
 
 

Delft University of Technology

Scheduled state feedback control of a wind turbine

Engels, W. P.; Van Der Hoek, D.; Yu, W.; Reyes Baez, R.

DOI
10.1088/1742-6596/1618/2/022064
Publication date
2020
Document Version
Final published version
Published in
Journal of Physics: Conference Series

Citation (APA)
Engels, W. P., Van Der Hoek, D., Yu, W., & Reyes Baez, R. (2020). Scheduled state feedback control of a
wind turbine. Journal of Physics: Conference Series, 1618(2), Article 022064. https://doi.org/10.1088/1742-
6596/1618/2/022064

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/1618/2/022064
https://doi.org/10.1088/1742-6596/1618/2/022064
https://doi.org/10.1088/1742-6596/1618/2/022064


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Scheduled state feedback control of a wind turbine
To cite this article: W. P. Engels et al 2020 J. Phys.: Conf. Ser. 1618 022064

 

View the article online for updates and enhancements.

This content was downloaded from IP address 145.94.75.67 on 22/10/2020 at 15:06

https://doi.org/10.1088/1742-6596/1618/2/022064
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvZZQ7vRAUS9JAMgjHTklkoJYrjkQCCtAVpjWgVrhv1vn596prhGVxziyR5AiZMj0qJoYzLs2a4api3GPGMsUixqmLufiy-dX1f0tr_1VBix4uXDvUGOOK7WAyMZ9cm2dBDc_pAoDUN5PjlNQ_5zt313OOceMQcdXI3tNVM3ScLuo5rZtJ8odJjGZJWQzMkLh5xD-tSVtjXlMjTwiTSuoqUXu-tCrcB7T0oN0bGJDyWnfD1a7DN&sig=Cg0ArKJSzHkdb9G1a5oK&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 022064

IOP Publishing

doi:10.1088/1742-6596/1618/2/022064

1

 
 
 
 
 
 

Scheduled state feedback control of a wind turbine 

W. P. Engels1, D. van der Hoek2, W. Yu1, R. Reyes Baez1 
1 TNO, Westerduinweg 3, 1755 LE Petten, The Netherlands 
2 TU-Delft, Mekelweg 5, 2628 CD Delft 

wouter.engels@tno.nl 

Abstract. Many wind turbines are still controlled using gain scheduled, PI(D) controllers. 
Another option is to use a state feedback controller, such as LQG control. However, for wind 
turbines that is not straight forward solution, because the system is non-linear and the impact of 
pitching on the states varies in time. This paper presents a variation on state feedback control.  
An Extended Kalman Filter is combined with gain scheduling of the state feedback gains 
depending on aero-dynamic sensitivities, which enables an approximation of non-linear 
control. This controller structure is intended to be used in more comprehensive controller 
optimisation studies. The scheduled state feedback controller shows good behaviour and can 
outperform the original PID controller. 

1.  Introduction 
A wind turbine controller decides the balance between yield on the one hand and wind turbine loading, 
actuator effort and power quality on the other hand. Most modern wind turbine controllers behave 
dependent on the mean wind speed: in conditions below rated wind speed, wind turbines generally 
follow a basic control law, where the torque is set directly based on the rotor speed. If the wind speed 
is sufficiently high, the controller maintains the rotor speed at the rated-rotor speed by varying the 
pitch angle of the blades. This is commonly achieved by using a proportional–integral (PI) controller 
on the pitch angle [1], possibly also containing a derivative term (D). Because the effect of a change in 
pitch angle on the rotor speed is dependent on the pitch angle, the controller gain is scaled depending 
on the pitch angle. Also, the additional effects of dynamic inflow with respect to changes in pitch 
angle can be taken into account by filtering the desired pitch angle (or rate) with a pitch angle 
dependent filter [2]. In terms of control, the PI(D) controller is used to control a non-linear system, 
where the non-linearity of the control input on the system is considered and other non-linearities are 
ignored. This type of controller can perform well, especially if it is extended with further situation 
specific adaptions [3].  

Other control algorithms take advantage of the known response of the wind turbine. These control 
algorithms are generally based on an estimate of this response. And, although the structural response is 
approximately linear, the aerodynamic interaction is not. Despite this non-linearity, state space control 
based on linearised estimation and control is possible, as was shown [4, 5]. Because the system is non-
linear, a non-linear estimator, e.g. an extended Kalman filter or unscented Kalman filter [6], should 
give better estimates of the states than a linear filter. 

