

Pose estimation for mobile devices and
augmented reality

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 25 september 2009 om 12:30 uur

door

Jurjen CAARLS

natuurkundig ingenieur,

geboren te Leiden.

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. ir. L.J. van Vliet

Prof. dr. ir. P.P. Jonker

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof. dr. ir. L.J. van Vliet, Technische Universiteit Delft, promotor

Prof. dr. ir. P.P. Jonker, Technische Universiteit Delft, promotor

Prof. dr. ir. R.L. Lagendijk, Technische Universiteit Delft

Prof. dr. F.C.T. van der Helm, Technische Universiteit Delft

Prof. dr. P.J. Stappers, Technische Universiteit Delft

Prof. dr. H. Nijmeijer, Technische Universiteit Eindhoven

Dr. E. Geelhoed, HP Bristol Labs, United Kingdom

Prof. dr. I.T. Young, Technische Universiteit Delft, reservelid

Cover design: Hristina Moneva / Jurjen Caarls

Cover artwork: Marina de Haas © 2009

Press: Ipskamp Drukkers, Enschede. www.ppi.nl

Copyright © 2009, Jurjen Caarls

ISBN: 978-90-9024585-0

Opgedragen aan m’n moeder

en ter nagedachtenis aan m’n vader

 - i -

Contents

Chapter 1 Introduction 1
1.1 Mixed Reality ...3
1.2 Challenges for Mobile Optical See-Through AR.......................................6
1.3 The setup of this thesis ..10

Chapter 2 Requirements and System Architecture 11
2.1 Design requirements...11
2.2 Sensors for pose estimation...14
2.3 Hardware ..17
2.4 Requirements imposed by AR application and sensors..........................20
2.5 System architecture ...28
2.6 Conclusion..31

Chapter 3 Image based pose tracking 35
3.1 Optical model ..36
3.2 Pose estimation..38
3.3 Fiducial detection ..41
3.4 Feature detection...46
3.5 Edge detection...47

3.5.1 Step-edges... 47
3.5.2 Sub-pixel position.. 56
3.5.3 Effect of noise ... 59
3.5.4 Influence of nearby edges.. 63

3.6 Corner and saddle-point detection...67
3.6.1 DET Saddle point detector ... 70
3.6.2 DET as corner detector ... 72
3.6.3 Harris-Stephens ... 74
3.6.4 Haralick & Shapiro.. 77
3.6.5 Edge intersection... 78
3.6.6 Features, conclusion ... 83

3.7 Camera calibration ..85
3.8 Evaluation of pose estimation ..90

3.8.1 Dependence of the pose accuracy on the viewing angle.................. 90
3.8.2 Dependence of the pose accuracy on the location in the image..... 96
3.8.3 Pose accuracy of virtual objects..101

3.9 Conclusion and Discussion ...103

Chapter 4 Sensor fusion for pose estimation 105
4.1 Kalman Filtering..106

4.1.1 Dynamic system model ..106
4.1.2 The Kalman filter ..108
4.1.3 Extended Kalman Filter...109
4.1.4 Indirect Kalman Filter ..112
4.1.5 Continuous time processes..114

4.2 Sensor readings: control-input vs. measurement117

ii CONTENTS

4.3 A process model for Augmented Reality ..120
4.3.1 Quaternions..123
4.3.2 Strap down inertia navigation ...125
4.3.3 Error-state system model...126

4.4 Incorporating Lag ...130
4.4.1 Backward prediction ...130
4.4.2 Measurement Reordering...131

4.5 A modular Kalman filter..131
4.5.1 The decentralized KF ...132
4.5.2 The Plug-in Kalman Filter ...134

4.6 Conclusion..136
4.6.1 Problems with linearization ...137
4.6.2 Divergence problems..137
4.6.3 Modular filter ...138

Chapter 5 System Integration and practical use 139
5.1 Pluggable Kalman Filter Experiment ..139
5.2 Coordinate frame calibration ..141

5.2.1 Inertia tracker frame to body frame...142
5.2.2 Marker’s pose in the world ..142
5.2.3 Camera frame to body frame ..144
5.2.4 Body frame to AR display and eye frames..144

5.3 Implemented Kalman filters..146
5.4 Measurement noise and bias stability...149
5.5 Process noise and expected sensor value ranges157
5.6 Experiment with a SCARA robot ..162

5.6.1 Experimental setup ...163
5.6.2 Motion Trajectories...165
5.6.3 Acceleration from encoders ..166
5.6.4 Inertia tracker rate instability...169
5.6.5 Inertia tracker orientation estimation ..170
5.6.6 Camera pose accuracy ..171
5.6.7 Kalman filter analysis..176

5.7 Usage of the AR setup by the KABK ...184
5.8 Conclusion..186
5.9 Recommendations for future research ..189

Appendix A Federated Filter 191

Bibliography 201

Summary 207

Samenvatting 209

Dankwoord 211

Curriculum Vitae 213

 - 1 -

Chapter 1
Introduction

In the past 50 years, the digital computer transformed from research apparatus, via company
resource and Personal Computer into a household commodity. Strangely enough, we still
mainly interact with it through keyboard and display. If we were able to interact with it in a
more natural way, it would enhance the user’s performance.

Augmented Reality (AR) is an interface that enables computers to relay information to us by
overlaying a virtual world on top of the real world visible to the user. This interface might be the
start of a revolution that will drastically transform the way in which we interact with computer
applications.

In the broadcast industry, a simple version of AR is used to e.g. show satellite images next to
the weatherperson. In this technique, called chroma-keying, images of a scene are recorded
containing a screen of one particular color: the chroma key (mostly blue or green). Regions
with a color near the chroma-key are replaced by virtual information such as pictures or
animations (see Figure 1-1). This looks very convincing because when the blue screen is
partially occluded by a person, the virtual image seems to be behind that person. This method
of augmented reality is simple because the location of the virtual information is fixed in the
recorded image.

Figure 1-1 From left to right: A weatherman in front of a blue screen, a pressure map, and the resulting
augmented output.

In the movie ‘Who Framed Roger Rabbit’ (Figure 1-2), the real world was augmented with
animated characters; however, that could not be done in real time. First a scene was shot.
Thereafter, the animations were added frame by frame using a manual as well as time-
consuming process. In the same movie, we also see Augmented Virtuality when the actor is
placed in the virtual world of the cartoons. This can also be done by placing the actors in front
of a big screen while using chroma-keying. Nowadays this is done in many movies, although
the animations are now generated by computer.

2 CHAPTER 1. INTRODUCTION

A more recent technique is seen on e.g. Dutch television during soccer games (Figure 1-3).
Virtual boards of advertisements are projected on the sides of the goal and even when the
camera moves, they seem to be fixed into the real world. This type of AR is already more
complicated since the exact position and orientation of the camera must be known to be able
to overlay the virtual images on the recorded images.

Figure 1-2 Two frames of the movie ‘Who Framed Roger Rabbit?’. Left: The world augmented with a
virtual Roger. Right: The ‘toon’ virtual world augmented with the private eye Eddie Valiant.

Figure 1-3 Example of Real-time-AR. Virtual advertising boards are projected at the sides of the goal.
The camera’s pan, tilt and zoom information is extracted from the images and used to
correctly display the virtual environment. (ADVision from Orad: www.orad.tv)

Super-imposing virtual objects like advertising boards or logos onto live broadcasts (live video
insertion) becomes standard practice and is frequently used for many popular sports such as
American football and soccer. All applications mentioned above require the user to look at a
screen somewhere in the environment, which is called “Through the window” AR.
Furthermore, the user passively views the video and hence cannot interact with it.

1.1. MIXED REALITY 3

The aim of this thesis is to build a system to make the virtual world immersive, i.e. present all
around the user. We envision that in the future people can wear spectacles with integrated displays
that project images through the eye’s lens onto the retina. These spectacles provide a stereoscopic
overlay of virtual objects that will appear to really exist in the real world: a visual walkman, the
equivalent of the audio walkman.

1.1 Mixed Reality

Augmented Reality can be placed on a range of what Paul Milgram and Fumio Kishino [1] call
the Reality-Virtuality continuum. Figure 1-4 shows that on the far ends, either the real world is
perceived (Reality) or the virtual world is perceived (Virtual Reality). From right to left, more
of the real environment is added to the virtual world, such as real photos of people
superimposed on virtual characters, or as simple as live camera footage inside a 2D or 3D
scene. From left to right, one can think of displaying a list of friends logged in on MSN in a
corner of one’s eye or displaying a 3D virtual dance instructor that shows you how to move.
We are interested in immersive types of mixed reality.

Figure 1-4 Milgram and Kishino’s Reality-Virtuality Continuum [1]

Immersive types of mixed reality currently imply that a headset should be worn and the pose of this
headset should be measured using a head pose tracker. The head pose is needed to guarantee
correspondence between the real and virtual environment.

Virtual Reality

Using a VR headset, the user can only see a virtual world. Currently, most VR headsets are
used to watch movies as part of an extension of a normal screen. This means that only a single
display within the headset is needed. This display is then projected at a fixed distance, two
meters for example. We are interested in a headset with 3D display characteristics.

A headset with one display per eye enables the user to see objects at multiple depths. The view
changes when the user moves.

4 CHAPTER 1. INTRODUCTION

A practical example of the use of a stereo headset is in treatment of people with fear of
heights. By standing and walking on a virtual balcony, they slowly get used to the height
(Figure 1-5). However, in this application the movement of the user has to be tracked only in a
small environment for which many existing tracking methods suffice. This application only
displays a virtual environment, controlled by the head pose of the user. When the user needs
to cover larger distances, while possibly moving around in less controlled environments
containing obstacles such as tables or chairs, perceiving the real world becomes just as
necessary as perceiving the virtual environment. Furthermore, the system has to be mobile,
which discards many existing head pose trackers.

Figure 1-5 Left: Common Virtual Reality setup within a small area. Right: View from a virtual balcony
to overcome fear of heights. (Virtual Reality and Phobias project [2])

Video See-Through AR

With this technique, one or two cameras record the real world. Images of a virtual world are
digitally mixed with these recordings. The output is sent to a regular VR helmet. When the
recorded images are also used to determine the pose of the user, aligning the virtual world with
the real (recorded) world is very easy as the overlay is done on the same image from which the
pose is determined. In other words, there is no delay between the recorded and virtual world.
However, the augmented output will always be delayed as a whole, and as the visual clues to
the brain do not match the clues from the vestibular system, this often leads to motion
sickness. A positive aspect is that, because both real and virtual images are digital, one can
choose how to mix the two worlds, so the virtual objects can appear opaque as well as semi-
transparent. On the other hand, the resolution of the camera images is generally not very high
(compared to the eye), so a lot of detail from the real world is lost.

An example of a non-immersive video see-through Augmented Reality application is the
‘Invisible Train Game’, where a PDA with a large screen and a camera is used as a window
into the virtual world (see Figure 1-6). An immersive example is a historic tour at the Pompeii
site where animated characters tell the story of Pompeii while you walk around the site with
them (See Figure 1-7).

1.1. MIXED REALITY 5

Figure 1-7 Immersive video see-through application. Output of the lifePLUS project [4] with animated
characters at the historical site of Pompeii. This system uses camera images to track the
position of the user and requires off-line learning of the environment as no special objects
are added to the scene for tracking (markerless tracking).

Optical See-Through AR

In optical see-through Augmented Reality, the virtual world is optically mixed with the real
world inside the helmet using a semi-transparent mirror. The effect is that the real world can
now be appreciated in all its detail; moreover, the real-world image can still be used to safely
maneuver through the environment. Unlike video see-through AR, the real world is observed
without delay due to the absence of video-mixing. Note that the real world will appear darker,
similar to wearing sunglasses. To our knowledge, there are no commercial AR headsets
available that can truly add the virtual world to the real world without this effect. One of the
main problems with mixing the world optically is that the delay in the generated images of the
virtual world results in an incorrect alignment after mixing, which is difficult to correct. Some
users may experience headaches as a result of this; therefore, we have to use methods that
minimize delay and jitter. Although we can look with a camera mounted on the user’s head at

Figure 1-6 Invisible Train Game [3]: Using visual markers, the PDA’s are able to overlay an
animated virtual train running over the real tracks seen in the background.

6 CHAPTER 1. INTRODUCTION

images of the real world as the user sees it, we cannot exactly look through his eyes, causing a
parallax dependent on the viewing distance. Similarly, we cannot fixate the camera onto the
user’s skull, which causes these images to vibrate from the user’s viewpoint. Hence, it is
difficult to get a correct and stable alignment between the real world and the virtual world,
even when the user is standing still. Another weakness is a direct result of optical mixing,
causing virtual objects to appear semi-transparent.

Figure 1-8 shows a statue in front of the aula of the Delft University of Technology. We are
interested in wearable Augmented Reality for both indoor as well as outdoor applications.

Convincing Augmented Reality for both indoor as well as outdoor applications requires wearable
solutions using optical see-through techniques.

Figure 1-8 Augmentation of the aula at the Delft University of Technology with a statue. This was
done for the UBICOM project [5]

1.2 Challenges for Mobile Optical See-Through AR

As applications for immersive mixed reality (mobile optical see-through Augmented Reality),
one can think of quickly troubleshooting and repairing a part of a complex machine without
having to browse through repair manuals. Using an AR system, the user is presented with an
animation of e.g. the disassemble actions he has to follow to get access to a damaged part. The
Augmented Reality system will project these animations on the user’s eyes such that a 3D
virtual scene is perfectly aligned with the real world. Because the animation seems to really
operate on the parts of the machine, the user is likely to make fewer errors. The system may
even provide means to verify that the right parts are removed. For instance, this would be
valuable in the airplane industry. Preventing erroneous actions in engine repair is of extreme
importance.

Figure 1-9 shows an artist impression of a project by BMW AG for engine maintenance [6].
This application requires the AR system to cope with unpredictable movements of the user,
which is one of the main problems of immersive AR. When the system is not fast or accurate
enough to correctly sense the user’s movement, the virtual images will be jittering or lagging.

1.2. CHALLENGES FOR MOBILE OPTICAL SEE-THROUGH AR 7

Figure 1-9 An AR system proposed by BMW for an innovative repair manual [7].
Left: The real engine, superimposed with a virtual screwdriver and an arrow that shows
the direction in which the user must turn. Right: impression of future AR glasses.

Another challenge of designing an optical see-through AR system is to make the AR system
mobile, thus enabling a user to walk around, not limiting his movements to a small area. When
the mobility is increased, the system can support maintenance in large machine rooms which
can be found on ships. There are basically two solutions possible and combinations of these.
One can either use the “natural landmarks” from the scene itself or the landmarks that are
placed with the aim to ease navigation. Humans use visual markers for path finding as well, in
the form of road signs, street names and house numbers throughout a city and numbers and
names next to doors in office buildings. Using “natural” features, which also include image
features of man-made objects such as contours of buildings or rooms is more cumbersome.
The system must somehow store a more extensive visual map of the scenes that the user
encounters to recognize the whereabouts of the user. Although the use of markers is easier, it
requires an infrastructure to place and maintain these markers. Using markers has a high
impact on the environment. Therefore, using markers is more likely to be effective indoors in
office buildings or industrial environments than outdoors. The aim should be to do it with as
few markers as possible. Note that a combination of markers (artificial landmarks) and visual
clues from the scene (“natural” landmarks) can be used as well. Figure 1-10 shows a setup with
many markers of different sizes.

Our objective is to mature the primary technology of Augmented Reality such that
applications like engine repair can be used in consumer products. The hardware components
to enable immersive Augmented Reality are already available. A (rather big and expensive)
headset can be bought that fits around one’s head and can display computer output. This is
not good enough for the consumer market, which favors cheap, lightweight and small
products. However, our estimate is that the enabling hardware will become cheaper and
smaller when immersive AR applications become readily available. Consequently, our design
will focus on the software that is needed for the different uses of AR and hence the various
methods to detect the user’s movement. To achieve acceptance in a consumer market, the
design has to be flexible, easy to configure, easy to use and of course the virtual environment
should be aligned with the real environment accurately enough to be convincing. We will try to
meet these requirements.

8 CHAPTER 1. INTRODUCTION

Figure 1-10 Example of AR in industry. CyliCon by Siemens Corporate Research augments the real
world with a layout of industrial pipes [8]

The methods to determine the user’s head pose (3D position and 3D orientation) in a VR/AR
system can also be used for tracking any other device’s position. One can think of mobile
phones, PDAs, and Automated Guided Vehicles (AGVs) that have to find their way from A
to B, i.e. vacuum cleaner robots inside a house, container carriers in harbors, or transporters of
harvested products such as tomatoes in greenhouses. Our design should be flexible enough to
allow multiple applications.

We aim at a consumer market such as the market for “serious gamers”, but because of the price of
the constituting hardware components, our first aim is an industrial market. Our head-pose
tracking system should be available for other applications that require pose tracking, such as in
Automated Guided Vehicles.

Although our aim is to develop a demonstrator system for mobile immersive Augmented
Reality with the objective to enable commercial exploitation in a consumer market, the
following table lists a number of problems that were encountered. If the problem was
investigated in this thesis, a reference to the corresponding chapter is given.

Problem (Possible) solutions

Equipment is very expensive. Create a market, so production in volume
makes the product cheaper.

Equipment is heavy and big. Small and lightweight products sell better, so
companies will try to miniaturize the
hardware.

1.2. CHALLENGES FOR MOBILE OPTICAL SEE-THROUGH AR 9

Problem (Possible) solutions

The world in an Optical See-Through
(OST) setup appears darker.

Currently unavoidable due to the needed
nearly-transparent mirror.

Virtual objects in an OST setup are
transparent.

Try to block parts of the world that are
occluded by virtual objects with an extra
LCD panel [9].

In general, pose tracking systems require
too many changes in the environment to be
commercially attractive for AR.

Reduce changes needed in the environment.
Passively use all information that is already
available: camera images, GPS, earth
magnetic field etc. (see Chapter 2).

Errors in pose estimation are easily noticed
in an OST setup.

Combine multiple sensors to get the best of
all sensors. Minimize noise, systematic errors
and delays in the combined output (see
Chapter 4).

User movements are limited in
predictability.

Kalman filters can accurately predict the
motion with fast and accurate sensors. (see
Chapter 4).

The displayed virtual objects must not
noticeably lag behind.

Predict the pose at a future time of display.
Use a fast graphics card for a high update-rate
(see Chapters 2 and 4).

Current markerless pose estimation
algorithms using image processing are too
CPU expensive for mobile applications, or
not accurate enough for OST AR.

Develop a fast algorithm that can detect
markers accurately at a distance, so that only a
few markers are needed (see Chapter 3).
Allow a pose estimation server as a back-end,
or use special hardware (see Chapter 2).

The light intensity in the environment can
change drastically when the user moves.

Use image-processing techniques that are
insensitive to changing lighting conditions
(see Chapter 3) and automatically adapt
hardware variables such as the shutter-time.

Fast movements cause motion blur in
camera images making image processing
difficult.

Minimize shutter-time or correct for motion
blur.

A different pose estimation setup is needed
for different applications. Even other
combinations of sensors might be needed.

Design a flexible pose estimation system that
can be reconfigured on the fly, depending on
the accuracy needed and the available sensors
(see Chapters 2 and 4).

10 CHAPTER 1. INTRODUCTION

Problem (Possible) solutions

Calibration of the sensors and the headset
is very time consuming and difficult.

Solutions found in the literature
(see Chapter 5).

The eye position of every user is different,
so another calibration is needed.

Solutions found in the literature
(see Chapter 5).

1.3 The setup of this thesis

This thesis describes the research performed to come to a design of an immersive wearable
Augmented Reality system for both indoor and outdoor applications using an optical see-
through headset and a head-pose tracker. The proper design of this tracker is the focus of our
research. This head pose tracker is based on a setup with a camera whose data is fused with
data from an inertia tracker.

Although the final aim is to design an AR headset for a consumer market like the market for
“serious gamers”, the price of the hardware components is still too high. The current design
therefore aims at an industrial market in which the AR headset is used by a professional. Our
head-pose tracking system should also be ready for other applications such as controlling the
path of Automated Guided Vehicles. Finally, we envision that the availability of cheap and
accurate “visual walkmans” might largely change the practice of today’s computing.

In this thesis we tackle many issues that block the way to a proper design of such a system. We
developed a working prototype for our mobile AR system. It requires little adaptation of the
environment and can calculate the position of the helmet as good as possible with the
information that is acquired from the camera image and sensed from the motion of a user.
Our system is modular, meaning that sensors can be plugged in and out during run-time. Our
system is flexible in the sense that the pose tracker can be used for multiple tasks, including
AR.

In Chapter 2 we elaborate on the requirements and design decisions for an Augmented Reality
demonstrator. We come to an overall design and present specific requirements for the camera
sub-system as well as for the inertia tracking and data-fusion tasks.

In Chapter 3 we review and make choices on the various image processing techniques to
extract features from the camera images and describe how a pose can be calculated. These
methods are extensively tested by real-world experiments and simulations.

Chapter 4 presents our Kalman filter setup that is used to fuse the data from our image based
pose tracker with an inertia tracker to obtain both an accurate and timely estimation of the
pose as well as the onset of a plug-and-play setup.

Finally Chapter 5 presents the integration of our filters and sensors in a practical setup.
Experiments were done to validate our filters and the entire system. We also show that our
augmented reality setup is actively being used in the field. The chapter concludes with a
discussion, conclusion and future perspectives of the work presented.

 - 11 -

Chapter 2
Requirements and System Architecture

In this chapter, we address the issues that played a role in the AR system design. Starting from
a basic design we discuss the design specifications from a user perspective. Concentrating on
real-time pose estimation we then present the various sensor systems and hardware solutions
that were considered. Inherent differences in update rates, accuracy and precision have led to a
multi-sensor approach. Next, we derive detailed specifications for the camera pose estimation,
the inertia tracking system, and the sensor fusion module.

2.1 Design requirements

A typical AR system setup is presented in Figure 2-1. It depicts that the world is observed
through sensors from which the pose of the headset’s displays is calculated. This pose is used
to render images of a virtual world on the headset’s displays. A semi-transparent mirror then
optically mixes the rendered images with the view of the real world. Although our focus is on
pose estimation algorithms, in order for a prototype system to work we have to investigate the
sensors too.

Figure 2-1 General architecture of an AR system. The pose of the user in the real world is calculated
using the sensor data. This pose is used as viewpoint for the rendering of the virtual world
on the headset’s displays. The headset optically combines the views from both worlds. The
user moves with the headset and sensors around in the world and sees the combined views.

As stated in the Introduction, we want to create a mobile, immersive, augmented reality system
that is flexible and easy to use. These design requirements come from a more general desire to
make Augmented Reality a commercially viable technology. One can split these requirements
into a user experience part and an economical part. Many requirements give rise to the
associated technological requirements and the problems already listed in Chapter 1.

12 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

User Friendliness

First of all, a mobile system must be comfortable to use. Mobility means that the user can walk
around freely, which dictates that all or most equipment must be wearable. In this project we
mostly neglected this part and made a mobile backpack for the computing equipment we used
(laptop and batteries for camera, inertia sensors and headset), and a helmet on which the
sensors and the headset are attached. A technological challenge is how to get all the necessary
processing power into a backpack, which in our case boils down to making fast, “mean and
lean” algorithms for image processing and data fusion.

The user should not be restricted too much in his/her movements. This means that the system
should keep tracking the user’s pose even when some sensors temporarily fail, or at least
provide pose estimations that are less accurate during temporary sensor failure. Hence,
graceful degradation is a design criterion.

The system should be easy to configure, in other words, the system has to be flexible in the
type and brand of the sensors to be used. “Hot pluggable” sensors should be easily
added/removed by the user - or automatically enabled/disabled - , depending on the accuracy
needed. In a sense, pose estimation algorithms using image processing can be seen as virtual
sensors; they provide measurements on a higher abstraction level. Then, by developing
algorithms that cover a number of values for accuracy, processing time, etc., one of these
“virtual sensors” can be chosen to serve the application at hand. The challenge is to design a
modular sensor system that provides accurate pose estimates as optimal as possible under the
given circumstances.

The virtual images have to be combined with the real world in a way that preserves the user’s
normal view and at the same time shows the virtual objects as a natural extension of the real
world. This means different virtual images for each eye (stereo); moreover, these images
should be correctly registered with the real word. This last requirement sets lower limits on the
performance indicators of the pose estimation algorithm; mainly accuracy and delay, as well as
on the display system that has to have a high refresh-rate (i.e. frame-rate).

The following design considerations are important for a commercial augmented reality system
but are beyond the scope of this thesis. It must be easy for different users to use the system,
which means that the user specific variables such as virtual eye positions should be easy to
adjust to the real world. Another aspect of the system setup, the calibration of the system,
should also be made fairly easy or preferably automatic. In the first place, the changes to be
made to the environment should cost little time. As we propose to make a system that is based
on man-made markers a.k.a. fiducials that are placed on precisely measured positions in the
world, this fiducial placement should be easy to incorporate in the system. The technological
challenge is to automatically add unknown fiducials to the system, and estimate its position in
the world with minimal user- interaction. This is a form of automatic map building, which is a
research question by itself. Another important challenge for the design of the headset would
be to correctly focus (optically) the different virtual objects at different depths; the current
projection methods focus the complete virtual world at a fixed distance.

2.1. DESIGN REQUIREMENTS 13

Wearability, Context Awareness

To serve the consumer market, the system should be wearable, cheap, lightweight and small.
Although this is currently not quite possible, if we look at the development of PDAs and MP3
players that became economical in the past few years, one can see that there is hope. We
estimate that in the coming years, most parts of the system will become faster, cheaper, smaller
and more energy friendly. In this thesis, we are mainly concerned about the computing power
needed for our algorithms. A general rule is that the more efficient the algorithms, the less
computing power is needed, resulting in cheaper hardware and longer battery life.

The system must be usable in any environment where it can adapt to and display content that
belongs to that environment, a.k.a. context awareness. Consequently, the system must be easy
to setup in different environments, both indoors and outdoors. For indoor operation, it is
quite easy to make the system depend on man made beacons. In office buildings route
planning infrastructure for man is quiet standard. We use floor, corridor and room numbers,
as well as names and signs that make route planning easy.

For outdoor operation, the system is more likely to be based on information that is already
available in outdoor scenes as it is less easy to create a routing infrastructure by placing special
objects everywhere in the world. An outdoor system is more likely to be used for applications
with a broader view, such as the virtual positioning of buildings in a scene by architects, or
enabling maintenance personnel to “see” utility infrastructure under the pavement such as
cables, water pipes and sewers. Obviously, when the positioning system has a high benefit for
the world it operates in, special objects that act as beacons can always be placed. If we do not
allow special changes to the environment to be made, there are only a few options that we
have for sensors to estimate 3D position and orientation: the earth’s magnetic field, inertia
sensors, (D)GPS signals and a camera that detects natural landmarks. The latter are special
“known” points in images of the world that can be tracked in time. This boils down to
obtaining an accurate 3D position from GPS signals and 3D position and orientation from a
camera. Although obtaining a 6D pose (position and orientation) from camera images without
knowledge of the world is an interesting and active research topic, these techniques alone are
not accurate enough to correctly register a virtual world with the real world in real-time: they
are usually too computationally intensive and their pose estimates have unknown rotation and
translation with respect to the real world. Therefore, extra and accurate knowledge about the
world is needed. So we relax our requirement to: as little change to the environment as
possible, meaning that we can place extra objects in the world that actively send positioning
information (for instance infra-red or acoustic beacons), or passive objects like bus stop signs
at lantern posts, with a printed known pattern. We do not consider systems in which the
infrastructure determines the pose, such as cameras at lantern posts. We also do not consider
new big infrastructures of active objects, but we do consider infrastructures that are already
available and can be used for the application at hand (like existing GPS satellites).

14 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

Generic design

From a technological point of view, we need accurate and fast algorithms to estimate a pose,
but we want to use the same architecture in various, also less demanding, applications with a
variety of sensor configurations. This means that it must be easy to add or remove sensors
physically, connect other sensors with other characteristics while the software should
automatically adapt to the new situation. Thus, we propose an architecture that separates the
application part from the sensor part; and hence these parts can be developed separately. This
makes it easy to change sensors and/or change the application.

Demonstrators

At this point in time we are only interested in proof of concept and the design of a
demonstrator that can be used by professionals such as architects, industrial designers, artists
and gamers to test this new technology. Therefore, we are currently not interested in which
(possibly dedicated) hardware to use and we want to be able to use a variety of sensors. We
use an AR headset and a “serious gamer” laptop. So far, this is sufficient to fulfill our current
demands for mobile AR thereby compromising cost and weight. However, as mentioned in
Chapter 1, we expect that those aspects will be met in the future through the inherent
dynamics of a commercial market. In this chapter, we present the software setup and the
hardware that we used in our demonstrator.

2.2 Sensors for pose estimation

A variety of sensor types and measurement principles exist that can be used to realize our AR
system. All come with different accuracies, prices and measurement ranges. The following –
non-exhaustive – list shows which sensor types we might use, as well as their properties and
their applicability to our demonstrator.

Inertia sensors

Inertia sensors sense accelerations and rotations [10]. This means that they can follow changes
in position. Inertia sensors are quite fast, thereby permitting the tracking of fast motions. Due
to inaccuracies, mainly with inexpensive sensors, they can only track reliably for a short period.
Therefore, another, usually slower, positioning system with a lower drift is needed to correct
for the accumulating errors of the inertia sensors. Obviously, the more accuracy and the lower
the drift, the more a sensor costs. For a very accurate system, one usually needs big and costly
devices. This might be acceptable for aviation, but not for a wearable system. The alternative
cheap sensors enable tracking for a short time only, because depending on the quality, the
error will grow above 10 or even 100 meters within 60 seconds. This occurs mainly because of
errors in orientation, which results in an incorrect correction for the earth’s gravitational pull.

2.2. SENSORS FOR POSE ESTIMATION 15

Magnetic field sensors

Magnetic field sensors – or magnetometers - sense the earth’s magnetic field to determine the
3D orientation. This field, however, is very weak and can be distorted by metallic objects
nearby. Although the magnetic field can be used indoors to measure orientation, the
systematic error can be large depending on the environment. We measured deviations of 50°
near office tables. In addition, the magnetic field orientation is dependent on the position on
the earth, so first an estimate of the position is needed. For small regions of operation, e.g.
inside The Netherlands, this deviation may be considered static and can easily be corrected for.

(D)GPS

The Global Positioning System consists of 24 satellites each in a separate orbit around the
earth. A receiver can determine its 3D position by using the information of at least four
satellites. In Differential GPS (DGPS), another GPS receiver in the neighborhood broadcasts
the difference between its GPS position and its exact position. This difference is applied to the
calculated position of the DGPS receiver, which results in an accuracy of about 1-3 meters
whereas the normal error is about 15 meters. Finally, methods that use the phase information
of the GPS carrier can achieve accuracies of 1 cm, but the cost for such a GPS receiver is
more than $5.000. The two greatest disadvantages are that one cannot use (D)GPS indoors
and that it gives the position only, not the orientation. This means that other sensors, like
magnetometers combined with accelerometers, are needed to obtain the orientation.

Network access points

In case a dense network of access points is available, such as from Bluetooth, WIFI, GSM,
GPRS or UMTS, the AR device knows in which (overlapping) cell it is currently roaming. For
the current GSM network, a cell ranges from 100 meters to 1 kilometer. WIFI network cells
cover about 100 meters. Bluetooth cells will be around 10 meters, but unlike
GSM/GPRS/UMTS and WIFI, a global Bluetooth network does not exist. Note that RFID
technology covers even a smaller range of less than 1 meter and is hence not very useful for
our purpose.

From a single WIFI cell one can get a qualitative position. For instance, if there is an access
point in every room of a building the strongest access point is probably the access point of
that room. If the signal of more than one access point is received and the positions of those
access points are known, the position and possibly pose of the AR device can be determined
by triangulation using the signal strengths, possibly combined with a look-up table calibrated
for the entire building [11]. Note that making use of a proprietary network for pose estimation
means in fact a new infrastructure that also has to be maintained especially for this purpose.

The GSM/GPRS/UMTS networks have a global network of base stations, so an inaccurate
position is always available using the cells. Methods exist to get an accuracy of about 50 meters
in urban environments by measuring the propagation time, signal strength or direction of the
signals of different base stations [12, 13]. With multiple antennas, one could calculate the
direction of the signal, and thus determine the orientation of the device as well. The signal can
also be used indoors, but sometimes the signal will become too weak. A strong point is that
communication and localization can be done via the same network. Using the
GSM/GPRS/UMTS signals to get a position estimate within a cell is under research and not
commercially available as to our current knowledge

16 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

Beacons

GSM base stations – or beacons - can be used for localization since they are already there.
Other beacons transmitting ultrasound, radio or infrared light can also be used. The principles
for device localization is the same as with network access points, but a difference is that
beacon networks will be used for localization only and not for communication. Furthermore, a
beacon network can be made much denser, so the cells get smaller, and localization accuracy
can be increased to millimeter level. Setting up a network of beacons could be expensive, and
will probably be used only indoors, or at special locations, at bus stops for instance. Like in
case of a GSM, the position could be broadcast by the beacon – the cell method – or the
device could calculate its position from the beacon’s signal. Apart from the infrastructure that
is needed, reflection of signals could be a problem in dense networks. This means that
methods need to be developed to suppress or ignore the reflections to avoid errors.

Visual Markers

A completely different technique is to use visual information acquired by digital video
cameras. Visual markers are cheap to construct and easily mounted on walls, doors and other
objects. We define a marker as a physical object, having a set of features such as corners or
edges that enable recognition of the marker and provide positional information. If the marker
is unique, then the detection of the marker itself restricts the possible camera positions already
– the cell method again. If one or more known points are present on the marker, then using
the projections of these points on the image restricts the possible poses of the camera even
more. From four coplanar points, the full 6D pose can be calculated with respect to the
marker with an accuracy depending on the distance to the marker and on the distance between
the points. In case more markers are seen at the same time or shortly after each other, the pose
estimations can be combined in a more precise estimation. The markers are not restricted to
man-made patterns; they include pictures, doorposts, lamps or all that is already available.
However, finding natural markers is difficult as sets of features have to be found that enable
later recognition from various positions and under various lighting conditions and provide the
required position information. They also should be unique enough to avoid confusion.
Detecting and recognizing natural markers is complicated and time consuming, while artificial
markers can be designed for accuracy and ease of detection.

Visual Models

A visual model exploits the complete set of detected markers and features. Markers could be
outdoor advertising boards or indoor navigation signs, and features could include contours of
buildings, tables or cabinets. The model has to specify what a camera at a certain pose can see.
In case of outdoor use, the model probably includes windows and contours of buildings. By
detecting features – like transitions from building to air – and matching them to the model, the
camera’s pose can be tracked. When the camera pose is determined, other objects in view can
be added to the model online to make tracking of the position more robust. This is called
Simultaneous Localization And Mapping, or SLAM [14]. The biggest challenges are building
the database, selecting good properties of the features so that they can be detected in various
circumstances and coping with the various lighting conditions that are experienced outdoors.
Most research focuses on one specific application of visual pose tracking such as tracking
inside of an office building.

2.3. HARDWARE 17

This method of localization could be very accurate, but is computationally expensive. If one
uses a PDA, it might not be able to do all the computations by itself, so another remote
computer is needed. An option is to do some calculations in the PDA, send the result to a
backbone where fast, dedicated computers calculate the pose and send the result back to the
PDA. This moves the problem of computing time to the backbone, but requires a robust and
high-bandwidth network link.

Pictures

Images can also be used to assist the user in self-localization. If orientation is important and
the PDA only knows its position through (D)GPS, the PDA could present key images to the
user. If the user turns the PDA to the corresponding direction, the PDA could display an
arrow to show the way in which to walk. This type of visual information could be used
indoors and outdoors, but there has to be a big database of images. Possibly a method can be
found to generate the images from existing models of buildings, city plans or even satellite
images.

2.3 Hardware

For our augmented reality application, we selected those sensors that would enable fast
tracking of the 6D head-pose. This means that inertia sensors were selected because of their
high measurement rate and good accuracy at short intervals, while absolute position and
orientation sensors were selected to correct for the drift of the inertia sensors. For mobile
Augmented Reality, the minimum would be a camera with artificial markers for determining
absolute position and orientation. 3D gyroscopes and 3D accelerometers will be used to
provide pose information in between camera updates.

MTx sensor cube

The MTx inertia cube from Xsens provides a 3D
rotational velocity using gyroscopes (+-2° RMS),
a 3D acceleration using accelerometers (+-10mg)
and a 3D orientation using magnetic field sensors
(<1°). For human motion, the cut-off frequency
of the sensors is set to 40 Hz. We use it with an
update rate of 100Hz for all the sensors.

Figure 2-2 MTx sensor cube from Xsens

18 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

Gamin (D)GPS unit

The Gamin GPS unit with a differential GPS add-
on provides us, without the add-on, with an
accuracy of about 15 meters. With add-on and a
paid subscription to the differential signal, the
accuracy is increased to about 5 meters. In
differential mode, another receiver with precisely
known position in the neighborhood provides
corrections to the calculated position from the GPS
signals. This only works if the atmospheric
disturbances are the same for both receivers, so the
accuracy is best close to the correcting receiver.
Theoretically, an accuracy of around 1 meter is
possible. At our site, Delft, the nearest public
transmitter for corrections was near Alkmaar at 100
km distance.

Figure 2-3 Gamin GPS module

Jai Camera

The JAI CV-S3300 color camera with a resolution
of 720 x 288 pixels in grayscale has a wide-angle

lens with a 90° opening angle. This lens suffers
from large second-order and forth-order
distortions, which should be corrected for. We
calibrate the camera using an adapted Zhang
algorithm [15]. Images are grabbed at 25 Hz. The
camera is able to provide images of 720x480 pixels,
but because of the PAL analogue output signal, two
half-frames recorded at different times are
combined in one full frame. Thus, the odd lines lag
behind in time with respect to the even lines, which
results in severely distorted edges.

Figure 2-4 Jai CV-S3300 color camera

2.3. HARDWARE 19

Dica SmartCam

The Philips DICA-221 Smart Camera equipped
with an onboard 180 MHz processor and a
1280x1024 grey-value CMOS sensor provides us
with a better accuracy than the JAI. The camera
can be put in full-frame shutter mode, which
removes the distorted straight lines problem. We
use a similar lens as on the JAI, so the spherical
distortions are also present. Currently we do not
use on-board processing, but in the future such a
SmartCam will be able to do all the image
processing on-board. The frame-rate can be set to
15Hz or 25Hz at full resolution.

Figure 2-5 Philips DICA-221

Dell Inspiron 9400 laptop

To calculate an accurate pose at a frame rate of 15
Hz using high-resolution images is very CPU
intensive. We opted for an available laptop solution
with a high-end CPU for the image processing and
a high end GPU to generate 3D stereo images
(using the DVI and VGA connector). We used a
Dell Inspiron 9400 with the specs:

• Core 2 Duo at 2 GHz.

• NVidia 7900 GS GO graphics card.

• VGA+DVI connectors.

• Wireless LAN for communication.

This laptop is also very big, having a 17-inch
display. A smaller laptop could be chosen, but only
for debugging purposes we chose the 1920x1200
display so that the 1280x1024 image fits entirely on
the screen.

Figure 2-6 Dell Inspiron 9400 desktop
replacement

20 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

Visette45 SXGA See-Through headset

We use a Visette45 SXGA stereo optical see-
through headset from the Dutch company
Cybermind Interactive Nederland. It has two high-
resolution displays (1280 x 1024) that can display
images at 60 frames per second. This augmented
reality version combines the virtual and real world
optically using a semi-transparent mirror. The
headset fits entirely around the eyes, thereby
blocking light that comes from the side. This
enhances the feeling of emersion. The horizontal
field of view of 36° is much less than our eyes
(±110° single eye, ±160° two eyes), but that is
normal with currently available augmented reality
hardware.

Figure 2-7 Visette45 (non see-through)

Backpack

To fit all equipment we used the metal frame of a
backpack baby carrier. At the bottom of the frame,
we attached a metal cabinet that holds the batteries
and cables; the laptop was secured with Velcro
strips.

Figure 2-8 Backpack with all the
equipment

2.4 Requirements imposed by AR application and sensors

The most stringent requirement for optical see-through Augmented Reality is that the virtual
image and the real-world image must be aligned in such a way that the resulting scene seems
natural to the user and the user is not affected by motion sickness or headaches when wearing
the AR helmet. This alignment is a spatio-temporal alignment, i.e. the virtual image may not
lag behind the real world image when head-movements are made.

2.4. REQUIREMENTS IMPOSED BY AR APPLICATION AND SENSORS 21

Reference frames

Note that our system is built up from a number of subsystems that are not always firmly fixed
to each other, e.g. the headset is only loosely fixed to the user’s head. Moreover, each time the
user puts the headset on, the spatial relation between head and headset is different and needs
calibration. So we need to identify for each subsystem a so-called reference frame, denoted by
the Ψ symbol. The relation between those frames is either measured in real-time as part of the
application or obtained at system set up through calibration, as described in section 5.2. We
use orthonormal coordinate systems, i.e. each frame has its origin at a specified position and
three orthogonal axes define the orientation of the frame. A subscript character indicates the
type of frame, e.g., the camera reference frame is ΨC. A second sub index denotes a specific
instance of a moving reference frame: ΨC,t.

We use the following reference frames (see Figure 2-9):

Ψw The world frame. This frame is fixed to the earth’s surface with a static
origin. It has the z-axis pointing in the direction of the gravity vector,
while the x-axis is pointing to the earth’s North Pole (true north). This is
a local inertial frame, which means that Newton’s Laws apply only
locally. I.e. we neglect the earth’s rotational velocity (Coriolis Forces) and
its position dependent gravitational force.

ΨP The 3D pattern frame of a marker. This frame is attached to the physical
sheet of a marker on which a pattern is printed. The z-axis is pointing
outward, i.e. pointing towards the observer on the pattern side.

ΨC The 3D camera frame. This frame has the optical axis of the camera’s
lens as its z-axis.

ΨI The 3D inertia tracker frame. This frame is the frame used by the third
party inertia tracker device.

Ψb The headset body frame. It is attached to the body of the headset for
which we need the pose. For convenience, we let this coincide with the
inertia tracker frame.

Ψn The navigation frame. It has the origin in common with the body frame,
but the orientation is the same as the world frame. This means the
orientation stays fixed while moving.

ΨlL, ΨrL The frames of the left and right LCD in the headset.

Ψle,re The frames of the left and right eye of the user.

Of these reference frames, the pattern frame and the world frame are statically related. The
navigation frame is partly related to the headset and partly to the world. The other frames are
all fixed with respect to the headset body frame, except for the eye frames. The eye frames are
only fixed with respect to the headset if the headset is mounted firmly on the user’s head.

22 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

A general rotation within a reference frame can be described by three consecutive rotations
around at least two different axes of the reference frame. There are 12 different ways in which
the rotations can be applied (see appendix B of [16]), but we use the following order: first a
rotation around the x-axis (roll), then a rotation around the y-axis (pitch) and finally a rotation
around the z-axis (yaw). In avionics the yaw, which is a rotation around the world’s z-axis
(pointing in the direction of the gravity vector), is also known as heading.

Eye frame

Camera frame

Inertial tracker/

body frame

World frame

Pattern frame

LCD screen

Figure 2-9: Schematic picture of a number of coordinate systems used in our application.

6D state vectors

For the AR application, we need to accurately know the full 6D pose of the AR helmet Ψb, i.e.
headset with attached camera and inertia tracker, with respect to the world Ψw. Ψb is
represented by a state-vector with the components:

• 3D helmet-position vector (measured with the camera looking at a marker)

• 3D helmet-velocity vector (not measured)

• 3D helmet-acceleration (measured with accelerometers)

• 3D helmet-orientation (measured with the camera and magnetometers)

• 3D helmet-rotational speed (measured with the gyroscopes)

• 3D helmet-rotational acceleration (not measured)

Note that the 3D translational velocity and rotational acceleration are not measured. For now,
we assume that we can generate the missing measurements from the other measurements if we
need them for our application. The 18 states (6 dimensions x 3 axes) are loosely coupled, as
orientation (3D x 3) and position (3D x 3) are grossly independent. However, the estimation
of the acceleration is depending on the orientation since the acceleration due to movements
and the acceleration due to the gravitational pull of the earth cannot be distinguished. The
measured acceleration must therefore be corrected for the gravity vector using the orientation.

2.4. REQUIREMENTS IMPOSED BY AR APPLICATION AND SENSORS 23

Data fusion

In Chapter 3 we will elaborate on the camera measurement system and in Chapter 4 we
describe the fusion of the camera measurements with the measurements of the inertia tracker.
The fusion of data is performed with a Kalman filter approach, a technique widely used in
state estimation problems such as pose estimation in aviation and robotics. The filter has three
main features:

First of all, the filter is able to compensate for incomplete data, meaning that if the state we
need is not observable using the measurements alone, the filter is able to incorporate the missing
data such that the state is globally observable, i.e. over time, using measurements from multiple
sensors, the full state can be estimated.

Secondly, the filter should be able to cope with unsynchronized measurements. The
measurements of our sensors can arrive at any time as shown in Figure 2-10 indicated by circle
1. The figure also shows that the inertia tracking system is fast (about 10ms.) with respect to
the camera measurement system, which involves sending an image from the camera to a
computer and processing the image thereafter. The resulting delay can be as large as 100 ms.
Image-transfer is shown in light grey and image-processing is shown in dark grey. If we
incorporate the measurements into the data fusion immediately, as shown in Figure 2-10, we
have the best pose estimate at the point in time directly after the fusion step. However, in our
augmented reality application the virtual object rendering is synchronized with the update-rate
of the displays; this estimate is not used immediately but some time later, as circle 2 shows. As
rendering takes time as well, the position of the headset at the time of displaying – the right
side of the rectangle – should already be known at the start of rendering – the left side.
Concluding, the fusion filter should be able to extrapolate the pose estimates into the future,
i.e. to the time of the rendering process, as accurately as possible.

rendering

Inertia meas.

Fusion steps

1

2

Camera meas.

Figure 2-10 Time lines for different stages in an AR application. Rectangles indicate begin and end of
operations. For sensors, begin is the time of measurement and end is the time the
measurement is available. Data transfers are light-gray, and calculations (e.g. image
processing) dark-gray.

24 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

Finally, filtering the measurements can be used to improve the accuracy of noisy
measurements. Moreover, if we estimate or know that a particular motion consists of a
constant velocity, we can use this information in a motion model that we can apply, e.g., we
can fit a straight line through noisy, absolute position measurements as a function of time to
obtain a more accurate estimate of the position and velocity.

Gaze stabilization in the human visual system

In order to know which variables we need in the globally observable state and what their range
is, we need to review the parameters of the dynamic system formed by human head, eyes and
vestibular and oculo-motor system [17-19]. These parameters may then guide us in the choices
to be made for the camera system as well as the fusion process and parameters of the Kalman
filter.

One of the requirements of an Augmented Reality application is that the virtual world is
recognized as a natural extension of the real world. Ideally, this means that a human should
not be able distinguish a virtual object from a real object. In terms of pose accuracy this means
that a human eye should perceive a virtual object as stable. For instance, a virtual cube in
overlay with an identical cube on a table at rest should remain exactly in overlay, at all time. In
rest and under good lighting conditions, the human eye has a visual acuity of 0.7 arc minutes
per line pair. If two lines are closer to each other than that, the human eye cannot distinguish
them anymore. When the eye is moving, the image on the retina will not be stable, and the
visual acuity will go down. Note that the eye can move due to voluntary and involuntary
movements of the head as well as due to involuntary movements of the eye. Peak head
rotation can be up to 800°/s [20]. The human image processing system is believed to give
information on pose and velocity of objects in the image only, so no acceleration information
can be distinguished. The acceleration information is provided by the vestibular system, which
does not respond to constant velocity and does not detect accelerations below 0.1°. The
following methods are used by the human body to stabilize the gaze, i.e. getting or keeping a
point of interest in the image on the fovea, which itself is about 2°. [20]:

Smooth-pursuit system. When the head is still, man can follow, with the eyes only, a moving
object that moves up to 30°/s. When the object moves faster, the eye will start to make short
jumps, called saccades, and the image of the object will be blurry. The smooth pursuit system
only uses image processing, and the latency varies around 80-150ms.

Saccade system. When the movement is too irregular, the smooth pursuit system fails. With
sinusoidal movements, the eyes can predict the nodes towards which saccades are made. Note
that humans cannot suppress saccades to sudden “attention drawing” motions of objects in
the image, i.e. not caused by auto-motion. If simultaneously two or more of such motions are
detected, the eyes will make saccades towards the average pose, after which a decision is made
which motion has the highest priority. The eye saccades last 20-200 milliseconds with speeds
up to 800°/s. Saccades cannot be suppressed. Even in the absence of attention drawing
motions, the eye will make saccades every now and then.

The visuo-vestibula-ocular-system controls the eyes to fix the gaze onto moving objects when we
move around. It uses the Vestibula-Ocular-Reflex as basis: When the vestibular system senses a
rotational acceleration, the eyes start to rotate within 20ms in the opposite direction as a reflex
making sure the object does not move from the retina. Achieved rotational eye speeds and
accelerations are 300°/s and 5000°/s2.

2.4. REQUIREMENTS IMPOSED BY AR APPLICATION AND SENSORS 25

The Visuo-Vestibular-Reaction can modify this reflex as shown in Figure 2-11. When attention is
drawn by an object that for instance pops up 20° from the optical axis of the eye, the
Vestibular Ocular Reflex combined with the Visuo-Vestibular-Reaction takes care of fixing
that object on the optical axis. After a reaction time of about 130 ms, the head starts to rotate
accelerating with 3000°/s2 to a rotational speed of 150°/s and the eyes make a 120 ms saccade
in the direction of the object. The smooth pursuit system with an acceleration of 180°/s2 and a
rotational speed of 30°/s takes care of the counter rotation to compensate the last part of the
head rotation. The total opto-kinetic system works within the range of 0.05 to 1 Hz with a
maximum velocity of about 150°/s.

150ms 250ms 350ms 450ms time �

20° target direction

10°

5°

15°

eye direction

head direction

120ms

30 ms

150ms

200ms

50ms

150°/s

saccade

smooth pursuit

gaze direction

A
n
g
le

 w
.r

.t
.
o
p
ti
ca

l
a
x
is

 o
f
th

e
 e

y
e

150ms 250ms 350ms 450ms time �

20° target direction

10°

5°

15°

eye direction

head direction

120ms

30 ms

150ms

200ms

50ms

150°/s

saccade

smooth pursuit

gaze direction

A
n
g
le

 w
.r

.t
.
o
p
ti
ca

l
a
x
is

 o
f
th

e
 e

y
e

Figure 2-11 Fixing - by both head and eye rotation - the fovea on a virtual target that shifts
instantaneously 20° from the optical axis of the eye. (derived from [20])

For our AR application we conclude:

• (In)voluntary head movements can occur with speeds up to 800°/s, but the human
gaze is not controlled.

• Triggered by optical attention drawing mechanisms, the human visuo-vestibula-
ocular-system controls the gaze with a latency of about 150ms within the range of
0.05 to 1Hz with a maximum head rotational velocity of about 150°/s. Note that
with such a speed, the user makes saccades with his eyes to get a “head start”.

• Dwelling with eyes (followed by the head) over a scene, without saccades, the
maximum head velocity is that of the smooth pursuit system, i.e. 30°/sec.

26 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

Accuracy and latency of the Head Mounted Display

If we reason from the point of view of the current head mounted display hardware, we
observe that for an eye with a visual acuity of 0.7 arc minute (about 0.01°) looking through a
head-mounted display at 10 cm distance with an opening angle of 36 x 27° (our Visette 45), we
actually need a resolution of about 3086 x 2057 pixels.

