a graph is given in Figure 1.1. A graph also tends to be useful in generating/storing data [2]. For
example, a sensor network for environment monitoring systems. The data that is collected is then
indexed by the nodes of the graph representing the sensor network [3]. Such data are also referred as
graph signals. What differs a graph data storage structure with respect to a classical one (e.g. matrix
like storage structure), is that there are no well ordered samples anymore. This is because a node can
be linked to any other node in the graph.

Figure 1.1: Example of a social network where links represent connections that people have in common, e.g., friendships.

In practice, there are many signals, derived from a large variety of fields such as social, economic,
epidemiology, biological and transportation networks. All these signals can be modeled as signals on
graphs [4]. The interdependencies of these signals can then be captured by the structure of a graph [2]
[5]. Another application is modeling images with graphs. For example, video signals own the property
that they are ordered according to their spatial position/time instances defined in the sampling process
[6]. Nodes represent pixels and links reveal how pixels are related to their neighborhood. Together
they form the structure and size of the image plus the mutual dependencies between the pixels. The
graph signal in this example are then RGB values which are stored on each node/pixel (see Figure
1.2).
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2 1. Introduction

Graph signals show key dependencies which arise from the irregular data domain. This means that
classical signal processing tools can no longer be applied and give reason to extend the analysis
to a new paradigm, called graph signal processing (GSP) [7]. A common problem in the context of
signal processing is the task of detecting events of interest by analyzing signals. This is also known as
detection theory [8]. Detection theory can then be used to decide between two or more hypothetical
situations. An example of such a situation, is to decide whether a signal (embedded in noise) is present
or not in a sensor measurement.

Figure 1.2: Example of an image represented as a (ordered) graph. Each node represents a pixel and the links represent how
each pixel is related to its neighborhood. The graph signal in this case is a specific RGB value indexed by a pixel [5] [6].

A problem that is common for graphs, consists of detecting topology anomalies which are described
by graph topology changes. Graph anomaly detection is applied in different areas such as security,
finance, health care, and law enforcement [9]. A detector must then be designed to distinguish between
the nominal hypothesis H0 where the topology of the graph remains untouched and the alternative
hypothesis H1 where graph topology changes have occurred:

H0 : Nominal graph
H1 : Alternative graph

In Figure 1.3 an example is given where two graphs are shown with the same nodes but with different
links. This indicates a change in the graph topology. Graph anomaly detection is accomplished by
collecting graph signal observations and applying GSP techniques since the statistics of these signals
reveal graph topological structures [10]. Later in this work, where the detectors are designed, the
correlation between graph signal statistics and graph topology will be established and explained.

Figure 1.3: Example of two random graphs carrying different graph signals. Both graphs have the same nodes but the graph on
the left has different links w.r.t. the graph on the right. This implies the occurrence of a topology change [11].
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In previous works, cases were considered where the nominal and the alternative graph were known.
An example of such anomaly detection problem is described in [12] [13] where the authors attempted
to detect known target graphs embedded in a noisy background graph. More formally, this problem is
written as:

H0 : noisy background graph
H1 : noisy background graph + target graph

Meanwhile, in [11], GSP is applied to fMRI data data to detect early stages of Alzheimer. A graph signal
was fit to known candidate graphs where one graph represents a graph under normal circumstances
while the alternative graphs represent anomalous graphs. What is meant by a graph under normal
circumstances, is a healthy brain while the anomalous graphs represent brain structures dealing with
diseases, such as, schizophrenia, autism, strokes and Alzheimer [10]. Such a problem can then be
formulated as follows:

H0 : candidate graph: healthy brain
H1 : candidate graphs: brain with a set of possible diseases

Knowing graph topologies a priori plays an important role for the detection performance. A detector is
then capable to anticipate anomalies since alternative graphs (with topological changes included) are
known in advance. In this work, a detection problem is considered where only the nominal graph is
known. This affects the performance significantly, but it considers a more realistic case since topology
changes are usually not known a priori. Throughout this thesis, the term blind detection will be used
to point to anomaly detection without knowing the alternative graph, i.e., being able to anticipate on
possible structural changes. For instance, when one only knows that the brain is not healthy, the
problem is formulated as follows:

H0 : candidate graph: healthy brain
H1 : candidate graphs: not healthy brain with an unknown set of possible diseases

The scope of this work is to study the possibilities with blind detection and to evaluate detectors
that are designed according to this principle. For the different detectors, signal properties
such as graph signal bandlimitedness [11], graph signal smoothness [11] and graph signal
stationarity [14] [15] [16] are exploited. A sub-question is therefore: how do topology changes
reflect in the statistics of an observed graph signal when, the blind detection principle is used.
The work of [11] is used as reference and to consider a more realistic case, small topology
changes are also considered. Besides using synthetic graphs, real graph are also considered
as well to see how discriminative the mentioned graph signal properties are.

A possible example of a more realistic (blind detection) problem is to detect whether the topology in a
brain has changed over time without using candidate graphs (see Figure 1.4). The candidate graphs
could capture a set of (unknown) frequently occurring topological changes. Using these candidate
graphs would lead to a detector that is capable to forecast possible diseases.

The proposed detection technique can then be used as a diagnostic tool to detect such diseases
in early stages. The results with the blind detection principle can be used for a deeper analysis on
targeted patients.

Figure 1.4: Example of blind detection with a followup scheme of brain measurements. For every consecutive measurement,
one can wonder whether the new observation has changed w.r.t. the previous one.



4 1. Introduction

The remaining part of this work is organized as follows. First the preliminaries are presented in chapter
2. In this chapter some detailed information regarding GSP and detection theory are given. Also the
signal properties used for hypothesis discrimination will be discussed in detail.

In chapter 3, a detector is designed which discriminates between hypotheses on the basis of graph
signal bandlimitedness. The energy of the signal is assumed to be bounded for the nominal graph and
this forms the basis for the detector derived in this chapter.

In chapter 4 a detector is designed exploiting graph signal smoothness. Besides for the energy being
bounded for the nominal graph, its energy decay is also expected to be bounded. The distribution of
the signal energy over its spectrum could then reveal potential graph changes.

Finally in section 5, a glance is given on possible future work. Graph signal stationarity, compressive
sampling and compressive sensing will be discussed on possible research directions. Stationarity
for graph signals is graph topology dependent. This property could get (partially) lost as the graph
structure changes and could form a basis of a detector design. Compressive sampling/sensing are
techniques which can be used to speed up the signal processing procedure.

In the very last chapter of this work, an overall conclusion is given on the attainable detection perfor-
mance of blind detection.



2
Preliminaries and Problem definition

Before going into detail of the considered problem in this chapter, some background information on
GSP and detection theory is given in Sections 2.1 and 2.2 respectively. Different signal properties
(such as graph signal bandlimitedness, smoothness and stationarity) and their potential discriminative
power will be discussed as well. Subsequently, the problem of interest is given in terms of GSP and
detection theory in Section 2.3.

2.1. Graph signal processing
A graph G = (V, E) consists of an edge set E and a node set V. The edge set E contains all the links
which connect the nodes. In this work, undirected graphs are considered. An undirected graph is a
model where links have no orientation, which means that a link from node A to node B is the same as
the link from node B to node A. Also, it is assumed that the graph is unweighted which means that the
links in the graph carry no weight, i.e., either a link carries an one if there is a link or a zero otherwise.
The number of nodes is N , i.e., |V| = N . A graph signal x ∈ RN is then defined on the N vertices of
a graph and is a mapping from the vertex domain to the set of real numbers, i.e., x : V → RN . Graph
structures are described by their so called adjacency matrices A ∈ RN×N . Elements of the adjacency
matrix ai,j , i, j ∈ {1, 2, · · · , N}, show whether vertex pairs are adjacent or not in the graph [7]. Since
unweighted graphs are considered, a 1 is placed for nodes which are adjacent, as illustrated in Figure
2.1:

Figure 2.1: Example of a undirected and unweighted graph (left) carrying a graph signal on each node. Also its corresponding
adjacency matrix (right) is shown.

In the field of GSP, the degree matrix D ∈ RN×N is a diagonal matrix which contains information about
the degree of each node. The degree matrix D gives the number of links that are coupled to each
node in the unweighted graph. Suppose di,j with i, j ∈ {1, 2, · · · , N} is an element of D. Also assume
that vi is a node from set V. The degree matrix is then defined as:

di,j =
{

deg(vi) if i = j

0 otherwise,
(2.1)

5



6 2. Preliminaries and Problem definition

deg(vi) the number of links terminating node vi. Another common graph structure descriptor is the
graph Laplacian L ∈ RN×N . Matrix L = D−A is a real symmetric matrix for undirected graphs. Since
L is real and symmetric, an eigenvalue decomposition exists:

L = UΛUH , (2.2)

where U is the unitary eigenvector matrix and Λ is the diagonal eigenvalue matrix. The graph Lapla-
cian forms the basis for spectral graph theory and is used to define the graph Fourier transform (GFT)
[17]. The GFT x̂ of x is defined as the projection of x onto the eigenvectors of the graph Laplacian,
i.e.,:

x̂ = UHx. (2.3)