These improved estimates can be used, simply as inputs to PI controllers or for state-based 
feedback control [7]. An example of state feedback control is Linear Quadratic Gaussian (LQG)  (see 
e.g. [8]) control where Kalman state estimator is used, combined with a Linear Quadratic Regulator 
(LQR) control. If a system is known, observable, linear, time-invariant, and subject to white noise 
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disturbances and noise sources, the Kalman filter gives an optimal estimate of all the states [9].  
Whereas the time-invariant feedback matrix calculated with LQR will optimally control the system to 
minimize a given quadratic cost function if the states of the system are exactly known and the system 
is controllable. For the wind turbine, the system is parameter varying and changing continuously. 
Logically, the associated state feedback matrix ought to change continuously as well. For any 
operating point, the model can be linearized and an LQR controller could be calculated and used, but 
doing so online would be challenging, both computationally and numerically. The scheduled controller 
approach is used to circumvent this issue.  

(Non-linear) Model predictive control on the other hand takes the estimation one step further and 
tries to predict the optimal control action based on the evaluation of the cost function over a finite time 
horizon. Although model predictive control has shown promising results for wind turbines, especially 
when dealing with constraints, extreme loads and LIDAR based feedforward control (e.g. [10]) the 
advantages in normal, turbulent load cases are not clear. 

In this paper, we explore the combination of an extended Kalman filter with a scheduled state-
feedback controller design. Rather than calculating state feedback matrices at runtime, the matrices are 
calculated beforehand and then scheduled based a linear regression, this reduces the computational 
effort to a simple matrix multiplication. Although stability is not rigorously proven, simulations 
consistently show good behaviour in a fully non-linear aeroelastic simulation of normal turbulent wind 
and improved performance compared to the baseline controller.  

2.  Methodology 
The following methodology is used to design the controller: 

1) An Extended Kalman Filter is designed  
2) The states of this filter are augmented with the integral of the rotor speed setpoint error 
3) Locally stabilising, LQR state-feedback controllers are designed for different realisations of 

the states of the system. 
4) These gains are then approximated with a linear regression to a set of selected predictors. 
5) The results of the linear regression are then used in the controller to schedule the gains. 

This scheduled state feedback controller (SSFC) is then tested on a full aero-elastic simulation 
using Phatas [11]. This method is tested on the Avatar wind turbine model [12], a modification of the 
Innwind 10 MW model [13] and compared to our current baseline controller. 

3.  Extended Kalman filter 
As explained, the first step is to create an extended Kalman Filter from a non-linear analytical model. 
The work by Knudsen and Bak [14] is used for the dynamic inflow, but the model is extended with 
tower and drive train dynamics. Figure 1 shows the estimation of the rotor effective wind speed in 
comparison with our current estimator and the simulation. The improvement in the estimation is 
marked for larger changes of the aerodynamic torque. However, literature concerning Extended 
Kalman Filters does note that the robustness of this filter may be an issue (e.g. [15]), because the 
algorithm may underestimate the . 

3.1.  Main structural dynamics 
The Kalman filter should be used to estimate the main dynamics of the system. Normally these 
constitute the lowest-frequency dynamics. Here, the 1st drive train frequency and the 1st tower 
frequency are included. The method described here can be extended to include more degrees of 
freedom. 

The drive-train model is 1st degree model, describing torsional deformation γ in the drive train 
itself.  The rotor speed Ωr is driven by an aerodynamic torque Ta, the rotor is connected to a flexible 
shaft modelled as a stiffness and damping. The shaft drives the generator speed Ωg which is also 
subject to a counter torque Tgen. The dynamics of the drivetrain can be modelled using the equations of 
motion given below; for brevity drive train loss factors have been omitted from these equations. 
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�̇�𝛾 = Ω𝑟𝑟 − Ω𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆     (1) 
𝐽𝐽𝑟𝑟Ω̇𝑟𝑟 = −𝜇𝜇𝑑𝑑�̇�𝛾 − 𝑘𝑘𝑑𝑑𝛾𝛾 + 𝑇𝑇𝑎𝑎    (2)  
𝑖𝑖2𝐽𝐽𝑔𝑔Ω̇𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜇𝜇𝑑𝑑�̇�𝛾 + 𝑘𝑘𝑑𝑑𝛾𝛾 − 𝑖𝑖𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔   (3) 

Here J is used to denote the moment of inertia of the rotor and generator respectively. The parameter 
μd indicates the damping and kd  the stiffness of the drivetrain and i the gearbox ratio. Notice as well 
that the generator speed is given as the slow shaft equivalent (SSE), i.e., it has approximately the same 
magnitude as the rotor speed. 

