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Chapter 1  
Introduction 

In the past 50 years, the digital computer transformed from research apparatus, via company 
resource and Personal Computer into a household commodity. Strangely enough, we still 
mainly interact with it through keyboard and display. If we were able to interact with it in a 
more natural way, it would enhance the user’s performance. 

Augmented Reality (AR) is an interface that enables computers to relay information to us by 
overlaying a virtual world on top of the real world visible to the user. This interface might be the 
start of a revolution that will drastically transform the way in which we interact with computer 
applications. 

In the broadcast industry, a simple version of AR is used to e.g. show satellite images next to 
the weatherperson. In this technique, called chroma-keying, images of a scene are recorded 
containing a screen of one particular color: the chroma key (mostly blue or green). Regions 
with a color near the chroma-key are replaced by virtual information such as pictures or 
animations (see Figure 1-1). This looks very convincing because when the blue screen is 
partially occluded by a person, the virtual image seems to be behind that person. This method 
of augmented reality is simple because the location of the virtual information is fixed in the 
recorded image. 

   

Figure 1-1 From left to right: A weatherman in front of a blue screen, a pressure map, and the resulting 
augmented output. 

In the movie ‘Who Framed Roger Rabbit’ (Figure 1-2), the real world was augmented with 
animated characters; however, that could not be done in real time. First a scene was shot. 
Thereafter, the animations were added frame by frame using a manual as well as time-
consuming process. In the same movie, we also see Augmented Virtuality when the actor is 
placed in the virtual world of the cartoons. This can also be done by placing the actors in front 
of a big screen while using chroma-keying. Nowadays this is done in many movies, although 
the animations are now generated by computer. 
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A more recent technique is seen on e.g. Dutch television during soccer games (Figure 1-3). 
Virtual boards of advertisements are projected on the sides of the goal and even when the 
camera moves, they seem to be fixed into the real world. This type of AR is already more 
complicated since the exact position and orientation of the camera must be known to be able 
to overlay the virtual images on the recorded images.  

          

Figure 1-2 Two frames of the movie ‘Who Framed Roger Rabbit?’. Left: The world augmented with a 
virtual Roger. Right: The ‘toon’ virtual world augmented with the private eye Eddie Valiant.  

 

 

Figure 1-3 Example of Real-time-AR. Virtual advertising boards are projected at the sides of the goal. 
The camera’s pan, tilt and zoom information is extracted from the images and used to 
correctly display the virtual environment. (ADVision from Orad: www.orad.tv) 

Super-imposing virtual objects like advertising boards or logos onto live broadcasts (live video 
insertion) becomes standard practice and is frequently used for many popular sports such as 
American football and soccer. All applications mentioned above require the user to look at a 
screen somewhere in the environment, which is called “Through the window” AR. 
Furthermore, the user passively views the video and hence cannot interact with it. 
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The aim of this thesis is to build a system to make the virtual world immersive, i.e. present all 
around the user. We envision that in the future people can wear spectacles with integrated displays 
that project images through the eye’s lens onto the retina. These spectacles provide a stereoscopic 
overlay of virtual objects that will appear to really exist in the real world: a visual walkman, the 
equivalent of the audio walkman. 

1.1 Mixed Reality 

Augmented Reality can be placed on a range of what Paul Milgram and Fumio Kishino [1] call 
the Reality-Virtuality continuum. Figure 1-4 shows that on the far ends, either the real world is 
perceived (Reality) or the virtual world is perceived (Virtual Reality). From right to left, more 
of the real environment is added to the virtual world, such as real photos of people 
superimposed on virtual characters, or as simple as live camera footage inside a 2D or 3D 
scene. From left to right, one can think of displaying a list of friends logged in on MSN in a 
corner of one’s eye or displaying a 3D virtual dance instructor that shows you how to move. 
We are interested in immersive types of mixed reality. 

 

Figure 1-4 Milgram and Kishino’s Reality-Virtuality Continuum [1] 

Immersive types of mixed reality currently imply that a headset should be worn and the pose of this 
headset should be measured using a head pose tracker. The head pose is needed to guarantee 
correspondence between the real and virtual environment. 

Virtual Reality 

Using a VR headset, the user can only see a virtual world. Currently, most VR headsets are 
used to watch movies as part of an extension of a normal screen. This means that only a single 
display within the headset is needed. This display is then projected at a fixed distance, two 
meters for example. We are interested in a headset with 3D display characteristics. 

A headset with one display per eye enables the user to see objects at multiple depths. The view 
changes when the user moves. 
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A practical example of the use of a stereo headset is in treatment of people with fear of 
heights. By standing and walking on a virtual balcony, they slowly get used to the height 
(Figure 1-5). However, in this application the movement of the user has to be tracked only in a 
small environment for which many existing tracking methods suffice. This application only 
displays a virtual environment, controlled by the head pose of the user. When the user needs 
to cover larger distances, while possibly moving around in less controlled environments 
containing obstacles such as tables or chairs, perceiving the real world becomes just as 
necessary as perceiving the virtual environment. Furthermore, the system has to be mobile, 
which discards many existing head pose trackers. 

  

Figure 1-5 Left: Common Virtual Reality setup within a small area. Right: View from a virtual balcony 
to overcome fear of heights. (Virtual Reality and Phobias project [2]) 

Video See-Through AR 

With this technique, one or two cameras record the real world. Images of a virtual world are 
digitally mixed with these recordings. The output is sent to a regular VR helmet. When the 
recorded images are also used to determine the pose of the user, aligning the virtual world with 
the real (recorded) world is very easy as the overlay is done on the same image from which the 
pose is determined. In other words, there is no delay between the recorded and virtual world. 
However, the augmented output will always be delayed as a whole, and as the visual clues to 
the brain do not match the clues from the vestibular system, this often leads to motion 
sickness. A positive aspect is that, because both real and virtual images are digital, one can 
choose how to mix the two worlds, so the virtual objects can appear opaque as well as semi-
transparent. On the other hand, the resolution of the camera images is generally not very high 
(compared to the eye), so a lot of detail from the real world is lost. 

An example of a non-immersive video see-through Augmented Reality application is the 
‘Invisible Train Game’, where a PDA with a large screen and a camera is used as a window 
into the virtual world (see Figure 1-6). An immersive example is a historic tour at the Pompeii 
site where animated characters tell the story of Pompeii while you walk around the site with 
them (See Figure 1-7). 
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Figure 1-7 Immersive video see-through application. Output of the lifePLUS project [4] with animated 
characters at the historical site of Pompeii. This system uses camera images to track the 
position of the user and requires off-line learning of the environment as no special objects 
are added to the scene for tracking (markerless tracking). 

Optical See-Through AR 

In optical see-through Augmented Reality, the virtual world is optically mixed with the real 
world inside the helmet using a semi-transparent mirror. The effect is that the real world can 
now be appreciated in all its detail; moreover, the real-world image can still be used to safely 
maneuver through the environment. Unlike video see-through AR, the real world is observed 
without delay due to the absence of video-mixing. Note that the real world will appear darker, 
similar to wearing sunglasses. To our knowledge, there are no commercial AR headsets 
available that can truly add the virtual world to the real world without this effect. One of the 
main problems with mixing the world optically is that the delay in the generated images of the 
virtual world results in an incorrect alignment after mixing, which is difficult to correct. Some 
users may experience headaches as a result of this; therefore, we have to use methods that 
minimize delay and jitter. Although we can look with a camera mounted on the user’s head at 

 

Figure 1-6 Invisible Train Game [3]: Using visual markers, the PDA’s are able to overlay an 
animated virtual train running over the real tracks seen in the background. 



6 CHAPTER 1. INTRODUCTION 

  

images of the real world as the user sees it, we cannot exactly look through his eyes, causing a 
parallax dependent on the viewing distance. Similarly, we cannot fixate the camera onto the 
user’s skull, which causes these images to vibrate from the user’s viewpoint. Hence, it is 
difficult to get a correct and stable alignment between the real world and the virtual world, 
even when the user is standing still. Another weakness is a direct result of optical mixing, 
causing virtual objects to appear semi-transparent. 

Figure 1-8 shows a statue in front of the aula of the Delft University of Technology. We are 
interested in wearable Augmented Reality for both indoor as well as outdoor applications. 

Convincing Augmented Reality for both indoor as well as outdoor applications requires wearable 
solutions using optical see-through techniques. 

 

Figure 1-8 Augmentation of the aula at the Delft University of Technology with a statue. This was 
done for the UBICOM project [5] 

1.2 Challenges for Mobile Optical See-Through AR 

As applications for immersive mixed reality (mobile optical see-through Augmented Reality), 
one can think of quickly troubleshooting and repairing a part of a complex machine without 
having to browse through repair manuals. Using an AR system, the user is presented with an 
animation of e.g. the disassemble actions he has to follow to get access to a damaged part. The 
Augmented Reality system will project these animations on the user’s eyes such that a 3D 
virtual scene is perfectly aligned with the real world. Because the animation seems to really 
operate on the parts of the machine, the user is likely to make fewer errors. The system may 
even provide means to verify that the right parts are removed. For instance, this would be 
valuable in the airplane industry. Preventing erroneous actions in engine repair is of extreme 
importance. 

Figure 1-9 shows an artist impression of a project by BMW AG for engine maintenance [6]. 
This application requires the AR system to cope with unpredictable movements of the user, 
which is one of the main problems of immersive AR. When the system is not fast or accurate 
enough to correctly sense the user’s movement, the virtual images will be jittering or lagging.  
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Figure 1-9 An AR system proposed by BMW for an innovative repair manual [7]. 
Left: The real engine, superimposed with a virtual screwdriver and an arrow that shows 
the direction in which the user must turn. Right: impression of future AR glasses. 

Another challenge of designing an optical see-through AR system is to make the AR system 
mobile, thus enabling a user to walk around, not limiting his movements to a small area. When 
the mobility is increased, the system can support maintenance in large machine rooms which 
can be found on ships. There are basically two solutions possible and combinations of these. 
One can either use the “natural landmarks” from the scene itself or the landmarks that are 
placed with the aim to ease navigation. Humans use visual markers for path finding as well, in 
the form of road signs, street names and house numbers throughout a city and numbers and 
names next to doors in office buildings. Using “natural” features, which also include image 
features of man-made objects such as contours of buildings or rooms is more cumbersome. 
The system must somehow store a more extensive visual map of the scenes that the user 
encounters to recognize the whereabouts of the user. Although the use of markers is easier, it 
requires an infrastructure to place and maintain these markers. Using markers has a high 
impact on the environment. Therefore, using markers is more likely to be effective indoors in 
office buildings or industrial environments than outdoors. The aim should be to do it with as 
few markers as possible. Note that a combination of markers (artificial landmarks) and visual 
clues from the scene (“natural” landmarks) can be used as well. Figure 1-10 shows a setup with 
many markers of different sizes. 

Our objective is to mature the primary technology of Augmented Reality such that 
applications like engine repair can be used in consumer products. The hardware components 
to enable immersive Augmented Reality are already available. A (rather big and expensive) 
headset can be bought that fits around one’s head and can display computer output. This is 
not good enough for the consumer market, which favors cheap, lightweight and small 
products. However, our estimate is that the enabling hardware will become cheaper and 
smaller when immersive AR applications become readily available. Consequently, our design 
will focus on the software that is needed for the different uses of AR and hence the various 
methods to detect the user’s movement. To achieve acceptance in a consumer market, the 
design has to be flexible, easy to configure, easy to use and of course the virtual environment 
should be aligned with the real environment accurately enough to be convincing. We will try to 
meet these requirements. 
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Figure 1-10 Example of AR in industry. CyliCon by Siemens Corporate Research augments the real 
world with a layout of industrial pipes [8] 

The methods to determine the user’s head pose (3D position and 3D orientation) in a VR/AR 
system can also be used for tracking any other device’s position. One can think of mobile 
phones, PDAs, and Automated Guided Vehicles (AGVs)  that have to find their way from A 
to B, i.e. vacuum cleaner robots inside a house, container carriers in harbors, or transporters of 
harvested products such as tomatoes in greenhouses. Our design should be flexible enough to 
allow multiple applications. 

We aim at a consumer market such as the market for “serious gamers”, but because of the price of 
the constituting hardware components, our first aim is an industrial market. Our head-pose 
tracking system should be available for other applications that require pose tracking, such as in 
Automated Guided Vehicles. 

Although our aim is to develop a demonstrator system for mobile immersive Augmented 
Reality with the objective to enable commercial exploitation in a consumer market, the 
following table lists a number of problems that were encountered. If the problem was 
investigated in this thesis, a reference to the corresponding chapter is given. 

Problem (Possible) solutions 

Equipment is very expensive. Create a market, so production in volume 
makes the product cheaper. 

Equipment is heavy and big. Small and lightweight products sell better, so 
companies will try to miniaturize the 
hardware. 



1.2. CHALLENGES FOR MOBILE OPTICAL SEE-THROUGH AR 9 

  

Problem (Possible) solutions 

The world in an Optical See-Through 
(OST) setup appears darker. 

Currently unavoidable due to the needed 
nearly-transparent mirror. 

Virtual objects in an OST setup are 
transparent. 

Try to block parts of the world that are 
occluded by virtual objects with an extra 
LCD panel [9]. 

In general, pose tracking systems require 
too many changes in the environment to be 
commercially attractive for AR. 

Reduce changes needed in the environment. 
Passively use all information that is already 
available: camera images, GPS, earth 
magnetic field etc. (see Chapter 2). 

Errors in pose estimation are easily noticed 
in an OST setup. 

Combine multiple sensors to get the best of 
all sensors. Minimize noise, systematic errors 
and delays in the combined output (see 
Chapter 4). 

User movements are limited in 
predictability. 

Kalman filters can accurately predict the 
motion with fast and accurate sensors. (see 
Chapter 4). 

The displayed virtual objects must not 
noticeably lag behind. 

Predict the pose at a future time of display. 
Use a fast graphics card for a high update-rate 
(see Chapters 2 and 4). 

Current markerless pose estimation 
algorithms using image processing are too 
CPU expensive for mobile applications, or 
not accurate enough for OST AR. 

Develop a fast algorithm that can detect 
markers accurately at a distance, so that only a 
few markers are needed (see Chapter 3). 
Allow a pose estimation server as a back-end, 
or use special hardware (see Chapter 2). 

The light intensity in the environment can 
change drastically when the user moves. 

Use image-processing techniques that are 
insensitive to changing lighting conditions 
(see Chapter 3) and automatically adapt 
hardware variables such as the shutter-time. 

Fast movements cause motion blur in 
camera images making image processing 
difficult. 

Minimize shutter-time or correct for motion 
blur. 

A different pose estimation setup is needed 
for different applications. Even other 
combinations of sensors might be needed. 

Design a flexible pose estimation system that 
can be reconfigured on the fly, depending on 
the accuracy needed and the available sensors 
(see Chapters 2 and 4). 
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Problem (Possible) solutions 

Calibration of the sensors and the headset 
is very time consuming and difficult. 

Solutions found in the literature 
(see Chapter 5). 

The eye position of every user is different, 
so another calibration is needed. 

Solutions found in the literature 
(see Chapter 5). 

 

1.3 The setup of this thesis 

This thesis describes the research performed to come to a design of an immersive wearable 
Augmented Reality system for both indoor and outdoor applications using an optical see-
through headset and a head-pose tracker. The proper design of this tracker is the focus of our 
research. This head pose tracker is based on a setup with a camera whose data is fused with 
data from an inertia tracker. 

Although the final aim is to design an AR headset for a consumer market like the market for 
“serious gamers”, the price of the hardware components is still too high. The current design 
therefore aims at an industrial market in which the AR headset is used by a professional. Our 
head-pose tracking system should also be ready for other applications such as controlling the 
path of Automated Guided Vehicles. Finally, we envision that the availability of cheap and 
accurate “visual walkmans” might largely change the practice of today’s computing. 

In this thesis we tackle many issues that block the way to a proper design of such a system. We 
developed a working prototype for our mobile AR system. It requires little adaptation of the 
environment and can calculate the position of the helmet as good as possible with the 
information that is acquired from the camera image and sensed from the motion of a user. 
Our system is modular, meaning that sensors can be plugged in and out during run-time. Our 
system is flexible in the sense that the pose tracker can be used for multiple tasks, including 
AR. 

In Chapter 2 we elaborate on the requirements and design decisions for an Augmented Reality 
demonstrator. We come to an overall design and present specific requirements for the camera 
sub-system as well as for the inertia tracking and data-fusion tasks. 

In Chapter 3 we review and make choices on the various image processing techniques to 
extract features from the camera images and describe how a pose can be calculated. These 
methods are extensively tested by real-world experiments and simulations. 

Chapter 4 presents our Kalman filter setup that is used to fuse the data from our image based 
pose tracker with an inertia tracker to obtain both an accurate and timely estimation of the 
pose as well as the onset of a plug-and-play setup. 

Finally Chapter 5 presents the integration of our filters and sensors in a practical setup. 
Experiments were done to validate our filters and the entire system. We also show that our 
augmented reality setup is actively being used in the field. The chapter concludes with a 
discussion, conclusion and future perspectives of the work presented. 
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Chapter 2  
Requirements and System Architecture 

In this chapter, we address the issues that played a role in the AR system design. Starting from 
a basic design we discuss the design specifications from a user perspective. Concentrating on 
real-time pose estimation we then present the various sensor systems and hardware solutions 
that were considered. Inherent differences in update rates, accuracy and precision have led to a 
multi-sensor approach. Next, we derive detailed specifications for the camera pose estimation, 
the inertia tracking system, and the sensor fusion module. 

2.1 Design requirements 

A typical AR system setup is presented in Figure 2-1. It depicts that the world is observed 
through sensors from which the pose of the headset’s displays is calculated. This pose is used 
to render images of a virtual world on the headset’s displays. A semi-transparent mirror then 
optically mixes the rendered images with the view of the real world. Although our focus is on 
pose estimation algorithms, in order for a prototype system to work we have to investigate the 
sensors too. 

 

Figure 2-1 General architecture of an AR system. The pose of the user in the real world is calculated 
using the sensor data. This pose is used as viewpoint for the rendering of the virtual world 
on the headset’s displays. The headset optically combines the views from both worlds. The 
user moves with the headset and sensors around in the world and sees the combined views. 

As stated in the Introduction, we want to create a mobile, immersive, augmented reality system 
that is flexible and easy to use. These design requirements come from a more general desire to 
make Augmented Reality a commercially viable technology. One can split these requirements 
into a user experience part and an economical part. Many requirements give rise to the 
associated technological requirements and the problems already listed in Chapter 1. 
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User Friendliness 

First of all, a mobile system must be comfortable to use. Mobility means that the user can walk 
around freely, which dictates that all or most equipment must be wearable. In this project we 
mostly neglected this part and made a mobile backpack for the computing equipment we used 
(laptop and batteries for camera, inertia sensors and headset), and a helmet on which the 
sensors and the headset are attached. A technological challenge is how to get all the necessary 
processing power into a backpack, which in our case boils down to making fast, “mean and 
lean” algorithms for image processing and data fusion. 

The user should not be restricted too much in his/her movements. This means that the system 
should keep tracking the user’s pose even when some sensors temporarily fail, or at least 
provide pose estimations that are less accurate during temporary sensor failure. Hence, 
graceful degradation is a design criterion. 

The system should be easy to configure, in other words, the system has to be flexible in the 
type and brand of the sensors to be used. “Hot pluggable” sensors should be easily 
added/removed by the user - or automatically enabled/disabled - , depending on the accuracy 
needed. In a sense, pose estimation algorithms using image processing can be seen as virtual 
sensors; they provide measurements on a higher abstraction level. Then, by developing 
algorithms that cover a number of values for accuracy, processing time, etc., one of these 
“virtual sensors” can be chosen to serve the application at hand. The challenge is to design a 
modular sensor system that provides accurate pose estimates as optimal as possible under the 
given circumstances. 

The virtual images have to be combined with the real world in a way that preserves the user’s 
normal view and at the same time shows the virtual objects as a natural extension of the real 
world. This means different virtual images for each eye (stereo); moreover, these images 
should be correctly registered with the real word. This last requirement sets lower limits on the 
performance indicators of the pose estimation algorithm; mainly accuracy and delay, as well as 
on the display system that has to have a high refresh-rate (i.e. frame-rate).  

The following design considerations are important for a commercial augmented reality system 
but are beyond the scope of this thesis. It must be easy for different users to use the system, 
which means that the user specific variables such as virtual eye positions should be easy to 
adjust to the real world. Another aspect of the system setup, the calibration of the system, 
should also be made fairly easy or preferably automatic. In the first place, the changes to be 
made to the environment should cost little time. As we propose to make a system that is based 
on man-made markers a.k.a. fiducials that are placed on precisely measured positions in the 
world, this fiducial placement should be easy to incorporate in the system. The technological 
challenge is to automatically add unknown fiducials to the system, and estimate its position in 
the world with minimal user- interaction. This is a form of automatic map building, which is a 
research question by itself. Another important challenge for the design of the headset would 
be to correctly focus (optically) the different virtual objects at different depths; the current 
projection methods focus the complete virtual world at a fixed distance. 
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Wearability, Context Awareness 

To serve the consumer market, the system should be wearable, cheap, lightweight and small. 
Although this is currently not quite possible, if we look at the development of PDAs and MP3 
players that became economical in the past few years, one can see that there is hope. We 
estimate that in the coming years, most parts of the system will become faster, cheaper, smaller 
and more energy friendly. In this thesis, we are mainly concerned about the computing power 
needed for our algorithms. A general rule is that the more efficient the algorithms, the less 
computing power is needed, resulting in cheaper hardware and longer battery life. 

The system must be usable in any environment where it can adapt to and display content that 
belongs to that environment, a.k.a. context awareness. Consequently, the system must be easy 
to setup in different environments, both indoors and outdoors. For indoor operation, it is 
quite easy to make the system depend on man made beacons. In office buildings route 
planning infrastructure for man is quiet standard. We use floor, corridor and room numbers, 
as well as names and signs that make route planning easy. 

For outdoor operation, the system is more likely to be based on information that is already 
available in outdoor scenes as it is less easy to create a routing infrastructure by placing special 
objects everywhere in the world. An outdoor system is more likely to be used for applications 
with a broader view, such as the virtual positioning of buildings in a scene by architects, or 
enabling maintenance personnel to “see” utility infrastructure under the pavement such as 
cables, water pipes and sewers. Obviously, when the positioning system has a high benefit for 
the world it operates in, special objects that act as beacons can always be placed. If we do not 
allow special changes to the environment to be made, there are only a few options that we 
have for sensors to estimate 3D position and orientation: the earth’s magnetic field, inertia 
sensors, (D)GPS signals and a camera that detects natural landmarks. The latter are special 
“known” points in images of the world that can be tracked in time. This boils down to 
obtaining an accurate 3D position from GPS signals and 3D position and orientation from a 
camera. Although obtaining a 6D pose (position and orientation) from camera images without 
knowledge of the world is an interesting and active research topic, these techniques alone are 
not accurate enough to correctly register a virtual world with the real world in real-time: they 
are usually too computationally intensive and their pose estimates have unknown rotation and 
translation with respect to the real world. Therefore, extra and accurate knowledge about the 
world is needed. So we relax our requirement to: as little change to the environment as 
possible, meaning that we can place extra objects in the world that actively send positioning 
information (for instance infra-red or acoustic beacons), or passive objects like bus stop signs 
at lantern posts, with a printed known pattern. We do not consider systems in which the 
infrastructure determines the pose, such as cameras at lantern posts. We also do not consider 
new big infrastructures of active objects, but we do consider infrastructures that are already 
available and can be used for the application at hand (like existing GPS satellites).  
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Generic design 

From a technological point of view, we need accurate and fast algorithms to estimate a pose, 
but we want to use the same architecture in various, also less demanding, applications with a 
variety of sensor configurations. This means that it must be easy to add or remove sensors 
physically, connect other sensors with other characteristics while the software should 
automatically adapt to the new situation. Thus, we propose an architecture that separates the 
application part from the sensor part; and hence these parts can be developed separately. This 
makes it easy to change sensors and/or change the application. 

Demonstrators 

At this point in time we are only interested in proof of concept and the design of a 
demonstrator that can be used by professionals such as architects, industrial designers, artists 
and gamers to test this new technology. Therefore, we are currently not interested in which 
(possibly dedicated) hardware to use and we want to be able to use a variety of sensors. We 
use an AR headset and a “serious gamer” laptop. So far, this is sufficient to fulfill our current 
demands for mobile AR thereby compromising cost and weight. However, as mentioned in 
Chapter 1, we expect that those aspects will be met in the future through the inherent 
dynamics of a commercial market. In this chapter, we present the software setup and the 
hardware that we used in our demonstrator. 

2.2 Sensors for pose estimation 

A variety of sensor types and measurement principles exist that can be used to realize our AR 
system. All come with different accuracies, prices and measurement ranges. The following – 
non-exhaustive – list shows which sensor types we might use, as well as their properties and 
their applicability to our demonstrator. 

Inertia sensors 

Inertia sensors sense accelerations and rotations [10]. This means that they can follow changes 
in position. Inertia sensors are quite fast, thereby permitting the tracking of fast motions. Due 
to inaccuracies, mainly with inexpensive sensors, they can only track reliably for a short period. 
Therefore, another, usually slower, positioning system with a lower drift is needed to correct 
for the accumulating errors of the inertia sensors. Obviously, the more accuracy and the lower 
the drift, the more a sensor costs. For a very accurate system, one usually needs big and costly 
devices. This might be acceptable for aviation, but not for a wearable system. The alternative 
cheap sensors enable tracking for a short time only, because depending on the quality, the 
error will grow above 10 or even 100 meters within 60 seconds. This occurs mainly because of 
errors in orientation, which results in an incorrect correction for the earth’s gravitational pull. 
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Magnetic field sensors 

Magnetic field sensors – or magnetometers - sense the earth’s magnetic field to determine the 
3D orientation. This field, however, is very weak and can be distorted by metallic objects 
nearby. Although the magnetic field can be used indoors to measure orientation, the 
systematic error can be large depending on the environment. We measured deviations of 50° 
near office tables. In addition, the magnetic field orientation is dependent on the position on 
the earth, so first an estimate of the position is needed. For small regions of operation, e.g. 
inside The Netherlands, this deviation may be considered static and can easily be corrected for. 

(D)GPS 

The Global Positioning System consists of 24 satellites each in a separate orbit around the 
earth. A receiver can determine its 3D position by using the information of at least four 
satellites. In Differential GPS (DGPS), another GPS receiver in the neighborhood broadcasts 
the difference between its GPS position and its exact position. This difference is applied to the 
calculated position of the DGPS receiver, which results in an accuracy of about 1-3 meters 
whereas the normal error is about 15 meters. Finally, methods that use the phase information 
of the GPS carrier can achieve accuracies of 1 cm, but the cost for such a GPS receiver is 
more than $5.000. The two greatest disadvantages are that one cannot use (D)GPS indoors 
and that it gives the position only, not the orientation. This means that other sensors, like 
magnetometers combined with accelerometers, are needed to obtain the orientation. 

Network access points 

In case a dense network of access points is available, such as from Bluetooth, WIFI, GSM, 
GPRS or UMTS, the AR device knows in which (overlapping) cell it is currently roaming. For 
the current GSM network, a cell ranges from 100 meters to 1 kilometer. WIFI network cells 
cover about 100 meters. Bluetooth cells will be around 10 meters, but unlike 
GSM/GPRS/UMTS and WIFI, a global Bluetooth network does not exist. Note that RFID 
technology covers even a smaller range of less than 1 meter and is hence not very useful for 
our purpose. 

From a single WIFI cell one can get a qualitative position. For instance, if there is an access 
point in every room of a building the strongest access point is probably the access point of 
that room. If the signal of more than one access point is received and the positions of those 
access points are known, the position and possibly pose of the AR device can be determined 
by triangulation using the signal strengths, possibly combined with a look-up table calibrated 
for the entire building [11]. Note that making use of a proprietary network for pose estimation 
means in fact a new infrastructure that also has to be maintained especially for this purpose. 

The GSM/GPRS/UMTS networks have a global network of base stations, so an inaccurate 
position is always available using the cells. Methods exist to get an accuracy of about 50 meters 
in urban environments by measuring the propagation time, signal strength or direction of the 
signals of different base stations [12, 13]. With multiple antennas, one could calculate the 
direction of the signal, and thus determine the orientation of the device as well. The signal can 
also be used indoors, but sometimes the signal will become too weak. A strong point is that 
communication and localization can be done via the same network. Using the 
GSM/GPRS/UMTS signals to get a position estimate within a cell is under research and not 
commercially available as to our current knowledge 
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Beacons 

GSM base stations – or beacons - can be used for localization since they are already there. 
Other beacons transmitting ultrasound, radio or infrared light can also be used. The principles 
for device localization is the same as with network access points, but a difference is that 
beacon networks will be used for localization only and not for communication. Furthermore, a 
beacon network can be made much denser, so the cells get smaller, and localization accuracy 
can be increased to millimeter level. Setting up a network of beacons could be expensive, and 
will probably be used only indoors, or at special locations, at bus stops for instance. Like in 
case of a GSM, the position could be broadcast by the beacon – the cell method – or the 
device could calculate its position from the beacon’s signal. Apart from the infrastructure that 
is needed, reflection of signals could be a problem in dense networks. This means that 
methods need to be developed to suppress or ignore the reflections to avoid errors. 

Visual Markers 

A completely different technique is to use visual information acquired by digital video 
cameras. Visual markers are cheap to construct and easily mounted on walls, doors and other 
objects. We define a marker as a physical object, having a set of features such as corners or 
edges that enable recognition of the marker and provide positional information. If the marker 
is unique, then the detection of the marker itself restricts the possible camera positions already 
– the cell method again. If one or more known points are present on the marker, then using 
the projections of these points on the image restricts the possible poses of the camera even 
more. From four coplanar points, the full 6D pose can be calculated with respect to the 
marker with an accuracy depending on the distance to the marker and on the distance between 
the points. In case more markers are seen at the same time or shortly after each other, the pose 
estimations can be combined in a more precise estimation. The markers are not restricted to 
man-made patterns; they include pictures, doorposts, lamps or all that is already available. 
However, finding natural markers is difficult as sets of features have to be found that enable 
later recognition from various positions and under various lighting conditions and provide the 
required position information. They also should be unique enough to avoid confusion. 
Detecting and recognizing natural markers is complicated and time consuming, while artificial 
markers can be designed for accuracy and ease of detection. 

Visual Models 

A visual model exploits the complete set of detected markers and features. Markers could be 
outdoor advertising boards or indoor navigation signs, and features could include contours of 
buildings, tables or cabinets. The model has to specify what a camera at a certain pose can see. 
In case of outdoor use, the model probably includes windows and contours of buildings. By 
detecting features – like transitions from building to air – and matching them to the model, the 
camera’s pose can be tracked. When the camera pose is determined, other objects in view can 
be added to the model online to make tracking of the position more robust. This is called 
Simultaneous Localization And Mapping, or SLAM [14]. The biggest challenges are building 
the database, selecting good properties of the features so that they can be detected in various 
circumstances and coping with the various lighting conditions that are experienced outdoors. 
Most research focuses on one specific application of visual pose tracking such as tracking 
inside of an office building. 
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This method of localization could be very accurate, but is computationally expensive. If one 
uses a PDA, it might not be able to do all the computations by itself, so another remote 
computer is needed. An option is to do some calculations in the PDA, send the result to a 
backbone where fast, dedicated computers calculate the pose and send the result back to the 
PDA. This moves the problem of computing time to the backbone, but requires a robust and 
high-bandwidth network link. 

Pictures 

Images can also be used to assist the user in self-localization. If orientation is important and 
the PDA only knows its position through (D)GPS, the PDA could present key images to the 
user. If the user turns the PDA to the corresponding direction, the PDA could display an 
arrow to show the way in which to walk. This type of visual information could be used 
indoors and outdoors, but there has to be a big database of images. Possibly a method can be 
found to generate the images from existing models of buildings, city plans or even satellite 
images. 

2.3 Hardware 

For our augmented reality application, we selected those sensors that would enable fast 
tracking of the 6D head-pose. This means that inertia sensors were selected because of their 
high measurement rate and good accuracy at short intervals, while absolute position and 
orientation sensors were selected to correct for the drift of the inertia sensors. For mobile 
Augmented Reality, the minimum would be a camera with artificial markers for determining 
absolute position and orientation. 3D gyroscopes and 3D accelerometers will be used to 
provide pose information in between camera updates. 

MTx sensor cube 

The MTx inertia cube from Xsens provides a 3D 
rotational velocity using gyroscopes (+-2° RMS), 
a 3D acceleration using accelerometers (+-10mg) 
and a 3D orientation using magnetic field sensors 
(<1°). For human motion, the cut-off frequency 
of the sensors is set to 40 Hz. We use it with an 
update rate of 100Hz for all the sensors. 

 

Figure 2-2 MTx sensor cube from Xsens 
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Gamin (D)GPS unit 

The Gamin GPS unit with a differential GPS add-
on provides us, without the add-on, with an 
accuracy of about 15 meters. With add-on and a 
paid subscription to the differential signal, the 
accuracy is increased to about 5 meters. In 
differential mode, another receiver with precisely 
known position in the neighborhood provides 
corrections to the calculated position from the GPS 
signals. This only works if the atmospheric 
disturbances are the same for both receivers, so the 
accuracy is best close to the correcting receiver. 
Theoretically, an accuracy of around 1 meter is 
possible. At our site, Delft, the nearest public 
transmitter for corrections was near Alkmaar at 100 
km distance. 

 

Figure 2-3 Gamin GPS module 

 

Jai Camera 

The JAI CV-S3300 color camera with a resolution 
of 720 x 288 pixels in grayscale has a wide-angle 

lens with a 90° opening angle. This lens suffers 
from large second-order and forth-order 
distortions, which should be corrected for. We 
calibrate the camera using an adapted Zhang 
algorithm [15]. Images are grabbed at 25 Hz. The 
camera is able to provide images of 720x480 pixels, 
but because of the PAL analogue output signal, two 
half-frames recorded at different times are 
combined in one full frame. Thus, the odd lines lag 
behind in time with respect to the even lines, which 
results in severely distorted edges. 

 

 

Figure 2-4 Jai CV-S3300 color camera 
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Dica SmartCam 

The Philips DICA-221 Smart Camera equipped 
with an onboard 180 MHz processor and a 
1280x1024 grey-value CMOS sensor provides us 
with a better accuracy than the JAI. The camera 
can be put in full-frame shutter mode, which 
removes the distorted straight lines problem. We 
use a similar lens as on the JAI, so the spherical 
distortions are also present. Currently we do not 
use on-board processing, but in the future such a 
SmartCam will be able to do all the image 
processing on-board. The frame-rate can be set to 
15Hz or 25Hz at full resolution. 

 

Figure 2-5 Philips DICA-221 

 

Dell Inspiron 9400 laptop 

To calculate an accurate pose at a frame rate of 15 
Hz using high-resolution images is very CPU 
intensive. We opted for an available laptop solution 
with a high-end CPU for the image processing and 
a high end GPU to generate 3D stereo images 
(using the DVI and VGA connector). We used a 
Dell Inspiron 9400 with the specs: 

• Core 2 Duo at 2 GHz. 

• NVidia 7900 GS GO graphics card. 

• VGA+DVI connectors. 

• Wireless LAN for communication. 