Similarly, the inverse GFT is defined as x = Ux̂. The eigenvalues of the graph Laplacian L, i.e.,
Λ = diag([λ1 λ2 · · · λN ]), are seen as graph frequencies and show a similar behavior as frequencies in
the classical setting [7] [17]. In the classical setting, the Fourier transform is defined as an expansion of
a signal in terms of complex exponentials. These complex exponentials are known to be eigenfunctions
of the one-dimensional Laplace operator [2]. This is the reason why graph frequencies are considered
as an extension of the classical definition of temporal frequencies. The GFT expands a graph signal
in terms of the the eigenvectors of the graph Laplacian L which is seen in (2.3). For an even deeper
understanding of the GFT, the reader can consult [7] [17].
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2.1.1. Graph signal bandlimitedness
Since the analogy between classical frequencies and graph frequencies has been established, graph
spectrum analysis can be carried out now in a similar way. Just like bandlimited signals exist for classi-
cal signals, bandlimited graph signals also exist. Bandlimited signals are used for different techniques.
They are often made bandlimited with windowing/sampling techniques on the Fourier transform of a
signal to prevent any spurious emissions, i.e., unwanted frequencies. For certain eigenvectors, x̂ has
no content. Bandlimited graph signals are defined as follows:

x̂(λi) = 0, ∀ λi > λK , (2.4)

which implies that the graph frequency content of a graph signal is zero only on a subset of graph
frequencies (see Figure 2.3). The property of a signal being bandlimited can be exploited using sub-
space sampling for example, to suppress unwanted frequencies [18] [19]. Also filtering is possible in
the context of graphs where certain frequencies are either suppressed or passed in a certain band [2]
[20]. This is accomplished with the following: instead of using all eigenvectors of L, one can only use
the eigenvectors corresponding to frequencies of interest, e.g., the frequencies corresponding to the
out of band content:

Uc
K = [uK+1 · · ·uN ]. (2.5)

Applying this transform matrix Uc
K should be seen as a form of high pass filtering since it can suppress

graph frequencies. If the graph frequency content is band limited, its energy is zero out of band.
This could be helpful to distinguish between graphs since GFT coefficients generally depend on graph
topology characteristics. So, the property of x̂ being bandlimited on a graph G can be exploited since
another frequency graph signal x̂′ 6= x̂ might not have the same spectral content.

Figure 2.2: Example of a graph with a bandlimited graph signal spectrum.

In Chapter 3, the bandlimitedness of x̂ is exploited where K is assumed to be known under H0.
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2.1.2. Graph signal smoothness
Another property that can be exploited in order to distinguish between graphs, is the graph signal
smoothness. The property of x̂ being smooth on a graph G can be exploited since another frequency
graph signal x̂′ 6= x̂ might not have the same energy decay in its spectrum. Smoothness in the context
of GSP has a similar meaning as for the classical setting, where Fourier coefficients tend to decay
rapidly in its spectral domain. The same thing can be said for smooth graph signals [2] [17] (see Figure
2.3). Graph signal smoothness can be quantified with the following measure [11]:

C(x̂) = x̂HΛx̂
x̂H x̂ = xHLx

xHx . (2.6)

This quantity is small when x tends to be constant in a certain neighborhood of vertices [2]. A signal
being smooth in practice means that x̂ consist mostly out of low pass frequency content, i.e., that a
smooth x̂ is slow-varying on G. Now if the structure of the graph changes, the smoothness of x̂ on
the changed graph is expected to change as well. If this change is significant w.r.t. the smoothness
measured under the nominal graph, one should be able to distinguish between graphs. This is done
by observing directly the graph signal and its relation w.r.t. these graphs.

Figure 2.3: Example of a graph with a smooth graph signal spectrum which is bounded.

In Chapter 4, the smoothness of x̂ is exploited. The smoothness measure C(x̂) is assumed to be
bounded with a known upper bound under H0.



2.1. Graph signal processing 9

2.1.3. Graph signal stationarity
In the last problem of this work, detection based on (weakly) stationary graph signals is examined.
The property of x̂ being stationary on a graph G can be exploited since another frequency graph
signal x̂′ 6= x̂ might have lost this property due to unknown graph changes. Such stationary signals
have a stochastic nature and can be modeled with parametric models, i.e., x ∼ N (0,Cx) where
Cx ∈ RN×N is the covariance matrix of x. For a graph G with laplacian matrix L which has an
eigenvalue decomposition as in (2.2). A graph signal x is then said to be stationary w.r.t. G if the
covariance matrix Cx and the Laplacian matrix L are simultaneously diagonalizable [14] [16], i.e.,:

Λ = UHLU
diag(px) = UHCxU

(2.7)

where the vector px is known as the power spectral density (PSD) of x. Now to quantify stationarity, a
measure was adopted from [15]. The level of stationarity of a signal x, is based on how diagonalizable
its covariance matrix Cx is, using the eigenvector matrix U of G. With this in place, the stationarity
level measure s(Cx,U) is defined as:

s(Cx,U) = ||diag(UHCxU)||2
||UHCxU||F

, (2.8)

where the operators || • ||2 and || • ||F stand for the 2- and Frobenius norm respectively.

When s(Cx,U) is close to 1, the more diagonal the matrix UHCxU is and the more stationary the
signal x is w.r.t. the associated graph. This quantification of the stationarity is then expected to be
powerful enough to distinguish between the hypothetical graphs. Under H0, this quantity is expected
to be upper bounded with a known bound. So, if unknown changes occur, the stationarity level of a
graph signal is expected to be less on the alternative graph when compared to the nominal graph.
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2.2. Detection theory
A common goal within the field of signal processing, is the goal of being able to decide whether an
even of interest occurs or not. One of the simplest detection problem is to find out whether a signal x
(embedded in noise n) is present in a measurement y or not. For the latter, this means that solely noise
is present. The hypothesis, where a signal x is present, is also known as the alternative hypothesis
H1. When only the noise is present, this is known as the null hypothesis H0:

H0 : y = n
H1 : y = x + n.

(2.9)

The problem then exists of deciding between two possible hypotheses and is also referred as the
binary hypothesis testing problem. The goal is to exploit the observed data y as efficient as possible,
such that the correct hypothesis is decided most of the time in the decision making. The measurement
data are random in nature. Statistical models (e.g. Gaussian models) are then used to model the
distributions behind these potential hypotheses. For instance, if n ∼ N (0, σ2

nI) and x is deterministic,
the following is true for the distribution of y:

H0 : y ∼ N (0, σ2
nI)

H1 : y ∼ N (x, σ2
nI).

(2.10)

The distribution under H0 can be denoted by p(y;H0) and under H1, by p(y;H1). There are several
decisions that the detector can take which are reflected in different probabilities. The probability of
false alarm PFA is defined as P (H1;H0). This is the probability of deciding H1 while in fact H0 was
true. The probability of detection PD is defined as P (H1;H1) which means that H1 is decided while
this same hypothesis is true. This problem setup is referred as the Neyman-Pearson (NP) approach
for hypothesis testing/signal detection [8]. With the NP approach, one designs a detector that tries to
maximize the probability of detection PD, while the probability of false alarm PFA is kept fixed, e.g.,
PFA = α. This is accomplished by applying the so called likelihood ratio test L(y) on the observed
data. The L(y) is then compared against a detection threshold γ to decide which hypothesis is true:

L(y) = p(y;H1)
p(y;H0)

H1
≷
H0

γ, (2.11)

where γ is found from:

PFA =
∫
p(y;H0)dy = α. (2.12)

By simplifying and by mathematical reduction of L(y), a detector T (y) can be derived. In Figure 2.4, a
block scheme is given for a detector.

Figure 2.4: Classical detector scheme: An observed signal is fed into the detector and a decision is made.
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A more complicated detection problem arises when the parametric models, describing the distributions
under both hypothesis, contain unknown parameters. If this is the case, they have to be estimated.
The data that is collected is then used to perform a maximum likelihood estimation (MLE) in order to
find these parameters. Suppose that θ is a vector which contain unknown parameters. Under H0, this
unknown vector is denoted by θ0 and under H0, by θ1. In this specific scenario, one has the find the
MLES θ∗0 and θ∗1 . These MLEs are then used in the so called generalized likelihood ratio test LG(y)
which is also a function of the data y. This test is again used to derive a detector T (y) which is again
compared against a threshold γ for the decision making:

L(y) = p(y; θ∗1 ,H1)
p(y; θ∗0 ,H0)

H1
≷
H0

γ, (2.13)

where θ∗0 and θ∗1 are found from:

θ∗0 = arg max
θ

p(y; θ0,H0) (2.14)

θ∗1 = arg max
θ

p(y; θ1,H1) (2.15)

The performance of the detector will be evaluated with receiver operating characteristic (ROC) curves
which plots the probability of detection PD against the probability of false alarm PFA [8]. Each point in
a ROC curve represents to a (PFA, PD) pair for a given detection threshold γ.

Observed graph signals in this work are of a stochastic nature as nodal data is corrupted by noise.
Parametric models are then also used to model these distributions in order to analyze graph topological
changes as the parameters of these models tend to vary as topological changes occur. The null
hypothesis H0 is the hypothesis where the graph remains untouched. The alternative hypothesis
H1, is the hypothesis where the graph topology is facing (unknown) changes. This means that each
hypothesis is characterized by a distribution with unique parameters, especially under H1. Based on
an observation graph signal y ∈ RN , a detector T (y) ∈ R is designed. The detector is then compared
to a threshold γ in order to detect graph topological changes.
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2.3. Hypothesis testing on graphs
Given a fixed set of vertices V with N vertices, let graph G0 = (V, E0) denote the nominal graph with
edge set E0. The anomalous graph is given by G1 = (V, E1) with E1 6= E0. An example of such a case
is given by [11] where the nominal graph represents the brain structure of a healthy person and where
the alternative graph represents the structure of the brain of a patient suffering from Alzheimer. Figure
1.3 illustrates two graphs which have the same set of nodes but different edges. Functional magnetic
resonance imaging (fMRI) measurements then represent graph signals and based on these, the task
is to detect brain structure changes as it might indicate whether a person is in the early stages of
Alzheimer. The graph Laplacian L associated with graph Gi is denoted by Li = UiΛiUH

i for i ∈ {0, 1}.
The graph signal y ∈ RN is considered as the observation signal and is defined on the N vertices
of the graph. The problem described by [11] is as follows: Given an observation graph signal y, the
goal is to design hypothesis tests to decide which graph (G0 or G1) fits the signal more accurately.
The observed graph signal y, is modeled as contaminated version of the graph signals U0x̂ ∈ RN or
U1x̂ ∈ RN where x̂ ∈ RN is the clean signal defined in the frequency domain. Furthermore, the clean
frequency signal x̂ is considered to be unknown but contains properties in its related graph (e.g. graph
signal bandlimitedness, smoothness and stationary) which are exploited. Graph signals U0x̂ or U1x̂
are contaminated with zero mean white Gaussian noise n ∈ RN , i.e., n ∼ N (0, σ2I). In the work of
[11], it is assumed that G0 and G1 are known. Their hypothesis testing problem is formulated as:

H0 : y = U0x̂ + n
H1 : y = U1x̂ + n.