Like the drive train dynamics, the tower top fore-aft dynamics are described with the following 
equation: 

𝑀𝑀𝑡𝑡�̈�𝑑𝑡𝑡 = −𝜇𝜇𝑡𝑡�̇�𝑑𝑡𝑡 − 𝑘𝑘𝑡𝑡𝑑𝑑𝑡𝑡 + 𝐹𝐹𝑎𝑎    (4) 
Where dt is the tower top downwind displacement, Mt is the tower top equivalent mass, μt and kt, 
respectively the tower equivalent damping and stiffness and Fa the axial force.  

Finally, a basic integrator model is added for the pitch system, such that the system can be 
controlled using a pitch rate signal. A pitch rate signal is used, because the pitch rate can be weighted 
as a controller effort cost in the calculation of the LQR optimal controller, weighting the pitch angle 
would not be useful. 

𝜃𝜃 = 1
𝑠𝑠
�̇�𝜃      (5) 

3.2.  Aerodynamic model 
The structural model is linear and time-invariant. The non-linearity lies in the aerodynamic forces and 
the coupling between the structural motions and aerodynamic loading.  
As mentioned, the aerodynamic model used here is based on the work by Knudsen and Bak [8], the 
model describes the torque as function of the windspeed, but with a term based on the dynamic inflow 
dynamics. Other dynamic inflow models are available in literature, e.g. [16]. The model of Knudsen 
and Bak was chosen here, because the parameters needed are based directly on the power and thrust 
coefficients Cp and Ct, and a steady state inflow which can then easily be derived.  

Instead it is computed at each time step based on the effective wind speed, which is given by: 
    𝑣𝑣𝑟𝑟 = 𝑣𝑣𝑚𝑚 + 𝑣𝑣𝑡𝑡 − �̇�𝑑𝑡𝑡        (6) 

Where vr is the effective rotor speed, vm the mean wind speed, vt a turbulent wind speed component 
and �̇�𝑑𝑡𝑡 the downwind tower velocity. 

In order to also include the effect of dynamic inflow on the effective wind speed as was seen in 
Figure 2.3, a fictive wind speed is used to compute the aerodynamic torque as well as the axial force. 
This fictive wind speed is given by the following equation: 

𝑣𝑣𝑓𝑓 = 1−𝑎𝑎𝑓𝑓
1−𝑎𝑎𝑠𝑠

𝑣𝑣𝑟𝑟       (7) 
Subsequently, the aerodynamic torque and axial force can be computed using: 

𝑇𝑇𝑎𝑎 = 1
2
𝜌𝜌𝜌𝜌𝑅𝑅3𝐶𝐶𝑞𝑞(𝜆𝜆,𝜃𝜃)𝑣𝑣𝑓𝑓2    (8) 

𝐹𝐹𝑎𝑎 = 1
2
𝜌𝜌𝜌𝜌𝑅𝑅3𝐶𝐶𝑡𝑡(𝜆𝜆,𝜃𝜃)𝑣𝑣𝑓𝑓2    (9) 

For the controller design the model assumes the turbulent wind vt is a random walk model driven by a 
random noise process.  

3.3.  Extended Kalman Filter 
The Extended Kalman Filter (EKF) (see, e.g. [17]) requires several steps and assumes that we can 
write the dynamics of the system as: 

𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1) + 𝑤𝑤𝑘𝑘    (10) 
𝑦𝑦𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘) + 𝑣𝑣𝑘𝑘 

Where f and g are non-linear functions and w and v describe stochastic disturbance and 
measurement noise terms respectively.  
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First, a-posteriori steps update the Kalman gain, and noise covariance on values from the previous 
timestep, the state estimates for the current time step k, based on current measurements, the estimates 
of the previous time step k-1 and the calculated output for the previous time step. The second step 
estimates the states at the next time step, given the updated state estimates for the current time step. 
The steps are described using the following equations, where the vector 𝑥𝑥� are the estimated states of 
the wind turbine, 𝑦𝑦 the measured outputs of the system, and the matrix 𝐾𝐾 gives the Kalman gain. 
Further, the function 𝑔𝑔 is used to (non-linearly) calculate the estimated outputs. The matrix 𝑃𝑃 is the 
covariance, 𝐶𝐶 the jacobian of the output equation g and 𝑅𝑅 represents the measurement noise 
covariance matrix. The subscript 𝑘𝑘|𝑘𝑘 refers to the value at timestep 𝑘𝑘, as computed at timestep 𝑘𝑘.  