However, as our HMD has “only” 1280 x 1024 pixels the maximum accuracy we can obtain is
one pixel of our display, which translates to about 1.7 arc minute (roughly 0.03°) or 0.5 mm at
1 meter distance of the eye. Therefore, the user at rest will always perceive static misalignment.

Dynamically, we can present virtual objects on our HMD at a rate of the 60 Hz. Assume
instantaneous head pose information from the pose measuring system. If we assume head
movements to compensate for the smooth pursuit we obtain a misalignment lag of 1/60s *
30°/s = 0.5°. If we assume head motions due to the visuo-vestibula-ocular-control system that
reacts on attention drawing, we obtain a temporary misalignment lag due to head movements
of 1/60 * 150°/s = 2.5°. Figure 2-11 drafts the virtual target object reset every 30 ms. due to a
fast perfect measurement of the head movement and headset delay. As the fovea is about 2°,
probably the eye will make saccades back and forth to keep the object tracked and maybe the
head-speed is controlled on the fly. However, the human visual system has a lag of about
120ms, so user studies must show the facts. All in all, with this headset the user will inevitably
notice dynamic misalignment due to head motion.

Reversely, the extra dynamic misalignment due to the current headset cannot be noticed,
provided our pose measurement system is fast and accurate enough, if we rotate our head with
less then about 0.03 * 60 = 1.8°/s.

So a target for our pose estimation system is to be at least as good as the head mounted displays, i.e.,
a statically misalignment of less then 0.03°, a dynamical misalignment of less then 0.5° when
smoothly pursuing an object and a dynamical misalignment of less then 2.5° when an event in the
image draws the attention.

Accurate perception of augmented space and motion

The human visual system is very versatile and it uses many cues to analyze a scene. In [21], the
human visual space is parted into a human’s personal space, action space and vista space. See
Figure 2-12. The personal space is about 1.5 meters around a human; grossly the reach of his
arms. The action space is about 15 meters; grossly the reach of his voice. The vista space is
beyond that and is limited by the reach of the eye. The perception of space and motion differs
in those areas. The personal space is dominated by vergence and accommodation of the eyes,
and they are tightly coupled. The AR headset, however, has a fixed focus. User studies have to
make clear if this is annoying for the user.

2.4. REQUIREMENTS IMPOSED BY AR APPLICATION AND SENSORS 27

1m 10m 100m 1km 10km

Average depth: (d1+d2)/2

D
e
p
th

 c
o
n
tr

a
st

(d1-d2)

(d1+d2)/2

personal
space

action
space

vista
space

beyond
horizon

1.0

0.1

0.01

0.001

relative density

relative size

occlusion

convergence
accomodation

aerial perspective

height in the image
stereo

motion
stereo

1m 10m 100m 1km 10km

Average depth: (d1+d2)/2

D
e
p
th

 c
o
n
tr

a
st

(d1-d2)

(d1+d2)/2

personal
space

action
space

vista
space

beyond
horizon

1.0

0.1

0.01

0.001

relative density

relative size

occlusion

convergence
accomodation

aerial perspective

height in the image
stereo

motion
stereo

Figure 2-12 Depth cues in the human visual spaces, adapted from [21].

The rendering system should be able to cope with occlusions. Imagine a virtual butterfly
circling around a pillar. For such a static object the occlusion can be solved by modeling the
pillar in a separate layer of the VR modeling software while not displaying this pillar on the
headset. For a dynamic object, like a butterfly circling around a human walking through the
scene, real-time stereo vision by means of image processing [22] must be used to detect the
objects in the scene. This is beyond the scope of this thesis.

To adequately see depth from stereo within the virtual scene, the headset must be suited with
two independent screens and the pose of the pose measurement system must be transformed
to a pose for each screen individually. This again asks for a calibration procedure that is also
user dependent.

Motion stereo of a moving virtual object can be perceived by the user; however, speeds and
acceleration of virtual objects should be limited to the accuracy and update rate of the headset.

Height in the image, relative size and relative density is taken care of by the perspective
projection of the VR modeling software.

Objects near the horizon are blurred, more bluish and show less saturation and contrast due to
the scattering of light in the air (aerial perspective). Those aspects need to be modeled using
the VR software. However, the magnitudes of these effects depend on how clear the sky is.
That could be measured by the vision system. This is beyond the scope of this thesis.

In addition, shadows make a virtual scene realistic. For that, the direction and intensity of the
light must be measured, e.g. by the vision system. This is beyond the scope of this thesis as
well.

28 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

2.5 System architecture

Our aim was to design a generic system architecture that is apt for different applications and
can cope with various types of sensors. This leads to a modular architecture, meaning that
each function such as sensing, computing and rendering resides in its own module. Moreover,
sensors should be easily attached or detached, preferably hot-pluggable, so each sensor needs
to have its own module. Figure 2-13 shows the basic architecture with its modules and the
data communication between the modules.

Computer

GPS reader

MT9 reader

Jai grabber

Dica grabber

Pose

estimation

/

sensor

fusion

Engine repair

Route planner

Interior design

user

interaction

Computer

GPS reader

MT9 reader

Jai grabber

Dica grabber

Pose

estimation

/

sensor

fusion

Engine repair

Route planner

Interior design

user

interaction

Figure 2-13 Basic architecture of the Augmented Reality system. As sensors such as the MT9
inertia tracker can be attached and detached, they should reside in separate modules.
The pose estimation module combines the raw readings into a pose, which is used by
different application modules that interact with the user.

Requirements imposed by hot-pluggable sensors

Our design requirement to be able to attach and detach sensors without “hanging” the
application itself, not only changes the performance, but also puts extra constraints onto the
architecture.

In order to accurately estimate the pose, the pose estimation module also needs to estimate
sensor specific parameters such as a dynamic offset or bias. It will be clear that the most
accurate estimations are obtained when all parameters are estimated using all available sensor
data. However, this also means that the influence of an error in one specific parameter on all
the other parameters should be known, whereas those parameters can be anything, including
specific parameters from other sensors. As it is not possible for a sensor manufacturer to
specify all those influences, we restrict a certain parameter’s influence to the pose, its time-
derivatives, and any other parameter of the same sensor. This decouples the sensors at the cost
of some knowledge and accuracy. Figure 2-14 shows this.

2.5. SYSTEM ARCHITECTURE 29

Pose estimation / sensor fusion

GPS offset

estimator

MT9 bias

estimator

Camera

image to

pose

estimator

Generic 6D

pose

estimator

pose

+

derivatives

Pose estimation / sensor fusion

GPS offset

estimator

MT9 bias

estimator

Camera

image to

pose

estimator

Generic 6D

pose

estimator

pose

+

derivatives

Figure 2-14 In order to handle hot-pluggable sensors, the pose estimation is decomposed into a module
for each sensor that estimates the specific states of that sensor, and a generic pose estimation
module that only estimates the pose and its derivatives. The generic pose estimator can only
obtain data from the sensors through its interfaces with the sensor state estimation modules.

Data communication requirements between modules

The data communication between the modules of Figure 2-13 requires a high throughput and
a low latency. They can be implemented in various ways. If all modules are contained in the
same executable program, the communication can go through subroutine calls. When a
module has its own executable program or when the module is running on another computer
a communications library needs to be used. As in the future the modules must be able to run
on different platforms, i.e. the image processing on a smart camera [23], the communications
library solution has our preference. We investigated different inter-process and inter-computer
communications standards (ndds [24], splice [25]) but for our purpose they are too inefficient
or too difficult to use. Hence, we developed a data communication library SHARED (SHaring
Architecture for REaltime Data [26]) that perfectly suits real-time image and data processing.

SHARED uses a subscriber/publisher concept in analogy with magazines. A publisher publishes
issues, or messages, in a shared memory. Subscribers will be notified of new issues and they can read
the content. Readers can always read the content of previous issues. Upon creation of a
magazine, one can specify how many back issues should be maintained. Each issue has a
timestamp and a number, so a reading module can always verify that the issue being read is the
correct one. Readers can read the issues directly from the shared memory without locking,
making it a very fast procedure. When issues are posted, a copy of the contents is put onto the
shared memory.

For big issues (for instance raw camera images) this takes too much time and another method
can be used: scratchpads. A scratchpad is a collection of pages. Each page can be requested for
reading and writing, with direct access to the data. This allows image-processing modules to
change images in-place, thereby removing expensive data copying steps. A regular magazine
can then be used to notify other modules to the state of the pages.

30 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

To enable transparent operations between computers, a separate module was made: the courier.
This courier module makes use of the standard SHARED library, and continuously monitors
changes in available magazines and the number of subscribers and publishers for each
magazine.

Couriers on different computers communicate with each other via the network to find out if
some module on another computer is interested in a magazine published on its own computer.
If so, the courier subscribes to that magazine and sends every issue over the network to the
other courier. The receiving courier becomes a publisher and posts the received issues. This
method makes inter-computer communication transparent when magazines are used. Note
that scratchpads are never sent over the network, because working directly on the data is not
possible then.

In summary, the library has the following properties:

• It is easy to use.

• It has a minimal overhead.

• It has a direct data access mode: large data structures (e.g. images) can be written or
read in-place.

• It is fast: thousands of messages / second are possible.

• It has a transparent handling of inter-computer communication, e.g. allowing a sensor
module to run on the base- or a remote-computer without changes to the module.

• A separate program is only needed for inter-computer communications (courier).

By way of example, Figure 2-15 shows a software architecture using this communication
method to implement the Augmented Reality system of Figure 2-14 using two computers.

network

Camera

Camera

pose

estimation

Pose

estimation/

Sensor

fusion

MT9

Gyro

Accel.

Magneto

DGPS

ReadRead

Computer 1

SHARED

Sensor data 6d pose

Courier

Computer 2

SHARED

Courier

Sensor data

Grabber

images

3d

stereo

viewer

Headset

6d pose

network

Camera

Camera

pose

estimation

Pose

estimation/

Sensor

fusion

MT9

Gyro

Accel.

Magneto

DGPS

ReadRead

Computer 1

SHARED

Sensor data 6d pose

Courier

Computer 2

SHARED

Courier

Sensor data

Grabber

images

3d

stereo

viewer

Headset

6d pose

Figure 2-15 Software architecture with two computers using the SHARED data communication library.
In the SHARED rectangle, the published magazines sensor data and 6d_pose as well as the
scratchpad images are shown.

2.6. CONCLUSION 31

Note that because scratchpads can only be used locally, we implemented the camera pose
estimation as a separate module on the computer that grabs the camera images. The result is
transported by the couriers to the other computer and fused with the data from the other
sensor modules. The result, the generic 6D pose including derivatives, is again transported by
the couriers to the computer that renders the images for the headset.

This software neatly resides on the same computer that processes the images, allowing raw
camera images to be fused with virtual images e.g. for debugging and calibration purposes.

In our current demonstrator, all hardware and software modules are located on the same
laptop equipped with two processor cores. These cores share the same memory and thus the
courier is not needed for pose estimation. To show other people what a user sees on his
headset, another 3D viewer can be started on another computer that subscribes to the 6D
pose magazine and displays the output on a screen or an external beamer. Additionally, not
shown in the figure, the camera images can be displayed on that other computer by using a
small module that subscribes to the grabber’s scratchpad, compresses images and publishes
them in JPEG format in a regular magazine.

2.6 Conclusion

Augmented Reality (AR) is a visual user interface that enables computers to relay information
to the user by overlaying a virtual world on top of the real visible world. We envision that in
the future people can wear spectacles with integrated displays that project images through the
eye’s lens onto the retina, which provide a stereoscopic overlay of virtual objects that will
appear to really exist in the real world: i.e. a visual walkman, the equivalent of the audio
walkman.

Immersive types of mixed reality imply that a headset should be worn and the pose of this
headset should be measured using a head pose tracker. The head pose is needed to guarantee
correspondence between the real and the virtual environment. A headset with one display per
eye enables the user to see objects at multiple depths. Convincing Augmented Reality for both
indoor as well as outdoor applications requires wearable solutions using optical see-through
techniques.

We aim at a consumer market, firstly the market for “serious gamers”, but because of the price
of the constituting hardware components, our first aim is the industrial / professional market.
Our system should be generic enough for other applications that require pose tracking, such as
in Automated Guided Vehicles.

In our aim to develop a demonstrator system for mobile immersive Augmented Reality with
the objective to enable commercial exploitation in a consumer market we encountered a
number of challenges, listed in the following table:

• The equipment is for now expensive, heavy and big.

• The world in an Optical See-Through (OST) setup appears slightly darker and, in
current commercial headsets, the virtual objects are transparent.

• Active pose tracking, e.g. using camera’s or radio beacons, for a non confined space,
e.g. outdoor or in buildings, requires too many changes in the environment to be
commercially attractive for consumer based AR.

32 CHAPTER 2. REQUIREMENTS AND SYSTEM ARCHITECTURE

• The pose estimation on a head mounted tracking set-up must have no noticeable
jitter or systematic error, and a very high update rate.

• User movements are unknown in advance. The estimated pose will never be perfect,
but employing prediction algorithms and fast sensors can make the errors acceptable.

• Current markerless pose estimation algorithms (e.g. based on natural features) using
image processing are still too CPU expensive for mobile AR applications or not accurate
enough but will become possible in the near future.

• The light intensity in the environment can change drastically when the user moves,
giving camera based tracking systems a hard time.

• Fast movements cause motion blur in camera images making image processing
difficult.

• Different pose estimation set-ups are needed for different applications. Even other
combinations of sensors might be needed.

• Calibration of the sensors and headset is time consuming and cumbersome.

• The eye position per user is different, so a per user calibration is needed.

We have set requirements for the overall augmented reality system. The system must be
comfortable to wear, easy to use, easy to setup, and it has to be usable indoors as well as
outdoors. Furthermore, the virtual objects should convincingly appear as part of the real
world.

Our research focus lies in the field of pose estimation and image processing, so in designing a
demonstrator we used commercially available hardware. The Visette45 is one of the few
available optical see through headsets that provide a stereoscopic display with a high
resolution. To make the system easy to use and easy to setup, we opted to use a camera and
image processing techniques to determine the head-pose from a passive, printed marker. The
widely used MTx inertia sensor was chosen to provide acceleration and rotational velocity
information, and a fast Dell XPS laptop was used to run all the software including the
rendering of the virtual world.

We specified a modular software design to allow the usage of many different sensors,
depending on the application at hand. The communication between the modules had to be
fast as to not hinder real-time operations, so a fast message passing library design using shared
memory was presented. The messages should be time-stamped to be able to compensate for
delays.

The AR system requirements combined with the hardware that we used led to the
technological requirements of our AR set-up and the head tracker in general. As the limiting
factor for perfect alignment is dominated by the Head Mounted Display (36° x 27°, 1280 x
1024, 60Hz), the target for our pose tracker is to be at least as good as the HMD, i.e., a
statically misalignment < 0.03°, a dynamical misalignment < 0.5° when smoothly pursuing an
object and a dynamical misalignment < 2.5° when an event in the image draws the attention,
saccades are made and the head turns fast.

2.6. CONCLUSION 33

In Chapter 3 we investigate what accuracy in camera-based pose estimation can be achieved
using an easy to print single marker. The design of the marker and the image processing
techniques to provide the most accurate estimate of the pose, under real-time operation, is
presented.

In Chapter 4 we present our design and implementation of a Kalman filter to obtain the most
accurate estimate of the pose using the measurements from all sensors in our demonstrator.
We will also present the onset of the plug-and-play setup as designed in this chapter.

Finally Chapter 5 presents the integration of our filters and sensors in a practical setup.
Experiments are presented that test the accuracy of the entire system against the requirements
set in this chapter.

 - 35 -

Chapter 3
Image based pose tracking

In the previous chapter, we set the target specification for the pose accuracy of the virtual
world to be at least as good as the head mounted display. We distinguish three scenarios, each
with its own misalignment: a statically misalignment of less then 0.03°, a dynamical
misalignment when smoothly pursuing an object of less then 0.5°, and a dynamical
misalignment of less then 2.5° when another event in the image draws the attention. This
angular accuracy is measured as the angle between a ray from the virtual object to the real eye’s
pupil position and a ray from the virtual object to the estimated eye’s pupil position, as
depicted in Figure 3-1. The figure shows the target angular accuracy targetα as well as the

associated maximum position error
maxp∆ of the estimate. We model

maxp∆ as a sphere in 3D,

although the real permissible error is given in the figure by the area within the two lines that
kiss the grey circle. Hence, the maximum permissible position error increases with the distance
to the virtual object.

Figure 3-1 Maximum permissible error (grey circle) of the position estimate of eye’s pupil position

(black dot), such that the virtual object is seen within a maximum angular error of targetα .

With a virtual object at a distance of one meter to the pupil, the target position accuracies are
given in Table 3-1.

Table 3-1 Position accuracy needed for a virtual object at 1 meter distance
from the eye for our target angular accuracies.

Situation targetα (degrees)
maxp∆ (cm)

No movement 0.03 0.05

Smoothly looking around 0.5 0.9

Head movement due to attention shift 2.5 4.3

36 CHAPTER 3. IMAGE BASED POSE TRACKING

In this chapter, we will present image-processing solutions for camera pose measurement that
satisfy these target pose accuracies as much as possible. Camera images provide a tremendous
amount of information about the world. Ideally, the location of the camera can be found just
by looking at the surroundings, just as humans do. However, using natural landmarks poses a
few drawbacks. In an earlier stage of this work Persa [27] proposed for outdoor augmented
reality to use natural landmarks. His proposal requires matching the edges from the camera
image with the wire-frames from buildings in a CAD/GIS database. Setting up such an
infrastructure of wire-frames of buildings is a huge effort, not mentioning weather and seasons
that can change a scene considerably. However, as Google-Earth [28] already shows,
eventually those databases will emerge and this technique will prove to be viable.

Today’s research on auto-motion tracking using natural landmarks involves the use of scale
and affine invariant features - like SIFT [29, 30] and derivates GLOH [31] or SURF [32] - and
algorithms such as SLAM [33-35]. With SIFT features, a once observed object or scene can be
recognized under different poses and conditions. In SLAM, a metric map of the environment
is gradually built up, e.g. by an autonomous vehicle using, for example, the SIFT technique.
The drawback of those methods for augmented reality is that the optimal features to describe
an object or scene are chosen by the algorithm itself. Only after those features are known can
they be used for that object to calibrate the absolute distance to the camera, and for the virtual
objects to provide an origin for the virtual scene. Furthermore, SLAM by itself – without at
least one known distance - can only construct a map up to a uniform scale factor due to the
projection on a 2D camera sensor.

Note that autonomous vehicles can measure their own movements by odometry, enabling
them to auto-calibrate distances as well as the unknown scale factor. In those cases, SLAM can
be used to estimate the pose of the vehicle.

Man made markers contain man made features with known accuracy and ID. They are better
apt to setup an augmented reality infrastructure quickly. If the camera loses sight of a marker
for a short period, the inertia tracker can fill in the pose for a few seconds. For larger periods
of tracking loss, SIFT features can be used to keep on using camera tracking, as at a previous
point in time the known marker was seen in an image in combination with several natural
features. Frame to frame camera tracking can hence be accomplished using natural features,
until a man made marker is seen again and the inevitably build-up error is reduced to the pose
error of the markers themselves. Although it is our intention to incorporate natural landmarks
in the future, this thesis will focus on camera tracking with man made features, combined with
inertial information.

In the remainder of this chapter, we will present all the steps needed to calculate the pose of
the camera using a single marker, ending with measurements made to determine the resulting
error in the estimated pose.

3.1 Optical model

As often done, we also transform pixel coordinates such that a simple pinhole camera model
can be used. The model consists of a projection point C, the origin of the camera coordinate
system, and a plane U, which we call the undistorted image plane, on which the scene is
imaged (Figure 3-2).

3.1. OPTICAL MODEL 37

P

p

c

C
f

ℜ
optical axis

P

p

c

C
f

ℜ
optical axis

Figure 3-2 The pinhole model for a camera. The point P is imaged on a retinal

plane ℜ (the sensor plane) at distance f from the projection centre C.

By definition, the focal distance to our undistorted image plane is one. The projection of a 3D
point P in the real world can be found as the intersection point of the line connecting the
projection centre C and the point P with the undistorted image plane. In the following
calculations, we use a non-capital letter to denote coordinates, with superscripts to denote the
coordinate system. The coordinates of point P in the camera coordinate system are written as

Cp
�

. The relation between the 3D coordinates Cp
�

 and 2D coordinates Up
�

 is given by:

 / /
U C C U C C

x x z y y z
p p p p p p= = (3.1)

In reality, we use a standard lens with a very high opening angle of 90°, which results in severe
barrel distortion in our camera images. We tried several lens models, including radial distortion
and decentering distortion [15, 36-38] models of up to 8 parameters. However, our lens was
more accurately modeled by a reciprocal model than the usual model found in the literature.
This reciprocal model only needs the first three even terms of a 6th order radial distortion:

2 4 6

1 2 3

1
=c , with

(1)

D U U U

u

u u u

p p p r p
k r k r k r

= ⋅ =
+ + +

� � � �
 (3.2)

The usual model can be obtained by a Tayler expansion, but the resulting polynomial should
be of a much higher degree for the same accuracy. The coordinate system D denotes the
distorted image plane. This distorted image plane can be seen as a scaled version of the real

sensor plane ℜ, scaled with the focal distance f. In reality, the centre of the camera’s pixel
array will not lie on the optical axis. It is even possible that the pixels are not placed in a
rectangular grid. A popular model of the pixel array includes the inter-pixel distances su and sv,
a skew parameter ssk and the position of the optical axis in pixel coordinates (uoffset,voffset). As a
translation is present, it is more convenient to perform the calculations in homogenous
coordinates. The homogeneous coordinates are written in capitals:

38 CHAPTER 3. IMAGE BASED POSE TRACKING

1

U

U p
P

 
=  
 

��
 (3.3)

To use a model with a normalized focal distance 1f ≜ , we have to incorporate the real focal

distance into the scaling factors:

u real u v real v sk real skf f s f f s f f s= ⋅ = ⋅ = ⋅ (3.4)

Using the homogeneous coordinates in the distorted image plane and the intrinsic camera

parameter matrix A, we can calculate the pixel coordinates Pp
�

 by:

0

u offsetP D D

sk v offset

f uu
p P P

f f vv

  
= = =  
   

A
� ��

 (3.5)

To be able to use the pinhole model for our pose estimation algorithms, we actually need to
reverse the steps above to calculate the undistorted image plane coordinates from the pixel
coordinates. The inverse of (3.5) is simple, but the inverse of the distortion model (3.2) cannot
be determined analytically. However, when it is rewritten in the form:

 2 4 6

1 2 3
() (1) 0

d
r r k r k r k r rϕ = − + + + = (3.6)

The root of φ, within the image’s interval, is the solution ru we are looking for. The root is

found iteratively with the Newton method with D

dr p=
�

 as initial guess. Usually five steps are

enough to converge.

3.2 Pose estimation

To estimate the 6D pose of the camera, the relation between 3D world points and their 2D
projections on the undistorted image plane is needed. Under perspective projection, this
relation is given by:

0 0 1

P W C C W C

W W

C C W

W W

sP P t P P

t P

 = = = 

 
 =    

 

P K R K

A
R

� � � ��

�� (3.7)

P is a 4x3 projection matrix, K a 3x3 homogeneous version of the camera internal parameter
matrix A, R the rotation of the camera frame within the world, and t the translation of the
camera with respect to the world’s origin. The scale factor s can be shown to be pz

C for the
relation to hold. That means that this scale factor is dependent on the coordinates of point P
as well as the projection matrix P, which prevents the matrix P from being estimated directly
using linear algebra. If P is scaled by a factor, the relation still holds, so only 11 of the 12
elements are independent, since one scale factor can be chosen arbitrarily. However, for the
matrix R to be a rotation matrix, it should be orthonormal, providing an additional, non-linear,
constraint.

3.2. POSE ESTIMATION 39

In our case, the matrix A is estimated offline, so only the 6D camera-pose is unknown. For
every measured image point of a known world point we have two measurements, which gives
two constraints on equation (3.7). The problem of finding the 6D pose from n point
correspondences is known as the perspective n point (PnP) problem [39-41].

With three known points (P3P) the pose can be determined, but up to four solutions remain.
With four or five known points in general positions, two solutions exist, but when the points
are coplanar (and not more than two collinear) there is one unique solution. With six or more
points in general positions there is always a unique solution, except for the obvious case that
the configuration of points has symmetry – for instance when all points lie on a circle.

The solution to equation (3.7) can be found by using the Direct Linear Transform [42, 43]. As
we have a calibrated camera, we do not have to use the full DLT method, which solves for a
general P matrix. We further simplify the estimation by requiring all points to lie on a plane
[15].

Without loss of generality, we introduce a marker coordinate system
MΨ and use it in place of the

world coordinate system, meaning that we estimate the camera-pose in marker coordinates. By
definition, all marker points in the marker coordinate system have their z-axis value equal to
zero since our markers are flat. We assume the marker has at least four known, co-planar, well-
placed points, so a unique solution to the camera pose exists. When we also exchange the pixel
coordinates for undistorted image coordinates, equation (3.7) can be rewritten as:

 () () ,
1

CU C C M C

M zM

u

sP s v p P s p

 
 = = = = 
 
 

R T
� ��

 (3.8)

This formula can be simplified by the fact that we defined 0M

z
p ≜ . When we remove the

z-coordinate from formula (3.8) we obtain:

 () '

1 2

1 1

M

x

U M M

y

u p

sP s v r r p P

  
  = = =  

      

T H
� � �

 (3.9)

In which r1 and r2 are the first two columns of R and P’M denotes the homogeneous marker
coordinates of point P without its z-coordinate. This can be rewritten as:

1

'

2

3
1

M

u H

s v H P

H

   
   =   
   
   

 (3.10)

and reordered to:

40 CHAPTER 3. IMAGE BASED POSE TRACKING

'

3

' '

1 3

' '

2 3

1' '

2' '

3

0

0, or

0
0

0

M

M M

M M

T

MT MT

T

MT MT

T

s H P

H P uH P

H P vH P

H
P uP

H
P vP

H

=

− =

− =

 
 −  

= =  −  
 

Lx

 (3.11)

in which 'MTP is the transpose of 'MP . Note that x is a vector containing the nine parameters
of the matrix H. The matrix L can be extended downwards for all measured points, and the
solution for x is found using singular value decomposition (SVD) as the right singular vector
of L, associated with the smallest singular value. Note that this value should be zero, but will
not be zero due to noise in the measurement. To get L numerically well conditioned, data
normalization has to be used [44]. H can be reconstructed directly from x, up to a scale factor,
s in eq.(3.9). Since the rotation matrix R is orthonormal, this scale factor can be estimated by

calculating the inverse of the average length of the estimated vectors
1
r̂
�

 and
2

r̂
�

. To complete

R we use

3 1 2

r r r= ×
� � �

 (3.12)

on the scaled vectors. Since R is estimated, the matrix is still not exactly orthonormal. We can
find the best orthonormal matrix using singular value decomposition as well:

estimate orthonormal

T T= ⇒ =R UDV R UIV (3.13)

with I the identity matrix. The resulting camera pose is given by the homogenous
transformation matrix:

0 1

orthonormal estC

M

 
=  
 

R T
H (3.14)

A more elaborate treatment of pose estimation and tracking can be found in [40] and [45]. The
above method for estimating the pose is noise sensitive and the singular value decomposition
to estimate R and T neither minimizes a meaningful quantity such as an error in pixels, nor
estimates directly the six parameters of the pose. Highly due to the needed step to ensure that
the estimated rotation matrix becomes orthonormal, errors are introduced. Therefore, we
applied a Levenberg-Marquardt [46] minimization algorithm to further optimize the pose by
minimizing the sum of squared errors (SSE) of the point positions in undistorted image
coordinates (reprojection error). This is also called bundle adjustment:

 ()

2
'

1

'

'

()

1
() ()

1

argmin SSE()

n
U U

c c

c

U

Mc

c

optimal
pose

SSE pose p p

p
pose pose P

s

pose pose

=

= −

 
= 

 
=

∑

R T

� �

�

 (3.15)

3.3. FIDUCIAL DETECTION 41

in which n is the number of measured points, U

c
p
�

 is the measured position of the point

number c in undistorted image coordinates, 'U

c
p
�

 its reprojected counterpart using the current

camera pose estimate, scale factor s equals pz
C, and pose is a 6D vector holding three rotation

parameters and three translation parameters. The initial guess of the 6D pose is calculated
from Rorthonormal and Test. We used the Levenberg-Marquardt implementation from the
MINPACK library [47]. That algorithm calculates the Jacobian by a forward-difference
approximation, and therefore the analytical Jacobian is not needed.

With an adequately calibrated camera and low measurement noise, a high residual sum of
squared errors in eq. (3.15) value means that the presumed registration between image points
and 3D marker points is probably not correct. A threshold on this value can be used to ignore
candidate markers that do not match.

Note that we now have the camera’s pose, but the camera coordinate system was defined in
terms of the lens’s unknown optical axis. For sensor fusion, all estimates should be given for a
common body frame and be expressed in the same coordinate system. Expressing the
estimated pose in world coordinates can be done by a coordinate transformation using a table
look-up of the pose of the marker in world coordinates. Generating a pose estimate for the
common body frame is only possible if the transformation of our camera frame is known with
respect to the body frame:

 b b C

M C M
=H H H (3.16)

The calibration to find b

C
H is described in section 5.2.3. In this section, we presumed to know

the correspondence between the 3D marker points and their projected image points. To find
the correspondence we need to have a known visual pattern for a marker that can be
recognized. This is explained next.

3.3 Fiducial detection

In order to design suitable image features to track on, we have set the following criteria for our
marker:

- The marker should be easily recognized
- It should not be too obtrusive
- It should have enough unique different instantiations
- Its ID should be fast to read
- The marker should provide enough information for the camera to determine its pose
- The marker should be useable in an office room.
- The marker-camera combination should provide estimates of positions to at least 5

meter with a lens opening angle of 90°
- The marker should be detected up to a rotation of 60°.

42 CHAPTER 3. IMAGE BASED POSE TRACKING

Because we want to minimize the number of markers in the environment, we do not want to
use the circular fiducials of Foxlin et alii [48]. Although these fiducials can be detected in a fast
way and provide good localization, at least three are needed to provide a full (6D) pose. We
started with a 3 x 4-checkerboard pattern as depicted in Figure 3-3. It has six saddle points,
and with a minimum of four points necessary to estimate its position, there is some
redundancy. In [49] we described how the saddle-point marker was recognized. The problem
was that we could not attach an ID to it, so multiple markers could not be distinguished.

Figure 3-3 Pattern with six saddle points ordered in two rows. The rounded corners remove the
response that a saddle point detector could have on sharp corners.

We found, similar as in the Augmented Reality Toolkit [50], that a rectangular pattern with a
big black border is easy to recognize and provides enough space in the inner part to
distinguish many different codes.

2D-barcode

An example of a fiducial we currently use is depicted in Figure 3-4. The inner part consists of
an n x m grid of black and white blocks. Currently we use 5 x 3 blocks. The color of the four
blocks in the corners is chosen in such a way that we can always determine the correct
orientation of the marker. The other blocks are used to determine the ID of the marker,
meaning that with 11 blocks remaining there are 2048 different IDs possible. The number of
codes is of course much lower than with the circular fiducials [48], but it is not always
necessary that all patterns are unique. Combinations of patterns and other clues can be used to
determine an absolute position. We settled for an A4 sized pattern, which is not that big and is
easy to produce on a normal printer. However, we can also use A3 sized patterns, to attach to
the ceiling in a hall for space filling AR applications, or A5 sized patterns (or smaller) to attach
to objects in a room such as a table. From the ID, the size can be retrieved. The shape has to
be the same for all fiducials to ease the task of marker detection, so the ratio between the
width and height should be preserved.

Below, we will describe how we detect these markers. Figure 3-5 gives the operations
schematically. Our description follows the processing pipeline.

3.3. FIDUCIAL DETECTION 43

Figure 3-4 Layout of the black and white pattern used for self-localization. The 5 x 3 square
blocks encode the identification number of the marker, as well as the orientation.

Grab an image Detect edges
Select closed

contours
Detect corners

Keep contours

with 4 corners

Split contour in

4 segments

Fit a line through

each segment

Determine the

ID

Calculate pose

of camera

Intersect 4 lines

for corners

Calculate pose

of marker

Locate edges and

correct distortions

Grab an image Detect edges
Select closed

contours
Detect corners

Keep contours

with 4 corners

Split contour in

4 segments

Fit a line through

each segment

Determine the

ID

Calculate pose

of camera

Intersect 4 lines

for corners

Calculate pose

of marker

Locate edges and

correct distortions

Figure 3-5 Schematic representation of the marker detection algorithms.

Contour finding

We define a contour as a set of all connected edge points (edgels). Finding edges is described
in section 3.5. For further processing, we want to distinguish various kinds of contours. We
classify each edgel by determining the number n of neighboring edgels. This is shown in
Figure 3-6.

44 CHAPTER 3. IMAGE BASED POSE TRACKING

In case of our marker, we are only interested in contours without branch- or end-points. To
reduce the amount of data, we make a list of contours. For each contour, all special points are
stored (2n ≠). In case there are no special points, one edge-point is chosen (the first
encountered point). For each stored point, a list is made which stores the 8-connected
direction of the neighboring edge points, together with a link to the special point that can be
found following the contour in that direction.

In normal images, we found the Canny edge to be at places more than a pixel thick. This
means that the above method of classifying edge points would not be valid. Therefore we first
apply a simple edge thinning algorithm that removes points with 2n ≠ , without splitting a
contour. This is done in a 3 x 3 neighborhood, and can be implemented in a fast way using a
lookup table. See e.g. [51]. Now we have a set of contours that includes the contours of our
markers.

To be on the outer edge of a marker, a contour should satisfy two restrictions. First, the
contour should be closed, so no endpoints or branch points should be present. Second, from
Figure 3-4 we know that the outer border is black and thus darker than the surroundings. This
means that the gradient on the outer edge is pointing outwards. Only one randomly selected
point on the contour has to be checked to verify this. Contours not satisfying these restrictions
are discarded.

We want to fit the four straight lines of the contour, so the contour has to be split in four sets
at the corner positions. We approximate the corner positions by applying a corner detector to
the contour (see section 3.6). Now that the approximate positions of the four corners are
known, we can brake up the contour into four separate lines. Because we model the lines as
straight lines, we do not want any influence of the corners. Hence, the line segments will be
eroded from their ends, so they will be disconnected from the corners.

Line point

n=2

Branch point

n=4

Closed contour,

only line points

Closed contour,

with branch

Not a closed contour

End point

n=1

Branch point

n=3

Line point

n=2

Branch point

n=4

Closed contour,

only line points

Closed contour,

with branch

Not a closed contour

End point

n=1

Branch point

n=3

Figure 3-6 Top: Overview of different edge points. Bottom: Some contour examples

3.3. FIDUCIAL DETECTION 45

To find the best fitting line through the contour points, we use a least-squares fit (see section
3.6.5). The more edge-points used, the more accurate the result will be. For reasons of speed,
the number of edge points used is set to a maximum of 20. For best results, the edge positions
should be determined at sub-pixel precision, and the line to be fitted should be perfectly
straight.

Finally, a sub-pixel position of the corner is found by intersecting two adjacent lines (see
section 3.6.5). We know that our images suffer from large lens distortions and we calibrated
the camera accordingly, so the sub-pixel edge points found are transformed to undistorted
image coordinates before the line fit is performed.

Determining the ID of the marker

If the position of the camera with respect to the marker is known (see section 3.2), we will try
to find its ID. In order to do that, we have to determine the intensity of the blocks within the
pattern. We know in marker coordinates where the midpoints of the blocks are:

7

, 5

(2)

(1) , [0, 4] , j [0,2]

0

width

heightM

i j

i

m j i

− 
 = − ∈ ∈ 
 
 

�
 (3.17)

Thus, we can calculate the mid-point positions in pixel-coordinates using the estimate of the
camera position in marker coordinates using the formulas in section 3.1. For those 15 points,
the intensity in the image is determined:

, ,

()
M

i j i j
y I m=

�
 (3.18)

As the points have sub-pixel accuracy, a standard linear interpolation on the image intensities
was used. The inner part of the marker consists of black and white patches. Both colors are
always present (the four corner blocks), so we determine the threshold as:

, ,min() max()

2

i j i j

block

y y
t

+
= (3.19)

 ,

,

1

0 otherwise

i j block

i j

y t
b

>
= 


 (3.20)

At this point, it is still possible that the candidate marker is not valid. For instance, a black
computer monitor also has four corners and a dark inner part. We reject a candidate if the
separation between black and white intensity is too low:

 (), ,reject if max() min()i j i j sepy y t− < (3.21)

Now the ID is determined by:

()

,

14

0

5 ,

2

bit i j

bit

bitbit

bit j i b b

ID b
=

= + =

= ⋅∑
 (3.22)

This is also explained in Figure 3-7

46 CHAPTER 3. IMAGE BASED POSE TRACKING

1

32

1024

2

64

2048

4

128

4096

8

256

8192

512

16384

161

32

1024

2

64

2048

4

128

4096

8

256

8192

512

16384

16

Figure 3-7 Marker with ID=4+1024+16384=17412

Using the method above, we theoretically only need one pixel per block, so the inner part
could be as small as 5 by 3 pixels. However, in our case the border will then also be one pixel
wide, which will prevent that such a marker will be detected.

3.4 Feature detection

For calculating the pose of a camera from landmarks, stable and accurate features are needed.
Possible features are corners and edges. To detect a fiducial, we employ a two-stage approach.
First, we detect the presence of a fiducial and second we localize it with high accuracy. In this
way, we can detect possible fiducials fast and only do computational intensive operations on
true candidates. We set the following requirements for the first stage detector:

Find the entire contour of the fiducial under given assumptions about shape, lighting
conditions, noise levels (office room with no lights on) and typical optical blurring. Then,
for easy processing, the contour found should be a skeleton, i.e. a single pixel thick closed
contour of 8-connected pixels without branch points. The detected pixels should lie
roughly in the centre of the real contour. Noise should be suppressed to a level that no
false edge points connect to the contour and all contour edge points are detected. The
fastest method should be used to minimize power consumption and to achieve real-time
performance (i.e. 25 Hz with our cameras).

The goal of the feature detection is to find the four corners of the fiducial, from which the
camera pose can be determined with high accuracy. We reviewed various general corner
detectors but decided to use the intersection of two connected edges for the final sub-pixel
positions of the corners. Consequently, the requirements for the second stage detector are:

Find corners on the closed contour detected by the first stage and use them to split the
contour into four straight lines. Note that all four corners should be detected, with no
false positives on the contour. Aim at a corner position accuracy of less than two pixels
along the edge. Determine edge positions at sub-pixel accuracy, up to the limit permitted
by the noise. Minimize the influence from edges in the neighborhood as near as three
pixels on the estimated corner positions.

Under projective transformation, straight edges remain straight, but the corner angles vary. We
will ignore lens distortion during image processing, as the curvature is negligible in the small
neighborhoods we use.

3.5. EDGE DETECTION 47

Feature detection is not only used when determining the pose of the camera. The lens
distortion and other parameters of the camera should be calibrated, and a checkerboard
pattern is used for that. The corners of the black-and-white patches in the pattern are saddle
points, so saddle points are features to be found as well. Corners and saddle points are much
alike, so we treat them in the same section.

In sections 3.5 and 3.6, we will investigate various edge, corner and saddle-point detectors and
evaluate their ability to suit our requirements in terms of accuracy, behavior under noise,
computation time and latency.

3.5 Edge detection

Edge detection is very common in virtually all applications of computer vision. Many solutions
to this problem have been presented in the past half a century. Overviews of edge detection
schemes and their filters can be found in [52-56]. Note that all discussions from here on must
be seen in the context of a trade-off between processing speed and accuracy. In the literature,
different models are used for edges, of which Figure 3-8 depicts the most common types.

in
te
n
si
ty
→

position →

in
te
n
si
ty
→

position →

Figure 3-8 Common edge types. From left to right: Step, Ramp, Roof, Line

For our application, we only want to detect step-edges and their smoothed versions.

3.5.1 Step-edges

To test whether the smoothed step-edge model applies, we printed a step-edge on paper using
a laser printer. The paper was placed at two meters in front of a camera, with the camera
focused on the edge as much as possible. The paper was attached to a micro stage, allowing it
to move the edge horizontally in steps of a single micrometer. We moved the stage linearly in
100 steps. We used steps of 400 µm for the JAI camera, and for the DICA camera we used
200 µm steps, due to their difference in resolution.

In Figure 3-9b, the responses of three individual pixels in the edge neighborhood are shown.
One can observe that the edge is imaged very sharply and that the noise in the values is very
low. The standard deviation of the noise is σnoise = 8 levels, with an edge contrast of around
600 levels (10-bit data). To specify the noise level in dB, we use the Contrast to Noise Ratio
(CNR):

10

 []
[] 20log

[]
noise

edge contrast levels
CNR dB

levelsσ
 

=  
 

 (3.23)

where the edge contrast is the difference in intensity between the light and dark side of the
edge. In this experiment, the CNR was 37.5 dB.

48 CHAPTER 3. IMAGE BASED POSE TRACKING

Figure 3-9a) A 30 x 30 image of a step edge,
recorded with de DICA camera.

b) Grey level of pixels on a single row in columns 26,
28 and 30 of the JAI camera as a function of lateral
displacement in steps of 400 µm. The error bars

denote the ± 3σ noise interval.

Note that we were not able to determine the source of the strange bump right after the edge.
This bump was present along the entire edge, and moved with the edge to other pixels. We
assume this is a printer artifact.

The smooth profile of the step-edge stems from the optical system and the way light is
captured in a CCD/CMOS camera. One notices the resemblance to a scaled and stretched
error function, i.e. a Gaussian blurred step-edge. Because of this, we will model the point
spread function of the camera/optical system as a Gaussian. Van Vliet [57] indicates that a
Gaussian is in general a good enough approximation to the point-spread-function (PSF) of an
optical imaging system using incoherent illumination. To determine the width of the edge in
the image, or the scale of the Gaussian modeled point spread function, we fitted an error
function to the data. This model is a 2D edge, as presented in Figure 3-10.

α

xpos

α

xpos

b

a

σ

Figure 3-10 Model of the 2D Gaussian blurred step edge. Left: model of the edge
position. Right: Model of the edge intensity.

Since we cross the edge under an arbitrary angle alpha, we can model the observations by

 ()()1 1

2 2
2/(PSFy b a erf r σ= + + , (3.24)

where

3.5. EDGE DETECTION 49

2

-2

0

()

t

serf t dseπ
= ∫ (3.25)

and

 () cos() sin()
e

r x x yα α= + − , (3.26)

in which (x, y) is a pixel’s centre and xe is the horizontal sub-pixel edge position with respect to
the origin (0, 0), which is made grey in the figure.

The fit was done in a separate measurement on a patch of 19 x 19 pixels with an edge running
through the centre pixel of the patch. We found the scale σPSF of the Gaussian PSF to be 0.8

pixels for edges in all directions. We assume from now on that this is the smallest scale for all
edges we will encounter, as the edge is in focus and the camera at rest. We also determined the
standard deviation of the noise to be between 0.5 and 1.3 gray levels (8-bit data), depending on
the gray level of the pixel under investigation. With the edge modeled as an error function, the
signal and its first and second order derivatives are shown in Figure 3-11.

-3 -2 -1 0 1 2 3
x

Figure 3-11 The intensity on a horizontal edge, with its first and second order derivatives.
The edge in the image is modeled by a scaled and stretched error function.
The first order derivative is therefore a Gaussian. The arrows denote the

sample positions of the CCD/CMOS sensor, σPSF = 0.8 pixel.

50 CHAPTER 3. IMAGE BASED POSE TRACKING

Looking at the derivatives, we can detect edges by finding the maximum of the first derivative
[58-60], or the zero crossing of the second derivative [61-63]. This second derivative can also
be approximated by taking a linear combination of local max-min filters [64]. It is even
possible to just threshold the first derivative, but this will result in a very thick line. Using a
thinning operation, this line can be made thin, but the resulting dislocation might be even
more than one pixel in worst case. Another reason why a fixed threshold cannot be used is
that even the black of a laser printer is never really black but rather very dark gray. The darkest
point in an image is also raised by light scattering and thereby dependent on the scene and the
illumination conditions. More elaborate methods to detect edges, such as multi-scale
approaches [65], nonlinear (anisotropic) diffusion schemes [66, 67] or model fitting [68],
cannot be used in the first stage of edge detection, as they require too much computation time
for our purposes. Moreover, at this point we are only interested in sharp step-edges, so a single
small scale suffices.

Edge detection using first order derivatives

Normally, derivatives of an image are calculated in combination with a smoothing filter to
suppress noise. Canny showed that for edge detection the magnitude of the gradient calculated
with Gaussian derivative filters is optimal in the sense that the delocalization error of edges is
minimal for a given signal to noise ratio. The gradient vector calculation can be efficiently
implemented by four 1D convolutions. The computational complexity of these 1D Gaussians
can be made independent of the filter size by a recursive implementation [69, 70]. The
smoothing scale σ can be chosen freely to reduce noise effects. It can be shown that a
smoothing scale higher than the scale of the edge (in our case 0.8 px) does not decrease the
delocalization error much. We can therefore use filters with a smoothing scale above, but still
near 0.8 px. Simple convolution kernels for the first order derivative filters in the horizontal
direction are:

[] []

1 0 1 1 0 1

1 1 , 1 0 1 , 1 0 1 , 2 0 2

1 0 1 1 0 1

Roberts symmetric Prewitt Sobel

− −   
   − − − −   
   − −   

 (3.27)

Note that for reasons of speed, these filters are not properly normalized; we implemented all
algorithms in fast integer arithmetic and a division operation takes a lot of time. Furthermore,
we would lose the fractional part in the integer result. The Robert’s and symmetric filters
minimize smoothing; hence, they give the noisiest result. In the smoothing direction, the Sobel
operator approximates the Gaussian better than the Prewitt operator does, so it is more
optimal, but the Prewitt operator has a better noise reduction. A good integer approximation
of a separated Gaussian derivative in horizontal direction with a scale of 1.0 px in a
neighborhood of 5 x 5 pixels was calculated to be:

 []

2

10

7 19 0 19 7 17

10

2

 
 
 
 − − ⊗
 
 
  

 (3.28)

3.5. EDGE DETECTION 51

Note that if accuracy is not a problem, the derivative part can be changed to the symmetric
version, and if noise is not a problem, the smoothing part can be changed to one of the
simpler versions.

Table 3-2 shows processing times for a derivative filter implemented for various input and
output formats. Modern Intel/AMD processors have support for single instruction multiple
data instructions: Multi Media Extensions(MMX) and Streaming SIMD Extensions (SSE).
These extensions process up to 16 bytes at the same time, increasing the performance. The
instruction sets we used were mmx, sse and sse2: the right side of the table.

Table 3-2: Processing times in milliseconds of a 5x1 horizontal derivative filter (3.28) on a 1280x1024
image. This was done on an Intel Core Duo processor @2.0GHz (one core used).
char: 8-bit integer. Short: 16-bit integer. Int: 32-bit integer.
Float: 32-bit floating point. Double: 64-bit floating point

Optimized c code Optimized with mmx/sse2

Outp

Inp

Short Int Float Double Outp

Inp

Short Int Float Double

Char 6.4. 7.0 11 13 Char 3.6 9.1 12

Short 15 7.5 11 13 Short 4.0 9.2 12

Int 16 30 14 Int 23 13

Float 22 13 Float 20 13

Currently, the input image is always in 8-bit integer format, and we use 16-bit integer data to
represent the temporary values, derivatives and gradient magnitudes, so we can use the fastest
methods (shown in bold).

Using the first order derivatives, we detect edges by finding local maxima of the gradient
magnitude in the gradient direction. The detected points form the ridges of the gradient
magnitude image. The notation we use for derivatives working on an image I is:

2

2
x yyx y

I I I I∂ ∂
∂ ∂
≜ ≜ (3.29)

The gradient magnitude image G is calculated from the gradient

x

y

I
g I

I

 
∇ =  

 

��
≜ (3.30)

by

 () ()22

x y
G g I I= +

�
≜ (3.31)

52 CHAPTER 3. IMAGE BASED POSE TRACKING

With the simple filters, the magnitude is not truly rotational invariant [71], so the angular
dependency should be considered.

To determine if the gradient magnitude has a maximum in the gradient direction at the current
position P, a local window of 3x3 pixels, centered on the current position, is divided into eight
sectors, shown in the left of Figure 3-12. In the sector to which the gradient points (2) as well
as in its opposite sector (6), the gradient magnitude is calculated in order to determine whether
the gradient magnitude has a maximum at P. To calculate the gradient magnitude in these
sectors, the simplest method is to average the gradient magnitudes of the two neighboring
pixels lying in each sector. This can be represented by interpolating the gradient magnitude at
points A and B in Figure 3-12.

A

B

P

gx>0

gy>0

gx>gy

gx<0

gy>0

-gx>gy

1

2

8

4

3

5

6

7

()T

x y
g g g=
�

A

B

P

gx>0

gy>0

gx>gy

gx<0

gy>0

-gx>gy

1

2

8

4

3

5

6

7

()T

x y
g g g=
�

D
P

C

M

D
P

C

M

Figure 3-12 Left: The gradient magnitude of the pixel under consideration P is
compared to the interpolated magnitudes at positions A and B. The
gradient direction is partitioned in the eight sectors shown. Right: more
accurate interpolation in sector 2 at position M between pixels C and D

When the gradient magnitude at position P is denoted as G(P), we can give each pixel a label 1
if it has a local maximum of the gradient magnitude and 0 otherwise. The generating function
nms (non-maximum suppressed) is given by:

1 if () () () ()

()
0

G P G A G P G B
nms P

otherwise

>= ∧ >=
= 


 (3.32)

This method is very fast, but it is unstable in case of a gradient direction at the sector
boundaries, since the points A and B will tend to flip between the midpoints of adjacent
sectors. To obtain a more robust output, the gradient magnitude can be interpolated linearly
along the line between C and D where it intersects the arrow denoting the gradient direction
(right of Figure 3-12):

 ()1() () 1 () () (() ()
y y

x y
xx x

I I
G M G C G D I G D I G C G D

II I

 
= + − = + − 

 
 (3.33)

Note that this formula slightly differs for other sectors. To lose the division (for faster
operation) we can rewrite formulas (3.32) and (3.33). For sector 2 this is:

() ()
() () (() ()) 0

() () () () 0

x

x y

G P G M I G M G P

I G D G P I G C G D

>= ⇔ − <= ⇔

− + − <=
 (3.34)

3.5. EDGE DETECTION 53

The result is now robust to small changes in the gradient vector, at the expense of a small
increase in complexity. To further increase the speed, we only perform the non-maximum
suppression when the gradient magnitude is high enough. This threshold can be just above the
noise level when low contrast edges are expected.

After non-maximum suppression it is still possible that a single edge produces two edge
points, so a single thinning step is needed [51]. The thinning operation removes the pixels that
do not change the connectivity of the edges. For fast operation, this is done using a look-up
table. For each of the eight neighbors of an edge pixel we first determine whether they are
edge pixels or not, and combine all the answers in an 8-bit valued index:

 7 6 5 4 3 2 1 0

0 1 2

7 3

6 5 4

() ()

P index b b b b b b b b

PixelOnThinEdge P lookup index

→ =

=

 (3.35)

If pixel i in the neighborhood is an edge, then bit i of the byte index is set to ‘1’; otherwise it is
set to ‘0’. This byte is then used as an 8-bit index into a look-up table, which gives as output a
‘0’ or ‘1’, in which ‘0’ indicates that the edge pixel can be removed. This operation is done on
the nms image directly, with a side effect that in some directions complete lines are removed.
This is not a problem as we are interested in closed contours only. This way, less edge pixels
have to be considered at a later stage, which speeds up the method.