(2.16)

Regarding the problem in this work, it is assumed that solely G0 is known as specified in Chapter 1.
Now based on the noisy observation signal y, the objective is to find out if y fits to G0 or to a yet
unknown graph. This gives rise to the notion of blind topology change detection and changes problem
(2.16) into:

H0 : y = U0x̂ + n
H1 : y 6= U0x̂ + n.

(2.17)

Now, by exploiting different properties of x̂ (or x), such as band limitedness, smoothness and station-
arity, the task is to detect unknown graph topology changes in a blind fashion. In Figure 2.5, a block
scheme representation is given for both problems.

Figure 2.5: The scheme on the left represents the detector where information about both graphs is utilized. The scheme on the
right represents the blind detection case where only information of G0 is used. In both cases, properties about x̂ are exploited.
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Exploiting bandlimited signals

This chapter is dedicated to the study of the blind graph topology change detection by exploiting the
bandlimitedness of graph signals. The chapter is organized as follows: Section 3.1 firstly gives a short
introduction on how bandlimitedness can be exploited using a form of graph filtering. Subsequently,
the first detector is derived. In Section 3.2, the detector derived by [11] is given. Their detector is used
as reference for the performance analysis which is carried out in Section 3.3.

3.1. Blind topology change detector
Before the derivations of the blind topology change detector (BTCD) are given, the band limitedness
of x̂ is exploited via the principle given in Section 2.1.1. The following transformation matrix is applied
to achieve this:

ŷcK = UcH
0,Ky = UcH

0,KU0x̂ + UcH
0,Kn

, θ + n̂cK
(3.1)

where the transformation matrix Uc
0,K ∈ RN×(N -K) contains the eigenvectors corresponding to the out

of band frequencies (λi > λK). This matrix Uc
0,K consist of high pass filtering on the graph.

From (3.1), vectors ŷcK ∈ RN -K and n̂cK ∈ RN -K represents the out of band frequency content of
the observed signal y and noise n, respectively. Vector θ = UcH

0,KU0x̂ ∈ RN -K represents the out of
band frequency content of x. This parameter vector θ is considered to be unknown due to x̂ and/or
unknown topological changes which might occur under H1. The noise vector is now distributed as
n̂cK ∼ N (0, σ2UcH

0,KUc
0,K) which yields that ŷcK is distributed as:

ŷcK ∼ N
(
θ,Σ

)
with Σ = σ2UcH

0,KUc
0,K . (3.2)

This distribution will be denoted by p(ŷcK ; θ,H0) as the bandlimited graph signal is observed under the
nominal graph hypothesis. Under H1, the same model is used which is denoted by p(ŷcK ; θ,H1) where
θ is once again the unknown parameter vector. With this in place, the detection problem (2.16) is again
reformulated into the following equivalent composite binary parameter test in terms of signal energy in
θ [8]. Under H0, no signal energy is expected out of band. Under H1, energy might be present due to
topological changes:

H0 : θHθ = 0
H1 : θHθ > 0.

(3.3)

To exploit the bandlimitedness of graph signal x̂, the (known) parameter K has to be found. First,
an energy percentage E% was defined. The energy percentage is bounded with 0 < E% < 1 and
indicates how much energy one wants to capture in the band. Define ŷ0 = UH

0 y as the projection of
the observation signal on the eigenvectors of G0. Subsequently, define ŷ0,i ∈ Ri with i ∈ {1, · · · , N}.
This vector is a truncated version of ŷ0 where i decides the length of this vector, i.e., ŷ0,i ∈ ŷ0. Now

13
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by using the definition of E% and ŷ0,i, the following rule was used to estimate K from the observation
signal y:

K = max
{

1 < i < N

∣∣∣∣ ŷH0,iŷ0,i

ŷH0 ŷ0
≤ E%

}
, (3.4)

which means that K is found, whereas the fraction of the in band energy (ŷH0,iŷ0,i) and total energy
(ŷH0 ŷ0) is maximized and stays bounded by E%.

The distributions of ŷcK underH0 andH1 are the same except that the value of the unknown parameter
vector θ is different. With this in mind, the generalized likelihood ratio test (GLRT) LG(ŷcK) is used to
derive the detector [8]. Vector θ under H0, denoted by θ0, is set to zero. Vector θ under H1, denoted
by θ1, is replaced by its MLE θ∗1 . Vector θ0 is set to zero because the out of band frequency content is
assumed to be zero under H0. Vector θ1 needs to be estimated fr4om the data since its filtered (with
Uc

0,K) frequency content is not necessarily zero (this estimate will not contain knowledge about G1).
Finally, the GLRT is compared with a threshold γ, which is determined by a fixed false alarm rate PFA,
and a decision is made. More formally:

θ0 = 0
θ∗1 = arg max

θ
p(ŷcK ; θ,H1) = ŷcK .

(3.5)

LG(ŷcK) = p(ŷcK ; θ∗1 ,H1)
p(ŷcK ; θ0,H0)

H1
≷
H0

γ (3.6)

Working out (3.6), gives the BTCD (the derivations are reported in appendix A):

TBTCD(ŷcK) = ŷcHK Σ−1ŷcK . (3.7)

In Figure 3.2 a block scheme is given where Uc
0,K is depicted as a high pass filter:

Figure 3.1: Block scheme of the BTCD. Matrix Uc
0,K is depicted here as a high pass filter.

The BTCD, basically determines the out of band energy of an observation signal y. Based on this
measured energy, a decision is made between H0 and H1. Due to the quadratic nature of the BTCD,
specified by ŷcK , the following holds for the statistics of the BTCD (see (3.2) for the distribution of ŷcK):

H0 : TBTCD(ŷcK) ∼ χ2
N -K

H1 : TBTCD(ŷcK) ∼ χ2
N -K(δ)

(3.8)

which means that the test statistic TBTCD(ŷcK) follows a Chi squared distribution χ2
N -K with N -K de-

grees of freedom under H0, and under H1, a non-central Chi squared distribution χ2
N -K(δ) again with

N -K degrees of freedom but now with non-centrality parameter δ which is defined by:

δ = θH1 Σ−1θ1. (3.9)

The latter will of course affect the theoretical derivations for the probability of detection PD but not
those for the probability of false alarm PFA.
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This affirms that graph topological changes are reflected in the statistics of the observed graph signal
data. The non-centrality parameter δ depends on θ which confirms the previous statement. The
non-centrality parameter δ indicates whether the out of band energy is present or not, i.e., whether
graph topological changes have occurred or not. The test statistic measures the out of band energy
and based on this, a decision is made. If the BTCD is compared with a predefined threshold γ′, the
probability of false alarm PFA = P (H1;H0) is given by the right tail function of the central Chi squared
distribution, i.e., Qχ2

N -K
. The threshold γ′ is then given by the inverse right tail function, i.e., Q−1

χ2
N -K

:

PFA = P (H1;H0) = Pr{TBTCD(ŷcK) > γ′;H0} = Qχ2
N -K

(γ′)

⇒ γ′ = Q−1
χ2

N -K
(PFA).

(3.10)

The probability of detection PD = P (H1;H1) is given by the right tail function of the non-central chi
squared distribution, i.e., Qχ2

N -K (δ):

PD = P (H1;H1) = Pr{TBTCD(ŷcK) > γ′;H1} = Qχ2
N -K(δ)(γ′)

= Qχ2
N -K (δ)

(
Q−1
χ2

N -K
(PFA)

)
.

(3.11)

It should be noticed that for the evaluation of the test statistic, the MLE of θ1 (i.e., θ∗1) is needed into
the expression of the non centrality parameter (3.9). This estimate is then denoted by δ∗:

δ∗ = ŷcHK Σ−1ŷcK . (3.12)
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3.2. Simple matched subspace detector
The simple matched subspace detector (SMSD) is the detector described by [11]. The derivation
of this detector starts from the detection problem given by (2.16) where both graph structures are
assumed to be known. Instead of using Uc

0,K (as for the BTCD), the matrices U0,K and U1,K are
used. These matrices contain the in band eigenvectors of the Laplacians of G0 and G1, respectively.
These eigenvectors correspond to the in band frequencies (λi ≤ λK). By using U0,K and U1,K , the
filtered signals ŷ0,K and ŷ1,K are obtained:

ŷ0,K = UH
0,Ky

ŷ1,K = UH
1,Ky.