This laptop is also very big, having a 17-inch 
display. A smaller laptop could be chosen, but only 
for debugging purposes we chose the 1920x1200 
display so that the 1280x1024 image fits entirely on 
the screen. 

 

 

Figure 2-6 Dell Inspiron 9400 desktop 
replacement 
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Visette45 SXGA See-Through headset 

We use a Visette45 SXGA stereo optical see-
through headset from the Dutch company 
Cybermind Interactive Nederland. It has two high-
resolution displays (1280 x 1024) that can display 
images at 60 frames per second. This augmented 
reality version combines the virtual and real world 
optically using a semi-transparent mirror. The 
headset fits entirely around the eyes, thereby 
blocking light that comes from the side. This 
enhances the feeling of emersion. The horizontal 
field of view of 36° is much less than our eyes 
(±110° single eye, ±160° two eyes), but that is 
normal with currently available augmented reality 
hardware. 

Figure 2-7 Visette45 (non see-through) 

 

Backpack 

To fit all equipment we used the metal frame of a 
backpack baby carrier. At the bottom of the frame, 
we attached a metal cabinet that holds the batteries 
and cables; the laptop was secured with Velcro 
strips.  

Figure 2-8 Backpack with all the 
equipment 

 

2.4 Requirements imposed by AR application and sensors 

The most stringent requirement for optical see-through Augmented Reality is that the virtual 
image and the real-world image must be aligned in such a way that the resulting scene seems 
natural to the user and the user is not affected by motion sickness or headaches when wearing 
the AR helmet. This alignment is a spatio-temporal alignment, i.e. the virtual image may not 
lag behind the real world image when head-movements are made. 
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Reference frames 

Note that our system is built up from a number of subsystems that are not always firmly fixed 
to each other, e.g. the headset is only loosely fixed to the user’s head. Moreover, each time the 
user puts the headset on, the spatial relation between head and headset is different and needs 
calibration. So we need to identify for each subsystem a so-called reference frame, denoted by 
the Ψ symbol. The relation between those frames is either measured in real-time as part of the 
application or obtained at system set up through calibration, as described in section 5.2. We 
use orthonormal coordinate systems, i.e. each frame has its origin at a specified position and 
three orthogonal axes define the orientation of the frame. A subscript character indicates the 
type of frame, e.g., the camera reference frame is ΨC. A second sub index denotes a specific 
instance of a moving reference frame: ΨC,t.  

We use the following reference frames (see Figure 2-9): 

Ψw The world frame. This frame is fixed to the earth’s surface with a static
origin. It has the z-axis pointing in the direction of the gravity vector, 
while the x-axis is pointing to the earth’s North Pole (true north). This is 
a local inertial frame, which means that Newton’s Laws apply only 
locally. I.e. we neglect the earth’s rotational velocity (Coriolis Forces) and
its position dependent gravitational force. 

ΨP The 3D pattern frame of a marker. This frame is attached to the physical 
sheet of a marker on which a pattern is printed. The z-axis is pointing 
outward, i.e. pointing towards the observer on the pattern side. 

ΨC The 3D camera frame. This frame has the optical axis of the camera’s 
lens as its z-axis. 

ΨI The 3D inertia tracker frame. This frame is the frame used by the third 
party inertia tracker device. 

Ψb The headset body frame. It is attached to the body of the headset for 
which we need the pose. For convenience, we let this coincide with the 
inertia tracker frame. 

Ψn The navigation frame. It has the origin in common with the body frame, 
but the orientation is the same as the world frame. This means the 
orientation stays fixed while moving. 

ΨlL, ΨrL The frames of the left and right LCD in the headset. 

Ψle,re The frames of the left and right eye of the user. 

Of these reference frames, the pattern frame and the world frame are statically related. The 
navigation frame is partly related to the headset and partly to the world. The other frames are 
all fixed with respect to the headset body frame, except for the eye frames. The eye frames are 
only fixed with respect to the headset if the headset is mounted firmly on the user’s head. 
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A general rotation within a reference frame can be described by three consecutive rotations 
around at least two different axes of the reference frame. There are 12 different ways in which 
the rotations can be applied (see appendix B of [16]), but we use the following order: first a 
rotation around the x-axis (roll), then a rotation around the y-axis (pitch) and finally a rotation 
around the z-axis (yaw). In avionics the yaw, which is a rotation around the world’s z-axis 
(pointing in the direction of the gravity vector), is also known as heading. 

 

Eye frame

Camera frame

Inertial tracker/

body frame

World frame

Pattern frame

LCD screen

  

Figure 2-9:  Schematic picture of a number of coordinate systems used in our application. 

6D state vectors 

For the AR application, we need to accurately know the full 6D pose of the AR helmet Ψb, i.e. 
headset with attached camera and inertia tracker, with respect to the world Ψw. Ψb is 
represented by a state-vector with the components: 

• 3D helmet-position vector (measured with the camera looking at a marker) 

• 3D helmet-velocity vector (not measured) 

• 3D helmet-acceleration (measured with accelerometers) 

• 3D helmet-orientation (measured with the camera and magnetometers) 

• 3D helmet-rotational speed (measured with the gyroscopes) 

• 3D helmet-rotational acceleration (not measured) 

Note that the 3D translational velocity and rotational acceleration are not measured. For now, 
we assume that we can generate the missing measurements from the other measurements if we 
need them for our application. The 18 states (6 dimensions x 3 axes) are loosely coupled, as 
orientation (3D x 3) and position (3D x 3) are grossly independent. However, the estimation 
of the acceleration is depending on the orientation since the acceleration due to movements 
and the acceleration due to the gravitational pull of the earth cannot be distinguished. The 
measured acceleration must therefore be corrected for the gravity vector using the orientation. 
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Data fusion 

In Chapter 3 we will elaborate on the camera measurement system and in Chapter 4 we 
describe the fusion of the camera measurements with the measurements of the inertia tracker. 
The fusion of data is performed with a Kalman filter approach, a technique widely used in 
state estimation problems such as pose estimation in aviation and robotics. The filter has three 
main features: 

First of all, the filter is able to compensate for incomplete data, meaning that if the state we 
need is not observable using the measurements alone, the filter is able to incorporate the missing 
data such that the state is globally observable, i.e. over time, using measurements from multiple 
sensors, the full state can be estimated. 

Secondly, the filter should be able to cope with unsynchronized measurements. The 
measurements of our sensors can arrive at any time as shown in Figure 2-10 indicated by circle 
1. The figure also shows that the inertia tracking system is fast (about 10ms.) with respect to 
the camera measurement system, which involves sending an image from the camera to a 
computer and processing the image thereafter. The resulting delay can be as large as 100 ms. 
Image-transfer is shown in light grey and image-processing is shown in dark grey. If we 
incorporate the measurements into the data fusion immediately, as shown in Figure 2-10, we 
have the best pose estimate at the point in time directly after the fusion step. However, in our 
augmented reality application the virtual object rendering is synchronized with the update-rate 
of the displays; this estimate is not used immediately but some time later, as circle 2 shows. As 
rendering takes time as well, the position of the headset at the time of displaying – the right 
side of the rectangle – should already be known at the start of rendering – the left side. 
Concluding, the fusion filter should be able to extrapolate the pose estimates into the future, 
i.e. to the time of the rendering process, as accurately as possible. 

rendering

Inertia meas.

Fusion steps

1

2

Camera meas.

 

Figure 2-10 Time lines for different stages in an AR application. Rectangles indicate begin and end of 
operations. For sensors, begin is the time of measurement and end is the time the 
measurement is available. Data transfers are light-gray, and calculations (e.g. image 
processing) dark-gray. 
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Finally, filtering the measurements can be used to improve the accuracy of noisy 
measurements. Moreover, if we estimate or know that a particular motion consists of a 
constant velocity, we can use this information in a motion model that we can apply, e.g., we 
can fit a straight line through noisy, absolute position measurements as a function of time to 
obtain a more accurate estimate of the position and velocity.  

Gaze stabilization in the human visual system 

In order to know which variables we need in the globally observable state and what their range 
is, we need to review the parameters of the dynamic system formed by human head, eyes and 
vestibular and oculo-motor system [17-19]. These parameters may then guide us in the choices 
to be made for the camera system as well as the fusion process and parameters of the Kalman 
filter. 

One of the requirements of an Augmented Reality application is that the virtual world is 
recognized as a natural extension of the real world. Ideally, this means that a human should 
not be able distinguish a virtual object from a real object. In terms of pose accuracy this means 
that a human eye should perceive a virtual object as stable. For instance, a virtual cube in 
overlay with an identical cube on a table at rest should remain exactly in overlay, at all time. In 
rest and under good lighting conditions, the human eye has a visual acuity of 0.7 arc minutes 
per line pair. If two lines are closer to each other than that, the human eye cannot distinguish 
them anymore. When the eye is moving, the image on the retina will not be stable, and the 
visual acuity will go down. Note that the eye can move due to voluntary and involuntary 
movements of the head as well as due to involuntary movements of the eye. Peak head 
rotation can be up to 800°/s [20]. The human image processing system is believed to give 
information on pose and velocity of objects in the image only, so no acceleration information 
can be distinguished. The acceleration information is provided by the vestibular system, which 
does not respond to constant velocity and does not detect accelerations below 0.1°. The 
following methods are used by the human body to stabilize the gaze, i.e. getting or keeping a 
point of interest in the image on the fovea, which itself is about 2°. [20]: 

Smooth-pursuit system. When the head is still, man can follow, with the eyes only, a moving 
object that moves up to 30°/s. When the object moves faster, the eye will start to make short 
jumps, called saccades, and the image of the object will be blurry. The smooth pursuit system 
only uses image processing, and the latency varies around 80-150ms. 

Saccade system. When the movement is too irregular, the smooth pursuit system fails. With 
sinusoidal movements, the eyes can predict the nodes towards which saccades are made. Note 
that humans cannot suppress saccades to sudden “attention drawing” motions of objects in 
the image, i.e. not caused by auto-motion. If simultaneously two or more of such motions are 
detected, the eyes will make saccades towards the average pose, after which a decision is made 
which motion has the highest priority. The eye saccades last 20-200 milliseconds with speeds 
up to 800°/s. Saccades cannot be suppressed. Even in the absence of attention drawing 
motions, the eye will make saccades every now and then. 

The visuo-vestibula-ocular-system controls the eyes to fix the gaze onto moving objects when we 
move around. It uses the Vestibula-Ocular-Reflex as basis: When the vestibular system senses a 
rotational acceleration, the eyes start to rotate within 20ms in the opposite direction as a reflex 
making sure the object does not move from the retina. Achieved rotational eye speeds and 
accelerations are 300°/s and 5000°/s2.  
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The Visuo-Vestibular-Reaction can modify this reflex as shown in Figure 2-11. When attention is 
drawn by an object that for instance pops up 20° from the optical axis of the eye, the 
Vestibular Ocular Reflex combined with the Visuo-Vestibular-Reaction takes care of fixing 
that object on the optical axis. After a reaction time of about 130 ms, the head starts to rotate 
accelerating with 3000°/s2 to a rotational speed of 150°/s and the eyes make a 120 ms saccade 
in the direction of the object. The smooth pursuit system with an acceleration of 180°/s2 and a 
rotational speed of 30°/s takes care of the counter rotation to compensate the last part of the 
head rotation. The total opto-kinetic system works within the range of 0.05 to 1 Hz with a 
maximum velocity of about 150°/s. 
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Figure 2-11 Fixing - by both head and eye rotation - the fovea on a virtual target that shifts 
instantaneously 20° from the optical axis of the eye. (derived from [20]) 

For our AR application we conclude: 

• (In)voluntary head movements can occur with speeds up to 800°/s, but the human 
gaze is not controlled. 

• Triggered by optical attention drawing mechanisms, the human visuo-vestibula-
ocular-system controls the gaze with a latency of about 150ms within the range of 
0.05 to 1Hz with a maximum head rotational velocity of about 150°/s.  Note that 
with such a speed, the user makes saccades with his eyes to get a “head start”. 

• Dwelling with eyes (followed by the head) over a scene, without saccades, the 
maximum head velocity is that of the smooth pursuit system, i.e. 30°/sec. 
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Accuracy and latency of the Head Mounted Display 

If we reason from the point of view of the current head mounted display hardware, we 
observe that for an eye with a visual acuity of 0.7 arc minute (about 0.01°) looking through a 
head-mounted display at 10 cm distance with an opening angle of 36 x 27° (our Visette 45), we 
actually need a resolution of about 3086 x 2057 pixels. 

However, as our HMD has “only” 1280 x 1024 pixels the maximum accuracy we can obtain is 
one pixel of our display, which translates to about 1.7 arc minute (roughly 0.03°) or 0.5 mm at 
1 meter distance of the eye. Therefore, the user at rest will always perceive static misalignment. 

Dynamically, we can present virtual objects on our HMD at a rate of the 60 Hz. Assume 
instantaneous head pose information from the pose measuring system. If we assume head 
movements to compensate for the smooth pursuit we obtain a misalignment lag of 1/60s * 
30°/s = 0.5°. If we assume head motions due to the visuo-vestibula-ocular-control system that 
reacts on attention drawing, we obtain a temporary misalignment lag due to head movements 
of 1/60 * 150°/s = 2.5°. Figure 2-11 drafts the virtual target object reset every 30 ms. due to a 
fast perfect measurement of the head movement and headset delay. As the fovea is about 2°, 
probably the eye will make saccades back and forth to keep the object tracked and maybe the 
head-speed is controlled on the fly. However, the human visual system has a lag of about 
120ms, so user studies must show the facts. All in all, with this headset the user will inevitably 
notice dynamic misalignment due to head motion. 

Reversely, the extra dynamic misalignment due to the current headset cannot be noticed, 
provided our pose measurement system is fast and accurate enough, if we rotate our head with 
less then about 0.03 * 60 = 1.8°/s. 

So a target for our pose estimation system is to be at least as good as the head mounted displays, i.e., 
a statically misalignment of less then 0.03°, a dynamical misalignment of less then 0.5° when 
smoothly pursuing an object and a dynamical misalignment of less then 2.5° when an event in the 
image draws the attention. 

Accurate perception of augmented space and motion 

The human visual system is very versatile and it uses many cues to analyze a scene. In [21], the 
human visual space is parted into a human’s personal space, action space and vista space. See 
Figure 2-12. The personal space is about 1.5 meters around a human; grossly the reach of his 
arms. The action space is about 15 meters; grossly the reach of his voice. The vista space is 
beyond that and is limited by the reach of the eye. The perception of space and motion differs 
in those areas. The personal space is dominated by vergence and accommodation of the eyes, 
and they are tightly coupled. The AR headset, however, has a fixed focus. User studies have to 
make clear if this is annoying for the user. 
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Figure 2-12 Depth cues in the human visual spaces, adapted from [21]. 

The rendering system should be able to cope with occlusions. Imagine a virtual butterfly 
circling around a pillar. For such a static object the occlusion can be solved by modeling the 
pillar in a separate layer of the VR modeling software while not displaying this pillar on the 
headset. For a dynamic object, like a butterfly circling around a human walking through the 
scene,  real-time stereo vision by means of image processing [22] must be used to detect the 
objects in the scene. This is beyond the scope of this thesis. 

To adequately see depth from stereo within the virtual scene, the headset must be suited with 
two independent screens and the pose of the pose measurement system must be transformed 
to a pose for each screen individually. This again asks for a calibration procedure that is also 
user dependent. 

Motion stereo of a moving virtual object can be perceived by the user; however, speeds and 
acceleration of virtual objects should be limited to the accuracy and update rate of the headset. 

Height in the image, relative size and relative density is taken care of by the perspective 
projection of the VR modeling software. 

Objects near the horizon are blurred, more bluish and show less saturation and contrast due to 
the scattering of light in the air (aerial perspective). Those aspects need to be modeled using 
the VR software. However, the magnitudes of these effects depend on how clear the sky is. 
That could be measured by the vision system. This is beyond the scope of this thesis. 

In addition, shadows make a virtual scene realistic. For that, the direction and intensity of the 
light must be measured, e.g. by the vision system. This is beyond the scope of this thesis as 
well. 
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2.5 System architecture 

Our aim was to design a generic system architecture that is apt for different applications and 
can cope with various types of sensors. This leads to a modular architecture, meaning that 
each function such as sensing, computing and rendering resides in its own module. Moreover, 
sensors should be easily attached or detached, preferably hot-pluggable, so each sensor needs 
to have its own module. Figure 2-13 shows the basic architecture with its modules and the 
data communication between the modules. 
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Figure 2-13 Basic architecture of the Augmented Reality system. As sensors such as the MT9 
inertia tracker can be attached and detached, they should reside in separate modules. 
The pose estimation module combines the raw readings into a pose, which is used by 
different application modules that interact with the user. 

Requirements imposed by hot-pluggable sensors 

Our design requirement to be able to attach and detach sensors without “hanging” the 
application itself, not only changes the performance, but also puts extra constraints onto the 
architecture. 

In order to accurately estimate the pose, the pose estimation module also needs to estimate 
sensor specific parameters such as a dynamic offset or bias. It will be clear that the most 
accurate estimations are obtained when all parameters are estimated using all available sensor 
data. However, this also means that the influence of an error in one specific parameter on all 
the other parameters should be known, whereas those parameters can be anything, including 
specific parameters from other sensors. As it is not possible for a sensor manufacturer to 
specify all those influences, we restrict a certain parameter’s influence to the pose, its time-
derivatives, and any other parameter of the same sensor. This decouples the sensors at the cost 
of some knowledge and accuracy. Figure 2-14 shows this. 
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Figure 2-14 In order to handle hot-pluggable sensors, the pose estimation is decomposed into a module 
for each sensor that estimates the specific states of that sensor, and a generic pose estimation 
module that only estimates the pose and its derivatives. The generic pose estimator can only 
obtain data from the sensors through its interfaces with the sensor state estimation modules. 

Data communication requirements between modules 

The data communication between the modules of Figure 2-13 requires a high throughput and 
a low latency. They can be implemented in various ways. If all modules are contained in the 
same executable program, the communication can go through subroutine calls. When a 
module has its own executable program or when the module is running on another computer 
a communications library needs to be used. As in the future the modules must be able to run 
on different platforms, i.e. the image processing on a smart camera [23], the communications 
library solution has our preference. We investigated different inter-process and inter-computer 
communications standards (ndds [24], splice [25]) but for our purpose they are too inefficient 
or too difficult to use. Hence, we developed a data communication library SHARED (SHaring 
Architecture for REaltime Data [26]) that perfectly suits real-time image and data processing. 

SHARED uses a subscriber/publisher concept in analogy with magazines. A publisher publishes 
issues, or messages, in a shared memory. Subscribers will be notified of new issues and they can read 
the content. Readers can always read the content of previous issues. Upon creation of a 
magazine, one can specify how many back issues should be maintained. Each issue has a 
timestamp and a number, so a reading module can always verify that the issue being read is the 
correct one. Readers can read the issues directly from the shared memory without locking, 
making it a very fast procedure. When issues are posted, a copy of the contents is put onto the 
shared memory.  

For big issues (for instance raw camera images) this takes too much time and another method 
can be used: scratchpads. A scratchpad is a collection of pages. Each page can be requested for 
reading and writing, with direct access to the data. This allows image-processing modules to 
change images in-place, thereby removing expensive data copying steps. A regular magazine 
can then be used to notify other modules to the state of the pages. 
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To enable transparent operations between computers, a separate module was made: the courier. 
This courier module makes use of the standard SHARED library, and continuously monitors 
changes in available magazines and the number of subscribers and publishers for each 
magazine. 

Couriers on different computers communicate with each other via the network to find out if 
some module on another computer is interested in a magazine published on its own computer. 
If so, the courier subscribes to that magazine and sends every issue over the network to the 
other courier. The receiving courier becomes a publisher and posts the received issues. This 
method makes inter-computer communication transparent when magazines are used. Note 
that scratchpads are never sent over the network, because working directly on the data is not 
possible then. 

In summary, the library has the following properties: 

• It is easy to use. 

• It has a minimal overhead. 

• It has a direct data access mode: large data structures (e.g. images) can be written or 
read in-place. 

• It is fast: thousands of messages / second are possible. 

• It has a transparent handling of inter-computer communication, e.g. allowing a sensor 
module to run on the base- or a remote-computer without changes to the module. 

• A separate program is only needed for inter-computer communications (courier). 

By way of example, Figure 2-15 shows a software architecture using this communication 
method to implement the Augmented Reality system of Figure 2-14 using two computers. 
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Figure 2-15 Software architecture with two computers using the SHARED data communication library. 
In the SHARED rectangle, the published magazines sensor data and 6d_pose as well as the 
scratchpad images are shown. 
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Note that because scratchpads can only be used locally, we implemented the camera pose 
estimation as a separate module on the computer that grabs the camera images. The result is 
transported by the couriers to the other computer and fused with the data from the other 
sensor modules. The result, the generic 6D pose including derivatives, is again transported by 
the couriers to the computer that renders the images for the headset. 

This software neatly resides on the same computer that processes the images, allowing raw 
camera images to be fused with virtual images e.g. for debugging and calibration purposes. 

In our current demonstrator, all hardware and software modules are located on the same 
laptop equipped with two processor cores. These cores share the same memory and thus the 
courier is not needed for pose estimation. To show other people what a user sees on his 
headset, another 3D viewer can be started on another computer that subscribes to the 6D 
pose magazine and displays the output on a screen or an external beamer. Additionally, not 
shown in the figure, the camera images can be displayed on that other computer by using a 
small module that subscribes to the grabber’s scratchpad, compresses images and publishes 
them in JPEG format in a regular magazine. 

2.6 Conclusion 

Augmented Reality (AR) is a visual user interface that enables computers to relay information 
to the user by overlaying a virtual world on top of the real visible world. We envision that in 
the future people can wear spectacles with integrated displays that project images through the 
eye’s lens onto the retina, which provide a stereoscopic overlay of virtual objects that will 
appear to really exist in the real world: i.e. a visual walkman, the equivalent of the audio 
walkman. 

Immersive types of mixed reality imply that a headset should be worn and the pose of this 
headset should be measured using a head pose tracker. The head pose is needed to guarantee 
correspondence between the real and the virtual environment. A headset with one display per 
eye enables the user to see objects at multiple depths. Convincing Augmented Reality for both 
indoor as well as outdoor applications requires wearable solutions using optical see-through 
techniques. 

We aim at a consumer market, firstly the market for “serious gamers”, but because of the price 
of the constituting hardware components, our first aim is the industrial / professional market. 
Our system should be generic enough for other applications that require pose tracking, such as 
in Automated Guided Vehicles. 

In our aim to develop a demonstrator system for mobile immersive Augmented Reality with 
the objective to enable commercial exploitation in a consumer market we encountered a 
number of challenges, listed in the following table: 

• The equipment is for now expensive, heavy and big. 

• The world in an Optical See-Through (OST) setup appears slightly darker and, in 
current commercial headsets, the virtual objects are transparent. 

• Active pose tracking, e.g. using camera’s or radio beacons, for a non confined space, 
e.g. outdoor or in buildings, requires too many changes in the environment to be 
commercially attractive for consumer based AR. 
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• The pose estimation on a head mounted tracking set-up must have no noticeable 
jitter or systematic error, and a very high update rate. 

• User movements are unknown in advance. The estimated pose will never be perfect, 
but employing prediction algorithms and fast sensors can make the errors acceptable. 

• Current markerless pose estimation algorithms (e.g. based on natural features) using 
image processing are still too CPU expensive for mobile AR applications or not accurate 
enough but will become possible in the near future. 

• The light intensity in the environment can change drastically when the user moves, 
giving camera based tracking systems a hard time. 

• Fast movements cause motion blur in camera images making image processing 
difficult. 

• Different pose estimation set-ups are needed for different applications. Even other 
combinations of sensors might be needed. 

• Calibration of the sensors and headset is time consuming and cumbersome. 

• The eye position per user is different, so a per user calibration is needed. 

We have set requirements for the overall augmented reality system. The system must be 
comfortable to wear, easy to use, easy to setup, and it has to be usable indoors as well as 
outdoors. Furthermore, the virtual objects should convincingly appear as part of the real 
world. 

Our research focus lies in the field of pose estimation and image processing, so in designing a 
demonstrator we used commercially available hardware. The Visette45 is one of the few 
available optical see through headsets that provide a stereoscopic  display with a high 
resolution. To make the system easy to use and easy to setup, we opted to use a camera and 
image processing techniques to determine the head-pose from a passive, printed marker. The 
widely used MTx inertia sensor was chosen to provide acceleration and rotational velocity 
information, and a fast Dell XPS laptop was used to run all the software including the 
rendering of the virtual world. 

We specified a modular software design to allow the usage of many different sensors, 
depending on the application at hand. The communication between the modules had to be 
fast as to not hinder real-time operations, so a fast message passing library design using shared 
memory was presented. The messages should be time-stamped to be able to compensate for 
delays. 

The AR system requirements combined with the hardware that we used led to the 
technological requirements of our AR set-up and the head tracker in general. As the limiting 
factor for perfect alignment is dominated by the Head Mounted Display (36° x 27°, 1280 x 
1024, 60Hz), the target for our pose tracker is to be at least as good as the HMD, i.e., a 
statically misalignment < 0.03°, a dynamical misalignment < 0.5° when smoothly pursuing an 
object and a dynamical misalignment < 2.5° when an event in the image draws the attention, 
saccades are made and the head turns fast. 



2.6. CONCLUSION 33 

  

In Chapter 3 we investigate what accuracy in camera-based pose estimation can be achieved 
using an easy to print single marker. The design of the marker and the image processing 
techniques to provide the most accurate estimate of the pose, under real-time operation, is 
presented. 

In Chapter 4 we present our design and implementation of a Kalman filter to obtain the most 
accurate estimate of the pose using the measurements from all sensors in our demonstrator. 
We will also present the onset of the plug-and-play setup as designed in this chapter. 

Finally Chapter 5 presents the integration of our filters and sensors in a practical setup. 
Experiments are presented that test the accuracy of the entire system against the requirements 
set in this chapter. 
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Chapter 3  
Image based pose tracking 

In the previous chapter, we set the target specification for the pose accuracy of the virtual 
world to be at least as good as the head mounted display. We distinguish three scenarios, each 
with its own misalignment: a statically misalignment of less then 0.03°, a dynamical 
misalignment when smoothly pursuing an object of less then 0.5°, and a dynamical 
misalignment of less then 2.5° when another event in the image draws the attention. This 
angular accuracy is measured as the angle between a ray from the virtual object to the real eye’s 
pupil position and a ray from the virtual object to the estimated eye’s pupil position, as 
depicted in Figure 3-1. The figure shows the target angular accuracy targetα  as well as the 

associated maximum position error 
maxp∆  of the estimate. We model 

maxp∆  as a sphere in 3D, 

although the real permissible error is given in the figure by the area within the two lines that 
kiss the grey circle. Hence, the maximum permissible position error increases with the distance 
to the virtual object. 

 

Figure 3-1 Maximum permissible error (grey circle) of the position estimate of eye’s pupil position 

(black dot), such that the virtual object is seen within a maximum angular error of targetα . 

With a virtual object at a distance of one meter to the pupil, the target position accuracies are 
given in Table 3-1. 

Table 3-1 Position accuracy needed for a virtual object at 1 meter distance  
from the eye for our target angular accuracies. 

Situation targetα (degrees) 
maxp∆ (cm) 

No movement 0.03 0.05 

Smoothly looking around 0.5 0.9 

Head movement due to attention shift 2.5 4.3 
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In this chapter, we will present image-processing solutions for camera pose measurement that 
satisfy these target pose accuracies as much as possible. Camera images provide a tremendous 
amount of information about the world. Ideally, the location of the camera can be found just 
by looking at the surroundings, just as humans do. However, using natural landmarks poses a 
few drawbacks. In an earlier stage of this work Persa [27] proposed for outdoor augmented 
reality to use natural landmarks. His proposal requires matching the edges from the camera 
image with the wire-frames from buildings in a CAD/GIS database. Setting up such an 
infrastructure of wire-frames of buildings is a huge effort, not mentioning weather and seasons 
that can change a scene considerably. However, as Google-Earth [28] already shows, 
eventually those databases will emerge and this technique will prove to be viable. 

Today’s research on auto-motion tracking using natural landmarks involves the use of scale 
and affine invariant features - like SIFT [29, 30] and derivates GLOH [31] or SURF [32] - and 
algorithms such as SLAM [33-35]. With SIFT features, a once observed object or scene can be 
recognized under different poses and conditions. In SLAM, a metric map of the environment 
is gradually built up, e.g. by an autonomous vehicle using, for example, the SIFT technique. 
The drawback of those methods for augmented reality is that the optimal features to describe 
an object or scene are chosen by the algorithm itself. Only after those features are known can 
they be used for that object to calibrate the absolute distance to the camera, and for the virtual 
objects to provide an origin for the virtual scene. Furthermore, SLAM by itself – without at 
least one known distance - can only construct a map up to a uniform scale factor due to the 
projection on a 2D camera sensor. 

Note that autonomous vehicles can measure their own movements by odometry, enabling 
them to auto-calibrate distances as well as the unknown scale factor. In those cases, SLAM can 
be used to estimate the pose of the vehicle. 

Man made markers contain man made features with known accuracy and ID. They are better 
apt to setup an augmented reality infrastructure quickly. If the camera loses sight of a marker 
for a short period, the inertia tracker can fill in the pose for a few seconds. For larger periods 
of tracking loss, SIFT features can be used to keep on using camera tracking, as at a previous 
point in time the known marker was seen in an image in combination with several natural 
features. Frame to frame camera tracking can hence be accomplished using natural features, 
until a man made marker is seen again and the inevitably build-up error is reduced to the pose 
error of the markers themselves. Although it is our intention to incorporate natural landmarks 
in the future, this thesis will focus on camera tracking with man made features, combined with 
inertial information. 

In the remainder of this chapter, we will present all the steps needed to calculate the pose of 
the camera using a single marker, ending with measurements made to determine the resulting 
error in the estimated pose. 

3.1 Optical model 

As often done, we also transform pixel coordinates such that a simple pinhole camera model 
can be used. The model consists of a projection point C, the origin of the camera coordinate 
system, and a plane U, which we call the undistorted image plane, on which the scene is 
imaged (Figure 3-2).  
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Figure 3-2 The pinhole model for a camera. The point P is imaged on a retinal  

plane ℜ (the sensor plane) at distance f from the projection centre C. 

By definition, the focal distance to our undistorted image plane is one. The projection of a 3D 
point P in the real world can be found as the intersection point of the line connecting the 
projection centre C and the point P with the undistorted image plane. In the following 
calculations, we use a non-capital letter to denote coordinates, with superscripts to denote the 
coordinate system. The coordinates of point P in the camera coordinate system are written as 

Cp
�

. The relation between the 3D coordinates Cp
�

 and 2D coordinates Up
�

 is given by: 

 /        /
U C C U C C

x x z y y z
p p p p p p= =  (3.1) 

In reality, we use a standard lens with a very high opening angle of 90°, which results in severe 
barrel distortion in our camera images. We tried several lens models, including radial distortion 
and decentering distortion [15, 36-38] models of up to 8 parameters. However, our lens was 
more accurately modeled by a reciprocal model than the usual model found in the literature. 
This reciprocal model only needs the first three even terms of a 6th order radial distortion: 
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The usual model can be obtained by a Tayler expansion, but the resulting polynomial should 
be of a much higher degree for the same accuracy. The coordinate system D denotes the 
distorted image plane. This distorted image plane can be seen as a scaled version of the real 

sensor plane ℜ, scaled with the focal distance f. In reality, the centre of the camera’s pixel 
array will not lie on the optical axis. It is even possible that the pixels are not placed in a 
rectangular grid. A popular model of the pixel array includes the inter-pixel distances su and sv, 
a skew parameter ssk and the position of the optical axis in pixel coordinates (uoffset,voffset). As a 
translation is present, it is more convenient to perform the calculations in homogenous 
coordinates. The homogeneous coordinates are written in capitals: 
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To use a model with a normalized focal distance 1f ≜ , we have to incorporate the real focal 

distance into the scaling factors: 
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Using the homogeneous coordinates in the distorted image plane and the intrinsic camera 

parameter matrix A, we can calculate the pixel coordinates Pp
�

 by: 
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To be able to use the pinhole model for our pose estimation algorithms, we actually need to 
reverse the steps above to calculate the undistorted image plane coordinates from the pixel 
coordinates. The inverse of (3.5) is simple, but the inverse of the distortion model (3.2) cannot 
be determined analytically. However, when it is rewritten in the form: 
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1 2 3
( ) (1 ) 0

d
r r k r k r k r rϕ = − + + + =  (3.6) 

The root of φ, within the image’s interval, is the solution ru we are looking for. The root is 

found iteratively with the Newton method with D

dr p=
�

 as initial guess. Usually five steps are 

enough to converge. 

3.2 Pose estimation 

To estimate the 6D pose of the camera, the relation between 3D world points and their 2D 
projections on the undistorted image plane is needed. Under perspective projection, this 
relation is given by: 
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P is a 4x3 projection matrix, K a 3x3 homogeneous version of the camera internal parameter 
matrix A, R the rotation of the camera frame within the world, and t the translation of the 
camera with respect to the world’s origin. The scale factor s can be shown to be pz

C for the 
relation to hold. That means that this scale factor is dependent on the coordinates of point P 
as well as the projection matrix P, which prevents the matrix P from being estimated directly 
using linear algebra. If P is scaled by a factor, the relation still holds, so only 11 of the 12 
elements are independent, since one scale factor can be chosen arbitrarily. However, for the 
matrix R to be a rotation matrix, it should be orthonormal, providing an additional, non-linear, 
constraint. 
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In our case, the matrix A is estimated offline, so only the 6D camera-pose is unknown. For 
every measured image point of a known world point we have two measurements, which gives 
two constraints on equation (3.7). The problem of finding the 6D pose from n point 
correspondences is known as the perspective n point (PnP) problem [39-41]. 

With three known points (P3P) the pose can be determined, but up to four solutions remain. 
With four or five known points in general positions, two solutions exist, but when the points 
are coplanar (and not more than two collinear) there is one unique solution. With six or more 
points in general positions there is always a unique solution, except for the obvious case that 
the configuration of points has symmetry – for instance when all points lie on a circle. 

The solution to equation (3.7) can be found by using the Direct Linear Transform [42, 43]. As 
we have a calibrated camera, we do not have to use the full DLT method, which solves for a 
general P matrix. We further simplify the estimation by requiring all points to lie on a plane 
[15]. 