Step 1: update of the Kalman gain: 
𝐾𝐾𝑘𝑘 = 𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐶𝐶𝑘𝑘|𝑘𝑘−1

𝑇𝑇 (𝐶𝐶𝑘𝑘|𝑘𝑘−1𝑃𝑃𝑘𝑘|𝑘𝑘−1𝐶𝐶𝑘𝑘|𝑘𝑘−1
𝑇𝑇 + 𝑅𝑅)−1 (11) 

Step 2: update of the covariance matrix P 
𝑃𝑃𝑘𝑘|𝑘𝑘 = 𝑃𝑃𝑘𝑘|𝑘𝑘−1 − 𝐾𝐾𝑘𝑘𝐶𝐶𝑘𝑘|𝑘𝑘−1𝑃𝑃𝑘𝑘|𝑘𝑘−1   (12)  

Step 3: update of state estimate based on the prediction at the previous time step and the current 
measurement: 

𝑥𝑥�𝑘𝑘|𝑘𝑘 = 𝑥𝑥�𝑘𝑘|𝑘𝑘−1 + 𝐾𝐾𝑘𝑘 �𝑦𝑦𝑘𝑘 − 𝑔𝑔�𝑥𝑥�𝑘𝑘|𝑘𝑘−1��  (13)  
Step 4: a-priori estimate (or: prediction) of the state estimate at the next time step 

𝑥𝑥�𝑘𝑘+1|𝑘𝑘 = 𝑓𝑓�𝑥𝑥�𝑘𝑘|𝑘𝑘 ,𝑢𝑢𝑘𝑘�     (14) 
Step 5: a-priori estimate of the covariance matrix: 

𝑃𝑃𝑘𝑘+1|𝑘𝑘 = 𝐴𝐴𝑘𝑘|𝑘𝑘𝑃𝑃𝑘𝑘|𝑘𝑘𝐴𝐴𝑘𝑘|𝑘𝑘
𝑇𝑇 + 𝑄𝑄     (15) 

Where, the function 𝑓𝑓 evaluates the states computed by the non-linear system equations based on the 
updated system states from step 1. In this case the matrix 𝐴𝐴 is the Jacobian of the state progress 
equation system matrix and 𝑄𝑄 indicates the process noise covariance and also follows the work by 
Bak. 

When implementing the Extended Kalman Filter, it is important to initialise the states and the 
covariance matrix P well. The initial covariance matrix was based on the final value after the 
estimation had indeed converged to the  appropriate values. To prevent the mentioned instability of the 
algorithm due to underestimation of the noise term, a small minimum noise term was included in the 
implementation.  

4.  LQR design and regression-based scheduling 

4.1.  LQR design  
If the system was a linear, time-invariant system excited by white noise and quadratic cost, an LQR 

controller would be optimal. For a non-linear system, excited by non-white noise and a strongly non-
linear cost function (e.g. the design equivalent load) LQR controller cannot be expected to be optimal. 
However, it must at least be stable in a region close to the operating point and therefore LQR is used 
as a starting point for the scheduled state feedback controller. As mentioned, the goal is to create a set 
of LQR gains, which are then scheduled based on certain parameters. 

For a particular operating point, the LQR gains KLQR are used to calculate a control action (pitch 
rate) at time step k according to: 

�̇�𝜃𝑘𝑘 = 𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥�𝑘𝑘     (16) 
Where 𝑥𝑥�𝑘𝑘 denotes a vector of the estimated states. The linear quadratic KLQR minimizes a quadratic 
cost function J: 

𝐽𝐽 = 𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑢𝑢     (17) 
Where the matrix Q is used to assign cost to various states and the matrix R is used to weight the 
control effort. For the linear system: 

𝑥𝑥𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘 +𝑤𝑤𝑘𝑘    (18) 
𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑘𝑘 + 𝑣𝑣𝑘𝑘 
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These linearised models are generated near selected operating points to calculate the gains.  
In addition to the states associated with the structural and aerodynamic model, one additional is 

state is added, which is the integral of the rotor speed error. This ensures that the controller can 
accurately track the desired rotor speed. Finally, the Q matrix weights the rotor speed tracking error, 
the integral of the rotor speed tracking error and the tower displacement.  