(3.13)

These matrices consist now of low pass filtering on the graphs. In contrast to the BTCD, where the
band K was found with (3.4), the band in [11] is fixed. In their work, parameter K was assumed to be
known. Finally, the SMSD is defined as the energy difference between ŷ0,K and ŷ1,K :

TSMSD(ŷ0,K , ŷ1,K) = ŷH0,K ŷ0,K − ŷH1,K ŷ1,K . (3.14)

Hence, the SMSD determines a difference in projection energy on the first K graph Laplacian eigen-
vectors of each hypothetical graph [11]. The block scheme of the SMSD is given below:

Figure 3.2: Block scheme of the SMSD. Matrices U0,K and U1,K are depicted here as low pass filters.

With numerical simulations it has been verified that it is valid to make the following approximation for
the distribution of TSMSD:

H0 : TSMSD(ŷ0,K , ŷ1,K) ∼ N (µ0, σ
2I)

H1 : TSMSD(ŷ0,K , ŷ1,K) ∼ N (µ1, σ
2I).

(3.15)

This means that the statistics of the SMSD can be approximated using normal distributions. This
approximation only holds if the number of nodes N is large enough [21]. It is remarkable that derivation
(3.15) is not obtained from [11] but in this work. With this approximation, the threshold γ and probability
of detection PD can be specified by the following analytic expressions specified by the right tail and
inverse right tail functions of a normal distribution, i.e., QN and Q−1

N :

PFA = P (H1;H0) = Pr{TSMSD(y) > γ;H0} = QN (γ)
⇒ γ = Q−1

N (PFA).
(3.16)

PD = P (H1;H1) = Pr{TSMSD(y) > γ;H1} = QN (γ)

= QN

(
Q−1
N (PFA)

)
.

(3.17)
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3.3. Numerical evaluation
In this section, the simulation scenario is firstly discussed. In Figure 3.4, a flow chart is given describing
the process. A similar procedure used in [11] is adopted to mimic the same simulation scenario for
a fair comparison. Two for-loops (red and blue) are depicted, which form the basis of the simulation
process. The first for-loop (red), is used to average over Z = 100 runs. This loop is used to account
for the randomness in the graph models and graph signals (generated in the blue for-loop), which
is explained in Section 3.3.1. After exiting this loop, an average performance is determined using a
sample mean ROC curve, i.e., ROC defined as:

ROC = 1
Z

Z∑
iz=1

[ROC]iz . (3.18)

In the second for-loop (blue), M = 105 noise realizations are generated. Prior to these realizations, the
(stochastic) graph models (G0 and G1) and spectral signal x̂ are generated. After exiting the second
for-loop, the numerical and theoretical detection thresholds γn and γt are determined. The detection
threshold γn is determined numerically where the following steps were taken to achieve this (the last
two steps are also shown in Figure 3.3):

• First, a histogram of the test statistic under H0 is created using the M noise realizations.

• Secondly, an initial detection threshold γn is placed on the end of the right tail of the histogram.

• Finally, threshold γn is moved (with a fixed small step size) towards the left tail of the histogram.
This is done until the desired probability of false alarm PFA is captured.

(a) An initial detection threshold γn is placed
on the end of the right tail of the histogram.

(b) Threshold γn is moved towards the left
tail of the histogram.

Figure 3.3: Graphic overview of finding the detection threshold γn numerically.

As mentioned in Section 2.2, the thresholds are found by keeping the probability of false alarm PFA
fixed. Threshold γt is determined using (3.10) where the inverse right tail function of the central Chi
squared distribution is used. Also two probabilities of detection, PD,n and PD,t, are determined at
the end of this loop. The probability of detection PD,n is determined by simply counting how many
times a detection threshold (γn or γt) is exceeded [8]. The probability of detection PD,t is determined
theoretically using the right tail function of the Chi squared distribution (3.11) with either γn or γt as its
argument.
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Table 3.1 is given to summarize the evaluation possibilities in terms of detection probabilities. Also the
observed relative error sensitivity is provided (this is provided to give a sense of the simulation errors
which might corrupt the results). The relative error sensitivity is based on the potential error that can be
made during the numerical procedures in finding the numerical threshold γn and numerical detection
probability PD,n:

Table 3.1: Relative error sensitivity of probability of detection (numerical of theoretical) using the detection threshold (numerical
or theoretical)

probability of detection PD relative error sensitivity
PD,t(γt) low
PD,t(γn) medium
PD,n(γt) medium
PD,n(γn) high

Regarding Figure 3.4, also some internal steps concerning the noise realizations are shown on the
right (green). The first step specifies that the noise is modeled as n ∼ N (0, σ2I). Thereafter, how
observation signals under both hypotheses y0 and y1 are generated as specified in (2.16). The values
T0 and T1 are the detector outcomes determined by (3.7) with y0 and y1 as the arguments, respectively.

Figure 3.4: Flow chart of the simulation process: it contains three for-loops describing the simulation process. The loop on the
left (red) describes the for-loop for the Z = 100 runs for averaging. The loop in the middle (blue) represents the for-loop

regarding the M = 105 noise realizations. In this loop, also the graphs, G0, G0, and the graph signal spectrum x̂ are generated.
The steps on the right (green), give a more detailed view on the noise realizations. The observation signals y0 and y1 are
generated according to (2.16). The values for T0 and T1 are created according (3.7) with y0 and y1 as their arguments,

respectively.
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The remaining part of this section is organized as follows: in Section 3.3.1, synthetic data are used
to evaluate the detectors. The SMSD is used as a reference for the evaluation of the BTCD. This
section consists of two parts. The first part considers the scenario where the graph models, are the
same as in [11]. In the second part of this section, smaller topological changes are considered. The
reason why smaller topological changes are considered, is the following: when random graph models
are used to model G0 and G1, their mutual differences can be too large which could lead to a biased
result. Detecting graph topological changes , since the graphs may differ entirely from eachother.
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In Section 3.3.2, real data are used to evaluate and to compare the detectors. The data set contains
recorded meteorological data in France1 and is also used in [15]. The locations of the weather sta-
tions are used for the node set. Links between these nodes are placed according to graph learning
methods [22]. Links are place in such a way, such that the spectrum stays as smooth as possible. The
temperature progressions per weather station are used as graph signals. This data set was used to
see whether bandlimitedness still acts as a property with sufficient discriminative power.

As a final remark: in this chapter, where the BTCD is considered, all analytic expressions were avail-
able, e.g., the expressions for the probability of detection and thresholds given by the right tail fucntions.
Expressions (3.10) and (3.11) were used to get the detection threshold and probability of detection for
the BTCD. For the SMSD, the expressions (3.16) and (3.17) were used. In the remainder of this sec-
tion, "estimated PD" means that PD,n(γt) is used and "theoretical PD" means that PD,t(γt) is used
(these notions are used in the plots/results).

1Access to the raw data is possible directly through
https : //donneespubliques.meteofrance.fr/donneeslibres/Hackathon/RADOMEH.tar.gz
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3.3.1. Synthetic graphs
In [11], both graphs G0 and G1 are modeled as random small-world graph. The authors of [23] have
shown how the interdependent connectivity of a small-world graph relates to cortical connectivity de-
rived from anatomical studies. This knowledge is also exploited in [11]. Small-world graphs are mod-
eled as follows: G = GSW (N, d̄, pr). Parameter N stands for the number of nodes, d̄ for the average
link degree per node and pr for the probability for random rewiring of links [24]. The parameters that
were used to create the small world graphs, are summarized in Table 3.2.

Table 3.2: Small world graph parameters

N d̄ pr
GSW,0 40 12 0.1
GSW,1 40 20 0.4

In [11], the frequency content x̂ is modelled as a realization of a normal distribution:

x̂ ∼ N (0,Σx̂). (3.19)

The GFT coefficient distribution of x̂ followed either a step function:

[Σx̂]ii =
{

1 ∀ i ∈ {1, 2, · · · ,K}
0.1 ∀ i ∈ {K+1,K+2, · · · , N},

(3.20)

or an exponential decay:

[Σx̂]ii = exp(−0.2 · i) ∀ i ∈ {1, 2, · · · , N}. (3.21)

The bandwidth K was set to 12. To analyze the effect of the noise, two standard deviation values were
used i.e. σ ∈ {0.3, 0.5}. In Figure 3.5, the performance of the BTCD versus the SMSD is given. Each
sub figure represents one simulation scenario described by [11]. The parameters for each simulation
scenario are listed under each ROC plot. The figures show four averaged ROC plots. The estimated
PD is PD,n(γt) (depicted as crosses) and the theoretical PD is PD,t(γt) (depicted as a continuous line)
as defined in section 3.3.
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Figure 3.5: Simulation settings described per each scenario [11]. Beneath each sub figure, the simulation settings are listed.
The models used for G0 and G1 are given (GSW,0 or GSW,1). Also which covariance matrix is used to generate x̂ (exp. Σx̂ or

step Σx̂) and finally, which noise standard deviation σ (σ = 0.3 or σ = 0.5).

From these ROC plots, the following can be concluded. Due to the fact that the BTCD only uses
information of graph G0, a performance deterioration is seen. Only in Figure 3.5b an equivalent perfor-
mance is attained. This plot shows that blind detection has a lot of potential as it seems to track the
detector of [11]. In this simulation, the covariance matrix Σx̂ is modeled as step function. As result of
this, a perfect band limited graph signal is modeled. This means that the performance of the BTCD
depends on the band limitedness of graph signals. When Σx̂ is modeled as an exponential decay,
the energy is smeared out and the graph signals become less band limited which directly affects the
performance of the BTCD.