Without loss of generality, we introduce a marker coordinate system 
MΨ  and use it in place of the 

world coordinate system, meaning that we estimate the camera-pose in marker coordinates. By 
definition, all marker points in the marker coordinate system have their z-axis value equal to 
zero since our markers are flat. We assume the marker has at least four known, co-planar, well-
placed points, so a unique solution to the camera pose exists. When we also exchange the pixel 
coordinates for undistorted image coordinates, equation (3.7) can be rewritten as: 
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This formula can be simplified by the fact that we defined 0M

z
p ≜ . When we remove the 

z-coordinate from formula (3.8) we obtain: 
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In which r1 and r2 are the first two columns of R and P’M denotes the homogeneous marker 
coordinates of point P without its z-coordinate. This can be rewritten as: 
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and reordered to: 
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in which 'MTP  is the transpose of 'MP . Note that x is a vector containing the nine parameters 
of the matrix H. The matrix L can be extended downwards for all measured points, and the 
solution for x is found using singular value decomposition (SVD) as the right singular vector 
of L, associated with the smallest singular value. Note that this value should be zero, but will 
not be zero due to noise in the measurement. To get L numerically well conditioned, data 
normalization has to be used [44]. H can be reconstructed directly from x, up to a scale factor, 
s in eq.(3.9). Since the rotation matrix R is orthonormal, this scale factor can be estimated by 

calculating the inverse of the average length of the estimated vectors 
1
r̂
�

 and 
2

r̂
�

. To complete 

R we use 
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on the scaled vectors. Since R is estimated, the matrix is still not exactly orthonormal. We can 
find the best orthonormal matrix using singular value decomposition as well: 

 
estimate orthonormal

T T= ⇒ =R UDV R UIV  (3.13) 

with I the identity matrix. The resulting camera pose is given by the homogenous 
transformation matrix: 
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A more elaborate treatment of pose estimation and tracking can be found in [40] and [45]. The 
above method for estimating the pose is noise sensitive and the singular value decomposition 
to estimate R and T neither minimizes a meaningful quantity such as an error in pixels, nor 
estimates directly the six parameters of the pose. Highly due to the needed step to ensure that 
the estimated rotation matrix becomes orthonormal, errors are introduced. Therefore, we 
applied a Levenberg-Marquardt [46] minimization algorithm to further optimize the pose by 
minimizing the sum of squared errors (SSE) of the point positions in undistorted image 
coordinates (reprojection error). This is also called bundle adjustment: 
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in which n is the number of measured points, U

c
p
�

 is the measured position of the point 

number c in undistorted image coordinates, 'U

c
p
�

 its reprojected counterpart using the current 

camera pose estimate, scale factor s equals pz
C, and pose is a 6D vector holding three rotation 

parameters and three translation parameters. The initial guess of the 6D pose is calculated 
from Rorthonormal and Test. We used the Levenberg-Marquardt implementation from the 
MINPACK library [47]. That algorithm calculates the Jacobian by a forward-difference 
approximation, and therefore the analytical Jacobian is not needed. 

With an adequately calibrated camera and low measurement noise, a high residual sum of 
squared errors in eq. (3.15) value means that the presumed registration between image points 
and 3D marker points is probably not correct. A threshold on this value can be used to ignore 
candidate markers that do not match. 

Note that we now have the camera’s pose, but the camera coordinate system was defined in 
terms of the lens’s unknown optical axis. For sensor fusion, all estimates should be given for a 
common body frame and be expressed in the same coordinate system. Expressing the 
estimated pose in world coordinates can be done by a coordinate transformation using a table 
look-up of the pose of the marker in world coordinates. Generating a pose estimate for the 
common body frame is only possible if the transformation of our camera frame is known with 
respect to the body frame: 

 b b C

M C M
=H H H  (3.16) 

The calibration to find b

C
H  is described in section 5.2.3. In this section, we presumed to know 

the correspondence between the 3D marker points and their projected image points. To find 
the correspondence we need to have a known visual pattern for a marker that can be 
recognized. This is explained next. 

3.3 Fiducial detection 

In order to design suitable image features to track on, we have set the following criteria for our 
marker: 

- The marker should be easily recognized 
- It should not be too obtrusive 
- It should have enough unique different instantiations 
- Its ID should be fast to read 
- The marker should provide enough information for the camera to determine its pose 
- The marker should be useable in an office room. 
- The marker-camera combination should provide estimates of positions to at least 5 

meter with a lens opening angle of 90° 
- The marker should be detected up to a rotation of 60°. 



42 CHAPTER 3. IMAGE BASED POSE TRACKING 
 

  

Because we want to minimize the number of markers in the environment, we do not want to 
use the circular fiducials of Foxlin et alii [48]. Although these fiducials can be detected in a fast 
way and provide good localization, at least three are needed to provide a full (6D) pose. We 
started with a 3 x 4-checkerboard pattern as depicted in Figure 3-3. It has six saddle points, 
and with a minimum of four points necessary to estimate its position, there is some 
redundancy. In [49] we described how the saddle-point marker was recognized. The problem 
was that we could not attach an ID to it, so multiple markers could not be distinguished. 

 

Figure 3-3 Pattern with six saddle points ordered in two rows. The rounded corners remove the 
response that a saddle point detector could have on sharp corners. 

We found, similar as in the Augmented Reality Toolkit [50], that a rectangular pattern with a 
big black border is easy to recognize and provides enough space in the inner part to 
distinguish many different codes. 

2D-barcode 

An example of a fiducial we currently use is depicted in Figure 3-4. The inner part consists of 
an n x m grid of black and white blocks. Currently we use 5 x 3 blocks. The color of the four 
blocks in the corners is chosen in such a way that we can always determine the correct 
orientation of the marker. The other blocks are used to determine the ID of the marker, 
meaning that with 11 blocks remaining there are 2048 different IDs possible. The number of 
codes is of course much lower than with the circular fiducials [48], but it is not always 
necessary that all patterns are unique. Combinations of patterns and other clues can be used to 
determine an absolute position. We settled for an A4 sized pattern, which is not that big and is 
easy to produce on a normal printer. However, we can also use A3 sized patterns, to attach to 
the ceiling in a hall for space filling AR applications, or A5 sized patterns (or smaller) to attach 
to objects in a room such as a table. From the ID, the size can be retrieved. The shape has to 
be the same for all fiducials to ease the task of marker detection, so the ratio between the 
width and height should be preserved. 

Below, we will describe how we detect these markers. Figure 3-5 gives the operations 
schematically. Our description follows the processing pipeline. 
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Figure 3-4  Layout of the black and white pattern used for self-localization. The 5 x 3 square 
blocks encode the identification number of the marker, as well as the orientation. 
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Figure 3-5 Schematic representation of the marker detection algorithms. 

Contour finding 

We define a contour as a set of all connected edge points (edgels). Finding edges is described 
in section 3.5. For further processing, we want to distinguish various kinds of contours. We 
classify each edgel by determining the number n  of neighboring edgels. This is shown in 
Figure 3-6. 
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In case of our marker, we are only interested in contours without branch- or end-points. To 
reduce the amount of data, we make a list of contours. For each contour, all special points are 
stored ( 2n ≠ ). In case there are no special points, one edge-point is chosen (the first 
encountered point). For each stored point, a list is made which stores the 8-connected 
direction of the neighboring edge points, together with a link to the special point that can be 
found following the contour in that direction. 

In normal images, we found the Canny edge to be at places more than a pixel thick. This 
means that the above method of classifying edge points would not be valid. Therefore we first 
apply a simple edge thinning algorithm that removes points with 2n ≠ , without splitting a 
contour. This is done in a 3 x 3 neighborhood, and can be implemented in a fast way using a 
lookup table. See e.g. [51]. Now we have a set of contours that includes the contours of our 
markers. 

To be on the outer edge of a marker, a contour should satisfy two restrictions. First, the 
contour should be closed, so no endpoints or branch points should be present. Second, from 
Figure 3-4 we know that the outer border is black and thus darker than the surroundings. This 
means that the gradient on the outer edge is pointing outwards. Only one randomly selected 
point on the contour has to be checked to verify this. Contours not satisfying these restrictions 
are discarded. 

We want to fit the four straight lines of the contour, so the contour has to be split in four sets 
at the corner positions. We approximate the corner positions by applying a corner detector to 
the contour (see section 3.6). Now that the approximate positions of the four corners are 
known, we can brake up the contour into four separate lines. Because we model the lines as 
straight lines, we do not want any influence of the corners. Hence, the line segments will be 
eroded from their ends, so they will be disconnected from the corners. 
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Figure 3-6 Top: Overview of different edge points. Bottom: Some contour examples 
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To find the best fitting line through the contour points, we use a least-squares fit (see section 
3.6.5). The more edge-points used, the more accurate the result will be. For reasons of speed, 
the number of edge points used is set to a maximum of 20. For best results, the edge positions 
should be determined at sub-pixel precision, and the line to be fitted should be perfectly 
straight. 

Finally, a sub-pixel position of the corner is found by intersecting two adjacent lines (see 
section 3.6.5). We know that our images suffer from large lens distortions and we calibrated 
the camera accordingly, so the sub-pixel edge points found are transformed to undistorted 
image coordinates before the line fit is performed. 

Determining the ID of the marker 

If the position of the camera with respect to the marker is known (see section 3.2), we will try 
to find its ID. In order to do that, we have to determine the intensity of the blocks within the 
pattern. We know in marker coordinates where the midpoints of the blocks are:  
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Thus, we can calculate the mid-point positions in pixel-coordinates using the estimate of the 
camera position in marker coordinates using the formulas in section 3.1. For those 15 points, 
the intensity in the image is determined: 
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As the points have sub-pixel accuracy, a standard linear interpolation on the image intensities 
was used. The inner part of the marker consists of black and white patches. Both colors are 
always present (the four corner blocks), so we determine the threshold as: 
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At this point, it is still possible that the candidate marker is not valid. For instance, a black 
computer monitor also has four corners and a dark inner part. We reject a candidate if the 
separation between black and white intensity is too low: 

 ( ), ,reject if max( ) min( )i j i j sepy y t− <  (3.21) 

Now the ID is determined by: 
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This is also explained in Figure 3-7 
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Figure 3-7 Marker with ID=4+1024+16384=17412 

Using the method above, we theoretically only need one pixel per block, so the inner part 
could be as small as 5 by 3 pixels. However, in our case the border will then also be one pixel 
wide, which will prevent that such a marker will be detected. 

3.4 Feature detection 

For calculating the pose of a camera from landmarks, stable and accurate features are needed. 
Possible features are corners and edges. To detect a fiducial, we employ a two-stage approach. 
First, we detect the presence of a fiducial and second we localize it with high accuracy. In this 
way, we can detect possible fiducials fast and only do computational intensive operations on 
true candidates. We set the following requirements for the first stage detector: 

Find the entire contour of the fiducial under given assumptions about shape, lighting 
conditions, noise levels (office room with no lights on) and typical optical blurring. Then, 
for easy processing, the contour found should be a skeleton, i.e. a single pixel thick closed 
contour of 8-connected pixels without branch points. The detected pixels should lie 
roughly in the centre of the real contour. Noise should be suppressed to a level that no 
false edge points connect to the contour and all contour edge points are detected. The 
fastest method should be used to minimize power consumption and to achieve real-time 
performance (i.e. 25 Hz with our cameras). 

The goal of the feature detection is to find the four corners of the fiducial, from which the 
camera pose can be determined with high accuracy. We reviewed various general corner 
detectors but decided to use the intersection of two connected edges for the final sub-pixel 
positions of the corners. Consequently, the requirements for the second stage detector are: 

Find corners on the closed contour detected by the first stage and use them to split the 
contour into four straight lines. Note that all four corners should be detected, with no 
false positives on the contour. Aim at a corner position accuracy of less than two pixels 
along the edge. Determine edge positions at sub-pixel accuracy, up to the limit permitted 
by the noise. Minimize the influence from edges in the neighborhood as near as three 
pixels on the estimated corner positions. 

Under projective transformation, straight edges remain straight, but the corner angles vary. We 
will ignore lens distortion during image processing, as the curvature is negligible in the small 
neighborhoods we use. 
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Feature detection is not only used when determining the pose of the camera. The lens 
distortion and other parameters of the camera should be calibrated, and a checkerboard 
pattern is used for that. The corners of the black-and-white patches in the pattern are saddle 
points, so saddle points are features to be found as well. Corners and saddle points are much 
alike, so we treat them in the same section. 

In sections 3.5 and 3.6, we will investigate various edge, corner and saddle-point detectors and 
evaluate their ability to suit our requirements in terms of accuracy, behavior under noise, 
computation time and latency. 

3.5 Edge detection 

Edge detection is very common in virtually all applications of computer vision. Many solutions 
to this problem have been presented in the past half a century. Overviews of edge detection 
schemes and their filters can be found in [52-56]. Note that all discussions from here on must 
be seen in the context of a trade-off between processing speed and accuracy. In the literature, 
different models are used for edges, of which Figure 3-8 depicts the most common types.  
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Figure 3-8 Common edge types. From left to right: Step, Ramp, Roof, Line 

For our application, we only want to detect step-edges and their smoothed versions. 

3.5.1 Step-edges 

To test whether the smoothed step-edge model applies, we printed a step-edge on paper using 
a laser printer. The paper was placed at two meters in front of a camera, with the camera 
focused on the edge as much as possible. The paper was attached to a micro stage, allowing it 
to move the edge horizontally in steps of a single micrometer. We moved the stage linearly in 
100 steps. We used steps of 400 µm for the JAI camera, and for the DICA camera we used 
200 µm steps, due to their difference in resolution. 

In Figure 3-9b, the responses of three individual pixels in the edge neighborhood are shown. 
One can observe that the edge is imaged very sharply and that the noise in the values is very 
low. The standard deviation of the noise is σnoise = 8 levels, with an edge contrast of around 
600 levels (10-bit data). To specify the noise level in dB, we use the Contrast to Noise Ratio 
(CNR): 
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where the edge contrast is the difference in intensity between the light and dark side of the 
edge. In this experiment, the CNR was 37.5 dB. 
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Figure 3-9a) A 30 x 30 image of a step edge, 
recorded with de DICA camera. 

b) Grey level of pixels on a single row in columns 26, 
28 and 30 of the JAI camera as a function of lateral 
displacement in steps of 400 µm. The error bars 

denote the ± 3σ noise interval. 

Note that we were not able to determine the source of the strange bump right after the edge. 
This bump was present along the entire edge, and moved with the edge to other pixels. We 
assume this is a printer artifact. 

The smooth profile of the step-edge stems from the optical system and the way light is 
captured in a CCD/CMOS camera. One notices the resemblance to a scaled and stretched 
error function, i.e. a Gaussian blurred step-edge. Because of this, we will model the point 
spread function of the camera/optical system as a Gaussian. Van Vliet [57] indicates that a 
Gaussian is in general a good enough approximation to the point-spread-function (PSF) of an 
optical imaging system using incoherent illumination. To determine the width of the edge in 
the image, or the scale of the Gaussian modeled point spread function, we fitted an error 
function to the data. This model is a 2D edge, as presented in Figure 3-10. 
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Figure 3-10 Model of the 2D Gaussian blurred step edge. Left: model of the edge 
position. Right: Model of the edge intensity. 

Since we cross the edge under an arbitrary angle alpha, we can model the observations by 

 ( )( )1 1

2 2
2/( PSFy b a erf r σ= + + , (3.24) 

where 
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in which (x, y) is a pixel’s centre and xe is the horizontal sub-pixel edge position with respect to 
the origin (0, 0), which is made grey in the figure. 

The fit was done in a separate measurement on a patch of 19 x 19 pixels with an edge running 
through the centre pixel of the patch. We found the scale σPSF of the Gaussian PSF to be 0.8 

pixels for edges in all directions. We assume from now on that this is the smallest scale for all 
edges we will encounter, as the edge is in focus and the camera at rest. We also determined the 
standard deviation of the noise to be between 0.5 and 1.3 gray levels (8-bit data), depending on 
the gray level of the pixel under investigation. With the edge modeled as an error function, the 
signal and its first and second order derivatives are shown in Figure 3-11. 

-3 -2 -1 0 1 2 3
x

 

Figure 3-11 The intensity on a horizontal edge, with its first and second order derivatives. 
The edge in the image is modeled by a scaled and stretched error function. 
The first order derivative is therefore a Gaussian. The arrows denote the 

sample positions of the CCD/CMOS sensor, σPSF = 0.8 pixel. 
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Looking at the derivatives, we can detect edges by finding the maximum of the first derivative 
[58-60], or the zero crossing of the second derivative [61-63]. This second derivative can also 
be approximated by taking a linear combination of local max-min filters [64]. It is even 
possible to just threshold the first derivative, but this will result in a very thick line. Using a 
thinning operation, this line can be made thin, but the resulting dislocation might be even 
more than one pixel in worst case. Another reason why a fixed threshold cannot be used is 
that even the black of a laser printer is never really black but rather very dark gray. The darkest 
point in an image is also raised by light scattering and thereby dependent on the scene and the 
illumination conditions. More elaborate methods to detect edges, such as multi-scale 
approaches [65], nonlinear (anisotropic) diffusion schemes [66, 67] or model fitting [68], 
cannot be used in the first stage of edge detection, as they require too much computation time 
for our purposes. Moreover, at this point we are only interested in sharp step-edges, so a single 
small scale suffices. 

Edge detection using first order derivatives 

Normally, derivatives of an image are calculated in combination with a smoothing filter to 
suppress noise. Canny showed that for edge detection the magnitude of the gradient calculated 
with Gaussian derivative filters is optimal in the sense that the delocalization error of edges is 
minimal for a given signal to noise ratio. The gradient vector calculation can be efficiently 
implemented by four 1D convolutions. The computational complexity of these 1D Gaussians 
can be made independent of the filter size by a recursive implementation [69, 70]. The 
smoothing scale σ can be chosen freely to reduce noise effects. It can be shown that a 
smoothing scale higher than the scale of the edge (in our case 0.8 px) does not decrease the 
delocalization error much. We can therefore use filters with a smoothing scale above, but still 
near 0.8 px. Simple convolution kernels for the first order derivative filters in the horizontal 
direction are: 
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Note that for reasons of speed, these filters are not properly normalized; we implemented all 
algorithms in fast integer arithmetic and a division operation takes a lot of time. Furthermore, 
we would lose the fractional part in the integer result. The Robert’s and symmetric filters 
minimize smoothing; hence, they give the noisiest result. In the smoothing direction, the Sobel 
operator approximates the Gaussian better than the Prewitt operator does, so it is more 
optimal, but the Prewitt operator has a better noise reduction. A good integer approximation 
of a separated Gaussian derivative in horizontal direction with a scale of 1.0 px in a 
neighborhood of 5 x 5 pixels was calculated to be: 
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Note that if accuracy is not a problem, the derivative part can be changed to the symmetric 
version, and if noise is not a problem, the smoothing part can be changed to one of the 
simpler versions. 

Table 3-2 shows processing times for a derivative filter implemented for various input and 
output formats. Modern Intel/AMD processors have support for single instruction multiple 
data instructions: Multi Media Extensions(MMX) and Streaming SIMD Extensions (SSE). 
These extensions process up to 16 bytes at the same time, increasing the performance. The 
instruction sets we used were mmx, sse and sse2: the right side of the table. 

 

Table 3-2: Processing times in milliseconds of a 5x1 horizontal derivative filter (3.28) on a 1280x1024 
image. This was done on an Intel Core Duo processor @2.0GHz (one core used). 
char: 8-bit integer. Short: 16-bit integer. Int: 32-bit integer. 
Float: 32-bit floating point. Double: 64-bit floating point 

Optimized c code Optimized with mmx/sse2 

Outp 

Inp 

Short Int Float Double  Outp 

Inp 

Short Int Float Double 

Char 6.4. 7.0 11 13  Char 3.6  9.1 12 

Short 15 7.5 11 13  Short 4.0  9.2 12 

Int  16 30 14  Int   23 13 

Float   22 13  Float   20 13 

Currently, the input image is always in 8-bit integer format, and we use 16-bit integer data to 
represent the temporary values, derivatives and gradient magnitudes, so we can use the fastest 
methods (shown in bold). 

Using the first order derivatives, we detect edges by finding local maxima of the gradient 
magnitude in the gradient direction. The detected points form the ridges of the gradient 
magnitude image. The notation we use for derivatives working on an image I is: 
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x yyx y

I I I I∂ ∂
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The gradient magnitude image G is calculated from the gradient 
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by 
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With the simple filters, the magnitude is not truly rotational invariant [71], so the angular 
dependency should be considered.  

To determine if the gradient magnitude has a maximum in the gradient direction at the current 
position P, a local window of 3x3 pixels, centered on the current position, is divided into eight 
sectors, shown in the left of Figure 3-12. In the sector to which the gradient points (2) as well 
as in its opposite sector (6), the gradient magnitude is calculated in order to determine whether 
the gradient magnitude has a maximum at P. To calculate the gradient magnitude in these 
sectors, the simplest method is to average the gradient magnitudes of the two neighboring 
pixels lying in each sector. This can be represented by interpolating the gradient magnitude at 
points A and B in Figure 3-12. 
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Figure 3-12 Left: The gradient magnitude of the pixel under consideration P is 
compared to the interpolated magnitudes at positions A and B. The 
gradient direction is partitioned in the eight sectors shown. Right: more 
accurate interpolation in sector 2 at position M between pixels C and D 

When the gradient magnitude at position P is denoted as G(P), we can give each pixel a label 1 
if it has a local maximum of the gradient magnitude and 0 otherwise. The generating function 
nms (non-maximum suppressed) is given by: 

 
1 if  ( ) ( )    ( ) ( )

( )
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G P G A G P G B
nms P
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>= ∧ >=
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

 (3.32) 

This method is very fast, but it is unstable in case of a gradient direction at the sector 
boundaries, since the points A and B will tend to flip between the midpoints of adjacent 
sectors. To obtain a more robust output, the gradient magnitude can be interpolated linearly 
along the line between C and D where it intersects the arrow denoting the gradient direction 
(right of Figure 3-12): 

 ( )1( ) ( ) 1 ( ) ( ) ( ( ) ( )
y y

x y
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I I
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 (3.33) 

Note that this formula slightly differs for other sectors.  To lose the division (for faster 
operation) we can rewrite formulas (3.32) and (3.33). For sector 2 this is: 
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The result is now robust to small changes in the gradient vector, at the expense of a small 
increase in complexity. To further increase the speed, we only perform the non-maximum 
suppression when the gradient magnitude is high enough. This threshold can be just above the 
noise level when low contrast edges are expected.  

After non-maximum suppression it is still possible that a single edge produces two edge 
points, so a single thinning step is needed [51]. The thinning operation removes the pixels that 
do not change the connectivity of the edges. For fast operation, this is done using a look-up 
table. For each of the eight neighbors of an edge pixel we first determine whether they are 
edge pixels or not, and combine all the answers in an 8-bit valued index: 

 7 6 5 4 3 2 1 0

0 1 2

7 3

6 5 4

( ) ( )

P index b b b b b b b b

PixelOnThinEdge P lookup index

→ =

=

 (3.35) 

If pixel i in the neighborhood is an edge, then bit i of the byte index is set to ‘1’; otherwise it is 
set to ‘0’. This byte is then used as an 8-bit index into a look-up table, which gives as output a 
‘0’ or ‘1’, in which ‘0’ indicates that the edge pixel can be removed. This operation is done on 
the nms image directly, with a side effect that in some directions complete lines are removed. 
This is not a problem as we are interested in closed contours only. This way, less edge pixels 
have to be considered at a later stage, which speeds up the method. 

However, not all ridge points are edges, as noise also generates false detections. We may also 
want to disregard very weak edges. Canny [58] proposed to perform hysteresis thresholding 
using thresholds that are calculated from the image in order to be independent of the lighting 
conditions (see Figure 3-13). 

 

Figure 3-13 The black part consists of strong edge points. The gray part consists of weak edge points. 
Hysteresis thresholding selects the strong edge points, and all weak edge points connected 
to them. In this case the weak edge points at the right side are disregarded as they do not 
connect to strong edge points 

First, the number of strong edges Nstrong to be found is defined as: 

  
strong strong max

N p N= ⋅  

with pstrong a user-specified proportion of all ridge points Nmax. The Nstrong points with the 
largest gradient magnitudes are labeled as strong edges. To determine the corresponding 
threshold tstrong, a histogram h is made for the gradient magnitude of the ridge points. We use a 
histogram with 65536 bins, so one bin for each possible value of our integer gradient 
magnitude. Now the threshold can be determined as: 

 
65535

find  for which ( )

strong

strong strong maxt h i p N

i=t

= ⋅∑  
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in which i is the bin-number in the histogram. By definition the threshold for weak edges is: 

 
weak weak strong

t p t= ⋅  

in which 
weak

p is a user specified parameter. Points with gradient magnitudes between 

thresholds 
weak

t  and 
high

t  belong to weak edges, while points with a gradient magnitude greater 

than 
high

t  are classified as strong edge points. A ridge point detected earlier is classified as an 

edge, only if it belongs to a strong edge or if it belongs to a weak edge that is connected - 
directly or indirectly via other weak edge points - to a strong edge point. What we thus obtain 
are thin curves of the presumed edges in the image.  

When the images are not too saturated, the method above is quite useful. However, too high a 
threshold may be chosen when large parts of the image are saturated, e.g. due to reflections of 
direct sunlight through windows, or due to office lights. Therefore, it might be better in those 
cases to set only a low-threshold with a value above the noise level in the gradient magnitude 
output. For instance: 

 
,

3
low noise G

t σ=  (3.36) 

Although more edges are found than in the Canny case, we will always have our true edges 
included as long as the edge contrast is high enough. This also speeds up the edge detection, as 
the thresholding is not done twice, albeit at the expense of processing more edges later on. 
Another reason to use only a low low-threshold is to be able to detect markers that are not 
well illuminated. In office buildings, some markers will be well illuminated and others will not, 
even within a single image. 

Edge detection using second order derivatives 

The last steps of thinning and thresholding can also be used with edge detectors that use the 
second order derivatives. The two most common filters are: 
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 (3.37) 

Marr & Hildreth [72] showed that the simple, linear Laplace operator produces zero crossings 
on straight edges and generally provides closed contours. Haralick [73] suggested to use the 
SDGD operator to detect edges, as the intensity changes most in the gradient direction, and 
therefore the zero crossing has the highest accuracy in that direction. Both filters are roughly 
equivalent, but van Verbeek & van Vliet [74] show that when the edges are curved, the 
operators yield their zero crossings on opposite sides of the real edge; hence, they proposed 
their better performing summation (PLUS) operator. The Laplace has crossing outside the 
curve and outside the corner [75], and the SDGD inside. As our marker only has curved edges 
at the corners, and the curvature is high there (R < 6 px), the Laplacian then has higher 
accuracy than the SDGD in presence of noise. However, we still consider the SDGD because 
we want to easily detect corners on the edge only (combined edge and corner detection) and 
finding the edge always inside a corner proves to be advantageous. 
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Again, we need smoothing while filtering. With Gaussian smoothing, we will obtain the 
Laplacian of Gaussian (LoG) convolution kernel that can be approximated in many ways. 
Possible 3 x 3 convolution kernels are: 

 
0 1 0 1 1 1 1 2 1

1 4 1 , 1 8 1 , 2 12 2

0 1 0 1 1 1 1 2 1

− − − −     
     − − − − −     
     − − − −     

 (3.38) 

The difference between the filters is how they suppress noise, and how nearby edges affect 
each other. These kernels are also very sensitive to noise. For noise reduction we found that 
we need a LoG with Gaussian scale of σ = 1 on a kernel of minimal 7 x 7 pixels. 

A reason to use the LoG is that the second order derivative is steep near an edge. In case of a 
broad edge, the maximum of the gradient is more susceptible to noise than the zero crossing 
of the Laplacian. In our case, with sharp edges, the Laplacian does not have that advantage. 
Zero crossings can be detected by looking at the neighborhood of each pixel and looking for a 
sign change in the LoG value: 

1 Q ( ) such that ( ) 0 ( ) 0 ( ) - ( )    
( )

0 otherwise

N P I P I Q I Q I P t
zerocross P

 ∃ ∈ < ∧ > ∧ >
=  
 

∆ ∆ ∆ ∆

 (3.39) 

with ∆I(P) the output of a second derivative operator at point P, N(P) a neighborhood around 
the pixel P, and t a threshold to suppress false detection due to noise. Typically, a 4-connected 
or 8-connected neighborhood is chosen. The threshold can be chosen as a factor times σnoise, 
and a double threshold can be used to remove weak edges. After thinning, thin edges are 
obtained for further processing. 

The LoG can be efficiently calculated using four 1D filters; this makes the computational 
complexity comparable to calculating the gradient magnitude. However, the filter size needed 
is larger, 7 x 7 minimum. The LoG is also more sensitive to noise. Even with a good threshold 
t more false edge points will be found. An extra threshold on the gradient magnitude can be 
used to further suppress false edge points, but that requires extra time-consuming operations.  

A well-known property of the Laplacian is the fact that it generates only closed contours at its 
zero-crossings. These contours will be opened by the threshold t, but still many more closed 
contours will be found than when using non-maximum suppression. As we will show later, we 
select candidate markers by requiring a contour to be closed, so if we use the Laplacian many 
more candidate markers will be found. 

The other second-order-derivative edge detection method uses the SDGD operator in 
eq.(3.37). The SDGD needs five derivative filters. Normally these five filters are implemented 
using Gaussian kernels with the same smoothing scale. The computational load is too great for 
our purposes, but we can rewrite the formulas: 
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Note that only four derivatives are needed when we first compute the gradient magnitude. 
Furthermore, if we can compute the derivative of the gradient magnitude in the gradient 
direction directly by interpolating the gradient magnitude values in the gradient direction, only 
three derivatives are needed. The interpolation can be done similar as in the case of non-
maximum suppression. If we look closely at the formulas, we see that determining whether a 
point is a maximum in the gradient direction in formula (3.34), is exactly the same as 
calculating the derivatives using Robert’s derivative operator on the two interpolated points in 
the gradient orientation followed by looking for a zero crossing. 

The normal SDGD method is preferred because all derivatives are taken at the same scale and 
preferably using Gaussian derivatives. In theory, the gradient of the gradient magnitude 
method is equivalent, but because of the crude interpolation function and the very simple 
derivatives used, the output is not optimal. However, it proved good enough for our purposes. 
We shall not investigate the ideal Gaussian-based SDGD method further. 

3.5.2 Sub-pixel position 

We know that using a first order derivative, the edge lies on a maximum of the gradient 
magnitude. In practice, we obtain an approximation of it at a uniform grid of sample positions. 
The sub-pixel position of the maximum can be determined by fitting a continuous Gaussian 
(our edge model) to the sampled gradient magnitude and calculating the top of the fitted 
function. Let us look at the model of our edge again, now only in 1D: 
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 (3.41) 

Using a first order Taylor series approximation, the top is found by calculating the position of 
the maximum of the resulting parabola. Let x0 be the integer position of the detected edge 
pixel and xe be the real edge position, then the sub-pixel estimate of the top, or edge, is given 
by: 
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To use this formula in 2D, the gradient magnitude should be interpolated perpendicular to the 
edge with a distance of one pixel. For fast operation we do not interpolate, but evaluate the 
function on the horizontal or vertical axis only. Consequently, the sub-pixel accuracy will vary 
with the angle of the edge. When the edge is a bit blurred, it might be beneficial to evaluate the 
formula, not for pixels at x0 ± 1 but for pixels at x0 ± 2. Because the difference in gradient 
magnitude between those pixels and the centre pixel is higher, noise has less influence. 
However, in that case a first order Taylor series approximation does not hold for sharp edges. 
With d the distance between evaluated pixels, equation (3.42) can be rewritten as: 
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 (3.43) 

When the edge scale σ is small, as in our case, this approach may not be accurate enough. If 
we first take the logarithm of the gradient magnitude, a truly parabolic behavior is obtained 
according to the model in (3.41) . 

The next section presents the accuracy of all the presented edge detection methods for 
simulated images. Here we only show the effect of using the logarithm of the gradient 
magnitudes found in the real data of Section 3.5. 

For all 50 frames of each of the 100 stage positions, the edge positions were determined using 
standard, floating point, Gaussian derivatives with scale σ=1.0. The estimation was done with 
and without using the logarithm of gradient magnitude. Because no ground truth was available, 
we had to estimate the real edge position. The micro stage was controlled, so for each estimate 
we have a relative metric distance from the starting position. The relation between the edge-
position in the image and the real edge-position is linear (after lens correction), so a linear 
function of the micro stage position was fit through the measured image-positions. This gold 
standard was used to calculate the position error of both the logarithmic and non-logarithmic 
edge detectors. The mean and standard deviation of the position error are plotted in Figure 
3-14 versus the estimated ground truth image-position, for the non-logarithmic edge detector. 
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Figure 3-14 Mean error and standard deviation of the position estimate using a standard Gaussian 
derivative with scale σ=1.0. The truth was estimated with a least-squares fit (see text). 
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The remarkable sine like error in the mean error, or bias, can be explained by the mismatch 
between the presumed parabolic behavior of the gradient magnitude on an edge, and the 
actual behavior of the gradient magnitude, which is more Gaussian like. As shown in the 

figure, an accuracy of about 1/ 25  of a pixel can be seen. If we correct for the Gaussian profile 
by taking the logarithm of the gradient magnitude before fitting the parabola, we obtain 
substantial smaller error of about 1/50 of a pixel, as seen in Figure 3-15. 
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Figure 3-15 Mean error and standard deviation of the position estimate using the logarithm 
of the gradient magnitude produced by a standard Gaussian edge detector with 
scale σ=1.0. The truth was estimated with a least square fit (see text above). 

Note that this result is too optimistic since in practice an integer version of the Gaussian was 
implemented for speed reasons. The contrast-to-noise ratio in the dataset was around 40dB, so 
the effect of noise is not measured here either. Furthermore, the simpler detectors use 
derivative filters that are not rotational invariant. These effects will be studied in section 3.5.3. 

The zero-crossing detector uses the LoG. Operated on our edge model in 1D (an error 
function), it is the first order derivative of a Gaussian: 
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So normally, a linear interpolation is done between two neighboring pixels to find the position 
with LoG=0. Let x0 be the position of the detected edge pixel, with the real edge to the right: 

 ( )0 0 0 0
ˆ ( ) / ( ) ( 1)

e zerocross
LoG LoG LoGx x x x x x= = + − +  (3.45) 

In 2D, it is necessary to find the direction of the gradient first, because only in that direction 
the zero crossing will be accurate. This can be done by looking at the four orientations in the 
8-connected neighborhood and selecting that direction with the highest difference in LoG 
value. However, because the assumption for using the first order Taylor series approximation 
does not hold, as σ < 1, this method may not be accurate. Looking at Figure 3-11, one can see 
that for an edge scale of σ=1 pixel the LoG values of neighboring pixels fall outside the linear 
area. 
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To test the accuracy, we again used the same measurement data to find the edge detector 
accuracy. Figure 3-16 gives the mean and standard deviation of the estimated position error of 
the edge, using a proper floating point Laplacian kernel with σ =1.5 px. Perpendicular to the 
edge, the sub-pixel position was estimated using a linear interpolation on the two points 
around the zero crossing (solid blue line), and using the analytical zero crossing of a cubic 
spline interpolation on the 4x1 points around the zero crossing (dashed red line). The same 
estimated ground truth as in the previous figures was used to calculate the position errors. 
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Figure 3-16 Mean error and standard deviation of the position estimate using the zero 
crossings of a LoG. The truth was estimated using a least square fit. 

It is clearly seen that the cubic spline interpolation is necessary to decrease the location error 
that is dependent on the real sub-pixel position. Then it is comparable to the log gradient 
magnitude method. Nevertheless, even for this filter with Gaussian scale σ = 1.5, the error due 
to noise is bigger than the gradient magnitude methods, while the processing time is longer as 
well. Because of these properties of the LoG, we do not consider it further. 

3.5.3 Effect of noise 

In this section, the influence of noise in the image is determined for the two stages of edge 
detection. In synthetic images, we first determine if a closed contour can be detected under 
various signal-to-noise ratios, and secondly we determine the location error of the sub-pixel 
edge position vs. noise. 