However, not all ridge points are edges, as noise also generates false detections. We may also
want to disregard very weak edges. Canny [58] proposed to perform hysteresis thresholding
using thresholds that are calculated from the image in order to be independent of the lighting
conditions (see Figure 3-13).

Figure 3-13 The black part consists of strong edge points. The gray part consists of weak edge points.
Hysteresis thresholding selects the strong edge points, and all weak edge points connected
to them. In this case the weak edge points at the right side are disregarded as they do not
connect to strong edge points

First, the number of strong edges Nstrong to be found is defined as:

strong strong max

N p N= ⋅

with pstrong a user-specified proportion of all ridge points Nmax. The Nstrong points with the
largest gradient magnitudes are labeled as strong edges. To determine the corresponding
threshold tstrong, a histogram h is made for the gradient magnitude of the ridge points. We use a
histogram with 65536 bins, so one bin for each possible value of our integer gradient
magnitude. Now the threshold can be determined as:

65535

find for which ()

strong

strong strong maxt h i p N

i=t

= ⋅∑

54 CHAPTER 3. IMAGE BASED POSE TRACKING

in which i is the bin-number in the histogram. By definition the threshold for weak edges is:

weak weak strong

t p t= ⋅

in which
weak

p is a user specified parameter. Points with gradient magnitudes between

thresholds
weak

t and
high

t belong to weak edges, while points with a gradient magnitude greater

than
high

t are classified as strong edge points. A ridge point detected earlier is classified as an

edge, only if it belongs to a strong edge or if it belongs to a weak edge that is connected -
directly or indirectly via other weak edge points - to a strong edge point. What we thus obtain
are thin curves of the presumed edges in the image.

When the images are not too saturated, the method above is quite useful. However, too high a
threshold may be chosen when large parts of the image are saturated, e.g. due to reflections of
direct sunlight through windows, or due to office lights. Therefore, it might be better in those
cases to set only a low-threshold with a value above the noise level in the gradient magnitude
output. For instance:

,

3
low noise G

t σ= (3.36)

Although more edges are found than in the Canny case, we will always have our true edges
included as long as the edge contrast is high enough. This also speeds up the edge detection, as
the thresholding is not done twice, albeit at the expense of processing more edges later on.
Another reason to use only a low low-threshold is to be able to detect markers that are not
well illuminated. In office buildings, some markers will be well illuminated and others will not,
even within a single image.

Edge detection using second order derivatives

The last steps of thinning and thresholding can also be used with edge detectors that use the
second order derivatives. The two most common filters are:

()
2

1
and

second order derivative in
Laplace

the gradient direction

xx xy xx y

xx yy gg

xy yy y

I I II I
I I SDGD I

I I IG

  
= + = =   

  
∆

 (3.37)

Marr & Hildreth [72] showed that the simple, linear Laplace operator produces zero crossings
on straight edges and generally provides closed contours. Haralick [73] suggested to use the
SDGD operator to detect edges, as the intensity changes most in the gradient direction, and
therefore the zero crossing has the highest accuracy in that direction. Both filters are roughly
equivalent, but van Verbeek & van Vliet [74] show that when the edges are curved, the
operators yield their zero crossings on opposite sides of the real edge; hence, they proposed
their better performing summation (PLUS) operator. The Laplace has crossing outside the
curve and outside the corner [75], and the SDGD inside. As our marker only has curved edges
at the corners, and the curvature is high there (R < 6 px), the Laplacian then has higher
accuracy than the SDGD in presence of noise. However, we still consider the SDGD because
we want to easily detect corners on the edge only (combined edge and corner detection) and
finding the edge always inside a corner proves to be advantageous.

3.5. EDGE DETECTION 55

Again, we need smoothing while filtering. With Gaussian smoothing, we will obtain the
Laplacian of Gaussian (LoG) convolution kernel that can be approximated in many ways.
Possible 3 x 3 convolution kernels are:

0 1 0 1 1 1 1 2 1

1 4 1 , 1 8 1 , 2 12 2

0 1 0 1 1 1 1 2 1

− − − −     
     − − − − −     
     − − − −     

 (3.38)

The difference between the filters is how they suppress noise, and how nearby edges affect
each other. These kernels are also very sensitive to noise. For noise reduction we found that
we need a LoG with Gaussian scale of σ = 1 on a kernel of minimal 7 x 7 pixels.

A reason to use the LoG is that the second order derivative is steep near an edge. In case of a
broad edge, the maximum of the gradient is more susceptible to noise than the zero crossing
of the Laplacian. In our case, with sharp edges, the Laplacian does not have that advantage.
Zero crossings can be detected by looking at the neighborhood of each pixel and looking for a
sign change in the LoG value:

1 Q () such that () 0 () 0 () - ()
()

0 otherwise

N P I P I Q I Q I P t
zerocross P

 ∃ ∈ < ∧ > ∧ >
=  
 

∆ ∆ ∆ ∆

 (3.39)

with ∆I(P) the output of a second derivative operator at point P, N(P) a neighborhood around
the pixel P, and t a threshold to suppress false detection due to noise. Typically, a 4-connected
or 8-connected neighborhood is chosen. The threshold can be chosen as a factor times σnoise,
and a double threshold can be used to remove weak edges. After thinning, thin edges are
obtained for further processing.

The LoG can be efficiently calculated using four 1D filters; this makes the computational
complexity comparable to calculating the gradient magnitude. However, the filter size needed
is larger, 7 x 7 minimum. The LoG is also more sensitive to noise. Even with a good threshold
t more false edge points will be found. An extra threshold on the gradient magnitude can be
used to further suppress false edge points, but that requires extra time-consuming operations.

A well-known property of the Laplacian is the fact that it generates only closed contours at its
zero-crossings. These contours will be opened by the threshold t, but still many more closed
contours will be found than when using non-maximum suppression. As we will show later, we
select candidate markers by requiring a contour to be closed, so if we use the Laplacian many
more candidate markers will be found.

The other second-order-derivative edge detection method uses the SDGD operator in
eq.(3.37). The SDGD needs five derivative filters. Normally these five filters are implemented
using Gaussian kernels with the same smoothing scale. The computational load is too great for
our purposes, but we can rewrite the formulas:

56 CHAPTER 3. IMAGE BASED POSE TRACKING

() ()

() ()

()

2 2

1 1

2

1 1

2

1

2 2

2 2

x y

x

x x xx x xy xx xyG G
y

x

y y xy y yy xy yyG G
y

x

g x yG
y

G I I

I
G I I I I I I

I

I
G I I I I I I

I

G
G I I SDGD

G

= +

 
= + =  

 

 
= + =  

 

 
= = 

 

 (3.40)

Note that only four derivatives are needed when we first compute the gradient magnitude.
Furthermore, if we can compute the derivative of the gradient magnitude in the gradient
direction directly by interpolating the gradient magnitude values in the gradient direction, only
three derivatives are needed. The interpolation can be done similar as in the case of non-
maximum suppression. If we look closely at the formulas, we see that determining whether a
point is a maximum in the gradient direction in formula (3.34), is exactly the same as
calculating the derivatives using Robert’s derivative operator on the two interpolated points in
the gradient orientation followed by looking for a zero crossing.

The normal SDGD method is preferred because all derivatives are taken at the same scale and
preferably using Gaussian derivatives. In theory, the gradient of the gradient magnitude
method is equivalent, but because of the crude interpolation function and the very simple
derivatives used, the output is not optimal. However, it proved good enough for our purposes.
We shall not investigate the ideal Gaussian-based SDGD method further.

3.5.2 Sub-pixel position

We know that using a first order derivative, the edge lies on a maximum of the gradient
magnitude. In practice, we obtain an approximation of it at a uniform grid of sample positions.
The sub-pixel position of the maximum can be determined by fitting a continuous Gaussian
(our edge model) to the sampled gradient magnitude and calculating the top of the fitted
function. Let us look at the model of our edge again, now only in 1D:

2

1
2

2 2

1 1 ()
2 2 2

1 1 + for 1
2

e

e

e e

x x
y b a erf

x xdy

dx

x x x xdy

dx

e

σ

σ

ε
σ σ

− 
= + ⋅ + 

 

− 
−∝  

 

− −   
∝ −    

   
≪

 (3.41)

Using a first order Taylor series approximation, the top is found by calculating the position of
the maximum of the resulting parabola. Let x0 be the integer position of the detected edge
pixel and xe be the real edge position, then the sub-pixel estimate of the top, or edge, is given
by:

3.5. EDGE DETECTION 57

()

0 0

0

0 0 0

(1) (1)
ˆ

2 (1) (1) 2 ()
e

G x G x
x x

G x G x G x

+ − −
= +

+ + − −
 (3.42)

To use this formula in 2D, the gradient magnitude should be interpolated perpendicular to the
edge with a distance of one pixel. For fast operation we do not interpolate, but evaluate the
function on the horizontal or vertical axis only. Consequently, the sub-pixel accuracy will vary
with the angle of the edge. When the edge is a bit blurred, it might be beneficial to evaluate the
formula, not for pixels at x0 ± 1 but for pixels at x0 ± 2. Because the difference in gradient
magnitude between those pixels and the centre pixel is higher, noise has less influence.
However, in that case a first order Taylor series approximation does not hold for sharp edges.
With d the distance between evaluated pixels, equation (3.42) can be rewritten as:

()

0 0

0

0 0 0

() ()
ˆ

2 () () 2 ()
e

G x d G x d
x x d

G x d G x d G x

+ − −
= +

+ + − −
 (3.43)

When the edge scale σ is small, as in our case, this approach may not be accurate enough. If
we first take the logarithm of the gradient magnitude, a truly parabolic behavior is obtained
according to the model in (3.41) .

The next section presents the accuracy of all the presented edge detection methods for
simulated images. Here we only show the effect of using the logarithm of the gradient
magnitudes found in the real data of Section 3.5.

For all 50 frames of each of the 100 stage positions, the edge positions were determined using
standard, floating point, Gaussian derivatives with scale σ=1.0. The estimation was done with
and without using the logarithm of gradient magnitude. Because no ground truth was available,
we had to estimate the real edge position. The micro stage was controlled, so for each estimate
we have a relative metric distance from the starting position. The relation between the edge-
position in the image and the real edge-position is linear (after lens correction), so a linear
function of the micro stage position was fit through the measured image-positions. This gold
standard was used to calculate the position error of both the logarithmic and non-logarithmic
edge detectors. The mean and standard deviation of the position error are plotted in Figure
3-14 versus the estimated ground truth image-position, for the non-logarithmic edge detector.

12 14 16 18 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Vertical step edge localisation accuracy on a Jai camera

At every edge position 50 frames were taken

m
e

a
n

 p
o

s
it
io

n
 e

rr
o

r
(p

ix
)

edge position (pix)
12 14 16 18 20

0.006

0.008

0.01

0.012

0.014

0.016

Vertical step edge localisation accuracy on a Jai camera

At every edge position 50 frames were taken

s
td

d
e

v
 o

f
p

o
s
it
io

n
 (

p
ix

)

edge position (pix)

Figure 3-14 Mean error and standard deviation of the position estimate using a standard Gaussian
derivative with scale σ=1.0. The truth was estimated with a least-squares fit (see text).

58 CHAPTER 3. IMAGE BASED POSE TRACKING

The remarkable sine like error in the mean error, or bias, can be explained by the mismatch
between the presumed parabolic behavior of the gradient magnitude on an edge, and the
actual behavior of the gradient magnitude, which is more Gaussian like. As shown in the

figure, an accuracy of about 1/ 25 of a pixel can be seen. If we correct for the Gaussian profile
by taking the logarithm of the gradient magnitude before fitting the parabola, we obtain
substantial smaller error of about 1/50 of a pixel, as seen in Figure 3-15.

12 14 16 18 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Vertical step edge localisation accuracy on a Jai camera

At every edge position 50 frames were taken

m
e

a
n

 p
o

s
it
io

n
 e

rr
o

r
(p

ix
)

edge position (pix)
12 14 16 18 20

0.008

0.009

0.01

0.011

0.012

0.013

0.014

Vertical step edge localisation accuracy on a Jai camera

At every edge position 50 frames were taken

s
td

d
e

v
 o

f
p

o
s
it
io

n
 (

p
ix

)

edge position (pix)

Figure 3-15 Mean error and standard deviation of the position estimate using the logarithm
of the gradient magnitude produced by a standard Gaussian edge detector with
scale σ=1.0. The truth was estimated with a least square fit (see text above).

Note that this result is too optimistic since in practice an integer version of the Gaussian was
implemented for speed reasons. The contrast-to-noise ratio in the dataset was around 40dB, so
the effect of noise is not measured here either. Furthermore, the simpler detectors use
derivative filters that are not rotational invariant. These effects will be studied in section 3.5.3.

The zero-crossing detector uses the LoG. Operated on our edge model in 1D (an error
function), it is the first order derivative of a Gaussian:

()
2

2

2 2

22

2 2

1
2

 - for 1

ee

e e

x xx xd y
e

dx

x x x xd y

dx

σσ

σσ

− − −∝ − ⋅  
 

− − 
≈  

 
≪

 (3.44)

So normally, a linear interpolation is done between two neighboring pixels to find the position
with LoG=0. Let x0 be the position of the detected edge pixel, with the real edge to the right:

 ()0 0 0 0
ˆ () / () (1)

e zerocross
LoG LoG LoGx x x x x x= = + − + (3.45)

In 2D, it is necessary to find the direction of the gradient first, because only in that direction
the zero crossing will be accurate. This can be done by looking at the four orientations in the
8-connected neighborhood and selecting that direction with the highest difference in LoG
value. However, because the assumption for using the first order Taylor series approximation
does not hold, as σ < 1, this method may not be accurate. Looking at Figure 3-11, one can see
that for an edge scale of σ=1 pixel the LoG values of neighboring pixels fall outside the linear
area.

3.5. EDGE DETECTION 59

To test the accuracy, we again used the same measurement data to find the edge detector
accuracy. Figure 3-16 gives the mean and standard deviation of the estimated position error of
the edge, using a proper floating point Laplacian kernel with σ =1.5 px. Perpendicular to the
edge, the sub-pixel position was estimated using a linear interpolation on the two points
around the zero crossing (solid blue line), and using the analytical zero crossing of a cubic
spline interpolation on the 4x1 points around the zero crossing (dashed red line). The same
estimated ground truth as in the previous figures was used to calculate the position errors.

12 14 16 18 20
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

edge position (pix)

m
e

a
n

 p
o

s
it
io

n
 e

rr
o

r
(p

ix
)

Vertical step edge localisation accuracy on a Jai camera

At every edge position 50 frames were taken

linear

cubic

12 14 16 18 20

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

edge position (pix)

s
td

d
e

v
 o

f
p

o
s
it
io

n
 (

p
ix

)

Vertical step edge localisation accuracy on a Jai camera

At every edge position 50 frames were taken

linear

cubic

Figure 3-16 Mean error and standard deviation of the position estimate using the zero
crossings of a LoG. The truth was estimated using a least square fit.

It is clearly seen that the cubic spline interpolation is necessary to decrease the location error
that is dependent on the real sub-pixel position. Then it is comparable to the log gradient
magnitude method. Nevertheless, even for this filter with Gaussian scale σ = 1.5, the error due
to noise is bigger than the gradient magnitude methods, while the processing time is longer as
well. Because of these properties of the LoG, we do not consider it further.

3.5.3 Effect of noise

In this section, the influence of noise in the image is determined for the two stages of edge
detection. In synthetic images, we first determine if a closed contour can be detected under
various signal-to-noise ratios, and secondly we determine the location error of the sub-pixel
edge position vs. noise.

For the first stage, we generated an image with four discs (Figure 3-17). The borders of the
discs form four circular contours, all with the same edge contrast. The radii are 20 px, 40 px,
60 px and 80 px. The measured edge scale of σ = 0.8 px was used, but also an edge scale of
σ=1.5 px was tested to see the effect of defocusing.

60 CHAPTER 3. IMAGE BASED POSE TRACKING

Figure 3-17 Synthetic image with four circular edge contours with the same contrast.

The edge σ is set to 0.8 px or 1.2 px. The noise is fixed at σ = 2 levels

After applying our Canny edge detector, we only inspect the 4 real contours. A contour is
found if and only if the contour is closed and has no branches. The test was done on 1000
images, and detection ratio for each radius was calculated. The noise was generated with a
standard deviation σ=2 grey-levels, and the edge contrast was varied between 6 and 200 levels,
which gives a CNR of 10dB to 40dB. Figure 3-18 presents the results for different first order
edge detectors.

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 80 sigma=0.8

sym

Prewitt

Gauss

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 60 sigma=0.8

sym

Prewitt

Gauss

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 40 sigma=0.8

sym

Prewitt

Gauss

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 20 sigma=0.8

sym

Prewitt

Gauss

Figure 3-18 Detection percentage per radius for different signal to noise ratios, with

edge scale σ = 0.8

3.5. EDGE DETECTION 61

Of course, the longer the contour, the higher the probability that one edge point is missed.
Practical contour lengths in our application have equivalent radii between 10 and 80 pixels. To
have more than 80 percent success the CNR should be higher than 19dB with the best
derivative, and 27dB with the simplest one. For the given noise-level, this converts to an edge
contrast of 9 and 23 levels respectively.

The experiment can be repeated for a blurred edge, simulating defocus. Figure 3-19 shows the
result with an edge scale of σ=1.5px. When compared to the previous test, the curves seem
shifted to the right over a distance of about 10 dB. Using the Prewitt filter, the CNR should be
higher than 31 dB. With the given noise level, this translates to an edge contrast of 72 grey-
levels.

To determine the accuracy in sub-pixel edge position, we generate straight edges of 100 pixels
length under different angles. The edge scale was either σ =0.8 px or σ =1.2 px simulating out-
of-focus blur or motion blur. We chose to use three angles: 50°, 67° and 88°. Because we want
to have many different sub-pixel positions, 45° and 90° were not used. For different contrast
to noise ratios, the error in position is determined for all edge pixels in 50 noisy images.

The parameters we could set for our edge detectors were:

- Type of filter is Symmetric, Prewitt or Gaussian
- Logarithm of the gradient magnitude or normal gradient magnitude
- Additional [1 1 1] smoothing perpendicular to the Cartesian edge direction
- Distance d between evaluated points in eq. (3.43) is 1 or 2
- Use the square of the gradient before smoothing or not (square root costs time)

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 80 sigma=1.5

sym

Prewitt

Gauss

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 60 sigma=1.5

sym

Prewitt

Gauss

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 40 sigma=1.5

sym

Prewitt

Gauss

10 20 30 40
0

20

40

60

80

100

CNR (dB)

D
e

te
c
ti
o

n
 (

%
)

circle radius = 20 sigma=1.5

sym

Prewitt

Gauss

Figure 3-19 Detection percentage per radius for different contrast to noise ratios, with edge

scale σ=1.5 px

62 CHAPTER 3. IMAGE BASED POSE TRACKING

This resulted in 48 different possible edge detectors that we ran on the six different generated
edges. The standard deviation of the error was calculated for every combination, and we are
interested in the maximum standard deviation for each detector over the six edges. Figure 3-20
shows the maximum standard deviation versus contrast-to-noise ratio for all detectors. The
lines in grey represent the detectors that do not use the logarithm. It can be clearly seen that
when the model is incorrect, a residual error will be present even when there is no noise. The
detectors of which the residual error is very big are the detectors that do the parabolic fit at a
distance of two pixels. We conclude that in case of a sharp edge, the model is not correct
anymore. The lowest line in the plot is the edge detector that uses the logarithm, the Gaussian
filter, extra smoothing and the gradient magnitude squared, with a fit distance of two pixels.
This is the best detector, but also the most expensive one. The two next-best detectors use
either no additional smoothing or use the Prewitt filter instead of the Gaussian derivatives
respectively.

20 22 24 26 28 30 32 34 36 38 40
10

−2

10
−1

10
0

m
ax

 s
td

de
v

(p
x)

CNR (dB)

maximum standard deviation of the error vs CNR
for different filters, max edge sigma=1.2

Figure 3-20 Maximum standard deviation of the position error versus CNR over all
simulated edges for all implemented edge detectors. The grey lines are
detectors that do not use the logarithm of the gradient magnitude. They reach
a minimum error at some CNR value, meaning that the error is model limited
and not noise limited

The data in the figure can be used to determine which detectors satisfy a given accuracy
requirement for a given CNR. If we also determine the time it takes each detector to complete,
the program can select the cheapest detector that satisfies the requirements, allowing for
dynamic adaptation of the algorithms to the data. In addition, when there are time
requirements, we can select the best performing detector satisfying them.

3.5. EDGE DETECTION 63

Table 3-3 gives the processing times for the three different filters applied to a sequence of
images of an office room. The sub-pixel edge detectors are only used around interesting edge
points of candidate markers. We found that even in cluttered backgrounds the number of
points is typically 200. Even for 1000 points the total maximum processing time for the most
demanding detector is only 0.75 ms.

Table 3-3: Processing times in milliseconds of the three
derivative filters applied to a 1280x1024 image. This was done
on an Intel Core 2 Duo processor @2.0GHz (one core used).

Symmetric Filter 6.3

Prewitt Filter 7.5

Integer Gaussian Filter 9.8

Integer Gaussian (no SSE) 40

It may be clear that the processing times of the different filters do not differ that much. The
total processing time of a frame was measured to be in the range 20-45 ms, so a 3.5 ms
speedup using a simpler filter does not help much in our case. The Streaming SIMD
Extensions (SSE) instruction set reduces the total processing time by a factor of two.

3.5.4 Influence of nearby edges

When a marker is viewed from far away, its edges will move close to each other. In this section
we determine the effect of nearby edges on the estimated edge position. To that end, we
generate a vertical line without noise and determine the error as function of the thickness.
Obviously, image-processing parameters that are of influence are the width of the filter used to
find the edges and the evaluation distance used in calculating the top of the gradient
magnitude. We calculated the bias and standard deviation for some detectors of different filter
types and distance values. The notation for these filters is shown in Table 3-4:

Table 3-4 : Notation for the different filters used

f=0 Symmetric derivative filter

f=1 Prewitt derivative filter

f=2 Integer Gaussian derivative filter

d=1 Evaluation distance of 1 pixel

d=2 Evaluation distance of 2 pixels

The results are depicted in Figure 3-21 and Figure 3-22. We generated an almost horizontal
line and an almost diagonal line to see the effect of different edge angles. The edge contrast
was set to 70 levels, according to real world experience. An edge scale of 1.2px was also

64 CHAPTER 3. IMAGE BASED POSE TRACKING

simulated to see the effect of defocusing. From the figures, it is clear that detectors with an
evaluation distance d of two pixels show a bias and large RMS error on line widths of less than
five pixels. This was to be expected as those detectors use a bigger neighborhood to calculate
the edge position and thus ‘feel’ the second edge already at a larger edge distance. The best
detector in the presence of noise (f=2 d=2) already starts to have a bias at a line width of six
pixels. We are able to conclude from this, that when a width of five pixels or less is expected, a
detector with a distance of one should be used, and then preferably using the simplest
derivative (f=0). On the other hand, that detector is more sensitive to noise, so the noise effect
has to be weighed against the increase in bias and RMS error. The increase of the RMS error is
due to an increasingly incorrect modeled edge. Without noise, the actual error in edge position
will depend on the real sub-pixel position. The estimate will have an overshoot or undershoot
for the sub-pixel estimate. Consequently, when neighboring edge pixels have similar sub-pixel
shifts – e.g. an almost vertical line – the error cannot be diminished by combining estimates as
in the case of noise. Therefore, when the line thickness is small, slanted lines are preferred

since the effective thickness is then greater, up to a factor of 2 . In addition, the effective
scale of the edge is larger, meaning that the edge detectors using an evaluation distance of d=2
can be used with a lower modeling error.

3.5. EDGE DETECTION 65

3 4 5 6 7 8 9
-0.1

-0.05

0

0.05

0.1

0.15

0.2

line width (px)

m
e
a
n
 l
o
c
a
ti
o
n
 e

rr
o
r

(p
x
)

bias vs line width

σ=0.8 angle=0.0°

f=0 d=1

f=0 d=2

f=1 d=1

f=1 d=2

f=2 d=1

f=2 d=2

3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

line width (px)
m

e
a
n
 l
o
c
a
ti
o
n
 e

rr
o
r

(p
x
)

bias vs line width

σ=0.8 angle=45.0°

3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

line width (px)

m
e

a
n

 l
o

c
a

ti
o

n
 e

rr
o

r
(p

x
)

bias vs line width

σ=1.2 angle=0.0°

3 4 5 6 7 8 9

0

0.05

0.1

0.15

0.2

line width (px)

m
e

a
n

 l
o

c
a

ti
o

n
 e

rr
o

r
(p

x
)

bias vs line width

σ=1.2 angle=45.0°

Figure 3-21 Mean edge location error as function of the line thickness. For every thickness and detector,
180 edge points were generated with a sub-pixel location between -0.5 and +0.5 px. Edge
contrast = 70 levels. The letters f and d denote the type of filter, see Table 3-4

66 CHAPTER 3. IMAGE BASED POSE TRACKING

rms error vs line width

σ=0.8 angle=0.0°

rm
s
 l
o

c
a

ti
o

n
 e

rr
o

r
(p

x
)

line width (px)

f=0 d=1

f=0 d=2

f=1 d=1

f=1 d=2

f=2 d=1

f=2 d=2

 line width (px)

rms error vs line width

rm
s
 l
o

c
a

ti
o

n
 e

rr
o

r
(p

x
)

σ=0.8 angle=45.0°

rms error vs line width

σ=1.2 angle=0.0°

rm
s
 l
o
c
a
ti
o
n
 e

rr
o
r

(p
x
)

line width (px)

rms error vs line width

σ=1.2 angle=45.0°

rm
s
 l
o
c
a
ti
o
n
 e

rr
o
r

(p
x
)

line width (px)

Figure 3-22 RMS edge location error as function of the line thickness. For every thickness and detector,
180 edge points were generated with a sub-pixel location between -0.5 and +0.5 px. Edge
contrast = 70 levels. The letters f and d denote the type of filter, see Table 3-4

One may notice that the RMS error never reaches zero. The three most important reasons are:

• Only integer values were used during filtering, where floating-point numbers are more
precise.

• The tail of the Gaussian derivative kernel was cut-off by truncating the filter at a
width of 3 or 5 pixels.

3.6. CORNER AND SADDLE-POINT DETECTION 67

• The intensity values of an image are discrete; therefore, when a low edge contrast is
present, for instance 10 levels, a 0.5 level error is a percentual error of 5%
(quantization noise).

Looking at Figure 3-22 with the RMS modeling error, we cannot determine a single best
detector, as the performance is dependent on the angle of the line and the scale of the edge.
Overall it seems the detector with the integer Gaussian derivatives (f=2) and the evaluation
distance of 1 pixel (d=1) is a good choice at all line thicknesses, with an RMS error of less than
0.01 px with a line thickness of 5 px or more. Its bias, however, is only below 0.01 px when
the edge scale is 0.8 px. When the edge is blurred, the bias increases to 0.05 px. The bias of the
simplest detector (symmetric derivative f=0, evaluation distance of 1 pixel d=1) is always
below 0.015 px, but its RMS error is nearly twice as big as the aforementioned detector, with a
maximum of 0.016 px. When the line thickness is near five pixels, we therefore recommend
using a simpler detector since a fixed bias is worse than the effect of noise. The bias will be
dependent on the angle, edge scale and the line width. To correct this, those parameters
should be measured, which increases processing time considerably. Noise on the other hand
can be suppressed in time.

3.6 Corner and saddle-point detection

Corners and saddle-points are alike in the sense that both have a two dimensional structure.
This makes them useful as point features. A saddle point has principal curvatures of the
intensity of opposite sign. In a checkerboard pattern, the saddle points are located where two
edges cross. We use corners in our pose estimation algorithm and saddle-points during
lens/camera calibration. The models we use for saddle-points and corners are shown in Figure
3-23 and Figure 3-24. Note that the corner model is actually the same as the saddle-point
model with one black rectangle removed.

α

β

y-axisα

β

y-axis

Figure 3-23 A saddle point: two edges cross within the grey circle.

α is a rotation of the saddle point and β is the angle between legs.

68 CHAPTER 3. IMAGE BASED POSE TRACKING

α

β

y-axisα

β

y-axis

Figure 3-24 A corner: two edge-segments meet within the grey circle.

α is a rotation of the entire corner and β is the angle between legs.

Although the corners in our marker have an angle of β=90°, their projections on the image
plane exhibit other angles as well. To determine what corner angles β we can expect in
practice, we simulated a camera looking at a marker-plane with a 90-degree corner. The most
important parameter is the angle under which a marker is seen, in this experiment called pitch.
This pitch is the angle between the optical axis of the camera and the normal of the plane of
the marker. For many values for the pitch in the range 0-90°, the minimum and maximum
corner angles β were determined by looping over a range of values of the two other
independent 3D rotations. That range was only restricted in the following way: because we
have a camera lens with an opening angle of 90°, the corners can only be viewed at a
maximum angle of 45° from the camera’s optical axis. Figure 3-25 shows the lower and upper
limits for the corner angles β. The grey horizontal lines help to see the range at values for the
pitch of 0°, 5°, 10°, 15° to 70°.

3.6. CORNER AND SADDLE-POINT DETECTION 69

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180

marker pitch angle (deg)

co
rn

er
 a

ng
le

(d
eg

)

Possible corner angles vs marker pitch

Figure 3-25 Lower and upper limits (black) of the corner angles (β) vs. pitch of the marker. Helper lines
are drawn in grey at every 5° of the pitch.

If we want to detect the marker with a pitch of 60° (as stated in the fiducial layout section), the
corner angles vary between 40° and 140°. This result is equally valid for the saddle-points.

As in the case of edge detecting, the corners can be found using the first-order image intensity
derivatives, or the second order derivatives. It is a well-known fact that corners are rounded
off when using the first derivative only, because of blurring and filtering. The position of the
corner will always have a systematic error, so we cannot use those detectors for accurate
corner localization without an accurate estimate for this error. However, those detectors could
be used to reliably detect the corners.

While developing different methods to detect markers, we found that first detecting corners
and then linking the corners via edges was complicated. We decided to first detect the edges
using the Canny method, and then find the corners. Since we are already actively locating the
edges, it would be very convenient to be able to detect the corners by only looking at edges.
We will present a few standard corner detectors found in the literature and test their ability to
find the corners in the edge map. We will also present a corner detector that uses the
intersection of two straight lines to locate a corner more accurately. The latter does not have a
bias, so it can be used for pose estimation.

70 CHAPTER 3. IMAGE BASED POSE TRACKING

First, we present and evaluate a known saddle point detector that we use in our camera/lens
calibration method presented in section 3.7. Since saddle-points and corners share some
properties, this detector is also evaluated on its ability to detect corners.

3.6.1 DET Saddle point detector

We investigated detecting saddle points because our first marker consisted of six saddle-points
[49]. Currently we use our saddle point detector only for calibration purposes. To detect saddle
points, the Hessian of the image – which consists of all second order derivatives - can be used.
For a pixel, the eigenvalues of this Hessian give an indication of the grey-value landscape
around it. When the eigenvalues have opposite sign, the pixel is near a saddle point. Exactly at
the saddle point, the gradient magnitude will be zero and the product of the eigenvalues will
show a minimum. This product is equivalent to the determinant of the Hessian. Beaudet called
this detector DET [76].

The saddle points can thus be detected by finding local minima in the determinant of the
Hessian of the image. Let the output image ()g p

�
 be the negative determinant of the input

image so that we can look for points with a local maximum in the output:

 ()2()
xx xy

xy xx yy

yx yy

I I
g p I I I

I I
= − = −

�
 (3.46)

In our calibration method, the derivatives are implemented using the derivative of a Gaussian
with scale 3.0σ = . To find the saddle points we threshold the output at tdetector

 []detector

1
max ()

2 p
t g p= �

�
 (3.47)

and apply a peak detection filter in a 3 x 3 neighborhood N of each point found. This gives us
a set of saddle points, S:

 { detector| () max[()] ()
q N

S p g p g p q g p t
∈

= = + >∧�

� � � � �
 (3.48)

In general, the output of the filter can be described by a quadratic function in the vicinity of a
saddle point. To obtain sub-pixel accuracy, we can fit this function to the local image data and
derive the peak location from the model. In our paper, we assumed a circle symmetric
behavior, which is only true when the two edges are orthogonal, and a parabolic fit was done.
Currently we fit a full second-order function polynomial function.

The true saddle point is located at an offset with respect to the point in the set S. We model
the output image in the vicinity of a saddle point (xm ,ym) as:

3.6. CORNER AND SADDLE-POINT DETECTION 71

() ()() ()
()

2 2

2 2 2 2

(,) or

1

2

2

m m m m

m m m m

m m

m m

g x y d a x x b x x y y c y y

x y x xy y d ax bx y cy

ax by

cy bx

a

b

c

= + − + − − + −

 + + +
 

− − 
 − −

= =  
 
 
  
 

y Ax
 (3.49)

For every pixel in the 3 x 3 neighborhood, a row is added in y with the pixel value and a
corresponding row with the x and y coordinates in A. With a standard least-squares solution,
we find that

 () 1
T T

−
=x A A A y (3.50)

If we translate the coordinate system such that the origin is the position of the estimated

saddle point, we can pre-calculate () 1
T T

−
A A A to speed up processing. The sub-pixel position

can be calculated from:

2

3

1

4 5 2

5 6 3

2

2

2

2

m

m

m

m

xa b

yb c

x

y

−

− −    
=    − −    

− −     
=     − −     

x

x

x x x

x x x

 (3.51)

The accuracy of this detector was determined by generating saddle points with varying rotation

α, angle between the edges β, and sub-pixel position. To generate a saddle point we first made
a binary image of 1500 x 1500 pixels with a single saddle point. Then we smoothed the image
with a Gaussian blur with a scale of 50 times the edge scale. After decimation with a factor of
50 the result is a proper saddle point image of 30 x 30 pixels. For each such image, 50
instantiations of Gaussian noise was added. Using our saddle point detector the error in
position was recorded for all generated images. Figure 3-26 shows the results as a function of
the angles α and β. For each pair of angles, the standard deviation of the error was determined
over all generated sub-pixel positions. The systematic error was below 0.001 px for β in the
range of 56-135°.

72 CHAPTER 3. IMAGE BASED POSE TRACKING

0 22.5 45 67.5 90 112.5 135 157.5

11.25
22.5

33.75
45

56.25
67.5

78.75
90

101.25
112.5

123.75
135

146.25
157.5

168.75

0.01

0.01

0.01

0.01

0.01 0.01

0.02

0.02
0.02

0.02

0.02

0.02

0.05

0.05
0.05

0.05
0.05

0.05

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.
2

0.2
0.2

0.2

β
(d

eg
)

α (deg)

Full 2nd order DET detector
stddev of ∆y (pixels) vs. α and β

Figure 3-26 Precision of y position of detected saddle points vs. rotation angle α and angle between the

edges β. Gaussian blur of scale σ = 0.8 pixels (simulation of the optical system). Scale of the

Gaussian derivative filters σ = 3.0 pixels. CNR = 38 dB. When this figure is shifted 90°

over α, or flipped around β = 90°, the x position error is obtained. The systematic error was
below 0.001 pixels for β in the range of 56-135°.

If the angle β between the edges stays in the range of 57-123°, the standard deviation is below
0.05 pixels. Figure 3-25 shows that this is the case when the point is viewed with a maximum
pitch of 45°. This is useful information for the calibration in section 3.7. Of course, during
calibration, we can record many images from the same camera position to reduce the effect of
noise, thereby improving the precision.

3.6.2 DET as corner detector

The saddle-point detector can also be used as a corner detector. Figure 3-27 shows the result
of applying the technique to detect corners. The generated corners are black inside and white
outside, see the model in Figure 3-24. We used a low edge contrast of 50 levels, which yields a
contrast-to-noise ratio of 28dB. Apart from using a corner model instead of a saddle point
model, the experiment was done in the same way as described in the previous section.

3.6. CORNER AND SADDLE-POINT DETECTION 73

0 22.5 45 67.5 90 112.5 135 157.5

11.25
22.5

33.75
45

56.25
67.5

78.75
90

101.25
112.5

123.75
135

146.25
157.5

168.75

0.6

0.60.6

0.
6

0.
6

0.6
0.6

1.21.21.2

1.2
1.2

1.81.8

1.
8 2.42.4

3

β
(d

eg
)

α (deg)

Hessian detector
mean of ∆y (pixels) vs. α and β

0 22.5 45 67.5 90 112.5 135 157.5

11.25
22.5

33.75
45

56.25
67.5

78.75
90

101.25
112.5

123.75
135

146.25
157.5

168.75

0.
05

0.1

0.1

0.2

0.
2

0.2

0.
2

0.4

0.
40.4

0.4

0.4

0.4

0.8

0.8

0.8

0.8

0.8 0.8

β
(d

eg
)

α (deg)

Hessian detector
stddev of ∆y (pixels) vs. α and β

Figure 3-27 Mean (accuracy) and standard deviation (precision) of the error in y position of the detected

corner point vs. rotation angle α and angle between the legs β. Gaussian optic blur of scale
σ = 0.8 pixels. Gaussian derivatives of scale σ = 2.3 pixels. CNR = 28 dB.

74 CHAPTER 3. IMAGE BASED POSE TRACKING

The figure shows that only in case of a 90-degree corner, this detector has no bias (systematic
error). Although the y-position error is zero at a rotation angle α=0° and α=180°, the x-
position error at these angles is not zero. The x-position error can be generated from the
figure by shifting the results 90° on the α-axis.

Since our model is a point symmetric function and corners are not point symmetric, a bias was
to be expected. This bias will be lower when the Gaussian derivatives are taken at a smaller
scale, but then the position is more influenced by noise. Even when the scale is σ=2.3 pixels,
the standard deviation of the position is only below 0.1 pixels in a very small region. This
detector is therefore not suited to locate corners precisely.

We also tested the ability of this detector to detect corners in a reliable manner. As stated
earlier, we only want to find corners on the Canny edge. Processing the edge instead of the
whole image is much faster and the edge information is already available. Figure 3-28 shows
the output of the DET filter on a corner of 90°. The filter output is shown by the height and
grayscale. The solid line represents the real edge and the dashed line represents the edge found
by the Canny edge detector.

Figure 3-28 Output of the DET filter on a simulated corner of 90°. Optic blur with σ = 0.8px, Gaussian
derivative filter with scale σ = 1.0px, and a CNR of 38 dB. The intersections of the black
lines are pixel positions. The blue solid line represents the real edge around the corner and
the broken red line represents the edge found by the Canny edge detector.

As the solid blue line shows, the DET detector shows a local maximum at the real corner
position in case of the 90-degree corner. The output on the Canny edge does show a signal
that seems to indicate a corner. However, the shape proved to be highly dependent on the
corner angle and we were unable to reliably detect corners on the Canny edge.

3.6.3 Harris-Stephens

Harris and Stephens [77] extended the idea of Moravec [78] to use a local auto-correlation
function to find corners and edges. A first order Taylor series expansion of an image yields:

 (,) (,) I II x x y y I x y x y
x y
∂ ∂+ ∆ + ∆ ≈ + ∆ + ∆
∂ ∂

 (3.52)

To estimate the auto-correlation function for an image patch W we get:

3.6. CORNER AND SADDLE-POINT DETECTION 75

()

() ()

2

2

2

2

(,) (,)
W

T

W

W

I x x y y I x y

I Ix y x y x y
x y

I I I
x x y

I I I
x y y

+ ∆ + ∆ − ≈

 ∂ ∂∆ + ∆ = ∆ ∆ ∆ ∆ ∂ ∂ 

 ∂ ∂ ∂
 ∂ ∂ ∂
 =
 ∂ ∂ ∂
 ∂ ∂ ∂ 

∑

∑

∑

M

M

 (3.53)

The patch W could be a 3 x 3 uniform weighted patch, but for isotropy, a circular weighted
function such as a Gaussian should be used. The Harris matrix M captures the structure of the
gradients at the centre of the patch, and is also known as the Gradient Structure Tensor. The
eigenvectors represent orthogonal directions of most variation. The corresponding eigenvalues
represent the amount of variation in these directions. Figure 3-29 shows the distribution of the
gradients around a corner and an edge.

1

gy

gx

1:

gy

gx

2:

2
1

gy

gx

1:

gy

gx

2:

2

Figure 3-29 Top: Gradient directions on the edge of a grey patch. Region 1 is a line and
region 2 is a corner. Bottom: The dots show the gradients in region 1 and 2. A
centered ellipse is fit around these gradients

When an edge is present, only one eigenvalue has a large value (region 1) and in case of a
perfect 90-degree corner without noise, both eigenvalues are large and equal. Harris suggested
the following measure for corners to replace the expensive computation of the eigenvalues:

 2() ()R det k Tr= − ⋅M M (3.54)

The tweaking parameter k is used to suppress edges, and has a suggested value of 0.04. When
R is positive and large, the eigenvalues are large, thus denoting a corner. When R is negative,
only one eigenvalue is large, signifying an edge; and in a homogenous patch both eigenvalues
are small, resulting in a small value for R.

76 CHAPTER 3. IMAGE BASED POSE TRACKING

A pixel can now be marked as a corner point when both the value of R is above a certain
threshold and the value is a local maximum in a certain window. The wider this window, the
fewer corners are found near each other. For a stable corner, a sub-pixel location can be
estimated by fitting a quadratic function to the output of R in a small neighborhood around
the local maximal points. The same method was used to locate saddle points, see equation
(3.49). Due to blurring, however, the detected corner position will have a systematic error that
will be in the order of the scale of the total blur on a 90-degree corner [79]. However, when
the angle β decreases, the systematic error increases, making it difficult to correct for this
error. The output of the Harris detector is given in Figure 3-30. The blue solid line represents
the output on the real edge around the corner and the dashed red line represents the output on
the edge found by the Canny edge detector.

Figure 3-30 Output of the Harris corner detection function R on a simulated corner of 90°. Optic blur
with σ = 0.8 px, Gaussian derivative filter with scale σ = 1.0 px, and a CNR of 38 dB. The
intersections of the black lines are pixel positions. The blue solid line represents the real
edge around the corner and the broken red line represents the edge found by the Canny
edge detector. The local maximum is moved inwards due to smoothing, but it lies almost on
the Canny edge

Since the gradient structure tensor uses the same first order derivatives as the Canny edge
detector, their offsets from the true corner position will be of the same order. The figure
clearly shows a local maximum with high value for the Harris corner detector output on the
Canny edge. However, this is the case only when the corner angle is around 90° or less. For
bigger angles, the corner is more line like and the output can drop even below zero. Hence, for
our purposes, a high value for R is not a good criterion to detect corners in an image.

When we use this detector on the edge only, the small values in homogeneous regions are not
encountered which gives us more freedom to specify a good threshold. In case of a straight
edge, the value R is below zero and near a corner, the value will always be higher. On the edge,
the threshold on the value R may lie near or below zero to separate edges from corners. The
difficulty, however, lies in determining the value for the threshold, as R scales with the edge
contrast.

3.6. CORNER AND SADDLE-POINT DETECTION 77

3.6.4 Haralick & Shapiro

A more robust detector was made by Haralick and Shapiro [80], also using the gradient
structure tensor. They calculate a circularity measure for the ellipse fit on the gradient
distribution (Figure 3-29) using the two eigenvalues of the structure tensor:

()

1 2

2 2

1 2

det()
4 4

()
q

tr

λ λ

λ λ
= =

+

M

M

i

This q-value is zero on a line, and one on a circle in the gradient space of Figure 3-29. A
perfect 90° corner has equal eigenvalues, and so a q-value of one. A threshold on this q-value
is used to suppress edges. Note that because of smoothing, a corner will never be perfect so a
q-value of one is never reached in practice.

Due to noise, this q-value also reaches high values in noisy homogeneous regions. Therefore,
the eigenvalues must exceed a certain threshold before using the q-value. Haralick used a
threshold on a weight measure that is called the Beaudet measure for cornerness:

 det()w = M (3.55)

This measure is high when a lot of variation in the gradients is present. Candidate corners can
be found by looking for local maxima in w that have a value above a certain threshold. By
using both measures, the detector has fewer false positives than the Harris detector.

The Beaudet measure is high when both eigenvalues of M are high. We determined that for a
reliable output of the q-value only one eigenvalue has to be high. We therefore tackle the
problem of the high q-values in homogenous regions by only using the q-value on the edge.
Instead of finding local maxima in w as Haralick does, we find local maxima in q on the edge
found by the Canny edge detector, this ensures that we only get one response for a corner,
where a simple threshold would find multiple responses. Since the q-value is not dependent on
the edge contrast, a fixed threshold can be used to find all corners.

Figure 3-31 shows the result of an experiment to determine an adequate value for the
threshold. For every value of the corner angle β we generated 648 corners with varying sub-
pixel position and rotation angle α. No noise was added and we simulated an optical system
having a Gaussian point spread function with a standard deviation of 0.8 pixels. For each
image of the generated corner, the maximum value for q was determined on the edge found by
the Canny edge detector. That value is the same as the local maximum used in our algorithm
described above. Of the 648 values, we calculated the minimum, the maximum and the mean,
depicted in the figure as the blue points with solid error bars. When the corner angle β was
low, our Canny edge detector could not always find the edge, so there were not always 648
values, but always more than 270. The red dotted line shows for various noise levels the
maximum q-value encountered when the corner angle β is 180°. For a contrast to noise ratio
of 20 dB, the threshold should be chosen around 0.2. Then we are able to detect corners
reliably with corner angles β smaller then 120°. When the CNR is 25 dB, we can detect corners
with an angle up to 150° using a threshold of 0.05. When the optical blur is increased to 1.2
pixels, simulating slight motion blur, the q-values as function of β drop a little and the
maximum detectable angle is around 10° lower.

78 CHAPTER 3. IMAGE BASED POSE TRACKING

20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q-values for optic blur of scale 0.8 pixels

Contrast to noise level [dB]

q
-v

a
lu

e

0 20 40 60 80 100 120 140 160 180

corner angle β [degrees]

Mean q-value vs. β

Max q-value vs. CNR

Figure 3-31 Values for Haralick’s q-value as function of the corner angle β and as function of
contrast to noise ratio. For every point, 648 tests were done with various rotation angles
α and sub-pixel positions. The error bars give the minimum and maximum value
encountered. The dotted line shows the maximum q-value due to noise on a straight
line.

3.6.5 Edge intersection

In our application we always look for rectangles in the scene, i.e. straight edges connected in a
corner. If we can find those edges accurately, the intersection of those edges will also be very
accurate. If we already have an estimate of the corners, e.g. using the Haralick detector, we can
split our closed contour of the rectangle into straight pieces. Along each piece, we determine
up to 20 edge points with sub-pixel accuracy (see section 3.5.2). Through those 20 points we
then fit a straight line (Figure 3-32).

3.6. CORNER AND SADDLE-POINT DETECTION 79

Figure 3-32 Part of an image of an edge (rectangles indicate pixels), with the real edge superimposed in
white. Along each of the grey lines, a sub-pixel edge position is determined. When the edge
is longer than 20 pixels, the 20 positions will be spread equally along the edge. Because the
edge is more horizontal than vertical, the sub-pixel position is calculated through a vertical
patch of pixels.

Since we know that the edge around a corner point is smoothed, and edge points too close to
a corner do not lie on the straight line, we disregard points too close to a corner. For the
situation in Figure 3-32, the horizontal positions of the points are exact, only the vertical
position is calculated by image processing, which means a standard, least-squares fit with
uncertainty in one direction only, suffices. The general model of a line is given by:

 0ax by c+ + = (3.56)

in which a and b are parameters to be estimated. When the fit is done horizontally, then 1b ≡ −
and 0xσ ≡ , when the fit is done vertically then 1a ≡ − and 0yσ ≡ . We want to minimize the

distance to the model (3.56) of all measurement pairs (,)
i i

x y along the line in least-square

sense. In our case, the sum to minimize is given by:

 ()22

2
1

1 N

i i

i

ax by cχ
σ =

= + +∑ (3.57)

where 2σ is the uncertainty of the sub-pixel position. When fitting an almost horizontal line,
taking the partial derivatives with respect to a and c and setting to zero yields:

() ()()

()() ()()2

i i i i

i i i i i

N x y x y
a

x y x x y
c

−
=

∆

−
=

∆

∑ ∑ ∑

∑ ∑ ∑ ∑
 (3.58)

where

 ()22

i iN x x∆ = −∑ ∑ (3.59)

The uncertainties can be found by standard error propagation [81]:

2

a

i

c

N

x

σ σ

σ σ

=
∆

=
∆
∑

 (3.60)

80 CHAPTER 3. IMAGE BASED POSE TRACKING

In which σ is either the experimentally obtained standard deviation of the sub-pixel position
estimator, or the estimated standard deviation

estσ of the fit-data:

 ()2
1

1

2

N

est i i

i

ax by c
N

σ
=

= + +
− ∑ (3.61)

If the model is correct, the estimate from the fit-data is better, as the uncertainty in the
calculated position might be under or overestimated.

The intersection between two 2D lines can be calculated from the line parameters
1 1 1

(, ,)a b c

and
2 2 2

(, ,)a b c in a rather complex closed-form solution, which we do not repeat here. With

this method, the accuracy is now also dependent on the number of points in the line-fit and on
the lengths of the intersecting lines. Furthermore, as the points in the neighborhood of the
corner are discarded, the extrapolation distance from both lines to the intersection point
influences the accuracy as well. Figure 3-33 shows the extra parameters that influence
accuracy.

∅=d

β

α

∅=d

β

α

Figure 3-33 Two edges connected in a corner. The edgels within a distance d to the corner are discarded.
The rectangles show the Canny edge, and the lines are fit through the sub-pixel edge
position calculated from the edgels depicted in grey.

We tested the accuracy of our detector by simulating corners with various values for α and β.
We simulated a situation with σnoise=2 and an edge contrast of 50. This gives a CNR of 28dB.
Our edge detector then has a precision of 0.08 px, so we generated points on the lines with
that standard deviation in the position. Figure 3-34 shows the result for two different numbers
of points used for the line fit. Figure 3-35 shows the results under good lighting conditions,
where the contrast-to-noise ratio is 34dB. With a CNR of 34dB, the edge detector precision is
0.04 px.

3.6. CORNER AND SADDLE-POINT DETECTION 81

0 22.5 45 67.5 90 112.5 135 157.5

11.25
22.5

33.75
45

56.25
67.5

78.75
90

101.25
112.5

123.75
135

146.25
157.5

168.75

0.1

0.1

0.1

0.1

0.1

0.10.1

0.20.2

0.2

0.2

0.2 0.40.4

β
(d

eg
)

α (deg)

Intersection detector
stddev of ∆y (pixels) vs. α and β

0 22.5 45 67.5 90 112.5 135 157.5

11.25
22.5

33.75
45

56.25
67.5

78.75
90

101.25
112.5

123.75
135

146.25
157.5

168.75

0.04

0.04

0.04

0.
04

0.04

0.04

0.05

0.
05

0.05

0.05

0.050.05

0.05

0.10.1

0.1

0.1

0.1

0.20.2

0.2
0.2

β
(d

eg
)

α (deg)

Intersection detector
stddev of ∆y (pixels) vs. α and β

Figure 3-34 Standard deviation of the corner position’s y-value. Edgels within 4 pixels distance are not
used (d=4). CNR=28dB Top: 10 points with lines of 18 pixels. Bottom: 20 points with lines
of 28 pixels.