However, it is observed that the total ignorance of the graph G1 leads to a performance degradation up
to 20% (PFA = 0.1) in Figure 3.5c and 3.5d and a degradation up to 15% (PFA = 0.1) in Figure 3.5a.
Additionally, observe that the theoretical derivations for the BTCD and SMSD match perfectly with the
numerical performance.
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In the remaining part of this section, smaller changes concerning the graph topology are considered.
To capture smaller graph topological changes, the following method was followed. The nominal graph
G0 is used to create G1. The node set is kept the same but in the edge set existing links are randomly
removed with a link loss probability PLL (in this work only link removal is considered and new link
additions were kept untested as they are expected to give a similar result):

G1 → G1(G0, PLL). (3.22)

The same model was used for x̂ as given in (3.19). Only the exponential decay model for Σx̂ is
analyzed since having out of band energy is a common case (using the step Σx̂, models a perfect
bandlimited spectrum). In Figure 3.6, ROC plots are shown with increasing noise standard deviation,
i.e., σ = {0.3, 0.5, 0.9} while the link loss probability was kept constant as PLL = 0.25.
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Figure 3.6: Simulation settings smaller changes: exp. Σx̂, PLL = 0.25.

From Figure 3.6, the following conclusions can be drawn. The performance of both the BTCD and
the SMSD tend to deteriorate as the noise power increases. The reason for this is that both detectors
depend on projection energy which gets affected as the noise power increases. Furthermore, it should
be noticed that there is a critical noise level where the BTCD tends to perform better than the SMSD.
The BTCD uses the out of band energy for the decision making in contrast to the SMSD which uses
the difference in the in band energy. For low noise levels, it seems that using out of band energy is
more useful to detect topological changes leading the proposed approach (BTCD) to perform better.
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In the last simulation the effect of the link loss probability PLL is analyzed. In Figure 3.7, ROC plots
are shown with increasing link loss probabilities, i.e., PLL = {0.1, 0.25, 0.5} while the noise standard
deviation was kept constant to σ = 0.5.
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Figure 3.7: Simulation settings smaller changes: exp. Σx̂, σ = 0.5.

From these plots, it can be seen that the performance of the BTCD and SMSD seems to be proportional
to the amount of change in the graph topology. With PLL close to zero, no links are selected for
removal and G1 will be exactly the same as G0. This should be seen as the worst case scenario with
the worst performance. On the other hand, if PLL is close to one, then all links in G0 will be selected for
removal and G1 will differ entirely w.r.t. G0. This is the best case scenario with the best performance.
Furthermore, it can be seen that even with small topological changes, the proposed approach still
performs well.

It is remarkable that for most of the PFA values, the performance of the two detectors is approximately
the same. This highlights the fact that information about G1 might not be needed to detect small graph
changes.
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3.3.2. Real graphs
As specified in Section 3.3, also real weather station data is used to evaluate the performance. The
nominal graph G0 is obtained with graph learning methods [22]. The alternative graph G1 is again
obtained by randomly removing existing links with a link loss probability PLL as given in (3.22). The
graph signal x in this case, are the weather progressions in time per node. In this case, the weather
progression signal will not match G1 (this has been done intentionally) and the challenge now is to
detect this mismatch.

In Figures 3.8 and 3.9 again the effects of increasing σn and PLL are analyzed respectively. For the
first simulation, the noise standard deviation again varied i.e. σn = {0.3, 0.5, 0.9} while the link loss
probability was kept constant as PLL = 0.25.

probability of false alarm

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
ro

b
a

b
ili

ty
 o

f 
d

e
te

c
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

estimated P
d
:   BTCD, σ

n
 = 0.3

theoretical P
d
: BTCD, σ

n
 = 0.3

estimated P
d
:   SMSD, σ

n
 = 0.3

theoretical P
d
: SMSD, σ

n
 = 0.3

estimated P
d
:   BTCD, σ

n
 = 0.5

theoretical P
d
: BTCD, σ

n
 = 0.5

estimated P
d
:   SMSD, σ

n
 = 0.5

theoretical P
d
: SMSD, σ

n
 = 0.5

estimated P
d
:   BTCD, σ

n
 = 0.9

theoretical P
d
: BTCD, σ

n
 = 0.9

estimated P
d
:   SMSD, σ

n
 = 0.9

theoretical P
d
: SMSD, σ

n
 = 0.9

Figure 3.8: Simulation real data: PLL = 0.25.

From these plots, it is again visible that the performance of both detectors is inversely proportional to
the magnitude of the noise standard deviation. Furthermore, it should be noticed that the BTCD tend
to perform better for all different noise levels. Especially, for σn = 0.3 where a big step in terms of PD
is obtained w.r.t. the SMSD approach. This can again be attributed to the fact that out of band energy
is considered in the BTCD in contrast to the SMSD.
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For the second simulation, the link loss probability PLL is changed. The following values for the link
loss probability are used: PLL = {0.1, 0.25, 0.5} while the noise standard deviation was kept constant
to σn = 0.5.
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Figure 3.9: Simulation real data: σn = 0.5.

Also for this simulation, the same trend as given for earlier simulations is visible. As the probability
for link loss increases, the performance of both detectors also tend to increase. Moreover, the per-
formance of the BTCD tend to perform better for all different link loss probabilities. Furthermore, the
performance of the SMSD seems to proportional to the amount of change. If the amount of change
gets less, the worse the SMSD is performing. This phenomenon is not seen for the BTCD. The fact
that the BTCD is performing better w.r.t. the SMSD, can also be attributed to the fact that out of band
energy is used in the BTCD while the SMSD is using an in band energy difference. The in band energy
difference does not change much. ... .. low pass so the performance ...



4
Exploiting smooth signals

This chapter is dedicated to study the blind detection possibilities by exploiting the smoothness of
graph signals. This chapter is organized as follows: Section 4.1 first gives a short introduction on
how graph signal smoothness can be exploited. Thereafter, a detector derived in this perspective. In
Section 4.2, the detector derived by [11] is given where the smoothness of the graph signal is exploited
as well. Their detector is again used as a reference to compare the performance in Section 4.3.

4.1. Constrained blind topology change detector
In this chapter, graph signal smoothness of x̂ is exploited and the constrained blind topology change
detector (CTCD) is derived. This is done by using the smoothness constraint (2.6) as given in Section
2.1.2. First assume that the smoothness constraint C0(x̂) is bounded under hypothesis H0 with a
upper bound r:

H0 : C0(x̂) = x̂HΛ0x̂
x̂H x̂ = xHL0x

xHx ≤ r. (4.1)

Usually an eigenvalue of the Laplacian of the graph under consideration is chosen for r as this bounds
the smoothness [2]. As said previously, this quantity is small when x̂ (in the vertex domain) tends to be
(approximately) constant in adjacent vertices. When graph G1 is not known, the smoothness of x̂ can
only be tested w.r.t. G0. Under H1, the observation signal can be: y 6= U0x̂ + n and/or C0(x̂) > r.
For this reason, the following hypothesis testing problem is formulated:

H0 : y = U0x̂ + n and C0(x̂) = x̂HΛ0x̂
x̂H x̂ ≤ r

H1 : otherwise.
(4.2)

The noise n ∈ RN for this problem is again modeled as: n ∼ N (0, σ2I). For the sake of ease, define
the vector θ ∈ RN as:

θ = U0x̂. (4.3)

The smoothness constraint C0(x̂) in (4.1), is expressed in terms of θ as:

C0(θ) = θHL0θ

θHθ
≤ r. (4.4)

27
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Before deriving the CTCD, some elaboration is needed concerning the smoothness upper bound r.
This upper bound is adaptive in the data y and is motivated by the following: first, the clean frequency
signal x̂ itself is not known. Secondly, the spread of the signal energy of x̂ (in its spectrum), is also
not known in advance. However, in this chapter, the bound on the smoothness of x̂ under H0 is
exploited and forms an essential part of the CTCD. For this reason, the (known) upper bound r on the
smoothness is found with the following minimization rule using the data y:

r(y) = min
{
λ0,i ∈ λ(L0)

∣∣∣∣ yHL0y
yHy ≤ λ0,i

}
, (4.5)

where λ(L0) denotes the set with the eigenvalues of L0 as its elements. This means that r is the
smallest eigenvalue of L0 for which the smoothness of x̂ stays bounded w.r.t. G0.

The distributions of y under H0 and H1 are both modeled with parametric models which contain un-
known parameters specified by θ. These distributions are denoted by p(y; θ,H0) and p(y; θ,H1) re-
spectively. Using the definition of θ, the distribution p(y; θ,H0), can be expressed as:

y ∼ N (θ,Σ) with Σ = σ2I. (4.6)

The vector θ is not known due to the unknown signal x̂ under H0. Under H1, the vector θ is unknown
due to x̂ and the graph topology. Define θ0 as θ under H0 and θ1 as θ under H1. The parametric
models of these distributions are then known except for parameter vectors θ0 and θ1. With this in
mind, a similar GLRT LG(y) is proposed to derive the detector [8]. Because θ0 and θ1 are not known,
they are replaced by their MLEs, i.e., θ∗0 and θ∗1 . For θ∗1 , the MLE is simply:

θ∗1 = arg max
θ

p(y; θ,H1) = y. (4.7)

Since the smoothness of x̂ is constrained under H0, the following constrained MLE problem is pro-
posed to find θ∗0 :

θ∗0 = argmax
θ

p(y; θ,H0)

s.t. C0(θ) ≤ r,
(4.8)

which is equivalent to the following minimization problem (see Appendix B.1 for derivation):

θ∗0 = argmin
θ

(y− θ)H(y− θ)

s.t. θHL0θ − r · θHθ ≤ 0.
(4.9)

The solution of the problem given by (4.9) was found using the Karush-Kuhn-Tucker (KKT) conditions.
These are necessary conditions for a solution of such an (constrained) optimization problem [25]. The
expressions for the solution of θ∗0 are found in Appendix B.2:

θ∗0 = [I + µσ2L0,r]−1y. (4.10)

The GLRT is again compared with a threshold γ to decide which hypothesis is true:

LG(y) = p(y; θ∗1 ,H1)
p(y; θ∗0 ,H0)

H1
≷
H0

γ. (4.11)

Working out the GLRT with a similar approach as given in the previous chapter, the CTCD is found
(further derivations can be found in appendix B):

TCTCD(y) = yHΣ−1[y− θ∗0 ]
= yHΣ−1y − yHΣ−1θ∗0

(4.12)
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In Figure 4.1, a block scheme is given for the CTCD with the constraint C0(θ) depicted in an MLE
block. Vector θ∗0 is given as the output of this block:

Figure 4.1: Block scheme of the CTCD with constraint C0(θ) depicted in the MLE block. The MLE θ∗
0 is generated at the output

of this block.