For the first stage, we generated an image with four discs (Figure 3-17). The borders of the 
discs form four circular contours, all with the same edge contrast. The radii are 20 px, 40 px, 
60 px and 80 px. The measured edge scale of σ = 0.8 px was used, but also an edge scale of 
σ=1.5 px was tested to see the effect of defocusing. 
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Figure 3-17 Synthetic image with four circular edge contours with the same contrast. 

The edge σ is set to 0.8 px or 1.2 px. The noise is fixed at σ = 2 levels 

After applying our Canny edge detector, we only inspect the 4 real contours. A contour is 
found if and only if the contour is closed and has no branches. The test was done on 1000 
images, and detection ratio for each radius was calculated. The noise was generated with a 
standard deviation σ=2 grey-levels, and the edge contrast was varied between 6 and 200 levels, 
which gives a CNR of 10dB to 40dB. Figure 3-18 presents the results for different first order 
edge detectors. 
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Figure 3-18 Detection percentage per radius for different signal to noise ratios, with  

edge scale σ = 0.8 



3.5. EDGE DETECTION 61 

  

Of course, the longer the contour, the higher the probability that one edge point is missed. 
Practical contour lengths in our application have equivalent radii between 10 and 80 pixels. To 
have more than 80 percent success the CNR should be higher than 19dB with the best 
derivative, and 27dB with the simplest one. For the given noise-level, this converts to an edge 
contrast of 9 and 23 levels respectively. 

The experiment can be repeated for a blurred edge, simulating defocus. Figure 3-19 shows the 
result with an edge scale of σ=1.5px. When compared to the previous test, the curves seem 
shifted to the right over a distance of about 10 dB. Using the Prewitt filter, the CNR should be 
higher than 31 dB. With the given noise level, this translates to an edge contrast of 72 grey-
levels. 

To determine the accuracy in sub-pixel edge position, we generate straight edges of 100 pixels 
length under different angles. The edge scale was either σ =0.8 px or σ =1.2 px simulating out-
of-focus blur or motion blur. We chose to use three angles: 50°, 67° and 88°. Because we want 
to have many different sub-pixel positions, 45° and 90° were not used. For different contrast 
to noise ratios, the error in position is determined for all edge pixels in 50 noisy images. 

The parameters we could set for our edge detectors were: 

- Type of filter is Symmetric, Prewitt or Gaussian 
- Logarithm of the gradient magnitude or normal gradient magnitude 
- Additional [ 1 1 1] smoothing perpendicular to the Cartesian edge direction 
- Distance d between evaluated points in eq. (3.43) is 1 or 2 
- Use the square of the gradient before smoothing or not (square root costs time) 
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Figure 3-19 Detection percentage per radius for different contrast to noise ratios, with edge 

scale σ=1.5 px 
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This resulted in 48 different possible edge detectors that we ran on the six different generated 
edges. The standard deviation of the error was calculated for every combination, and we are 
interested in the maximum standard deviation for each detector over the six edges. Figure 3-20 
shows the maximum standard deviation versus contrast-to-noise ratio for all detectors. The 
lines in grey represent the detectors that do not use the logarithm. It can be clearly seen that 
when the model is incorrect, a residual error will be present even when there is no noise. The 
detectors of which the residual error is very big are the detectors that do the parabolic fit at a 
distance of two pixels. We conclude that in case of a sharp edge, the model is not correct 
anymore. The lowest line in the plot is the edge detector that uses the logarithm, the Gaussian 
filter, extra smoothing and the gradient magnitude squared, with a fit distance of two pixels. 
This is the best detector, but also the most expensive one. The two next-best detectors use 
either no additional smoothing or use the Prewitt filter instead of the Gaussian derivatives 
respectively. 
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Figure 3-20 Maximum standard deviation of the position error versus CNR over all 
simulated edges for all implemented edge detectors. The grey lines are 
detectors that do not use the logarithm of the gradient magnitude. They reach 
a minimum error at some CNR value, meaning that the error is model limited 
and not noise limited 

The data in the figure can be used to determine which detectors satisfy a given accuracy 
requirement for a given CNR. If we also determine the time it takes each detector to complete, 
the program can select the cheapest detector that satisfies the requirements, allowing for 
dynamic adaptation of the algorithms to the data. In addition, when there are time 
requirements, we can select the best performing detector satisfying them.  
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Table 3-3 gives the processing times for the three different filters applied to a sequence of 
images of an office room. The sub-pixel edge detectors are only used around interesting edge 
points of candidate markers. We found that even in cluttered backgrounds the number of 
points is typically 200. Even for 1000 points the total maximum processing time for the most 
demanding detector is only 0.75 ms. 

Table 3-3: Processing times in milliseconds of the three 
derivative filters applied to a 1280x1024 image. This was done 
on an Intel Core 2 Duo processor @2.0GHz (one core used). 

Symmetric Filter 6.3 

Prewitt Filter 7.5 

Integer Gaussian Filter 9.8 

Integer Gaussian (no SSE) 40 

It may be clear that the processing times of the different filters do not differ that much. The 
total processing time of a frame was measured to be in the range 20-45 ms, so a 3.5 ms 
speedup using a simpler filter does not help much in our case. The Streaming SIMD 
Extensions (SSE) instruction set reduces the total processing time by a factor of two. 

3.5.4 Influence of nearby edges 

When a marker is viewed from far away, its edges will move close to each other. In this section 
we determine the effect of nearby edges on the estimated edge position. To that end, we 
generate a vertical line without noise and determine the error as function of the thickness. 
Obviously, image-processing parameters that are of influence are the width of the filter used to 
find the edges and the evaluation distance used in calculating the top of the gradient 
magnitude. We calculated the bias and standard deviation for some detectors of different filter 
types and distance values. The notation for these filters is shown in Table 3-4: 

Table 3-4 :  Notation for the different filters used 

f=0 Symmetric derivative filter 

f=1 Prewitt derivative filter 

f=2 Integer Gaussian derivative filter 

d=1 Evaluation distance of 1 pixel 

d=2 Evaluation distance of 2 pixels 

The results are depicted in Figure 3-21 and Figure 3-22. We generated an almost horizontal 
line and an almost diagonal line to see the effect of different edge angles. The edge contrast 
was set to 70 levels, according to real world experience. An edge scale of 1.2px was also 



64 CHAPTER 3. IMAGE BASED POSE TRACKING 
 

  

simulated to see the effect of defocusing. From the figures, it is clear that detectors with an 
evaluation distance d of two pixels show a bias and large RMS error on line widths of less than 
five pixels. This was to be expected as those detectors use a bigger neighborhood to calculate 
the edge position and thus ‘feel’ the second edge already at a larger edge distance. The best 
detector in the presence of noise (f=2 d=2) already starts to have a bias at a line width of six 
pixels. We are able to conclude from this, that when a width of five pixels or less is expected, a 
detector with a distance of one should be used, and then preferably using the simplest 
derivative (f=0). On the other hand, that detector is more sensitive to noise, so the noise effect 
has to be weighed against the increase in bias and RMS error. The increase of the RMS error is 
due to an increasingly incorrect modeled edge. Without noise, the actual error in edge position 
will depend on the real sub-pixel position. The estimate will have an overshoot or undershoot 
for the sub-pixel estimate. Consequently, when neighboring edge pixels have similar sub-pixel 
shifts – e.g. an almost vertical line – the error cannot be diminished by combining estimates as 
in the case of noise. Therefore, when the line thickness is small, slanted lines are preferred 

since the effective thickness is then greater, up to a factor of 2 . In addition, the effective 
scale of the edge is larger, meaning that the edge detectors using an evaluation distance of d=2 
can be used with a lower modeling error. 
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Figure 3-21 Mean edge location error as function of the line thickness. For every thickness and detector, 
180 edge points were generated with a sub-pixel location between -0.5 and +0.5 px. Edge 
contrast = 70 levels. The letters f and d denote the type of filter, see Table 3-4 
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Figure 3-22 RMS edge location error as function of the line thickness. For every thickness and detector, 
180 edge points were generated with a sub-pixel location between -0.5 and +0.5 px. Edge 
contrast = 70 levels. The letters f and d denote the type of filter, see Table 3-4 

One may notice that the RMS error never reaches zero. The three most important reasons are: 

• Only integer values were used during filtering, where floating-point numbers are more 
precise. 

• The tail of the Gaussian derivative kernel was cut-off by truncating the filter at a 
width of 3 or 5 pixels. 
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• The intensity values of an image are discrete; therefore, when a low edge contrast is 
present, for instance 10 levels, a 0.5 level error is a percentual error of 5% 
(quantization noise). 

Looking at Figure 3-22 with the RMS modeling error, we cannot determine a single best 
detector, as the performance is dependent on the angle of the line and the scale of the edge. 
Overall it seems the detector with the integer Gaussian derivatives (f=2) and the evaluation 
distance of 1 pixel (d=1) is a good choice at all line thicknesses, with an RMS error of less than 
0.01 px with a line thickness of 5 px or more. Its bias, however, is only below 0.01 px when 
the edge scale is 0.8 px. When the edge is blurred, the bias increases to 0.05 px. The bias of the 
simplest detector (symmetric derivative f=0, evaluation distance of 1 pixel d=1) is always 
below 0.015 px, but its RMS error is nearly twice as big as the aforementioned detector, with a 
maximum of 0.016 px. When the line thickness is near five pixels, we therefore recommend 
using a simpler detector since a fixed bias is worse than the effect of noise. The bias will be 
dependent on the angle, edge scale and the line width. To correct this, those parameters 
should be measured, which increases processing time considerably. Noise on the other hand 
can be suppressed in time. 

3.6 Corner and saddle-point detection  

Corners and saddle-points are alike in the sense that both have a two dimensional structure. 
This makes them useful as point features. A saddle point has principal curvatures of the 
intensity of opposite sign. In a checkerboard pattern, the saddle points are located where two 
edges cross. We use corners in our pose estimation algorithm and saddle-points during 
lens/camera calibration. The models we use for saddle-points and corners are shown in Figure 
3-23 and Figure 3-24. Note that the corner model is actually the same as the saddle-point 
model with one black rectangle removed. 
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Figure 3-23 A saddle point: two edges cross within the grey circle. 

α is a rotation of the saddle point and β is the angle between legs. 
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Figure 3-24 A corner: two edge-segments meet within the grey circle. 

α is a rotation of the entire corner and β is the angle between legs. 

Although the corners in our marker have an angle of β=90°, their projections on the image 
plane exhibit other angles as well. To determine what corner angles β we can expect in 
practice, we simulated a camera looking at a marker-plane with a 90-degree corner. The most 
important parameter is the angle under which a marker is seen, in this experiment called pitch. 
This pitch is the angle between the optical axis of the camera and the normal of the plane of 
the marker. For many values for the pitch in the range 0-90°, the minimum and maximum 
corner angles β were determined by looping over a range of values of the two other 
independent 3D rotations. That range was only restricted in the following way: because we 
have a camera lens with an opening angle of 90°, the corners can only be viewed at a 
maximum angle of 45° from the camera’s optical axis. Figure 3-25 shows the lower and upper 
limits for the corner angles β. The grey horizontal lines help to see the range at values for the 
pitch of 0°, 5°, 10°, 15° to 70°. 
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Figure 3-25 Lower and upper limits (black) of the corner angles (β) vs. pitch of the marker. Helper lines 
are drawn in grey at every 5° of the pitch. 

If we want to detect the marker with a pitch of 60° (as stated in the fiducial layout section), the 
corner angles vary between 40° and 140°. This result is equally valid for the saddle-points. 

As in the case of edge detecting, the corners can be found using the first-order image intensity 
derivatives, or the second order derivatives. It is a well-known fact that corners are rounded 
off when using the first derivative only, because of blurring and filtering. The position of the 
corner will always have a systematic error, so we cannot use those detectors for accurate 
corner localization without an accurate estimate for this error. However, those detectors could 
be used to reliably detect the corners. 

While developing different methods to detect markers, we found that first detecting corners 
and then linking the corners via edges was complicated. We decided to first detect the edges 
using the Canny method, and then find the corners. Since we are already actively locating the 
edges, it would be very convenient to be able to detect the corners by only looking at edges. 
We will present a few standard corner detectors found in the literature and test their ability to 
find the corners in the edge map. We will also present a corner detector that uses the 
intersection of two straight lines to locate a corner more accurately. The latter does not have a 
bias, so it can be used for pose estimation. 
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First, we present and evaluate a known saddle point detector that we use in our camera/lens 
calibration method presented in section 3.7. Since saddle-points and corners share some 
properties, this detector is also evaluated on its ability to detect corners.  

3.6.1 DET Saddle point detector 

We investigated detecting saddle points because our first marker consisted of six saddle-points 
[49]. Currently we use our saddle point detector only for calibration purposes. To detect saddle 
points, the Hessian of the image – which consists of all second order derivatives - can be used. 
For a pixel, the eigenvalues of this Hessian give an indication of the grey-value landscape 
around it. When the eigenvalues have opposite sign, the pixel is near a saddle point. Exactly at 
the saddle point, the gradient magnitude will be zero and the product of the eigenvalues will 
show a minimum. This product is equivalent to the determinant of the Hessian. Beaudet called 
this detector DET [76]. 

The saddle points can thus be detected by finding local minima in the determinant of the 
Hessian of the image. Let the output image ( )g p

�
 be the negative determinant of the input 

image so that we can look for points with a local maximum in the output: 

 ( )2( )
xx xy

xy xx yy

yx yy

I I
g p I I I

I I
= − = −

�
 (3.46) 

In our calibration method, the derivatives are implemented using the derivative of a Gaussian 
with scale 3.0σ = . To find the saddle points we threshold the output at tdetector 

 [ ]detector

1
max ( )

2 p
t g p= �

�
 (3.47) 

and apply a peak detection filter in a 3 x 3 neighborhood N of each point found. This gives us 
a set of saddle points, S: 

 { detector| ( ) max[ ( )] ( )
q N

S p g p g p q g p t
∈

= = + >∧�

� � � � �
 (3.48) 

In general, the output of the filter can be described by a quadratic function in the vicinity of a 
saddle point. To obtain sub-pixel accuracy, we can fit this function to the local image data and 
derive the peak location from the model. In our paper, we assumed a circle symmetric 
behavior, which is only true when the two edges are orthogonal, and a parabolic fit was done. 
Currently we fit a full second-order function polynomial function. 

The true saddle point is located at an offset with respect to the point in the set S. We model 
the output image in the vicinity of a saddle point (xm ,ym) as: 



3.6. CORNER AND SADDLE-POINT DETECTION 71 

  

 

( ) ( )( ) ( )
( )

2 2

2 2 2 2

( , )   or 

1

2

2

m m m m

m m m m

m m

m m

g x y d a x x b x x y y c y y

x y x xy y d ax bx y cy

ax by

cy bx

a

b

c

= + − + − − + −

 + + +
 

− − 
 − −

= =  
 
 
  
 

y Ax
 (3.49) 

For every pixel in the 3 x 3 neighborhood, a row is added in y with the pixel value and a 
corresponding row with the x and y coordinates in A. With a standard least-squares solution, 
we find that 

 ( ) 1
T T

−
=x A A A y  (3.50) 

If we translate the coordinate system such that the origin is the position of the estimated 

saddle point, we can pre-calculate ( ) 1
T T

−
A A A  to speed up processing. The sub-pixel position 

can be calculated from: 
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 (3.51) 

The accuracy of this detector was determined by generating saddle points with varying rotation 

α, angle between the edges β, and sub-pixel position. To generate a saddle point we first made 
a binary image of 1500 x 1500 pixels with a single saddle point. Then we smoothed the image 
with a Gaussian blur with a scale of 50 times the edge scale. After decimation with a factor of 
50 the result is a proper saddle point image of 30 x 30 pixels. For each such image, 50 
instantiations of Gaussian noise was added. Using our saddle point detector the error in 
position was recorded for all generated images. Figure 3-26 shows the results as a function of 
the angles α and β. For each pair of angles, the standard deviation of the error was determined 
over all generated sub-pixel positions. The systematic error was below 0.001 px for β in the 
range of 56-135°. 
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Figure 3-26 Precision of y position of detected saddle points vs. rotation angle α and angle between the 

edges β. Gaussian blur of scale σ = 0.8 pixels (simulation of the optical system). Scale of the 

Gaussian derivative filters σ = 3.0 pixels. CNR = 38 dB. When this figure is shifted 90° 

over α, or flipped around β = 90°, the x position error is obtained. The systematic error was 
below 0.001 pixels for β in the range of 56-135°. 

If the angle β between the edges stays in the range of 57-123°, the standard deviation is below 
0.05 pixels. Figure 3-25 shows that this is the case when the point is viewed with a maximum 
pitch of 45°. This is useful information for the calibration in section 3.7. Of course, during 
calibration, we can record many images from the same camera position to reduce the effect of 
noise, thereby improving the precision. 

3.6.2 DET as corner detector 

The saddle-point detector can also be used as a corner detector. Figure 3-27 shows the result 
of applying the technique to detect corners. The generated corners are black inside and white 
outside, see the model in Figure 3-24. We used a low edge contrast of 50 levels, which yields a 
contrast-to-noise ratio of 28dB. Apart from using a corner model instead of a saddle point 
model, the experiment was done in the same way as described in the previous section. 
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Figure 3-27 Mean (accuracy) and standard deviation (precision) of the error in y position of the detected 

corner point vs. rotation angle α and angle between the legs β. Gaussian optic blur  of scale 
σ = 0.8 pixels. Gaussian derivatives of scale σ = 2.3 pixels. CNR = 28 dB. 
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The figure shows that only in case of a 90-degree corner, this detector has no bias (systematic 
error). Although the y-position error is zero at a rotation angle α=0° and α=180°, the x-
position error at these angles is not zero. The x-position error can be generated from the 
figure by shifting the results 90° on the α-axis. 

Since our model is a point symmetric function and corners are not point symmetric, a bias was 
to be expected. This bias will be lower when the Gaussian derivatives are taken at a smaller 
scale, but then the position is more influenced by noise. Even when the scale is σ=2.3 pixels, 
the standard deviation of the position is only below 0.1 pixels in a very small region. This 
detector is therefore not suited to locate corners precisely.  

We also tested the ability of this detector to detect corners in a reliable manner. As stated 
earlier, we only want to find corners on the Canny edge. Processing the edge instead of the 
whole image is much faster and the edge information is already available. Figure 3-28 shows 
the output of the DET filter on a corner of 90°. The filter output is shown by the height and 
grayscale. The solid line represents the real edge and the dashed line represents the edge found 
by the Canny edge detector.  

 

Figure 3-28 Output of the DET filter on a simulated corner of 90°. Optic blur with σ = 0.8px, Gaussian 
derivative filter with scale σ = 1.0px, and a CNR of 38 dB. The intersections of the black 
lines are pixel positions. The blue solid line represents the real edge around the corner and 
the broken red line represents the edge found by the Canny edge detector. 

As the solid blue line shows, the DET detector shows a local maximum at the real corner 
position in case of the 90-degree corner. The output on the Canny edge does show a signal 
that seems to indicate a corner. However, the shape proved to be highly dependent on the 
corner angle and we were unable to reliably detect corners on the Canny edge.  

3.6.3 Harris-Stephens 

Harris and Stephens [77] extended the idea of Moravec [78] to use a local auto-correlation 
function to find corners and edges. A first order Taylor series expansion of an image yields: 

 ( , ) ( , ) I II x x y y I x y x y
x y
∂ ∂+ ∆ + ∆ ≈ + ∆ + ∆
∂ ∂

 (3.52) 

To estimate the auto-correlation function for an image patch W we get: 
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The patch W could be a 3 x 3 uniform weighted patch, but for isotropy, a circular weighted 
function such as a Gaussian should be used. The Harris matrix M captures the structure of the 
gradients at the centre of the patch, and is also known as the Gradient Structure Tensor. The 
eigenvectors represent orthogonal directions of most variation. The corresponding eigenvalues 
represent the amount of variation in these directions. Figure 3-29 shows the distribution of the 
gradients around a corner and an edge. 
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Figure 3-29 Top: Gradient directions on the edge of a grey patch. Region 1 is a line and 
region 2 is a corner. Bottom: The dots show the gradients in region 1 and 2. A 
centered ellipse is fit around these gradients 

When an edge is present, only one eigenvalue has a large value (region 1) and in case of a 
perfect 90-degree corner without noise, both eigenvalues are large and equal. Harris suggested 
the following measure for corners to replace the expensive computation of the eigenvalues: 

 2( ) ( )R det k Tr= − ⋅M M  (3.54) 

The tweaking parameter k is used to suppress edges, and has a suggested value of 0.04. When 
R is positive and large, the eigenvalues are large, thus denoting a corner. When R is negative, 
only one eigenvalue is large, signifying an edge; and in a homogenous patch both eigenvalues 
are small, resulting in a small value for R.  
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A pixel can now be marked as a corner point when both the value of R is above a certain 
threshold and the value is a local maximum in a certain window. The wider this window, the 
fewer corners are found near each other. For a stable corner, a sub-pixel location can be 
estimated by fitting a quadratic function to the output of R in a small neighborhood around 
the local maximal points. The same method was used to locate saddle points, see equation 
(3.49). Due to blurring, however, the detected corner position will have a systematic error that 
will be in the order of the scale of the total blur on a 90-degree corner [79]. However, when 
the angle β decreases, the systematic error increases, making it difficult to correct for this 
error. The output of the Harris detector is given in Figure 3-30. The blue solid line represents 
the output on the real edge around the corner and the dashed red line represents the output on 
the edge found by the Canny edge detector.  

 

Figure 3-30 Output of the Harris corner detection function R on a simulated corner of 90°. Optic blur 
with σ = 0.8 px, Gaussian derivative filter with scale σ = 1.0 px, and a CNR of 38 dB. The 
intersections of the black lines are pixel positions. The blue solid line represents the real 
edge around the corner and the broken red line represents the edge found by the Canny 
edge detector. The local maximum is moved inwards due to smoothing, but it lies almost on 
the Canny edge 

Since the gradient structure tensor uses the same first order derivatives as the Canny edge 
detector, their offsets from the true corner position will be of the same order. The figure 
clearly shows a local maximum with high value for the Harris corner detector output on the 
Canny edge. However, this is the case only when the corner angle is around 90° or less. For 
bigger angles, the corner is more line like and the output can drop even below zero. Hence, for 
our purposes,  a high value for R  is not a good criterion to detect corners in an image. 

When we use this detector on the edge only, the small values in homogeneous regions are not 
encountered which gives us more freedom to specify a good threshold. In case of a straight 
edge, the value R is below zero and near a corner, the value will always be higher. On the edge, 
the threshold on the value R may lie near or below zero to separate edges from corners. The 
difficulty, however, lies in determining the value for the threshold, as R scales with the edge 
contrast. 
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3.6.4 Haralick & Shapiro 

A more robust detector was made by Haralick and Shapiro [80], also using the gradient 
structure tensor. They calculate a circularity measure for the ellipse fit on the gradient 
distribution (Figure 3-29) using the two eigenvalues of the structure tensor: 
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This q-value is zero on a line, and one on a circle in the gradient space of Figure 3-29. A 
perfect 90° corner has equal eigenvalues, and so a q-value of one. A threshold on this q-value 
is used to suppress edges. Note that because of smoothing, a corner will never be perfect so a 
q-value of one is never reached in practice.  

Due to noise, this q-value also reaches high values in noisy homogeneous regions. Therefore, 
the eigenvalues must exceed a certain threshold before using the q-value. Haralick used a 
threshold on a weight measure that is called the Beaudet measure for cornerness: 

 det( )w = M  (3.55) 

This measure is high when a lot of variation in the gradients is present. Candidate corners can 
be found by looking for local maxima in w that have a value above a certain threshold. By 
using both measures, the detector has fewer false positives than the Harris detector.  

The Beaudet measure is high when both eigenvalues of M are high. We determined that for a 
reliable output of the q-value only one eigenvalue has to be high. We therefore tackle the 
problem of the high q-values in homogenous regions by only using the q-value on the edge. 
Instead of finding local maxima in w as Haralick does, we find local maxima in q on the edge 
found by the Canny edge detector, this ensures that we only get one response for a corner, 
where a simple threshold would find multiple responses. Since the q-value is not dependent on 
the edge contrast, a fixed threshold can be used to find all corners.  

Figure 3-31 shows the result of an experiment to determine an adequate value for the 
threshold. For every value of the corner angle β we generated 648 corners with varying sub-
pixel position and rotation angle α. No noise was added and we simulated an optical system 
having a Gaussian point spread function with a standard deviation of 0.8 pixels. For each 
image of the generated corner, the maximum value for q was determined on the edge found by 
the Canny edge detector. That value is the same as the local maximum used in our algorithm 
described above. Of the 648 values, we calculated the minimum, the maximum and the mean, 
depicted in the figure as the blue points with solid error bars. When the corner angle β was 
low, our Canny edge detector could not always find the edge, so there were not always 648 
values, but always more than 270. The red dotted line shows for various noise levels the 
maximum q-value encountered when the corner angle β is 180°. For a contrast to noise ratio 
of 20 dB, the threshold should be chosen around 0.2. Then we are able to detect corners 
reliably with corner angles β smaller then 120°. When the CNR is 25 dB, we can detect corners 
with an angle up to 150° using a threshold of 0.05. When the optical blur is increased to 1.2 
pixels, simulating slight motion blur, the q-values as function of β drop a little and the 
maximum detectable angle is around 10° lower. 
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Figure 3-31 Values for Haralick’s q-value as function of the corner angle β and as function of 
contrast to noise ratio. For every point, 648 tests were done with various rotation angles 
α and sub-pixel positions. The error bars give the minimum and maximum value 
encountered. The dotted line shows the maximum q-value due to noise on a straight 
line. 

 

3.6.5 Edge intersection 

In our application we always look for rectangles in the scene, i.e. straight edges connected in a 
corner. If we can find those edges accurately, the intersection of those edges will also be very 
accurate. If we already have an estimate of the corners, e.g. using the Haralick detector, we can 
split our closed contour of the rectangle into straight pieces. Along each piece, we determine 
up to 20 edge points with sub-pixel accuracy (see section 3.5.2). Through those 20 points we 
then fit a straight line (Figure 3-32). 
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Figure 3-32 Part of an image of an edge (rectangles indicate pixels), with the real edge superimposed in 
white. Along each of the grey lines, a sub-pixel edge position is determined. When the edge 
is longer than 20 pixels, the 20 positions will be spread equally along the edge. Because the 
edge is more horizontal than vertical, the sub-pixel position is calculated through a vertical 
patch of pixels. 

Since we know that the edge around a corner point is smoothed, and edge points too close to 
a corner do not lie on the straight line, we disregard points too close to a corner. For the 
situation in Figure 3-32, the horizontal positions of the points are exact, only the vertical 
position is calculated by image processing, which means a standard, least-squares fit with 
uncertainty in one direction only, suffices. The general model of a line is given by: 

 0ax by c+ + =  (3.56) 

in which a and b are parameters to be estimated. When the fit is done horizontally, then 1b ≡ −  
and 0xσ ≡ , when the fit is done vertically then 1a ≡ −  and 0yσ ≡ . We want to minimize the 

distance to the model (3.56) of all measurement pairs ( , )
i i

x y  along the line in least-square 

sense. In our case, the sum to minimize is given by: 
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where 2σ  is the uncertainty of the sub-pixel position. When fitting an almost horizontal line, 
taking the partial derivatives with respect to a and c and setting to zero yields: 
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where 
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i iN x x∆ = −∑ ∑  (3.59) 

The uncertainties can be found by standard error propagation [81]: 
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In which σ  is either the experimentally obtained standard deviation of the sub-pixel position 
estimator, or the estimated standard deviation 

estσ  of the fit-data: 

 ( )2
1

1

2

N

est i i

i

ax by c
N

σ
=

= + +
− ∑  (3.61) 

If the model is correct, the estimate from the fit-data is better, as the uncertainty in the 
calculated position might be under or overestimated. 

The intersection between two 2D lines can be calculated from the line parameters 
1 1 1

( , , )a b c  

and 
2 2 2

( , , )a b c  in a rather complex closed-form solution, which we do not repeat here. With 

this method, the accuracy is now also dependent on the number of points in the line-fit and on 
the lengths of the intersecting lines. Furthermore, as the points in the neighborhood of the 
corner are discarded, the extrapolation distance from both lines to the intersection point 
influences the accuracy as well. Figure 3-33 shows the extra parameters that influence 
accuracy. 

∅=d
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α

∅=d

β

α

 

Figure 3-33 Two edges connected in a corner. The edgels within a distance d to the corner are discarded. 
The rectangles show the Canny edge, and the lines are fit through the sub-pixel edge 
position calculated from the edgels depicted in grey. 

We tested the accuracy of our detector by simulating corners with various values for α and β. 
We simulated a situation with σnoise=2 and an edge contrast of 50. This gives a CNR of 28dB. 
Our edge detector then has a precision of 0.08 px, so we generated points on the lines with 
that standard deviation in the position. Figure 3-34 shows the result for two different numbers 
of points used for the line fit. Figure 3-35 shows the results under good lighting conditions, 
where the contrast-to-noise ratio is 34dB. With a CNR of 34dB, the edge detector precision is 
0.04 px. 
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Figure 3-34 Standard deviation of the corner position’s y-value. Edgels within 4 pixels distance are not 
used (d=4). CNR=28dB Top: 10 points with lines of 18 pixels. Bottom: 20 points with lines 
of 28 pixels. 
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Figure 3-35 Standard deviation of the corner position’s y-value. Edgels within 4 pixels distance are not 
used (d=4). CNR=34dB Top: 10 points with lines of 18 pixels. Bottom: 20 points with lines 
of 28 pixels. 
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3.6.6 Features, conclusion 

In the requirements, we stated that an A4 sized marker should be detected at 5m distance. In 
that case, the shortest corner distance is 21 pixels with our wide-angle lens. The contour length 
is around 80 pixels, which is equivalent to the contour of a circle with a radius of 13 pixels. 
The DICA camera in our configuration has a noise level of σnoise = 2 levels, and a Gaussian 
optical blur of scale σPSF = 0.8 pixels. 

Using this information and the information from the experiments above, we can determine 
what features can be used for our AR application, and what their properties are. We have 
shown that edge detection using Canny is faster than using the zero crossings of the Laplace 
operator. Furthermore, the edges that the Laplace operator produces have a larger distortion 
near a corner than the edges from the gradient magnitude. This means that the Canny edge is 
even more favorable, since we want to use lines that are as long as possible for accurate corner 
localization. In addition, the output of simple corner detectors is low on the Laplace zero-
crossings. Therefore, we will use the Canny edge as the contour of our marker. We decided to 
use a fixed threshold on the gradient magnitude instead of a hysteresis threshold, because 
lighting conditions due to windows and lamps have a large influence on the automatic 
thresholds. 

We stated as one of the requirements that we want to detect the precise edge location up to 
the limit of the noise. This means that we should not allow any bias in the location at any 
estimate. In Figure 3-21, one observes that detectors with an evaluation distance of two pixels 
do not perform well on thin lines, and should not be used. When the marker’s border is eight 
pixels (i.e. 7 cm at 5 m), no bias is present, even in the case of a slightly blurred edge. When we 
allow a slight bias, a line thickness of five pixels (4 cm) is also adequate if an evaluation 
distance of one pixel is used. Then the bias is smaller than 0.01 px in case of a sharp edge 
(edge scale of 0.8 pixels) and at most 0.04 px when the edge is blurred. The RMS error then is 
0.005 px and 0.008 px respectively. 

In case the image suffers from noise, the Gaussian filters perform best, as it has the largest 
kernel to smooth out this noise. This has to be weighed against computing time, but generally, 
if the precision goes down by a factor of two, we need four times as many independent pose 
estimates to make up for it. 

The aforementioned discussion presumes we have already found our marker. Figure 3-18 
shows that for a contour length of 80 pixels (our marker at 5m distance) we can expect 100% 
detection at CNR=20dB. This is an edge contrast of 20 grey levels, which is very low. Even 
when the marker is at 1m distance, the needed edge contrast is only 50 grey levels. We 
conclude that noise is not a problem for the detection of contours. 

How big should our smallest marker be? We know that the border should be at least five 
pixels, but what does that mean for its size in cm? We will ignore lens distortion in order to 
use a simple pinhole model: 

    ,  
x y

u f v f
z z

= =  (3.62) 
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In order to calculate the size in camera coordinates (x,y) from the size in pixels (u,v) we need 
an estimate for the focal length. Without lens distortion, the following equation holds: 

 
_ / 2 _

tan
2

image diameter opening angle

f

 =  
 

 (3.63) 

With an image of dimensions 1280 x 1024 and opening angle of 108° we obtain: 

 595 pxf =  (3.64) 

The projection of a point in camera coordinates is now given by 

 595   ,  595
x y

u v
z z

= =  (3.65) 

From this, it follows that a border width of five pixels is 4 cm at 5 meters distance. To detect 
the ID, we do not want neighboring blocks to interfere with the intensity of a block’s central 
pixel. Given an optical Gaussian blurring of 0.8 px, we need a block size of at least 2 x 2 
pixels, which is 1.7 x 1.7 cm. A marker consisting of 5 x 3 blocks should therefore be at least 
2·4 + 3·1.7 = 13 cm wide, and 16.5 cm high, which is well within the A4 limits (21 x 29 cm). 
However, when we want to detect the marker at a pitch of 45° the size requirement increases 
to 18.2 x 25 cm, which is just enough. In these calculations, we assumed a white background 
as we also need a white border of 5 pixels around the black border for accurate localization – 
see Figure 3-4. With this border, the marker needs to be 26 x 33 cm. 

Depending on the required viewing angle on the marker, this size restriction differs. Hence, 
the size should be determined per application. When only a few markers are needed, it can be 
decided to use a smaller marker with a 2 x 4 block layout, leaving 16 possible markers. We find 
26 x 33 cm is close enough to A4 and will use this marker-size for further analysis. 

For corner detection, it was shown that our simple corner detectors, which use the image 
gradient only, are not suited for accurate corner localization. Although multi-scale approaches 
exist that have zero bias, these algorithms tend to need a large support around the corner, 
meaning that the black border of our marker should be very big, leaving less space for an ID. 
The support for our edge intersection is determined automatically by the length of the edge. 
The drawbacks, performance wise, of our method are that edge points near the corner cannot 
be used and that the sub-pixel edge points have to be transformed to the undistorted image 
plane before fitting a straight line through them. 

The shortest edge length of our marker is 26 cm, which translates under a viewing angle of 45° 
to 22 pixels. This in turn means we can use 14 pixels for the line fit as we discard the 4 points 
nearest to the corner. With that viewing angle – or pitch – we can expect corner angles 
between 53° and 127°, and from Figure 3-34 we can see that the accuracy will lie between 
0.15px and 0.08 px at a CNR of 28 dB. Whether this is enough for accurate pose-estimation 
will be determined in section 3.8. 

To use our detector, the contour has to be split into four line segments. It is shown that 
Haralick’s corner detector is very robust to noise, and will find the corners independent of the 
lighting conditions with a fixed threshold. 
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To conclude, we will use the Canny edge detector, with Haralick’s corner detector to split the 
lines, and the intersection of lines for an unbiased estimate of the corners. To detect saddle-
points during camera calibration we use Beaudet’s DET saddle-point detector, which has a 
systematic error under 0.001 pixels and a standard deviation below 0.05 pixels when the angle 
β between the crossing edges is within the range 57-123° and lastly the contrast-to-noise ratio 
is 38 dB or higher. 