82 CHAPTER 3. IMAGE BASED POSE TRACKING

0 22.5 45 67.5 90 112.5 135 157.5 180

11.25
22.5

33.75
45

56.25
67.5

78.75
90

101.25
112.5

123.75
135

146.25
157.5

168.75

0.04

0.
04

0.04

0.04

0.04 0.04

0.
04

0.
05

0.05

0.
05

0.05

0.05

0.10.1

0.1
0.1

0.2

β
(d

eg
)

α (deg)

Intersection detector
stddev of ∆y (pixels) vs. α and β

0 22.5 45 67.5 90 112.5 135 157.5 180

11.25
22.5

33.75
45

56.25
67.5

78.75
90

101.25
112.5

123.75
135

146.25
157.5

168.75

0.02

0.
02

0.
02

0.
02

0.02

0.02

0.04
0.04

0.
04

0.04

0.04

0.050.05

0.0
5

0.05

0.10.1

0.
1

0.1

β
(d

eg
)

α (deg)

Intersection detector
stddev of ∆y (pixels) vs. α and β

Figure 3-35 Standard deviation of the corner position’s y-value. Edgels within 4 pixels distance are not
used (d=4). CNR=34dB Top: 10 points with lines of 18 pixels. Bottom: 20 points with lines
of 28 pixels.

3.6. CORNER AND SADDLE-POINT DETECTION 83

3.6.6 Features, conclusion

In the requirements, we stated that an A4 sized marker should be detected at 5m distance. In
that case, the shortest corner distance is 21 pixels with our wide-angle lens. The contour length
is around 80 pixels, which is equivalent to the contour of a circle with a radius of 13 pixels.
The DICA camera in our configuration has a noise level of σnoise = 2 levels, and a Gaussian
optical blur of scale σPSF = 0.8 pixels.

Using this information and the information from the experiments above, we can determine
what features can be used for our AR application, and what their properties are. We have
shown that edge detection using Canny is faster than using the zero crossings of the Laplace
operator. Furthermore, the edges that the Laplace operator produces have a larger distortion
near a corner than the edges from the gradient magnitude. This means that the Canny edge is
even more favorable, since we want to use lines that are as long as possible for accurate corner
localization. In addition, the output of simple corner detectors is low on the Laplace zero-
crossings. Therefore, we will use the Canny edge as the contour of our marker. We decided to
use a fixed threshold on the gradient magnitude instead of a hysteresis threshold, because
lighting conditions due to windows and lamps have a large influence on the automatic
thresholds.

We stated as one of the requirements that we want to detect the precise edge location up to
the limit of the noise. This means that we should not allow any bias in the location at any
estimate. In Figure 3-21, one observes that detectors with an evaluation distance of two pixels
do not perform well on thin lines, and should not be used. When the marker’s border is eight
pixels (i.e. 7 cm at 5 m), no bias is present, even in the case of a slightly blurred edge. When we
allow a slight bias, a line thickness of five pixels (4 cm) is also adequate if an evaluation
distance of one pixel is used. Then the bias is smaller than 0.01 px in case of a sharp edge
(edge scale of 0.8 pixels) and at most 0.04 px when the edge is blurred. The RMS error then is
0.005 px and 0.008 px respectively.

In case the image suffers from noise, the Gaussian filters perform best, as it has the largest
kernel to smooth out this noise. This has to be weighed against computing time, but generally,
if the precision goes down by a factor of two, we need four times as many independent pose
estimates to make up for it.

The aforementioned discussion presumes we have already found our marker. Figure 3-18
shows that for a contour length of 80 pixels (our marker at 5m distance) we can expect 100%
detection at CNR=20dB. This is an edge contrast of 20 grey levels, which is very low. Even
when the marker is at 1m distance, the needed edge contrast is only 50 grey levels. We
conclude that noise is not a problem for the detection of contours.

How big should our smallest marker be? We know that the border should be at least five
pixels, but what does that mean for its size in cm? We will ignore lens distortion in order to
use a simple pinhole model:

 ,
x y

u f v f
z z

= = (3.62)

84 CHAPTER 3. IMAGE BASED POSE TRACKING

In order to calculate the size in camera coordinates (x,y) from the size in pixels (u,v) we need
an estimate for the focal length. Without lens distortion, the following equation holds:

_ / 2 _

tan
2

image diameter opening angle

f

 =  
 

 (3.63)

With an image of dimensions 1280 x 1024 and opening angle of 108° we obtain:

 595 pxf = (3.64)

The projection of a point in camera coordinates is now given by

 595 , 595
x y

u v
z z

= = (3.65)

From this, it follows that a border width of five pixels is 4 cm at 5 meters distance. To detect
the ID, we do not want neighboring blocks to interfere with the intensity of a block’s central
pixel. Given an optical Gaussian blurring of 0.8 px, we need a block size of at least 2 x 2
pixels, which is 1.7 x 1.7 cm. A marker consisting of 5 x 3 blocks should therefore be at least
2·4 + 3·1.7 = 13 cm wide, and 16.5 cm high, which is well within the A4 limits (21 x 29 cm).
However, when we want to detect the marker at a pitch of 45° the size requirement increases
to 18.2 x 25 cm, which is just enough. In these calculations, we assumed a white background
as we also need a white border of 5 pixels around the black border for accurate localization –
see Figure 3-4. With this border, the marker needs to be 26 x 33 cm.

Depending on the required viewing angle on the marker, this size restriction differs. Hence,
the size should be determined per application. When only a few markers are needed, it can be
decided to use a smaller marker with a 2 x 4 block layout, leaving 16 possible markers. We find
26 x 33 cm is close enough to A4 and will use this marker-size for further analysis.

For corner detection, it was shown that our simple corner detectors, which use the image
gradient only, are not suited for accurate corner localization. Although multi-scale approaches
exist that have zero bias, these algorithms tend to need a large support around the corner,
meaning that the black border of our marker should be very big, leaving less space for an ID.
The support for our edge intersection is determined automatically by the length of the edge.
The drawbacks, performance wise, of our method are that edge points near the corner cannot
be used and that the sub-pixel edge points have to be transformed to the undistorted image
plane before fitting a straight line through them.

The shortest edge length of our marker is 26 cm, which translates under a viewing angle of 45°
to 22 pixels. This in turn means we can use 14 pixels for the line fit as we discard the 4 points
nearest to the corner. With that viewing angle – or pitch – we can expect corner angles
between 53° and 127°, and from Figure 3-34 we can see that the accuracy will lie between
0.15px and 0.08 px at a CNR of 28 dB. Whether this is enough for accurate pose-estimation
will be determined in section 3.8.

To use our detector, the contour has to be split into four line segments. It is shown that
Haralick’s corner detector is very robust to noise, and will find the corners independent of the
lighting conditions with a fixed threshold.

3.7. CAMERA CALIBRATION 85

To conclude, we will use the Canny edge detector, with Haralick’s corner detector to split the
lines, and the intersection of lines for an unbiased estimate of the corners. To detect saddle-
points during camera calibration we use Beaudet’s DET saddle-point detector, which has a
systematic error under 0.001 pixels and a standard deviation below 0.05 pixels when the angle
β between the crossing edges is within the range 57-123° and lastly the contrast-to-noise ratio
is 38 dB or higher.

3.7 Camera calibration

In section 3.1 we presented the pinhole camera model and our lens distortion model. These
internal camera/lens parameters have to be estimated. Popular camera calibration methods
that achieve this are from Tsai [82] and Zhang [15]. The Tsai method requires detailed
knowledge of the imaging sensor and only allows a simple lens distortion model. Provided
with at least three different views of a known planar calibration target, the Zhang method
estimates all internal parameters and allows for more complex lens-distortion models. We use
a planar checkerboard calibration target as shown in Figure 3-36. This pattern was plotted with
an A0 plotter, and a big glass slate was put over it to make it stay flat. Saddle points provide
very accurate calibration points, even in the case of image smoothing and perspective
projection. In contrast, the corner detectors Zhang used suffer from the well-known
localization problem due to smoothing. In his method, images of the same calibration target
are taken under various viewing angles. His algorithm expects a number of coplanar points
with known metric position within the calibration target. For each of those points, the image
locations in each of the different views should also be given. With the information of the
known points in different views, Zhang first estimates the intrinsic parameters ignoring lens
distortion. Then, using Levenberg-Marquardt minimization, the error in position of the
estimated points in pixels is minimized by estimating all parameters of equations (3.2) and (3.5)
as well as the full poses of the different views. Note that it does not matter whether the pose
of the camera is calculated in marker coordinates or the marker pose is determined in camera
coordinates. These representations can be easily transformed into each other.

Figure 3-36 shows one of the views of our calibration target. This pattern should occupy most
of the image, so the camera was put close to it. With our A1-sized pattern (84.1 cm x 59.4 cm)
and 90° opening angle, the camera should be at a distance not farther than 42 cm. When
taking the images, we used distances between 70 cm and 30 cm. We encountered a number of
problems, but we will discuss them at the end of this section.

86 CHAPTER 3. IMAGE BASED POSE TRACKING

Figure 3-36 One view of the calibration pattern that consists of saddle points. This A1-sized pattern was
put under glass to ensure it stayed flat. The distance between the saddle-points is 5.0cm.

Before the Zhang calibration method can be used, the correspondences between points in the
image and points on the calibration pattern have to be established. The calibration needs a set
of points of which the image coordinates are known, as well as its x and y coordinates in the
pattern coordinate system – the point’s z coordinate is zero per definition (flat object). Doing
this manually is very time consuming, even when only the four outer corners of the pattern
have to be specified per view [83]. We developed an automatic grid-finding algorithm that
expects a rectangular grid of saddle points. It occurred to us that it is actually not needed to
find an exact correspondence; it is sufficient to find the grid itself as it is repetitive. In other
words, the origin of the pattern can lie anywhere as long as the grid spacing is known. In our
case, the grid spacing is 5.0cm in all directions.

We start by detecting all the saddle points in each view. To find out how the points are
connected to each other, we find the edges using the Canny edge detection. As edges near a
saddle point are distorted, we remove edge points in a 7 x 7 neighborhood of each saddle
point, as shown in the left of Figure 3-37. The entire 7 x 7 neighborhood is now labeled as
part of the saddle point. We loop over all edge segments with two endpoints and if two saddle
points are found at the ends, these saddle points are connected to each other and the direction
is stored as well. This results in a list of saddle points with their interconnections.

A saddle point in the middle of the image is chosen as origin, and starting from that point the
grid is built up. One interconnect is chosen as the x-axis and the interconnect most
perpendicular to it becomes the y-axis. The algorithm steps recursively in all directions,
keeping book of the x and y vectors. The interconnects of the new point are tested against
these vectors and if the new x and y vectors are found, the algorithm recursively steps further,
increasing the grid. This iterative approach of updating the x and y vectors is needed to cope
with the image distortions.

Eventually, the algorithm finds all connected saddle points, and because at every step of the
algorithm the x and y coordinates of the point can be determined, the relation between points
in the image and points in the pattern is established. The grid found is shown in the right of
Figure 3-37. Note that some saddle points were discarded, but the algorithm still finds the
grid. Saddle points will be discarded if the detector output is too low or if its calculated sub-
pixel position does not lie within 0.8 pixels of the pixel-accurate saddle point.

3.7. CAMERA CALIBRATION 87

Figure 3-37 Left: the found edges with a 7 x 7 cut out of saddle points. Right: the saddle points used for
calibration with the found grid.

After calibration with 655 points in six different views, we obtained an RMS error in
horizontal and vertical positions of 0.08 pixels using the DICA camera at a resolution of
1280x1024 and a contrast-to-noise ratio around 38 dB. The maximum error was 0.38 pixels
(Euclidean distance). When all used models are correct, we expect the errors to be normally
distributed. In Figure 3-38, we show the cumulative distribution of the Euclidian distances
between the measured and back-projected calibration points.

88 CHAPTER 3. IMAGE BASED POSE TRACKING

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80

90

100
Cumulative distribution of the location error

Max distance between real and backprojected point (pix)

P
e
rc

e
n
ta

g
e
 o

f
p
o
in

ts
 u

s
e
d
 f

o
r

c
a
lib

ra
ti
o
n

Real measurements

Fictive measurements

Figure 3-38 Dashed line: Cumulative distribution of the residual saddle point location error after
calibration (Euclidean distance). The RMS error is 0.08 px for the horizontal and vertical
errors. Solid line: The expected cumulative distribution when the horizontal and vertical
errors have a zero mean normal distribution with a standard deviation of 0.08.

This figure also shows the expected cumulative distribution of these errors in case the
horizontal and vertical errors are drawn from a normal distribution with zero mean and a
standard deviation of 0.08 pixels. Although the shape of the real distribution slightly differs
from the expected distribution, the distribution shows nothing special, so not many outliers
were present in our calibration. In addition, we can deduce from Figure 3-38 that in analyzing
the 95% best localized points, a maximum error of 0.19 pixels is found which is not much
different from the 0.17 pixels that can be expected.

With a contrast-to-noise ratio of 38 dB, Figure 3-26 from section 3.6.1 shows the expected
precision. The standard deviation of the vertical/horizontal error should have a value lower
than 0.05 pixels as our calibration images were taken with a pitch (Figure 3-25) of less than
45°. Multiple issues may be the cause of our higher standard deviation of 0.08 pixels:

• Wrong lens model. When our lens distortion model is not good enough, we expect
the errors to be larger at the borders of the detected grid in each calibration image.
We did indeed find slightly more points with large errors at those borders than inside
the grid. We tried a number of distortion models, even some fish-eye lens distortion
models, but we were unable to achieve better results.

3.7. CAMERA CALIBRATION 89

• Wrong sensor model. The overall point spread function consists of two terms:
optical blur and sensor blur. The overall PSF can be modeled by a Gaussian PSF of
scale 0.8 px. This amount of blur shows that the optical blur is dominant in the
overall PSF. Position error due to aliasing are therefore negligible.

• Out-of-focus calibration target. In our augmented reality application our lens is
focused on distances of about 4 meters. Changing the focus will change the lens
parameters, so we use the same setting during calibration. To ensure our calibration
pattern stayed flat, we used an A1-sized glass plate. To get some coverage of the
marker in the image, we had to move the camera close to the pattern, between 30 and
70 cm, and this amounts to the calibration target not being in focus. This defocus will
move points that do not lie on the optical axis slightly outward, depending on the
point’s distance to the camera. The parameters we estimate may therefore have a bias.
An obvious solution is to increase the size of the calibration target so that it can be
viewed from larger distances, but we only had a glass plate of size A1 available. To fill
25% of the image at two meters distance, a marker of two by two meters is needed;
such a large target is not easy to produce. Another solution could be to use a very
small aperture for the lens, increasing the depth-of-focus.

• Out-of-focus corners. We noticed that even when the pattern was in-focus in the
middle of the image, the images were always a bit blurred at the sides and corners.
This probably is an artifact of using a lens with such a high opening angle. The PSF
of this apparent blurring will not be isotropic, thereby dislocating our calibration
points slightly.

• Blurring due to the sheet of glass. We put a glass plate on the pattern to ensure it
stays flat. The plate will slightly shift the points underneath depending on the viewing
angle of that point. Even when the camera points perpendicularly toward the pattern,
the viewing angles of all image points are different, generating a distortion that is not
included in the current model. A solution could be to glue the printed pattern on a
flat object, but gluing can deform the paper. An adhesive sticker is probably a better
idea.

These problems will not be addressed further in this thesis and future research should
investigate what problem is the limiting factor and how to solve these issues.

90 CHAPTER 3. IMAGE BASED POSE TRACKING

3.8 Evaluation of pose estimation

In the sections above, we described the methods we use to detect and localise our markers
reliably, accurately and precisely. With a calibrated camera, we can now determine the practical
accuracy and precision by doing experiments. Two experiments were done. We wanted to
separate the effect of viewing the marker under different angles at a fixed location in the
image, and the effect of viewing the marker in different parts of the image. When the marker is
in a fixed location of the image, we expect the lens distortions to play a minor role. Errors in
the lens calibration parameters and errors in the lens model will not influence the pose much.
The experiment will then tell us something about the practical accuracy when no lens
distortion would be present. When the marker is viewed in different parts of the image, the
lens distortions will be play an important role, and therefore the lens calibration and lens
model have a big influence on the estimated pose. This experiment will tell us something
about the practical pose accuracy with our calibrated lens.

3.8.1 Dependence of the pose accuracy on the viewing angle

For this experiment, we placed a marker on a pan-tilt unit as seen in Figure 3-39. A camera
was placed at various distances along a straight line, with the marker always in the middle of
the image. The marker was placed on the pan-tilt unit such that it could rotate around its x-
and y-axes. Mathematically, first a rotation is applied around the upward y-axis, the pan
direction. Then a rotation around the new sideways x-axis is applied, the tilt direction.

Figure 3-39 Our marker on a pan-tilt unit. The marker can be rotated around its x and y axis (no in-
plane rotation). With the marker in the middle of the image, the camera was moved at
various distances on a straight line.

When the pan and tilt angles are zero, the marker’s normal direction is parallel with the optical
axis of the camera. In the pan direction, the angle was varied from -60° to 60° with 5°
intervals. In the tilt direction, the angle was varied from -30° to 40° also with 5° intervals. At
every combination of angles, we grabbed 50 images. For each of those images, the pose of the
marker in camera coordinates was determined using our pose estimation algorithm.

3.8. EVALUATION OF POSE ESTIMATION 91

The problem is that there is no ground truth for the marker pose. We only have the pan and
tilt values of the pan-tilt unit itself. The marker will not be facing exactly perpendicular to the
optical axis and the x- and y-axes will not coincide with the pan and tilt axis. Therefore, we
have to estimate these unknown rotations from all measured poses and the pan-tilt angles.
These unknown rotations can be described by a pre and post multiplication of the calculated
rotation matrix Rmeas for each measurement, resulting in a calibrated rotation Rcalib for each
measurement:

calib l meas r

=R R R R (3.66)

All matrices are rotation matrices, and the 3+3 parameters for the left-hand and right-hand
correction matrices are estimated from the data. During calibration, the error in estimated pan-
tilt angles (calculated from Rcalib) with respect to the ground truth pan-tilt angles (set-points of
the pan-tilt unit) was minimized using Levenberg-Marquardt minimization. After the
calibration, the measurements for a specific distance can be shown in a figure such as Figure
3-40. A ‘+’ is drawn at each combination of pan and tilt tested. With dots the estimated pan
and tilt angles for all frames are depicted (50 per pan-tilt combination). The 50 dots per pan-
tilt combination show the influence of image noise on the pose precision. The distribution of
the dots is clearly not rotational symmetric and dependent on the pan and tilt angles.
Furthermore, when the pan and tilt angles are in the range <-20°, 20°> the precision is very
low and large biases occur. Note that -20° and 20° are not part of that range. This observation
made us split the evaluation of the results in two regions, one inside the <-20°,-20°> area, and
one outside that area. Note that in Figure 3-40 we show the measurements from an
experiment done with the camera at 6m distance. This was the largest distance at which the
marker was still detected often enough to analyze its pose. At 6 meters distance, the errors
were large and therefore visible. At smaller distances, the bias and noise values were much
smaller and would not be visible. The rest of the data will be presented in tables.

What we can see from Figure 3-40 is that many clouds of points form elongated shapes. When
we treat the pan and tilt axes as normal axes, we can determine the main orientation of each
cloud of 50 dots in the pan,tilt axes system. A cloud with a horizontal distribution has an
orientation of 0°. Also the ground truth (pan,tilt) combination can be seen as a vector in the
pan-tilt axes system and a direction in that system can be calculated. In Figure 3-41 we show
the orientation of each cloud as function of the direction of the cloud’s corresponding
(pan,tilt) vector. A linear relation seems to be present, and this information could be used to
make a model of the error distribution. This model can then be used to estimate the precision
of a measurement from that single measurement.

92 CHAPTER 3. IMAGE BASED POSE TRACKING

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

Real angles (+) vs. calculated angles
dica 600 cm

pan (deg)

ti
lt
 (
d
eg
)

Figure 3-40 The plusses give the ground truth pan-tilt unit angles. The dots show the
estimated pan-tilt angles for all frames, 50 per pan,tilt combination.

3.8. EVALUATION OF POSE ESTIMATION 93

-200 -150 -100 -50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

direction vs noise angle of a dica camera at 600 cm

roll or pitch >=20 degrees

angle in pitch/roll coordinates (deg)

m
ai
n
 n
o
is
e
o
ri
en
ta
ti
o
n
 i
n
 p
it
ch
/r
o
ll
 c
o
o
rd
in
at
e
s
(d
eg
)

Figure 3-41 Per 50 frames the main orientation of the (pan-tilt) point-cloud is plotted against the
direction of the ground truth pan,tilt combination. A linear relation seems to be present.

In Table 3-5 and Table 3-6, numbers are given for the errors in the estimated angles; no
distinction was made between pan and tilt. We looked at two different aspects. One is the
precision of repeated measurements, i.e. the influence of noise in the image on the pose errors.
We estimated over all clouds the standard deviation σnoise within the clouds:

 �() �()2 250

, ,1
50 1cnoise c p c pcp

c c

pan pan tilt tiltσ
=

   
= − + − −   

   
∑∑ ∑ (3.67)

where c loops over all clouds, and p loops over all points within that cloud. The maximum
error due to noise was determined as:

 �() �()2 2

, ,max max cnoise c p c pc
pan pan tilt tilt

 
= − + − 

 
 (3.68)

Another aspect is the precision of a single (randomly picked orientation) measurement which
can be seen as the confidence of our measurement. We calculate the precision as the root
mean squared (rms) error of our estimates. Instead of using the deviation from the mean as in
calculating the standard deviation, the deviation from the ground truth is used. We can use the

same formulas (3.67) and (3.68), but now instead of the mean pan in a cloud �
c

pan , we use the

ground truth pan value for that cloud. The same change was applied for the tilt.

94 CHAPTER 3. IMAGE BASED POSE TRACKING

Table 3-5 Orientation precision expressed in degrees, with the marker on a pan-tilt unit for pan or tilt
outside the range <-20°, 20°>. The 95% best data was used. Left: DICA camera. Right: JAI
camera

stddev max rms max

200 cm 0.032 0.069 0.35 0.59

300 cm 0.047 0.10 0.49 0.89

400 cm 0.12 0.27 0.76 1.4

500 cm 0.13 0.27 0.54 0.94

600 cm 0.18 0.48 0.62 1.1

650 cm 6.1 30 12 49

noise error
distance

stddev max rms max

140 cm 0.11 0.24 0.66 1.23

200 cm 0.24 0.54 0.75 1.31

300 cm 0.90 3.69 2.14 4.47

noise error
distance

Table 3-6 Orientation precision expressed in degrees, with the marker on a pan-tilt unit for pan and tilt
within the range <-20°, 20°>. The 95% best data was used. Left: DICA camera. Right: JAI
camera

stddev max rms max

200 cm 0.11 0.25 0.64 1.4

300 cm 0.17 0.44 0.89 2.4

400 cm 0.69 2.3 2.9 6.9

500 cm 0.65 2.4 2.4 9.5

600 cm 0.53 1.5 1.3 5.2

650 cm 0.65 2.0 2.9 11

error
distance

noise

stddev max rms max

140 cm 0.31 0.68 1.3 2.0

200 cm 1.1 3.3 2.7 6.8

300 cm 2.7 7.9 4.6 16

noise error
distance

These results confirm the observation that the precision and accuracy of the orientation is
better when the marker is viewed under an angle (here 20° or more). In addition, the rms error
is much higher than just the error due to noise. This suggests that the model does not fit the
data properly. Another possibility is that the accuracy is limited by the calibration of the
camera or limited by the calibration of the unknown rotations of equation (3.66).

The evaluation of the estimation of the marker’s position was done similarly to the evaluation
of the orientation estimation. The reason to calculate the position of the marker and not the
position of the camera is that the position and orientation of the camera are intimately
coupled: all position variables are sensitive to small orientation errors. The marker’s position
and orientation are less coupled in the sense that an orientation error will have a smaller
influence on the position.

3.8. EVALUATION OF POSE ESTIMATION 95

We estimated the ground truth as follows. The centre (i.e. origin) of the marker will not
coincide with the joint of the pan-tilt unit, so when the unit tilts, the marker’s centre will
change position. The position changes as well when the unit pans. Figure 3-39 shows that the
marker’s centre is approximately 20 cm above the pan-tilt unit’s joint. In addition, the relative
position between the camera and the joint of the pan-tilt unit is only approximately known.
Therefore, we need to estimate six position parameters: The 3D vector from the camera to the
joint and the 3D vector from the joint to the centre of the marker. We also have to fit a
correction for the unknown direction of the pan-tilt unit in camera coordinates, thus in total
there are nine parameters to calibrate. The positions of the marker calculated from the
measurements are tested against its estimated ground truth positions. The estimated ground
truth is given by

est.truth joint corr set centre

r r r= + ⋅R R
� � �

, (3.69)

in which Rset is the controlled pan-tilt rotation, and the other parameters on the right hand
side are to be estimated. After doing the measurements, the unknown parameters were
optimized by minimizing the Euclidean distance between the positions calculated from the
measurements and estimated ground truth positions. A Levenberg-Marquardt minimization
algorithm was used.

In Table 3-7 and Table 3-8 statistics for the noise and error of the three coordinates are given,
where we adopt the same meaning for noise and error as previously with the orientation
results. Values for the error include the bias of each cloud of 50 points, and values for the
noise disregard those biases. Values for the noise therefore give the deviation due to noise in
the images, and values for the error can be used as measure for the expected error in a single,
random measurement of the marker’s position.

Table 3-7 Precision of the marker’s position expressed in centimeter, using the DICA
camera with the marker on a pan-tilt unit. The 95% best data was used

stddev/rms max stddev/rms max stddev/rms max

200 cm 0.0033 0.0084 0.0015 0.0036 0.025 0.068

300 cm 0.0025 0.0067 0.0022 0.0053 0.052 0.14

400 cm 0.0054 0.015 0.0064 0.016 0.17 0.47

500 cm 0.0096 0.025 0.0075 0.019 0.23 0.60

600 cm 0.0053 0.014 0.018 0.046 0.36 0.97

650 cm 0.015 0.055 0.025 0.067 0.49 1.30

200 cm 0.027 0.070 0.012 0.024 0.18 0.55

300 cm 0.043 0.13 0.047 0.12 0.32 0.91

400 cm 0.021 0.069 0.030 0.059 0.52 1.4

500 cm 0.028 0.068 0.025 0.063 0.89 2.4

600 cm 0.034 0.07 0.059 0.14 1.3 3.9

650 cm 0.039 0.14 0.072 0.16 1.2 3.2

y z

noise

error

distance
x

96 CHAPTER 3. IMAGE BASED POSE TRACKING

Note that the rms error is generally much larger than the noise and that the precision in z is
much lower than the precision in x or y. Even with the DICA at 6.5m distance, the precision
in x and y coordinates is extremely good. From the camera’s point of view, this means that the
centre of the marker in image coordinates is very accurate, that in turn means that the angle
between the optical axis and the vector from the centre of the camera to the centre of the
marker is very accurate. This of course is one of the reasons that people use multiple markers
reasonable far apart to determine the position of a camera. From multiple accurate
measurements of each of the markers’ centers, an accurate position of the camera can be
triangulated.

3.8.2 Dependence of the pose accuracy on the location in the
image

The previous experiment showed the precision of the pose estimation with the marker in the
middle of the image. That means that lens distortions play no big role. In this experiment, we
determine the precision in case the marker is imaged at various positions in the image. This
was accomplished by putting the camera on a pan-tilt unit instead of the marker. As seen in
the previous experiment, the pose estimation is best when the marker is viewed under an
angle. So we chose to put the marker under 30° (pan direction). In Figure 3-42 an example can
be seen for the JAI camera, with both pan and tilt at -30°.

Table 3-8 Precision of the marker’s position expressed in centimeter, using the JAI camera with the
marker on a pan-tilt unit. The 95% best data was used

stddev/rms max stddev/rms max stddev/rms max

140 cm 0.0047 0.012 0.0057 0.014 0.058 0.16

200 cm 0.015 0.039 0.011 0.029 0.16 0.43

300 cm 0.022 0.059 0.027 0.075 0.54 1.5

140 cm 0.013 0.030 0.021 0.043 0.22 0.50

200 cm 0.040 0.11 0.029 0.069 0.40 1.1

300 cm 0.059 0.15 0.075 0.21 1.6 4.2

z
distance

noise

error

x y

3.8. EVALUATION OF POSE ESTIMATION 97

Figure 3-42 Example picture taken by our JAI camera mounted on a pan-tilt unit. The
camera was panned to the right by 30° and tilted backwards by 30°. The
marker had a fixed pan of 30°.

In this experiment, we again calculated the pose of the marker in camera coordinates. We
panned the camera in the range [-40°, 30°] and tilted the camera in the range [-30°,30°].
Outside those ranges, the marker was not entirely in view. For every combination of pan and
tilt, we grabbed 50 images and calculated the marker’s pose for each of them. Also in this
experiment, the ground truth pose had to be estimated. For the orientation this was done by
minimizing the difference between the controlled (pan,tilt) angles and the estimated angles as
in the previous experiment. The optimization algorithm will incorporate the fixed pan of the
marker in the rotation matrices Rl and Rr of equation (3.66). However, because now the
camera is rotated, the inverse of Rset was used.

Figure 3-43 shows the results for the DICA camera at 3.80m. The plusses show the controlled
pan and tilt angles, and the dots show all calibrated measurement values. In these experiments,
we did not see a large error for a specific range of (pan,tilt) angles. Table 3-9 shows the root
mean square error and maximum error under the column ‘error’, and the standard deviation
and maximum error due to noise in the images under the column ‘noise’.

Table 3-9 Orientation precision expressed in degrees with the camera on a pan-tilt unit. The 95%
best data was used. Left: DICA camera. Right: JAI camera

distance stddev max rms max

180 cm 0.03 0.07 0.30 0.59

280 cm 0.03 0.07 0.44 0.79

380 cm 0.07 0.15 0.42 0.77

noise error

distance stddev max rms max

120 cm 0.06 0.13 0.58 1.57

180 cm 0.90 1.86 2.27 3.84

noise error

Once again, the values for the error are much higher than the values for the noise. Repeated
measurements with the same orientation are very precise, but a much larger bias could be
present. We could not find a relation between the orientation and the actual bias, so we can
treat the bias as a stochastic variable in orientation.

98 CHAPTER 3. IMAGE BASED POSE TRACKING

-50 -40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

Real angles (+) vs. calculated angles
dica 380 cm

pan (deg)

ti
lt
 (
d
eg
)

Figure 3-43 Measurement result with a DICA camera on a pan-tilt unit. The plusses are the ground truth
orientations, the dots are the calculated orientations.

To estimate the ground truth for the position of the marker we reuse formula (3.69). Because
the formula holds for a rotating marker, and we rotated the camera in this experiment, we used
the inverse of Rset in place of Rset.

Visualizing the measurement results is difficult because we measured the 3D position as
function of a 2D orientation. We tried to visualize only the x,y-position error in Figure 3-44.
The plusses show the orientation of the pan-tilt unit. At each of the plusses, a coordinate
system is constructed with the plus as origin. In the local coordinate systems, the 50 measured
x,y position errors for that orientation are depicted with dots. An error of 1 cm in the local
system’s x-axis corresponds to 1° on the pan axis, and an error of 1 cm in the local system’s y-
axis corresponds to 1° on the tilt axis. Every cloud of points has an associated plus. With little
effort, one can find the associations even when the bias is large.

3.8. EVALUATION OF POSE ESTIMATION 99

-50 -40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

x,y position error per pan,tilt combination
dica 380 cm

pan/x (deg, cm)

ti
lt
/y
 (
d
eg
, c
m
)

Figure 3-44 Marker position error vs. orientation of the DICA camera on a pan-tilt unit. The plusses are
the origins of local axis systems in which the measured position errors are plotted with dots
(see text for detailed explanation).

Due to the calibration step, the mean position error is zero. For many orientations, the bias in
position is clearly much larger than the precision. In addition, the bias seems to have a relation
with the pan angle. This lets us conclude that the position error is not noise limited, but model
limited. One can also notice that the biases of the clouds are not consistent. For instance, the
clouds with an absolute pan and tilt of 5° have a small bias compared with the biases of
surrounding clouds. We do not have a good explanation for this; it could be an artifact of the
optimization algorithm. Table 3-10 and Table 3-11 show the precision in position estimation
for both the JAI and the DICA cameras for a number of distances between the camera and
the marker.

100 CHAPTER 3. IMAGE BASED POSE TRACKING

Table 3-10 Precision of the marker’s position expressed in centimeter, using the DICA
camera on a pan-tilt unit. The 95% best data was used

stddev/rms max stddev/rms max stddev/rms max

180 cm 0.0039 0.014 0.0031 0.011 0.013 0.030

280 cm 0.0074 0.026 0.0065 0.023 0.025 0.058

380 cm 0.023 0.098 0.017 0.068 0.063 0.16

180 cm 0.50 1.4 0.20 0.54 0.18 0.4

280 cm 1.3 2.6 0.64 1.6 0.45 1.3

380 cm 1.6 3.2 0.74 1.8 0.6 1.6

error

x y z
distance

noise

Table 3-11 Precision of the marker’s position expressed in centimeter, using the JAI camera on a
pan-tilt unit. The 95% best data was used

stddev/rms max stddev/rms max stddev/rms max

120 cm 0.0055 0.017 0.0055 0.016 0.023 0.054

180 cm 0.029 0.081 0.035 0.10 0.096 0.24

120 cm 0.11 0.28 0.099 0.27 0.20 0.39

180 cm 0.21 0.58 0.24 0.54 0.73 1.6

y zx

error

noise

distance

The tables indicate that a bias is present which is much larger than the uncertainty due to
noise. When we compare these results with the previous experiment in which the marker
rotates, the following observations can be made:

- All values for the x and y position are larger in this experiment.
- The errors in z position due to noise are lower in this experiment.
- For the DICA, the rms errors in z position are almost the same as in the previous

experiment.

The larger rms errors in x and y position can be attributed to an incorrect lens model or errors
in the estimation of that model’s parameters. It is less obvious why the error due to noise is
higher as well. Maybe it is a result of the 30° pan of the marker, but then only the standard
deviation in x position would go up, while the precision in y position would stay the same.
Another possible explanation is that because the marker is not on the optical axis, an error in
the z-position induces an error in x and y positions. Consider point M to be the middle of the
marker. The relation between variations in the x-position Mx, z-position Mz and the horizontal
position u in undistorted image coordinates is given by:

x

x z

z

x z z

M
u M u M

M

M u M u Mδ δ δ

= ⇔ = ⋅

= ⋅ + ⋅

3.8. EVALUATION OF POSE ESTIMATION 101

Near the image border where u is greatest, the influence of an error in Mz is greatest. With our
lens, the maximum of u will be around 1.2 (108° opening angle), and with the observation that
the standard deviation in z is around three times the standard deviation in x and y, this effect
could well be the cause of the higher standard deviation in x and y position error.

3.8.3 Pose accuracy of virtual objects

So far, we measured the accuracy of the marker pose or camera pose, but we are actually
interested in the pose accuracy of the virtual objects that we place in the world. In our
Augmented Reality application, the marker will be attached to ceilings and walls, and the
virtual objects are projected at a different position. The relation between the pose of the
marker m in camera coordinates and virtual object o is given by:

c c m c m c

o m o m o m

c m c

o o m

p H p R p T

Rdp d p dTδ θ
δθ

= = +

= ⋅ +

� � �

�� �
�

 (3.70)

To test the applicability of our setup for augmented reality, we have to set a required accuracy
in the position of the virtual object. We set this to 1% of the distance to that object, which
corresponds to roughly 0.5° error in the direction from the optical point to the object.
Actually, this accuracy should be specified for the coordinates in the human eye frame, but
here we will assume the camera is placed near the eye.

We performed a simulation with a marker and a virtual object both on the optical axis to find
out at what distance the virtual object can be displayed in accordance to our requirement. The
setup is shown in Figure 3-45.

δα

marker Virtual object

Lens

c

m
d

c

od m

od

δθ
yδ

Optical axis

Figure 3-45 Simulation setup with object and marker on the optical axis. Our requirement says that yδ

due to δθ should be less than 0.01 c
od . Or, δα should be less than 0.5°.

We took the best camera from our results, the DICA, and we presume that we do not have
any modeling errors. This means that we will use the relation between the noise in pose
estimation and the distance to the marker (Table 3-5 - Table 3-7). Figure 3-46 gives the lower
and upper bound on the admissible object distance for different marker sizes.

With our current A4 sized marker, a high admissible range is only realized when the marker is
within 1.4m of the camera. Outside that region, the object should be within 60 centimeters
from the marker. The 64 times A4 sized marker (8 x 8 A4s) is not feasible in reality, but it is
used to show the effect of four normal markers at the four corners of that big marker.

102 CHAPTER 3. IMAGE BASED POSE TRACKING

As already mentioned, Figure 3-46 gives an overestimate. When we include the estimated bias,
thus use the rms values of the error from Table 3-5 and Table 3-7, the admissible distance
between marker and object can be calculated to be around 5% of the marker distance, even
with the biggest simulated marker.

Figure 3-46 Upper and lower bounds on the admissible distance of projected virtual objects vs.
distance to the marker. The dashed line indicates that the virtual object is displayed on the
marker

The conclusion is that with this high-resolution camera with only a single A4 sized marker, the
noise and deviation properties are not sufficient enough for full image augmented reality. Only
the virtual object near the marker will have a stable position. It may well be that when a full
Kalman filter is used as in Chapter 4, the required accuracy is met, provided of course that the
systematic errors can be removed.

The precision of the pose estimation is related to the minimum size of the region of interest in
the image that contains the features. When the size of the marker is increased, this region
grows. When multiple markers are used, the region will be bigger as well. Both methods will
increase the precision. However, as one of the goals was to minimize the number of markers,
we think it is worth trying to combine the single marker with the use of natural landmarks,
possibly augmented with a simple model of the environment. This yields a bigger region of the
image that can be used for pose estimation, which again means a higher precision.

3.9. CONCLUSION AND DISCUSSION 103

3.9 Conclusion and Discussion

The aim of this chapter was to determine the steps to be taken to obtain the most accurate
pose of a camera by looking at a man-made landmark, a.k.a. fiducial using image processing
only. The task is disturbed by severe lens distortion and low edge contrast. The pose
estimation needs to be fast to minimize latency and power consumption. Our investigations
led to the use of a rectangular pattern with a big black border on a white field as fiducial, with
inside a 2D barcode to distinguish the individual fiducials.

To obtain the best pose, we had to eliminate systematic errors and noise as much as possible.
We determined that when the black border shows thicker than 8 pixels in the image, the edge
points on the outer contour of the border can be located with zero bias and a RMS error less
than 0.01 px., provided that we use Gaussian derivative operators. With simpler derivatives,
this bias will stay low even at a thickness of 3-5 pixels. However, this low error is
symmetrically dependent on the sub-pixel location of the edge. If a large number of points is
used for the line fit of the contours, the bias error may be regarded as a zero mean noise
source. However, for short edges, a bias will still be present.

In the presence of noise, our most robust detector is the one that uses the integer Gaussian
derivative filter with an evaluation distance d of two pixels, provided the line thickness was big
enough. We selected the detector with the same Gaussian derivative but an evaluation distance
of one, as we expect line thicknesses of near five pixels. In the future, the optimal detector
could be chosen on basis of the expected noise and line thickness automatically, e.g. making a
difference between indoor and outdoor illumination circumstances. The required processing
power could be taken into account as well when determining which detector to use. We
selected an integer approximation of the Gaussian because of the very fast implementation
using special Single Instruction Multiple Data instructions. Selecting a more simple derivative
filter would give us 3.5ms speed-up (on a total processing time of 20-45ms) at the cost of a
lower accuracy.

We further determined the size of the fiducial pattern that is needed when it should be
detected at 5m distance under an angle of 45°. The minimum size is somewhat larger than A4,
i.e. 13 x 16.5 cm, when we allow a border size of only five pixels. The bias per edge location
will be between 0.01 and 0.04 depending on the scale of the edge. When the camera is not
moving, the scale is 0.8px, corresponding to a bias of 0.01px.

Because the edge location has only a small bias, the error of our algorithm is noise limited, and
in the absence of noise, it is model limited. We have shown in Figure 3-15 of section 3.5.2 that
our step-edge model fits well to experimental data, but still a significant bias of around 0.004
px was found to be present. With the edge model used by our detector, the rms error is
around 0.004 px as well (see Figure 3-22 upper left); however an integer approximation of a
Gaussian derivative filter was used there instead of the better performing standard floating
point version used in the model verification experiment. In section 3.5.1 we mentioned that a
Gaussian is in general an accurate enough approximation to the point-spread-function (PSF)
of an optical imaging system. We attribute the significant bias to the use of that
approximation.

104 CHAPTER 3. IMAGE BASED POSE TRACKING

When the Contrast to Noise Ratio (CNR) is around 26dB, the standard deviation of the edge
location is 0.1 px. This is also the residual error of the saddle points after lens calibration.
When the CNR is higher, the biggest source of error in our experimental setup seems to be the
model of the lens. We tried calibrating all distortions away, enabling the use of a pinhole
camera model, but even with an elaborate lens distortion model we obtained a residual
calibration error of 0.37 pixels maximum. (standard deviation of 0.1 px.). We noticed an
increased blurring at the borders of the image, which suggests a lens artifact. Currently we are
not aware of lens models or calibration methods that address this problem. Normally, such
artifacts are minimized optically using more elaborate lens systems.

We showed that we can detect the contours of a fiducial down to a CNR of 20dB and hence
we only had to worry about the detection of the four corners along these contours. We found
that the q-value used in the Haralick corner detector is the least sensitive to noise, and it can
be used with contrast to noise ratios higher than 20 dB. When the contour of the marker is
detected by the Canny edge detector, we can reliably detect corners with an angle β less than
120°. When the CNR is 25 dB, corners can be detected up to 150°. Using Figure 3-25 we see
that corner angles of 120° and 150° relate to marker pitch angles of 35° and 65° respectively.
To realize our target of detecting the marker up to pitch angles of 60°, we need the CNR to be
around 25dB.

Using measurements to determine the accuracy of our pose estimation algorithm, we
determined that the position of a marker in camera coordinates is very accurate when the
marker is on the optical axis at 6m: i.e. less than 0.5 mm in x and y, and less than 1 cm along
the optical axis. The orientation accuracy, however, highly depends on the actual orientation.
If we ignore a bias in the orientation, the angular error is less than 2.5° when the pitch is less
than 20° at 6m. When we convert the marker pose in camera coordinates to the camera pose
in marker coordinates, this orientation error results in an error in position of 4.3 cm/m. With a
pitch larger than 20°, the orientation accuracy is much better: i.e. less than 0.5°, resulting in a
positional error of the camera of less than 0.9 cm/m.

With this data, we were able to determine the range where virtual objects should be projected
around the marker to achieve the required precision for a good augmented reality system using
our hardware. Figure 3-46 showed that a virtual object should not be projected more than
roughly 50 cm in front of a marker (i.e. in depth direction) , or 1m away from the marker (i.e.
in lateral direction). Outside this range, the virtual object will jitter too much for the
requirements. In the subsequent chapter, we show that we are able to increase the precision,
but when the jitter is gone, the systematic error will still be present. This bias in orientation
was measured to be 1.4° maximum. This means we could not reach our target orientation
accuracy of 0.5° as set in Chapter 2. More research is needed to investigate how to further
reduce this systematic error, with a better lens model as a starting point.

 - 105 -

Chapter 4
Sensor fusion for pose estimation

In the previous chapter, we determined the pose accuracy of a virtual object obtained by
looking with a head-mounted camera at a single A4-sized man-made fiducial. We determined
that its position in camera coordinates is very accurate when the marker is on the optical axis.
The orientation accuracy of the marker, however, highly depends on its actual orientation.
When we convert the marker pose in camera coordinates to the camera pose in marker
coordinates, this orientation error results in an error in camera position of about 4 cm/m. This
leads to the conclusion that a virtual object should not be projected further away than about
50 cm perpendicular to the surface of the marker or 1m away in lateral direction of the marker.
Outside this range, the object will start to get an offset and will start to jitter. Finally, marker
tracking with a camera is quasi static, i.e. slow with respect to the possible speed of head-
rotation and it has latency.

In this chapter we will investigate how we can improve the camera tracking by fusing its data
with data from an inertia tracker. By employing a Kalman filter, we expect to achieve a better
robustness against noise and hence a better pose estimate. We also expect a suppression of the
jitter for objects further away and pose update rates that are fast and accurate enough, when
we rotate our head.

In Chapter 2 we set the goals for our pose estimation to be at least as good as the resolution of
our 60 Hz XVGA head mounted display. This sets limits for pose estimation to a quasi
statically misalignment ≤ 0.03° at head speeds ≤ 1.8°/s, a dynamical misalignment ≤ 0.5°
when smoothly pursuing an object at ≤ 30°/s, and a dynamical misalignment ≤ 2.5° when an
event in the image draws the attention at ≤ 150°/s.

The inertia tracker described in Chapter 2 measures the 3D acceleration vector using
accelerometers, the 3D angular velocity vector using gyroscopes and the 3D orientation vector
using magnetometers. Our first focus is on the accelerometers. There is no easy way to
combine the absolute position we obtain from a camera measurement with the acceleration
measurements from the inertia sensors as the (translational) velocity vector has to be estimated
from the available sensor data. The velocity can be estimated using the integral of the
acceleration, or using the difference in absolute position at different times. Because most
sensors provide noisy measurements, the estimate for the velocity is noisy as well. When two
estimates are combined in the correct way, the estimate will have the least possible noise, or
phrased otherwise, it is optimal in a statistical sense. Hence, the job of the sensor fusion filter
is: optimal estimation of the pose; unbiased with minimal error. For this purpose we chose the
Kalman filter, a frequently used filter for sensor fusion in tracking applications.

We will start by explaining the several versions of the Kalman filter. Then we can explain our
process models for the position and orientation filters used in the Augmented Reality
demonstrator. The last part shows our modular Pluggable Kalman Filter design. As mentioned
in section 2.5 we want to design a generic Kalman filter framework in which sensors can be
plugged in and out independent of the application that uses the pose. We did not implement
the full framework, only the decentralized Kalman filter was implemented and analyzed.

106 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

4.1 Kalman Filtering

The sections 4.1.1 and 4.1.2 are reworked from [84]

Kalman filters [85] are widely employed to estimate the (hidden) state of dynamic systems.
They use a linear model of the system to predict a future state from the current state estimate.
When (part of) the state is observed by (noisy) sensors, the difference between the predicted
state and observed state is used as a feedback to update the predicted state in a statistically
optimal way.

The state of the system is represented as a vector of real numbers. At each (discrete) time
increment, the new state is generated by applying a linear operator to the previous state,
adding some noise to cope with changes in the state that are not modeled. Information from
the controls on the system can be incorporated if they are known. Accordingly, another linear
operator generates the visible outputs from the hidden state and knowledge about the
measurement noise. This output can then be compared with sensors measurements.

The Kalman filter may be regarded as analogous to a hidden Markov model, with the key
difference that the hidden state variables are continuous (as opposed to being discrete in the
hidden Markov model). Additionally, the hidden Markov model can represent an arbitrary
distribution for the next value of the state variables, this in contrast to the Gaussian noise
model that is used for the Kalman filter. There is a strong correspondence between the
equations of the Kalman Filter and those of the hidden Markov model. A review of this and
other models is given in [86].

4.1.1 Dynamic system model

In order to use the Kalman filter to estimate the internal state of a process given only a
sequence of noisy observations, one must model the process in accordance with the
framework of the Kalman filter. This means specifying the matrices of a process model for
each time-step n as described below and depicted in Figure 4-1.

The Kalman filter model assumes the true state at time n - m

n
x ∈ℜ
�

 - is evolved from the state

at time (n−1) according to

n-1 n n+1

z

ΓΓΓΓ

ΦΦΦΦ

H

Q

R

XX

w

xx

Visible

Hidden
V

G

U
u

v

n-1 n n+1

z

ΓΓΓΓ

ΦΦΦΦ

H

Q

R

XX

w

xx

Visible

Hidden
V

G

U
u

v

Figure 4-1 Model underlying the Kalman filter. Circles are vectors, squares are matrices, and stars
represent Gaussian noise with the associated covariance matrix at the lower right.
Adapted from [84]

4.1. KALMAN FILTERING 107

1 1n n n n n n n

x x u w− −= + +Φ Γ G
� � � �

, (4.1)

where

• ΦΦΦΦn is the state transition model which is applied to the previous state xn−1.

• ΓΓΓΓn is the control-input model which mixes contributions from the independent control-

input sources in the control vector i

n
u ∈ℜ
�

.

•
n

u
�

 is the control vector that describes the influence of controlled variables on the state

and is assumed to be drawn from a zero mean multivariate normal distribution with
covariance Un.

 ˆ(,)
n i n n

u N u U
� �
∼

• Gn is a model that mixes contributions from the noise sources in the vector l

n
w ∈ℜ
�

.

•
n

w
�

 is the process noise that describes how well the model fits to reality. It is assumed to

be drawn from a zero mean multivariate normal distribution with covariance Qk..

 (0,)
n l n

w N Q
�
∼

In many Kalman Filter descriptions the noise on the control-inputs is not explicitly used, as it
can be equivalently described by the process noise. We make this distinction because we will
later develop the Kalman filter for continuous time processes. The process noise will then be
described in the continuous-time domain, whereas the control-input is a sample from a
stochastic variable and kept constant for some time.

At time n an observation (or measurement) k

n
z ∈ℜ
�

 is made according to

n n n

z x v= +H V
� ��

 (4.2)

where

• Hn is the observation model which maps the true state space into the observed space.

• V is a model that that mixes contributions from independent noise sources in the

vector m

n
v ∈ℜ
�

•
n

v
�

 is the observation noise which is assumed to be drawn from a zero mean multivariate

normal distribution with covariance Rn.

 (0,)
n m n

v N R
�
∼

All matrices could be different at each time step, and for each measurement there will be a
specific H matrix. The initial state and the noise vectors at each step

0 1 1 0{ , , ..., , ... , ... }n n nx w w v v u u are all assumed to be mutually independent.

Many real dynamic systems do not exactly fit this model; however, because the Kalman filter is
designed to operate in the presence of noise, an approximate fit is often good enough for the
filter to be very useful. Variations on the Kalman filter described below allow richer and more
sophisticated models. Converting a continuous-time process model to the discrete-time
domain will be described later on.

108 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

4.1.2 The Kalman filter

The Kalman filter (KF) is a recursive estimator. This means that only the estimated state from
the previous time step and the current measurement are needed to compute the estimate for
the current state. In contrast to batch estimation techniques, history of observations and/or
estimates is not required. The state of the filter is represented by two variables:

•
|
ˆ

n n n
x x+ =
� �

, the estimate of the state at time n given the previous state and the current

measurements

•
|n n n

+ =X X , the covariance matrix of the error for that state estimate

The superscripts + and later – are used to distinguish the different estimates of the state from
the true state.

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses the
estimate from the previous time-step to produce an estimate of the current state. In the update
phase, measurement information from the current time-step is used to refine this prediction to
arrive at a new, (hopefully) more accurate estimate.

Predict

In the prediction phase or time-update step, the a-priori estimate of the state at time n is
calculated from the previous state and the control-input:

ɵ

1| 1 1

| 1 1

ˆ
nn n n n

T T T

n n n n n n

x x x u− +
−− −

− +
− −

= = +

= = + +

Φ Γ

X X ΦX Φ ΓU Γ GQ G

� � � �

 (4.3)

We omitted the subscripts n in some matrices for clarity.

Update

During the measurement-update phase, first the innovation or measurement residual is calculated:

ˆ

n n n

T T

n n

y z x
−

−

= −

= +

H

S HX H VRV

��

 (4.4)

Then, the optimal - see below - Kalman gain is given by:

 1T

n n n

− −=K X H S (4.5)

Now the updated state estimate and its error covariance are computed by:

()

|

|

ˆ
n n n n n n

n n n n n n n n

x x x y
+ −

+ − − −

= = +

= = − = −

K

X X X K HX I K H X

� � �

 (4.6)

The formula for the updated state estimate covariance above is only valid for the optimal
Kalman gain. Here, optimal means that the Kalman gain minimizes the mean squared error of
the state estimate after the update. The Kalman filter, therefore, is a least-squares state
estimator. Other Kalman gain matrices can be used; however, the following general update
formula has to be used:

4.1. KALMAN FILTERING 109

 () ()T T

n n n n n n n

+ −= − − +X I K H X I K H K R K (4.7)

If at a certain time-step n multiple measurements are available, then this update phase can be
repeated for each sensor separately or the measurements can be grouped together to form
larger measurement vectors.