Using the CTCD (4.12), an energy difference is calculated between the unconstrained energy and the
constrained energy of y. This energy difference discriminates the two hypotheses. For the statistics
of the CTCD, expression (B.15) is used for θ∗0 . With some rearrangement, the CTCD can then be
expressed as follows:

TCTCD(y) = yHU0

[
1
σ2

[
I− [I + µσ2Λ0,r]−1]]UH

0 y. (4.13)

By defining ŷ0 = UH
0 y, it is easy to see that ŷ0 is distributed as: ŷ0 ∼ N (UH

0 θ, σ2I). The CTCD is
then given by TCTCD(ŷ0):

TCTCD(ŷ0) = ŷH0
[

1
σ2

[
I− [I + µσ2Λ0,r]−1]]ŷ0, (4.14)

and in scalar form this becomes:

TCTCD(ŷ0) =
N∑
i=1

(
1− 1

1 + µσ2(λ0,i − r)

)
ŷ2

0,i

σ2 . (4.15)

With the distribution of ŷ0 in place, the following can be concluded for 1
σ2 · ŷ2

0,i:

ŷ2
0,i

σ2 ∼ χ
2
1(δi) with δi = 1

σ2 θ
2
i . (4.16)

This means that the statistics of TCTCD(y) are given by a linear combination of non central Chi squared
random variables with one degree of freedom and non centrality parameter δi. The non centrality
parameter is different under each hypothesis because it is a function of the unknown vector θ. Once
again, it can be concluded that graph topological changes are reflected in the statistics of the CTCD.
The non-centrality parameter in this scenario indicates whether the energy of the observation signal y
is constrained or not, i.e., whether graph topological changes have occurred or not. This can be said
because θ changes if topology changes occur. Under H1, (4.7) was used for θ and (4.10) for θ under
H0. With this in place, the statistics of the CTCD (4.12) can be summarized as follows:

H0 : TCTCD(y) ∼ linear combination of χ2
1(δi) with δi = 1

σ2 θ
∗2
0,i

H1 : TCTCD(y) ∼ linear combination of χ2
1(δi) with δi = 1

σ2 θ
∗2
1,i = 1

σ2 y
2
i .

(4.17)

It is well known from the literature that a closed form expression for the distribution of a linear combi-
nation of Chi squared variables is challenging to achieve [21]. As a consequence, there are no closed
form expressions for the detection threshold γ′ and/or probability of detection PD. These, however, can
be approximated using proper approximation methods for the distribution of a linear combination of Chi
squared random variables [26]. The procedure for finding the statistics of the CTCD for this thesis is
described in Section 4.3.
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4.2. Constrained simple matched subspace detector
In [11], the constrained simple matched subspace detector (CMSD) is derived. For the problem dis-
cussed by [11], the signal is considered to be smooth under both hypotheses in contrast to the scenario
considered in this work, i.e.:

H0 : C0(x̂) = x̂HΛ0x̂
x̂H x̂ ≤ r0 and H1 : C1(x̂) = x̂HΛ1x̂

x̂H x̂ ≤ r1, (4.18)

where the matrix Λi stands for the diagonal matrix containing the eigenvalues of the Laplacian of graph
Gi, i ∈ {0, 1}. Constants r0 and r1 stand for the smoothness bounds for the graph frequency content x̂
w.r.t. G0 and G1 respectively. First, define ŷ0 and ŷ1 as the projections of the observation signal y on
the known graphs G0 and G1 respectively:

ŷ0 = UH
0 y

ŷ1 = UH
1 y.

(4.19)

Regarding to the problem given by (2.16), it is now only necessary to estimate x̂ under both hypotheses
instead of θ as this was done for the CTCD. The MLEs of x̂ were found by solving the following
constrained MLE problems which are specified below [11]:

x̂∗0 = argmax
x̂

p(y; x̂,H0)

s.t. C0(x̂) ≤ r0
(4.20)

x̂∗1 = argmax
x̂

p(y; x̂,H1)

s.t. C1(x̂) ≤ r1
(4.21)

where C0(x̂) and C1(x̂) are specified by (4.18). In contrast to the proposed approach, where the
smoothness bound r is made adaptive on the data y, the smoothness bound in [11] is fixed. The
following values are chosen for the bounds:

r(y) = r0 = λ0,20 and r(y) = r1 = λ1,20 (4.22)

where λj,i is the ith eigenvalue of the Laplacian of graph Gj . These specific choices for the bounds
were chosen for simulation purposes [11]. Based on this constrained energy difference, a decision
is made in the binary hypothesis testing problem given by (2.16). The constrained simple matched
subspace detector (CMSD), described by [11], is given as follows:

TCMSD(ŷ0, ŷ1) = (ŷ0 − x̂∗0)H(ŷ0 − x̂∗0)− (ŷ1 − x̂∗1)H(ŷ1 − x̂∗1) (4.23)
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The CMSD determines a difference in constrained projection energy of the observation y on each hy-
pothetical graph. The constrained projection energy is determined by correcting each GFT coefficient
in ŷ0 and ŷ1 with the GFT coefficients of the MLEs x̂∗0 and x̂∗1 [11]. In Figure 4.2 a block scheme of the
CMSD is given:

Figure 4.2: Block scheme of the CMSD with constraints C0(x̂) and C1(x̂) depicted in the MLE blocks. The MLEs x̂∗
0 and x̂∗

1
are generated at the output of these blocks.

For the distribution of the CMSD, no analytic expression was given by [11]. As a consequence, the
distribution was approximated numerically in order to evaluate its performance. The procedure for
finding the statistics of the CMSD is also described in Section 4.3.
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4.3. Numerical evaluation
In this section, the performance of the CTCD is evaluated. A similar simulation process is used as
presented in Section 3.3. In Figure 3.4, a flow chart is given describing this process. For the same
reason as given previously, this specific simulation process is used to mimic the a similar simulation
scenario as given by [11]. Again, Z = 100 runs were used to account for the randomness in the graph
models and signals. Also M = 105 noise realizations were generated to reveal the statistics of the
CTCD in order to determine the detection thresholds and detection probabilities. Compared to the
flowchart that was used for the BTCD, an extra step was involved in the evaluation of the CTCD. In the
M-body loop (green), an extra step was needed for finding θ∗0 . This adjustment is seen in Figure 4.3.
For the final evaluation of the CTCD, again an average performance was determined using ROC given
by (3.18).

The remaining part of this section is organized as follows: in Section 4.3.1, synthetic data are used to
evaluate the detectors. This section consists of two parts. The first part considers the scenario where
the same graph models, as given in [11], are used. In the second part, smaller topological changes
are considered.

In Section 4.3.2, real data are used to evaluate and to compare the detectors. The data set contains
recorded meteorological data in France1 and is also used in [15]. The graph is build is the same way
as given in section 3.3. The temperature progressions per weather station are again used as graph
signals. This data set was used to see whether signal smoothness still acts as a property with sufficient
discriminative power.

As a final remark, in this chapter, where the CTCD is considered, no analytic expressions were avail-
able. This means that all expressions for the detection probabilities and for the detection thresholds
must be determined numerically. This means that they are found using the procedure described in
Section 3.3. The detection thresholds for the CTCD and the CSMD was found numerically and is
denoted by γn. These thresholds were then used for finding the detection probabilities numerically,
i.e., PD,n(γn). Referring back to Table 3.1, it must be stated that this combination (PD,n(γn)) gives
the highest relative error sensitivity. What is meant by this is that the combination of using a numeri-
cally determined PD and γ gives the highest risk of possible errors. In the remainder of this section,
"estimated PD" means that PD,n(γn) is used (these notions are used in the plots/results).

Figure 4.3: Flow chart adjustment: an extra step was included in the M-body loop for finding θ∗
0

1Access to the raw data is possible directly through
https : //donneespubliques.meteofrance.fr/donneeslibres/Hackathon/RADOMEH.tar.gz
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4.3.1. Synthetic graphs
As said earlier, in [11], both graphs are modeled as random small-world graphs i.e. G = GSW (N, d̄, pr).
The same parameters were used to create the small world graph and are summarized in Table 3.2.
In Figure 4.4, four sub figures are seen, where each sub figure represents one simulation scenario
described by [11].
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(b) G0 = GSW,0, G1 = GSW,1, step Σx̂, σ = 0.5
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Figure 4.4: Simulation settings described per each scenario [11]. Beneath each sub figure, the simulation settings are listed.
The models used for G0 and G1 are given (GSW,0 and GSW,1). Also the used covariance matrix to generate x̂ (exp. Σx̂ or step

Σx̂) is provided along with the noise standard deviations σ (σ = 0.3 or σ = 0.5).

From these simulations, the effect of not knowing the alternative graph G1 is again highly visible. The
best performance of the CTCD is again attained in Figure 4.4b. This testing scenario should be seen
as the easiest case since the covariance matrix of x̂ was modeled as step (see (3.20)). Furthermore,
the worst performance is seen in Figure 4.4d, where both graphs were modeled as small-world graphs
with the same parameters. Detection based on signal smoothness seems to be less discriminative as
expected when the mutual differences between both graphs is too small.