3.7 Camera calibration 

In section 3.1 we presented the pinhole camera model and our lens distortion model. These 
internal camera/lens parameters have to be estimated. Popular camera calibration methods 
that achieve this are from Tsai [82] and Zhang [15]. The Tsai method requires detailed 
knowledge of the imaging sensor and only allows a simple lens distortion model. Provided 
with at least three different views of a known planar calibration target, the Zhang method 
estimates all internal parameters and allows for more complex lens-distortion models. We use 
a planar checkerboard calibration target as shown in Figure 3-36. This pattern was plotted with 
an A0 plotter, and a big glass slate was put over it to make it stay flat. Saddle points provide 
very accurate calibration points, even in the case of image smoothing and perspective 
projection. In contrast, the corner detectors Zhang used suffer from the well-known 
localization problem due to smoothing. In his method, images of the same calibration target 
are taken under various viewing angles. His algorithm expects a number of coplanar points 
with known metric position within the calibration target. For each of those points, the image 
locations in each of the different views should also be given. With the information of the 
known points in different views, Zhang first estimates the intrinsic parameters ignoring lens 
distortion. Then, using Levenberg-Marquardt minimization, the error in position of the 
estimated points in pixels is minimized by estimating all parameters of equations (3.2) and (3.5) 
as well as the full poses of the different views. Note that it does not matter whether the pose 
of the camera is calculated in marker coordinates or the marker pose is determined in camera 
coordinates. These representations can be easily transformed into each other. 

Figure 3-36 shows one of the views of our calibration target. This pattern should occupy most 
of the image, so the camera was put close to it. With our A1-sized pattern (84.1 cm x 59.4 cm) 
and 90° opening angle, the camera should be at a distance not farther than 42 cm. When 
taking the images, we used distances between 70 cm and 30 cm. We encountered a number of 
problems, but we will discuss them at the end of this section. 
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Figure 3-36 One view of the calibration pattern that consists of saddle points. This A1-sized pattern was 
put under glass to ensure it stayed flat. The distance between the saddle-points is 5.0cm. 

Before the Zhang calibration method can be used, the correspondences between points in the 
image and points on the calibration pattern have to be established. The calibration needs a set 
of points of which the image coordinates are known, as well as its x and y coordinates in the 
pattern coordinate system – the point’s z coordinate is zero per definition (flat object). Doing 
this manually is very time consuming, even when only the four outer corners of the pattern 
have to be specified per view [83]. We developed an automatic grid-finding algorithm that 
expects a rectangular grid of saddle points. It occurred to us that it is actually not needed to 
find an exact correspondence; it is sufficient to find the grid itself as it is repetitive. In other 
words, the origin of the pattern can lie anywhere as long as the grid spacing is known. In our 
case, the grid spacing is 5.0cm in all directions. 

We start by detecting all the saddle points in each view. To find out how the points are 
connected to each other, we find the edges using the Canny edge detection. As edges near a 
saddle point are distorted, we remove edge points in a 7 x 7 neighborhood of each saddle 
point, as shown in the left of Figure 3-37. The entire 7 x 7 neighborhood is now labeled as 
part of the saddle point. We loop over all edge segments with two endpoints and if two saddle 
points are found at the ends, these saddle points are connected to each other and the direction 
is stored as well. This results in a list of saddle points with their interconnections. 

A saddle point in the middle of the image is chosen as origin, and starting from that point the 
grid is built up. One interconnect is chosen as the x-axis and the interconnect most 
perpendicular to it becomes the y-axis. The algorithm steps recursively in all directions, 
keeping book of the x and y vectors. The interconnects of the new point are tested against 
these vectors and if the new x and y vectors are found, the algorithm recursively steps further, 
increasing the grid. This iterative approach of updating the x and y vectors is needed to cope 
with the image distortions. 

Eventually, the algorithm finds all connected saddle points, and because at every step of the 
algorithm the x and y coordinates of the point can be determined, the relation between points 
in the image and points in the pattern is established. The grid found is shown in the right of 
Figure 3-37. Note that some saddle points were discarded, but the algorithm still finds the 
grid. Saddle points will be discarded if the detector output is too low or if its calculated sub-
pixel position does not lie within 0.8 pixels of the pixel-accurate saddle point. 
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Figure 3-37 Left: the found edges with a 7 x 7 cut out of saddle points. Right: the saddle points used for 
calibration with the found grid. 

After calibration with 655 points in six different views, we obtained an RMS error in 
horizontal and vertical positions of 0.08 pixels using the DICA camera at a resolution of 
1280x1024 and a contrast-to-noise ratio around 38 dB. The maximum error was 0.38 pixels 
(Euclidean distance). When all used models are correct, we expect the errors to be normally 
distributed. In Figure 3-38, we show the cumulative distribution of the Euclidian distances 
between the measured and back-projected calibration points. 
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Figure 3-38 Dashed line: Cumulative distribution of the residual saddle point location error after 
calibration (Euclidean distance). The RMS error is 0.08 px for the horizontal and vertical 
errors. Solid line: The expected cumulative distribution when the horizontal and vertical 
errors have a zero mean normal distribution with a standard deviation of 0.08. 

This figure also shows the expected cumulative distribution of these errors in case the 
horizontal and vertical errors are drawn from a normal distribution with zero mean and a 
standard deviation of 0.08 pixels. Although the shape of the real distribution slightly differs 
from the expected distribution, the distribution shows nothing special, so not many outliers 
were present in our calibration. In addition, we can deduce from Figure 3-38 that in analyzing 
the 95% best localized points, a maximum error of 0.19 pixels is found which is not much 
different from the 0.17 pixels that can be expected.  

With a contrast-to-noise ratio of 38 dB, Figure 3-26 from section 3.6.1 shows the expected 
precision. The standard deviation of the vertical/horizontal error should have a value lower 
than 0.05 pixels as our calibration images were taken with a pitch (Figure 3-25) of less than 
45°. Multiple issues may be the cause of our higher standard deviation of 0.08 pixels: 

• Wrong lens model. When our lens distortion model is not good enough, we expect 
the errors to be larger at the borders of the detected grid in each calibration image. 
We did indeed find slightly more points with large errors at those borders than inside 
the grid. We tried a number of distortion models, even some fish-eye lens distortion 
models, but we were unable to achieve better results. 
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• Wrong sensor model. The overall point spread function consists of two terms: 
optical blur and sensor blur. The overall PSF can be modeled by a Gaussian PSF of 
scale 0.8 px. This amount of blur shows that the optical blur is dominant in the 
overall PSF. Position error due to aliasing are therefore negligible. 

• Out-of-focus calibration target. In our augmented reality application our lens is 
focused on distances of about 4 meters. Changing the focus will change the lens 
parameters, so we use the same setting during calibration. To ensure our calibration 
pattern stayed flat, we used an A1-sized glass plate. To get some coverage of the 
marker in the image, we had to move the camera close to the pattern, between 30 and 
70 cm, and this amounts to the calibration target not being in focus. This defocus will 
move points that do not lie on the optical axis slightly outward, depending on the 
point’s distance to the camera. The parameters we estimate may therefore have a bias. 
An obvious solution is to increase the size of the calibration target so that it can be 
viewed from larger distances, but we only had a glass plate of size A1 available. To fill 
25% of the image at two meters distance, a marker of two by two meters is needed; 
such a large target is not easy to produce. Another solution could be to use a very 
small aperture for the lens, increasing the depth-of-focus. 

• Out-of-focus corners. We noticed that even when the pattern was in-focus in the 
middle of the image, the images were always a bit blurred at the sides and corners. 
This probably is an artifact of using a lens with such a high opening angle. The PSF 
of this apparent blurring will not be isotropic, thereby dislocating our calibration 
points slightly. 

• Blurring due to the sheet of glass. We put a glass plate on the pattern to ensure it 
stays flat. The plate will slightly shift the points underneath depending on the viewing 
angle of that point. Even when the camera points perpendicularly toward the pattern, 
the viewing angles of all image points are different, generating a distortion that is not 
included in the current model. A solution could be to glue the printed pattern on a 
flat object, but gluing can deform the paper. An adhesive sticker is probably a better 
idea. 

These problems will not be addressed further in this thesis and future research should 
investigate what problem is the limiting factor and how to solve these issues. 
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3.8 Evaluation of pose estimation 

In the sections above, we described the methods we use to detect and localise our markers 
reliably, accurately and precisely. With a calibrated camera, we can now determine the practical 
accuracy and precision by doing experiments. Two experiments were done. We wanted to 
separate the effect of viewing the marker under different angles at a fixed location in the 
image, and the effect of viewing the marker in different parts of the image. When the marker is 
in a fixed location of the image, we expect the lens distortions to play a minor role. Errors in 
the lens calibration parameters and errors in the lens model will not influence the pose much. 
The experiment will then tell us something about the practical accuracy when no lens 
distortion would be present. When the marker is viewed in different parts of the image, the 
lens distortions will be play an important role, and therefore the lens calibration and lens 
model have a big influence on the estimated pose. This experiment will tell us something 
about the practical pose accuracy with our calibrated lens. 

3.8.1 Dependence of the pose accuracy on the viewing angle 

For this experiment, we placed a marker on a pan-tilt unit as seen in Figure 3-39. A camera 
was placed at various distances along a straight line, with the marker always in the middle of 
the image. The marker was placed on the pan-tilt unit such that it could rotate around its x- 
and y-axes. Mathematically, first a rotation is applied around the upward y-axis, the pan 
direction. Then a rotation around the new sideways x-axis is applied, the tilt direction. 

 

 

Figure 3-39 Our marker on a pan-tilt unit. The marker can be rotated around its x and y axis (no in-
plane rotation). With the marker in the middle of the image, the camera was moved at 
various distances on a straight line. 

When the pan and tilt angles are zero, the marker’s normal direction is parallel with the optical 
axis of the camera. In the pan direction, the angle was varied from -60° to 60° with 5° 
intervals. In the tilt direction, the angle was varied from -30° to 40° also with 5° intervals. At 
every combination of angles, we grabbed 50 images. For each of those images, the pose of the 
marker in camera coordinates was determined using our pose estimation algorithm.  
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The problem is that there is no ground truth for the marker pose. We only have the pan and 
tilt values of the pan-tilt unit itself. The marker will not be facing exactly perpendicular to the 
optical axis and the x- and y-axes will not coincide with the pan and tilt axis. Therefore, we 
have to estimate these unknown rotations from all measured poses and the pan-tilt angles. 
These unknown rotations can be described by a pre and post multiplication of the calculated 
rotation matrix Rmeas for each measurement, resulting in a calibrated rotation Rcalib for each 
measurement: 

 
calib l meas r

=R R R R  (3.66) 

All matrices are rotation matrices, and the 3+3 parameters for the left-hand and right-hand 
correction matrices are estimated from the data. During calibration, the error in estimated pan-
tilt angles (calculated from Rcalib) with respect to the ground truth pan-tilt angles (set-points of 
the pan-tilt unit) was minimized using Levenberg-Marquardt minimization. After the 
calibration, the measurements for a specific distance can be shown in a figure such as Figure 
3-40. A ‘+’ is drawn at each combination of pan and tilt tested. With dots the estimated pan 
and tilt angles for all frames are depicted (50 per pan-tilt combination). The 50 dots per pan-
tilt combination show the influence of image noise on the pose precision. The distribution of 
the dots is clearly not rotational symmetric and dependent on the pan and tilt angles. 
Furthermore, when the pan and tilt angles are in the range <-20°, 20°> the precision is very 
low and large biases occur. Note that -20° and 20° are not part of that range. This observation 
made us split the evaluation of the results in two regions, one inside the <-20°,-20°> area, and 
one outside that area. Note that in Figure 3-40 we show the measurements from an 
experiment done with the camera at 6m distance. This was the largest distance at which the 
marker was still detected often enough to analyze its pose. At 6 meters distance, the errors 
were large and therefore visible. At smaller distances, the bias and noise values were much 
smaller and would not be visible. The rest of the data will be presented in tables. 

What we can see from Figure 3-40 is that many clouds of points form elongated shapes. When 
we treat the pan and tilt axes as normal axes, we can determine the main orientation of each 
cloud of 50 dots in the pan,tilt axes system. A cloud with a horizontal distribution has an 
orientation of 0°. Also the ground truth (pan,tilt) combination can be seen as a vector in the 
pan-tilt axes system and a direction in that system can be calculated. In Figure 3-41 we show 
the orientation of each cloud as function of the direction of the cloud’s corresponding 
(pan,tilt) vector. A linear relation seems to be present, and this information could be used to 
make a model of the error distribution. This model can then be used to estimate the precision 
of a measurement from that single measurement. 
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Figure 3-40 The plusses give the ground truth pan-tilt unit angles. The dots show the 
estimated pan-tilt angles for all frames, 50 per pan,tilt combination. 
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Figure 3-41 Per 50 frames the main orientation of the (pan-tilt) point-cloud is plotted against the 
direction of the ground truth pan,tilt combination. A linear relation seems to be present. 

In Table 3-5 and Table 3-6, numbers are given for the errors in the estimated angles; no 
distinction was made between pan and tilt. We looked at two different aspects. One is the 
precision of repeated measurements, i.e. the influence of noise in the image on the pose errors. 
We estimated over all clouds the standard deviation σnoise within the clouds: 

 �( ) �( )2 250

, ,1
50 1cnoise c p c pcp

c c

pan pan tilt tiltσ
=

   
= − + − −   

   
∑∑ ∑  (3.67) 

where c loops over all clouds, and p loops over all points within that cloud. The maximum 
error due to noise was determined as: 

 �( ) �( )2 2

, ,max max cnoise c p c pc
pan pan tilt tilt

 
= − + − 

 
 (3.68) 

Another aspect is the precision of a single (randomly picked orientation) measurement which 
can be seen as the confidence of our measurement. We calculate the precision as the root 
mean squared (rms) error of our estimates. Instead of using the deviation from the mean as in 
calculating the standard deviation, the deviation from the ground truth is used. We can use the 

same formulas (3.67) and (3.68), but now instead of the mean pan in a cloud �
c

pan , we use the 

ground truth pan value for that cloud. The same change was applied for the tilt. 
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Table 3-5 Orientation precision expressed in degrees, with the marker on a pan-tilt unit for pan or tilt 
outside the range <-20°, 20°>. The 95% best data was used. Left: DICA camera. Right: JAI 
camera 

stddev max rms max

200 cm 0.032 0.069 0.35 0.59

300 cm 0.047 0.10 0.49 0.89

400 cm 0.12 0.27 0.76 1.4

500 cm 0.13 0.27 0.54 0.94

600 cm 0.18 0.48 0.62 1.1

650 cm 6.1 30 12 49

noise error
distance

 

stddev max rms max

140 cm 0.11 0.24 0.66 1.23

200 cm 0.24 0.54 0.75 1.31

300 cm 0.90 3.69 2.14 4.47

noise error
distance

 

  

Table 3-6 Orientation precision expressed in degrees, with the marker on a pan-tilt unit for pan and tilt 
within the range <-20°, 20°>. The 95% best data was used. Left: DICA camera. Right: JAI 
camera 

stddev max rms max

200 cm 0.11 0.25 0.64 1.4

300 cm 0.17 0.44 0.89 2.4

400 cm 0.69 2.3 2.9 6.9

500 cm 0.65 2.4 2.4 9.5

600 cm 0.53 1.5 1.3 5.2

650 cm 0.65 2.0 2.9 11

error
distance

noise

 

stddev max rms max

140 cm 0.31 0.68 1.3 2.0

200 cm 1.1 3.3 2.7 6.8

300 cm 2.7 7.9 4.6 16

noise error
distance

 

These results confirm the observation that the precision and accuracy of the orientation is 
better when the marker is viewed under an angle (here 20° or more). In addition, the rms error 
is much higher than just the error due to noise. This suggests that the model does not fit the 
data properly. Another possibility is that the accuracy is limited by the calibration of the 
camera or limited by the calibration of the unknown rotations of equation (3.66). 

The evaluation of the estimation of the marker’s position was done similarly to the evaluation 
of the orientation estimation. The reason to calculate the position of the marker and not the 
position of the camera is that the position and orientation of the camera are intimately 
coupled: all position variables are sensitive to small orientation errors. The marker’s position 
and orientation are less coupled in the sense that an orientation error will have a smaller 
influence on the position. 



3.8. EVALUATION OF POSE ESTIMATION 95 

  

We estimated the ground truth as follows. The centre (i.e. origin) of the marker will not 
coincide with the joint of the pan-tilt unit, so when the unit tilts, the marker’s centre will 
change position. The position changes as well when the unit pans. Figure 3-39 shows that the 
marker’s centre is approximately 20 cm above the pan-tilt unit’s joint. In addition, the relative 
position between the camera and the joint of the pan-tilt unit is only approximately known. 
Therefore, we need to estimate six position parameters: The 3D vector from the camera to the 
joint and the 3D vector from the joint to the centre of the marker. We also have to fit a 
correction for the unknown direction of the pan-tilt unit in camera coordinates, thus in total 
there are nine parameters to calibrate. The positions of the marker calculated from the 
measurements are tested against its estimated ground truth positions. The estimated ground 
truth is given by 

 
est.truth joint corr set centre

r r r= + ⋅R R
� � �

, (3.69) 

in which Rset is the controlled pan-tilt rotation, and the other parameters on the right hand 
side are to be estimated. After doing the measurements, the unknown parameters were 
optimized by minimizing the Euclidean distance between the positions calculated from the 
measurements and estimated ground truth positions. A Levenberg-Marquardt minimization 
algorithm was used. 

In Table 3-7 and Table 3-8 statistics for the noise and error of the three coordinates are given, 
where we adopt the same meaning for noise and error as previously with the orientation 
results. Values for the error include the bias of each cloud of 50 points, and values for the 
noise disregard those biases. Values for the noise therefore give the deviation due to noise in 
the images, and values for the error can be used as measure for the expected error in a single, 
random measurement of the marker’s position.  

 

Table 3-7 Precision of the marker’s position expressed in centimeter, using the DICA 
camera with the marker on a pan-tilt unit. The 95% best data was used 

stddev/rms max stddev/rms max stddev/rms max

200 cm 0.0033 0.0084 0.0015 0.0036 0.025 0.068

300 cm 0.0025 0.0067 0.0022 0.0053 0.052 0.14

400 cm 0.0054 0.015 0.0064 0.016 0.17 0.47

500 cm 0.0096 0.025 0.0075 0.019 0.23 0.60

600 cm 0.0053 0.014 0.018 0.046 0.36 0.97

650 cm 0.015 0.055 0.025 0.067 0.49 1.30

200 cm 0.027 0.070 0.012 0.024 0.18 0.55

300 cm 0.043 0.13 0.047 0.12 0.32 0.91

400 cm 0.021 0.069 0.030 0.059 0.52 1.4

500 cm 0.028 0.068 0.025 0.063 0.89 2.4

600 cm 0.034 0.07 0.059 0.14 1.3 3.9

650 cm 0.039 0.14 0.072 0.16 1.2 3.2

y z

noise

error

distance
x
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Note that the rms error is generally much larger than the noise and that the precision in z is 
much lower than the precision in x or y. Even with the DICA at 6.5m distance, the precision 
in x and y coordinates is extremely good. From the camera’s point of view, this means that the 
centre of the marker in image coordinates is very accurate, that in turn means that the angle 
between the optical axis and the vector from the centre of the camera to the centre of the 
marker is very accurate. This of course is one of the reasons that people use multiple markers 
reasonable far apart to determine the position of a camera. From multiple accurate 
measurements of each of the markers’ centers, an accurate position of the camera can be 
triangulated. 

3.8.2 Dependence of the pose accuracy on the location in the 
image 

The previous experiment showed the precision of the pose estimation with the marker in the 
middle of the image. That means that lens distortions play no big role. In this experiment, we 
determine the precision in case the marker is imaged at various positions in the image. This 
was accomplished by putting the camera on a pan-tilt unit instead of the marker. As seen in 
the previous experiment, the pose estimation is best when the marker is viewed under an 
angle. So we chose to put the marker under 30° (pan direction). In Figure 3-42 an example can 
be seen for the JAI camera, with both pan and tilt at -30°. 

Table 3-8 Precision of the marker’s position expressed in centimeter, using the JAI camera with the 
marker on a pan-tilt unit. The 95% best data was used 

stddev/rms max stddev/rms max stddev/rms max

140 cm 0.0047 0.012 0.0057 0.014 0.058 0.16

200 cm 0.015 0.039 0.011 0.029 0.16 0.43

300 cm 0.022 0.059 0.027 0.075 0.54 1.5

140 cm 0.013 0.030 0.021 0.043 0.22 0.50

200 cm 0.040 0.11 0.029 0.069 0.40 1.1

300 cm 0.059 0.15 0.075 0.21 1.6 4.2

z
distance

noise

error

x y
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Figure 3-42 Example picture taken by our JAI camera mounted on a pan-tilt unit. The 
camera was panned to the right by 30° and tilted backwards by 30°. The 
marker had a fixed pan of 30°. 

In this experiment, we again calculated the pose of the marker in camera coordinates. We 
panned the camera in the range [-40°, 30°] and tilted the camera in the range [-30°,30°]. 
Outside those ranges, the marker was not entirely in view. For every combination of pan and 
tilt, we grabbed 50 images and calculated the marker’s pose for each of them. Also in this 
experiment, the ground truth pose had to be estimated. For the orientation this was done by 
minimizing the difference between the controlled (pan,tilt) angles and the estimated angles as 
in the previous experiment. The optimization algorithm will incorporate the fixed pan of the 
marker in the rotation matrices Rl and Rr of equation (3.66). However, because now the 
camera is rotated, the inverse of Rset was used.  

Figure 3-43 shows the results for the DICA camera at 3.80m. The plusses show the controlled 
pan and tilt angles, and the dots show all calibrated measurement values. In these experiments, 
we did not see a large error for a specific range of (pan,tilt) angles. Table 3-9 shows the root 
mean square error and maximum error under the column ‘error’, and the standard deviation 
and maximum error due to noise in the images under the column ‘noise’.  

Table 3-9 Orientation precision expressed in degrees with the camera on a pan-tilt unit. The 95% 
best data was used. Left: DICA camera. Right: JAI camera 

distance stddev max rms max

180 cm 0.03 0.07 0.30 0.59

280 cm 0.03 0.07 0.44 0.79

380 cm 0.07 0.15 0.42 0.77

noise error

 

distance stddev max rms max

120 cm 0.06 0.13 0.58 1.57

180 cm 0.90 1.86 2.27 3.84

noise error

 

Once again, the values for the error are much higher than the values for the noise. Repeated 
measurements with the same orientation are very precise, but a much larger bias could be 
present. We could not find a relation between the orientation and the actual bias, so we can 
treat the bias as a stochastic variable in orientation. 
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Figure 3-43 Measurement result with a DICA camera on a pan-tilt unit. The plusses are the ground truth 
orientations, the dots are the calculated orientations. 

To estimate the ground truth for the position of the marker we reuse formula (3.69). Because 
the formula holds for a rotating marker, and we rotated the camera in this experiment, we used 
the inverse of Rset in place of Rset. 

Visualizing the measurement results is difficult because we measured the 3D position as 
function of a 2D orientation. We tried to visualize only the x,y-position error in Figure 3-44. 
The plusses show the orientation of the pan-tilt unit. At each of the plusses, a coordinate 
system is constructed with the plus as origin. In the local coordinate systems, the 50 measured 
x,y position errors for that orientation are depicted with dots. An error of 1 cm in the local 
system’s x-axis corresponds to 1° on the pan axis, and an error of 1 cm in the local system’s y-
axis corresponds to 1° on the tilt axis. Every cloud of points has an associated plus. With little 
effort, one can find the associations even when the bias is large. 
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Figure 3-44 Marker position error vs. orientation of the DICA camera on a pan-tilt unit. The plusses are 
the origins of local axis systems in which the measured position errors are plotted with dots 
(see text for detailed explanation). 

Due to the calibration step, the mean position error is zero. For many orientations, the bias in 
position is clearly much larger than the precision. In addition, the bias seems to have a relation 
with the pan angle. This lets us conclude that the position error is not noise limited, but model 
limited. One can also notice that the biases of the clouds are not consistent. For instance, the 
clouds with an absolute pan and tilt of 5° have a small bias compared with the biases of 
surrounding clouds. We do not have a good explanation for this; it could be an artifact of the 
optimization algorithm. Table 3-10 and Table 3-11  show the precision in position estimation 
for both the JAI and the DICA cameras for a number of distances between the camera and 
the marker. 
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Table 3-10 Precision of the marker’s position expressed in centimeter, using the DICA 
camera on a pan-tilt unit. The 95% best data was used 

stddev/rms max stddev/rms max stddev/rms max

180 cm 0.0039 0.014 0.0031 0.011 0.013 0.030

280 cm 0.0074 0.026 0.0065 0.023 0.025 0.058

380 cm 0.023 0.098 0.017 0.068 0.063 0.16

180 cm 0.50 1.4 0.20 0.54 0.18 0.4

280 cm 1.3 2.6 0.64 1.6 0.45 1.3

380 cm 1.6 3.2 0.74 1.8 0.6 1.6

error

x y z
distance

noise

 

 

Table 3-11 Precision of the marker’s position expressed in centimeter, using the JAI camera on a 
pan-tilt unit. The 95% best data was used 

stddev/rms max stddev/rms max stddev/rms max

120 cm 0.0055 0.017 0.0055 0.016 0.023 0.054

180 cm 0.029 0.081 0.035 0.10 0.096 0.24

120 cm 0.11 0.28 0.099 0.27 0.20 0.39

180 cm 0.21 0.58 0.24 0.54 0.73 1.6

y zx

error

noise

distance

 

The tables indicate that a bias is present which is much larger than the uncertainty due to 
noise.  When we compare these results with the previous experiment in which the marker 
rotates, the following observations can be made: 

- All values for the x and y position are larger in this experiment. 
- The errors in z position due to noise are lower in this experiment. 
- For the DICA, the rms errors in z position are almost the same as in the previous 

experiment. 

The larger rms errors in x and y position can be attributed to an incorrect lens model or errors 
in the estimation of that model’s parameters. It is less obvious why the error due to noise is 
higher as well. Maybe it is a result of the 30° pan of the marker, but then only the standard 
deviation in x position would go up, while the precision in y position would stay the same. 
Another possible explanation is that because the marker is not on the optical axis, an error in 
the z-position induces an error in x and y positions. Consider point M to be the middle of the 
marker. The relation between variations in the x-position Mx, z-position Mz and the horizontal 
position u in undistorted image coordinates is given by: 

 
x

x z

z

x z z

M
u M u M

M

M u M u Mδ δ δ

= ⇔ = ⋅

= ⋅ + ⋅
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Near the image border where u is greatest, the influence of an error in Mz is greatest. With our 
lens, the maximum of u will be around 1.2 (108° opening angle), and with the observation that 
the standard deviation in z is around three times the standard deviation in x and y, this effect 
could well be the cause of the higher standard deviation in x and y position error. 

3.8.3 Pose accuracy of virtual objects 

So far, we measured the accuracy of the marker pose or camera pose, but we are actually 
interested in the pose accuracy of the virtual objects that we place in the world. In our 
Augmented Reality application, the marker will be attached to ceilings and walls, and the 
virtual objects are projected at a different position. The relation between the pose of the 
marker m in camera coordinates and virtual object o is given by: 

 

c c m c m c

o m o m o m

c m c

o o m

p H p R p T

Rdp d p dTδ θ
δθ

= = +

= ⋅ +

� � �

�� �
�

 (3.70) 

To test the applicability of our setup for augmented reality, we have to set a required accuracy 
in the position of the virtual object. We set this to 1% of the distance to that object, which 
corresponds to roughly 0.5° error in the direction from the optical point to the object. 
Actually, this accuracy should be specified for the coordinates in the human eye frame, but 
here we will assume the camera is placed near the eye. 

We performed a simulation with a marker and a virtual object both on the optical axis to find 
out at what distance the virtual object can be displayed in accordance to our requirement. The 
setup is shown in Figure 3-45. 

 

δα  

marker Virtual object 

Lens 

c

m
d  

c

od  m

od  

δθ  
yδ  

Optical axis 

 

Figure 3-45 Simulation setup with object and marker on the optical axis. Our requirement says that yδ  

due to δθ  should be less than 0.01 c
od . Or, δα  should be less than 0.5°. 

We took the best camera from our results, the DICA, and we presume that we do not have 
any modeling errors. This means that we will use the relation between the noise in pose 
estimation and the distance to the marker (Table 3-5 - Table 3-7). Figure 3-46 gives the lower 
and upper bound on the admissible object distance for different marker sizes. 

With our current A4 sized marker, a high admissible range is only realized when the marker is 
within 1.4m of the camera. Outside that region, the object should be within 60 centimeters 
from the marker. The 64 times A4 sized marker (8 x 8 A4s) is not feasible in reality, but it is 
used to show the effect of four normal markers at the four corners of that big marker. 
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As already mentioned, Figure 3-46 gives an overestimate. When we include the estimated bias, 
thus use the rms values of the error from Table 3-5 and Table 3-7, the admissible distance 
between marker and object can be calculated to be around 5% of the marker distance, even 
with the biggest simulated marker. 

 

Figure 3-46 Upper and lower bounds on the admissible distance of projected virtual objects vs. 
distance to the marker. The dashed line indicates that the virtual object is displayed on the 
marker 

The conclusion is that with this high-resolution camera with only a single A4 sized marker, the 
noise and deviation properties are not sufficient enough for full image augmented reality. Only 
the virtual object near the marker will have a stable position. It may well be that when a full 
Kalman filter is used as in Chapter 4, the required accuracy is met, provided of course that the 
systematic errors can be removed. 

The precision of the pose estimation is related to the minimum size of the region of interest in 
the image that contains the features. When the size of the marker is increased, this region 
grows. When multiple markers are used, the region will be bigger as well. Both methods will 
increase the precision. However, as one of the goals was to minimize the number of markers, 
we think it is worth trying to combine the single marker with the use of natural landmarks, 
possibly augmented with a simple model of the environment. This yields a bigger region of the 
image that can be used for pose estimation, which again means a higher precision. 
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3.9 Conclusion and Discussion 

The aim of this chapter was to determine the steps to be taken to obtain the most accurate 
pose of a camera by looking at a man-made landmark, a.k.a. fiducial using image processing 
only. The task is disturbed by severe lens distortion and low edge contrast. The pose 
estimation needs to be fast to minimize latency and power consumption. Our investigations 
led to the use of a rectangular pattern with a big black border on a white field as fiducial, with 
inside a 2D barcode to distinguish the individual fiducials. 

To obtain the best pose, we had to eliminate systematic errors and noise as much as possible. 
We determined that when the black border shows thicker than 8 pixels in the image, the edge 
points on the outer contour of the border can be located with zero bias and a RMS error less 
than 0.01 px., provided that we use Gaussian derivative operators. With simpler derivatives, 
this bias will stay low even at a thickness of 3-5 pixels. However, this low error is 
symmetrically dependent on the sub-pixel location of the edge. If a large number of points is 
used for the line fit of the contours, the bias error may be regarded as a zero mean noise 
source. However, for short edges, a bias will still be present. 

In the presence of noise, our most robust detector is the one that uses the integer Gaussian 
derivative filter with an evaluation distance d of two pixels, provided the line thickness was big 
enough. We selected the detector with the same Gaussian derivative but an evaluation distance 
of one, as we expect line thicknesses of near five pixels. In the future, the optimal detector 
could be chosen on basis of the expected noise and line thickness automatically, e.g. making a 
difference between indoor and outdoor illumination circumstances. The required processing 
power could be taken into account as well when determining which detector to use. We 
selected an integer approximation of the Gaussian because of the very fast implementation 
using special Single Instruction Multiple Data instructions. Selecting a more simple derivative 
filter would give us 3.5ms speed-up (on a total processing time of 20-45ms) at the cost of a 
lower accuracy. 

We further determined the size of the fiducial pattern that is needed when it should be 
detected at 5m distance under an angle of 45°. The minimum size is somewhat larger than A4, 
i.e. 13 x 16.5 cm, when we allow a border size of only five pixels. The bias per edge location 
will be between 0.01 and 0.04 depending on the scale of the edge. When the camera is not 
moving, the scale is 0.8px, corresponding to a bias of 0.01px. 

Because the edge location has only a small bias, the error of our algorithm is noise limited, and 
in the absence of noise, it is model limited. We have shown in Figure 3-15 of section 3.5.2 that 
our step-edge model fits well to experimental data, but still a significant bias of around 0.004 
px was found to be present. With the edge model used by our detector, the rms error is 
around 0.004 px as well (see Figure 3-22 upper left); however an integer approximation of a 
Gaussian derivative filter was used there instead of the better performing standard floating 
point version used in the model verification experiment. In section 3.5.1 we mentioned that a 
Gaussian is in general an accurate enough approximation to the point-spread-function (PSF) 
of an optical imaging system. We attribute the significant bias to the use of that 
approximation. 
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When the Contrast to Noise Ratio (CNR) is around 26dB, the standard deviation of the edge 
location is 0.1 px. This is also the residual error of the saddle points after lens calibration. 
When the CNR is higher, the biggest source of error in our experimental setup seems to be the 
model of the lens. We tried calibrating all distortions away, enabling the use of a pinhole 
camera model, but even with an elaborate lens distortion model we obtained a residual 
calibration error of 0.37 pixels maximum. (standard deviation of 0.1 px.). We noticed an 
increased blurring at the borders of the image, which suggests a lens artifact. Currently we are 
not aware of lens models or calibration methods that address this problem. Normally, such 
artifacts are minimized optically using more elaborate lens systems. 

We showed that we can detect the contours of a fiducial down to a CNR of 20dB and hence 
we only had to worry about the detection of the four corners along these contours. We found 
that the q-value used in the Haralick corner detector is the least sensitive to noise, and it can 
be used with contrast to noise ratios higher than 20 dB. When the contour of the marker is 
detected by the Canny edge detector, we can reliably detect corners with an angle β less than 
120°. When the CNR is 25 dB, corners can be detected up to 150°. Using Figure 3-25 we see 
that corner angles of 120° and 150° relate to marker pitch angles of 35° and 65° respectively. 
To realize our target of detecting the marker up to pitch angles of 60°, we need the CNR to be 
around 25dB. 

Using measurements to determine the accuracy of our pose estimation algorithm, we 
determined that the position of a marker in camera coordinates is very accurate when the 
marker is on the optical axis at 6m: i.e. less than 0.5 mm in x and y, and less than 1 cm along 
the optical axis. The orientation accuracy, however, highly depends on the actual orientation. 
If we ignore a bias in the orientation, the angular error is less than 2.5° when the pitch is less 
than 20° at 6m. When we convert the marker pose in camera coordinates to the camera pose 
in marker coordinates, this orientation error results in an error in position of 4.3 cm/m. With a 
pitch larger than 20°, the orientation accuracy is much better: i.e. less than 0.5°, resulting in a 
positional error of the camera of less than 0.9 cm/m. 