Invariants

If the model is accurate, and the values for
0

x+� and
0

+X accurately reflect the distribution of

the initial state values, then the following invariants are preserved: all estimates have mean
error zero

[]

0

0

n n n n

n

E x x E x x

E y

+ −   − = − =   
=

� � � �

� (4.8)

where E[ξ] is the statistically expected value of ξ, and the covariance matrices accurately reflect
the covariance of the estimates

()
()
()

cov

cov

cov

n k k

n k k

n k

x x

x x

y

+ +

− −

= −

= −

=

X

X

S

�

�

�

 (4.9)

We define the covariance of a column vector x
�

 as:

 cov()
T

x E xx =  
� ��

 (4.10)

When x
�

 is not zero mean, x
�

in the right hand side should be replaced with []x E x−
� �

.

The assumption that the process model can be described by a linear system is not true for
most physical processes. In our case, the state includes the orientation and the angular velocity,
and their relation cannot be described linearly. Therefore, an extension of the linear filter is
needed.

4.1.3 Extended Kalman Filter

The non-linear extension of the Kalman filter (EKF) is made in the process model as well as
in the measurement model. The process and measurement models can be written as

()

ɵ()
1 1 1

11

, ,

, ,0

n n n n

nn n

x x u w

x x u

ϕ

ϕ

− − −

− +
−−

=

=

� � � �

� � � (4.11)

()
()
,

,0

n n n

n n

z h x v

z h x
− −

=

=

� ��

�� (4.12)

110 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

with the same covariance matrices U, Q and R for the input, process and measurement noise
respectively. For simplicity we do not use a subscript n for the non-linear functions φ and h, let
alone that at every time step the functions can be different. To be able to use the Kalman
equations, we linearize the models around the current state estimate, resulting in a first order
approximation. For simplicity we neglected here the term describing the influence of noise in
the control-inputs:

ɵ() ɵ () ɵ ()

ɵ () ɵ

1 11 1

1 11 1

11 1 1 1, ,0 , ,0

1 1 1, ,0 , ,0

, ,0 0
n nn n

n nn n

nn n n n nx wx u x u

n n n nx wx u x u

x x u x x w

x x x w

ϕ ϕ ϕ

ϕ ϕ

+ +
− −− −

+ +
− −− −

+ +∂ ∂
−    − − − −∂ ∂   

   

− +∂ ∂
   − − −∂ ∂   
   

≈ + − + −

= + − +

� �� � � �

� �� � � �

� � � � � �

� � � �
 (4.13)

Similarly we find for the observation:

 () () (),0 ,0n n
n n n n nx vx x

z z h x x h v− −

− −∂ ∂
∂ ∂≈ + − +� �� �

� � �� �
 (4.14)

To get a more convenient notation, we introduce the prediction errors,

 n

n

x n n

x n n

e x x

e x x

− −

+ +

−

−

� �
≜

� �
≜

 (4.15)

the measurement error,

nz n ne z z

−−
� �
≜ (4.16)

and the matrices:

ɵ()

ɵ()

ɵ()

()

()

11

11

11

, ,0

, ,0

, ,0

,0

,0

nn

nn

nn

n

n

x x u

u x u

w x u

x x

v x

h

h

ϕ

ϕ

ϕ

+
−−

+
−−

+
−−

−

−

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

=

=

=

=

Φ

Γ

G

H

V

� � �

� � �

� � �

� �

� �

 (4.17)

The model equations (4.13) and (4.14) can now be rewritten, adding the noise in the control-
inputs:

 ɵ()
1

11n n
nx x n n

e e u u w
−

− +
−−= + − +Φ Γ G

� � �
 (4.18)

n nz x ne e v

−= +H V
�

 (4.19)

4.1. KALMAN FILTERING 111

These error states can now be estimated using a standard linear Kalman Filter. This is
permitted if the model functions are approximately linear around the operating point. This
form of the Kalman Filter is called an indirect or error-state filter as the error states are estimated,
see section 4.1.4. The error-states now estimate the additive error of the real state which is
updated using formula (4.11). Therefore, we call this an additive error-state filter. We denote

the separately maintained state-estimate as x̂
�

 with usual super and subscripts. Note that this
estimate is only a value, all noise sources are handled in the error-state filter. The real state is
calculated as the addition of the error-state to the separate estimate:

 ˆ
nn n xx x e= +

� �
 (4.20)

At every moment in time the current estimate of the error can be transferred into the separate
estimate by using:

ˆ ˆ

: 0

n

n

n n x

x

x x e

e

+ − −

+

= +

=

� �

 (4.21)

The covariance matrix maintained by the error filter is the covariance of the error estimate.
Since the actual state in formula (4.15) is just a value, the covariance matrix for the state
estimate itself is the same matrix. For a linear model it is not needed to transfer the error-state
to the separate estimate after every time-update or observation-update. After the transfer, the
separate estimate is optimal again. However, in case of a non-linear model the approximated
model matrices are linearized around the separate estimate, and that estimate is not the correct
one when the error is not transferred. Therefore, you want to keep the error-state close to zero
for the best approximation. Normally the transfer is done at every corrector step. That means
that the predicted estimate of the error in the future will be zero, and the predicted error
measurement will be zero as well. In that case, the total predictor-corrector formulas for the
actual states become:

ɵ()11

1 1

, ,0nn n

T T T

n n n n

uϕ− +
−−

− +
− −

=

= + +

x x

X ΦX Φ ΓU Γ GQ G

�

 (4.22)

for the prediction step, and

()
()

()

1

,0

T T T

n n n

n n n

n n n n

n n n

y z h x

x x y

−− −

−

+ −

+ −

= +

= −

= +

= −

K X H HX H VRV

K

X I K H X

� ��

� � �
 (4.23)

112 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

for the correction step with the Jacobian matrices defined in (4.17). If the measurement

residual
n

y is large, the first order approximation in the calculation of the Kalman gain K may

not be accurate enough and this method may become unstable. One method to solve this is to
use an iterative approach of the corrector step using the Gauss-Newton algorithm. This
problem can also be solved by transforming the measurement such that the measurement
model h becomes linear in this fictive measurement. However, the part of the function h that
mixes in the measurement noise will remain or even become non-linear due to this
transformation. The transformation needed may not exist; therefore, it is not generally
applicable. The next section describes the restrictions when developing a more general indirect
Kalman Filter.

4.1.4 Indirect Kalman Filter

In an indirect Kalman Filter the state is split into two parts: a separately maintained estimate of
the real state, which is updated using a normal (non-linear) process model without noise, and
an error-state that is maintained by a Kalman filter (including all noise sources). The most
common form, the additive linear form, was presented with the EKF in which the error-state
can be added to the separate state estimate for an optimal estimate.

Traditionally, the indirect form of the Kalman filter is very popular in navigation because the
time-update of the separate state and the time-update of the error-state can be implemented
on different pieces of hardware. If the error-state filter temporarily fails, the state can still be
estimated using fast inertia sensor measurements as control-input variables. When the time-
update is very accurate, an efficient indirect filter can be made with measurement update-rates
as low as once per 30 minutes (in avionics). As measurement updates are costly in terms of
processing power - a matrix inversion -, this method is preferred in embedded applications
over a direct Kalman Filter in which the high-frequency sensors (i.e. the control-inputs in the
indirect filter) are treated as measurements (see section 4.2).

When developing an indirect Kalman filter for our Augmented Reality application, we found
that updating an orientation state with its error-state is more conveniently described by a non-
linear function (this will be explained in section 4.2). Therefore, we extended the indirect
additive formulation to a non-additive formulation. The general form to combine the state
estimate with the error-state is given by:

 ˆ(,)
nn n xx c x e= (4.24)

where

• c is the function that combines the estimate of the state with the true error to
determine the real state

• xn is the true state (stochastic variable)

• ˆ
nx is the separately maintained state (only values)

•
nxe is the true error-state (stochastic variable)

Using this equation we can rewrite the extended non-linear process model to include the
combiner function:

4.1. KALMAN FILTERING 113

11 1 1 1 1 1

1 1

1 1

ˆ(, ,) ((,), ,)

ˆ ˆ ˆ((, ,0),) (,)

ˆ ˆ ˆ(, ,0)

n

n n

n n n n n x n n

n n x n x

n n n

x x u w c x e u w

c x u e c x e

x x u

ϕ ϕ

ϕ

ϕ

−− − − − − −

− −

− −

= =

= =

=

 (4.25)

If c is an addition, we can write for the process model of
nxe :

11 1 1 1 1

ˆ ˆ ˆ(, ,) (, ,0)
n nx n x n n n ne x e u w x uϕ ϕ

−− − − − −= + − (4.26)

When the first order Taylor series approximation is taken around the state ˆ
nx , we get formula

(4.18) again. However, formula (4.26) can also be used when the error is not immediately
transferred to the actual state. Effectively this will become an extended indirect Kalman filter
as the error state itself has a non-linear process model. If the error states and the functionϕ

are chosen wisely, the error-state model may depend neither on the estimated state nor on the
value of the control-inputs.

In the case of a general function c, we need the function to have an inverse in the following
way:

1

(,)

(,)

x c y z

z c y x
−

=

=
 (4.27)

Now the prediction step of the error-state can be written as:

 ()
1

1

1 1 1 1 1
ˆ ˆ(, ,0) , ((,), ,

n nx n n n x n n
e c x u c x e u wϕ ϕ

−

− − +
− − − − −= (4.28)

An extended Kalman Filter can be constructed from this and despite the looks, the resulting
formulas may become simple, especially when the error is transferred to the state at every

measurement update so that
1

0
nxe
−

+ ≜

The measurement can be modeled in terms of the error-state:

 () ()ˆ, (,),
nn n n n x n

z h x h c x eν ν= = (4.29)

The generic method is now to linearize the function h around
nxe
− like in the normal extended

filter. However, we use another method that first transforms the measurement such that the
measurement model becomes linear in the measurement value, circumventing the problems of
linearizing the Kalman gain. This method requires that the measurement model h is partly

invertible. First, the state is split up into two parts: a part
,n z

x that is used when predicting the

measurement and a part
,n o

x that is not used. The measurement model can now be defined

using only the first part:

,

,

,(,) (,)

n z

n

n o

n n n z n z n

x
x

x

z h x v h x v

 
=  
 

= =

 (4.30)

114 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

The function
z

h should be invertible so that part of the state can be calculated from the

measurement:

 1

,
(,)

n z z n n
x h z v

−= (4.31)

We convert the real measurement to a direct estimate ˆ
nxe of the error-state using:

()
1

1

,0

ˆ(,),

(,)
ˆ ˆ(,)

ˆ

n

n

n n x n

z n n

x n

n

z h c x e v

h z v
e c x

x

−
−

=

 
=   

 

 (4.32)

We have to add the missing information
,0

ˆ
n

x in this formulation to enable the use of equation

(4.27), the state variables not depending on this measurement will be zero in this estimate. This
is corrected in the following step where the fictive error-measurement for the indirect Kalman
filter is calculated:

1

1

,0

(,)
ˆ ˆ(,)

ˆ

ˆ

n n

n

n n

z e x e n

n

e x n

h z v
e e c x

x

E e v

−
−  

= ⋅ = ⋅   
 

 ≈ ⋅ + 

H H

H V

 (4.33)

The matrix He just selects the variables from ˆ
x

e that are dependent on zn, and the matrix V is

used to linearize the effect of the real measurement noise as in a normal extended filter. Note
that this method of converting measurements cannot be used if the real measurement does not

provide enough information to calculate
,n z

x , which means that the function
z

h is not

invertible. However, we use this formulation for measurements of orientations. A measured
orientation can for instance be represented in a way different from the representation in the
filter state. The above formulation allows for the conversions between the two (see section
4.3.3).

4.1.5 Continuous time processes

Until now, we presumed discrete processes. However, our augmented reality application will
estimate the head-pose of the user which is a continuous-time variable. Sensor measurements
are available at discrete times only, so a discrete process model can be used. However, these
measurements may not be available at fixed time intervals. The formulation of the Kalman
filter starting from the continuous-time domain allows calculating the correct model matrices
and specifically the correct process noise for different time-intervals. In the case of ordinary
linear differential equations the process can be described by:

 x x u w= + +F C B
� � � �ɺ (4.34)

4.1. KALMAN FILTERING 115

When we assume (for now) that the matrices F, C and B, and the vectors u
�

 and w
�

 are
constant during the integration interval we can use a simple integration method. It can be
shown ([87 ch.3, 88] that the solution to a vector differential equation /dy dt y= A

� �
 with

constant matrix A is given by () (0)ty t e y= A� �
, just as if it were a scalar. First, we bring equation

(4.34) in the homogeneous form () ()y t Ay t=
�ɺ :

0 0 10

u w xx  +  
=    
   

F C B
� � ��ɺ

 (4.35)

Using the matrix exponential we can now calculate the state at time t from the state at time

()t t∆− :

0 0

1 1

t t t

u w
tx x

e

 
 
  −∆ 

+ ∆   
=   

   

F C B
� �

� �

 (4.36)

The solution will be of the form of the normal discrete Kalman Filter:

1 0 1 1

t t tx u w x −∆+    
=    

    

Φ Γ G
� � � �

 (4.37)

We know however that the process noise is a continuous function of the time, so assuming
them fixed does not describe the update for the state’s covariance very well. Let the process
noise

tw
�

 be drawn from a zero-mean multivariate normal distribution:

 (0,)tw N W
�
∼

All matrices and vectors may now be time dependent. First, we determine the homogenous

solution, where u
�

 and w
�

 are taken 0:

2 1

2 1

2

1

1 2
(,)

t t

t t

t

t

dt

x x

dx dtx

x x

x t t x

e

=

=

=

=

∫F

F

F

Φ

� �ɺ

� �

� �

� �

 (4.38)

Now we need to determine the particular solution for which
1

0tx =
�

. Intuitively, every value

for u
�

 at time t will be integrated until time t2. Integrating all contributions at times t1 until t2
will give the solution:

 ()
2

2

, 2

1

(,)

t

p t s s

t

x s t u w ds= + ⋅∫Φ C B
� � �

 (4.39)

The total solution now is:

 ()
2

2

1 2 1 2

1

(,) (,)

t

t t s s

t

x t t x s t u w ds= + + ⋅∫Φ Φ C B
� � � �

 (4.40)

116 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

In general, we cannot write this solution in the form of the normal Kalman filter update

equations. If we assume the input being constant over the interval
1 2
,t t , then

1t
u
�

can be

taken out of the integration resulting in:

2

2 1 1

1

2

1

1 2 1 2 2

1 2 2

(,) (,) (,)

(,) (,)

t

t t t s

t

t

t

x t t x t t u s t w ds

t t s t ds

= + +

=

∫

∫

Φ Γ Φ B

Γ Φ C

� � � �

 (4.41)

Because the process noise is continuous, that integral cannot be reduced. In the predictor step
for the state the expectation value is used, so the integral will be 0. From formula (4.41) we can
directly calculate the covariance matrix:

() ()()

() ()
2 2 2 2 2

1 1

cov

cov cov

T

t t t t t

T T

t t

x x E x x E x

x u

E     = − −     

= + +Φ Φ Γ Γ Q

� � � � �

� �
 (4.42)

 where

2 2

1 1

2 2

1 1

2 2

2 2

(,) (,)

(,) (,)

T
t t

t

t t

t t

T T T

t

t t

t t w dt t w d

t t E w w t dt d

E τ

τ

τ τ

τ τ

   
 = ⋅ ⋅  
      

  ⋅ =

∫ ∫

∫ ∫

Q Φ B Φ B

Φ B B Φ

� �

� �

 (4.43)

Using the assumption that the process noise has zero mean and is white with covariance W we
get:

 2

1

2 2

[] ()

(,) (,)

T

t

t

T T

t

E w w t

t t d

τ δ τ

τ τ τ

= − ⇒

= ∫

W

Q Φ BWB Φ

� �

 (4.44)

This should be easy to calculate. This formula ensures that when t∆ changes, or when it is
decided to do more prediction steps in the period t∆ , the resulting increase in uncertainty due
to the process noise is the same. In general, Q cannot be put into the form GWG. This means
that for discretized continuous-time processes the matrix G is likely to be the identity matrix
and can be removed from the formulation altogether.

When we try to extend the formulation above to the nonlinear case, we get for the differential
equation:

 (, ,)x f x u w=
� � � �ɺ (4.45)

This cannot be solved with generic methods, so every case has to be handled separately.
Naturally, somewhere an approximation has to be made. The function f can be linearized
when it is too difficult to linearize the solution of its integral, but the approximation will be
less accurate as a result.

4.2. SENSOR READINGS: CONTROL-INPUT VS. MEASUREMENT 117

4.2 Sensor readings: control-input vs. measurement

In this section we will investigate the two options to handle sensor readings. We will show the
differences for a simulated pure 1-D translation p(t). The simulated system model is given by:

21
1 2

1

1

((0,))

((0,))

(0,)

k k k k a

k k k a

k k da

p p v dt dt a N

v v dt a N

a a N

σ

σ

σ

+

+

+

= + + +

= + +

= +

 (4.46)

When the acceleration sensor is used as an input, the acceleration state is not needed. When an
acceleration measurement za =N(ak, sqrt(Ra)) arrives at time k, the state at k+1 is calculated by:

21

1 2

1

ˆ ˆ ˆ

ˆ ˆ

k k k k

k k k

p p v dt dt z

v v dtz

+ + +
+

+ +
+

= + +

= +
 (4.47)

2 4 3

, , , , ,

1 3 2

, , ,

2 / 4 / 2

/ 2

k pp k pv k vv a k pv k vv a

k

k pv k vv a k vv a

dt dt dt X dt dt

dt dt dt
+

 + + + + +
=   + + + 

X X X R X R
X

X X R X R
 (4.48)

When the sensor is not used as an input, first a Kalman filter update is done at time k to
update the estimate:

1

, , ,

1

, , ,

1

, ,

ˆ ˆ ˆ() ()

ˆ ˆ ˆ() ()

ˆ ˆ ˆ(1 /) ()

k k k pa k aa a a k k

k k k va k aa a a k k

k k a k aa a k k

p p z a

v v z a

a a z a

+ − − − − −

+ − + − − −

+ − − − −

= + + −

= + + −

= + + −

X X R

X X R

R X

 (4.49)

 and then the state at time k+1 can be calculated as:

21
1 2

1

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

k k k k

k k k

k k

p p v dt dt a

v v dta

a a

− + + +
+

− +
+

− +
+

= + +

= +

=

 (4.50)

When we compare (4.50) with (4.47), one may notice that in the limit of ,k aa

−X going to infinity,

they are equivalent for p and v. We can show that when the process noise for the acceleration
state (σda) goes to infinity, this is the case. The practical meaning is that no assumptions about
the accelerations are made, so no filtering takes place. It can also be shown that the

position/velocity parts of the covariance matrices
1k

−
+X of the two methods are equal to (4.48)

in that case.

We can also show that the performance of both filters is the same when Ra is infinitesimal

small (perfect measurement) and ,k aa

−X stays much larger than Ra (i.e. non-zero process noise).

The benefit of the filter with the acceleration sensor as measurements is when the
measurement uncertainty Ra is a large contributor to the uncertainty in the position. So the
measurement noise has to be at least comparable to the actual process noise in the acceleration
due to user motion.

With a mathematical package we could calculate the steady state covariance matrix for the
model with the acceleration sensor as input. The default settings are:

118 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

2

0.1

0.02

0.01

0.1 (time between position measurements)

p

a

p

m

ms

dt s

s

−

=

=

=

=

R

R

T

We calculated the position estimate error as function of these values. Figure 4-2 and Figure 4-3
show the results.

1.0000.5000.1000.0500.0100.0050.001

0.010

0.050

0.020

0.030

0.015

0.070

Standard deviation of acc. measurements Ra HmL

es
ti
m
at
ed
st
dd
ev
of
th
e
es
ti
m
at
ed
po
si
ti
on

Hm
L

Estimated accuracy of the position

Default: Ra=0.02, Rp=0.1, dt=0.01

Figure 4-2 Position accuracy vs acceleration sensor accuracy for dt=0.01, Tp=0.1 (solid); dt=0.0025,
Tp=0.1 (dashed) and dt=0.0025, Tp=0.05 (dotted). The pairs of lines give the lower and
upper bound of the estimate: just before and just after a position measurement.

4.2. SENSOR READINGS: CONTROL-INPUT VS. MEASUREMENT 119

0.2000.1000.0500.0200.0100.0050.0020.001

0.020

0.010

0.005

0.002

0.001

Standard deviation of pos. measurements Rp HmL

es
ti
m
at
ed
st
dd
ev
of
th
e
es
ti
m
at
ed
po
si
ti
on

Hm
L

Estimated accuracy of the position

Ra=0.02, dt=0.01 , Tp=0.1

Figure 4-3 The pairs of lines give the lower and upper bound of the position estimate’s accuracy: just
before and just after a position measurement

It is interesting to note that a change in Ra of a factor of one hundred results only in a better
position estimate of a factor of three. A change in the position measurement noise of only a
factor of four, however, gives almost a factor of three better accuracy. Changing the sampling
rate of the acceleration sensor with a factor of four only changes the estimate by a factor of
1.18 and sampling the position at twice the rate increases accuracy by only a factor of 1.3. An
accurate position sensor therefore seems to be paramount.

Of course, when the position measurements are very accurate, the acceleration measurement
becomes the limiting factor again (left part of Figure 4-3). This point however seems to lie
below a positional measurement accuracy of 1 mm which we do not achieve.

In a continuous time model the acceleration changes between measurements. This can be
modeled as an extra process noise σa. If Ra is put to zero, then this σa is still present, which
means that increasing the accuracy of the acceleration measurement might be even less fruitful.
Increasing the acceleration sampling frequency might help a little bit, because σa scales roughly
with the square root of dt.

In our augmented reality application the process noise is small when the user is not moving.
This is also the situation that jitter in the position will be noticed the most. When the user
moves, a delay will be noticed most. Filtering a signal causes a delay, so filtering should be kept
to a minimum when the acceleration is changing rapidly. One way is to make the process
noises dependent on a dynamic estimate of the variance of the acceleration . The higher the
variance, the higher the process noise. If the measurement noise is lower than the process
noise, filtering could be shut off entirely by using the acceleration as an input. Less states and
measurement updates means faster operation as well.

120 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

There is another drawback to filtering. If the filter is nonlinear, the linearization of the update
equation will introduce disturbances. If the innovation is large, the filter may become unstable.
So there is an upper limit on the allowed measurement uncertainty for the filter to be stable. In
practice, however, the limit will probably never be reached, as a sensor with that much noise
will not be of use anyway.

4.3 A process model for Augmented Reality

In contrast to robot localization where the desired movement is known, locating a camera on a
user’s head - as in our pose estimation case - is more difficult as we cannot make use of the
user’s intentions. The inherent consequence is that no process model (linear or non-linear) will
satisfy the assumptions of Kalman Filtering, which results in a sub-optimal (in least-squares
sense) estimate. Determining what process model to use, i.e. which state variables should be
included, what representation should be used for orientations and how much process noise
should be used, is generally accomplished by trial and error.

In optical see-through Augmented Reality, we need to accurately know the full 6D pose of the
AR helmet. Using all sensors, the following variables can be measured:

• 3D position (measured with the camera)

• 3D acceleration (measured with accelerometers)

• 3D orientation (measured with the camera and magnetometers)

• 3D rotational speed (measured with the gyroscopes)

It follows from this that the process model should include these variables, as well as the
missing 3D velocity between the position and acceleration. Furthermore, as the inertia sensors
that measure the rotational speed and acceleration suffer from drift, more variables are needed.
Gyroscopes in rest can have an output value behavior as shown in Figure 4-4. The figure
shows a cheap gyroscope at rest, measured during 20 hours. The gyroscope was turned on at
the start of the measurement (18h) and the abrupt heating inside the device caused a very steep
slope. During the night, the temperature drops and the bias slowly increases. The bias
decreases again when the heating starts at 6h. The drift can partly be compensated as a
function of temperature, but a low frequency component will still be present. The drift can be
modeled as a slowly changing bias of the sensor output which should be estimated as well:

• 3D gyro drift

• 3D accelerometer drift

4.3. A PROCESS MODEL FOR AUGMENTED REALITY 121

Figure 4-4 Output of a cheap gyroscope in rest, sampled at 100 Hz. The vertical range here translates
to 6°/s. The lowest frequency drift is probably the effect of temperature change in the room

In total, the number of states to be estimated is 21. Those 21 states are not closely coupled, as
orientation and position are at first sight independent. Since the acceleration due to movement
and the acceleration due to the gravitational pull of the earth cannot be distinguished, the
estimation of the acceleration is dependent on the orientation. Hence, the measured
acceleration should be corrected for the gravity vector using the orientation. It was decided to
use two separate models, one for position and one for orientation, because of the low
dependency and the fact that the two filters each have less states to estimate, resulting in faster
operation. This was originally done in order to run the filter in a small, embedded computer.
Now, using a laptop, we could run the full filter easily, but we did not change our setup as in
the future a wearable computer must run the filter.

The process model for position follows Newton’s laws, which means that it can be described
linearly if the acceleration values are corrected for gravity. However, the time evolution of the
three parameters that define the 3D orientation cannot be described linearly using the 3D
rotational speed because those three parameters are not directly measured in our strap-down
setup (see section 4.3.2). Therefore, for the orientation, we have to use an extended Kalman
Filter.

122 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

For both filters we chose to use the inertia sensors as inputs. Not incorporating the inertia
sensor values as observations makes the filter much faster; with our measurement reordering
method that is very convenient. We also found that the process noise due to the inertia
sensors is lower than the process noise due to the unknown motion of the user. Combined
with the noisy camera pose estimates, it is of no use to filter the inertia measurements.

We chose to use the indirect filter setup. This is not really needed for the position filter, but
this is useful for the orientation filter. In the indirect filter setup, we estimate the error in
orientation and with the method presented in section 4.1.4 we can make the measurement
update equation linear and stable. We will now present the process models for the orientation
and the position that we actually implemented.

For the orientation process model, we also have to choose which representation we are going
to use for the orientation. An orientation can be represented in many ways. Euler angles are
popular and the three angles each describe a rotation around one of the main coordinate axes.
In aviation, the “x y z“ convention (yaw-pitch-roll) is common. In this convention the angles

(φ,θ,ψ) specify first a rotation ψ around the x-axis , then a rotation θ around the y-axis, and

finally a rotation φ around the z-axis. When viewed differently, using the coordinate axes of

the rotated system after each rotation, the angles equivalently describe first a rotation φ around

the z-axis, then a rotation θ around the new y-axis, and finally a rotation ψ around the new x-
axis. Many filter solutions use those Euler angles, but there are a few difficulties. One is that an

angle is equivalently described by another angle with an offset of 2π radians, which makes it
difficult to calculate the difference between two angles. In Kalman filtering this difference, or
the innovation, is used as a correction and when this correction is scaled by the Kalman gain, a

scaled correction of +1.5π is not equivalent to a scaled -0.5π. Another problem is known as

Gimbal lock: when the pitch θ reaches π/2, the other angles, φ and ψ, specify the same
rotation, which results in a very unstable representation.

Instead of angles, a set of four parameters called Euler parameters can be used. This set is
actually a unit quaternion, which represents a general rotation in 3D. The beauty of quaternions
is that they can be integrated and differentiated without problems and that they are stable over
the entire range of rotations. For these reasons, we use them in our process model. As it is
important to understand how quaternions work, the next section gives the definition and some
properties. Using these quaternions we develop an error-state extended Kalman filter for the
orientation. Figure 4-5 shows the setup using two filters.

4.3. A PROCESS MODEL FOR AUGMENTED REALITY 123

 Gyroscopes
),,(,,, zbybxb ωωω

dt∫ω+

-

+

-

Orientation

Complementary

Kalman filter

),(bωθ ∆∆

),,(zyx θθθ

bω∆ θ∆

100 Hz update16 Hz

correction

100 Hz

update

+

-

12 Hz

correction+

-

Camera

Inclinometer

),,(zyx θθθ

),,(zyx θθθ

Gyroscopes

),,(,,, zbybxb ωωω
dt∫ω+

-

+

-

Orientation

Complementary

Kalman filter

),(bωθ ∆∆

),,(zyx θθθ

bω∆ θ∆

100 Hz update16 Hz

correction

100 Hz

update

+

-

12 Hz

correction+

-

Camera

Inclinometer

),,(zyx θθθ

),,(zyx θθθ

Accelerometers

),,(,,, zbybxb aaa

2
dta+

-

+

-

Position

Complementary

Kalman filter

),,(pva ∆∆∆

),,(zyx pppDGPS

),,(zyx ppp
a∆ p∆

100 Hz update

10 Hz

correction

100 Hz

update

v∆

ℜℜℜℜ)(θ Gravity

Correction

+

-

Orientation filter

CAM

),,(zyx ppp

1 Hz

correction

+

-

Accelerometers

),,(,,, zbybxb aaa
∫∫ 2

dta+

-

+

-

Position

Complementary

Kalman filter

),,(pva ∆∆∆

),,(zyx ppp

 Gyroscopes
),,(,,, zbybxb ωωω

dt∫ω+

-

+

-

Orientation

Complementary

Kalman filter

),(bωθ ∆∆

),,(zyx θθθ

bω∆ θ∆

100 Hz update16 Hz

correction

100 Hz

update

+

-

12 Hz

correction+

-

Camera

Inclinometer

),,(zyx θθθ

),,(zyx θθθ

Gyroscopes

),,(,,, zbybxb ωωω
dt∫ω+

-

+

-

Orientation

Complementary

Kalman filter

),(bωθ ∆∆

),,(zyx θθθ

bω∆ θ∆

100 Hz update16 Hz

correction

100 Hz

update

+

-

12 Hz

correction+

-

Camera

Inclinometer

),,(zyx θθθ

),,(zyx θθθ

Accelerometers

),,(,,, zbybxb aaa

2
dta+

-

+

-

Position

Complementary

Kalman filter

),,(pva ∆∆∆

),,(zyx pppDGPS

),,(zyx ppp
a∆ p∆

100 Hz update

10 Hz

correction

100 Hz

update

v∆

ℜℜℜℜ)(θ Gravity

Correction

+

-

Orientation filter

CAM

),,(zyx ppp

1 Hz

correction

+

-

Accelerometers

),,(,,, zbybxb aaa
∫∫ 2

dta+

-

+

-

Position

Complementary

Kalman filter

),,(pva ∆∆∆

),,(zyx ppp

Figure 4-5 Fusion of data from the sensors for pose tracking. Two filters work in
tandem, where the output of the orientation filter is used to correct for
gravity in the position filter.

4.3.1 Quaternions

Quaternions come from the field of quantum mechanics and are an extension of the normal
complex numbers. A quaternion has a scalar part and a vector part, where this vector part can
be seen as three different complex axes. We describe here only the application to define
rotations, for a general treatment of quaternions the reader is referred to [89]. The definition
of a quaternion that denotes a rotation is given by:

124 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

0 0

0

 and

 cos(/2)

sin(/2)

q q
q q

q q

q

q n

θ

θ

   ∗= =      −   
=

= ⋅

� �

� �
 (4.51)

in which θ is the angle of rotation around the normalized vector n
�

, and q∗ is the complex

conjugate of q. The conjugate can be seen as the result of a rotation over the reverse angle –θ,
so it is the inverse operator. The general inverse of a quaternion is given by:

 -1

2

q
q q

q

∗
∗= = (4.52)

From the definition of a rotation-quaternion in equation (4.51) it follows that 1q ≜ , a unit

quaternion. A quaternion that represents a rotation of a frame ΨA with respect to frame ΨB

expressed in terms of frame ΨB will be written as B

A
q : the rotation that rotates frame ΨB to

frame ΨA expressed in ΨB.

Let the quaternion representation of a vector av
�

 be:

0

a
avv

q
 
  
 

= �� (4.53)

Then the rotation of this vector is obtained by a double quaternion multiplication:

0

A

B B

A a B Av
A

Av
q q q q

R v

∗
⊗ ⊗

 
= =  ⋅ 

�� � (4.54)

In which the operator ⊗ is called the quaternion multiplication. In matrix form this becomes:

�

1,0 1, 1, 1, 2,0

1, 1,0 1, 1, 2,

1 2 1 2

1, 1, 1,0 1, 2,

1, 1, 1, 1,0 2,

2,0 2, 2, 2,

2, 2,0 2, 2,

2 1

2, 2, 2,0 2,

2, 2, 2, 2,

x y z

x z y x

y z x y

z y x z

x y z

x z y

y z x

z y x

q q q q q

q q q q q
q q q q

q q q q q

q q q q q

q q q q

q q q q
q q

q q q q

q q q q

⊗

− − −  
  −  = =
  −
    −   

− − −

−
= =

−

−

1,0

1,

1,

0 1,

x

y

z

q

q

q

q

  
  
  
  
    

  

 (4.55)

In which qɶ is the quaternion matrix and q
⌢

 is called the transmuted quaternion matrix in [90].

The representation of angular velocity vectors using quaternions is analogue to the case of
rotations of position vectors over angles. The angular velocity of Ψi with respect to Ψj
expressed in Ψi is given by:

4.3. A PROCESS MODEL FOR AUGMENTED REALITY 125

 ,

0

0

0

x y

j j i j j

i i i i x z

y z

R R R

ω ω
ω ω ω

ω ω

 −
 

= ⋅ = ⋅ − 
 − 

ɺ ɶ (4.56)

Where we replaced the scalars like ,

,

i j

i x
ω by

x
ω for clarity. In quaternion notation this is:

 �1 1
, ,2 2

j j j

i i i j i j i
i i

q q q q q
ωω

⊗= = ⋅��ɺ (4.57)

As the scalar part of
,i j

i

q
ω
� is zero, the solution to equation (4.57) is:

�

�

1 ,
2

() (0)

,
 , ,1 1 (0)((

2 2 ,
cos) sin)

j j

i i

j

i

i jq t
it

i j
ii j i j

I t ti i i j
i

q e q

q
q

ω

ω
ω ω

ω

⋅

= ⋅ +

=

 
 

⋅ 
 
 

�

� �

 (4.58)

Written as a quaternion multiplication:

,1()
2

,() (0)
,1()

2 ,

cos

sin

j j

i i

i j
ti

i jt
i j iti i j

i

q q

ω

ωω
ω

 
 
 
 ⊗
 
 
 
 

=

�

�
�

�
 (4.59)

A more detailed treatment is given in [91]

4.3.2 Strap down inertia navigation

We use sensors that are attached to a fixed body, the AR helmet in our application. The inertia
sensors make their measurements in the local body frame, not the world frame. This means
that we cannot use the integral of the sensor measurements to go to a position and orientation
in the world. We must first rotate the measurement values to the world frame. The rotated
body frame is called the navigation frame and can be viewed as a translated world frame.

We already chose to use indirect Kalman filters, in which the real state estimates are updated
separately from the error-state estimates maintained by the filters. Here, we present the
process model for the separately maintained states. Note that in the following formulation we
already chose to use the measurements of the inertia sensors as inputs, so these measurements
can be used in the time-update. The time-update formulas are given by:

126 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

()
1

, 1
12

1

1

2

,1()
2

,()
1 ,1()

2 ,

() () (
1

() ()

() () 2 ()

cos

()
sin

() ()

() () ()

g k g k

b n

b g k g k g k

n n

b k b

a k a k

b

b k a k a k

n n n

b b b

b n
t

b

b nt
k b n bt

b b n
b

t t
k k

b t b t

z t z t b t

q t q

b t b t

a t z t b t

v v R

ω

ω

ω
ω

ω

−

−
−

−

− ∆ 
 

− ⊗− − ∆
 −
 
 

−

=

= + −

=

=

= −

= +

� �

�� � �

�

�
�

�

� �

�� �

� � ()
()

1
12

) ()
1

1
() () () ()

1 12

() ()b n b n

b k b b k

n n n n

b b b b

t t
k k

t t t t
k k k k

a t R a t g t

p p v v t

−⋅ −

+ +− −

+ − ∆

= ∆

� � �

� � � �

 (4.60)

where for the accelerometers and gyroscopes, the bias states are denoted as
a

b
�

 and
g

b
�

, and

their measurements as
a

z
�

 and
g

z
�

. n

b
R is the rotation matrix representation of the Quaternion

n

b
q . We do not take into account the Earths rotational speed, which means we neglect the

resulting Coriolis force. The velocity and range of positions will be too low to notice that
effect in our augmented reality application. Notice that we also take the mean of the current
acceleration measurement and the previous one. Indeed, our acceleration state is the average
acceleration in a time period dt for a correct process model. The average of the two
measurements is our best guess. The process noise will have to reflect the error we make with
this assumption.

Note that this time-update can only be done when measurements of the inertia unit are
available. Currently this is no problem, but in a modular setup, when we may want to remove
these sensors, special care has to be taken. When a sensor that is used as an input is not
available anymore, the process noise has to be increased to account for the missing
information. The process noise has to reflect the uncertainty in the model, so now the full
acceleration change due to the motion of the user has to be regarded as noise, where first only
the deviation from the linear acceleration model (average of two measurements) was
incorporated.

In addition, when more than one inertia tracker is present, their measurements can only be
combined as inputs when they are synchronized in time. Otherwise an acceleration state needs
to be added, and the measurements of both sensors should be incorporated as observations of
that extra state. But as already mentioned in section 4.2, filtering the acceleration does not
contribute much to the accuracy in position in our setup due to the relatively inaccurate
camera pose estimates. So probably only the best inertia sensor should be used.

4.3.3 Error-state system model

For the error-state Kalman filter we chose the following states:

4.3. A PROCESS MODEL FOR AUGMENTED REALITY 127

()
()

, ,

,

T

pos a

T

ori g

dx dp dv db

dx dq db

=

=

��� ��� ����

���� (4.61)

in which d is used to denote that the values are deviations. The quaternion dq is defined as the
rotation that rotates the estimated body frame system (denoted with a dash) to the real body
frame system:

 n n

b b
q q dq−= ⊗ (4.62)

This post-multiplication definition is chosen over pre-multiplication or the normal additive
error because now only the error-states and the gyroscope measurements are used in the
process model for the orientation-error, making it independent of the real state.

Position filter

On determining the process model for the position, we start in the continuous time domain:

 () ()

()

()
()

()

0 0 0 0 0

0 0 0

0 0 0 0 0

a

n n

b b

an n

b b u k

b
b b

acc acc

n

b
t
k

dp dp
w t

dv F dv Cv t B
w t

db db
t t

I

F R C I B I

I

⋅

   
    

= + +     
    

   

     
     = = =     
     
     

� �

� �

� �

 (4.63)

This equation holds for t between tk-1 and tk. Only the noise vu in the input of the real state at
time tk is used here, since the value itself has no influence on the error states. The

accelerometer bias is modeled as a random walk in
abw .

a
w models the acceleration change

during human motion as well as other effects that are not modeled. The solution to the
differential equation is given by:

() ()

a

1

1

1 12 2

2 2

da db

31 1

3 2

da

() ()

() ()

 () (0,)

0 = = +

0 0 0

=

k k

n n

b b

n n

b b u k

b b

acc acc
k k

n n

b b
F t n n

b b

t t
k k

t t
k k

t t t

dp dp

dv dv v t

db db
t t

I I t R t R t

I R t R t

I

I t

e

−

−

∆

∆ = −

   
   

= Φ + Γ + Ν   
   
   

   ⋅∆ ⋅∆ ⋅∆
   

Φ = = ⋅∆ Γ ⋅∆   
   
   

∆

Q

Q Q Q

Q

� �

� �

� �

a

2 5 4 31 1 1

20 8 6

2 4 3 21 1 1 1
db2 8 3 2

3 21 1

6 2

cov() = cov()
aa b

I t t t t

I t I t w t t t w

t t t

   ∆ ∆ ∆ ∆
   

∆ ∆ ∆ ∆ ∆   
   ∆ ∆ ∆   

0

0 Q

0 0 0

 (4.64)

128 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

The process noise Q was determined by evaluating (4.44) with (4.63) using a mathematical
software package. All measurements from our position sensors use the following observation
model:

 n
pb

n

dp b zp
z p z v

−= − + (4.65)

in which the real measurement of position is converted to give the position of the body frame
in the coordinates of the navigation frame.

Orientation filter

The process model for the orientation Kalman filter is more complicated, because we use the
orientation difference in quaternion notation:

 n n n n n n

b b b b b b
q q dq dq q q− −∗

⊗ ⊗= ⇔ = (4.66)

in which n

b
q − is the estimated orientation by integration using eq. (4.59) and n

b
q is the real

state. If we ignore process noise, we can find the time-update formulas analytically, without
linearization. Let us start by writing the time-update for the real state and the estimated state:

1

1

k k

k k

q q q

q q q

ω

ω−

−

− −
−

= ⊗

= ⊗
 (4.67)

The variables without the dash denote the real states, and the ones with a dash the values we
have available. Using (4.62) we can replace the real orientation and using the time update we
can rewrite the current orientation estimate in terms of the previous estimate:

()

1 1

1 1 1

* *

1 1 1

*

1

k k k k

k k k k

k k k k

k k

q dq q dq q

dq q dq q dq q

dq q dq q dq q

dq q dq q

ω

ωω

ωω

ωω

−

−

−

− −
− −

− −
− − −

− −
− − −

−

⊗ = ⊗ ⊗

⊗ ⊗ = ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗

 (4.68)

The last step is to replace the real angular velocity with our estimate, and include the time-
update of the bias error:

 1

*

1

1

k
k k db

k k

dq q dq q

db db

ω ω− −
−

− +

−

= ⊗ ⊗

=

�������

��� ��� (4.69)

We can make an extended Kalman filter for this nonlinear time-update, but the process noise
should be still determined. Therefore, we derive the process model again, starting in the
continuous time domain.

First, we determine how the time derivative of a quaternion relates to the time derivate of its
inverse:

() 0 0n n n n n n

b b b b b b

n n n n

b b b b

q q q q q q

q q q q

• • •
−∗ − −∗ − −∗ −

• •
−∗ −∗ − −∗

⊗ ⊗ ⊗

⊗ ⊗

= ⇒ + = ⇒

= −

 (4.70)

4.3. A PROCESS MODEL FOR AUGMENTED REALITY 129

Using this equation and equation (4.57) for the time derivate of a quaternion, the time

derivative of the estimate n

b
dq becomes:

()

()
,

, ,

, ,

1

2

1 1

2 2

1 1

2 2

b n
b

b n b n
b b

b n b n
b b

n n n n n

b b b b b

n n n n n n n

b b b b b b b

n n n n n

b b b b b

n n n

b b b

dq q q q q

dq q q q q q q q

dq q q q dq dq q

dq q dq dq q

ω

ω ω

ω ω

−

−

• • •
−∗ −∗

• •
−∗ − −∗ −∗

•
−∗ −

•

⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

⊗ ⊗

= +

= − +

= − +

= − +

 (4.71)

Actually, a process noise term should be added here; for clarity, we do that at a later stage. We
can bring (4.71) to a more convenient notation using matrices:

� �

� �()
, ,

, ,

1 1

2 2

1

2

b n b n
b b

b n b n
b b

n n n

b b b

n n

b b

dq q dq q dq

dq q q dq

ω ω

ω ω

−

−

•

•

= − ⋅ + ⋅

= − ⋅

 (4.72)

The real angular velocity ,b n
b

ω can be written in terms of the definition in (4.60), the gyro

measurement error and the current error in the bias:

1

, , 1 1
, ,2 2g k g k

b n b n

b b z t z tv v dbω ω
−

−= − − −
���

 (4.73)

Combining equations (4.71) and (4.73), and using the definition of the quaternion (4.51), we
find:

, 1 ,

1 1

2 2

1

2 ,

0

()

() () 2

k g k g k

k

k k

t z z

tn

b
b n

t t b

u v v

u db dq
dq

dq u db u db dq dqω

−

•

−

= +

 − + ⋅
 =
 ⋅ + − + × + × 

� � �

���� �

��� ���� � � �

 (4.74)

in which the variable u
�

 is the input as in the Kalman formulation that holds the noise of the
gyro measurements used in equation (4.60). To complete the derivative formulation, we model
the bias error as a random walk:

db

db w
•

=
��� �

 (4.75)

We could not solve these differential equations directly, so we needed to linearize this system.
We bring the system into the form of a linear continuous-time differential equation, so we can
use the formulation in section 4.1.5. This is in fact the continuous time version of the

extended Kalman filter. We linearize around the state
orient

dx at time tk-1 (the previous

estimate). In the indirect filter setup, the error states are reset after every observation update.

This means that
1kt

db
−

−
������

will be 0,
1kt

dq
−

−� will be 0, and
1,0 kt

dq
−

− will be 1. Taking the derivates and

filling in those values gives:

130 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

 �
00 0

, 1 1

22

0 0 0 0

0

00 0 0

dq

b n

b dq

db

wdq dq

dq dq u w

wdb db

ω

•

−

                == + +        
                 

� � � �

��� ��� �
 (4.76)

This can be solved as shown in section 4.1.5 analytically with a mathematical software package.
Note that equation (4.76) is only a correct linearization if the error-state values are indeed as
assumed: no bias error and no orientation error.

For the observation model we follow the formulation of converting measurements in the
extended indirect Kalman filter of section 4.1.4, equations (4.29) and (4.30):

()

, _

,

n

n n

z b obs est b nq
b

n orient orientq
b

e dq q z

z quat z v

−∗
⊗= =

=
 (4.77)

in which the function quat converts the orientation zorient and associated noise vorient from a
sensor, such as our camera, to quaternion notation. We do this to make the function h(.) linear
at the expense of a less accurate estimate of the Kalman measurement uncertainty. Using the
formulation of the innovation in (4.4) we get:

()
,

0

cov()

n

n

n

k z orient b obs

T

k z k

I dq
y e dx dq

db

S e

−  
= − = −   

 

= +

H

HX H

���
 (4.78)

in which the covariance of the error-measurement can be calculated by linearization of (4.77)
and in which X is the covariance of the error-state. Of course, after this update, the quaternion

dq should be normalized to unity again before it is combined with the estimate of the real

state.

4.4 Incorporating Lag

Many sensors cannot give their measurements instantly to the Kalman filter. The
measurements’ values are first transferred from the measurement device to the computer, and
in the case of a camera, the measurement should first be calculated by time-consuming image
processing. The camera measurements are typically delayed about 0.08s. When we ignore this
delay during motion, the orientation Kalman filter will assume an error in orientation and will
adjust the current error and bias estimate. After this incorrect adjustment, the filter needs
some time to recover. A bigger problem is that the position filter uses the orientation, since
this delay introduces a non-existent acceleration.

4.4.1 Backward prediction

A common technique to incorporate measurements from a time earlier than the current time is
backward prediction. Let the measurement zd be the measurement at time td, while the current
time is tk. The measurement model h then includes a state transition function ϕ that estimates

the state at the time of measurement using the current state:

4.5. A MODULAR KALMAN FILTER 131

,

(,)

(,0)

d k

d d k k

z h x v

x xϕ

=

=
 (4.79)

In our error-state filter, this transition function would roll back the last (k-d) time update steps,
which means that the measurements of the inertia sensors should be stored. Although the
formulation is quite easy, there are a number of problems in our application

• The observation model becomes nonlinear again.

• The greater the delay, the less accurate the prediction is.

• Only the current state is updated, and not the intermediate states: Another delayed
measurement cannot profit fully from this update.

To circumvent these problems we decided to reorder the measurements in time as described
below.

4.4.2 Measurement Reordering

In our method we store all the observations of the sensors as well as the Kalman states and
matrixes at every step and keep a history of 60 steps. In our case the steps are 10ms (the
update-rate of the inertia sensors), so a history of 0.6s is kept.

When a camera measurement finally arrives, we step back to the position in time of that
measurement, and do the filtering in the Kalman state that belongs to that point in time. From
this point on, all the other measurements (such as gyro, camera, GPS) are processed again up
to the current time. In this way the best estimate at the current time is achieved. As we have a
position Kalman filter that depends on the output of the orientation Kalman filter, both filters
are rolled back when measurements have to be reordered that are used to estimate the
orientation error or gyro bias error. As a result, we obtain the best estimate for both filters.

We are aware that this method is computationally intensive, but for now it poses no problem
as the CPU load is close to zero on an Intel Pentium4 3 GHz. Some other methods that
address the problem of out-of-sequence measurements are presented in [92-94].

4.5 A modular Kalman filter

The Kalman filters we used in the previous section are centralized filters. In the same filter, the
user variables and the sensor specific variables are estimated. For the orientation filter, the
gyro bias is estimated along with the orientation. Although the filter from the previous section
is working for our specific augmented reality application, in the future, we would like to use
the modular filter as shown in Figure 2-14. To begin, we need to bring the previously defined
filters for augmented reality into that structure. We start with a well-known decentralized
(=multiple filter) setup, and adapt it to the desired structure.

132 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

4.5.1 The decentralized KF

In a decentralized KF, the sensor outputs are first processed in local filters and then the result
of the local filters are combined in a master filter. In this decentralized structure, the estimates
of the local filters can be compared with the master filter’s estimate to detect a faulty sensor
[95]. Furthermore, in the case of more sensors with local states, the number of states per filter
is less, resulting in less needed computation power. The most popular decentralized design is
the Federated filter of Carlson [96]. The idea is that measurement updates are processed in
local filters, and the estimates from the local filters are combined in a master filter to give the
best estimate. The federated filter is equivalent to the centralized filter provided that all filters
have the same states, the time-update formulas and process noise are the same for all local
filters, and the best estimate from the master filter is fed back to the local filters (zero reset or
full feedback). The general setup is illustrated in Figure 4-6.

orient.

ωωωω

mP

2cP

1cP 1
ˆ

cx

Local sensor 2

(camera)

Local sensor 1

(inclinometer)

Reference sensor

(gyro)

Local Filter 1

inclino/gyro

Local Filter 2

camera/gyro

Master

Filter

orient.

 ˆ
mx

ˆ
mx

mP

orient.

2
ˆ

cx

Figure 4-6 Schematic picture of a Federated Kalman Filter for the orientation

For orientation estimation, the reference sensors would be the gyros. One local filter combines
gyros with inclinometers and the other combines gyros with the camera orientation. All filters
have the orientation as state, and the local filters also have the gyro bias errors as states. The

local state
i

x and its corresponding error covariance
i

P of local filter i is defined as:

 ci

i

di

 
=  
 

x
x

x
 (4.80)

 cci cdi

i

dci ddi

 
=  
 

P P
P

P P
 (4.81)

4.5. A MODULAR KALMAN FILTER 133

with
ci

x the common states and
di

x the drift states of the ith local filter. The two local filters

are exactly the same as the central filter from the previous section. When a camera
measurement arrives, the local filter updates its estimate of the orientation and the bias errors.
To ensure optimality, a fusion should be done immediately in which the master filter combines
the estimates of both local filters and resets the common states of the local filters to the best
estimate. When the fusion is done at a later stage, the result will be less optimal.