In comparison with the BTCD, where detection was based on the bandlimitedness of graph signal x̂,
a similar performance is attained except for the fact that the CTCD is more sensitive to little mutual
differences (see Figure 3.5d).

Lastly, the CMSD seems to attain the same performance as presented in [11]. Therefore, it must be
mentioned that although a numerical method was used to find the probability of detection, one can
verify that the numerical approach was a correct one.
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For the remaining simulations, smaller changes were considered as the one described in Section
3.3.1. A similar performance of the CTCD with respect to the CMSD was attained because the amount
of change in between the two topologies under both hypotheses was large. This gave reason to
investigate the effect of having small topological changes. In Figure 4.5, ROC plots are shown with
increasing noise standard deviation i.e. σn = {0.3, 0.5, 0.9} while the link loss probability was kept
constant i.e. PLL = 0.25.

Figure 4.5: Simulation settings smaller changes: exp. Σx̂, PLL = 0.25

From Figure 4.5, the following conclusions can be drawn. The performance of both the CTCD and the
CMSD tend to deteriorate as the noise standard deviation increases. The reason for this is that both
detectors depend on projection energy just as the BTCD. The main difference w.r.t. the BTCD is that
the CTCD also considers how the signal energy is distributed over its spectrum, i.e., the energy decay.

For σn = 0.3 and σn = 0.5, the CTCD still shows detection capabilities. For these two noise levels, it
can be concluded that energy decay stays bounded with the given bound r. For σ = 0.9, the CTCD
performs the worst. The extra energy added by the noise affects the signal smoothness to such an
extend, such that signal smoothness is not discriminative anymore.

Lastly, it is seen that the CMSD performs better than the CTCD under all noise levels which is the
benefit of knowing the topology of the alternative graph. Detecting small graph topology changes
seems to be more challenging for the CTCD w.r.t. the BTCD.
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For the second simulation considering small topology changes, a slightly different set of link loss prob-
abilities was used w.r.t. the BTCD. As given previously, the CTCD tend to perform bad when very small
changes are considered. For this reason, the following values were chosen: PLL = {0.1, 0.5, 0.9}
while the noise standard deviation was kept constant to σn = 0.1.

Figure 4.6: Simulation settings smaller changes: exp. Σx̂, σn = 0.1

From Figure 4.6, it can be seen that the performance of the CTCD and CMSD seems again to be
proportional to the amount of change in the graph topology. With PLL close to zero, the worst case
scenario is again attained. On the other hand, if PLL is close to one, best case scenario is attained.
One should learn form these plots, that the blind approach with the smoothness constraint is preferred
for high topology changes only.

For this experiment, the noise level was kept low to see how the performance reacts to different link loss
probabilities. In earlier experiments, it was shown how the smoothness get affected when the additive
noise energy is high (see Figure 4.5). This is the reason why σn = 0.1 is used in this experiment.



36 4. Exploiting smooth signals

4.3.2. Real graphs
In this section, real weather station data are used to evaluate the performance. The nominal graph G0 is
obtained by graph learning methods. The alternative graph G1 is again obtained by randomly removing
existing links with a link loss probability PLL. In Figures 4.7 and 4.8 again the effects of increasing σn
and PLL are analyzed respectively. For the first simulation (Figure 4.7), the noise standard deviation
again varied i.e. σ = {0.3, 0.5, 0.9}, while the link loss probability was kept constant to PLL = 0.5.
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Figure 4.7: Simulation real data: exp. Σx̂, PLL = 0.5

From Figure 4.7, it is again visible that the performance of both detectors is inversely proportional to the
magnitude of the noise standard deviation. The link loss probability was kept constant with PLL = 0.5
for the same reason as given for the experiments with synthetic graphs (more change were generated).

Furthermore, from this experiment it can be seen that CTCD and the CMSD have a similar perfor-
mance. As long as the amount of topology change is high enough, signal smoothness can be decisive.
Although, this seems promising, this is still a point open for discussion as for both detectors, the prob-
ability of detection was determined with a high PLL.
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For the second simulation, the link loss probability varied i.e. PLL = {0.1, 0.5, 0.9}, while the noise
standard deviation was kept constant, i.e., σn = 0.1.

Figure 4.8: Simulation real data: exp. Σx̂, σn = 0.1

Also for this simulation, the same trend as for earlier simulations is visible. As the probability for link
loss increases, the performance of both detectors tend to increase. Again the CMSD performs better
for all link loss probabilities even for real graphs.

The main conclusion that can be drawn for the CTCD are the following. Only if the amount of change
is high enough, the CTCD is able to detect topological changes. The signal smoothness is a sensitive
property for synthetic and real graphs This property gets affected significantly for high noise levels and
low link loss probabilities.





5
Future work

This chapter is dedicated to the study of the blind detection possibilities exploiting the stationarity of
graph signals. This chapter should be seen as a suggestion for future work. First, in Section 5.1 a
glance is given on stationarity in the context of GSP. Thereafter, an explanation is given on how this
property can be exploited.

5.1. Exploiting stationary signals
In this section, the detection problem is considered when the graph signal is stationary (to a certain
degree) under hypothesis H0. Under H1 it is not known whether the graph signal is stationary as this
property might get lost due to unknown changes in the topology of the graph under the alternative
hypothesis. Again define vector θ ∈ RN as follows:

θ = U0x̂, (5.1)

such that the observation signal is given by y = θ + n with n ∈ RN as the noise vector. The vector
θ in this chapter is modeled as a realization of a zero mean normal distribution, i.e., θ ∼ N (0,Cθ).
The matrix Cθ ∈ RN×N is the covariance matrix of θ and is assumed to be unknown due to x̂ under
H0. Under H1, matrix Cθ is unknown due to x̂ and unknown topological changes. In this problem, θ is
considered to be stationary w.r.t. the graph under H0. Referring back to subsection 2.1.3, this means
that the covariance matrix of θ can be written as follows: Cθ = U0 ·diag(pθ) ·UH

0 where pθ is the PSD
of θ. In other words, it means that Cθ can be diagonalized with the eigenvector matrix of the graph
Laplacian under H0. This property that is then exploited to discriminate between the two hypotheses.
The noise in this problem is again modeled as: n ∼ N (0, σ2I). With this in place, the observation
signal y is distributed as:

y ∼ N (0,Cy) with Cy = Cθ + σ2I (5.2)

Since θ is stationary w.r.t. the graph under H0, and because matrix U0 is unitary (by definition), the
covariance matrix Cy can be written as:

Cy = U0 · diag(pθ) ·UH
0 + σ2U0UH

0

= U0 · diag(pθ + σ21) ·UH
0

= U0 · diag(py) ·UH
0 ,

(5.3)

where py denotes the PSD of y under H0. Consequently, the observation signal y (which is a con-
taminated version of θ) is still stationary w.r.t. the graph under H0 since Cy is still diagonalizable with
eigenvector matrix U0. The PSD py is given by: py = pθ + σ21 where 1 is a vector of ones of proper
size.
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If the unknown graph topological changes occur under H1, the covariance matrix Cy is expected to be
no longer diagonalizable with matrix U0 and one can conclude that the stationary property is (partially)
lost. In terms of stationarity level (see (2.8)), this means that: s(Cy,U0) < 1. Besides this, also
the clean frequency graph signal x̂ is unknown. Under H0, the stationarity level s(Cy,U0) of y is
expected to be upper bounded by s. With this in mind, the following binary hypothesis testing problem
is formulated:

H0 : y = U0x̂ + n and s(Cy,U0) ≤ s
H1 : otherwise.

(5.4)

What differs this problem even more, regarding the problems that were discussed in the previous chap-
ters, is that batch data are needed. The assumption is that we have an observation matrix Y ∈ RN×N
where N is also the number of yi ∈ RN observations in the batch (parameter N was also defined as
the number of nodes in the graph). The data are needed to estimate the covariance matrices, which
are used to detect stationarity losses. In [14] methods are presented to estimate the covariance matrix
with its so called empirical estimate Ĉy:

Ĉy = 1
N

N∑
i=1

yiyHi . (5.5)

Two methods can be used to cope with this specific problem. The first method is by neglecting the
NP approach and by using this estimate directly in the stationarity measure, i.e., s(Ĉy,U0). The
stationarity measure is then used as the detector itself:

s(Ĉy,U0)
H1
≷
H0

s. (5.6)

For the second method, an NP approach can be used. Again let θ0 be θ under H0 and θ1 be θ
under H1. Denote the distribution of y under H0 as p(y; θ0,H0) and the distribution of y under H1
as p(y; θ1,H1). These parametric models are then known except for parameter vectors θ0 and θ1.
These vectors then need to be replaced by their MLEs, i.e., θ∗0 and θ∗1 . Under H1, a conventional MLE
problem has to be solved and under H0, a constrained MLE problem. The constraint is then defined
by the stationarity measure which has to be bounded by s under H0 (since this was assumed). The
covariance matrix Cθ should then be used as the argument since p(y; θ,H0) is maximized over θ. If Cθ

is not known, it has to be estimated using the observation matrix Y and a proper estimation technique
to get Ĉθ. With this in place, the MLE estimators for θ are:

θ∗1 = arg max
θ

p(y; θ,H1) = y. (5.7)

θ∗0 = argmax
θ

p(y; θ,H0)

s.t. s(Ĉθ,U0) ≤ s,
(5.8)

where the bound s has to be found with a proper rule using the data y. With this in place, a GLRT
LG(y) can be proposed to derive a detector:

LG(y) = p(y; θ∗1 ,H1)
p(y; θ∗0 ,H0)

H1
≷
H0

γ. (5.9)

In Figure 5.1, two block schemes are given of possible detectors exploiting the stationarity of x̂. Further
analysis using the stationarity of graph signals is left for more interested readers.
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(a) With this scheme, an NP approach is used. The covariance matrix of θ is estimated and used for a
constrained MLE problem to find θ∗

0 .