With this data, we were able to determine the range where virtual objects should be projected 
around the marker to achieve the required precision for a good augmented reality system using 
our hardware. Figure 3-46 showed that a virtual object should not be projected more than 
roughly 50 cm in front of a marker (i.e. in depth direction) , or 1m away from the marker (i.e. 
in lateral direction). Outside this range, the virtual object will jitter too much for the 
requirements. In the subsequent chapter, we show that we are able to increase the precision, 
but when the jitter is gone, the systematic error will still be present. This bias in orientation 
was measured to be 1.4° maximum. This means we could not reach our target orientation 
accuracy of 0.5° as set in Chapter 2. More research is needed to investigate how to further 
reduce this systematic error, with a better lens model as a starting point. 
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Chapter 4  
Sensor fusion for pose estimation 

In the previous chapter, we determined the pose accuracy of a virtual object obtained by 
looking with a head-mounted camera at a single A4-sized man-made fiducial. We determined 
that its position in camera coordinates is very accurate when the marker is on the optical axis. 
The orientation accuracy of the marker, however, highly depends on its actual orientation. 
When we convert the marker pose in camera coordinates to the camera pose in marker 
coordinates, this orientation error results in an error in camera position of about 4 cm/m. This 
leads to the conclusion that a virtual object should not be projected further away than about 
50 cm perpendicular to the surface of the marker or 1m away in lateral direction of the marker. 
Outside this range, the object will start to get an offset and will start to jitter. Finally, marker 
tracking with a camera is quasi static, i.e. slow with respect to the possible speed of head-
rotation and it has latency. 

In this chapter we will investigate how we can improve the camera tracking by fusing its data 
with data from an inertia tracker. By employing a Kalman filter, we expect to achieve a better 
robustness against noise and hence a better pose estimate. We also expect a suppression of the 
jitter for objects further away and pose update rates that are fast and accurate enough, when 
we rotate our head. 

In Chapter 2 we set the goals for our pose estimation to be at least as good as the resolution of 
our 60 Hz XVGA head mounted display. This sets limits for pose estimation to a quasi 
statically misalignment ≤ 0.03° at head speeds ≤ 1.8°/s, a dynamical misalignment ≤ 0.5° 
when smoothly pursuing an object at ≤ 30°/s, and a dynamical misalignment ≤ 2.5° when an 
event in the image draws the attention at ≤ 150°/s. 

The inertia tracker described in Chapter 2 measures the 3D acceleration vector using 
accelerometers, the 3D angular velocity vector using gyroscopes and the 3D orientation vector 
using magnetometers. Our first focus is on the accelerometers.  There is no easy way to 
combine the absolute position we obtain from a camera measurement with the acceleration 
measurements from the inertia sensors as the (translational) velocity vector has to be estimated 
from the available sensor data. The velocity can be estimated using the integral of the 
acceleration, or using the difference in absolute position at different times. Because most 
sensors provide noisy measurements, the estimate for the velocity is noisy as well. When two 
estimates are combined in the correct way, the estimate will have the least possible noise, or 
phrased otherwise, it is optimal in a statistical sense. Hence, the job of the sensor fusion filter 
is: optimal estimation of the pose; unbiased with minimal error. For this purpose we chose the 
Kalman filter, a frequently used filter for sensor fusion in tracking applications. 

We will start by explaining the several versions of the Kalman filter. Then we can explain our 
process models for the position and orientation filters used in the Augmented Reality 
demonstrator. The last part shows our modular Pluggable Kalman Filter design. As mentioned 
in section 2.5 we want to design a generic Kalman filter framework in which sensors can be 
plugged in and out independent of the application that uses the pose. We did not implement 
the full framework, only the decentralized Kalman filter was implemented and analyzed. 
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4.1 Kalman Filtering 

The sections 4.1.1 and 4.1.2 are reworked from [84] 

Kalman filters [85] are widely employed to estimate the (hidden) state of dynamic systems. 
They use a linear model of the system to predict a future state from the current state estimate. 
When (part of) the state is observed by (noisy) sensors, the difference between the predicted 
state and observed state is used as a feedback to update the predicted state in a statistically 
optimal way.  

The state of the system is represented as a vector of real numbers. At each (discrete) time 
increment, the new state is generated by applying a linear operator to the previous state, 
adding some noise to cope with changes in the state that are not modeled. Information from 
the controls on the system can be incorporated if they are known. Accordingly, another linear 
operator generates the visible outputs from the hidden state and knowledge about the 
measurement noise. This output can then be compared with sensors measurements. 

The Kalman filter may be regarded as analogous to a hidden Markov model, with the key 
difference that the hidden state variables are continuous (as opposed to being discrete in the 
hidden Markov model). Additionally, the hidden Markov model can represent an arbitrary 
distribution for the next value of the state variables, this in contrast to the Gaussian noise 
model that is used for the Kalman filter. There is a strong correspondence between the 
equations of the Kalman Filter and those of the hidden Markov model. A review of this and 
other models is given in [86]. 

4.1.1 Dynamic system model 

In order to use the Kalman filter to estimate the internal state of a process given only a 
sequence of noisy observations, one must model the process in accordance with the 
framework of the Kalman filter. This means specifying the matrices of a process model for 
each time-step n as described below and depicted in Figure 4-1. 

The Kalman filter model assumes the true state at time n -  m

n
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 - is evolved from the state 
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Figure 4-1 Model underlying the Kalman filter. Circles are vectors, squares are matrices, and stars 
represent Gaussian noise with the associated covariance matrix at the lower right. 
Adapted from [84] 
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where 

• ΦΦΦΦn is the state transition model which is applied to the previous state xn−1. 

• ΓΓΓΓn is the control-input model which mixes contributions from the independent control-

input sources in the control vector i

n
u ∈ℜ
�

.  

• 
n

u
�

 is the control vector that describes the influence of controlled variables on the state 

and is assumed to be drawn from a zero mean multivariate normal distribution with 
covariance Un. 

 ˆ( , )
n i n n

u N u U
� �
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• Gn is a model that mixes contributions from the noise sources in the vector l

n
w ∈ℜ
�

. 

• 
n

w
�

 is the process noise that describes how well the model fits to reality. It is assumed to 

be drawn from a zero mean multivariate normal distribution with covariance Qk.. 

 (0, )
n l n

w N Q
�
∼  

In many Kalman Filter descriptions the noise on the control-inputs is not explicitly used, as it 
can be equivalently described by the process noise. We make this distinction because we will 
later develop the Kalman filter for continuous time processes. The process noise will then be 
described in the continuous-time domain, whereas the control-input is a sample from a 
stochastic variable and kept constant for some time. 

At time n an observation (or measurement) k

n
z ∈ℜ
�

 is made according to 

 
n n n

z x v= +H V
� ��

 (4.2) 

where 

• Hn is the observation model which maps the true state space into the observed space. 

• V is a model that that mixes contributions from independent noise sources in the 

vector m

n
v ∈ℜ
�

 

• 
n

v
�

 is the observation noise which is assumed to be drawn from a zero mean multivariate 

normal distribution with covariance Rn. 

 (0, )
n m n

v N R
�
∼  

All matrices could be different at each time step, and for each measurement there will be a 
specific H matrix. The initial state and the noise vectors at each step 

0 1 1 0{ ,  ,  ...,  ,   ... ,   ... }n n nx w w v v u u  are all assumed to be mutually independent. 

Many real dynamic systems do not exactly fit this model; however, because the Kalman filter is 
designed to operate in the presence of noise, an approximate fit is often good enough for the 
filter to be very useful. Variations on the Kalman filter described below allow richer and more 
sophisticated models. Converting a continuous-time process model to the discrete-time 
domain will be described later on. 
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4.1.2 The Kalman filter 

The Kalman filter (KF) is a recursive estimator. This means that only the estimated state from 
the previous time step and the current measurement are needed to compute the estimate for 
the current state. In contrast to batch estimation techniques, history of observations and/or 
estimates is not required. The state of the filter is represented by two variables: 

• 
|
ˆ

n n n
x x+ =
� �

, the estimate of the state at time n given the previous state and the current 

measurements 

• 
|n n n

+ =X X , the covariance matrix of the error for that state estimate 

The superscripts + and later – are used to distinguish the different estimates of the state from 
the true state. 

The Kalman filter has two distinct phases: Predict and Update. The predict phase uses the 
estimate from the previous time-step to produce an estimate of the current state. In the update 
phase, measurement information from the current time-step is used to refine this prediction to 
arrive at a new, (hopefully) more accurate estimate. 

Predict 

In the prediction phase or time-update step, the a-priori estimate of the state at time n is 
calculated from the previous state and the control-input: 
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We omitted the subscripts n in some matrices for clarity. 

Update 

During the measurement-update phase, first the innovation or measurement residual is calculated: 
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Then, the optimal - see below - Kalman gain is given by: 

 1T
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− −=K X H S  (4.5) 

Now the updated state estimate and its error covariance are computed by: 
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The formula for the updated state estimate covariance above is only valid for the optimal 
Kalman gain. Here, optimal means that the Kalman gain minimizes the mean squared error of 
the state estimate after the update. The Kalman filter, therefore, is a least-squares state 
estimator. Other Kalman gain matrices can be used; however, the following general update 
formula has to be used: 
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If at a certain time-step n multiple measurements are available, then this update phase can be 
repeated for each sensor separately or the measurements can be grouped together to form 
larger measurement vectors. 

Invariants 

If the model is accurate, and the values for 
0

x+�  and 
0

+X  accurately reflect the distribution of 

the initial state values, then the following invariants are preserved: all estimates have mean 
error zero 
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where E[ξ] is the statistically expected value of ξ, and the covariance matrices accurately reflect 
the covariance of the estimates 
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We define the covariance of a column vector x
�

 as: 

 cov( )
T
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 (4.10) 

When x
�

 is not zero mean, x
�

in the right hand side should be replaced with [ ]x E x−
� �

. 

The assumption that the process model can be described by a linear system is not true for 
most physical processes. In our case, the state includes the orientation and the angular velocity, 
and their relation cannot be described linearly. Therefore, an extension of the linear filter is 
needed. 

4.1.3 Extended Kalman Filter 

The non-linear extension of the Kalman filter (EKF) is made in the process model as well as 
in the measurement model. The process and measurement models can be written as 
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with the same covariance matrices U, Q and R for the input, process and measurement noise 
respectively. For simplicity we do not use a subscript n for the non-linear functions φ and h, let 
alone that at every time step the functions can be different. To be able to use the Kalman 
equations, we linearize the models around the current state estimate, resulting in a first order 
approximation. For simplicity we neglected here the term describing the influence of noise in 
the control-inputs: 
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Similarly we find for the observation: 
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To get a more convenient notation, we introduce the prediction errors,  
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the measurement error, 
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and the matrices: 
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The model equations (4.13) and (4.14) can now be rewritten, adding the noise in the control-
inputs: 
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These error states can now be estimated using a standard linear Kalman Filter. This is 
permitted if the model functions are approximately linear around the operating point. This 
form of the Kalman Filter is called an indirect or error-state filter as the error states are estimated, 
see section 4.1.4. The error-states now estimate the additive error of the real state which is 
updated using formula (4.11). Therefore, we call this an additive error-state filter. We denote 

the separately maintained state-estimate as x̂
�

 with usual super and subscripts. Note that this 
estimate is only a value, all noise sources are handled in the error-state filter. The real state is 
calculated as the addition of the error-state to the separate estimate: 
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At every moment in time the current estimate of the error can be transferred into the separate 
estimate by using: 
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The covariance matrix maintained by the error filter is the covariance of the error estimate. 
Since the actual state in formula (4.15) is just a value, the covariance matrix for the state 
estimate itself is the same matrix. For a linear model it is not needed to transfer the error-state 
to the separate estimate after every time-update or observation-update. After the transfer, the 
separate estimate is optimal again. However, in case of a non-linear model the approximated 
model matrices are linearized around the separate estimate, and that estimate is not the correct 
one when the error is not transferred. Therefore, you want to keep the error-state close to zero 
for the best approximation. Normally the transfer is done at every corrector step. That means 
that the predicted estimate of the error in the future will be zero, and the predicted error 
measurement will be zero as well. In that case, the total predictor-corrector formulas for the 
actual states become: 
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for the prediction step, and  
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for the correction step with the Jacobian matrices defined in (4.17). If the measurement 

residual 
n

y  is large, the first order approximation in the calculation of the Kalman gain K may 

not be accurate enough and this method may become unstable. One method to solve this is to 
use an iterative approach of the corrector step using the Gauss-Newton algorithm. This 
problem can also be solved by transforming the measurement such that the measurement 
model h becomes linear in this fictive measurement. However, the part of the function h that 
mixes in the measurement noise will remain or even become non-linear due to this 
transformation. The transformation needed may not exist; therefore, it is not generally 
applicable. The next section describes the restrictions when developing a more general indirect 
Kalman Filter. 

4.1.4 Indirect Kalman Filter 

In an indirect Kalman Filter the state is split into two parts: a separately maintained estimate of 
the real state, which is updated using a normal (non-linear) process model without noise, and 
an error-state that is maintained by a Kalman filter (including all noise sources). The most 
common form, the additive linear form, was presented with the EKF in which the error-state 
can be added to the separate state estimate for an optimal estimate. 

Traditionally, the indirect form of the Kalman filter is very popular in navigation because the 
time-update of the separate state and the time-update of the error-state can be implemented 
on different pieces of hardware. If the error-state filter temporarily fails, the state can still be 
estimated using fast inertia sensor measurements as control-input variables. When the time-
update is very accurate, an efficient indirect filter can be made with measurement update-rates 
as low as once per 30 minutes (in avionics). As measurement updates are costly in terms of 
processing power - a matrix inversion -, this method is preferred in embedded applications 
over a direct Kalman Filter in which the high-frequency sensors (i.e. the control-inputs in the 
indirect filter) are treated as measurements (see section 4.2). 

When developing an indirect Kalman filter for our Augmented Reality application, we found 
that updating an orientation state with its error-state is more conveniently described by a non-
linear function (this will be explained in section 4.2). Therefore, we extended the indirect 
additive formulation to a non-additive formulation. The general form to combine the state 
estimate with the error-state is given by: 

 ˆ( , )
nn n xx c x e=  (4.24) 

where  

• c is the function that combines the estimate of the state with the true error to 
determine the real state 

• xn is the true state (stochastic variable) 

• ˆ
nx  is the separately maintained state (only values) 

• 
nxe  is the true error-state (stochastic variable) 

Using this equation we can rewrite the extended non-linear process model to include the 
combiner function: 



4.1. KALMAN FILTERING 113 

  

 

11 1 1 1 1 1

1 1

1 1

ˆ( , , ) ( ( , ), , )

ˆ ˆ ˆ( ( , ,0), ) ( , )

ˆ ˆ ˆ( , ,0)

n

n n

n n n n n x n n

n n x n x

n n n

x x u w c x e u w

c x u e c x e

x x u

ϕ ϕ

ϕ

ϕ

−− − − − − −

− −

− −

= =

= =

=

 (4.25) 

If c is an addition, we can write for the process model of 
nxe : 

 
11 1 1 1 1

ˆ ˆ ˆ( , , ) ( , ,0)
n nx n x n n n ne x e u w x uϕ ϕ

−− − − − −= + −  (4.26) 

When the first order Taylor series approximation is taken around the state ˆ
nx , we get formula 

(4.18) again. However, formula (4.26) can also be used when the error is not immediately 
transferred to the actual state. Effectively this will become an extended indirect Kalman filter 
as the error state itself has a non-linear process model. If the error states and the functionϕ  

are chosen wisely, the error-state model may depend neither on the estimated state nor on the 
value of the control-inputs. 

In the case of a general function c, we need the function to have an inverse in the following 
way: 
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z c y x
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=

=
 (4.27) 

Now the prediction step of the error-state can be written as: 

 ( )
1

1

1 1 1 1 1
ˆ ˆ( , ,0) ,  ( ( , ), ,

n nx n n n x n n
e c x u c x e u wϕ ϕ

−

− − +
− − − − −=  (4.28) 

An extended Kalman Filter can be constructed from this and despite the looks, the resulting 
formulas may become simple, especially when the error is transferred to the state at every 

measurement update so that 
1

0
nxe
−

+ ≜  

The measurement can be modeled in terms of the error-state: 

 ( ) ( )ˆ, ( , ),
nn n n n x n

z h x h c x eν ν= =  (4.29) 

The generic method is now to linearize the function h around 
nxe
−  like in the normal extended 

filter. However, we use another method that first transforms the measurement such that the 
measurement model becomes linear in the measurement value, circumventing the problems of 
linearizing the Kalman gain. This method requires that the measurement model h is partly 

invertible. First, the state is split up into two parts: a part 
,n z

x  that is used when predicting the 

measurement and a part 
,n o

x  that is not used. The measurement model can now be defined 

using only the first part: 
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= =

 (4.30) 
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The function 
z

h  should be invertible so that part of the state can be calculated from the 

measurement: 

 1

,
( , )

n z z n n
x h z v

−=  (4.31) 

We convert the real measurement to a direct estimate ˆ
nxe  of the error-state using: 
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 (4.32) 

We have to add the missing information 
,0

ˆ
n

x  in this formulation to enable the use of equation 

(4.27), the state variables not depending on this measurement will be zero in this estimate. This 
is corrected in the following step where the fictive error-measurement for the indirect Kalman 
filter is calculated: 
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 (4.33) 

The matrix He just selects the variables from ˆ
x

e  that are dependent on zn, and the matrix V is 

used to linearize the effect of the real measurement noise as in a normal extended filter. Note 
that this method of converting measurements cannot be used if the real measurement does not 

provide enough information to calculate
,n z

x , which means that the function 
z

h  is not 

invertible. However, we use this formulation for measurements of orientations. A measured 
orientation can for instance be represented in a way different from the representation in the 
filter state. The above formulation allows for the conversions between the two (see section 
4.3.3). 

4.1.5 Continuous time processes 

Until now, we presumed discrete processes. However, our augmented reality application will 
estimate the head-pose of the user which is a continuous-time variable. Sensor measurements 
are available at discrete times only, so a discrete process model can be used. However, these 
measurements may not be available at fixed time intervals. The formulation of the Kalman 
filter starting from the continuous-time domain allows calculating the correct model matrices 
and specifically the correct process noise for different time-intervals. In the case of ordinary 
linear differential equations the process can be described by: 

 x x u w= + +F C B
� � � �ɺ  (4.34) 
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When we assume (for now) that the matrices F, C and B, and the vectors u
�

 and w
�

 are 
constant during the integration interval we can use a simple integration method. It can be 
shown ([87 ch.3, 88] that the solution to a vector differential equation /dy dt y= A

� �
 with 

constant matrix A is given by ( ) (0)ty t e y= A� �
, just as if it were a scalar. First, we bring equation 

(4.34)  in the homogeneous form ( ) ( )y t Ay t=
�ɺ : 
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=    
   

F C B
� � ��ɺ

 (4.35) 

Using the matrix exponential we can now calculate the state at time t  from the state at time 

( )t t∆− : 
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1 1
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e

 
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+ ∆   
=   

   
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� �
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 (4.36) 

The solution will be of the form of the normal discrete Kalman Filter: 

 
1 0 1 1
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 (4.37) 

We know however that the process noise is a continuous function of the time, so assuming 
them fixed does not describe the update for the state’s covariance very well. Let the process 
noise 

tw
�

 be drawn from a zero-mean multivariate normal distribution: 

 (0, )tw N W
�
∼  

All matrices and vectors may now be time dependent. First, we determine the homogenous 

solution, where u
�

 and w
�

 are taken 0: 
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 (4.38) 

Now we need to determine the particular solution for which 
1

0tx =
�

. Intuitively, every value 

for u
�

 at time t will be integrated until time t2. Integrating all contributions at times t1 until t2 
will give the solution: 

 ( )
2

2

, 2

1

( , )

t

p t s s

t

x s t u w ds= + ⋅∫Φ C B
� � �

 (4.39) 

The total solution now is: 
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2

2

1 2 1 2

1

( , ) ( , )

t

t t s s

t

x t t x s t u w ds= + + ⋅∫Φ Φ C B
� � � �

 (4.40) 
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In general, we cannot write this solution in the form of the normal Kalman filter update 

equations. If we assume the input being constant over the interval 
1 2
,t t , then 

1t
u
�

can be 

taken out of the integration resulting in:  
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∫

∫
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 (4.41) 

Because the process noise is continuous, that integral cannot be reduced. In the predictor step 
for the state the expectation value is used, so the integral will be 0. From formula (4.41) we can 
directly calculate the covariance matrix: 
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 where 
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Using the assumption that the process noise has zero mean and is white with covariance W we 
get: 
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 (4.44) 

This should be easy to calculate. This formula ensures that when t∆  changes, or when it is 
decided to do more prediction steps in the period t∆ , the resulting increase in uncertainty due 
to the process noise is the same. In general, Q cannot be put into the form GWG. This means 
that for discretized continuous-time processes the matrix G is likely to be the identity matrix 
and can be removed from the formulation altogether. 

When we try to extend the formulation above to the nonlinear case, we get for the differential 
equation: 

 ( , , )x f x u w=
� � � �ɺ  (4.45) 

This cannot be solved with generic methods, so every case has to be handled separately. 
Naturally, somewhere an approximation has to be made. The function f can be linearized 
when it is too difficult to linearize the solution of its integral, but the approximation will be 
less accurate as a result. 
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4.2 Sensor readings: control-input vs. measurement 

In this section we will investigate the two options to handle sensor readings. We will show the 
differences for a simulated pure 1-D translation p(t). The simulated system model is given by: 
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 (4.46) 

When the acceleration sensor is used as an input, the acceleration state is not needed. When an 
acceleration measurement za =N(ak, sqrt(Ra)) arrives at time k, the state at k+1 is calculated by: 
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 (4.47) 
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When the sensor is not used as an input, first a Kalman filter update is done at time k to 
update the estimate: 
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 and then the state at time k+1 can be calculated as: 
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 (4.50) 

When we compare (4.50) with (4.47), one may notice that in the limit of ,k aa

−X  going to infinity, 

they are equivalent for p and v. We can show that when the process noise for the acceleration 
state (σda) goes to infinity, this is the case. The practical meaning is that no assumptions about 
the accelerations are made, so no filtering takes place. It can also be shown that the 

position/velocity parts of the covariance matrices 
1k

−
+X  of the two methods are equal to (4.48) 

in that case. 

We can also show that the performance of both filters is the same when Ra is infinitesimal 

small (perfect measurement) and ,k aa

−X  stays much larger than Ra (i.e. non-zero process noise).  

The benefit of the filter with the acceleration sensor as measurements is when the 
measurement uncertainty Ra is a large contributor to the uncertainty in the position. So the 
measurement noise has to be at least comparable to the actual process noise in the acceleration 
due to user motion. 

With a mathematical package we could calculate the steady state covariance matrix for the 
model with the acceleration sensor as input. The default settings are: 
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We calculated the position estimate error as function of these values. Figure 4-2 and Figure 4-3 
show the results. 
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Figure 4-2 Position accuracy vs acceleration sensor accuracy for dt=0.01, Tp=0.1 (solid); dt=0.0025, 
Tp=0.1 (dashed) and dt=0.0025, Tp=0.05 (dotted). The pairs of lines give the lower and 
upper bound of the estimate: just before and just after a position measurement. 
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Figure 4-3 The pairs of lines give the lower and upper bound of the position estimate’s accuracy: just 
before and just after a position measurement 

 

It is interesting to note that a change in Ra of a factor of one hundred results only in a better 
position estimate of a factor of three. A change in the position measurement noise of only a 
factor of four, however,  gives almost a factor of three better accuracy. Changing the sampling 
rate of the acceleration sensor with a factor of four only changes the estimate by a factor of 
1.18 and sampling the position at twice the rate increases accuracy by only a factor of 1.3. An 
accurate position sensor therefore seems to be paramount. 

Of course, when the position measurements are very accurate, the acceleration measurement 
becomes the limiting factor again (left part of Figure 4-3). This point however seems to lie 
below a positional measurement accuracy of 1 mm which we do not achieve. 

In a continuous time model the acceleration changes between measurements. This can be 
modeled as an extra process noise σa. If Ra is put to zero, then this σa is still present, which 
means that increasing the accuracy of the acceleration measurement might be even less fruitful. 
Increasing the acceleration sampling frequency might help a little bit, because σa scales roughly 
with the square root of dt. 

In our augmented reality application the process noise is small when the user is not moving. 
This is also the situation that jitter in the position will be noticed the most. When the user 
moves, a delay will be noticed most. Filtering a signal causes a delay, so filtering should be kept 
to a minimum when the acceleration is changing rapidly. One way is to make the process 
noises dependent on a dynamic estimate of the variance of the acceleration . The higher the 
variance, the higher the process noise. If the measurement noise is lower than the process 
noise, filtering could be shut off entirely by using the acceleration as an input. Less states and 
measurement updates means faster operation as well. 
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There is another drawback to filtering. If the filter is nonlinear, the linearization of the update 
equation will introduce disturbances. If the innovation is large, the filter may become unstable.  
So there is an upper limit on the allowed measurement uncertainty for the filter to be stable. In 
practice, however, the limit will probably never be reached, as a sensor with that much noise 
will not be of use anyway. 

4.3 A process model for Augmented Reality 

In contrast to robot localization where the desired movement is known, locating a camera on a 
user’s head - as in our pose estimation case - is more difficult as we cannot make use of the 
user’s intentions. The inherent consequence is that no process model (linear or non-linear) will 
satisfy the assumptions of Kalman Filtering, which results in a sub-optimal (in least-squares 
sense) estimate. Determining what process model to use, i.e. which state variables should be 
included, what representation should be used for orientations and how much process noise 
should be used, is generally accomplished by trial and error. 

In optical see-through Augmented Reality, we need to accurately know the full 6D pose of the 
AR helmet. Using all sensors, the following variables can be measured: 

• 3D position (measured with the camera) 

• 3D acceleration (measured with accelerometers) 

• 3D orientation (measured with the camera and magnetometers) 

• 3D rotational speed (measured with the gyroscopes) 

It follows from this that the process model should include these variables, as well as the 
missing 3D velocity between the position and acceleration. Furthermore, as the inertia sensors 
that measure the rotational speed and acceleration suffer from drift, more variables are needed. 
Gyroscopes in rest can have an output value behavior as shown in Figure 4-4. The figure 
shows a cheap gyroscope at rest, measured during 20 hours. The gyroscope was turned on at 
the start of the measurement (18h) and the abrupt heating inside the device caused a very steep 
slope. During the night, the temperature drops and the bias slowly increases. The bias 
decreases again when the heating starts at 6h. The drift can partly be compensated as a 
function of temperature, but a low frequency component will still be present. The drift can be 
modeled as a slowly changing bias of the sensor output which should be estimated as well: 

• 3D gyro drift 

• 3D accelerometer drift 
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Figure 4-4 Output of a cheap gyroscope in rest, sampled at 100 Hz. The vertical range here translates 
to 6°/s. The lowest frequency drift is probably the effect of temperature change in the room 

In total, the number of states to be estimated is 21. Those 21 states are not closely coupled, as 
orientation and position are at first sight independent. Since the acceleration due to movement 
and the acceleration due to the gravitational pull of the earth cannot be distinguished, the 
estimation of the acceleration is dependent on the orientation. Hence, the measured 
acceleration should be corrected for the gravity vector using the orientation. It was decided to 
use two separate models, one for position and one for orientation, because of the low 
dependency and the fact that the two filters each have less states to estimate, resulting in faster 
operation. This was originally done in order to run the filter in a small, embedded computer. 
Now, using a laptop, we could run the full filter easily, but we did not change our setup as in 
the future a wearable computer must run the filter. 

The process model for position follows Newton’s laws, which means that it can be described 
linearly if the acceleration values are corrected for gravity. However, the time evolution of the 
three parameters that define the 3D orientation cannot be described linearly using the 3D 
rotational speed because those three parameters are not directly measured in our strap-down 
setup (see section 4.3.2). Therefore, for the orientation, we have to use an extended Kalman 
Filter.  
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For both filters we chose to use the inertia sensors as inputs. Not incorporating the inertia 
sensor values as observations makes the filter much faster; with our measurement reordering 
method that is very convenient. We also found that the process noise due to the inertia 
sensors is lower than the process noise due to the unknown motion of the user. Combined 
with the noisy camera pose estimates, it is of no use to filter the inertia measurements.  

We chose to use the indirect filter setup. This is not really needed for the position filter, but 
this is useful for the orientation filter. In the indirect filter setup, we estimate the error in 
orientation and with the method presented in section 4.1.4 we can make the measurement 
update equation linear and stable. We will now present the process models for the orientation 
and the position that we actually implemented. 

For the orientation process model, we also have to choose which representation we are going 
to use for the orientation. An orientation can be represented in many ways. Euler angles are 
popular and the three angles each describe a rotation around one of the main coordinate axes. 
In aviation, the “x y z“ convention (yaw-pitch-roll) is common. In this convention the angles 

(φ,θ,ψ) specify first a rotation ψ around the x-axis , then a rotation θ around the y-axis, and 

finally a rotation φ around the z-axis. When viewed differently, using the coordinate axes of 

the rotated system after each rotation, the angles equivalently describe first a rotation φ around 

the z-axis, then a rotation θ around the new y-axis, and finally a rotation ψ around the new x-
axis. Many filter solutions use those Euler angles, but there are a few difficulties. One is that an 

angle is equivalently described by another angle with an offset of 2π radians, which makes it 
difficult to calculate the difference between two angles. In Kalman filtering this difference, or 
the innovation, is used as a correction and when this correction is scaled by the Kalman gain, a 

scaled correction of +1.5π is not equivalent to a scaled -0.5π. Another problem is known as 

Gimbal lock: when the pitch θ reaches π/2, the other angles, φ and ψ, specify the same 
rotation, which results in a very unstable representation. 

Instead of angles, a set of four parameters called Euler parameters can be used. This set is 
actually a unit quaternion, which represents a general rotation in 3D. The beauty of quaternions 
is that they can be integrated and differentiated without problems and that they are stable over 
the entire range of rotations. For these reasons, we use them in our process model. As it is 
important to understand how quaternions work, the next section gives the definition and some 
properties. Using these quaternions we develop an error-state extended Kalman filter for the 
orientation. Figure 4-5 shows the setup using two filters. 
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Figure 4-5 Fusion of data from the sensors for pose tracking. Two filters work in 
tandem, where the output of the orientation filter is used to correct for 
gravity in the position filter.  

 

4.3.1 Quaternions 

Quaternions come from the field of quantum mechanics and are an extension of the normal 
complex numbers. A quaternion has a scalar part and a vector part, where this vector part can 
be seen as three different complex axes. We describe here only the application to define 
rotations, for a general treatment of quaternions the reader is referred to [89]. The definition 
of a quaternion that denotes a rotation is given by: 
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in which θ is the angle of rotation around the normalized vector n
�

, and q∗ is the complex 

conjugate of q. The conjugate can be seen as the result of a rotation over the reverse angle –θ, 
so it is the inverse operator. The general inverse of a quaternion is given by:  

 -1

2

q
q q

q

∗
∗= =  (4.52) 

From the definition of a rotation-quaternion in equation (4.51) it follows that 1q ≜ , a unit 

quaternion. A quaternion that represents a rotation of a frame ΨA with respect to frame ΨB 

expressed in terms of frame ΨB will be written as B

A
q : the rotation that rotates frame ΨB to 

frame ΨA expressed in ΨB.  

Let the quaternion representation of a vector av
�

 be: 
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Then the rotation of this vector is obtained by a double quaternion multiplication: 
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In which the operator ⊗  is called the quaternion multiplication. In matrix form this becomes: 
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 (4.55) 

In which qɶ  is the quaternion matrix and q
⌢

 is called the transmuted quaternion matrix in [90]. 

The representation of angular velocity vectors using quaternions is analogue to the case of 
rotations of position vectors over angles. The angular velocity of Ψi with respect to Ψj 
expressed in Ψi is given by: 
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Where we replaced the scalars like ,

,

i j

i x
ω  by 

x
ω  for clarity. In quaternion notation this is: 
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As the scalar part of 
,i j

i
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� is zero, the solution to equation (4.57) is: 
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Written as a quaternion multiplication: 
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A more detailed treatment is given in [91] 

4.3.2 Strap down inertia navigation 

We use sensors that are attached to a fixed body, the AR helmet in our application. The inertia 
sensors make their measurements in the local body frame, not the world frame. This means 
that we cannot use the integral of the sensor measurements to go to a position and orientation 
in the world. We must first rotate the measurement values to the world frame. The rotated 
body frame is called the navigation frame and can be viewed as a translated world frame. 

We already chose to use indirect Kalman filters, in which the real state estimates are updated 
separately from the error-state estimates maintained by the filters. Here, we present the 
process model for the separately maintained states. Note that in the following formulation we 
already chose to use the measurements of the inertia sensors as inputs, so these measurements 
can be used in the time-update. The time-update formulas are given by: 
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 (4.60) 

where for the accelerometers and gyroscopes, the bias states are denoted as 
a

b
�

 and 
g

b
�

, and 

their measurements as 
a

z
�

 and 
g

z
�

. n

b
R  is the rotation matrix representation of the Quaternion 

n

b
q . We do not take into account the Earths rotational speed, which means we neglect the 

resulting Coriolis force. The velocity and range of positions will be too low to notice that 
effect in our augmented reality application. Notice that we also take the mean of the current 
acceleration measurement and the previous one. Indeed, our acceleration state is the average 
acceleration in a time period dt for a correct process model. The average of the two 
measurements is our best guess. The process noise will have to reflect the error we make with 
this assumption. 

Note that this time-update can only be done when measurements of the inertia unit are 
available. Currently this is no problem, but in a modular setup, when we may want to remove 
these sensors, special care has to be taken. When a sensor that is used as an input is not 
available anymore, the process noise has to be increased to account for the missing 
information. The process noise has to reflect the uncertainty in the model, so now the full 
acceleration change due to the motion of the user has to be regarded as noise, where first only 
the deviation from the linear acceleration model (average of two measurements) was 
incorporated.  

In addition, when more than one inertia tracker is present, their measurements can only be 
combined as inputs when they are synchronized in time. Otherwise an acceleration state needs 
to be added, and the measurements of both sensors should be incorporated as observations of 
that extra state. But as already mentioned in section 4.2, filtering the acceleration does not 
contribute much to the accuracy in position in our setup due to the relatively inaccurate 
camera pose estimates. So probably only the best inertia sensor should be used. 

4.3.3 Error-state system model 

For the error-state Kalman filter we chose the following states: 
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in which d is used to denote that the values are deviations. The quaternion dq is defined as the 
rotation that rotates the estimated body frame system (denoted with a dash) to the real body 
frame system: 

 n n

b b
q q dq−= ⊗  (4.62) 

This post-multiplication definition is chosen over pre-multiplication or the normal additive 
error because now only the error-states and the gyroscope measurements are used in the 
process model for the orientation-error, making it independent of the real state. 

Position filter 

On determining the process model for the position, we start in the continuous time domain: 
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 (4.63) 

This equation holds for t between tk-1 and tk. Only the noise vu in the input of the real state at 
time tk is used here, since the value itself has no influence on the error states. The 

accelerometer bias is modeled as a random walk in
abw . 

a
w models the acceleration change 

during human motion as well as other effects that are not modeled. The solution to the 
differential equation is given by: 
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The process noise Q was determined by evaluating (4.44) with (4.63) using a mathematical 
software package. All measurements from our position sensors use the following observation 
model: 

 n
pb

n

dp b zp
z p z v

−= − +  (4.65) 

in which the real measurement of position is converted to give the position of the body frame 
in the coordinates of the navigation frame. 