Fusion step

The master filter can be seen as a global filter with augmented state vector:

ci

cN

 
 =  
 
 

x

x

x

⋮ (4.82)

In which all common-state estimates of the N local sensors are combined. The corresponding
error covariance is:

11 1

1

N

N NN

 
 =  
 
 

P P

P

P P

⋯

⋮ ⋱ (4.83)

Given a set of local state-estimates ˆ
i

x , the globally best estimate ˆ
m

x is the one that minimizes

the weighted least-squares cost function:

 () ()1

1 1

ˆ ˆ
N N

T

i i ij j j

j i

−

= =

− −∑ ∑ x x P x x (4.84)

When we assume the state-estimates of the filters are uncorrelated, the off-diagonal terms of
eq. (4.83) vanish and the solution is simply:

 1 1 1

11
()

m NN

− − −= + +P P P⋯ (4.85)

 1 1 1

11 1
ˆ ˆ ˆ()

m m c NN cN

− − −= + +x P P x P x⋯ (4.86)

134 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

The last assumption actually means that the local filter states are treated uncorrelated. As can
be seen from formula (4.85) the more independent estimates for the common states, the
smaller the covariance matrix. After the fusion, however, all filters take over the estimate for
the common states, as well as the covariance for those states. That means that all filters
become correlated. They stay correlated because the local filters share the same time-update

sensor and process noise. This problem is solved by feeding back
i m

γ P instead of
m

P , with

1

1
1

N

i i
γ=

=∑ . If formula (4.85) is applied immediately after this feedback, the original covariance

matrix is recovered. So in this way the local filters can be treated uncorrelated. To make sure
that the local filters can be treated uncorrelated after time updates, the process noise for the

common states should also be multiplied with
i

γ in the time update stage of the local filters.

Usually all the
i

γ are taken the same; for N local filters this translates to Nγ = . The fusion

formulas for the local filters are found by requiring that the result of the federated filter should
be the same as the result for the centralized filter. These formulas are proven in Appendix 0
and given by:

1

ˆ
ˆ

ˆ ˆ ˆ()

m

i

di dci cci m ci

−

 
=  

+ − 

x
x

x P P x x
 (4.87)

1

1 1 1()

m m cci cdi

i

dci cci m ddi dci cci m cci cdi
I

γ γ
γ γ

−

− − −

 
=  

− − 

P P P P
P

P P P P P P P P P
 (4.88)

When using the indirect filter in federated mode, the error states should be reset only after the
fusion step. This means that a time update should correctly update the non-zero error states
found after a measurement update. However, the federated filter works optimally when all
observations by the local filters are immediately fused with the other filters and error-states are
reset before the time update. The measurements should also be ordered in time. In our case
we have delays in the sensors, and we could use the same method as in the central filter to
incorporate these measurements. This means that if a measurement is done, all filters go back
in time to the time of the observation. The local filter does an observation update and fuses its
estimate with the rest of the filters. Then, all filters redo the measurements in proper time
order until the current time. Normally the computational load of the federated filter is less,
because each local filter only has the common states and their own bias states, whereas a
central filter should include all local bias states. In the decentralized case measurement
reordering has a much higher computational load, for more filters are used in parallel, and all
have to redo their measurements. Backward Prediction might be a better solution, but that
depends greatly on the non-linearity and the process noise.

4.5.2 The Plug-in Kalman Filter

The Federated Kalman Filter (FKF) is a suitable filter for sensor fusion, but in its original
form, the FKF cannot serve as a modular filter because the reference sensors play a far too
dominant role. In the FKF, all the local filters contain the reference sensor states. If another
sensor replaces this reference sensor, all local filters have to be changed to accommodate other
reference sensor states. This, obviously, is not the modularity we require.

4.5. A MODULAR KALMAN FILTER 135

Consequently, we designed a Plug-in Kalman Filter (PKF). The main difference with the
federated filter is that every sensor now has a local KF. The local filters are still indirect KFs but
instead of the reference sensor states (gyro/accelerometer) they only have the common states
and their own bias states. However, we still need the reference sensors for the time update of
the local filters. The reference sensor will be chosen by the master filter and at every
measurement of the reference sensor, the bias corrected version will be sent to all local filters.
Choosing the best reference sensor is appropriate according to our discussion of accuracy in
section 4.2. The new setup is suitable to serve as a modular filter because the sensor states are
not dependent on other sensor’s bias states.

ωωωωraw

ωωωω

ωωωω

orient.

orient.

ˆ
mx

Local sensor 3
camera

Local sensor 2
inclinometer

Local sensor 1

gyro
(reference)

Local Filter 2

inclinometer

Local Filter 3

camera

Master

Filter

orient.

Local Filter 1

gyro

ˆ
mx

ˆ
mx

2cP

3cP

mP

1cP

mP

mP

1
ˆ

cx

2
ˆ

cx

2
ˆ

cx

Time-

 update

ωωωω

Figure 4-7 Schematic picture of our PKF implementation for orientation

Again, the implemented PKF consists actually of two filters; one for orientation and one for
position. The orientation filter’s structure is depicted schematically in Figure 4-7. The position
filter structure has a similar architecture. The figure shows the information flow between
sensors, local filters and the master filter. In addition, the local filters for position also need the
master estimate of orientation. The estimate of the rotational velocity from the reference
sensor is distributed via the master filter during a time update, and the covariance will include
both the measurement noise and the covariance of the current bias estimate to ensure proper
covariance updates.

136 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

The local filters do the actual filtering of the sensor output. These local filters model and
correct for systematic errors in their own sensors (e.g. drift). Some sensor errors (e.g. errors in
camera or magnetometers) are more difficult to model. In these cases, we only tried to
diminish the influence of those sensor estimates to the master filter estimate by varying the
measurement noise. This setup was not implemented on the augmented reality application but
on a mobile robot that was equipped with the inertia sensors, a camera, the tcm2 inclinometer,
magnetometers and wheel encoders. The preliminary results are given in the next chapter.

4.6 Conclusion

In this chapter we presented the process models we used for the Augmented Reality
application. The orientation representation in Euler angles can present some problems during
measurement updates because of Gimbal lock and the wrap-around every 2π radians. Euler
parameters or quaternions can be used for a stable differentiable representation.

To make the orientation model more linear, we used an indirect Kalman filter setup where the
error states are estimated instead of the actual state. Due to our choice of the error state
(nonlinear combination with the estimated real state) the error-state update is independent of
the real state. Effectively we created an extended Kalman filter for the error state. If the error
state is kept at zero rotation by transferring the error-state estimate to the real state estimate
immediately after each measurement update, the linearization process for the extended
Kalman filter becomes very simple.

Because we use a non-additive error-state for the orientation, the estimated covariance matrix
is not the covariance of the actual state. This is no problem for now, as we do not use the
covariance of the actual state estimate. Otherwise, a linearization of the non-linear combining
function in eq. (4.62) can be used to calculate the covariance.

The orientation measurement is in Euler angles whereas our filter estimates quaternions. The
normal Kalman measurement update equations are therefore non-linear. When the initial
orientation error is large, this may cause the filter to be unstable. We chose to convert the
measurement to a quaternion notation prior to a measurement update. This makes the
measurement model linear and stable, at the expense of a non-linear calculation of the
measurement and its noise.

In a position estimation example we showed that the position sensor accuracy has the largest
influence on the total filter accuracy. Changing the sampling times or using more accurate
acceleration measurements had less influence. We argued that when the process noise in
acceleration (or angular velocity for that matter) due to the user’s motion is high compared to
the measurement noise of the inertia sensors, it is of little use to filter the inertia sensor
measurements. This means that a computationally cheaper model can be used in which the
inertia sensors are treated as an input during the time-update.

Finally, we presented our design for a pluggable Kalman filter in which sensors can be added
and removed without changing the master filter and the application. When sensor
manufacturers would provide the local filters that estimate sensor specific disturbance
variables, it would be very easy for application users to decide during run-time what sensors to
use. In principle, this allows for sensors to be shutdown when an application does not need a
high accuracy.

4.6. CONCLUSION 137

In the following sub-sections, specific problems with Kalman filtering and our application in
particular will be discussed.

.

4.6.1 Problems with linearization

The linearization process of the extended Kalman filter throws away valuable information.
Only the first order approximation is preserved for the state estimate, and the second order
for the covariance. Up to the fourth order of the covariance information can be preserved by
using the sigma point Kalman filter [97] (also called Unscented Kalman Filter, or UKF). A set of
state-estimates called sigma points is chosen around the filter estimate such that their mean is
the current filter estimate and their ensemble covariance is the current covariance. These
points are then fed through the non-linear process model, and the new mean and covariance
are now taken as the new filter estimate and covariance.

Whether this method will predict more accurately the state covariance in our application is still
to be determined. In our formulation, we explicitly take into account the continuous-time
process noise, whereas they cannot. Furthermore, LaVoila argues in [98] that the UKF does
not perform better than the EKF in virtual reality applications. Furthermore, the UKF
implementation is more time consuming because instead of one non-linear transformation in
the EKF, all sigma points are subject to the same non-linear transformation.

4.6.2 Divergence problems

Two common sources of divergence are round-off errors and modeling errors. Round-off
errors can slowly affect the error covariance, such that it becomes asymmetric or non-positive-
definite. In both cases, the KF algorithm becomes unstable. Although they can be dealt with
easily, one should be cautious with round-off errors. Modeling errors, however, form a bigger
problem, because they are less noticeable. Typical modeling errors are:

- Modeling of systematic errors as white noise. In this case the KF filter cannot give the
optimal estimate. The estimated states will have a systematic error as well. An
example would be an acceleration sensor that is mounted under a small but unknown
angle. Our Kalman setup would attribute this error to a bias error. The apparent bias
is however dependent on the real angle of the sensor, so a good bias can never be
estimated.

- Modeling of a dynamic process as a static process. The KF simply tries to fit the
wrong curve through the measurements. That would be the case if we didn’t estimate
the change in bias of the inertia sensors.

- Taking the process noise too small. In this case, after a while, the error covariance
becomes so small that the filter does not believe the measurements anymore. In our
case this is easily overcome by estimating the process noise from the variance of the
inertia sensor measurements during motion.

- Linearizing a highly non-linear model. The EKF is linearized around the estimated
states. If the time-update function is highly non-linear, an error in the estimate results
in a big error in the linearization that is used to update the covariance matrix. In
addition, during a measurement update the innovation will be incorrectly
incorporated, which could lead to overcompensation and an unstable filter.

138 CHAPTER 4. SENSOR FUSION FOR POSE ESTIMATION

4.6.3 Modular filter

Finally, some problems concerning filter design and software design need to be solved:

- The federated filter has a big problem when the reference sensor is unplugged
because all local sensors use the dynamics and bias errors of the reference sensor.
Our PKF does not have this problem, but still the reference sensors are used to
update the local filters. When such an “updating sensor” is removed, its updating
function could be taken over by another sensor. In our system, it is required that all
updating sensors measure the same variable, for instance angular velocity. Preferably,
this new updating sensor has a periodic output, a high sampling rate and a small lag.
When the sampling rate is too low, more time updates can be generated with a
constant value, but with an increasing process noise. If no other sensor is found, a
dummy sensor can be used with zero value and a very high process noise. Aside from
the question whether it is desirable or not to remove the accelerometer, the important
point is that the filter keeps functioning properly.

- The PKF software needs to solve the problems of recognizing sensors that are

plugged in and out and managing their filter data. To deal with this, every local sensor
module needs to send the necessary information to the master filter at its
initialization. When running, the modules should also send a heartbeat to the master
filter indicating that it is still alive. In order to make the data accessible for all
modules, we use shared memory. The PKF loop can be summarized by the following
actions: The sensors post their data on the location of the sensor data in the shared
memory. The local filters wait until there is new data for them. When data from the
reference sensor has arrived, they perform the time update. On local sensor data they
do a measurement update and request a fusion step to the master filter. The master
filter notices that new data has arrived in the local filter’s locations and performs the
fusion algorithm, after which it posts the result in the master filter’s location, so the
local filters can perform the fusion update step. With sensors that have delays, the
fusion step should be done back in time. Redoing all measurements is no problem
when all measurements are stored centrally, but when the filter is split up in separate
processes, the synchronization of the local filters to do all measurements in proper
observation time order is not easy and computationally expensive. Each local filter
has to redo its measurement and fusion update steps. The load increases with the
number of filters and with the number of measurements independently, so this is not
a scalable approach. When many filters are present, a backward prediction approach
could be more tractable, although it is then more crucial to minimize the delays of
sensor measurements.

 - 139 -

Chapter 5
System Integration and practical use

In chapter 3 we described our methods to calculate the pose of the camera from an image of a
known marker with a specific pattern printed on it. We investigated the influence of image
noise and parameters such as line thickness and marker size on the accuracy of the estimated
pose. We aimed to use as few markers as possible, so it is likely that a marker is seen from
quite a distance. For a marker at 6m distance the orientation precision is better than 2.5°.
With a viewing angle above 20° the precision was better than 0.5°. This orientation error has a
large influence on the estimated position of the camera (linear with the distance to the
camera), and this error is the reason that virtual objects should not be projected more than
0.5-1m away from a marker.

In chapter 4 we described our method for sensor fusing. A Kalman filter combines the
absolute pose estimate from the camera with acceleration, angular velocity and magnetic field
sensors to get a better estimate of the camera’s pose. This filter is also necessary to increase
the update frequency to a rate that is significantly higher than the slow pose estimates coming
from the camera. However, in section 4.2 we showed that the Kalman filter can only
contribute to a limited extent to the total accuracy of the pose estimate. The pose estimate can
only be made more accurate when the filter model is accurate enough (i.e. predictable
acceleration/angular speed) and when the inertia sensors are accurate enough. A bias in the
sensors – for instance caused by a systematic estimation error or an unknown delay in the time
of measurement – will prevent the filter from giving a more accurate result than the camera
alone (at the time instance of these camera measurements). We tried to minimize the errors
introduced by the Kalman filter itself, which means that we used robust methods to represent
the orientation and time-update of the orientation, and decreased the non-linearity by
choosing an indirect orientation formulation (a non-additive error state Kalman filter).

In this chapter we will show the practical use of the total augmented reality system. We start
with the numerous calibration steps that are needed to find the relation between the
coordinate systems of the different sensors, displays and the user’s eyes. We then measured
typical sensor values for the system at rest and during typical use to find values for the
measurement noise and process noise in the Kalman filters. Finally we show the results of an
experiment we did with a SCARA robot that moves our sensor system in a predefined way (a
ground truth path) in order to find a practical accuracy measure for our pose estimation
method. These measurements assist us in determining the aspects that limit the accuracy of the
real system.

5.1 Pluggable Kalman Filter Experiment

Although the pluggable Kalman filter from Chapter 4 is not used in our current augmented
reality setup, we show some preliminary results in Figure 5-1. The purpose of this experiment
is to show that the filter works, and that the filter can cope with systematic errors in sensor
values.

In this experiment a two-wheeled robot was pushed by hand along a 2D rectangular track with
rounded corners. Five local filters were implemented for the following sensors on the robot:

140 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

• Jai CV-S3200 Camera, 320x240@15Hz. The measurement noise was determined as
function of distance and orientation.

• TCM-2 liquid inclinometer @16Hz. Measures orientation from magnetic field sensors
and the orientation of mercury in a glass tube. Measurement noise was set very high
when it indicated earth magnetic field disturbances.

• Odometry. Encoder counts from the robot’s wheels provide travelled distance
information to obtain a speed estimate.

• Gyroscopes @100Hz. Reference sensors for the orientation filter. Angular velocity
bias drift has to be estimated.

• Accelerometers @100Hz. Reference sensors for the position filter. Acceleration bias
drift has to be estimated.

One can observe in Figure 5-1 that the position estimate of the Kalman filter stays close to the
ground truth robot path most of the time. Along the left side a iron beam under the floor
disturbed the TCM2’s orientation measurement by more than 45°. This was detected, and the
measurements from the TCM2 were temporarily not trusted. The measurements from the
camera are not fully trusted until the marker is seen at a distance less than 100cm. This is why
initially the filter shows a large error during the magnetic field distortion (bottom left in Figure
5-1), but the error is corrected near the marker on the top left. This shows the resilience of the
Kalman filter against disturbances.

5.2. COORDINATE FRAME CALIBRATION 141

Figure 5-1 Experiment using the pluggable Kalman filter. This shows that the filter can cope
with and recover from systematic errors.

5.2 Coordinate frame calibration

Our augmented reality demonstrator contains several devices of which the pose should be
accurately known. For our Kalman filter the sensor cube and camera measurements have to
be expressed in the same coordinate system, called body frame. For camera pose estimation
we need to know the poses of the markers in the world, and to augment the user’s view we
need the poses of the two displays and the eyes. All these calibrations make the system hard to
setup. Therefore, automatic calibration procedures are needed. Unfortunately, the automatic
procedures we tried were not accurate enough to completely avoid manual adjustments. Figure
2-9 shows some of the coordinate systems in-use, we repeat the figure here for convenience:

142 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

Eye frame

Camera frame

Inertial tracker/

body frame

World frame

Pattern frame

LCD screen

Figure 2-9: Schematic picture of a number of coordinate systems used in our application.

5.2.1 Inertia tracker frame to body frame

We decided to use the inertia tracker coordinate frame as the body frame of the total system.
Therefore, no calibration is needed. This saves us from having to calculate the body frame
accelerations from the measured accelerations. When these frames would not coincide, the
calculation would depend on the angular velocity (centripetal forces).

5.2.2 Marker’s pose in the world

Measuring the pose of the markers in world coordinates is usually done manually and in
advance. The procedure is time-consuming, but it will give the best results. However, the
poses cannot always be determined easily because of uneven surfaces of floors or walls. In that
case an automatic procedure is needed. A SLAM method like FSLAM [34] could be employed
to make a map of all markers in the word. If one of the markers is given a pose in the world by
the user, all other marker poses will be known as well. Since our marker detection algorithm
already gives full poses of all markers in view, we can calculate the world pose of an unknown
marker directly if we know the pose of the camera in world coordinates. The pose of the
pattern in world coordinates can be calculated from its pose in camera coordinates by:

 W W C W b C

P C P b C P
= =H H H H H H (5.1)

Without known markers to calculate the position of the camera in world coordinates, we

would need to calibrate or measure the other poses (W

b
H and b

C
H) first, for example by using a

calibration rig. Although we cannot determine the position of the marker, we can determine
the orientation of the marker since the inertia cube provides the orientation of the body frame
in world coordinates:

 W W b C

P b C P
=R R R R (5.2)

5.2. COORDINATE FRAME CALIBRATION 143

In this equation the only unknown is b

C
R , and that rotation will be calibrated in the next

section. We will however determine W

P
R in another way to avoid dependence on other

calibrations as much as possible. We estimate W

P
R directly using two or more rotations,

expressed in world coordinates as well as in pattern coordinates. One of these rotations brings

the camera coordinate frame from position 1 to position 2. In pattern coordinates: 1,

2

C P

C
R . A

coordinate transformation to world coordinates gives:

 1, , 1, ,

2 2

C W W W C P P W

C P C W
=R R R R (5.3)

The camera can give us 1,

2

C P

C
R using the pattern coordinates of the camera in both positions:

 () 1
1, , 1, , ,

2 2 2 1

C P P P C P P P P P

C C P C C

−
= =R R R R R (5.4)

Our sensor cube can provide the rotation of the body frame in world coordinates 1,

2

b W

b
R in the

same manner. We can express 1,

2

C W

C
R in terms of 1,

2

b W

b
R by:

() ()
() ()

()
()()

1, 2, 1, 1,

2 2 2 1

, 2, 2 2, 1, , 1, 1 1,

2 2 2 1 1

, 2, 2 1, 1 1,

2 2 1

, 2, 2 1, 1 1,

2 2 1

1
, 1, 1 1, 1 1,

2 1 1

, 1,

2

1,

2

b W C W C W b W

b b C C

W W C C C W C W W W b C C W

C b W C C C W

W W C C b C C W

C b C W

W W C C b C C W

C b C W

W W b C b C C W

C C C W

W W C W

C W

C W

C

−

=

=

=

=

=

=

=

R R R R

R R R R R R R

R R I R R

R R R R

R R R R

R R

R

 (5.5)

Where we used the fact that the camera frame is rigidly attached to the body frame so
1, 1 2, 2

1 2

b C b C

C C
=R R .

Equation (5.3) can now be rewritten as:

 1, 1, , 1, , 1, , , 1,

2 2 2 2 2
 C W b W W W C P P W b W W W W W C P

C b P C W b P P C
= = ⇔ =R R R R R R R R R (5.6)

This one equation is not enough to determine ,W W

P
R uniquely. At least one other rotation is

needed. We can determine ,W W

P
R using a minimization method over n rotations:

 , 1, 1,

2

argmin , 1
n

W W b W C P

P bj Cj

j

n
=

 
= − > 

 
∑R

R R R RR (5.7)

Note that at least two rotation axes of the (n-1) rotations should not coincide for a solution to
exist. To ensure that the obtained matrix is indeed a rotation matrix we will not actually
minimize the function with the nine parameters of the rotation matrix, but construct a rotation
matrix from the three defining Euler angles, and minimize the function using only these three
parameters. The above estimation method will be used when the marker’s orientation cannot
be determined manually, for instance on a sloped wall or floor.

144 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

5.2.3 Camera frame to body frame

To estimate the fixed rotation between the camera frame and body frame we can use the fact

that ,W W

P
R and ,C C

b
R are constant. Again using the orientations of different camera/body poses

we get:

() ()

, , 1 , 1, , 2 , 2,

1 2

1 1
, 1, 2, , 1 , 2 ,

1 2

W P W b b C C P W b b C C P

P b C P b C P

b C C P C P W b W b b C

C P P b b C

− −

= =

=

R R R R R R R

R R R R R R
 (5.8)

This result closely resembles equation (5.6) and the same minimization method can be used to

find ,b C

C
R . Still, the translation ,b C

C
T needs to be calibrated. In our first setup we put the sensor

cube as close to the camera as possible and estimated this translation by manually measuring
distances. This works, but a systematic error will always remain. This is because the origin of
the camera frame is not accurately known. If the camera uses one lens only, the lens’s centre
would be the origin, but with multiple lenses as in our objective, it is not that simple. One way
to estimate the origin of the camera frame in body frame coordinates is to rotate the setup
around two different, known axes in body frame coordinates. By rotating around one axis, the
origin of the camera frame will describe a circular path around this axis. A circle in 3D can be
described by five parameters. However, the centre of the circle could lie anywhere on the
rotation axis, so only four parameters are independent. By rotating around another, known,
non-parallel, axis the final two parameters of the full body frame to camera frame transform
can be estimated.

The problem is that the position of the body frame is unknown (only the orientation is
measured by the cube), so we cannot rotate around an axis known in body frame coordinates.
Therefore, a calibration rig is needed. Using such a rig we can determine the pose of the
camera frame as well as the pose of the body frame with respect to the rig coordinate frame.
Designing such a rig is future work.

5.2.4 Body frame to AR display and eye frames

Figure 5-2 shows the coordinate frames for the display part of the augmented reality system.
When the poses of both eye frames and both display frames are known, a virtual image can be
generated by the computer such that a correct registration between the virtual and the real
world is possible. There are at least three problems in determining those poses. One is that the
image from the display is projected into the eye via a semi-transparent mirror. The apparent
position of the display as seen from the eye does not coincide with the real position of the
display. Therefore it is very difficult to measure the pose of the apparent display and a
calibration is needed. The second problem is that the headset is not rigidly mounted on the
user’s head so the position of the eye in body coordinates can change a bit during operation.
The third problem is that different people have different positions of the eyes. For the best
result every user should first go through an eye position calibration step. However, we have
not yet found a convenient way to do that.

5.2. COORDINATE FRAME CALIBRATION 145

body

eye
displaybody

eye
display

Figure 5-2 Coordinate frames for augmented reality. The body and display frames are mechanically
fixed to each other. The eye frame is only loosely attached by putting the headset on one’s
head.

The calibration was done by manually optimizing all the parameters. Six parameters for each
display (full pose) and three parameters for the position of each eye. While looking at two
known markers at different distances we could adapt the parameters such that a virtual
projection of those markers lined up pretty well with the real markers. The following three
sources of mismatch were still present after that calibration:

• Slanted display. When the display is seen under an angle, the displayed image gets a
perspective correction when viewed by the eye. This means that the software that
generates the image should correct for this. We currently use OpenGL to do the
perspective projection, but we do not know of a standard way to project onto a
slanted surface.

• Image distortion. The display is so small that a lens is needed to magnify the image
before it is projected on the eye. Of course the manufacturer tries to minimize the
distortion, but it still shows up. The image generation software also has to correct for
this. Fortunately modern graphic processors are capable of doing such
transformations in hardware, although the frame-rate will go down.

• Output delay. The time between the start of generating the virtual image and actually
seeing it in the headset is found to be around 80ms. This can be incorporated by
predicting the pose 80ms into the future, and use that pose for image generation.

The effect of a slanted display can be seen as an image distortion. From the slanting angles the
distortion of the 2D display coordinates can be calculated. A modern graphics card is able to
calculate the net offset for each pixel due to all distortions together. We have some experience
in using hardware for real-time distortion correction, as we have a displaying mode in which
the camera image is rectified and combined digitally with the virtual world. To speed-up that
operation, the image was divided into 8 by 8 rectangular patches. The displacements of the 64
corner points connecting the patches were calculated offline and fed to the graphics hardware.
When first an image is rendered for a non-distorted, non-slanted display, a similar technique
could be used to correct the distortions for the real display as a second step. This is future
work.

146 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

For a manual calibration, optimizing nine parameters per eye is very hard and time consuming.
An evaluation of manual methods is described in [99]. The parameters for the displays can
possibly be calibrated semi-automatically with cameras instead of the user’s eyes. Such an
offline method is described in [100]. For practical purposes, a simple and fast method should
be found to calibrate the position of a user’s eyes.

5.3 Implemented Kalman filters

The filters that we implemented follow closely what we already presented in section 4.3. Here
we will summarize all steps that are performed for each measurement that is received.

Figure 5-3 shows the process models of the two Kalman filters as we currently implemented
them. The orientation-error Kalman filter depicted at the top of Figure 5-3 estimates errors in
orientation and errors in gyroscope bias. The position-error Kalman filter estimates errors in
position, speed and accelerometer bias. When gyroscope and accelerometer measurements are
received - transmitted together by the MTx inertia cube - all real states are updated using
equation (4.60). In addition, both filters perform a prediction step using their respective
process models, equation (4.64) and the solution to (4.76). In our current setup, we
immediately transfer predicted errors to the real states, so the error-states will always be zero -
or more precisely said, they indicate zero error. With zero error input, the output of the
prediction step will also be zero. However, the uncertainty of this zero-error will increase due
to the noisy measurements and the expected change in the acceleration and angular velocity.
These expected changes are application dependent, and should therefore be provided by the
application. We chose not to discriminate between the three coordinate axes, and used the
same noise variables for all axes.

For the position-error filter we could find a full solution for the process noise due to
acceleration change and bias change. Using equations (4.76) and (4.44), we could also find a
full solution for the orientation-error filter’s process noise. The resulting equation, however,
was not practical for implementation. When we further assume the angular velocity to be zero,
we get almost the result presented in Figure 5-3. With the difference that the process noise for
the quaternion component q0 stayed zero. This meant that the filter would never adapt this
component when an orientation measurement was incorporated. Therefore, we had to add the
extra component σq0 to track errors in q0 as well.

Figure 5-4 shows how position and orientation measurements are incorporated in the
observation update steps. Received measurements are ordered according to their time of
measurement t. When the measurement is a camera pose estimate, this is the time at which the
image was captured. Subsequently, both the error-state filters and the real states are rolled back
to the closest state n with time tn<t. Starting from time tn, all measurements since then are
reprocessed in order, including the measurement just received.

5.3. IMPLEMENTED KALMAN FILTERS 147

This reprocessing starts at state i=n. Gyroscope and accelerometer measurements are
processed using the process models, and they advance the state i to i+1. Position and
orientation measurements are used to update the a-priori estimates at state i to the a-posteriori
estimates by performing observation update steps. First, these measurements need to be
transformed into error-observations using equations (4.65) en (4.77). Then, they are
incorporated using the standard Kalman observation update equations. The resulting estimates
of the errors are transferred to the separately maintained real states of position, orientation,
bias etc. Hence, all measurements up to the present time will benefit from this update.

In our current computer program that implements the filters we do not use the uncertainty in
orientation as shown in Figure 5-4, that is future work. We bypass the non-linear
transformations and provide directly a covariance matrix R for the error-quaternion z. This
4x4 matrix is given by 0([, , ,])q qv qv qvdiag σ σ σ σ . The Kalman filter can still do its job while

ignoring correlations in the measurements, but it will converge more quickly when these
correlations are known.

Furthermore, we mimic an infinite uncertainty in yaw angle for the MTx orientation
measurement by substituting the yaw angle from the current estimate in the measurement. We
needed to ignore the yaw angle to cope with its very large error in the sensor cube’s
measurements. The same technique was used for camera orientation measurements where the
roll and pitch angles were substituted using the filter’s estimate. This technique improved the
performance of our filter; however, the filter would be more robust when the full
measurements are incorporated with an adequate estimate of the measurement noise.

148 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

Process model

σq0 ,σdω

σdb,ω

1 1,k k− −x P ,k k

− −
x P

σz,ω

0≡x

()

*

1 1
y 2 2

3 34 3 3 3

2

0

2 3 21 1 1
3 3 3 3 3 34 12 4

21
3 3 34

(, , ,)

cos() sin()

ˆ =

0

= =

db v

T
y

y

g g

xx x

q

dw d x db x x

x x

f dq db v q dq q

q y t y t

f f f

dq db bdv

t

t t t

t

ω ω

ω

ω

ω ω

σ
σ

+ += ⊗ ⊗

= ∆ ∆

∂ ∂  ∂ 
   ∂ ∂= = −∂        

 ∆
 

∆ ∆ ∆ 
  ∆ 

Φ Γ

00 I

0 0 0 0

Q 0 I 0 Q 0 I I

0 0 0 0 I I

2

,

3

2

1 1 ,

db

T T

k k k z d db

t

ω

ω ω

σ

σ+ +

 
 
 
 ∆ 

= = + + +x 0 P ΦP Φ Γ Γ Q Q

Application()T
dq db=x

Process model

σda

σdb,a

1 1,k k− −x P ,k k

− −
x P

σz,a

Application(), v,
T

dp d db=x

1 12 2

2 2

3 2 5 4 31 1 1 1 1
3 3 3 3 3 33 2 20 8 6

2 2 4 3 2 21 1 1 1
da db ,2 8 3 2

3 21 1
3 3 6 2

1

 =

= =

k k

k k

x x x

da db a

x

k

t t t

t t

t t t t t

t t t t t

t t t

σ σ

+

   ⋅∆ ⋅∆ ⋅∆
   

= ⋅∆ ⋅∆   
   
   

   ∆ ∆ ∆ ∆ ∆
   

∆ ∆ ∆ ∆ ∆   
   ∆ ∆ ∆   

=

I I R R

Φ 0 I R Γ R

0 0 I 0

I I 0 I I I

Q I I 0 Q I I I

0 0 0 I I I

x 0
2

1 ,

T T

k k z a db da
σ+ = + + +P ΦP Φ Γ Γ Q Q

0≡x

zω

bg,k-1

qk-1

qk,bg,k

1

, , 1

k k

g k g k

q q q

b b

ω
⊗−

−

=

=

+
- ω

ba,k-1 pk, vk, ba,k-
za

a

()
()

1
1 12

1

, , 1

v v

v v

k k k k

k k k k

a k a k

p p t

a g t

b b

− −

−

−

= + + ∆

= + − ∆

=

R

� � � �

� � � �

� �

R

kR

pk-1, vk-1

A
c
c
e

le
ro

m
e
te

rs
G

y
ro

s
c
o
p

e
s

+

Figure 5-3 The prediction steps of the two implemented error-state Kalman filters and separately
maintained position and orientation states when gyroscope and accelerometer data is
processed

5.4. MEASUREMENT NOISE AND BIAS STABILITY 149

Orientation

Observation

Transfer error

()T
dq db=x

Position

Observation

,i i

− −
x P ,

i i

++ +
x P

(), v,
T

dp d db=x

C
a

m
e

ra

p
o
s
it
io

n

pt,σp

(0,)

()

it p

dp

z p p N

z

σ−

+ − −

= − +

= + −x x K x

C
a

m
e

ra

/M
T

x

O
ri

e
n
ta

ti
o
n

qt,σq
Order

measurement

in time

Roll back

all to

closest tn<t

Reuse all

measurements

ti=[tn, tk]

Process model

advance to i+1Gyro/accel.

i:Position: pt,σp

Quat
θt,σθ

i:Orientation: qt,σq

0

0

−

++

≡

≡

x

x

+

i ,, v ,i a ip b+ +

,,i g iq b− −

-

i ,, v ,i a ip b− −

+
i

+
x

,i i

− −
x P ,i i

++ +
x P

() 1

ˆ (0,)

()

t i q

dq

z q q N

z

−
⊗

+ − −

= +

= + −

σ

x x K x

0

0

−

++

≡

≡

x

x
i

+
x ,,i g iq b+ +

, ,

i i i

g i g i i

q q dq

b b db

+ − +
⊗

+ − +

=

= +

Figure 5-4 The measurement update step of the two implemented error-state Kalman filters. Received
measurements are ordered in time, and both filters and states are rolled back to the time of
measurement t, and all measurements since then are reprocessed. Position and orientation
measurements are used to estimate the current error-states. The error-states are immediately
transferred to the real states.

5.4 Measurement noise and bias stability

To use our Kalman filter we need to know the measurement noise and bias stability. The
Kalman filter uses these values to optimally combine the measurements of multiple sensors in
order to estimate the variables we are interested in, namely the position and orientation of our
headset. The measurement noise of our camera positioning method was discussed in Chapter
3. Here we will determine these properties for our inertia sensors. A bias in the sensor values
of the MTx inertia cube will cause a drift in orientation, velocity and position. To minimize
this drift, the bias has to be estimated in the Kalman filter. Using the observation and process
models of our Kalman filter, we model the measurement zs of a signal s at time tk by:

() () ()

() (1)

(0,)

(0,)

s

z

b

z k s k b k v

b k b k w

v N

w N

σ

σ

= + +

= − +

=

=

 (5.9)

150 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

where b is the bias, and the measurement noise v and process noise w are independent, white,
zero-mean, normally distributed signals with standard deviation σz and σb respectively.

To estimate the unknown noise sources it is convenient to determine the properties of a
difference of two measurements, denoted by d(k,n):

1

d(,) () ()

() ()

s s

n

k l k n k

l

k n z k N z k

s k n s k w v v+ +
=

= + −

= + − + + −∑
 (5.10)

To make it easier to estimate the standard deviations of the noise sources, we require the signal
s to be constant. We therefore measured the inertia tracker signals with the device in rest. With
var[x] the variance of the signal x, the variance of d(k,n) can be calculated as:

2

,

1

2 2 2

1 1

2 2

var[d(,)]

var[() () ()]

var[()] (var[)] var[] var[]

2

d n

n

k l k n k

l

n n

k l k n k k l k n k

l l

b z

k n

s k n s k w v v

w v v w v v

n

σ

σ σ

+ +
=

+ + + +
= =

=

= + − + + −

= + − = + +

= +

∑

∑ ∑
 (5.11)

Note that the variances have a linear relationship. In matrix form this becomes:

2
2,1

2

2

,

2 1

, with

2b

d

z

d N N

σ
σ

σ
σ

       = =             

A A⋮ ⋮ ⋮ (5.12)

When we have estimates of 2

,d nσ we can calculate σ2
z and σ2

b using standard linear optimization

methods. To find these estimates, we measured the device in rest for nine hours at 100Hz.
This provides us with more than three million samples. In order to determine the estimate of
σd,n we need independent samples d(k,n). The samples must be selected such that each instance
vk and wk is used in one sample only. This can be guaranteed by grouping the samples in Ln
batches of (n+1) samples. The variance σ2

d can now be estimated by:

 ()
2

1 1
2

,

0 0

ˆ d((1),) d((1),) / /(1)
L L

d n

i j

i n n j n n L Lσ
− −

= =

 
= + − + − 

 
∑ ∑ (5.13)

With these estimates, we can determine the estimates ˆ
zσ and ˆ

bσ of σz and σb as

 ()
2

,12
1

2
2

,

ˆ
ˆ

ˆ
ˆ

d

z T T

b
d N

σ
σ

σ
σ

−

 
   

=    
   

 

A A A ⋮ (5.14)

with A as defined in (5.12). For our analyses we used N=60.000. This means we used the
difference of measurements that are taken, at most, ten minutes apart. We can also calculate a
measure for the accuracy of the estimates. This measure is the standard error SE[x̂] of an
estimate x̂ , where the expectation value of the estimate is the true value x:

5.4. MEASUREMENT NOISE AND BIAS STABILITY 151

 2ˆ ˆ[] [()SE x E x x= − (5.15)

The following figures show the nine-hour measurement. In order to make the bias visible, we
show averages over 60 seconds. The horizontal black lines show for each signal the 99%
confidence interval for that average. If the signal extends outside the interval, it is an indication
that the drift of its bias is significant. The estimated standard deviation ˆ

zσ of the measurement

noise for each signal is shown as well. In some of the figures we also depicted the measured
temperature in order to show its relation with the changing bias. Figure 5-5 shows the
averaged gyroscope values and Figure 5-6 shows the accelerometer data. Due to gravitational
acceleration a large offset is present. To make the figure more clear, we added a constant value
to each signal, shown in the legend. In Figure 5-7 we corrected the acceleration data for the
gravity vector using the orientation output. The last figure, Figure 5-8, shows the averaged
orientation output.

152 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

0 1 2 3 4 5 6 7 8 9

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time (h)

a
n
g
u
la

r
v
e
lo

c
it
y
,

a
v
e
ra

g
e
d
 o

v
e
r

6
0
s
 (

d
e
g
/s

)

σz
=0.87

σz
=0.94

σz
=0.87

0 1 2 3 4 5 6 7 8 9
20

22

24

26

28

30

32

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

x

y

z

Figure 5-5 Measured gyroscope data of the MTx in rest, averaged over 6000 samples. The horizontal
lines depict the 99% confidence interval due to measurement noise.

0 1 2 3 4 5 6 7 8 9
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

time (h)

a
c
c
e
le

ra
ti
o
n
,

a
v
e
ra

g
e
d
 o

v
e
r

6
0
s
 (

m
s-2

) σz
=0.0087

σz
= 0.01

σz
= 0.017

0 1 2 3 4 5 6 7 8 9
24

25

26

27

28

29

30

31

32

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

x-0.7

y+2.2

z-9.5

Figure 5-6 Accelerometer data in rest, averaged over 6000 samples. The horizontal lines depict the 99%
confidence interval due to measurement noise.

5.4. MEASUREMENT NOISE AND BIAS STABILITY 153

0 1 2 3 4 5 6 7 8 9

-5

0

5

10

15
x 10

-3

time (h)

c
o
rr

re
c
te

d
 a

c
c
e
le

ra
ti
o
n
,

a
v
e
ra

g
e
d
 o

v
e
r

6
0
s
 (

m
s-2

)

σz
=0.013

σz
=0.014

σz
=0.017

x+10e-3

y+5e-3

z+0.5e-3

Figure 5-7 Acceleration data corrected for the gravity vector, averaged over 6000 samples. The
horizontal lines depict the 99% confidence interval due to measurement noise.

0 1 2 3 4 5 6 7 8 9
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

time (h)

a
n
g
le

,
a
v
a
ra

g
e
d
 o

v
e
r

6
0
s
 (

d
e
g
re

e
s
)

σz
=0.056

σz
=0.059

σz
=0.063

0 1 2 3 4 5 6 7 8 9
25

26

27

28

29

30

31

32

T
e
m

p
e
ra

tu
re

 (
C

e
ls

iu
s
)

roll -167

pitch -4

yaw -159.3

Figure 5-8 Orientation data of the MTx in rest, averaged over 6000 samples. The horizontal lines
depict the 99% confidence interval due to measurement noise.

154 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

The estimated variances for all noise sources are summed in Table 5-1. The square of the
correlation coefficient, r2, gives a measure of how good the data fits to the linear model, with
the value 1 being a perfect fit. The estimate for the measurement noise, ˆ

zσ , was calculated

using standard error propagation methods.

Table 5-1: Result of the estimation of the measurement noise and bias drift noise for the MTx signals.
signal 2ˆ

z
σ 2ˆ[]

z
SE σ 2ˆ

b
σ 2ˆ[]

b
SE σ 2r ˆ

z
σ ˆ[]

z
SE σ

gyrox (deg/s) 7.55E-01 9.7E-04 3.10E-08 5.6E-08 5.12E-06 8.69E-01 5.6E-04
gyroy (deg/s) 8.82E-01 1.0E-03 -2.28E-07 5.9E-08 2.45E-04 9.39E-01 5.5E-04
gyroz (deg/s) 7.53E-01 9.6E-04 -1.56E-07 5.6E-08 1.31E-04 8.68E-01 5.5E-04
accx (ms-2) 7.63E-05 8.4E-08 -1.01E-11 4.9E-12 7.18E-05 8.73E-03 4.8E-06
accy (ms-2) 1.04E-04 1.1E-07 5.23E-12 6.5E-12 1.09E-05 1.02E-02 5.5E-06
accz (ms-2) 2.94E-04 2.8E-07 -7.93E-11 1.6E-11 4.05E-04 1.71E-02 8.1E-06
roll (deg) 3.15E-03 4.5E-06 1.26E-09 2.6E-10 3.86E-04 5.61E-02 4.0E-05
pitch (deg) 3.48E-03 4.8E-06 7.12E-09 2.8E-10 1.08E-02 5.90E-02 4.1E-05
yaw (deg) 3.92E-03 2.2E-05 4.47E-09 1.3E-09 2.02E-04 6.26E-02 1.8E-04

Our Kalman filter does not use the acceleration measurements directly, since they are first
corrected for the gravitational acceleration using the orientation measurement. Figure 5-7
depicts the corrected acceleration measurement using the orientation from the MTx. Table 5-2
shows the noise estimates of these corrected values.

Table 5-2: Result of the estimation of the measurement noise and bias drift noise for the corrected
acceleration measurements.

signal 2ˆ
z

σ 2ˆ[]
z

SE σ 2ˆ
b

σ 2ˆ[]
b

SE σ 2r ˆ
z

σ ˆ[]
z

SE σ

accx (ms-2) 1.76E-04 2.15E-07 1.23E-10 1.24E-11 1.62E-03 1.33E-02 8.1E-06
accy (ms-2) 1.87E-04 2.24E-07 5.36E-11 1.29E-11 2.87E-04 1.37E-02 8.2E-06
accz (ms-2) 2.97E-04 2.84E-07 -7.94E-11 1.64E-11 3.91E-04 1.72E-02 8.2E-06

We repeat in Table 5-3 a part of the results from Chapter 3, where we determined the
measurement noise of the camera positioning system. The measurement noises of the camera
pose estimation output – in pattern coordinates - were calculated from Table 3-7 and Table
3-9. In choosing the measurement noise we can use the rms error values from these tables -

the expected error over multiple orientations, denoted ˆ
z

σ in Table 5-3 - or the standard

deviation of the noise – the expected spread at a fixed orientation, denoted ˆ
n

σ . The largest

contribution to errors in position are errors in orientation. A complication is that the errors in
world coordinates are dependent on the pose of the camera in marker coordinates and
dependent on the pose of the marker in world coordinates. The worst case error can be
calculated as

 { , , }
ˆ ˆ

x y z distance θσ σ= ⋅ (5.16)

5.4. MEASUREMENT NOISE AND BIAS STABILITY 155

where distance is the distance to the marker – we take 5m – and ˆθσ is either ˆ
z

σ or ˆ
n

σ of the

roll/pitch angles (rotations around the x and y-axis of the pattern coordinate frame). The error
in yaw angle (rotation around the marker’s z-axis) is in general much better than the other two.
However, upon conversion from pattern to world coordinates the errors are mixed. Therefore,
we use the roll/pitch noise value for all measurement errors in the orientation.

Table 5-3: Estimated root mean squared error over all viewing
angles and static noise of the camera pose with a marker at 5m.
Signal ˆ

z
σ ˆ

n
σ

x,y,z (cm) 4.7 1.13
roll/pitch/yaw (degrees) 0.54 0.13

From this experiment we can conclude that it takes around one hour for the biases to settle.
After that hour the change of bias is small for all signals. Although the averaged values go
outside the 99% confidence interval, which indicates a significant bias, the bias is much lower
than the measurement noise. This holds for all measured signals, except maybe for the yaw
angle. For the yaw angle, the spread due to bias is only just within one standard deviation of
the measurement noise.

It is interesting to note that in the first hour the biases seem to be related to the temperature,
whereas after that hour the relation has vanished. The manufacturer takes the temperature into
account to estimate the bias, so maybe there is no real relation. The slowly converging bias
could also be the result of their estimation algorithm responding to the unknown bias at
startup. Note that in the gyroscope signals a small bias remains.

There are two more interesting moments in time. Around 4.5 hours in Figure 5-6, we can
observe a sudden bias in the z-acceleration for half an hour. We have no explanation for this.
It is not caused by a rotation as the other acceleration signals do not change. After seven hours
we can also observe a change in bias of the acceleration, but there the explanation is a change
in the estimated orientation, as can be seen from Figure 5-8. The change in bias is not present
in the corrected acceleration in Figure 5-7. However, it was not a real orientation change as the
gyroscope signal does not show a rotation. This, in turn, means that the biases of the
acceleration and orientation output of the MTx are correlated. This is of course to be
expected, as the orientation is calculated within the MTx from the internally measured earth’s
magnetic field and the measured acceleration.

In Table 5-1 and Table 5-2 we can see that all bias variances 2ˆ
b

σ are close to zero. The standard

error in the estimate is comparable to the estimate itself. Only the pitch angle seems to have a
significantly changing bias, but as already mentioned, the resulting total bias is negligible. One
may also notice the very low correlation coefficients of the linear fits. This is an indication that
either the model is not correct or that there is too much noise in the values. The latter is the

case in our experiment, as the estimated values 2

,
ˆ

d nσ in eq. (5.13) are increasingly noisy with

large n due to lower values of L. This noise can also explain the impossible negative values for
the variance estimates. With simulated signals we verified that our method works when the
noise sources are normally distributed as assumed. In that simulation a low correlation
coefficient was found as well.

156 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

From the above analysis we can conclude that using the MTx eliminates the need to
continuously estimate biases in the inertia sensors, at least after the first hour after powering
on the device. In practice we will set the bias noise in our Kalman filter to a very low value to
follow the small biases that can be seen in the figures, especially just after powering on the
system.

Recall that our two Kalman filters only incorporate the orientation output of the MTx and the
calculated pose from the camera images as measurements in their measurement update step.
The gyroscope and accelerometer outputs are used in the prediction step, and their noise is
therefore part of the process noise. The process noise will be discussed in the next section.

In this experiment we found the measurement noises of the MTx signals to be quite low,
especially for the orientation. This does not mean that the error with respect to the actual
orientation is that small. The orientation estimate is influenced by distortions of the earth’s
magnetic field by objects and by acceleration of the device. The distortions will introduce a
bias depending on the position. For instance, we found that tables in our lab would influence
the earth’s magnetic field to such an extent that errors of 45° were measured in the yaw angle.
This made us ignore the yaw angle of the MTx and only trust the yaw measurement coming
from the camera.

Accelerations can also introduce a bias in the orientation, as the gravity vector is estimated
(internally in the MTx) from the measured acceleration. During motions with constant
acceleration, the acceleration of the motion and the acceleration due to gravity cannot be
distinguished. We will show this effect in the next section. According to the manufacturer of
the MTx the root mean square error is below 2° during motion, which is much higher then the
noise alone. Finding an adequate measurement noise for the orientation is not trivial, but a
value has to be chosen. We choose 1° for the roll and pitch angles.

The camera pose has extra sources of errors as well. First of all, the offset of the camera frame
with respect to the body frame is guessed, see section 5.2.3. It cannot be measured directly.
We estimate this error to be around 1 cm. Secondly, the position output of the algorithm is
sensitive to errors in the orientation of the markers used. If a marker is seen at five meters
distance, an error of 0.5° in its orientation result in an error of 500 cm sin(0.5)=4.4cm⋅ ° in the

camera’s estimated position. During setup of a demo we usually attach markers to the walls
and the floor. We assume that these surfaces are oriented perpendicular to one of the axis of
our world coordinate frame. We think an error of up to 0.5° can be expected. When one
marker is used, this is a fixed bias. When multiple markers are used it can be regarded as noise.
We use half of the expected error as an estimate for the orientation noise in case of multiple
markers. Table 5-4 shows the measurement noise parameters we will use in our Kalman filters.

Table 5-4: Measurement noise parameters used in the Kalman filter.
signal ˆ

z
σ

Camera position (cm) 5.1
Camera orientation (deg) 0.6
MTx pitch/roll (deg) 1.0
MTx yaw (deg) ∞

5.5. PROCESS NOISE AND EXPECTED SENSOR VALUE RANGES 157

5.5 Process noise and expected sensor value ranges

In the previous section we determined the measurement noise of the sensors. Our Kalman
filter also needs an estimate for the process noise. Recall that a Kalman filter first predicts a
state using the previous state, and then updates the state using measurements. The process
noise indicates how much the accuracy, represented in an error covariance matrix, of a state
estimate can change in a prediction step. The Kalman filter uses the error covariance to
optimally combine measurements with the estimate of the state. In this section we will
estimate the process noise using the sensor values during a typical demo.

Even when a state estimate at the current time has zero error, the predicted state in the future
can have an error. The process noise models this error. Some sources are:

• Linearization. Being linear, the Kalman filter uses a linearization of the state-
prediction function. Depending on the non-linearity of this function around the
current estimate, an error is introduced during the prediction step.

• Discrete sampling of the sensed variables. An error is introduced when for
instance the acceleration is not constant in reality, but is modeled as constant by the
filter.

• Ignoring variables that influence the state. Usually the influence of these variables
is not known. Example variables are temperature, the earth’s rotation and humidity.

Usually the process noise is also used to model errors in the sensor that are not stochastic.

• Non stochastic sensor errors. Nonlinearity in sensor values, sensor misalignment,
scale factor error and delay.

Finding proper values for the process noise can be considered an art. Usually an adequate
setting for the process noise is determined by trial and error in the real system. Our system is
no exception. We can however find an initial estimate of the process noise by estimating the
influence of known error sources. We first present our experiment, and then reason about the
process noise using the results.

To find typical values for accelerations and angular speeds we recorded sensor data while the
headset was in use. The data was sampled at 100Hz as usual. In the first few seconds, the user
put the helmet on. Subsequently the user was watching a few animations in front of him, and
moving around to see them better. The measured data is depicted in Figure 5-9 and Figure
5-10.

158 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

Figure 5-9 Accelerometer data during a three minute test with the headset. The lower
figure shows all acceleration signals corrected for gravity.

5.5. PROCESS NOISE AND EXPECTED SENSOR VALUE RANGES 159

Figure 5-10 The output of all three gyroscopes during a three minute test with the headset.

As can be seen, the absolute acceleration is below 13ms-2, which is within the maximum that
the sensors can measure, 17ms-2. The maximum that the gyroscopes can measure is 1200°/s,
so our maximum measured angular velocity of 100°/s falls well within this limit.

The corrected acceleration is rarely higher than 2ms-2, most of the time it is even below 1ms-2.
The angular velocity is sometimes as high as 100°/s, but is usually lower than 30°/s, this
coincides nicely with the values in section 2.4: 150°/s when something sudden draws the
attention of the user, and 30°/s when a user dwells with his eyes over a scene.

In this experiment we did not measure the position, but due to the length of the cable between
the headset and a laptop on a table the maximum position change was 5 meter. The velocity
was not determined either; usually the users walk around slowly, and do not change posture
quickly (bowing, kneeling etc.). The speed of the head is therefore usually below 1 m/s, with
an expected maximum of 2 m/s.

With the results above we can estimate the influence of a number of error-sources on the
prediction error in the prediction step of the Kalman filter. With these estimates we will
estimate the process noise that models these sources of error. We will discuss these error-
sources using the categories mentioned earlier.