(b) With this scheme, the constrained s(Ĉy,U0) is used as the detector. The covariance matrix of y is
estimated and then plugged in the constraint detector.

Figure 5.1: Possible detection block schemes when the stationarity of x̂ is exploited.





6
Conclusion

This chapter concludes the thesis by briefly revisiting the research question considered at the start
of this project. The previous findings will be shortly summarized once again. Furthermore, some
suggestions and areas of improvements will be given concerning blind detection.

The scope of this thesis was to study the possibilities with blind detection (i.e. when there is no
information about the alternative graph) and to evaluate detectors that are designed according to this
principle. This study contributes the a more realistic scenario where graph topology changes are
not known in advance. Two detectors, the BTCD and the CTCD, were designed which respectively
exploited the signal bandlimitedness and smoothness. This study was compared with the detectors
of [11] as a reference. In their work, they assume to know the nominal and alternative graphs. This
implies that (potential) topological changes are known a priori. Furthermore, the relation between the
statistics of graphs signals/detectors and topological changes was studied.

In Chapter 3, the BTCD was derived. The BTCD basically applies a high pass filter on the frequency
content of the observation graph signal. Under the nominal hypothesis, most of the energy of the
observation signal is expected to be bandlimited in the lower frequencies. Under the alternative hy-
pothesis, the out of band energy can be present and this can be attributed to topological changes
and/or noise energy. Promising results were attained as the BTCD was able to track the SMSD (one of
the detectors derived in [11]) in most of the test scenarios. In one of the test scenarios given by [11],
a perfect bandlimited graph signal was modeled. For this case, the BTCD performed as good as the
SMSD. When a graph signal is not bandlimited, a degradation is seen. The signal energy is spread
over its spectrum and the ability to detect topological changes deteriorates. When smaller topological
changes were considered, again a good performance was observed. The SMSD still outperforms the
BTCD, but the BTCD still posses detection capabilities eventhough without information about the al-
ternative graph. For the real graph experiment, an interesting observation was made. Although less
information is used for the BTCD, its performance was better w.r.t. the SMSD. The SMSD calculates
the in band projection energy difference. This may cause the noise level to double and could explain
why the BTCD performs better w.r.t. the SMSD in this specific scenario.

In Chapter 4, the CTCD was derived. This detector determines a difference between unconstrained
and constrained energy in the observation signal. The constrained energy is found by exploiting the
signal smoothness under the nominal hypothesis. Under the alternative hypothesis, the signal energy
cannot be constrained as the energy decay is not known due to the topology changes. The obtained
results have shown that exploiting signals smoothness is not as powerful as exploiting the bandlimited-
ness. Regarding the result that were obtained, it can be seen that the CSMD (also one of the detectors
derived in [11]) outperforms the CTCD in most of the cases. As long the amount of change is high
enough, the CTCD is still capable to detect changes. The smoothness of a signal also tends to be
less discriminative when the noise power is high. Energy decay becomes less bounded and therefore
it becomes harder to detect.
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Derivation blind topology change

detector

In this section, the derivations for the BTCD in Chapter 3 are given. Working out (3.6) gives the
following:

1√
(2π)N |Σ|

exp
(
− 1

2 (ŷcK − θ∗1)HΣ−1(ŷcK − θ∗1)
)

1√
(2π)N |Σ|

exp
(
− 1

2 ŷcHK Σ−1ŷcK
) H1

≷
H0

γ. (A.1)

By taking the logarithm on both sides, the following expression is found:

− 1
2

(
(ŷcK − θ∗1)HΣ−1(ŷcK − θ∗1)− ŷcHK Σ−1ŷcK

)
H1
≷
H0

ln(γ) (A.2)

which reduces to:

− 1
2

(
− 2ŷcHK Σ−1θ∗1 + θ∗H1 Σ−1θ∗1

)
H1
≷
H0

ln(γ). (A.3)

The final expression is obtained by substituting the MLE specified by (3.5):

ŷcHK Σ−1ŷcK
H1
≷
H0

γ′. (A.4)

This finally led to the BTCD:

TBTCD(ŷcK) = ŷcHK Σ−1ŷcK . (A.5)
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B
Derivation constrained blind topology

change detector

In this section, the derivations for the CMSD in Chapter 4 are given. Working out the GLRT in (4.11)
with a similar approach as given in Chapter 3, the CTCD is found:

1√
(2π)N |Σ|

exp
(
− 1

2 (y− θ∗1)HΣ−1(y− θ∗1)
)

1√
(2π)N |Σ|

exp
(
− 1

2 (y− θ∗0)HΣ−1(y− θ∗0)
) H1

≷
H0

γ. (B.1)

Taking the logarithm on both sides results in the following expression:

− 1
2

(
(y− θ∗1)HΣ−1(y− θ∗1)− (y− θ∗0)HΣ−1(y− θ∗0)

)
H1
≷
H0

ln(γ). (B.2)

This reduces to:

− 1
2

(
2yHΣ−1[θ∗0 − θ∗1 ] + θ∗H1 Σ−1θ∗1 − θ∗H0 Σ−1θ∗0

)
H1
≷
H0

ln(γ). (B.3)

Now by absorbing the energy terms θ∗H1 Σ−1θ∗1 and θ∗H0 Σ−1θ∗0 in the threshold, the following expres-
sion is obtained:

yHΣ−1[θ∗1 − θ∗0 ]
H1
≷
H0

γ′. (B.4)

Now by plugging MLE θ∗1 (4.7) back, the CTCD is found:

TCTCD = yHΣ−1[y− θ∗0 ]
= yHΣ−1y − yHΣ−1θ∗0 .

(B.5)
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B.1. Equivalent optimization problems
In this section, the equivalence of (4.8) and (4.9) is proven. First of all, one should notice that the cost
function in (4.8), denoted by p(y; θ,H0), models a normal distribution since the noise n considered in
this is case, is modeled as: n ∼ N (0, σ2I). This means the following for p(y; θ,H0):

p(y; θ,H0) = 1√
(2π)N |Σ|

exp
(
− 1

2(y− θ)HΣ−1(y− θ)
)

(B.6)

Now if p(y; θ,H0) is maximized over θ, one can easily see that only the exponential needs to be
maximized since exp(•) is an increasing function in its argument. However, its argument is negative
which means that maximizing p(y; θ,H0) over θ is equivalent to minimizing: (y− θ)H(y− θ).

B.2. Solution constrained optimization problem
The solution of the constrained optimization problem, specified by (4.7), follows next:

θ∗0 = argmin
θ

(y− θ)HΣ−1(y− θ)

s.t. θHL0θ − r · θHθ ≤ 0
(B.7)

Let L0,r be a matrix which is defined as follows:

L0,r = L0 − rI (B.8)

The constraint is then reformulated as:

θHL0θ − r · θHθ ≤ 0 ⇒ θHL0,rθ ≤ 0 (B.9)

Then by KKT, an optimal solution for θ has to satisfy the following conditions:

∂

∂θ

[
(y− θ)HΣ−1(y− θ) + µ · θHL0,rθ

]
= 0 (B.10)

µ · θHL0,rθ = 0 (B.11)

µ ≥ 0 (B.12)

where µ is known as the KKT multiplier. Working out (B.10) gives the following expression for θ:

−2Σ−1(y− θ) + 2µL0,rθ = 0
[Σ−1 + µL0,r]θ = Σ−1y

⇒ θ = [Σ−1 + µL0,r]−1Σ−1y
(B.13)
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Since it is known that n ∼ N (0,Σ) with Σ = σ2I, expression (B.13) can be rewritten as:

θ = [I + µσ2L0,r]−1y (B.14)

and by using the eigenvalue decomposition of the laplacian, θ can also be expressed as:

θ = U0[I + µσ2Λ0,r]−1UH
0 y (B.15)

where Λ0,r = Λ0 − rI. Now by substituting (B.15) in (B.11), a solution for the KKT multiplier µ can be
found (notice how the property of taking powers of diagonal matrices is exploited):

µ · yHU0[I + µσ2Λ0,r]−2Λ0,rUH
0 y = 0

µ · ŷH0 [I + µσ2Λ0,r]−2Λ0,rŷ0 = 0
(B.16)

where ŷ0 = U0y is the projection of the observation signal on graph G0 with the following statistics:
ŷ0 ∼ N (x̂, σ2I). In scalar form, the expression for µ is:

µ ·
N∑
i=1

(λ0,i − r)ŷ2
0,i

(1 + µσ2(λ0,i − r))2 = 0 (B.17)

when the square in de denominator is worked out, this is equivalent to:

µ ·
N∑
i=1

(λ0,i − r)ŷ2
0,i

1 + 2µσ2(λ0,i − r) + µ2σ4(λ0,i − r)2 = 0

µ ·
N∑
i=1

1
σ2

(
1

σ2(λ0,i−r)

)
ŷ2

0,i(
1

σ4(λ0,i−r)2

)
+ 2µ

(
1

σ2(λ0,i−r)

)
+ µ2

= 0

(B.18)

Let ai = (σ2(λ0,i − r))−1, then:

µ

σ2 ·
N∑
i=1

aiŷ
2
0,i

a2
i + 2µai + µ2 = 0

µ

σ2 ·
N∑
i=1

aiŷ
2
0,i

(µ+ ai)2 = 0

(B.19)
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