Because of the non-linearity of the system, the linearised models are different for different rotor 
speeds, wind speeds, etc. Therefore, to create a sensible input set for the regression, deviations from 
the operating states are assumed that are random, but of realistic magnitude. LQR gains are then 
calculated for the linearised models at these random realisations. The random variations were 
distributed flatly within selected boundaries.  Figure 2 shows the LQR gains for two states for given 
mean wind speed (along the x-axis), with variations in the turbulent wind speed and induced velocity. 
It should be noted that due to different sensitivities of torque and axial force to pitch actions and 
variations of the wind, the ratio between pitch activity and loads also varies for different conditions. 
This means that given selected weights for the states and the control effort, the minimized costs 
associated with each state or the input effort also varies with wind speed. 

4.2.  Regression of LQR gains and scheduling  
The set of gains calculated for variations in the model is used as input data for a linear regression 

with a selected set of predictors. The idea behind basing the gains on predictors is that the gains can 
also be calculated across a large operational range, to include, for instance, when the wind turbine is 
operating at reduced maximum power. A linear regression is used rather than a simple quadratic fit, 
because overfitting can be prevented more easily. 

The predictors are selected from parameters that are already needed for the extended Kalman Filter 
or could easily be calculated from these parameters. The set is reduced to only include those 
parameters that are needed to obtain an accurate fit of the data. This parameter set consists of the wind 
speed  𝑉𝑉𝑤𝑤 and a small number of aerodynamic sensitivities. In particular:  

𝑉𝑉𝑤𝑤, d𝐶𝐶𝑞𝑞
d𝜃𝜃

, d𝐶𝐶𝑡𝑡
d𝜃𝜃

, d𝑎𝑎
d𝜃𝜃

, 𝑉𝑉𝑤𝑤
d𝐶𝐶𝑞𝑞
d𝜃𝜃

, 𝑉𝑉𝑤𝑤
d𝐶𝐶𝑡𝑡
d𝜃𝜃

 and 𝑉𝑉𝑤𝑤
d𝑎𝑎
d𝜃𝜃

.  
where a is the static induction. The regression results in a matrix Kreg and a set of constant values, or 
offsets, Koffsets for the various elements of the approximated 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿. This allows us to calculate the 
approximated 𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 as: 
    𝐾𝐾�𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐾𝐾𝑟𝑟𝑔𝑔𝑔𝑔𝑣𝑣𝑠𝑠 + 𝐾𝐾𝑜𝑜𝑓𝑓𝑓𝑓𝑠𝑠𝑔𝑔𝑡𝑡𝑠𝑠    (19) 
Where vs is a vector of the parameters mentioned above. This means that by using the regression, gains 
were calculated by adding and multiplying 8 real values, with values that were already available, 
because they are required for the extended Kalman filter anyway. Computationally, this compares very 

  

Figure 1: Calculated LQR gains (blue crosses) for different state realisations and the regression-based 
results (red line) for varying wind speeds (x-axis). The gains for two different states are shown. 
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favourably to solving the discrete time algebraic Riccati equation for the linearised model at each time 
step. 

The results of two such regressions are shown in figure 1. The red lines are the gains calculated at 
the operating point, without variations in the turbulent field and induction. It should be noted, that 
these gains vary differently with wind speed. Conventional gain scheduling of the pitch response of 
the controller output would not have been able to account for this and therefore not have been optimal 
for scheduling the LQR gains. 

Given that this matrix is an approximation of the true LQR gains, this may introduce stability 
issues. Therefore stability of the scheduled gains was first verified using the linearised models, before 
simulating the controller with a fully-non-linear, aero-servo-elastic code Phatas [11] to show its 
effectiveness. Please note that this approach does not guarantee stability. 

5.  Simulation results 
As mentioned in the introduction, a wind turbine controller must balance different objectives. 
Specifically, for this controller we analyse the following criteria: 

1) The mean power production 
2) The design equivalent load  of the out-of-plane blade root bending moment  
3) The design equivalent load of the tower fore-aft tower bottom bending moment 
4) The pitch effort; the pitch duty cycle specifically 

The design equivalent loads are calculated with appropriate material exponents for the tower, 
(steel, exponent 4) and the blade (glass-fibre reinforced epoxy, 10), while the pitch duty cycle is 
defined as the average absolute value of the instantaneous pitch rate multiplied with the instantaneous 
blade root bending moment. Because friction in bearings is commonly proportional to the out-of-plane 
loading (amongst other loads), the pitch duty cycle can be seen a measure of the power the pitch drives 
loose due to friction in the bearings. 
The scheduled state feedback controller (SSFC) is compared to a baseline controller. The baseline 
controller is PD controller with pitch rate as output, which is similar to a PI controller on the blade 
angle. Gain scheduling is applied based on wind speed, rotor speed and pitch angle. 