160 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

Linearization
In our augmented reality application, we use an error-state Kalman filter. The filter does not
estimate the state itself but its error. The state is estimated by using a non-linear state
prediction function, and the Kalman filter uses a linearized error-state prediction function for
the error-state. With our choice of error-states in section 4.3.3, the linearization introduces no
error in the predicted error-state when the error-state represents no error (0 for normal error-
states in eq.(4.63) , or [1 0 0 0]T for the quaternion representation in eq. (4.74)). We transfer
the error after every observation update, so we expect no error. Only the predicted error-state
covariance matrix suffers from linearization errors.

Ignoring variables that influence the state

One assumption in our state-prediction function is that we integrate the acceleration and
angular velocity in an inertial reference frame. Errors are introduced due to the rotation of our
reference frame. The largest error due to this assumption is the rotation of the earth. This
rotation is 360° in a day, so 4.2e-3°/s. Looking at Figure 5-5 this bias is negligible and can be
ignored.

The effect on the error in the predicted velocity and position is larger. When we assume the
rotation of the earth to be constant, we should add two fictitious accelerations to the one
measured by the accelerometer. One,

Coriolisa , is caused by the Coriolis force
CoriolisF when the

device is moving with some speed vr

�
in the rotating frame:

r

/ 2 v
Coriolis Coriolis

a F m= = − ×Ω
�� �

 (5.17)

where Ω is the rotation of the earth represented as a vector (in radians/s) in the rotating
frame. When the speed is 10 m/s (much higher than the expected 2m/s), the resulting
acceleration is

 1 5 1 3 2(v 10) 2 7.3 10 / 10 1.5 10Coriolis ra ms rad s ms ms− − − − −= = ⋅ ⋅ ⋅ = ⋅
�

. (5.18)

Even at such a high speed, this error is very small compared to the measurement noise
averaged over 60s. The second fictitious acceleration is centrifugala :

 ()/centrifugal centriguala F m r= = − × ×Ω Ω
�� �

, (5.19)

where r
�

is the position in the rotating frame. When the distance to the origin of the frame is
100m this maximum fictitious acceleration measures

 5 2 7 2

,max (100) (7.3 10 rad/s) 100 5.3 10centrifugala r m m ms− − −= = ⋅ ⋅ = ⋅
�

. (5.20)

In a demo the distance to the origin is usually much lower (5m), so this error can also safely be
ignored.

A bigger source of errors in the acceleration is due to the fact that the sensors are not located
at the origin of the body frame. We defined the body of the MTx as the origin, but the actual
sensors in it could have an offset of a few centimeters. Similar to eq. (5.20), the maximum
error in acceleration due to an offset d and angular velocity ω is given by

 2

,max (,)offseta d dω ω= . (5.21)

5.5. PROCESS NOISE AND EXPECTED SENSOR VALUE RANGES 161

With a rotation of 150°/s and an offset of 0.5cm the resulting error is 0.034 ms-2. This is a
significant error, but the impact on the velocity and position is limited. The error in speed is

2 11.3 10d msω − −= ⋅ , and the error in position 0.5cm. In our application only the position error is
important.

Non stochastic sensor errors

In the previous section we set the measurement noise for the MTx orientation to 1.0°.
Depending on the motion, the actual angular error has a (temporary) bias. This error in
orientation has an effect on the estimation of the gravity vector in body coordinates. Assume
the body frame aligned with the world frame. The 3D gravitational acceleration

bg
�

 is then [0

0 g]T in body coordinates. The error
erra
�

in acceleration due to an error θe in pitch angle is

given by

 ()
0 sin() 0 cos() 0

ˆ 0 0 0 0 0

cos() 0 sin()

e e

err b b
e

e e

a g g I

g g

θ

θ θ

θ θ

     
     = − = − =     
     −     

R
� � �

. (5.22)

With an error θe of one degree and g the gravitational acceleration in the Netherlands,
9.81ms-2, the error aerr is 0.17ms-2. This error is quite large. Furthermore, this error can last for
over a second (see section 5.6.5), so an error in position of 17cm could be the result. We
expect the output of the orientation Kalman filter to have a better estimate than the
orientation from the sensor cube alone. Therefore, it is better to use the output of the
orientation Kalman filter for the correction for the gravitational acceleration, as we do in our
application.

Discrete sampling of the sensed variables

In the time-update step of the position in our Kalman filter we assume a first order hold on
the measured acceleration. This is the same as using the average of the current acceleration
measurement and the previous one, see eq(4.60). We can give an upper bound to this linear
interpolation error with some assumptions on the motion. First we assume a sinusoidal
acceleration with an amplitude of 2ms-2, the maximum acceleration in this experiment.
Secondly we assume a frequency of 10 Hz. In [101] it is mentioned that the human wrist can
be actuated with a bandwidth of 6 Hz; we expect even lower frequencies in head motion due
to the weight of the headset. Therefore, 10 Hz is an overestimate. Using the assumed motion,
we can calculate for each time period of 10ms the real signal average s minus the estimated

average ŝ :

/ 2

/ 2

() sin(2)

() () /

ˆ () () () / 2
2 2

ˆ () ()

t t

t t

s t A ft

s t s t dt t

t t
s t s t s t

e s t s t

π
+∆

−∆

=

= ∆

∆ ∆ 
= − + + 
 

= −

∫
 (5.23)

162 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

With A=2.0ms-2, f =10Hz and ∆t=10ms, the maximum error is 0.065 ms-2. Being a sinusoid
itself, the error in position is within 0.065/(2π2

f
2)=17µm. Also at other frequencies the

interpolation error is negligible. A similar analysis can be done for integrating the angular
velocity to an angle. If we take A=100°/s, the maximum error in angular velocity is 3.2°/s, and
the maximum error in angle is 3.2/(2πf)=0.051°. So also the interpolation error for the
orientation is negligible.

Of all aforementioned error sources, only the error in correcting the acceleration for the
gravitational acceleration is significant (up to 0.17ms-2). This error is a result of an inaccurate
estimation of the orientation during motion. The orientation and its accuracy is best estimated
by the orientation Kalman filter. Therefore, we can also estimate the accuracy of the
correction for gravity. This accuracy estimate can directly be used as a process noise
component.

Recall that we use the acceleration and angular velocity in the prediction step of the Kalman
filter. This, of course, means that the measurement errors of those sensors are part of the
process noise. In the process model for the position, eq.(4.64), vu contains the accelerometer’s
measurement noise and wa models the accuracy of the acceleration correction. In the process
model for the orientation, eq.(4.76), the input variable u contains the gyroscope’s measurement
noise, and we do not need the process noise variables w. Table 5-5 shows the parameters for
the process noise that we will use in our initial Kalman filter setup. The process noise for the
velocity and position are calculated from those values by the filter itself.

Table 5-5: Estimated process noise parameters for one time-update step of 10 ms
signal ˆ

pσ

Acceleration (ms
-2

) 0.02-0.17 (depending on orientation filter covariance
Angular velocity(deg/s) 0.88 (from Table 5-1)

Accelerometer bias(ms
-2

) 10
-3

Gyro bias(deg/s) 10

-3

This concludes the analysis of the process noise of our Kalman filters. As we mentioned in the
beginning, finding an adequate process noise is still a process of trial and error. We used the
values found in this and the previous section to set up our initial Kalman filter. We have tested
the performance of our filters in a more controlled situation, which will be described in the
next section.

5.6 Experiment with a SCARA robot

To test the full setup in practice we need some kind of ground truth measurement. With a
robot we can move the system in a predefined way and compare the output of the system with
the movement of the robot. Unfortunately, a number of practical problems were encountered
that prevented us from doing a full analysis. However, some of these problems also occur in a
real system and need to be addressed.

5.6. EXPERIMENT WITH A SCARA ROBOT 163

5.6.1 Experimental setup

We used a Sankyo SAR8437 SCARA robot to move our setup consisting of a camera and an
inertia tracker as depicted in Figure 5-11. The upper arm is 30 cm and can be turned 240°. The
lower arm is 25 cm and can be turned 270°. The end effector – the end of the robotic arm –
with our sensors can be moved up and down by 20 cm and be turned by more than 360°.
Since all axes turn around the vertical, only the heading angle can be changed. The correction
for the gravity vector is therefore constant.

6 Markers

y

x

End-effector with

camera+inertia tracker

Yaw/heading

pitch

roll

z

SCARA range

3 meters

55 cm

Lower arm

86 cm

6 Markers

y

x

End-effector with

camera+inertia tracker

Yaw/heading

pitch

roll

z

SCARA range

6 Markers

y

x

End-effector with

camera+inertia tracker

Yaw/heading

pitch

roll

z

SCARA range

3 meters

55 cm

Lower arm

86 cm

Figure 5-11 Left: 4-DOF SCARA robot. Right: Camera with inertia cube to be attached to the robot.
Down: schematic of the setup with (rotation) axes.

At 2.7 meters distance a board with six markers – 22 x 22 cm each – was put on the wall as
shown in Figure 5-12. By having multiple markers we can find the accuracy in pose estimation
when one marker is used as well as when multiple markers are used together to estimate the
pose.

164 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

The SCARA robot does not allow the pose of the end effector to be read out at high rates.
The robot has some hardware on each rotation axis that generates a specific number of pulses
per rotation. We opened the robot to get access to these pulses and counted them using the
Andy Servo 1 board by Ajeco inc. as an add-on to the PCM-9576 all-in-one single board
computer by Advantech (Figure 5-12). A program on that computer recorded the encoder
counts along with the time of measurement at a rate of 2 kHz. The relation between the
counts and the angles of rotation could be found using the control box of the SCARA robot.

The PC board can only count two signals at the same time. During our experiments it counted
the rotation of both arms of the robot.

Figure 5-12 Left: 6 markers for pose estimation. Right: hardware for reading the encoder pulses.

During the experiments, a laptop was used to record camera images at around 25Hz and
inertia tracker measurements at 100Hz. All measurements were time-stamped. To be able to
compare these measurements with the ground truth robot data, the time-stamps were
synchronized. We used a standard time synchronisation method to minimize the time-
difference between the two measuring computers, resulting in an offset of 10±30µs. As the
time between updates of our camera and sensor cube is higher than 10ms, the time
synchronisation error is negligible. Table 5-6 shows more properties of our experimental
setup.

5.6. EXPERIMENT WITH A SCARA ROBOT 165

Table 5-6 Properties of our experimental setup.

Image size 1280 x1024 pixels. Diagonal covers 108°

Marker distance 2.7m

Marker size 22x22cm. (± 70x70 pixels)

Edge Contrast to Noise Ratio 48dB

Shutter time (estimated) 4ms

Marker viewing angle Full frontal.

Image frame rate 25 Hz

Encoder update-rate 2 kHz

Inertia tracer update-rate 100 Hz

5.6.2 Motion Trajectories

We performed four experiments with four different trajectories. Figure 5-13 shows the x,y
movements of the robot for all of them. The robot is controlled such that the end effector has
a trapezoid speed profile. The desired speed as well as the acceleration/deceleration times can
be set. In experiment one, two and four, these times are set to half a second. In all these
experiments the orientation was fixed.

In the first experiment the robot moves from the starting position to the left, makes two
circles, continues to the left, and hurries back to the starting position. The acceleration at the
start and during the circular motion is 40cm/s2, and on the return path the acceleration is 80
cm/s2.

In the second experiment the movement consisted of three rectangles with sides of 20 cm, and
quarter circle corners of radius 5cm. The speeds for the three rectangles were 20cm/s, 35cm/s
and 50 cm/s, with maximum accelerations of 70 , 200 and 360 cm/s2 (determined using the
encoder values).

In the third experiment we let the robot make half a circle back and forth with a radius of 55
cm (maximum range). This was done seven times, with speeds ranging from 32 cm/s to 224
cm/s. The corresponding accelerations ranged from 20 to 930 cm/s2.

The fourth experiment should have been the same as the first one, but with an extra ellipsoid
motion downward: ∆z=12cm between y=300mm and y=500mm. Due to unknown reasons, a
shifted ellipse was the result. We did not measure the z-encoder signal and estimated the z-
position using the y-position. The speed along the track was 20 cm/s, and the x,y,z
accelerations along the ellipse were up to 34, 28 and 17 cm/s2 respectively.

166 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

-200 -100 0 100 200

300

400

500
20cm/s Start

Return; 40cm/s

Acceleration/Deceleration time: 0.5s

Two circles

radius 10cm

speed 20cm/s

x

y

-100 -50 0 50 100

300

350

400

450

500

Start/Stop; 0 cm/s

Three rounded squares

1) 20cm/s, accel. time 0.2s

2) 35cm/s, accel. time 0.2s

3) 50cm/s, accel. time 0.5s

x

y

-550 0 550

0

550

x

y

Start/Stop; 0 cm/s

7 half-circles back&forth

 radius 55cm

32-224cm/s, accel. time 0.5s

-200 -100 0 100 200

300

400

500
20cm/s Start

Return; 40cm/s

Acceleration/Deceleration time: 0.5s

 Two ellipses

Linear veloc. 20cm/s

 x range 23.6cm

 y range 20.2cm

 z range 12.3cm

x

y

1

3

2

4

Figure 5-13 Motion trajectories in the four experiments. The lengths of the arrows show the speed.

5.6.3 Acceleration from encoders

We need to calculate the ground truth acceleration for two reasons. The first is that we want to
estimate the delay in the measurements of the accelerometers by comparing the measurements
with the ground truth. Secondly, we have to calibrate the robot coordinate system with respect
to the world coordinate system in order to compare the ground truth motion of the robot with
the estimated motion from the Kalman filter.

The inertia cube measures directly in the world coordinate system, so we have to calibrate the
pose of the robot coordinate frame using measurements of the MTx inertia cube. As our robot
can rotate in one direction only, the calibration method described in section 5.2.3 cannot be
used for our robot. Due to various problems, one of them described below, we could not
perform an accurate calibration. We could find a measurement delay of 9ms in the
accelerometer data, but no significant offset in orientation.

Let us look at the encoder pulse counts during an accelerated motion. The encoder counts are
proportional to the rotation of the lower arm of the robot. In Figure 5-14 we show the
estimated (angular) velocity and acceleration in encoder pulses at a rate of 2 kHz. When the
encoder count at sample k is given by eck pulses, these estimates are given by:

 1

1

k k k

k k k

velocity ec ec

acceleration velocity velocity

−

−

= −

= −
 (5.24)

5.6. EXPERIMENT WITH A SCARA ROBOT 167

Observe that the acceleration is zero most of the time and sometimes 1 or -1 pulse/sample2.
This is not an artifact of the discrete sampling of the encoder, but an artifact of the way
accelerations are implemented by the control box of the robot. Remarkable is the speed
halving roughly every 12 ms. We do not know the source of this effect, but it seems unlikely
that the robot can accelerate with 2300 ms-2, which is what we calculated from these encoder
counts. We can rule out a problem with the hardware counter as the position calculated from
these counts is found to be correct. Also a temporary delay in the counting cannot be the
source, as this halving would then be compensated in a next sample. It cannot be a timing
problem either, as we measured the counts for two axes simultaneously and the different axes
show this behaviour at different time instances. We will accept this strange effect, and assume
the counts are correct.

The position of the robot end effector can be calculated as a function of the encoder counts.
The parameters of this function were found using the control box shipped with the robot. As
the ground truth acceleration is not smooth, we cannot compare the measured acceleration
with the estimates calculated from three consecutive positions. We model the acceleration
sensors and generate acceleration estimates by applying this model to the encoder counts. The
following two steps describe the model:

• Apply a low-pass filter on the positions with a cut-off frequency of fmax.

• Calculate the moving average of the acceleration over a period Tacc.

() 2() () 2 () () /

/ 2

k k k k

acc

a t p t T p t p t T T

T T

= + − ∆ − + + ∆ ∆

∆ =

3650 3660 3670 3680 3690 3700 3710 3720

-15

-10

-5

0

5

10

15

20

25

30

sample k

velocity (steps/sample)

acceleration (steps/sample2)

Figure 5-14 Estimated speed and acceleration of encoder counts sampled at 2KHz. Roughly every 12 ms
the difference in encoder counts is halved, which causes a high (apparent) acceleration.

168 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

Our MTx accelerometers have a standard bandwidth of 30 Hz, so we use a cut-off frequency
fmax of 30 Hz. The actual low-pass filter that was used by the manufacturer is not known to us,
but it is mentioned that it is effectively a second-order low-pass filter. We applied a zero-phase
second-order low-pass Butterworth filter. A zero-phase filter was used to be able to estimate
the delay in the measurements. The parameter Tacc was set to the smallest possible value of 1
ms.

Figure 5-15 shows the measured and estimated acceleration when the robot is not moving,
then accelerating to a constant speed, and then starting a circular motion. Since the robot has
to approximate a straight line with two rotations, the acceleration will have values around but
not exactly zero. It is interesting that the accelerometer measurements show a variation in
values that seems to agree with the calculated accelerations, although the measured values vary
a bit more.

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time(s)

a
c
c
e
le

ra
ti
o
n

 m
/s

2

Estimated acceleration

Measured acceleration

Figure 5-15 Estimated vs. measured acceleration. The mean acceleration over 1ms was estimated after a
second order low-pass filter of 30 Hz on the calculated position from the encoders.

5.6. EXPERIMENT WITH A SCARA ROBOT 169

5.6.4 Inertia tracker rate instability

The MTx inertia tracker gives its measurements at 100 Hz via a serial port connection. As our
laptop (like most modern laptops) has no serial port, the data needs to be converted to USB
using a serial-to-USB converter. Xsens provides such a converter (product code CA-USB2X);
however, this device (or its device driver in Linux) turned out to have a peculiar property: ten
times per second, 10 measurements were received together. This is unacceptable, since our
application needs a much higher update rate than 10 Hz. We tried converters from SiteCom
and those give much more stable output; the time between measurements is alternating
between 8ms and 12ms. We currently use a converter that shows normal operation (Magic
Control Technology Corp. U232-P25).

Figure 5-16 shows the time between receiving two samples by the application. The nominal
time difference is 0.01000s. Depending on the processor load, a sample may be read slightly
later, which causes jitter. Still, large delays can be observed of up to 9 samples. The cause
could be a heavy processor load. Besides the delay, we also observed missing samples. At first
sight it could be jitter, but the larger time difference is not compensated by a lower one. This
problem, however, is probably caused by this specific experiment in which we recorded
camera images on an external hard disk making heavy use of USB. In this experiment we can
correct the incorrect time stamps offline, and insert interpolated values for missing points. On
average 6% of the samples were lost, with small bursts of 25% sample loss.

1440 1445 1450 1455 1460 1465

-0.02

0

0.02

0.04

0.06

0.08

sample #

ti
m

e
 b

e
tw

e
e

n
 s

a
m

p
le

s
 (

s
)

inertia cube measurement timing

jitter

missing
sample

large delay

Figure 5-16 Inertia measurements of the MTx via a serial-to-usb converter.
All the data of the MTx samples is regularly delayed up to 0.1s.

170 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

In the real application, we currently do not correct the time of the inertia measurements, but
we simply assume a regular sampling interval of 10ms. Using the best serial-to-usb converter
(mct U232-P25) we do not have the need to correct the times and we did not notice missing
samples during demos. It is worthwhile to detect and correct these problems in a future
version of our software when these errors are observed in the real application as well.

5.6.5 Inertia tracker orientation estimation

The MTx uses the earth’s magnetic field as well as the acceleration in the estimation algorithm
for the orientation. The earth’s magnetic field vector alone is not enough, as it gives only a
direction to the magnetic north, and thereby fixing only two angles of rotation. The third
rotation is estimated from estimating the gravity vector. Since a change in measured
acceleration can either be caused by a rotation or a real acceleration with respect to our world
reference frame, the direction of the gravity vector cannot be estimated easily. The result is an
error in the estimated orientation when accelerations are present.

Figure 5-17 shows the output of the MTx during our third experiment. The roll and pitch
angles show an error that can be explained by the acceleration present in the experiment. The
plot in the bottom right shows that whenever the acceleration is positive the error in roll
changes to the positive side and when the acceleration is negative the error changes towards
the negative side. Just after 120s we can observe a longer period of acceleration and it results
in an error of 4°. In our experiment this problem occurs frequently, but as the acceleration due
to human motion is fluctuating much more, it could be argued that the resulting orientation
error in a real application will be much lower.

Another problem seems to be the error in the yaw angle. This error does not seem to be
acceleration dependent but rather position dependent. This means that the setup with the
SCARA robot disturbs the earth’s magnetic field. Errors of up to 15° are observed, which
makes this angle useless to incorporate in our Kalman filter. We also found that other objects
in the neighbourhood of the device can throw off the angle by as much as 45°. In our
demonstrator we therefore ignore the yaw angle from the inertia tracker completely, and only
use the estimate from the camera.

5.6. EXPERIMENT WITH A SCARA ROBOT 171

90 100 110 120 130
-10

-5

0

5

time (s)

e
rr

 (
d

e
g

)
pitch

90 100 110 120 130
-10

-5

0

5

10

time (s)

e
rr

 (
d

e
g

)

roll

90 100 110 120 130
-40

-20

0

20

time (s)

e
rr

 (
d

e
g

)

yaw

90 100 110 120 130
-10

-5

0

5

10

time (s)

e
rr

 (
d

e
g

)

roll + acceleration shape

Figure 5-17 Orientation output of the MTx during the third experiment. The bottom right shows
the relation between the acceleration in the x-direction (dotted line) and the roll angle.

5.6.6 Camera pose accuracy

In this experiment we could use six markers at the same time. This makes it possible to show
the accuracy when one marker is used (four points), and when all markers are used (24 points).
Since the robot, the camera, and the markers are not perfectly aligned, we needed a calibration
step to guarantee that the coordinates from the camera pose estimation are in correspondence
with the robot coordinates. We estimated the full pose of the camera coordinate frame with
respect to the robot coordinate frame using the data from all experiments and all markers.

Figure 5-18 shows the dynamic camera pose accuracy for our four experiments using all 24
points, and Figure 5-19 shows the accuracy when only one marker is used. The pattern of the
errors show that the error in angle is dependent on the position of the camera. It seems to
follow the x-position (horizontal movement). As the horizontal movement is the largest, we
expect the largest errors there. The angular errors in both figures are below 0.5°, and the positional errors
are below 3 cm. Although some signals show lower error values, it is the maximum error that is
important. As the marker was seen by the camera under an angle below 20°, we expect
relatively high errors (see section 3.8.1). According to Table 3-6 an RMS error of 0.9° can be
expected.

172 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

Using all six markers makes the data much less noisy, but the absolute error is still large. We
expect that using multiple markers also makes these systematic errors smaller, but in this
experiment the markers are all seen very close to one another; the coverage by the markers in
the image is less than 4%. We estimated the noise in the measurements from data where the
robot was moving less than 1cm/s. Table 5-7 shows the results, and we can conclude that
measurement noise is not the limiting factor in our setup. As the observed error is largely dependent
on the position, we conclude once again that the lens model is the most contributing factor to the error.

We tried to estimate the positional accuracy in case of a better calibration by correcting for the
orientation errors. We rotated every pose estimate to the zero error orientation; the results are
shown in Figure 5-20. The accuracies are then better than 1.5cm. Moreover most points with
high error are gone. This shows that these positional errors were the result of high angular
errors.

Table 5-7 Standard deviation of the noise in the pose when the robot is moving
with speeds less than 1 cm/s. We used 800 data points after removal of
outliers with errors larger than 6 times the standard deviation.

 x (cm) y(cm) z(cm) rx(°) ry(°) rz(°)

One marker 0.20 0.10 0.14 0.031 0.010 0.042

All markers 0.072 0.035 0.098 0.019 0.005 0.015

Another source of errors is the delay between acquiring the image and receiving it by the
camera pose estimation application. Without a correct estimate of this delay, the estimated
position would show errors of up to 10 cm in these experiments. We have calibrated and
corrected for the delay in the presented results, and found that the camera image was delayed
by 42 ms before processing starts. The total delay to a pose estimate is therefore around 90
ms. This means that using our method to incorporate delayed measurements (section 4.4.2),
the Kalman filter rolls back 9 time steps, and then re-estimates the current pose using the
stored inertia cube measurements.

5.6. EXPERIMENT WITH A SCARA ROBOT 173

50 100 150

-0.2

0

0.2

0.4

0.6

0.8

time (s)

e
rr

 (
d
e
g
)

pitch

50 100 150

-0.1

0

0.1

0.2

time (s)

e
rr

 (
d
e
g
)

roll

50 100 150

-0.4

-0.2

0

0.2

0.4

time (s)

e
rr

 (
d
e
g

)

yaw

50 100 150

-3

-2

-1

0

1

time (s)

e
rr

 (
c
m

)

x-pos

50 100 150

-0.5

0

0.5

1

1.5

time (s)

e
rr

 (
c
m

)

y-pos

50 100 150

-2

-1

0

time (s)

e
rr

 (
c
m

)

z-pos

32 41

Figure 5-18 Dynamic camera pose accuracy in the four experiments on the SCARA robot,
using the information from all six markers.

174 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

50 100 150
-0.4

-0.2

0

0.2

0.4

0.6

0.8

time (s)

e
rr

 (
d
e
g
)

pitch

50 100 150

-0.2

0

0.2

time (s)

e
rr

 (
d
e
g
)

roll

50 100 150

-0.5

0

0.5

1

time (s)

e
rr

 (
d
e
g
)

yaw

50 100 150
-4

-2

0

2

4

6

time (s)

e
rr

 (
c
m

)

x-pos

50 100 150

-1

0

1

2

time (s)

e
rr

 (
c
m

)

y-pos

50 100 150

-2

-1

0

1

time (s)

e
rr

 (
c
m

)

z-pos

32 41

Figure 5-19 Dynamic camera pose accuracy in the four experiments on the SCARA robot,
using only one marker.

5.6. EXPERIMENT WITH A SCARA ROBOT 175

50 100 150
-1

-0.5

0

0.5

time (s)

e
rr

 (
c
m

)

x-pos, one marker

50 100 150

-1

-0.5

0

0.5

1

1.5

time (s)

e
rr

 (
c
m

)

y-pos, one marker

50 100 150

-0.2

0

0.2

0.4

time (s)

e
rr

 (
c
m

)

z-pos, one marker

50 100 150
-1

-0.5

0

0.5

time (s)

e
rr

 (
c
m

)

x-pos, all markers

50 100 150

-1

-0.5

0

0.5

1

1.5

time (s)

e
rr

 (
c
m

)

y-pos, all markers

50 100 150

-0.2

0

0.2

0.4

time (s)

e
rr

 (
c
m

)

z-pos, all markers

32 41 32 41

Figure 5-20 Dynamic camera pose accuracy in the four experiments on the SCARA robot after
correction for orientation errors.

176 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

5.6.7 Kalman filter analysis

Now we will present the performance of our Kalman filter. Our inertia and camera
measurements had multiple problems. The timing problems are believed to be due to the way
we recorded the measurements. To show the results, we have corrected the timing of the
measurements. Since our filter cannot properly cope with missing inertia tracker data we used
interpolated data to insert samples when real measurements were missing.

Figure 5-13 showed the positional movement of the robot for all experiments. Figure 5-21
shows the calculated x,y speeds and accelerations during one of the half circles in experiment
three. It shows that the speed profile has a trapezoidal shape and that the calculated
acceleration in the x and y directions is not smooth. The change in acceleration has to be
modeled in the Kalman filter by the process noise.

142.2 142.4 142.6 142.8 143 143.2 143.4 143.6 143.8 144 144.2
-10

-8

-6

-4

-2

0

2

4

6

8

velocity

vy

ax

ax

ay

ay

vx
vx

Figure 5-21 Speeds and accelerations during one of the fast semi-circles of experiment three.

We analysed the performance of our filter using different datasets. For the inertia tracker
values we used three different datasets:

• Calculated acceleration, angular velocity and orientation from the robot encoders.

• Measured acceleration and angular velocity, with the calculated orientation.

• All measured data.

The measured data were not good enough to calibrate the inertia-tracker frame with respect
to the robot frame; however, we found no indication that the robot had an inclination with
respect to the world coordinate frame. For the camera pose values we used five different
datasets:

• Calculated pose from robot encoders (with and without added noise of σz=0.1 cm).

• Measured pose from all markers; corrected for orientation error.

• Measured pose from all markers.

5.6. EXPERIMENT WITH A SCARA ROBOT 177

• Measured pose from one marker; corrected for orientation error.

• Measured pose from one marker.

The camera was calibrated to produce pose estimates in the robot coordinate frame. In that
frame, the real orientation is per definition zero in these experiments, and a non-zero
orientation is the result of an error in the lens calibration since the measurement noise is
negligible. The correction for the orientation error was performed by rotating the pose such
that a zero orientation was obtained. Using the corrected data, we can show the performance
when the pose has little systematic error.

In the datasets where all markers are used, all points in the detected markers are used to
optimize the pose of the camera. If at least one marker was recognized, a pose could be
calculated. In the sets where only one marker was used, no pose is estimated when that marker
is not recognized.

Images were recorded at a rate of 25Hz. In practice, only half of them can be processed in
time. For this analysis we only used images at 12.5 Hz since the accuracy did not increase
much by using all frames.

Before showing the results, we will first show what the output of the Kalman filter looks like.
In Figure 5-22 the dots show the x-position, the error in x-position and the error in x-velocity
as estimated by the filter. This data comes from the third experiment, where the robot was
moving at high speeds. In less than one second the robot moves from +55cm to -55 cm. The
filter used the calculated position data from the encoders, so the position measurement
(12.5Hz) was perfect. For this figure only, we also set the delay of these measurements to 0ms.

The 1σ error-bars in the figure show the square root of the filter’s estimated variances of the
estimated position and speed. After a position measurement, the error and the estimated
uncertainty become zero because the measurement noise is zero. As the following eight
acceleration measurements are incorporated using the process model, the process noise
increases the uncertainty in position and speed. Also the actual error goes up due to the
inaccurate constant acceleration model used in the process model. Now one can easily see that
the actual error most of the time falls within the estimated uncertainty, the 1σ error bars.

When the position measurement suffers from noise, the actual error will not be zero after a
measurement update. The uncertainty will still decrease at each position measurement, but not
so much. The uncertainty will be larger at all times, and the shape becomes more flat instead
of cone shaped.

178 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

140.5 140.6 140.7 140.8 140.9 141 141.1 141.2
-50

0

50

p
x (

c
m

)

140.5 140.6 140.7 140.8 140.9 141 141.1 141.2

-0.2

0

0.2

p
x
,e

rr
 (

c
m

)

140.5 140.6 140.7 140.8 140.9 141 141.1 141.2
-5

0

5

v
x
,e

rr
 (

c
m

)

time (s)

Figure 5-22 Kalman filter output when the robot is accelerating fast. The measurements were calculated
from the encoder values and the 1σ error bars show the estimated standard deviation of the
estimated position and velocity.

Figure 5-23 shows the ground truth, the filter output and the camera pose estimates just after
the rapid movement from Figure 5-22. Here the measured camera pose was used, which
introduces a systematic error. When the camera pose estimate is incorporated in the filter with
the true noise value, the filter output will follow the camera. This is shown in the left part of
the figure. We can artificially increase the measurement noise to incorporate the (position
dependent) systematic error. The filter now trusts its internal estimate based on the
acceleration measurements more, and slowly moves to the camera position. During this
process the velocity is incorrectly updated, with an undershoot as a result. This is shown on
the right hand side. Setting values for the process noise and measurement noise to balance
between believing the camera or accelerometer is done by trial and error. We started with the
measurement noises determined in section 5.4, and adapted the process noise parameters by
hand.

5.6. EXPERIMENT WITH A SCARA ROBOT 179

141 141.5 142 142.5 143

-56

-54

-52

-50

time (s)

p
x

141 141.5 142 142.5 143

-56

-54

-52

-50

filter output

ground truth

camera

Figure 5-23 x-position of the robot. Encoders: green solid line. Camera: red plusses. Filter: blue dots.
Left: normal measurement noise for the camera in the Kalman filter. Right: increased
measurement noise; the filter trusts its internal estimate more.

We analysed the output of the filter for all four experiments, but found that the performance
in experiments one, two and four were almost equivalent. Therefore, we only show the output
for experiments three and four. The error in x-position was largest, so we show only the
performance of the x-position filter output. Figure 5-24 shows the performance for each
camera measurement set, using calculated acceleration data. For every subfigure, the noise
parameters were optimized for low positional errors. The blue dots show the filter output, and
the red plusses show the position measurements. The titles of the subfigures also show the
parameters that were used in the filter (see Figure 5-3 and Figure 5-4). As can be seen, we
could use the same parameters for all shown sets, except for the measurement noise of the
camera position ,z pσ .

The top-left subfigure of Figure 5-24 shows the output when both the acceleration and
position are calculated. Gaussian noise with standard deviation of 0.1 cm was added to the
calculated position; this was comparable to the noise in the measured positions. The calculated
position has a delay of 80ms, a realistic estimate. The figure shows that when no systematic
errors are present, the position errors are below 0.3cm, except when the robot’s acceleration is
changing fast (fast movement on the circle in experiment 3). Our model cannot follow those
accelerations and the error goes up to 1 cm. This shows the limitation of our state prediction
model.

The ‘no filter’ subfigure of Figure 5-24 shows what the error would be when no inertia sensors
would be used. In addition to the error of the camera position measurement, an error
proportional to the speed can be observed. A speed of 100cm/s translates to an error of 8 cm.
Using the Kalman filter should give better results than using this very crude interpolation
method.

In the middle and bottom row subfigures of Figure 5-24 real camera measurements were used,
but combined with calculated acceleration data. In the middle row all markers were used to
determine the pose. In the bottom row, we used only one fixed marker. On the left, the
measurements were corrected for errors in orientation. We can see on the left that the
accuracy using the corrected poses is better than 1.5 cm.

180 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

100 120 140 160 180

-0.8

-0.6

-0.4

-0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

p
x
,e

rr
 (

c
m

)

Calculated

position measurements

σ
z,p

=0.1 σ
z,a

=0.0 σ
da

=0.5 σ
db,a

=0.0

3 4

100 120 140 160 180

-1.0

-0.5

 0.0

 0.5

Corrected

position measurements (all markers)

σ
z,p

=0.4 σ
z,a

=0.0 σ
da

=0.5 σ
db,a

=0.0

p
x
,e

rr
 (

c
m

)

100 120 140 160 180

 -2.0

 -1.0

 0.0

 1.0

 2.0

Uncorrected

 position measurements (all markers)

σ
z,p

=3.0 σ
z,a

=0.0 σ
da

=0.5 σ
db,a

=0.0

100 120 140 160 180

 -15

 -10

 -5

 0

 5

 10

 15

No filter

Uncorrected camera measurements (all markers)

100 120 140 160 180

-1.5

-1.0

-0.5

 0.0

 0.5

 1.0

time (s)

p
x
,e

rr
 (

c
m

)

Corrected

 position measurements (one marker)

σ
z,p

=2.0 σ
z,a

=0.0 σ
da

=0.5 σ
db,a

=0.0

100 120 140 160 180

 -2

 0

 2

time (s)

Uncorrected

 position measurements (one marker)

σ
z,p

=5.0 σ
z,a

=0.0 σ
da

=0.5 σ
db,a

=0.0

Figure 5-24 Kalman filter output for experiments three and four using calculated acceleration data.
The blue dots show the filter output, and the red +’s show the position measurements. The

units for the parameters given in the titles are cm, cm/s
2
 and cm/s

3
.

On the right hand side the measurements were not corrected. One can observe large errors in
the position. When using all markers the error is within 3 cm. When one marker is used, an
error of up to 4 cm can be observed. When the movement is small, as in experiment four, then
the observed errors are much lower.

5.6. EXPERIMENT WITH A SCARA ROBOT 181

Using multiple markers does not show significantly lower errors here. The benefit is the lower
noise, and the much higher probability that at least one marker is detected by the camera. This
is shown next.

The analyses above used calculated acceleration and orientation data. Now we will use the
measured data from the inertia tracker. We showed that the inertia cube’s orientation
measurements had errors because of magnetic field distortions. Therefore, we also did a test in
which we fixed the orientation measurements to a zero error. This we combined with
calculated noisy position measurements and is shown in the top-left subfigure of Figure 5-25.
With these unbiased camera measurements, and a perfect orientation estimate, the error is
better than 0.4 cm, with spikes to 1cm. When the orientation is not corrected and again the
calculated camera measurements are used (top right subfigure), the error goes up to 3 cm
depending on the movement. This shows that the encountered errors in orientation greatly
limits the achievable accuracy in this experiment.

100 120 140 160 180

 -0.6

 -0.4

 -0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

p
x
,e

rr
 (

c
m

)

Calc.

pos. meas. Fixed orientation

σ
z,p

=0.1 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=0.2

3 4

100 120 140 160 180

-3

-2

-1

0

1

2

3

Calculated position measurements σ
p
=0.1

σ
z,p

=0.1 σ
z,a

=2.0 σ
da

=10.0 σ
db,a

=0.0

100 120 140 160 180

 -6

 -4

 -2

 0

 2

 4

p
x
,e

rr
 (

c
m

)

Uncorrected

 position measurements (all markers)

σ
z,p

=0.1 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=2.0

time (s)
100 120 140 160 180

 -12

 -8

 -4

 0

 4

 8

Uncorrected

 position measurements (one marker)

σ
z,p

=5.0 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=38.0

time (s)

to 135 cm

to 80 cm

Figure 5-25 Kalman filter output for experiments three and four using real acceleration data. The
blue dots show the filter output, and the red +’s show the position measurements. The units

for the parameters given in the titles are cm, cm/s
2
 and cm/s

3
.

182 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

The lower two subfigures of Figure 5-25 show the results when using the uncorrected
measurements from all sensors. The filters show large overshoots. When all markers are used,
the error stays below 6cm. With only one marker, the errors stay usually below 10cm.
However, when this one marker is not detected for one second, the error can grow quickly, up
to to 135cm.

We can optimize the parameters of the Kalman filters such that the maximum error is much
lower, but only in exchange of a larger mean error. The reason for the large overshoots is that
due to the high process noise for the bias, a sudden error in camera measurement is attributed
to an error in bias and speed. When the marker is not detected for some time just after such a
sudden error, the filter error will grow due to the incorrect speed estimate. Two times this
marker was not detected for one second, at the times indicated.

Since the orientation errors in measurements from the sensor cube are larger than those from
the camera, it is natural to trust the measurements from the camera over those from the sensor
cube. Figure 5-26 shows the results when we do not use the orientation estimate by the sensor
cube at all, and fully trust the camera’s orientation estimate. One may notice a fast decreasing
error at the start of the two measurements. This is because a small orientation error is present,
and the filter needs some time to compensate the resulting bias in acceleration.

Getting rid of the faulty measurements makes the output much more stable and the velocity
estimate is now more accurate since most overshoots in the position output are gone. The
positional errors when the marker is not detected are much lower as well. When the marker is
detected, the positional accuracy is better than 3cm, and even better than 1.2cm if the
orientation errors in the camera measurements are corrected.

From these results we can conclude that the Kalman filter does its job of calculating an
estimate for the pose at the current time from slow delayed camera pose measurements and
fast inertia tracker measurements. However, systematic errors limit the achievable accuracy.
The following sources of error can be discerned:

• The systematic error in position from the camera. With the camera being the only
position sensor, these errors cannot be corrected. Using multiple markers can help in
lowering the errors when their respective errors have opposite sign.

• The systematic error in the orientation of the inertia tracker, resulting in an incorrect
estimation of the gravitational acceleration. The inertia tracker orientation estimate is
usually more accurate than the one from the camera. Only after high accelerations,
when the estimate can be off by up to 5°, is the camera’s estimate then better.

It is the combination of these systematic errors that makes the filter output exhibit errors
higher than the error of the camera alone. We found that we can safely ignore the orientation
estimate from the sensor cube altogether in this experiment. The filter is more stable and it
was much easier to tweak the noise parameters.

It must be said that this particular combination of high accelerations and magnetic field
distortions is far from typical in normal pose estimation problems such as our augmented
reality application. We therefore expect to be able to use the orientation measurement from
the sensor cube in a real application.

5.6. EXPERIMENT WITH A SCARA ROBOT 183

The observed systematic error in the camera pose, however, is the limiting factor. We are
convinced that this is a problem with the lens calibration and not with the pose estimation
algorithm itself. This could be verified by calibrating the lens using a better method and
performing this experiment a second time. Another method that might work is to change the
calibration parameters and observe the changes in the accuracy of the estimated poses from
the measured data. A non-linear optimization algorithm could optimize the parameters.

100 120 140 160 180

 -0.6

 -0.4

 -0.2

 0.0

 0.2

 0.4

 0.6

 0.8

p
x
,e

rr
 (

c
m

)

Calculated position measurements, no noise

σ
z,p

=0.1 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=0.2

3 4

100 120 140 160 180

 -0.6

 -0.4

 -0.2

 0.0

 0.2

 0.4

 0.6

 0.8

Calculated position measurements σ
p
=0.1

σ
z,p

=0.1 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=0.2

100 120 140 160 180

 -2

 -1

 0

 1

 2

 3

p
x
,e

rr
 (

c
m

)

Uncorrected

 position measurements (all markers)

σ
z,p

=1.2 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=0.2

100 120 140 160 180

 -4

 -2

 0

 2

Uncorrected

 position measurements (one marker)

σ
z,p

=5.0 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=0.2

100 120 140 160 180
 -1.2

 -0.8

 -0.4

 0.0

 0.4

 0.8

p
x
,e

rr
 (

c
m

)

Corrected

 position measurements (all markers)

σ
z,p

=0.7 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=0.2

time (s)
100 120 140 160 180

 -1.2

 -0.8

 -0.4

 0.0

 0.4

 0.8

Corrected

 position measurements (one marker)

σ
z,p

=0.8 σ
z,a

=2.0 σ
da

=0.5 σ
db,a

=0.2

time (s)

to 2.5cm to 5cm

Figure 5-26 Kalman filter output for experiments three and four using the orientation from only the
camera pose estimation. The blue dots show the filter output, and the red +’s show the

position measurements. The units for the parameters are cm, cm/s
2
 and cm/s

3
.

184 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

5.7 Usage of the AR setup by the KABK

In 2005 we started working together with the Royal Academy of Arts (KABK) in The Hague.
We worked with artists and students who were very much interested in new media. The goal is
to have interaction with the virtual world, and we added devices like a data-glove and a RFID-
tag reader to our system to enable that. Figure 5-27 shows the wearable system that we built.
On the right, three different versions of the headset are shown. The top one used Sony
Glastron displays on a safety helmet. The middle one is the Visette45 SXGA from Cybermind
with the inertia tracker and camera mounted on it. The last one was designed by Niels Mulder,
a student of the Post Graduate Course Industrial Design at the KABK.

In cooperation with the artists Pawel Pokutycki, Wim van Eck and Marina de Haas we
demonstrated our augmented reality system during a number of exhibitions, Figure 5-28 shows
some impressions. We also have contacts with interior design companies that have expressed
interest in the system.

This shows that there is a lot of interest in augmented reality, with more serious applications as
described in the introduction. When the constituting parts will become a lot smaller and more
affordable, many exciting applications will arise.

Figure 5-27 Augmented reality equipment. Three consecutive versions of the headset are shown on the
right.

5.7. USAGE OF THE AR SETUP BY THE KABK 185

Words of dancing letters at Open Dag of KABK
January 2007

The AR view beamed for the audience

Manipulating virtual scenes by means of RFID tags
in objects at unDEAF, April 2007

Virtual hand puppet manipulated by a data glove

Queuing for the AR experience at the
Todays Art Festival, September 2007

Inverted AR experience by Marina de Haas

Figure 5-28 A selection of demonstrations using our augmented reality setup.

186 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

5.8 Conclusion

In this chapter we showed what is needed to integrate the different sensor devices with a
headset to make a working AR system. A number of calibrations are needed, all of them
crucial for accurate results. Most of these calibrations are still performed manually, by verifying
a correct overlay of the virtual world with the real world by eye. A ground truth experiment
for the error in overlay is therefore the only way to really quantify the quality of the augmented
reality system. As we do not have a setup to do such an experiment, we can only assess the
quality visually while wearing the headset. We found that due to the inclination and distortion
of the displays, the virtual representation of the markers did not line up perfectly with the real
markers, see the remarks at the end of section 5.2.4.

In section 2.4, p.26 we specified the target accuracy of our pose estimation system. The pose
accuracy target was calculated from the limitations of our headset’s displays: 60 Hz, 1280x1024
pixels and a field-of-view of 36°. The error in pose estimation does not have to be better than
the error due to the use of the display.

The error can be expressed as the error in angle of a ray from the user’s eye to the projected
virtual object. The used display has a horizontal field of view of 36° spread over 1280 pixels.
Therefore, the observed angular resolution is limited to 0.03°. If the angle to the virtual object
is changing, the update rate of 60Hz will introduce an unpreventable error as well. When a
virtual object is projected at distance d of the eye, our target accuracies are given by:

 target,max

target

max target,max

0.03
maximum

/60

sin()

Hz

pos d

α
α

α

°
∆ = 


∆ = ∆

ɺ (5.25)

In a demo situation we expect the user to be smoothly looking around with a head rotation of
at most 30° per second. The target rotational accuracy is then 0.03-0.5°, and the accompanying target
positional error with a virtual object at 100cm is then 0.05-0.9cm.

We set ourselves some restrictions while trying to meet these requirements. First of all, we
wanted a wearable mobile system. Furthermore, we wanted to minimize the changes to the
environment needed to estimate the pose. For us this meant using as few markers as possible
and making the markers as small as possible. We chose an A4-sized marker with a 2D barcode
to distinguish many different markers. The marker’s four corners are used to calculate the
pose of the camera. In Chapter 3 image processing methods were developed that allow the
marker to be detected in conditions with high noise values and allow the most accurate pose
estimate when the marker is seen at distances of up to 5m.

We performed experiments in Chapters 3 and 5 to find the achievable pose accuracy when
only one marker is used. When we only take the measurement noise of our sensors into
account, we can use Table 5-7 and Table 5-1 to find the expected errors in orientation and
position measured by our sensors. The orientation from the sensor cube shows noise with a
standard deviation of around 0.06°. The camera shows noise in orientation and position with
standard deviation of 0.04° and 0.2cm respectively (in case of one marker at 2.7m). In a
hypothetical situation in which all systematic errors are corrected, we meet the target
accuracies for angular speeds above 7°/s. (max orientation error of 2*0.06°).

5.8. CONCLUSION 187

In practice we encounter systematic errors. The systematic errors in the camera pose are
position dependent and seem to be caused by lens model errors. In Chapter 3 we measured
the camera pose accuracy for many different viewing angles. At five meters distance, the root
mean squared error in angle was 0.6°, provided the marker was viewed slightly from the side
(angle larger than 20°). The position of the marker with respect to the camera has a sub-
millimeter accuracy except along the optical axis where a sub-centimeter accuracy was found.
Therefore, the estimated orientation has the largest influence on errors in camera position.

To achieve pose update rates higher than the number of image frames per second and to be
able to cope with the delay in the camera pose measurements, we integrate the angular velocity
and linear acceleration measured by a fast inertia tracker. In order to combine noisy
measurements in a statistically optimal way, we developed the error-state Kalman filters
described in Chapter 4 (detailed in Figure 5-3 and Figure 5-4). As a result of the unpredictable
movements of the user, we concluded that the Kalman filter would not be able to achieve higher
positional accuracies than the accuracies of the position estimated by our camera pose estimation method.

However, without the filter, the delay of up to 80ms in the pose estimate from the images will
introduce an error proportional to the angular and linear velocities. Using the Kalman filters,
we were able to achieve better results than using the camera images alone. Figure 5-26 shows
that the accuracy of the position is not much dependent on the velocity. Ignoring situations in
which the marker was not detected, the accuracy is better than 4 cm (with the marker at 2.7m).
Without the filter, the error was better than 20 cm in our experiment with the SCARA robot.
Four centimetres translates to an error of 2.3° in the angle to a virtual object at one meter.
This offset will be clearly visible on head motions slower than 120° per second, but the offset
is stable when there is no movement.

Using multiple markers makes the camera pose precision much better, and the sporadic high
errors when using one marker are gone. Another benefit is that a pose can be estimated by the
camera as long as at least one marker is detected. There is only a slight increase in accuracy in
comparison to using one marker since the markers are too close to one another to cancel out
their systematic errors.

The systematic errors in camera orientation are the main contribution to the camera’s
positional errors. Without the systematic error, we estimate that the errors would be below 0.5cm in this
experiment using one marker. Whether we can actually achieve this accuracy with a better lens
calibration remains to be determined. It is certainly plausible, considering that when we correct
for the orientation error, use calculated acceleration measurements and have limited motion as
in experiment four (bottom left subfigure of Figure 5-24) the errors are below 0.5 cm.

The orientation estimated by the inertia tracker can be used to track the orientation at a higher
rate than the camera’s estimates. In our augmented reality application we use the orientation
output, but ignore the heading/yaw angle since magnetic field disturbances introduce errors of
up to 45°. These errors were also encountered in our experiment with the SCARA robot.
Additionally the roll and pitch angles showed high errors in our experiments, up to 5°. The
error in the correction for the gravitational acceleration is then 85 cm/s2.

188 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

When both the camera position and the orientation estimates have systematic errors, the
Kalman filter cannot accurately estimate the velocity. Both integrating the acceleration and
differentiating the position gives errors in velocity. Due to these velocity errors, the filter
output shows overshoots. In case the marker is not seen for some time, the positional error
can grow quickly to 135 cm, as shown in Figure 5-25.

We believe that the cause of the orientation error is the fundamental inability to distinguish
between a rotation and an acceleration. Due to a continuous acceleration during our robot
experiments, the orientation estimation by the inertia tracker had varying systematic errors
(Figure 5-17, bottom right). In a real demo situation, the observed accelerations are much lower, more
irregular and the highest frequency will lie around 6 Hz. Therefore, we expect that the error in orientation from
the inertia tracker will not be as high as 5°.

We can think of a number of methods to decrease the observed errors. First of all, we can
adapt our Kalman filter:

• Increase the process noise for the accelerometer bias. The apparent bias in the
accelerometers due to errors in orientation can be attributed to a sensor bias within
the filter. The velocity error will therefore be smaller. This, however, is not a good
solution since the error in orientation itself is not corrected.

• Estimate an offset in orientation in the position filter. Since the accelerometer
bias is quite stable, the apparent bias should be attributed to an error in orientation.
This is an option to be investigated.

• Use the calibrated sensor data from the inertia cube. If we could read out the
magnetic field sensors along with the values from the accelerometers and gyroscopes,
our Kalman filter would be able to distinguish a rotation from an acceleration using
the camera position estimates.

• Use the proposed plug-in architecture from Figure 2-14 and Figure 4-7 for the
inertia tracker. The tracker can estimate the orientation better with the camera pose
as (indirect) feedback from the central filter. In addition, the central filter will take
care of the process model and the expected process noise of the position/velocity
and acceleration; hence, the inertia tracker can benefit from the application dependent
expected motions.

Secondly, we can try to make the errors in our camera pose estimation lower:

• View markers under an angle of more than 20°. Viewing a marker straight on, can
introduce errors up to two°. In an AR demo situation virtual objects can be projected
such that the markers will be viewed from the side.

• Calibrate the lens better, such that the systematic errors are minimized. A last
resort is not using a radial distortion model but instead a region based approach in
which for each region, for instance 100 by 100 pixels, the distortion is calibrated
separately. In this way, any distortion can be modelled.

• Use multiple markers. A greater coverage of markers in the image will lower the
observed error. However, this violates our requirement of low environmental impact.

5.9. RECOMMENDATIONS FOR FUTURE RESEARCH 189

• Use the Kalman orientation to optimize the pose in the last step of the camera
pose estimation algorithm. When the Kalman filter’s estimate of the orientation is
better than the camera’s estimate, the recalculated position will be more accurate.
Using a correct orientation is even more crucial then. Therefore, the orientation at the
time of capture must be accurately estimated.