Orientation filter 

The process model for the orientation Kalman filter is more complicated, because we use the 
orientation difference in quaternion notation: 
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in which n

b
q −  is the estimated orientation by integration using eq. (4.59) and n

b
q  is the real 

state. If we ignore process noise, we can find the time-update formulas analytically, without 
linearization. Let us start by writing the time-update for the real state and the estimated state: 
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The variables without the dash denote the real states, and the ones with a dash the values we 
have available. Using (4.62) we can replace the real orientation and using the time update we 
can rewrite the current orientation estimate in terms of the previous estimate: 
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 (4.68) 

The last step is to replace the real angular velocity with our estimate, and include the time-
update of the bias error: 
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We can make an extended Kalman filter for this nonlinear time-update, but the process noise 
should be still determined. Therefore, we derive the process model again, starting in the 
continuous time domain. 

First, we determine how the time derivative of a quaternion relates to the time derivate of its 
inverse: 
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Using this equation and equation (4.57) for the time derivate of a quaternion, the time 

derivative of the estimate n

b
dq  becomes: 
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 (4.71) 

Actually, a process noise term should be added here; for clarity, we do that at a later stage. We 
can bring (4.71) to a more convenient notation using matrices: 
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The real angular velocity  ,b n
b

ω can be written in terms of the definition in (4.60), the gyro 

measurement error and the current error in the bias: 

 
1

, , 1 1
, ,2 2g k g k

b n b n

b b z t z tv v dbω ω
−

−= − − −
���

 (4.73) 

Combining equations (4.71) and (4.73), and using the definition of the quaternion (4.51), we 
find: 
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 (4.74) 

in which the variable u
�

 is the input as in the Kalman formulation that holds the noise of the 
gyro measurements used in equation (4.60). To complete the derivative formulation, we model 
the bias error as a random walk: 
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We could not solve these differential equations directly, so we needed to linearize this system. 
We bring the system into the form of a linear continuous-time differential equation, so we can 
use the formulation in section 4.1.5. This is in fact the continuous time version of the 

extended Kalman filter. We linearize around the state 
orient

dx  at time tk-1 (the previous 

estimate). In the indirect filter setup, the error states are reset after every observation update. 

This means that 
1kt

db
−

−
������

will be 0, 
1kt

dq
−

−�  will be 0, and 
1,0 kt

dq
−

− will be 1. Taking the derivates and 

filling in those values gives: 
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This can be solved as shown in section 4.1.5 analytically with a mathematical software package. 
Note that equation (4.76) is only a correct linearization if the error-state values are indeed as 
assumed: no bias error and no orientation error. 

For the observation model we follow the formulation of converting measurements in the 
extended indirect Kalman filter of section 4.1.4, equations (4.29) and (4.30): 
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in which the function quat converts the orientation zorient and associated noise vorient from a 
sensor, such as our camera, to quaternion notation. We do this to make the function h(.) linear 
at the expense of a less accurate estimate of the Kalman measurement uncertainty. Using the 
formulation of the innovation in (4.4) we get: 
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in which the covariance of the error-measurement can be calculated by linearization of (4.77)
and in which X is the covariance of the error-state. Of course, after this update, the quaternion 

dq  should be normalized to unity again before it is combined with the estimate of the real 

state. 

4.4 Incorporating Lag 

Many sensors cannot give their measurements instantly to the Kalman filter. The 
measurements’ values are first transferred from the measurement device to the computer, and 
in the case of a camera, the measurement should first be calculated by time-consuming image 
processing. The camera measurements are typically delayed about 0.08s. When we ignore this 
delay during motion, the orientation Kalman filter will assume an error in orientation and will 
adjust the current error and bias estimate. After this incorrect adjustment, the filter needs 
some time to recover. A bigger problem is that the position filter uses the orientation, since 
this delay introduces a non-existent acceleration. 

4.4.1 Backward prediction 

A common technique to incorporate measurements from a time earlier than the current time is 
backward prediction. Let the measurement zd be the measurement at time td, while the current 
time is tk. The measurement model h then includes a state transition function ϕ  that estimates 

the state at the time of measurement using the current state: 
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In our error-state filter, this transition function would roll back the last (k-d) time update steps, 
which means that the measurements of the inertia sensors should be stored. Although the 
formulation is quite easy, there are a number of problems in our application 

• The observation model becomes nonlinear again. 

• The greater the delay, the less accurate the prediction is. 

• Only the current state is updated, and not the intermediate states: Another delayed 
measurement cannot profit fully from this update. 

To circumvent these problems we decided to reorder the measurements in time as described 
below. 

4.4.2 Measurement Reordering 

In our method we store all the observations of the sensors as well as the Kalman states and 
matrixes at every step and keep a history of 60 steps. In our case the steps are 10ms (the 
update-rate of the inertia sensors), so a history of 0.6s is kept. 

When a camera measurement finally arrives, we step back to the position in time of that 
measurement, and do the filtering in the Kalman state that belongs to that point in time. From 
this point on, all the other measurements (such as gyro, camera, GPS) are processed again up 
to the current time. In this way the best estimate at the current time is achieved. As we have a 
position Kalman filter that depends on the output of the orientation Kalman filter, both filters 
are rolled back when measurements have to be reordered that are used to estimate the 
orientation error or gyro bias error. As a result, we obtain the best estimate for both filters. 

We are aware that this method is computationally intensive, but for now it poses no problem 
as the CPU load is close to zero on an Intel Pentium4 3 GHz. Some other methods that 
address the problem of out-of-sequence measurements are presented in [92-94]. 

4.5 A modular Kalman filter 

The Kalman filters we used in the previous section are centralized filters. In the same filter, the 
user variables and the sensor specific variables are estimated. For the orientation filter, the 
gyro bias is estimated along with the orientation. Although the filter from the previous section 
is working for our specific augmented reality application, in the future, we would like to use 
the modular filter as shown in Figure 2-14. To begin, we need to bring the previously defined 
filters for augmented reality into that structure. We start with a well-known decentralized 
(=multiple filter) setup, and adapt it to the desired structure. 
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4.5.1 The decentralized KF 

In a decentralized KF, the sensor outputs are first processed in local filters and then the result 
of the local filters are combined in a master filter. In this decentralized structure, the estimates 
of the local filters can be compared with the master filter’s estimate to detect a faulty sensor 
[95]. Furthermore, in the case of more sensors with local states, the number of states per filter 
is less, resulting in less needed computation power. The most popular decentralized design is 
the Federated filter of Carlson [96]. The idea is that measurement updates are processed in 
local filters, and the estimates from the local filters are combined in a master filter to give the 
best estimate. The federated filter is equivalent to the centralized filter provided that all filters 
have the same states, the time-update formulas and process noise are the same for all local 
filters, and the best estimate from the master filter is fed back to the local filters (zero reset or 
full feedback). The general setup is illustrated in Figure 4-6. 
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Figure 4-6 Schematic picture of a Federated Kalman Filter for the orientation 

For orientation estimation, the reference sensors would be the gyros. One local filter combines 
gyros with inclinometers and the other combines gyros with the camera orientation. All filters 
have the orientation as state, and the local filters also have the gyro bias errors as states. The 

local state 
i

x  and its corresponding error covariance 
i

P  of local filter i is defined as: 
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with 
ci

x  the common states and 
di

x  the drift states of the ith local filter. The two local filters 

are exactly the same as the central filter from the previous section. When a camera 
measurement arrives, the local filter updates its estimate of the orientation and the bias errors. 
To ensure optimality, a fusion should be done immediately in which the master filter combines 
the estimates of both local filters and resets the common states of the local filters to the best 
estimate. When the fusion is done at a later stage, the result will be less optimal.  

Fusion step 

The master filter can be seen as a global filter with augmented state vector: 
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cN
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In which all common-state estimates of the N local sensors are combined. The corresponding 
error covariance is: 
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Given a set of local state-estimates ˆ
i

x , the globally best estimate ˆ
m

x is the one that minimizes 

the weighted least-squares cost function:  

 ( ) ( )1

1 1

ˆ ˆ
N N

T

i i ij j j

j i

−

= =

− −∑ ∑ x x P x x  (4.84) 

When we assume the state-estimates of the filters are uncorrelated, the off-diagonal terms of 
eq. (4.83) vanish and the solution is simply: 
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The last assumption actually means that the local filter states are treated uncorrelated. As can 
be seen from formula (4.85) the more independent estimates for the common states, the 
smaller the covariance matrix. After the fusion, however, all filters take over the estimate for 
the common states, as well as the covariance for those states. That means that all filters 
become correlated. They stay correlated because the local filters share the same time-update 

sensor and process noise. This problem is solved by feeding back 
i m

γ P  instead of 
m

P , with 

1

1
1

N

i i
γ=

=∑ . If formula (4.85) is applied immediately after this feedback, the original covariance 

matrix is recovered. So in this way the local filters can be treated uncorrelated. To make sure 
that the local filters can be treated uncorrelated after time updates, the process noise for the 

common states should also be multiplied with 
i

γ  in the time update stage of the local filters. 

Usually all the 
i

γ  are taken the same; for N local filters this translates to  Nγ =  . The fusion 

formulas for the local filters are found by requiring that the result of the federated filter should 
be the same as the result for the centralized filter. These formulas are proven in Appendix 0 
and given by: 
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When using the indirect filter in federated mode, the error states should be reset only after the 
fusion step. This means that a time update should correctly update the non-zero error states 
found after a measurement update. However, the federated filter works optimally when all 
observations by the local filters are immediately fused with the other filters and error-states are 
reset before the time update. The measurements should also be ordered in time. In our case 
we have delays in the sensors, and we could use the same method as in the central filter to 
incorporate these measurements. This means that if a measurement is done, all filters go back 
in time to the time of the observation. The local filter does an observation update and fuses its 
estimate with the rest of the filters. Then, all filters redo the measurements in proper time 
order until the current time. Normally the computational load of the federated filter is less, 
because each local filter only has the common states and their own bias states, whereas a 
central filter should include all local bias states. In the decentralized case measurement 
reordering has a much higher computational load, for more filters are used in parallel, and all 
have to redo their measurements. Backward Prediction might be a better solution, but that 
depends greatly on the non-linearity and the process noise.  

4.5.2 The Plug-in Kalman Filter 

The Federated Kalman Filter (FKF) is a suitable filter for sensor fusion, but in its original 
form, the FKF cannot serve as a modular filter because the reference sensors play a far too 
dominant role. In the FKF, all the local filters contain the reference sensor states. If another 
sensor replaces this reference sensor, all local filters have to be changed to accommodate other 
reference sensor states. This, obviously, is not the modularity we require. 
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Consequently, we designed a Plug-in Kalman Filter (PKF). The main difference with the 
federated filter is that every sensor now has a local KF. The local filters are still indirect KFs but 
instead of the reference sensor states (gyro/accelerometer) they only have the common states 
and their own bias states. However, we still need the reference sensors for the time update of 
the local filters. The reference sensor will be chosen by the master filter and at every 
measurement of the reference sensor, the bias corrected version will be sent to all local filters. 
Choosing the best reference sensor is appropriate according to our discussion of accuracy in 
section 4.2. The new setup is suitable to serve as a modular filter because the sensor states are 
not dependent on other sensor’s bias states. 
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Figure 4-7 Schematic picture of our PKF implementation for orientation 

Again, the implemented PKF consists actually of two filters; one for orientation and one for 
position. The orientation filter’s structure is depicted schematically in Figure 4-7. The position 
filter structure has a similar architecture. The figure shows the information flow between 
sensors, local filters and the master filter. In addition, the local filters for position also need the 
master estimate of orientation. The estimate of the rotational velocity from the reference 
sensor is distributed via the master filter during a time update, and the covariance will include 
both the measurement noise and the covariance of the current bias estimate to ensure proper 
covariance updates. 
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The local filters do the actual filtering of the sensor output. These local filters model and 
correct for systematic errors in their own sensors (e.g. drift). Some sensor errors (e.g. errors in 
camera or magnetometers) are more difficult to model. In these cases, we only tried to 
diminish the influence of those sensor estimates to the master filter estimate by varying the 
measurement noise. This setup was not implemented on the augmented reality application but 
on a mobile robot that was equipped with the inertia sensors, a camera, the tcm2 inclinometer, 
magnetometers and wheel encoders. The preliminary results are given in the next chapter. 

4.6 Conclusion 

In this chapter we presented the process models we used for the Augmented Reality 
application. The orientation representation in Euler angles can present some problems during 
measurement updates because of Gimbal lock and the wrap-around every 2π radians. Euler 
parameters or quaternions can be used for a stable differentiable representation.  

To make the orientation model more linear, we used an indirect Kalman filter setup where the 
error states are estimated instead of the actual state. Due to our choice of the error state 
(nonlinear combination with the estimated real state) the error-state update is independent of 
the real state. Effectively we created an extended Kalman filter for the error state. If the error 
state is kept at zero rotation by transferring the error-state estimate to the real state estimate 
immediately after each measurement update, the linearization process for the extended 
Kalman filter becomes very simple.  

Because we use a non-additive error-state for the orientation, the estimated covariance matrix 
is not the covariance of the actual state. This is no problem for now, as we do not use the 
covariance of the actual state estimate. Otherwise, a linearization of the non-linear combining 
function in eq. (4.62) can be used to calculate the covariance. 

The orientation measurement is in Euler angles whereas our filter estimates quaternions. The 
normal Kalman measurement update equations are therefore non-linear. When the initial 
orientation error is large, this may cause the filter to be unstable. We chose to convert the 
measurement to a quaternion notation prior to a measurement update. This makes the 
measurement model linear and stable, at the expense of a non-linear calculation of the 
measurement and its noise.  

In a position estimation example we showed that the position sensor accuracy has the largest 
influence on the total filter accuracy. Changing the sampling times or using more accurate 
acceleration measurements had less influence. We argued that when the process noise in 
acceleration (or angular velocity for that matter) due to the user’s motion is high compared to 
the measurement noise of the inertia sensors, it is of little use to filter the inertia sensor 
measurements. This means that a computationally cheaper model can be used in which the 
inertia sensors are treated as an input during the time-update. 

Finally, we presented our design for a pluggable Kalman filter in which sensors can be added 
and removed without changing the master filter and the application. When sensor 
manufacturers would provide the local filters that estimate sensor specific disturbance 
variables, it would be very easy for application users to decide during run-time what sensors to 
use. In principle, this allows for sensors to be shutdown when an application does not need a 
high accuracy. 
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In the following sub-sections, specific problems with Kalman filtering and our application in 
particular will be discussed. 

.  

4.6.1 Problems with linearization 

The linearization process of the extended Kalman filter throws away valuable information. 
Only the first order approximation is preserved for the state estimate, and the second order 
for the covariance. Up to the fourth order of the covariance information can be preserved by 
using the sigma point Kalman filter [97] (also called Unscented Kalman Filter, or UKF). A set of 
state-estimates called sigma points is chosen around the filter estimate such that their mean is 
the current filter estimate and their ensemble covariance is the current covariance. These 
points are then fed through the non-linear process model, and the new mean and covariance 
are now taken as the new filter estimate and covariance. 

Whether this method will predict more accurately the state covariance in our application is still 
to be determined. In our formulation, we explicitly take into account the continuous-time 
process noise, whereas they cannot. Furthermore, LaVoila argues in [98] that the UKF does 
not perform better than the EKF in virtual reality applications. Furthermore, the UKF 
implementation is more time consuming because instead of one non-linear transformation in 
the EKF, all sigma points are subject to the same non-linear transformation. 

4.6.2 Divergence problems 

Two common sources of divergence are round-off errors and modeling errors. Round-off 
errors can slowly affect the error covariance, such that it becomes asymmetric or non-positive-
definite. In both cases, the KF algorithm becomes unstable. Although they can be dealt with 
easily, one should be cautious with round-off errors. Modeling errors, however, form a bigger 
problem, because they are less noticeable. Typical modeling errors are: 

- Modeling of systematic errors as white noise. In this case the KF filter cannot give the 
optimal estimate. The estimated states will have a systematic error as well. An 
example would be an acceleration sensor that is mounted under a small but unknown 
angle. Our Kalman setup would attribute this error to a bias error. The apparent bias 
is however dependent on the real angle of the sensor, so a good bias can never be 
estimated. 

- Modeling of a dynamic process as a static process. The KF simply tries to fit the 
wrong curve through the measurements. That would be the case if we didn’t estimate 
the change in bias of the inertia sensors. 

- Taking the process noise too small. In this case, after a while, the error covariance 
becomes so small that the filter does not believe the measurements anymore. In our 
case this is easily overcome by estimating the process noise from the variance of the 
inertia sensor measurements during motion. 

- Linearizing a highly non-linear model. The EKF is linearized around the estimated 
states. If the time-update function is highly non-linear, an error in the estimate results 
in a big error in the linearization that is used to update the covariance matrix. In 
addition, during a measurement update the innovation will be incorrectly 
incorporated, which could lead to overcompensation and an unstable filter. 
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4.6.3 Modular filter 

Finally, some problems concerning filter design and software design need to be solved: 

- The federated filter has a big problem when the reference sensor is unplugged 
because all local sensors use the dynamics and bias errors of the reference sensor. 
Our PKF does not have this problem, but still the reference sensors are used to 
update the local filters. When such an “updating sensor” is removed, its updating 
function could be taken over by another sensor. In our system, it is required that all 
updating sensors measure the same variable, for instance angular velocity. Preferably, 
this new updating sensor has a periodic output, a high sampling rate and a small lag. 
When the sampling rate is too low, more time updates can be generated with a 
constant value, but with an increasing process noise. If no other sensor is found, a 
dummy sensor can be used with zero value and a very high process noise. Aside from 
the question whether it is desirable or not to remove the accelerometer, the important 
point is that the filter keeps functioning properly. 

 
- The PKF software needs to solve the problems of recognizing sensors that are 

plugged in and out and managing their filter data. To deal with this, every local sensor 
module needs to send the necessary information to the master filter at its 
initialization. When running, the modules should also send a heartbeat to the master 
filter indicating that it is still alive. In order to make the data accessible for all 
modules, we use shared memory. The PKF loop can be summarized by the following 
actions: The sensors post their data on the location of the sensor data in the shared 
memory. The local filters wait until there is new data for them. When data from the 
reference sensor has arrived, they perform the time update. On local sensor data they 
do a measurement update and request a fusion step to the master filter. The master 
filter notices that new data has arrived in the local filter’s locations and performs the 
fusion algorithm, after which it posts the result in the master filter’s location, so the 
local filters can perform the fusion update step. With sensors that have delays, the 
fusion step should be done back in time. Redoing all measurements is no problem 
when all measurements are stored centrally, but when the filter is split up in separate 
processes, the synchronization of the local filters to do all measurements in proper 
observation time order is not easy and computationally expensive. Each local filter 
has to redo its measurement and fusion update steps. The load increases with the 
number of filters and with the number of measurements independently, so this is not 
a scalable approach. When many filters are present, a backward prediction approach 
could be more tractable, although it is then more crucial to minimize the delays of 
sensor measurements. 
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Chapter 5  
System Integration and practical use 

In chapter 3 we described our methods to calculate the pose of the camera from an image of a 
known marker with a specific pattern printed on it. We investigated the influence of image 
noise and parameters such as line thickness and marker size on the accuracy of the estimated 
pose. We aimed to use as few markers as possible, so it is likely that a marker is seen from 
quite a distance.  For a marker at 6m distance the orientation precision is better than 2.5°. 
With a viewing angle above 20° the precision was better than 0.5°. This orientation error has a 
large influence on the estimated position of the camera (linear with the distance to the 
camera), and this error is the reason that virtual objects should not be projected more than 
0.5-1m away from a marker. 

In chapter 4 we described our method for sensor fusing. A Kalman filter combines the 
absolute pose estimate from the camera with acceleration, angular velocity and magnetic field 
sensors to get a better estimate of the camera’s pose. This filter is also necessary to increase 
the update frequency to a rate that is significantly higher than the slow pose estimates coming 
from the camera. However, in section 4.2 we showed that the Kalman filter can only 
contribute to a limited extent to the total accuracy of the pose estimate. The pose estimate can 
only be made more accurate when the filter model is accurate enough (i.e. predictable 
acceleration/angular speed) and when the inertia sensors are accurate enough. A bias in the 
sensors – for instance caused by a systematic estimation error or an unknown delay in the time 
of measurement – will prevent the filter from giving a more accurate result than the camera 
alone (at the time instance of these camera measurements). We tried to minimize the errors 
introduced by the Kalman filter itself, which means that we used robust methods to represent 
the orientation and time-update of the orientation, and decreased the non-linearity by 
choosing an indirect orientation formulation (a non-additive error state Kalman filter). 

In this chapter we will show the practical use of the total augmented reality system. We start 
with the numerous calibration steps that are needed to find the relation between the 
coordinate systems of the different sensors, displays and the user’s eyes. We then measured 
typical sensor values for the system at rest and during typical use to find values for the 
measurement noise and process noise in the Kalman filters. Finally we show the results of an 
experiment we did with a SCARA robot that moves our sensor system in a predefined way (a 
ground truth path) in order to find a practical accuracy measure for our pose estimation 
method. These measurements assist us in determining the aspects that limit the accuracy of the 
real system. 

5.1 Pluggable Kalman Filter Experiment 

Although the pluggable Kalman filter from Chapter 4 is not used in our current augmented 
reality setup, we show some preliminary results in Figure 5-1. The purpose of this experiment 
is to show that the filter works, and that the filter can cope with systematic errors in sensor 
values. 

In this experiment a two-wheeled robot was pushed by hand along a 2D rectangular track with 
rounded corners. Five local filters were implemented for the following sensors on the robot: 



140 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE 
 

  

• Jai CV-S3200 Camera, 320x240@15Hz. The measurement noise was determined as 
function of distance and orientation. 

• TCM-2 liquid inclinometer @16Hz. Measures orientation from magnetic field sensors 
and the orientation of mercury in a glass tube. Measurement noise was set very high 
when it indicated earth magnetic field disturbances. 

• Odometry. Encoder counts from the robot’s wheels provide travelled distance 
information to obtain a speed estimate. 

• Gyroscopes @100Hz. Reference sensors for the orientation filter. Angular velocity 
bias drift has to be estimated. 

• Accelerometers @100Hz. Reference sensors for the position filter. Acceleration bias 
drift has to be estimated. 

One can observe in Figure 5-1 that the position estimate of the Kalman filter stays close to the 
ground truth robot path most of the time. Along the left side a iron beam under the floor 
disturbed the TCM2’s orientation measurement by more than 45°. This was detected, and the 
measurements from the TCM2 were temporarily not trusted. The measurements from the 
camera are not fully trusted until the marker is seen at a distance less than 100cm. This is why 
initially the filter shows a large error during the magnetic field distortion (bottom left in Figure 
5-1), but the error is corrected near the marker on the top left. This shows the resilience of the 
Kalman filter against disturbances.  
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Figure 5-1 Experiment using the pluggable Kalman filter. This shows that the filter can cope 
with  and recover from systematic errors. 

 

5.2 Coordinate frame calibration 

Our augmented reality demonstrator contains several devices of which the pose should be 
accurately known. For our Kalman filter the sensor cube and camera measurements  have to 
be expressed in the same coordinate system, called body frame. For camera pose estimation 
we need to know the poses of the markers in the world, and to augment the user’s view we 
need the poses of the two displays and the eyes. All these calibrations make the system hard to 
setup. Therefore, automatic calibration procedures are needed. Unfortunately, the automatic 
procedures we tried were not accurate enough to completely avoid manual adjustments. Figure 
2-9 shows some of the coordinate systems in-use, we repeat the figure here for convenience: 
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Figure 2-9:  Schematic picture of a number of coordinate systems used in our application. 

 

5.2.1 Inertia tracker frame to body frame 

We decided to use the inertia tracker coordinate frame as the body frame of the total system. 
Therefore, no calibration is needed. This saves us from having to calculate the body frame 
accelerations from the measured accelerations. When these frames would not coincide, the 
calculation would depend on the angular velocity (centripetal forces).  

5.2.2 Marker’s pose in the world 

Measuring the pose of the markers in world coordinates is usually done manually and in 
advance. The procedure is time-consuming, but it will give the best results. However, the 
poses cannot always be determined easily because of uneven surfaces of floors or walls. In that 
case an automatic procedure is needed. A SLAM method like FSLAM [34] could be employed 
to make a map of all markers in the word. If one of the markers is given a pose in the world by 
the user, all other marker poses will be known as well. Since our marker detection algorithm 
already gives full poses of all markers in view, we can calculate the world pose of an unknown 
marker directly if we know the pose of the camera in world coordinates. The pose of the 
pattern in world coordinates can be calculated from its pose in camera coordinates by: 

 W W C W b C

P C P b C P
= =H H H H H H  (5.1) 

Without known markers to calculate the position of the camera in world coordinates, we 

would need to calibrate or measure the other poses ( W

b
H and b

C
H ) first, for example by using a 

calibration rig. Although we cannot determine the position of the marker, we can determine 
the orientation of the marker since the inertia cube provides the orientation of the body frame 
in world coordinates:  

 W W b C

P b C P
=R R R R  (5.2) 
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In this equation the only unknown is b

C
R , and that rotation will be calibrated in the next 

section. We will however determine W

P
R  in another way to avoid dependence on other 

calibrations as much as possible. We estimate W

P
R  directly using two or more rotations, 

expressed in world coordinates as well as in pattern coordinates. One of these rotations brings 

the camera coordinate frame from position 1 to position 2. In pattern coordinates: 1,

2

C P

C
R . A 

coordinate transformation to world coordinates gives: 

 1, , 1, ,

2 2

C W W W C P P W

C P C W
=R R R R  (5.3) 

The camera can give us 1,

2

C P

C
R using the pattern coordinates of the camera in both positions: 
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Our sensor cube can provide the rotation of the body frame in world coordinates 1,
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 (5.5) 

Where we used the fact that the camera frame is rigidly attached to the body frame so 
1, 1 2, 2

1 2

b C b C

C C
=R R . 

Equation (5.3) can now be rewritten as: 

 1, 1, , 1, , 1, , , 1,

2 2 2 2 2
    C W b W W W C P P W b W W W W W C P

C b P C W b P P C
= = ⇔ =R R R R R R R R R  (5.6) 

This one equation is not enough to determine ,W W

P
R  uniquely. At least one other rotation is 

needed. We can determine ,W W

P
R  using a minimization method over n rotations: 

 , 1, 1,

2

argmin   , 1
n

W W b W C P

P bj Cj

j

n
=

 
= − > 

 
∑R

R R R RR  (5.7) 

Note that at least two rotation axes of the (n-1) rotations should not coincide for a solution to 
exist. To ensure that the obtained matrix is indeed a rotation matrix we will not actually 
minimize the function with the nine parameters of the rotation matrix, but construct a rotation 
matrix from the three defining Euler angles, and minimize the function using only these three 
parameters. The above estimation method will be used when the marker’s orientation cannot 
be determined manually, for instance on a sloped wall or floor. 
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5.2.3 Camera frame to body frame 

To estimate the fixed rotation between the camera frame and body frame we can use the fact 

that ,W W

P
R  and ,C C

b
R are constant. Again using the orientations of different camera/body poses 

we get: 

 
( ) ( )

, , 1 , 1, , 2 , 2,

1 2

1 1
, 1, 2, , 1 , 2 ,

1 2

W P W b b C C P W b b C C P

P b C P b C P

b C C P C P W b W b b C

C P P b b C

− −

= =

=

R R R R R R R

R R R R R R
 (5.8) 

This result closely resembles equation (5.6) and the same minimization method can be used to 

find ,b C

C
R . Still, the translation ,b C

C
T  needs to be calibrated. In our first setup we put the sensor 

cube as close to the camera as possible and estimated this translation by manually measuring 
distances. This works, but a systematic error will always remain. This is because the origin of 
the camera frame is not accurately known. If the camera uses one lens only, the lens’s centre 
would be the origin, but with multiple lenses as in our objective, it is not that simple. One way 
to estimate the origin of the camera frame in body frame coordinates is to rotate the setup 
around two different, known axes in body frame coordinates. By rotating around one axis, the 
origin of the camera frame will describe a circular path around this axis. A circle in 3D can be 
described by five parameters. However, the centre of the circle could lie anywhere on the 
rotation axis, so only four parameters are independent. By rotating around another, known, 
non-parallel, axis the final two parameters of the full body frame to camera frame transform 
can be estimated. 

The problem is that the position of the body frame is unknown (only the orientation is 
measured by the cube), so we cannot rotate around an axis known in body frame coordinates. 
Therefore, a calibration rig is needed. Using such a rig we can determine the pose of the 
camera frame as well as the pose of the body frame with respect to the rig coordinate frame. 
Designing such a rig is future work. 

5.2.4 Body frame to AR display and eye frames 

Figure 5-2 shows the coordinate frames for the display part of the augmented reality system. 
When the poses of both eye frames and both display frames are known, a virtual image can be 
generated by the computer such that a correct registration between the virtual and the real 
world is possible. There are at least three problems in determining those poses. One is that the 
image from the display is projected into the eye via a semi-transparent mirror. The apparent 
position of the display as seen from the eye does not coincide with the real position of the 
display. Therefore it is very difficult to measure the pose of the apparent display and a 
calibration is needed. The second problem is that the headset is not rigidly mounted on the 
user’s head so the position of the eye in body coordinates can change a bit during operation. 
The third problem is that different people have different positions of the eyes. For the best 
result every user should first go through an eye position calibration step. However, we have 
not yet found a convenient way to do that. 



5.2. COORDINATE FRAME CALIBRATION 145 

  

body

eye
displaybody

eye
display

 

Figure 5-2 Coordinate frames for augmented reality. The body and display frames are mechanically 
fixed to each other. The eye frame is only loosely attached by putting the headset on one’s 
head. 

The calibration was done by manually optimizing all the parameters. Six parameters for each 
display (full pose) and three parameters for the position of each eye. While looking at two 
known markers at different distances we could adapt the parameters such that a virtual 
projection of those markers lined up pretty well with the real markers. The following three 
sources of mismatch were still present after that calibration: 

• Slanted display. When the display is seen under an angle, the displayed image gets a 
perspective correction when viewed by the eye. This means that the software that 
generates the image should correct for this. We currently use OpenGL to do the 
perspective projection, but we do not know of a standard way to project onto a 
slanted surface. 

• Image distortion. The display is so small that a lens is needed to magnify the image 
before it is projected on the eye. Of course the manufacturer tries to minimize the 
distortion, but it still shows up. The image generation software also has to correct for 
this. Fortunately modern graphic processors are capable of doing such 
transformations in hardware, although the frame-rate will go down. 

• Output delay. The time between the start of generating the virtual image and actually 
seeing it in the headset is found to be around 80ms. This can be incorporated by 
predicting the pose 80ms into the future, and use that pose for image generation. 

The effect of a slanted display can be seen as an image distortion. From the slanting angles the 
distortion of the 2D display coordinates can be calculated. A modern graphics card is able to 
calculate the net offset for each pixel due to all distortions together. We have some experience 
in using hardware for real-time distortion correction, as we have a displaying mode in which 
the camera image is rectified and combined digitally with the virtual world. To speed-up that 
operation, the image was divided into 8 by 8 rectangular patches. The displacements of the 64 
corner points connecting the patches were calculated offline and fed to the graphics hardware. 
When first an image is rendered for a non-distorted, non-slanted display, a similar technique 
could be used to correct the distortions for the real display as a second step. This is future 
work. 
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For a manual calibration, optimizing nine parameters per eye is very hard and time consuming. 
An evaluation of manual methods is described in [99]. The parameters for the displays can 
possibly be calibrated semi-automatically with cameras instead of the user’s eyes. Such an 
offline method is described in [100]. For practical purposes, a simple and fast method should 
be found to calibrate the position of a user’s eyes. 

5.3 Implemented Kalman filters 

The filters that we implemented follow closely what we already presented in section 4.3. Here 
we will summarize all steps that are performed for each measurement that is received. 

Figure 5-3 shows the process models of the two Kalman filters as we currently implemented 
them. The orientation-error Kalman filter depicted at the top of Figure 5-3 estimates errors in 
orientation and errors in gyroscope bias. The position-error Kalman filter estimates errors in 
position, speed and accelerometer bias. When gyroscope and accelerometer measurements are  
received - transmitted together by the MTx inertia cube - all real states are updated using 
equation (4.60). In addition, both filters perform a prediction step using their respective 
process models, equation (4.64) and the solution to (4.76). In our current setup, we 
immediately transfer predicted errors to the real states, so the error-states will always be zero - 
or more precisely said, they indicate zero error. With zero error input, the output of the 
prediction step will also be zero. However, the uncertainty of this zero-error will increase due 
to the noisy measurements and the expected change in the acceleration and angular velocity. 
These expected changes are application dependent, and should therefore be provided by the 
application. We chose not to discriminate between the three coordinate axes, and used the 
same noise variables for all axes. 

For the position-error filter we could find a full solution for the process noise due to 
acceleration change and bias change. Using equations (4.76) and (4.44), we could also find a 
full solution for the orientation-error filter’s process noise. The resulting equation, however, 
was not practical for implementation. When we further assume the angular velocity to be zero, 
we get almost the result presented in Figure 5-3. With the difference that the process noise for 
the quaternion component q0 stayed zero. This meant that the filter would never adapt this 
component when an orientation measurement was incorporated. Therefore, we had to add the 
extra component σq0 to track errors in q0 as well. 

Figure 5-4 shows how position and orientation measurements are incorporated in the 
observation update steps. Received measurements are ordered according to their time of 
measurement t. When the measurement is a camera pose estimate, this is the time at which the 
image was captured. Subsequently, both the error-state filters and the real states are rolled back 
to the closest state n with time tn<t. Starting from time tn, all measurements since then are 
reprocessed in order, including the measurement just received.  
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This reprocessing starts at state i=n. Gyroscope and accelerometer measurements are 
processed using the process models, and they advance the state i to i+1. Position and 
orientation measurements are used to update the a-priori estimates at state i to the a-posteriori 
estimates by performing observation update steps. First, these measurements need to be 
transformed into error-observations using equations (4.65) en (4.77). Then, they are 
incorporated using the standard Kalman observation update equations. The resulting estimates 
of the errors are transferred to the separately maintained real states of position, orientation, 
bias etc. Hence, all measurements up to the present time will benefit from this update.  

In our current computer program that implements the filters we do not use the uncertainty in 
orientation as shown in Figure 5-4, that is future work. We bypass the non-linear 
transformations and provide directly a covariance matrix R for the error-quaternion z. This 
4x4 matrix is given by 0([ , , , ])q qv qv qvdiag σ σ σ σ . The Kalman filter can still do its job while 

ignoring correlations in the measurements, but it will converge more quickly when these 
correlations are known.  

Furthermore, we mimic an infinite uncertainty in yaw angle for the MTx orientation 
measurement by substituting the yaw angle from the current estimate in the measurement. We 
needed to ignore the yaw angle to cope with its very large error in the sensor cube’s 
measurements. The same technique was used for camera orientation measurements where the 
roll and pitch angles were substituted using the filter’s estimate. This technique improved the 
performance of our filter; however, the filter would be more robust when the full 
measurements are incorporated with an adequate estimate of the measurement noise.  
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Figure 5-3 The prediction steps of the two implemented error-state Kalman filters and separately 
maintained position and orientation states when gyroscope and accelerometer data is 
processed 
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Figure 5-4 The measurement update step of the two implemented error-state Kalman filters. Received 
measurements are ordered in time, and both filters and states are rolled back to the time of 
measurement t, and all measurements since then are reprocessed. Position and orientation 
measurements are used to estimate the current error-states. The error-states are immediately 
transferred to the real states. 