The controllers are simulated at three different wind speeds (17, 18 and 19 m/s), for two different 
seeds at each wind speed. These windspeeds were chosen to ensure that any differences between the 
controllers was not due to transitions from full-load to partial-load and vice-versa.  

Finally, to create a fair performance comparison, the control effort must also be examined. This can 
be achieved by varying the control effort weighting in the calculation of the LQR matrices. 

5.1.  Filtering needed 
Initial simulations showed that it is necessary to filter out excitations  at frequencies 3, 6 and 9 
multiples of the rotor speed. Otherwise the simulation results in significant additional pitch effort 
without any particular benefit to blade or tower loads. The filtering was applied between the EKF and 
the scheduled gains, and to all states equally. The same filters were applied in the baseline controller, 
to ensure a ‘like with like’ comparison as much as possible. 

5.2.  Results for the performance criteria 
Figure 2 shows the performance criteria for the baseline controller (red star) and scheduled state 
feedback control based for varying input effort weightings. The power loss shown in figure 2 is the 
difference of the mean power during the simulations and rated power. Based on the values shown here, 
the state space controller marked in green is chosen as the best performing state-space controller. 

In terms of energy, the chosen state feedback controller loses some energy compared to the 
baseline controller, the difference is about 21kW (approximately 0.2% of rated power). The difference 
is due a slightly lower mean rotor speed for the scheduled state feedback controller. It also should be 
noted that at lower pitch duty cycles (higher weighting of the pitch effort), the mean power loss of the 
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state-space controller is significantly higher and falls outside the chosen limits for the plot. The pitch 
duty cycle at this point is 26% lower than the baseline controller. 

Both the design equivalent tower bottom bending moment and the blade root bending moment are 
reduced as well, by 2.7% and 4.2% respectively.  

 

5.3.  Time series comparison 
For the comparison of the time-series, one of the time series at 18 m/s was selected. Figure 3 shows 
the time series of the baseline and the scheduled state feedback controller, for the rotor speed, the 
blade root bending moment, the pitch angle and the pitch rate.  

The slightly higher mean rotor speed of the baseline controller is not immediately evident. For this 
time series, the mean rotor speed for the baseline controller was 9.59 rpm, the state-space controller 
achieved 9.57 rpm, whereas the rated rotor speed is 9.60 rpm. The figure also shows that the baseline 
controller has higher amplitude rotor speed excursions. 

The lower pitch activity is clearly visible. The time series of the pitch angle also show smoother 
pitch activity, with lower overshoots in the pitch angle. 

 

  

  

Figure 2: Performance criteria for baseline control and scheduled state feedback control (SSFC) for 
various weightings of the control effort 
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6.  Discussion, Conclusions and future work 

6.1.  Discussion 
The variation in performance due to the weighting of the pitch effort is significant and must be done 
with care. And although the results show it is possible to design a scheduled state feedback controller 
that improves performance in most aspects with respect to the default PI(D) controller. However, the 
actual criteria for control are not quadratic and severely non-linear. This means that the gains 
calculated with LQR are unlikely to be truly optimal for these criteria and can probably be tuned to 
further improve performance. 

6.2.  Conclusions 
A variation on the LQG controller structure was presented here that can handle non-linear changes in 
state feedback control gains effectively and computationally efficiently. Using the regression, gains 
were calculated by multiplying 8 real values, with values that were already available, because they 
were required for the extended Kalman filter anyway. The combination of extended Kalman filtering 
and the scheduled state-feedback controller resulted in a well performing controller, although strict 
stability remains to be proven. The results show improved performance relative to the default baseline 
controller, with a 4% reduction of the blade loads at a 26% lower duty cycle. 

The scheduled state feedback controller is mainly intended as a structure for and a starting point 
from which the performance can be further optimised using other approaches; in particular by using 
Multi-Objective Bayesian Optimisation, such as described in [18].  

 

  

  

Figure 3: Time series comparison for baseline control and scheduled state feedback control. 
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6.3.  Future work 
Future work can focus on a number of aspects: 

- extended proof of stability  
- the further tuning of scheduled state feedback controllers  
- the performance over a wider range of load cases 
- robustness of the scheduled state feedback control to allow industrial application 
- a more extensive structural model 
- comparing performance based on unscented Kalman filters and the current extended one 
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