Although we did not meet the requirements set in Chapter 2, acceptable augmented reality
demos can still be given. Our system is currently extensively used at the Royal Academy of
Arts in The Hague. Besides using multiple markers and larger markers, two methods can be
used to make the errors less noticeable:

• Show virtual objects near a marker. As Figure 3-46 shows, a virtual object on the
marker is always accurately positioned. This is true if the camera orientation is used,
because the errors in orientation and position estimated by the camera pose
estimation are correlated. We use the heading angle from the camera, as we do not
trust the heading calculated from the magnetic field sensors. Therefore, when we
place the markers such that under normal movements only the heading determines
the viewing angle to the marker (for instance marker on a wall, eye height), errors are
less noticeable.

• Show moving virtual objects. Preferably floating. This will remove the direct
correspondence between virtual and real objects. But the user will still be able to
appreciate the virtual object by moving around.

5.9 Recommendations for future research

In this thesis, the pose of a camera was calculated from images of man-made markers. One
marker is enough to calculate a full pose. When we need a more accurate pose estimate
without using additional markers, natural features can be used. As mentioned in section 2.2 a
Self Localisation And Map building method can be used to detect and find the positions of
natural landmarks which are recognizable parts of objects such as tables, posters, door signs
etc. Combining natural landmarks that cover all parts of the image with our known markers to
ground the positions of those landmarks in the real world is the next step to immersive optical
see through augmented reality. This will enable a user to walk around in much larger
environments, without having to place many markers such that a marker is always in view.

Our current fixed, single camera setup has the severe limitation that the user has to keep a
marker in the camera’s view. We know that a mechanical eye is being developed which
contains a small camera as used on cell phones. We could use such mechanical eyes to rotate
the camera automatically to parts of the world that enable the calculation of the most accurate
pose. The challenge is then where to direct the attention of the camera, and possibly how to
connect multiple eyes to get a better estimate.

When the pose of the camera is known, a number of coordinate frame transformations is
needed to find the pose of the user’s eye. Ultimately, the pose of the eye is used for rendering
images on the headset’s displays. It would be very convenient to have a method to
automatically calibrate those transformations. The challenges are to model the display’s
distortions, and to find a method in which the positions of the eyes for each different user can
be easily calibrated.

190 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE

Several improvements are possible for the sensor fusion part of our setup. Maturing our idea
of the pluggable filter can benefit sensor manufacturers as well as application builders. We
already observed that the used inertial tracker was not able to cope with prolonged times of
accelerations. In the pluggable filter setup, the filter inside the tracker can benefit from other
sensors that are plugged in to the central filter transparently.

Lastly, all the equipment needs to be miniaturized in order to enable the exploitation of
augmented reality systems in the consumer market. The largest component is currently the
laptop that is used for image processing and rendering the virtual world. Image processing
algorithms could be implemented on fast dedicated hardware such as FPGAs. Generating the
stereo images of the virtual world is then still a problem to be solved.

 - 191 -

Appendix A Federated Filter

To prove that the time-update and observation-update equations are equal for the central and
federated filters, we will derive these equations for both filters. We split the states up in normal
states (which we call common states for compatibility with the decentralized filter below) and

drift states. The local state
m

x and its corresponding error covariance
m

P of the central filter

is defined as:

cm

m

dm

 
=  
 

x
x

x
 (A.1)

 ccm cdm

m

dcm ddm

 
=  
 

P P
P

P P
 (A.2)

with cmx the common states and dmx the drift states. Rewriting the observation update gives:

() ()
()
()

()
() ()
() ()

()
() ()()
()

1
1 1

1

1

1

1 1

1

cm cm

m m

dm cm

cm

m m

dm

ccm ccmT T T

m m m ccm

dcm ccm

ccm ccm

m

dcm ccm

ccm ccm ccm ccm

m

dcm ccm dc

K

−
− −

−

−− −

+ − −

−− −

− − −

+ − −

− −

 +
 = + = + =
 + 

 + + −
 = + − =
 + + − 

+ + − +
= + − =

+ + −

P P R
K P H HP H R P H P R

P P R

x P P R y x
x x K y x

x P P R y x

P P R y I P P R x
x Ky x x

P P R y x P ()

() ()() () ()

() ()
() ()

1

1 1 1 1

1 1

1 1

cm

dm cm

m ccm

ccm ccm ccm ccm ccm ccm ccm

ccm ccm ccm cm

m

dcm ccm dcm ccm

− −

− − − −

− − −

+
− −− −

 
 
  + 

− + = + + − + = +

 + + +
 =
 + + − + 

P R x

I P P R P R P R P P R R P R

P P R y R P R x
x

x P P R y P P R x

 (A.3)

and:

192 APPENDIX A.

()
()
()

()
()

()
()

() ()
()

1 1

1 1

1

1

1 1

ccm ccm ccm

m m m m

dcm ccm dcm ccm

ccm ccm cdm

m

dcm ddmdcm ccm

ccm ccm ccm cdm

m

dcm dcm ccm

− −

+ − − −

− −

− − −
+

− −−

− −− −
+

−

   − + +
   = − = =
   − + − +   

 +  
 =   − +   

+ +
=

− +

I P P R 0 R P R 0
P I KH P P P

P P R I P P R I

R P R 0 P P
P

P PP P R I

R P R P R P R P
P

P P P R ()

() () () ()
()

() ()

1 1

1 1 1

1

1 1

ccm ddm dcm ccm cdm

dcm dcm ccm ccm dcm ccm ccm dcm ccm ccm

dcm ccm

ccm ccm ccm cdm

m

dcm

− −− − − −

− − −− − − − − − − − −

−−

− −− − − −

+

−

 
 
 − + 

− + = + + − +

= +

+ +
=

P P P P R P

P P P R P P P R P R P P R P

P P R R

R P R P R P R P
P

P P() ()1 1

ccm ddm dcm ccm cdm

− −− − − − −

 
 
  + − + R R P P P R P

 (A.4)

These equations we will compare with the ones from the federated filter that we will derive

next. The general setup of the FKF was illustrated in Figure 4-6. The local state
i

x and its

corresponding error covariance
i

P of local filter i is defined as:

ci

i

di

 
=  
 

x
x

x
 (A.5)

 cci cdi

i

dci ddi

 
=  
 

P P
P

P P
 (A.6)

with cix the common states and dix the drift states of the ith local filter. The two local filters

for the orientation are exactly the same as the central filter. Therefore the observation update
formulas are given by:

() ()
() ()

() ()
() ()

() ()
() ()

1 1 1

11

1 1

1 1

ci cci cci ci cci cci cci ci

i

di dci cci cidi dci cci ci

cci cci cci cdi

i

dci cci ddi dci cci cdi

− − −− − −

+
−− − −− −

− −− − − −

+

− −− − − − − −

   + + − + + +
   = =
   + + −+ + −   

 + +
 =   + − + 

x P P R y x P P R y R P R x
x

x P P R y xx P P R y x

R P R P R P R P
P

P P R R P P P R P 

 (A.7)

The master filter can be seen as a global filter with augmented state vector:

ci

cN

 
 =  
 
 

x

x

x

⋮ (A.8)

 193

with N the number of local sensors. The corresponding error covariance is:

11 1

1

N

N NN

 
 =  
 
 

P P

P

P P

⋯

⋮ ⋱ (A.9)

Given a set of local state-estimates ˆ
ci

x , the globally best estimate ˆ
f

x is the one that minimizes

the weighted least squares cost function:

 () ()1

1 1

ˆ ˆ
N N

T

ci ci ij cj cj

j i

−

= =

− −∑ ∑ x x P x x (A.10)

When we assume that the cross variances in eq (4.83) are 0, the solution is simple:

1 1 1

11

1 1 1

1

()

()

f NN

cc ccN

− − −

− − −

= + +

= + +

P P P

P P

⋯

⋯
 (A.11)

 1 1 1

1 1
ˆ ˆ ˆ()

f f cc c ccN cN

− − −= + +x P P x P x⋯ (A.12)

The last assumption actually means that the local filter states are treated as being uncorrelated.
If the fusion update formula is such that the local filters and central filter are equal again after
fusion, then the assumption is valid.

Now suppose that after initialization a few time updates are done. Both filters have the same
states, the same transition matrix and the same process noise. The states and covariance
matrices will therefore stay the same. Or:

 2 1

2 1

c c

cc cc

x x

P P

− −

− −

=

=
 (A.13)

Then an observation is made by local filter 2. By means of (A.7) the state and covariance for
local filter 2 is changed. When a fusion is done now, the result will be:

1 1 1

1 2

1 1 1

1 1 2 2

()

ˆ ˆ ˆ()

f cc cc

f f cc c cc c

− − −

− − −

= +

= +

P P P

x P P x P x
 (A.14)

The following relations will be used extensively in the formulas that follow:

()
()

() ()

() ()

1 1 1 1

1 1 1 1

1 11 1

1 11 1

− − − −

− − − −

− −− −

− −− −

+ = +

+ = +

+ = +

+ = +

A B B A B A

A B A A B B

A B B A B A

A B A A B B

 (A.15)

With this, (A.7) can be rewritten as:

194 APPENDIX A.

() ()

() () ()
()
() ()

() ()

1 1

1 1 1

1 1 1 1

1 1

1

1 1
1 1

cci cci cci cci cci

cci cci

ci cci cci cci ci cci cci ci

cci cci ci

i

di dci cci ci

cci cci cdi

i

dci

− −+ − − − −

+ − − − −

− −+ − + − − −

+ − − −

+

−− −

− −− − − − −

+

= + = +

= +

= + + + = +

 +
 =
 + + − 

+ +
=

P R P R P P P R R

P R P

x P P R y R P R x P R y P x

P R y P x
x

x P P R y x

R P R P R P
P

P () ()1 1

cci ddi dci cci cdi

− −− − − − − −

 
 
  + − + P R R P P P R P

 (A.16)

Using (A.13) and (A.16):

()
()

1

2 2 2

1

1 1

cc cc cc

cc cc

−+ − −

−− −

= +

= +

P R P R P

R P R P

 (A.17)

That becomes with (A.15):

 ()
()

1 1 1 1 1 1 1 1 1 1

1 2 1 1 1

1 1 1

2 2 1 1

1 1 1 1 1 1

1 1 1 1 1 1

() () (2)

ˆ

ˆ ˆ ˆ() 2

f cc cc cc cc cc

cc c cc c

f f cc c cc c f cc c

− − − − − − − − − −

+ − + − − −

− − − − − − −

= + = + + = +

= +

= + + = +

P P P P P R P R

P x R y P x

x P P x P x R y P P x R y

 (A.18)

Comparing the result for the federated filter and the central filter:

()
() ()

()

() () ()

1

1 1

11 1 1 1 1
1 1 12 2

1 11 1 1 1 1
1 1 1 1 1 12 2 2

(2)

ˆ ˆ ˆ2

ccm ccm ccm

cm ccm ccm ccm cm

f cc cc cc

f f cc c cc c cc cc

R

R

−+ − −

− −+ −

−− − −

− −− −

= +

= + + +

= + = +

= + = + + +

P R P P

x P P y R P R x

P P R R P R P

x P P x R y R P R x P P R y

 (A.19)

The formulas are equal if at initialization the following is chosen:

2

ˆ ˆ

cci ccm

ci m

=

=

P P

x x
 (A.20)

This relation should hold even after time updates and that means that the entire covariance
matrix should be twice as big as the one in the central filter. Also the process noise for all
states should be twice as big:

2

2

i m

i m

=

=

P P

Q Q
 (A.21)

 195

After a fusion update we would like both local filters to have the same estimate as the
centralized filter.

The local filters will be updated with the best estimate for the common states and the
covariance matrix for these common states. Using those values the local filters should be
updated. Let’s first find the relation for the drift states of local filter 1:

 () ()
() ()

1

1

1
1

1 1 12

ˆ

ˆ

ˆ

d dm

dm dm dcm ccm cm

dm d dcm cc c

−

−+ − −

−+

=

= + + −

= + + −

x x

x x P P R y x

x x P P R y x

 (A.22)

Let’s now write the updated drift state also as an observation update:

 () ()
1 1 1

1

1 1d d cdc cc f f

−+ − −= + + −x x P P R y x (A.23)

If we take ˆ
f f

+=y x and
f
=R 0 then using (A.19) we get:

() () ()()
()() ()()

() ()

1 1

1

1

1 11 1 1 1
1 1 1 1 1 1 12 2 2

1 11 1 1 1 1
1 1 1 1 1 1 12 2 2 2

1
1 1

1 1 12 2

ˆ

ˆ

ˆ

d d

d

d

dc cc cc c cc cc c

dc cc cc cc c cc cc

dc cc c

P P

P P

P

− −−+ − −

− −− −

−−

= + + + + + −

= + − − + + +

= + + −

x x 0 R P R x P P R y x

x R P R P R x P P R y

x P R y x

 (A.24)

Comparing this with (A.22) shows that because
1

2
dc dcm

=P P , the result is equal to the central

filter version.

Now the same can be done for local filter 2. The following relation is useful:

()
()

1

2

1

2

1 1

2 2

cc cci cci

dc dci cci

dc cc dci cci

−+ − −

−+ − −

+ + − − − −

= +

= +

=

P P P R R

P P P R R

P P P P

 (A.25)

Now similar as in (A.24) the formulas become:

196 APPENDIX A.

()
() ()
() ()
() ()

() ()()()

()

2

2 1

1

2 2 2 2

1

1 1 1

1

2 1 1 1 1

1
1 1

1 1 1 12 2

1 11 1
2 1 1 1 1 12 2

1 1

2 2 1 1

1

1 1 2 1

d

d d

d dc cc f c

dc cc c

c c cc cc c

f c cc cc c

f c cc cc cc cc c

dc cc dc cc

dc cc f c dc

++ + − +

−+ − −

−+ − −

−− −

− −+ −

− −

− +

= + −

= + + −

= + + −

= + + −

− = + − + −

=

− =

x x P P x x

x x P P R y x

x x P P R y x

x x P P R y x

x x P P R P P R y x

P P P P

P P x x P () ()()()
() () ()()()
() ()

1

1

1 11 1
1 1 12 2

11 11 1
2 1 1 1 1 12 2

1
1 1

1 1 12 2

d

d

cc cc c

d dc cc cc cc c

dc cc c

− − −

−− −++ − −

−− −

+ − + −

= + + + + − + −

= + + −

P R P R y x

x x P P R P R P R y x

x P P R y x

 (A.26)

This is again the same as the central filter.

Now the covariance matrices of the local filters should be updated. First let us repeat some
findings from the formulas above. We only want to update the covariance matrix of local filter
1 for now:

()

() ()
() ()

11 1 1 1 1
1 1 12 2

1

1

1 1

1 1

1 1

1

1 1

(2)

2

2

f cc cc cc

cc ccm

dc dcm

ccm ccm ccm cdm

m

dcm ccm ddm dcm ccm cdm

cc cd

dc dd

−− − −

− −− − − −

+

− −− − − − − −

= + = +

=

=

 + +
 =   + − + 

 
=  
 

P P R R P R P

P P

P P

R P R P R P R P
P

P P R R P P P R P

P P
P

P P

 (A.27)

The central filter result for the covariance matrix can now be rewritten to use only variables
that are known to local filter 1:

 197

() ()
() ()

()
() ()

1 1
1 1 1 1

1 1 1 12 2 2 2

1 1
1 1 1 1 1

1 1 1 1 12 2 2 2 2

1
1 1

1 12 2

1 111 1 1 1 1 1
1 1 1 1 1 12 2 2 2 2 2

1 1 1

1

1 1 1

1

1

2

2

cc cc cc cd

m

dc cc ddm dc cc cd

f f cc cd

dc cc f dd dc f cc cd

f cc

f cc

− −

+
− −−

−

− −− −

− − −

− − −

 + +
 =
 + − + 

 
 =
 − 

= +

= −

R P R P R P R P
P

P P R R P P P R P

P P P P

P P P P P R P P P

P R P

R P P

() () ()

()()

()()
()

1 11 1 11 1 1 1 1 1 1
1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2

111 1 1 1
1 1 1 1 12 2 2 2

111 1 1 1 1
1 1 1 1 1 12 2 2 2 2

1 11 1
1 1 1 1 1 12 2

2

2

2

dd dc f cc cd dd dc f cc f cc cd

dd dc cc f cc cd

dd dc cc cc f cc cd

dd dc cc cc f cc cd

m

− −− − − − −

−− −

−− −

− − −

− = − −

= − −

= − −

= − −

P P R P P P P P P P P P P

P P I P P P P

P P P P P P P

P P P P P P P

P
()

() ()

1

1 1

1 1 11 1
1 1 1 1 1 1 1 12 2

f f cc cd

dc cc f dd dc cc cc f cc cd

−

+
− − − −

 
 =
 − − 

P P P P

P P P P P P P P P P

 (A.28)

Knowing that the covariance matrix should be twice as big as the central filter covariance, the
final result for local filter 1 is:

()

() ()

1

1 1

1 1 1 11 1
1 1 1 1 1 1 1 12 2

2
f f cc cd

dc cc f dd dc cc cc f cc cd

P

−

+
− − − −

 
 =
 − − 

P P P P

P P P P P P P P P P
 (A.29)

For local filter 2 we can do the same, but we can start from the last result:

() ()
() ()

()
() ()

1 1

1 1 1 1

2 1 1

1 1 1 1 1 1

1

1 1

2 1 1 1 11 1
1 1 1 1 1 1 1 12 2

1 1

2 2 1 1

2 2

2

cc cc cc cd

dc cc dd dc cc cd

f f cc cd

dc cc f dd dc cc cc f cc cd

cc cd cc cd

dc cc

− −− − − −

+

− −− − − − − −

−

++ +
− − − −

+ − + − − −

+ +

 + +
 =   + − + 

 
 = =
 − − 

=

R P R P R P R P
P

P P R R P P P R P

P P P P
P P

P P P P P P P P P P

P P P P

P P

()

1 1

1 1

1

2 2

2 1 1 11 1
2 2 1 2 2 1 2 22 2

2

dc cc

f f cc cd

cd cc f dd dc cc cc f cc cd

− − − −

−

++
− − − −

=

 
 =
 − − 

P P

P P P P
P

P P P P P P P P P P

 (A.30)

Only
2dd

++P , the covariance matrix after the fusion step, has to be determined still:

198 APPENDIX A.

()

()()
()

()
()

()

11 1 1
2 1 1 1 12 2

11 1 11 1
1 1 1 1 1 1 1 12 2

1 1 1

1 2 2 1 2 2

1

1 2 1 1 1

1

1 2 1

1

1 1 2

1

dd dd dc f cc cd

dd dc cc cc f cc cc cc cd

dd dc cc cc f cc cd

dd dd dc cc cd

dc dc cc

cd cc cd

dd

−++ − −

−− − − −

− − − −

−− − − − −

− + − −

− − − +

−

= −

= −

= −

= + +

= +

= +

P P P R P P P

P P P P R P P P P P

P P P P R P P P

P P P P R P

P P R P R

P P R R P

P () () ()()
()()

()()
() ()

()

1
1 1

2 2 1 1 1 2

1 1

2 2 1 2

1 1 1 1

2 2 2 2 1 2 2 2

1 1

2 1 1 1 1

1 1 1

1 2 2 2 1 2 2

dd dc cc cc cc cd

dd dc cc cd

dd dc cc cc cc cc cc cd

cc cc cc cc cc

dd dd dc cc cc cc cc

−− + − − − − − +

− + − − − +

− + − − − − − +

− −− −

− − + − − −

= + + + +

= + +

= + +

= + = +

= +

P P R P R P R P R R P

P P R P R R P

P P P P R P R R P P P

P P P R R R P R P

P P P P P R P P

()
()()

() ()

()

2

1 1 1 1

2 2 2 2 1 2 1 2 2

1 1 1

2 2 2 1 2 2 2

1 1 1

1 2

1 1

1 2 2 2 2

1 1 1

2

1
1

1 2 2 2

2

2

cd

dd dd dc cc cc cc cc f cc cd

dd dc cc cc cc f cc cd

cc f cc

cc f cc f cc cc cc f f

cc f

cc f cc f cc cc

+

++ − − − − −

− − − −

− − −

− −

− − −

−−

= + −

= + −

= −

= − = −

= −

= − − −

P

P P P P P R P P R P P P

P P P P R P P P P

P P P

P P P P P P P P P

R P P

P R P P P P P()
()()

()() ()()
()

1

1

2 2

1
1 1

2 2 2 2 2 2 2 2 2

1 1

2 2 2 2 2 2

2

2

2

f

f cc cc f

dd dd dc cc f cc cc f cc f cc cd

dd dc cc f cc cc cd

−

−

−++ − − −

− − −

= − −

= + − − −

= + −

P

P P P P

P P P P P P P P P P P P

P P P P P P P

 (A.31)

With this final result, the fusion update formulas can be summarized by:

()

1

1

1d

f

dci cci f c

− − −

 
 
 + − 

x

x P P x x
 (A.32)

And:

()

1

2 2

1 1 1

2 2

2 2

2 2

f f cc cd

i

cd cc f ddi dci cci cci f cci cdi

P

−

++
− − − −

 
 =
 − − 

P P P P

P P P P P P P P P P
 (A.33)

 199

This is valid as long as at initialization the covariance matrix is increased:

 2
i m
=P P (A.34)

And to be sure the relation holds under time-updates, the process noise should be increased as
well:

2

2

i m

i m

=

=

P P

Q Q
 (A.35)

The above result can be generalized where there are not two but γ local filters. In that case all

2’s in (A.33)-(A.35) can be replaced by γ .

 - 201 -

Bibliography

[1] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, "Augmented Reality: A Class of
Displays on the Reality-Virtuality Continuum," in SPIE, Boston, 1994, pp. 282-292.

[2] "Project: Virtual Reality and Phobias," 1999-2006+.
http://graphics.tudelft.nl/~vrphobia/index.html

[3] D. Wagner, T. Pintaric, F. Ledermann, and D. Schmalstieg, "Towards Massively Multi-User
Augmented Reality on Handheld Devices," in Third International Conference on Pervasive Computing
(Pervasive 2005), Munich, Germany, 2005, pp. 208-219. http://studierstube.icg.tu-
graz.ac.at/handheld_ar/index.php

[4] "The Lifeplus (Ist-2001-34545) Project," MIRAlab-Switzerland, FORTH-Greece, 2002-2004.
http://lifeplus.miralab.unige.ch/HTML/results_visuals.htm

[5] "Ubicom Research Program," Delft University of Technology. www.ubicom.tudelft.nl

[6] "BMW Bringing Together Reality and the Virtual World." http://www.worldcarfans.com

[7] "Bringing Together Reality and the Virtual World. BMW Shaping the Future Part 6."
http://www.worldcarfans.com/2030730.001

[8] N. Navab, "Developing Killer Apps for Industrial Augmented Reality," in IEEE Computer
Graphics and Applications. vol. 24, 2004, pp. 16-20.

[9] K. Kiyokawa, M. Billinghurst, B. Campbell, and E. Woods, "An Occlusion-Capable Optical
See-through Head Mount Display for Supporting Co-Located Collaboration," in International
Symposium on Mixed and Augmented Reality, 2003.

[10] J. R. Huddle, "Trends in Inertial Systems Technology for High Accuracy Auv Navigation," in
Autonomous Underwater Vehicles, 1998, pp. 63 - 73.

[11] B. J. Köbben, A. van Bunningen, and K. Muthukrishnan, "Wireless Campus Lbs : Building
Campus - Wide Location Based Services Based on Wifi Technology," in proceedings of 1st
International Workshop on Geographic Hypermedia, Denver, 2005.

[12] H. Laitinen, J. Lahteenmaki, and T. Nordstrom, "Database Correlation Method for Gsm
Location," in Vehicular Technology Conference, 2001, pp. 2504 - 2508.

[13] L. Zhu and J. Zhu, "Signal-Strength-Based Cellular Location Using Dynamic Window-Width
and Double-Averaging Algorithm," in 52nd IEEE Vehicular Technology Conference, 2000, pp.
2992-2997.

[14] A. Davison, "Real-Time Simultaneous Localisation and Mapping with a Single Camera," in
Proceedings of the ninth international Conference on Computer Vision ICCV'03, Nice, France, 2003.

[15] Z. Zhang, "A Flexible New Technique for Camera Calibration," Microsoft Research 2nd
December 1998. http://www.research.microsoft.com/~zhang/calib

[16] J. J. Craig, Introduction to Robotics, Mechanics and Control, 2nd ed.: Addison-Wesley, 1986.

[17] Perception of Space and Motion, W. Epstein and S. Rogers, Eds. Handbook of Perception and
Cognition, vol. 5. Academic Press, 1995.

[18] Human and Machine Perception: Information Fusion, V. Cantoni, V. D. Gesu, A. Setti, and
D. Tegolo, Eds. Plenum Press, 1997.

202 BIBLIOGRAPHY

[19] M.J.Griffin, Handbook of Human Vibration: Academic Press, 1990.

[20] G. M. Gauthier, J.-L. Vercher, and J. Blouin, "Integrating Reflexes and Voluntary Behaviours:
Coordination and Adaptation Controls in Man," in Human and Machine Perception: Information
Fusion, V. Cantoni, V. D. Gesu, A. Setti, and D. Tegolo, Eds.: Plenum Press, 1997, pp. 189-
206.

[21] J. E. Cutting and P. M. Vishton, "Perceiving Layout and Knowing Distances: The Integration,
Relative Potency, and Contextual Use of Different Information About Depth," in Perception of
Space and Motion, 2nd ed, W. Epstein and S. Rogers, Eds.: Academic Press, 1995, pp. 70-118.

[22] J. v. d. Horst, R. v. Leeuwen, H. Broers, R. Kleihorst, and P. Jonker, "A Real-Time Stereo
Smartcam, Using Fpga, Simd and Vliw," in 2nd Workshop on Applications of Computer Vision,
Kunibiki Messe, Matsue, Japan, 2006, pp. 1-8.

[23] W. Caarls, P. P. Jonker, and H. Corporaal, "Smartcam: Devices for Embedded Intelligent
Cameras," in 3rd PROGRESS Workshop on Embedded Systems, Utrecht, 2002, pp. 1-4.

[24] NDDS, "Network Data Distribution Service Product Information," Real-Time Innovations.
http://www.esolpartners.com/shared/pdf/NDDS%20Product%20Brief%203.25.05.pdf

[25] J. H. van 't Hag, "Data-Centric to the Max - the Splice Architecture Experience," in 23rd
International Conference on Distributed Computing Systems Workshops (ICDCSW'03), 2003, p. p. 207.

[26] J. Caarls and W. Caarls, "SHARED: SHared And REaltime Data," Delft University of
Technology, Delft 2004.
http://www.qi.tnw.tudelft.nl/~jurjen/documentation/SHARED/index.html

[27] S. F. Persa, "Sensor Fusion in Head Pose Tracking for Augmented Reality," in Quantitative
Imaging Group: Delft University of Technology, 2006.
http://repository.tudelft.nl/file/221160/186834

[28] "Google Earth: Explore, Search and Discover," Google. www.earth.google.com

[29] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," in International
Journal of Computer Vision, 2003, pp. 91-110. http://citeseer.ist.psu.edu/lowe04distinctive.html

[30] D. G. Lowe, "Object Recognition from Local Scale-Invariant Features," in International
Conference on Computer Vision {ICCV}, Corfu, 1999, pp. 1150-1157.
http://citeseer.ist.psu.edu/lowe99object.html

[31] K. Mikolajczyk and C. Schmid, "A Performance Evaluation of Local Descriptors," IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol.
27, pp. 1615-1630, OCTOBER 2005.
http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_pami2004.pd
f

[32] H. Bay, T. Tuytelaars, and L. V. Gool, "Surf: Speeded up Robust Features," in 9th European
Conference on Computer Vision, 2006, pp. 404-417.

[33] J. J. Leonard and H. F. Durrant-Whyte, "Simultaneous Map Building and Localization for an
Autonomous Mobile Robot," in IEEE Int. Workshop on Intelligent Robots and Systems, 1991, pp.
1442-1447.

[34] M. Montemerlo and S. Thrun, Fastslam: A Scalabole Method for the Simultaneous Localisation and
Mapping Problem in Robotics vol. 27: Springer, 2007.

 203

[35] R. C. Smith and P. Cheeseman, "On the Representation and Estimation of Spatial
Uncertainty," The International Journal of Robotics Research, vol. 5, pp. 56-68, 1986.

[36] J. Weng, P. Cohen, and M. Herniou, "Camera Calibration with Distortion Models and
Accuracy Evaluation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp.
965-980, 1992.

[37] G. Vass and T. Perlaki, "Applying and Removing Lens Distortion in Post Production," in The
Second Hungarian Conference on Computer Graphics and Geometry, Budapest, 2003.
http://www.vassg.hu/pdf/vass_gg_2003_lo.pdf

[38] M. T. El-Melegy and A. A. Farag, "Nonmetric Lens Distortion Calibration: Closed-Form
Solutions, Robust Estimation and Model Selection," in Ninth IEEE International Conference on
Computer Vision, 2003, pp. 554-559.

[39] G. Xiao-Shan and T. Jian-Liang, "On the Probability of the Number of Solutions for the
Perspective N Point Problem," Mathematics-Mechanization Research Preprints, vol. 22, pp. 134-
147, 2003.

[40] V. Lepetit and P. Fua, Monocular Model-Based 3d Tracking of Rigid Objects: A Survey vol. 1: now
publishers, 2005.

[41] M. Fischler and R. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography," Communications ACM, vol. 24,
pp. 381-395, 1981.

[42] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision: Cambridge University
Press, 2000.

[43] O. Faugeras, Three-Dimensional Computer Vision: A Geometric Viewpoint: MIT Press, 1993.

[44] R. I. Hartley, "In Defence of the 8-Point Algorithm," in Fifth International Conference on Computer
Vision, Cambridge, MA, USA, 1995, pp. 1064-1070.

[45] M. Pollefeys, "Tutorial on 3d Modeling from Images," 2000.
http://www.cs.unc.edu/~marc/tutorial/

[46] D. W. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear Parameters,"
Journal of the Society for Industrial and Applied Mathematics (JSIAM), vol. 11, pp. 431-441, June
1963.

[47] B. S. Garbow, K. E. Hillstrom, and J. J. More, "Documentation for Minpack Subroutine
Lmdif." vol. 2007, 1980. http://www.math.utah.edu/software/minpack/minpack/lmdif.html

[48] L. Naimark and E. Foxlin, "Circular Data Matrix Fiducial System and Robust Image
Processing for a Wearable Vision-Inertial Self-Tracker," in ISMAR, 2002, pp. 27-36.

[49] J. Caarls, P.P. Jonker, and S. F. Persa, "Sensor Fusion for Augmented Reality," in 1st European
Symposium on Artificial Intelligence, Veldhoven, The Netherlands, 2003, pp. 160-176.

[50] K. Hirokazu and M. Billinghurst, "Augmented Reality Toolkit."
http://www.hitl.washington.edu/artoolkit/

[51] P. P. Jonker, "Morphological Operations in Recursive Neighbourhoods," Pattern Recognition
Letters, vol. 25, pp. 527-541, 2004.
http://www.ph.tn.tudelft.nl/People/albert/papers/PATREC3330Jonker.pdf

204 BIBLIOGRAPHY

[52] I. T. Young, J. J. Gerbrands, and L. J. van Vliet, Fundamentals of Image Processing. Delft: Delft
University of Technology, 1998.

[53] D. Ziou and S. Tabbone, "Edge Detection Techniques - an Overview," International Journal of
Pattern Recognition and Image Analysis, vol. 8, pp. 537-559, 1998.
http://citeseer.ist.psu.edu/ziou97edge.html

[54] V. S. Nalwa, A Guided Tour of Computer Vision: Addison-Wesly Publishing Company, 1993.

[55] V. Torre and T. A. Poggio, "On Edge Detection," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 8, pp. 147-163, Mar 1986.

[56] Zamperoni, "Image Enhancement," in Advances in Imaging and Electron Physics, 1995, pp. 1-76.

[57] L. J. van Vliet and P. W. Verbeek, "Better Geometric Measurements Based on Photometric
Information," in Instrumentation and Measurement Technology Conference (IMTC), 1994, pp. 1357-
1360.

[58] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 8, pp. 679-698, nov. 1986.

[59] F. Devernay, "A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel
Accuracy," Inria, SOPHIA-ANTIPOLIS Cedex RR-2724, 1995.
http://citeseer.ist.psu.edu/devernay95nonmaxima.html

[60] R. Deriche, "Using Canny's Criteria to Derive a Recursive Implemented Optimal Edge
Detector," The International Journal of Computer Vision, vol. 1, pp. 167-187, 1987.

[61] R. Mehrotra and S. Zhan, "A Computational Approach to Zero-Crossing-Based Two
Dimensional Edge Detection," CVGIP: Graphical Models and Image Processing, pp. 58:1-17, 1996.

[62] A. H. a. G. Medioni, "Detection of Intensity Changes with Subpixel Accuracy Using
Laplacian-Gaussian Masks," IEEE Transactions on Pattern Analysis and Machine ntelligence, vol. 8,
pp. 651-664, Sep 1986.

[63] D. Marr and T. Poggio, "A Theory of Human Stereo Vision," Proceedings of the Royal Society of
London B, vol. 204, pp. 301-328, 1979.

[64] L. J. van Vliet, I. T. Young, and A. L. D. Beckers, "A Nonlinear Laplace Operator as Edge
Detector in Noisy Images," Computer Vision, Graphics, and Image Processing (CVGIP), vol. 25, pp.
167-195, 1989.

[65] T. Lindeberg, Scale-Space Theory in Computer Vision. Norwell, MA, USA: Kluwer Academic
Publishers, 1993.

[66] P. Perona and J. Malik, "Scale-Space and Edge Detection Using Anisotropic Diffusion,"
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 12, pp. 629 - 639, July 1990.

[67] J. Weickert, Anisotropic Diffusion in Image Processing. Stuttgart, Germany: Teubner-Verlag, 1998.

[68] I. Serlie, R. Truyen, J. Florie, F. Post, L. v. Vliet, and F. Vos, "Computed Cleansing for Virtual
Colonoscopy Using a Three-Material Transition Model," in Medical Image Computing and
Computer-Assisted Intervention - MICCAI 2003. vol. 2879/2003 Heidelberg: Springer Berlin,
2003, pp. 175-183.

[69] I. T. Young and L. J. van Vliet, "Recursive Implementation of the Gaussian Filter," Signal
Processing, vol. 44, pp. 139-151, 1995.

 205

[70] L. J. van Vliet, I. T. Young, and P. W. Verbeek, "Recursive Gaussian Derivative Filters," in the
14th International Conference on Pattern Recognition, ICPR'98, Brisbane (Australia), 1998, pp. 509-
514.

[71] P.-E. Danielsson, "Rotation-Invariant Linear Operators with Directional Response," in 5th
International Conference on Pattern Recognition, Miami, 1980, pp. 1171-1176.

[72] D. Marr and E. Hildreth, "Theory of Edge Detection," Proceedings of the Royal Society of London
B, vol. 207, pp. 187-217, 1980.

[73] R. M. Haralick, "Digital Step Edges from Zero Crossing of Second Directional Derivatives,"
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, pp. 58-68, 1984.

[74] P. W. Verbeek and L. J. van Vliet, "On the Location Error of Curved Edges in Low-Pass
Filtered 2-D and 3-D Images," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
16, pp. 726-733, July 1994.

[75] V. Berzins, "Accuracy of Laplacian Edge Detectors," Computer Vision, Graphics, and Image
Processing (CVGIP), vol. 27, pp. 195-210, August 1984.

[76] P. R. Beaudet, "Rotationally Invariant Image Operators," in Intl. Joint Conf. on Pattern
Recognition, Kyoto, Japan, 1978, pp. 579-583.

[77] C. G. Harris and M. J. Stevens, "A Combined Corner and Edge Detector," in 4th Alvey Vision
Conference, University of Manchester, 1988, pp. 147-151.

[78] H. P. Moravec, "Visual Mapping by a Robot Rover," in 6th International Joint Conference on
Artificial Intelligence, 1979, pp. 598-600.

[79] K. Rohr, "Localization Properties of Direct Corner Detectors," Journal of Mathematical Imaging
and Vision, vol. 4, pp. 139-150, 1994.

[80] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision: Addison-Wesley, 1992 and 1993.

[81] E. W. Weisstein, "Error Propagation," MathWorld--A Wolfram Web Resource, 1999.
http://mathworld.wolfram.com/ErrorPropagation.html

[82] R. Y. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy 3d Machine Vision
Metrology Using Off-the-Shelf Tv Cameras and Lenses," IEEE Journal of Robotics and
Automation, vol. RA-3, pp. 323-344, August 1987.

[83] J.-Y. Bouguet, "Camera Calibration Toolbox for Matlab®," California Institute of
Technology, 2007. http://www.vision.caltech.edu/bouguetj/calib_doc/

[84] "Kalman Filter," Wikipedia, The Free Encyclopedia.
http://en.wikipedia.org/w/index.php?title=Kalman_filter&oldid=91826746

[85] R. E. Kalman, "A New Approach to Linear Filtering and Predicting Problems," Journal of Basic
Engineering, march 1960.

[86] S. T. Roweis and Z. Ghahramani, "A Unifying Review of Linear Gaussian Models," Neural
Computation, vol. 11, pp. 305-345, 1999.

[87] G. Teschl, "Ordinary Differential Equations and Dynamical Systems," 2007.
http://www.mat.univie.ac.at/~gerald/ftp/book-ode/index.html

206 BIBLIOGRAPHY

[88] E. W. Weisstein, "Ordinary Differential Equation--System with Constant Coefficients.,"
MathWorld--A Wolfram Web Resource., 2007.
http://mathworld.wolfram.com/OrdinaryDifferentialEquationSystemwithConstantCoefficien
ts.html

[89] J. B. Kuipers, Quaternions and Rotation Sequences. Princeton, New Jersey: Princeton University
Press, 1998.

[90] B. P. Ickes, "A New Method for Performing Digital Control System Attitude Computations
Using Quaternions," AIAA Journal of Guidance, Control and Dynamics, vol. 8, pp. 13-17, January
1970.

[91] J. Caarls, "Geometric Algebra with Quaternions," Delft University of Technology 2003.
http://www.ph.tn.tudelft.nl/Publications/phreports

[92] Y. Bar-Shalom, M. Mallick, H. Chen, and R. Washburn, "One-Step Solution for the General
out-of-Sequence-Measurement Problem in Tracking," in IEEE Aerospace, 2002, pp. 1551-
1559.

[93] E. M. Nebot, M. Bozorg, and H. F. Durrant-Whyte, "Architecture for Asynchronous Sensors.
Autonomous Robots," 1999, pp. 147-164.

[94] P. Mookerjee and F. Reifler, "Application of Reduced State Estimation to Multisensor Fusion
with out-of-Sequence Measurements," in IEEE Radar, 2004.

[95] P. J. Lawrence jr and M. P. Berarducci, "Comparison of Federated and Centralized Kalman
Filters with Fault Detection Considerations," in IEEE Position Location and Navigation
Symposium, 1994.

[96] N. A. Carlson, "Federated Square Root Filter for Decentralized Parallel Processors," IEEE
Transactions on Aerospace and Electronic Systems, vol. 26, May 1990.

[97] S. Julier and J. Uhlmann, "New Extension of the Kalman Filter to Nonlinear Systems," in
SPIE, Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL, 1997, pp. 182-193.

[98] J. J. LaViola, Jr., "A Comparison of Unscented and Extended Kalman Filtering for Estimating
Quaternion Motion," in 2003 American Control Conference., 2003, pp. 2435-2440.

[99] A. Tang, J. Zhou, and C. Owen, "Evaluation of Calibration Procedures for Optical See-
through Head-Mounted Displays," in Proceedings of the Second IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR ’03), 2003, pp. 161-168.

[100] C. B. Owen, J. Zhou, A. Tang, and F. Xiao, "Display-Relative Calibration for Optical See-
through Head-Mounted Displays," in International Symposium on Mixed and Augmented Reality,
2004, pp. 70 - 78.

[101] T. Miyoshi and A. Murata, "Chaotic Characteristic in Human Hand Movement," in Proceedings
of the 2000 IEEE International Workshop on Robot and Human Interactive Communication, 2000, pp.
194-199.

 - 207 -

Summary

Pose estimation for mobile devices and augmented reality

In this thesis we introduce the reader to the field of Augmented Reality (AR) and describe
aspects of an AR system. We show the current uses in treatment of phobias, games, sports and
industry. We present the challenges for Optical See-Through Augmented Reality in which the
real world is perceived normally by the user and is augmented with virtual objects by means of
two displays and two half-translucent mirrors. Since the user does not perceive the world
through camera images, as in Video See-Through Augmented Reality, the requirements for
accurate alignment between the real and virtual worlds are more strict.

Based on the design requirements for optical see through augmented reality, a system-
architecture for the full AR system is proposed. A pose (position and orientation) estimation
architecture is introduced, which separates an application that needs an estimate of a pose,
from the sensors that provide partial measurements for this pose. It is a modular architecture
in which modules can publish “magazines” to which other modules can subscribe. A magazine
is a data stream of which issues can be read concurrently by multiple subscribers. The read-out
rate may be lower than the publishing frequency. Each issue of a magazine is a time stamped
data package from a stream, such as an image or measurement.

The core of the work addresses the largest challenge in optical see-through AR: real-time pose
estimation of the user’s eyes by fusing information from various sensors. Image processing
techniques and sensor data fusion filters were developed to provide the most accurate
estimation of the pose of a user’s head. The system is general enough to be used in other less
demanding applications that need an estimate of a pose, such as free roaming automated
vehicles in industrial settings. We explored image processing techniques for determining the
pose of the camera from a single image of a marker. A marker is presented that minimizes the
impact on the environment. Starting from well-known methods to detect edges and corners
we developed our own corner detector that is accurate, precise and robust to noise. We
presented a method to estimate the camera’s pose from four corners, and evaluated the
accuracy in practical experiments.

A Kalman filter is constructed and presented in detail that optimally combines the data from
various sensors with different update rates, delays and accuracies. We also propose a pluggable
Kalman filter set-up that enables sensors to be added and removed easily without changing the
central filter that communicates with the application. This facilitates the separation between
the sensor modules, the central filter and the application.

A prototype AR system was built and evaluated. We present the practical aspect of integrating
the sensors and pose estimation methods into a working augmented reality system. Using a
SCARA robot to move our set-up, we determined practical accuracies for our system. We
showed that one small marker is in general not enough for a full immersive augmented reality
experience. We propose some solutions to increase the accuracy of the system and finally we
show how we made convincing Augmented Reality demonstrations in our standing
cooperation with the AR-lab of the Royal Academy of Arts in The Hague.

 Jurjen CAARLS, Delft, September 2009

 - 209 -

Samenvatting

Pose bepaling voor mobiele apparaten en augmented reality

In dit proefschrift wordt de lezer geïntroduceerd in het veld van Augmented Reality (AR) en
worden de aspecten van een AR-systeem beschreven. We laten het huidige gebruik ervan zien
in spelletjes, sporten, behandeling van fobieën en in de industrie. We laten de uitdagingen voor
Optical See-Through Augmented Reality zien waarbij de echte wereld, die normaal kan
worden waargenomen door een gebruiker, voorzien wordt van virtuele voorwerpen door
middel van twee beeldschermpjes en twee halfdoorlatende spiegels. Omdat de gebruiker de
echte wereld niet waarneemt door middel van camerabeelden, zoals in Video See-Through
Augmented Reality, zijn de eisen voor het nauwkeurig uitlijnen van de echte en virtuele wereld
strenger.

Uitgaande van de ontwerpeisen voor optical see-through augmented reality, wordt er een
voorstel gedaan voor een systeemarchitectuur van een volwaardig AR-systeem. Er wordt een
architectuur voor de pose (positie en oriëntatie) schatting geïntroduceerd die een applicatie,
waarvoor een schatting van de pose nodig is, scheidt van de sensoren die deelmetingen voor
de pose verschaffen. Het is een modulaire architectuur waarin elke module “tijdschriften” kan
uitgeven waar andere modules zich op kunnen abonneren. Een tijdschrift is een datastroom
waarvan de afzonderlijke uitgaven tegelijk door meerdere abonnees (modules) bekeken kunnen
worden. Het lezen van de uitgaven kan in een lager tempo dan de frequentie van uitgifte. Elk
uitgegeven nummer van een tijdschrift is een datapakket uit een datastroom, met een
tijdstempel, bijvoorbeeld een foto of een meting.

De kern van dit werk richt zich op de grootste uitdaging in optical see-through AR: het in
‘real-time’ bepalen van de positie van de ogen van de gebruiker door het combineren van de
metingen van de verschillende sensoren. Er zijn beeldverwerkingtechnieken en sensordata
fusie filters ontwikkeld om de meest accurate schatting van de pose van het hoofd van de
gebruiker te leveren. Het systeem is algemeen genoeg om ook gebruikt te worden in andere,
minder veeleisende applicaties die een pose nodig hebben, zoals vrij rondrijdende
geautomatiseerde voertuigen in industriële omgevingen. We hebben beeldverwerking-
technieken onderzocht om de pose van een camera te bepalen met behulp van een enkel beeld
van een markerpatroon. Deze marker is zo ontworpen dat hij zo min mogelijk invloed heeft
op de omgeving. Beginnend met bekende technieken voor het detecteren van randen en
hoekpunten hebben we een eigen hoekpuntdetector ontwikkeld die nauwkeurig, precies, en
robuust tegen ruis is. Een methode om de pose van de camera te schatten met observaties van
de vier hoekpunten van de marker wordt uitgelegd en de nauwkeurigheid ervan wordt
geëvalueerd in praktische experimenten.

Een Kalman filter dat de metingen van de verschillende sensoren, met verschillende
updatefrequenties, vertragingen en nauwkeurigheden, in optimale zin combineert wordt
geconstrueerd en in detail gepresenteerd., We doen ook een voorstel voor een “plugbare”
Kalman filter set-up die het mogelijk maakt om eenvoudig sensoren toe te voegen en te
verwijderen zonder dat het centrale filter dat met de applicatie communiceert aangepast hoeft
te worden. Dit vergemakkelijkt de scheiding tussen de sensormodules, het centrale filter en de
applicatie.

210 SAMENVATTING

Er is een prototype AR-systeem gebouwd en geëvalueerd. We tonen de praktische aspecten
van de integratie van sensoren en posebepalingmethoden in een werkend Augmented Reality
systeem. Gebruik makend van een SCARA-robot om onze opstelling te verplaatsen, hebben
we de praktische nauwkeurigheid van het systeem bepaald. We hebben laten zien dat een
enkele, kleine marker in combinatie met optical see-through technieken in het algemeen niet
voldoende is om het gevoel te krijgen helemaal ondergedompeld te zijn in Augmented Reality.
We stellen een aantal oplossingen voor om de nauwkeurigheid van het AR-systeem te
verbeteren en we laten zien hoe we overtuigende Augmented Reality demonstraties hebben
gegeven in de lopende samenwerking met het AR-lab van de Koninklijke Academie van
Beeldende Kunsten in Den Haag.

Jurjen CAARLS, Delft, september 2009

 - 211 -

Dankwoord

Bij dezen wil ik iedereen bedanken die direct of indirect heeft bijgedragen aan dit proefschrift.
Allereerst wil ik Pieter Jonker en Inald Lagendijk bedanken voor de kans die ze me hebben
gegeven onderzoek te doen in het uiterst interessante veld van augmented reality. Ik wil Pieter
en ook Lucas van Vliet graag bedanken voor het geduld dat ze hebben gehad deze laatste jaren
waarin ik toch wat moeite had met het schrijven van dit proefschrift, en ook natuurlijk voor
het geven van de nodige feedback om het proefschrift tot stand te laten komen in de huidige
vorm. Ook wil ik Henk Nijmeijer bedanken die me aanspoorde, en de ruimte gaf, om m’n
proefschrift eindelijk eens af te maken.

Ik dank afstudeerder Khoa Do voor de samenwerking bij het bedenken van het pluggable
Kalman filter en bij het doen van experimenten ermee. Ik dank Stelian Persa en Wouter
Pasman voor de samenwerking binnen het Ubicom project in het begin van m’n promotie.

Wim, Guus, zonder jullie was het niet gelukt om m’n experimenten te doen en een mooi
demonstratiesysteem te bouwen. Daarnaast wil ik jullie en Matthijs, Bas, Frank DJ, Robert,
Bram, Martijn, Jev, Jan Willem en alle andere RoboCuppers bedanken voor de leuke tijd
rondom de robotvoetbal wedstrijden in Duitsland, Amerika en Portugal.

Heidi. Waar vind ik weer zo’n gezellige kamergenoot?

Frank, Bernd, Mike, Cris, Kees, Margreet, Klara en Iwo, bedankt voor de ontspanning die het
poolen en de computer- en bordspelletjes me gaven.

Ronald, hartelijk dank voor de komische noot en het aankondigen van koffie en taart zo dat ik
het in de c-vleugel kon horen. Mandy, bedankt voor de gezelligheid en het ‘groepsuitje’ naar de
honkbalwedstrijd. En verder de andere leden van PH/QI, die de koffiekamer tot een gezellige
plek maakten om over zin en onzin te praten.

Pawel, Wim, Marina en Yolande, het was erg prettig om met jullie samen te werken in het AR-
lab. Ik vond het mooi te zien hoe jullie steeds weer nieuwe ideeën voor virtuele werelden
vormgaven en nieuwe interacties bedachten.

Erik, fietsvakantie?

Ook wil ik graag m’n aunty Sue heel erg bedanken voor het helemaal doorlezen en corrigeren
van m’n proefschrift. Zonder haar zat het nog vol taalfouten.

En als laatste wil ik graag m’n moeder Tony, m’n vader Herman en m’n broer Wouter heel erg
bedanken voor hun liefde en eeuwige ondersteuning. In het bijzonder wil ik m’n vader
postuum bedanken voor het kweken van de interesse in techniek en wetenschap. Zonder hem
had ik het niet zover geschopt. Helaas kan hij niet meer bij m’n verdediging zijn, maar na het
bekijken van het concept zei hij: ‘Wat heb ik toch een knappe zoon’. Papa, bedankt!

Jurjen

 - 213 -

Curriculum Vitae

Jurjen Caarls was born in Leiden, the Netherlands on July 29, 1976. In 1995 he obtained his
Atheneum diploma at College Leeuwenhorst in Noordwijkerhout. In the same year, he began
his study in Applied Physics at the Delft University of Technology. After completing an
internship of four months in 2000 at NEC in Japan, he received his M.Sc. (cum laude) degree
in Applied Physics in 2001. The topic of his M.Sc. thesis was on "Fast and Accurate Robot
Vision" for the RoboCup robots of the Dutch Soccer Robot team "Clockwork Orange". He
won the award for best M.Sc. thesis from the Applied Sciences faculty in the year 2001. From
1999 to 2004 he was involved in the Clockwork Orange RoboCup team at the Pattern
Recognition Group (now Quantitative Imaging Group).

At the request of Solutus B.V., Schoonderbeek Elektronica B.V. and a few other companies,
Jurjen developed software as a freelancer for various embedded devices from 1995 to 2008.

Continuing in image processing, he started his PhD study in 2001 on pose estimation with
Prof.dr.ir. P.P. Jonker as supervisor. The application of pose estimation in the field of
augmented reality resulted in a working AR system. In 2006 - 2007 he worked in close
collaboration with artists and designers from the Royal Academy of Arts in The Hague who
established an AR+RFID-lab, aiming at bringing artists, designers and SME in contact with
augmented reality.

In 2007 he started as researcher in the Dynamics and Control Group, Mechanical Engineering
of the Eindhoven University of Technology and he is currently working on robust distributed
control methods for the control of automated warehouses.