 

 

5.4 Measurement noise and bias stability 

To use our Kalman filter we need to know the measurement noise and bias stability. The 
Kalman filter uses these values to optimally combine the measurements of multiple sensors in 
order to estimate the variables we are interested in, namely the position and orientation of our 
headset. The measurement noise of our camera positioning method was discussed in Chapter 
3. Here we will determine these properties for our inertia sensors. A bias in the sensor values 
of the MTx inertia cube will cause a drift in orientation, velocity and position. To minimize 
this drift, the bias has to be estimated in the Kalman filter. Using the observation and process 
models of our Kalman filter, we model the measurement zs of a signal s at time tk by: 
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where b is the bias, and the measurement noise v and process noise w are independent, white, 
zero-mean, normally distributed signals with standard deviation σz and σb respectively.  

To estimate the unknown noise sources it is convenient to determine the properties of a 
difference of two measurements, denoted by d(k,n): 
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To make it easier to estimate the standard deviations of the noise sources, we require the signal 
s to be constant. We therefore measured the inertia tracker signals with the device in rest. With 
var[x] the variance of the signal x, the variance of d(k,n) can be calculated as: 
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Note that  the variances have a linear relationship. In matrix form this becomes: 

 

2
2,1

2

2

,

2 1

,   with  

2b

d

z

d N N

σ
σ

σ
σ

       = =             

A A⋮ ⋮ ⋮  (5.12) 

When we have estimates of 2

,d nσ we can calculate σ2
z and σ2

b using standard linear optimization 

methods. To find these estimates, we measured the device in rest for nine hours at 100Hz. 
This provides us with more than three million samples. In order to determine the estimate of 
σd,n we need independent samples d(k,n). The samples must be selected such that each instance 
vk and wk is used in one sample only. This can be guaranteed by grouping the samples in Ln 
batches of (n+1) samples. The variance σ2

d can now be estimated by: 
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With these estimates, we can determine the estimates ˆ
zσ and ˆ

bσ  of σz and σb as 
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with A as defined in (5.12). For our analyses we used N=60.000. This means we used the 
difference of measurements that are taken, at most, ten minutes apart. We can also calculate a 
measure for the accuracy of the estimates. This measure is the standard error SE[ x̂ ] of an 
estimate x̂ , where the expectation value of the estimate is the true value x: 
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 2ˆ ˆ[ ] [( )SE x E x x= −  (5.15) 

The following figures show the nine-hour measurement. In order to make the bias visible, we 
show averages over 60 seconds. The horizontal black lines show for each signal the 99% 
confidence interval for that average. If the signal extends outside the interval, it is an indication 
that the drift of its bias is significant. The estimated standard deviation ˆ

zσ of the measurement 

noise for each signal is shown as well. In some of the figures we also depicted the measured 
temperature in order to show its relation with the changing bias. Figure 5-5 shows the 
averaged gyroscope values and Figure 5-6 shows the accelerometer data. Due to gravitational 
acceleration a large offset is present. To make the figure more clear, we added a constant value 
to each signal, shown in the legend. In Figure 5-7 we corrected the acceleration data for the 
gravity vector using the orientation output. The last figure, Figure 5-8, shows the averaged 
orientation output. 
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Figure 5-5 Measured gyroscope data of the MTx in rest, averaged over 6000 samples. The horizontal 
lines depict the 99% confidence interval due to measurement noise. 
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Figure 5-6 Accelerometer data in rest, averaged over 6000 samples. The horizontal lines depict the 99% 
confidence interval due to measurement noise. 
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Figure 5-7 Acceleration data corrected for the gravity vector, averaged over 6000 samples. The 
horizontal lines depict the 99% confidence interval due to measurement noise. 
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Figure 5-8 Orientation data of the MTx in rest, averaged over 6000 samples. The horizontal lines 
depict the 99% confidence interval due to measurement noise. 
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The estimated variances for all noise sources are summed in Table 5-1. The square of the 
correlation coefficient, r2, gives a measure of how good the data fits to the linear model, with  
the value 1 being a perfect fit. The estimate for the measurement noise, ˆ

zσ , was calculated 

using standard error propagation methods. 

Table 5-1: Result of the estimation of the measurement noise and bias drift noise for the MTx signals. 
signal 2ˆ

z
σ  2ˆ[ ]

z
SE σ  2ˆ

b
σ  2ˆ[ ]

b
SE σ  2r  ˆ

z
σ  ˆ[ ]

z
SE σ  

gyrox (deg/s) 7.55E-01 9.7E-04 3.10E-08 5.6E-08 5.12E-06 8.69E-01 5.6E-04 
gyroy (deg/s) 8.82E-01 1.0E-03 -2.28E-07 5.9E-08 2.45E-04 9.39E-01 5.5E-04 
gyroz (deg/s) 7.53E-01 9.6E-04 -1.56E-07 5.6E-08 1.31E-04 8.68E-01 5.5E-04 
accx (ms-2) 7.63E-05 8.4E-08 -1.01E-11 4.9E-12 7.18E-05 8.73E-03 4.8E-06 
accy (ms-2) 1.04E-04 1.1E-07 5.23E-12 6.5E-12 1.09E-05 1.02E-02 5.5E-06 
accz (ms-2) 2.94E-04 2.8E-07 -7.93E-11 1.6E-11 4.05E-04 1.71E-02 8.1E-06 
roll (deg) 3.15E-03 4.5E-06 1.26E-09 2.6E-10 3.86E-04 5.61E-02 4.0E-05 
pitch (deg) 3.48E-03 4.8E-06 7.12E-09 2.8E-10 1.08E-02 5.90E-02 4.1E-05 
yaw (deg) 3.92E-03 2.2E-05 4.47E-09 1.3E-09 2.02E-04 6.26E-02 1.8E-04 

Our Kalman filter does not use the acceleration measurements directly, since they are first 
corrected for the gravitational acceleration using the orientation measurement. Figure 5-7 
depicts the corrected acceleration measurement using the orientation from the MTx. Table 5-2 
shows the noise estimates of these corrected values. 

Table 5-2: Result of the estimation of the measurement noise and bias drift noise for the corrected 
acceleration measurements. 

signal 2ˆ
z

σ  2ˆ[ ]
z

SE σ  2ˆ
b

σ  2ˆ[ ]
b

SE σ  2r  ˆ
z

σ  ˆ[ ]
z

SE σ  

accx (ms-2) 1.76E-04 2.15E-07 1.23E-10 1.24E-11 1.62E-03 1.33E-02 8.1E-06 
accy (ms-2) 1.87E-04 2.24E-07 5.36E-11 1.29E-11 2.87E-04 1.37E-02 8.2E-06 
accz (ms-2) 2.97E-04 2.84E-07 -7.94E-11 1.64E-11 3.91E-04 1.72E-02 8.2E-06 

We repeat in Table 5-3 a part of the results from Chapter 3, where we determined the 
measurement noise of the camera positioning system. The measurement noises of the camera 
pose estimation output – in pattern coordinates - were calculated from Table 3-7 and Table 
3-9. In choosing the measurement noise we can use the rms error values from these tables -  

the expected error over multiple orientations, denoted ˆ
z

σ in Table 5-3 - or the standard 

deviation of the noise – the expected spread at a fixed orientation, denoted ˆ
n

σ . The largest 

contribution to errors in position are errors in orientation. A complication is that the errors in 
world coordinates are dependent on the pose of the camera in marker coordinates and 
dependent on the pose of the marker in world coordinates. The worst case error can be 
calculated as 

 { , , }
ˆ ˆ

x y z distance θσ σ= ⋅  (5.16) 
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where distance is the distance to the marker – we take 5m – and ˆθσ is either ˆ
z

σ or ˆ
n

σ of the 

roll/pitch angles (rotations around the x and y-axis of the pattern coordinate frame). The error 
in yaw angle (rotation around the marker’s z-axis) is in general much better than the other two. 
However, upon conversion from pattern to world coordinates the errors are mixed. Therefore, 
we use the roll/pitch noise value for all measurement errors in the orientation. 

Table 5-3: Estimated root mean squared error over all viewing  
angles and static noise of the camera pose with a marker at 5m. 
Signal ˆ

z
σ  ˆ

n
σ  

x,y,z (cm) 4.7 1.13 
roll/pitch/yaw (degrees) 0.54 0.13 

From this experiment we can conclude that it takes around one hour for the biases to settle. 
After that hour the change of bias is small for all signals. Although the averaged values go 
outside the 99% confidence interval, which indicates a significant bias, the bias is much lower 
than the measurement noise. This holds for all measured signals, except maybe for the yaw 
angle. For the yaw angle, the spread due to bias is only just within one standard deviation of 
the measurement noise.  

It is interesting to note that in the first hour the biases seem to be related to the temperature, 
whereas after that hour the relation has vanished. The manufacturer takes the temperature into 
account to estimate the bias, so maybe there is no real relation. The slowly converging bias 
could also be the result of their estimation algorithm responding to the unknown bias at 
startup. Note that in the gyroscope signals a small bias remains. 

There are two more interesting moments in time. Around 4.5 hours in Figure 5-6, we can 
observe a sudden bias in the z-acceleration for half an hour. We have no explanation for this. 
It is not caused by a rotation as the other acceleration signals do not change. After seven hours 
we can also observe a change in bias of the acceleration, but there the explanation is a change 
in the estimated orientation, as can be seen from Figure 5-8. The change in bias is not present 
in the corrected acceleration in Figure 5-7. However, it was not a real orientation change as the 
gyroscope signal does not show a rotation. This, in turn, means that the biases of the 
acceleration and orientation output of the MTx are correlated. This is of course to be 
expected, as the orientation is calculated within the MTx from the internally measured earth’s 
magnetic field and the measured acceleration. 

In Table 5-1 and Table 5-2 we can see that all bias variances 2ˆ
b

σ are close to zero. The standard 

error in the estimate is comparable to the estimate itself. Only the pitch angle seems to have a 
significantly changing bias, but as already mentioned, the resulting total bias is negligible. One 
may also notice the very low correlation coefficients of the linear fits. This is an indication that 
either the model is not correct or that there is too much noise in the values. The latter is the 

case in our experiment, as the estimated values 2

,
ˆ

d nσ in eq. (5.13)  are increasingly noisy with 

large n due to lower values of L. This noise can also explain the impossible negative values for 
the variance estimates. With simulated signals we verified that our method works when the 
noise sources are normally distributed as assumed. In that simulation a low correlation 
coefficient was found as well. 
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From the above analysis we can conclude that using the MTx eliminates the need to 
continuously estimate biases in the inertia sensors, at least after the first hour after powering 
on the device. In practice we will set the bias noise in our Kalman filter to a very low value to 
follow the small biases that can be seen in the figures, especially just after powering on the 
system. 

Recall that our two Kalman filters only incorporate the orientation output of the MTx and the 
calculated pose from the camera images as measurements in their measurement update step. 
The gyroscope and accelerometer outputs are used in the prediction step, and their noise is 
therefore part of the process noise. The process noise will be discussed in the next section. 

In this experiment we found the measurement noises of the MTx signals to be quite low, 
especially for the orientation. This does not mean that the error with respect to the actual 
orientation is that small. The orientation estimate is influenced by distortions of the earth’s 
magnetic field by objects and by acceleration of the device. The distortions will introduce a 
bias depending on the position. For instance, we found that tables in our lab would influence 
the earth’s magnetic field to such an extent that errors of 45° were measured in the yaw angle. 
This made us ignore the yaw angle of the MTx and only trust the yaw measurement coming 
from the camera.  

Accelerations can also introduce a bias in the orientation, as the gravity vector is estimated 
(internally in the MTx) from the measured acceleration. During motions with constant 
acceleration, the acceleration of the motion and the acceleration due to gravity cannot be 
distinguished. We will show this effect in the next section. According to the manufacturer of 
the MTx the root mean square error is below 2° during motion, which is much higher then the 
noise alone. Finding an adequate measurement noise for the orientation is not trivial, but a 
value has to be chosen. We choose 1° for the roll and pitch angles. 

The camera pose has extra sources of errors as well. First of all, the offset of the camera frame 
with respect to the body frame is guessed, see section 5.2.3. It cannot be measured directly. 
We estimate this error to be around 1 cm. Secondly, the position output of the algorithm is 
sensitive to errors in the orientation of the markers used. If a marker is seen at five meters 
distance, an error of 0.5° in its orientation result in an error of 500 cm sin(0.5 )=4.4cm⋅ ° in the 

camera’s estimated position. During setup of a demo we usually attach markers to the walls 
and the floor. We assume that these surfaces are oriented perpendicular to one of the axis of 
our world coordinate frame. We think an error of up to 0.5° can be expected. When one 
marker is used, this is a fixed bias. When multiple markers are used it can be regarded as noise. 
We use half of the expected error as an estimate for the orientation noise in case of multiple 
markers. Table 5-4 shows the measurement noise parameters we will use in our Kalman filters. 

Table 5-4: Measurement noise parameters used in the Kalman filter. 
signal ˆ

z
σ  

Camera position (cm) 5.1 
Camera orientation (deg) 0.6 
MTx pitch/roll (deg) 1.0 
MTx yaw (deg) ∞ 
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5.5 Process noise and expected sensor value ranges 

In the previous section we determined the measurement noise of the sensors. Our Kalman 
filter also needs an estimate for the process noise. Recall that a Kalman filter first predicts a 
state using the previous state, and then updates the state using measurements. The process 
noise indicates how much the accuracy, represented in an error covariance matrix, of a state 
estimate can change in a prediction step.  The Kalman filter uses the error covariance to 
optimally combine measurements with the estimate of the state. In this section we will 
estimate the process noise using the sensor values during a typical demo. 

Even when a state estimate at the current time has zero error, the predicted state in the future 
can have an error. The process noise models this error. Some sources are: 

• Linearization. Being linear, the Kalman filter uses a linearization of the state-
prediction function. Depending on the non-linearity of this function around the 
current estimate, an error is introduced during the prediction step. 

• Discrete sampling of the sensed variables. An error is introduced when for 
instance the acceleration is not constant in reality, but is modeled as constant by the 
filter. 

• Ignoring variables that influence the state. Usually the influence of these variables 
is not known. Example variables are temperature, the earth’s rotation and humidity. 

Usually the process noise is also used to model errors in the sensor that are not stochastic. 

• Non stochastic sensor errors. Nonlinearity in sensor values, sensor misalignment, 
scale factor error and delay. 

Finding proper values for the process noise can be considered an art. Usually an adequate 
setting for the process noise is determined by trial and error in the real system. Our system is 
no exception. We can however find an initial estimate of the process noise by estimating the 
influence of known error sources. We first present our experiment, and then reason about the 
process noise using the results.  

To find typical values for accelerations and angular speeds we recorded sensor data while the 
headset was in use. The data was sampled at 100Hz as usual. In the first few seconds, the user 
put the helmet on. Subsequently the user was watching a few animations in front of him, and 
moving around to see them better. The measured data is depicted in Figure 5-9 and Figure 
5-10. 
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Figure 5-9 Accelerometer data during a three minute test with the headset. The lower 
figure shows all acceleration signals corrected for gravity. 
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Figure 5-10 The output of all three gyroscopes during a three minute test with the headset. 

As can be seen, the absolute acceleration is below 13ms-2, which is within the maximum that 
the sensors can measure, 17ms-2. The maximum that the gyroscopes can measure is 1200°/s, 
so our maximum measured angular velocity of 100°/s falls well within this limit. 

The corrected acceleration is rarely higher than 2ms-2, most of the time it is even below 1ms-2. 
The angular velocity is sometimes as high as 100°/s, but is usually lower than 30°/s, this 
coincides nicely with the values in section 2.4: 150°/s when something sudden draws the 
attention of the user, and 30°/s when a user dwells with his eyes over a scene. 

In this experiment we did not measure the position, but due to the length of the cable between 
the headset and a laptop on a table the maximum position change was 5 meter. The velocity 
was not determined either; usually the users walk around slowly, and do not change posture 
quickly (bowing, kneeling etc.). The speed of the head is therefore usually below 1 m/s, with 
an expected maximum of 2 m/s.  

With the results above we can estimate the influence of a number of error-sources on the 
prediction error in the prediction step of the Kalman filter. With these estimates we will 
estimate the process noise that models these sources of error. We will discuss these error-
sources using the categories mentioned earlier.  
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Linearization 
In our augmented reality application, we use an error-state Kalman filter. The filter does not 
estimate the state itself but its error. The state is estimated by using a non-linear state 
prediction function, and the Kalman filter uses a linearized error-state prediction function for 
the error-state. With our choice of error-states in section 4.3.3, the linearization introduces no 
error in the predicted error-state when the error-state represents no error (0 for normal error-
states in eq.(4.63) , or [1 0 0 0]T for the quaternion representation in eq. (4.74) ). We transfer 
the error after every observation update, so we expect no error. Only the predicted error-state 
covariance matrix suffers from linearization errors. 

Ignoring variables that influence the state 

One assumption in our state-prediction function is that we integrate the acceleration and 
angular velocity in an inertial reference frame. Errors are introduced due to the rotation of our 
reference frame. The largest error due to this assumption is the rotation of the earth. This 
rotation is 360° in a day, so 4.2e-3°/s. Looking at Figure 5-5 this bias is negligible and can be 
ignored. 

The effect on the error in the predicted velocity and position is larger. When we assume the 
rotation of the earth to be constant, we should add two fictitious accelerations to the one 
measured by the accelerometer. One, 

Coriolisa , is caused by the Coriolis force 
CoriolisF when the 

device is moving with some speed vr

�
in the rotating frame: 

 
r

/ 2 v
Coriolis Coriolis

a F m= = − ×Ω
�� �

 (5.17) 

where Ω is the rotation of the earth represented as a vector (in radians/s) in the rotating 
frame. When the speed is 10 m/s (much higher than the expected 2m/s), the resulting 
acceleration is 

 1 5 1 3 2(v 10 ) 2 7.3 10  / 10 1.5 10Coriolis ra ms rad s ms ms− − − − −= = ⋅ ⋅ ⋅ = ⋅
�

. (5.18) 

Even at such a high speed, this error is very small compared to the measurement noise 
averaged over 60s. The second fictitious acceleration is centrifugala : 

 ( )/centrifugal centriguala F m r= = − × ×Ω Ω
�� �

, (5.19) 

where r
�

is the position in the rotating frame. When the distance to the origin of the frame is 
100m this maximum fictitious acceleration measures  

 5 2 7 2

,max ( 100 ) (7.3 10  rad/s) 100 5.3 10centrifugala r m m ms− − −= = ⋅ ⋅ = ⋅
�

. (5.20) 

In a demo the distance to the origin is usually much lower (5m), so this error can also safely be 
ignored. 

A bigger source of errors in the acceleration is due to the fact that the sensors are not located 
at the origin of the body frame. We defined the body of the MTx as the origin, but the actual 
sensors in it could have an offset of a few centimeters. Similar to eq. (5.20), the maximum 
error in acceleration due to an offset d and angular velocity ω  is given by  

 2

,max ( , )offseta d dω ω= . (5.21) 
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With a rotation of 150°/s and an offset of 0.5cm the resulting error is 0.034 ms-2. This is a 
significant error, but the impact on the velocity and position is limited. The error in speed is 

2 11.3 10d msω − −= ⋅ , and the error in position 0.5cm. In our application only the position error is 
important. 

Non stochastic sensor errors 

In the previous section we set the measurement noise for the MTx orientation to 1.0°. 
Depending on the motion, the actual angular error has a (temporary) bias. This error in 
orientation has an effect on the estimation of the gravity vector in body coordinates. Assume 
the body frame aligned with the world frame. The 3D gravitational acceleration 

bg
�

 is then [ 0 

0 g ]T in body coordinates. The error 
erra
�

in acceleration due to an error θe in pitch angle is 

given by 

 ( )
0 sin( ) 0 cos( ) 0

ˆ 0 0 0 0 0
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e e

err b b
e
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. (5.22) 

With an error θe of one degree and g the gravitational acceleration in the Netherlands, 
9.81ms-2, the error aerr is 0.17ms-2. This error is quite large. Furthermore, this error can last for 
over a second (see section 5.6.5), so an error in position of 17cm could be the result. We 
expect the output of the orientation Kalman filter to have a better estimate than the 
orientation from the sensor cube alone. Therefore, it is better to use the output of the 
orientation Kalman filter for the correction for the gravitational acceleration, as we do in our 
application. 

Discrete sampling of the sensed variables 

In the time-update step of the position in our Kalman filter we assume a first order hold on 
the measured acceleration. This is the same as using the average of the current acceleration 
measurement and the previous one, see eq(4.60). We can give an upper bound to this linear 
interpolation error with some assumptions on the motion. First we assume a sinusoidal  
acceleration with an amplitude of 2ms-2, the maximum acceleration in this experiment. 
Secondly we assume a frequency of 10 Hz. In [101] it is mentioned that the human wrist can 
be actuated with a bandwidth of 6 Hz; we expect even lower frequencies in head motion due 
to the weight of the headset. Therefore, 10 Hz is an overestimate. Using the assumed motion, 
we can calculate for each time period of 10ms the real signal average s  minus the estimated 

average ŝ : 
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/ 2
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With A=2.0ms-2, f =10Hz and ∆t=10ms, the maximum error is 0.065 ms-2. Being a sinusoid 
itself, the error in position is within 0.065/(2π2

f
2 )=17µm. Also at other frequencies the 

interpolation error is negligible. A similar analysis can be done for integrating the angular 
velocity to an angle. If we take A=100°/s, the maximum error in angular velocity is 3.2°/s, and 
the maximum error in angle is 3.2/(2πf)=0.051°. So also the interpolation error for the 
orientation is negligible. 

Of all aforementioned error sources, only the error in correcting the acceleration for the 
gravitational acceleration is significant (up to 0.17ms-2). This error is a result of an inaccurate 
estimation of the orientation during motion. The orientation and its accuracy is best estimated 
by the orientation Kalman filter. Therefore, we can also estimate the accuracy of the 
correction for gravity. This accuracy estimate can directly be used as a process noise 
component. 

Recall that we use the acceleration and angular velocity in the prediction step of the Kalman 
filter. This, of course, means that the measurement errors of those sensors are part of the 
process noise. In the process model for the position, eq.(4.64),  vu contains the accelerometer’s 
measurement noise and wa models the accuracy of the acceleration correction. In the process 
model for the orientation, eq.(4.76), the input variable u contains the gyroscope’s measurement 
noise, and we do not need the process noise variables w. Table 5-5 shows the parameters for 
the process noise that we will use in our initial Kalman filter setup. The process noise for the 
velocity and position are calculated from those values by the filter itself. 

Table 5-5: Estimated process noise parameters for one time-update step of 10 ms 
signal ˆ

pσ  

Acceleration (ms
-2

) 0.02-0.17 (depending on orientation filter covariance 
Angular velocity(deg/s) 0.88 ( from Table 5-1) 

Accelerometer bias(ms
-2

) 10
-3

 
Gyro bias(deg/s) 10

-3
 

This concludes the analysis of the process noise of our Kalman filters. As we mentioned in the 
beginning, finding an adequate process noise is still a process of trial and error. We used the 
values found in this and the previous section to set up our initial Kalman filter. We have tested 
the performance of our filters in a more controlled situation, which will be described in the 
next section. 

5.6 Experiment with a SCARA robot 

To test the full setup in practice we need some kind of ground truth measurement. With a 
robot we can move the system in a predefined way and compare the output of the system with 
the movement of the robot. Unfortunately, a number of practical problems were encountered 
that prevented us from doing a full analysis. However, some of these problems also occur in a 
real system and need to be addressed. 
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5.6.1 Experimental setup 

We used a Sankyo SAR8437 SCARA robot to move our setup consisting of a camera and an 
inertia tracker as depicted in Figure 5-11. The upper arm is 30 cm and can be turned 240°. The 
lower arm is 25 cm and can be turned 270°. The end effector – the end of the robotic arm – 
with our sensors can be moved up and down by 20 cm and be turned by more than 360°. 
Since all axes turn around the vertical, only the heading angle can be changed. The correction 
for the gravity vector is therefore constant. 

  

6 Markers

y

x

End-effector with

camera+inertia tracker

Yaw/heading

pitch

roll

z

SCARA range

3 meters

55 cm

Lower arm

86 cm

6 Markers

y

x

End-effector with

camera+inertia tracker

Yaw/heading

pitch

roll

z

SCARA range

6 Markers

y

x

End-effector with

camera+inertia tracker

Yaw/heading

pitch

roll

z

SCARA range

3 meters

55 cm

Lower arm

86 cm

 

Figure 5-11 Left: 4-DOF SCARA robot. Right: Camera with inertia cube to be attached to the robot. 
Down: schematic of the setup with (rotation) axes. 

At 2.7 meters distance a board with six markers – 22 x 22 cm each – was put on the wall as 
shown in Figure 5-12. By having multiple markers we can find the accuracy in pose estimation 
when one marker is used as well as when multiple markers are used together to estimate the 
pose. 
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The SCARA robot does not allow the pose of the end effector to be read out at high rates. 
The robot has some hardware on each rotation axis that generates a specific number of pulses 
per rotation. We opened the robot to get access to these pulses and counted them using the 
Andy Servo 1 board by Ajeco inc. as an add-on to the PCM-9576 all-in-one single board 
computer by Advantech (Figure 5-12). A program on that computer recorded the encoder 
counts along with the time of measurement at a rate of 2 kHz. The relation between the 
counts and the angles of rotation could be found using the control box of the SCARA robot. 

The PC board can only count two signals at the same time. During our experiments it counted 
the rotation of both arms of the robot. 

  

Figure 5-12 Left: 6 markers for pose estimation. Right: hardware for reading the encoder pulses. 

During the experiments, a laptop was used to record camera images at around 25Hz and 
inertia tracker measurements at 100Hz. All measurements were time-stamped. To be able to 
compare these measurements with the ground truth robot data, the time-stamps were 
synchronized. We used a standard time synchronisation method to minimize the time-
difference between the two measuring computers, resulting in an offset of 10±30µs. As the 
time between updates of our camera and sensor cube is higher than 10ms, the time 
synchronisation error is negligible. Table 5-6 shows more properties of our experimental 
setup. 
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Table 5-6 Properties of our experimental setup. 

Image size 1280 x1024 pixels. Diagonal covers 108° 

Marker distance 2.7m 

Marker size 22x22cm. (± 70x70 pixels) 

Edge Contrast to Noise Ratio 48dB 

Shutter time (estimated) 4ms 

Marker viewing angle Full frontal. 

Image frame rate 25 Hz 

Encoder update-rate 2 kHz 

Inertia tracer update-rate 100 Hz 

 

5.6.2 Motion Trajectories 

We performed four experiments with four different trajectories. Figure 5-13 shows the x,y 
movements of the robot for all of them. The robot is controlled such that the end effector has 
a trapezoid speed profile. The desired speed as well as the acceleration/deceleration times can 
be set. In experiment one, two and four, these times are set to half a second. In all these 
experiments the orientation was fixed. 

In the first experiment the robot moves from the starting position to the left, makes two 
circles, continues to the left, and hurries back to the starting position. The acceleration at the 
start and during the circular motion is 40cm/s2, and on the return path the acceleration is 80 
cm/s2. 

In the second experiment the movement consisted of three rectangles with sides of 20 cm, and 
quarter circle corners of radius 5cm. The speeds for the three rectangles were 20cm/s, 35cm/s 
and 50 cm/s, with maximum accelerations of 70 , 200 and 360 cm/s2 (determined using the 
encoder values).  

In the third experiment we let the robot make half a circle back and forth with a radius of 55 
cm (maximum range). This was done seven times, with speeds ranging from 32 cm/s to 224 
cm/s. The corresponding accelerations ranged from 20 to 930 cm/s2.  

The fourth experiment should have been the same as the first one, but with an extra ellipsoid 
motion downward: ∆z=12cm between y=300mm and y=500mm. Due to unknown reasons, a 
shifted ellipse was the result. We did not measure the z-encoder signal and estimated the z-
position using the y-position. The speed along the track was 20 cm/s, and the x,y,z 
accelerations along the ellipse were up to 34, 28 and 17 cm/s2 respectively. 
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Figure 5-13 Motion trajectories in the four experiments. The lengths of the arrows show the speed. 

5.6.3 Acceleration from encoders 

We need to calculate the ground truth acceleration for two reasons. The first is that we want to 
estimate the delay in the measurements of the accelerometers by comparing the measurements 
with the ground truth. Secondly, we have to calibrate the robot coordinate system with respect 
to the world coordinate system in order to compare the ground truth motion of the robot with 
the estimated motion from the Kalman filter. 

The inertia cube measures directly in the world coordinate system, so we have to calibrate the 
pose of the robot coordinate frame using measurements of the MTx inertia cube. As our robot 
can rotate in one direction only, the calibration method described in section 5.2.3  cannot be 
used for our robot. Due to various problems, one of them described below, we could not 
perform an accurate calibration. We could find a measurement delay of 9ms in the 
accelerometer data, but no significant offset in orientation. 

Let us look at the encoder pulse counts during an accelerated motion. The encoder counts are 
proportional to the rotation of the lower arm of the robot. In Figure 5-14 we show the 
estimated (angular) velocity and acceleration in encoder pulses at a rate of 2 kHz. When the 
encoder count at sample k is given by eck pulses, these estimates are given by: 

 1

1

k k k

k k k

velocity ec ec

acceleration velocity velocity

−

−

= −

= −
 (5.24) 
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Observe that the acceleration is zero most of the time and sometimes 1 or -1 pulse/sample2. 
This is not an artifact of the discrete sampling of the encoder, but an artifact of the way 
accelerations are implemented by the control box of the robot. Remarkable is the speed 
halving roughly every 12 ms. We do not know the source of this effect, but it seems unlikely 
that the robot can accelerate with 2300 ms-2, which is what we calculated from these encoder 
counts. We can rule out a problem with the hardware counter as the position calculated from 
these counts is found to be correct. Also a temporary delay in the counting cannot be the 
source, as this halving would then be compensated in a next sample. It cannot be a timing 
problem either, as we measured the counts for two axes simultaneously and the different axes 
show this behaviour at different time instances. We will accept this strange effect, and assume 
the counts are correct. 

The position of the robot end effector can be calculated as a function of the encoder counts. 
The parameters of this function were found using the control box shipped with the robot. As 
the ground truth acceleration is not smooth, we cannot compare the measured acceleration 
with the estimates calculated from three consecutive positions. We model the acceleration 
sensors and generate acceleration estimates by applying this model to the encoder counts. The 
following two steps describe the model: 

• Apply a low-pass filter on the positions with a cut-off frequency of fmax. 

• Calculate the moving average of the acceleration over a period Tacc. 
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Figure 5-14 Estimated speed and acceleration of encoder counts sampled at 2KHz. Roughly every 12 ms 
the difference in encoder counts is halved, which causes a high (apparent) acceleration. 
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Our MTx accelerometers have a standard bandwidth of 30 Hz, so we use a cut-off frequency 
fmax of 30 Hz. The actual low-pass filter that was used by the manufacturer is not known to us, 
but it is mentioned that it is effectively a second-order low-pass filter. We applied a zero-phase 
second-order low-pass Butterworth filter. A zero-phase filter was used to be able to estimate 
the delay in the measurements. The parameter Tacc was set to the smallest possible value of 1 
ms. 

Figure 5-15 shows the measured and estimated acceleration when the robot is not moving, 
then accelerating to a constant speed, and then starting a circular motion. Since the robot has 
to approximate a straight line with two rotations, the acceleration will have values around but 
not exactly zero. It is interesting that the accelerometer measurements show a variation in 
values that seems to agree with the calculated accelerations, although the measured values vary 
a bit more. 
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Figure 5-15 Estimated vs. measured acceleration. The mean acceleration over 1ms was estimated after a 
second order low-pass filter of 30 Hz on the calculated position from the encoders. 
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5.6.4 Inertia tracker rate instability 

The MTx inertia tracker gives its measurements at 100 Hz via a serial port connection. As our 
laptop (like most modern laptops) has no serial port, the data needs to be converted to USB 
using a serial-to-USB converter. Xsens provides such a converter (product code CA-USB2X); 
however, this device (or its device driver in Linux) turned out to have a peculiar property: ten 
times per second, 10 measurements were received together. This is unacceptable, since our 
application needs a much higher update rate than 10 Hz. We tried converters from SiteCom 
and those give much more stable output; the time between measurements is alternating 
between 8ms and 12ms. We currently use a converter that shows normal operation (Magic 
Control Technology Corp. U232-P25). 

Figure 5-16 shows the time between receiving two samples by the application. The nominal 
time difference is 0.01000s. Depending on the processor load, a sample may be read slightly 
later, which causes jitter. Still, large delays can be observed of up to 9 samples. The cause 
could be a heavy processor load. Besides the delay, we also observed missing samples. At first 
sight it could be jitter, but the larger time difference is not compensated by a lower one. This 
problem, however, is probably caused by this specific experiment in which we recorded 
camera images on an external hard disk making heavy use of USB. In this experiment we can 
correct the incorrect time stamps offline, and insert interpolated values for missing points. On 
average 6% of the samples were lost, with small bursts of 25% sample loss. 
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Figure 5-16 Inertia measurements of the MTx via a serial-to-usb converter. 
All the data of the MTx samples  is regularly delayed up to 0.1s. 
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In the real application, we currently do not correct the time of the inertia measurements, but 
we simply assume a regular sampling interval of 10ms. Using the best serial-to-usb converter 
(mct U232-P25) we do not have the need to correct the times and we did not notice missing 
samples during demos. It is worthwhile to detect and correct these problems in a future 
version of our software when these errors are observed in the real application as well. 

5.6.5 Inertia tracker orientation estimation 

The MTx uses the earth’s magnetic field as well as the acceleration in the estimation algorithm 
for the orientation. The earth’s magnetic field vector alone is not enough, as it gives only a 
direction to the magnetic north, and thereby fixing only two angles of rotation. The third 
rotation is estimated from estimating the gravity vector. Since a change in measured 
acceleration can either be caused by a rotation or a real acceleration with respect to our world 
reference frame, the direction of the gravity vector cannot be estimated easily. The result is an 
error in the estimated orientation when accelerations are present.  

Figure 5-17 shows the output of the MTx during our third experiment. The roll and pitch 
angles show an error that can be explained by the acceleration present in the experiment. The 
plot in the bottom right shows that whenever the acceleration is positive the error in roll 
changes to the positive side and when the acceleration is negative the error changes towards 
the negative side. Just after 120s we can observe a longer period of acceleration and it results 
in an error of 4°. In our experiment this problem occurs frequently, but as the acceleration due 
to human motion is fluctuating much more, it could be argued that the resulting orientation 
error in a real application will be much lower. 

Another problem seems to be the error in the yaw angle. This error does not seem to be 
acceleration dependent but rather position dependent. This means that the setup with the 
SCARA robot disturbs the earth’s magnetic field. Errors of up to 15° are observed, which 
makes this angle useless to incorporate in our Kalman filter. We also found that other objects 
in the neighbourhood of the device can throw off the angle by as much as 45°. In our 
demonstrator we therefore ignore the yaw angle from the inertia tracker completely, and only 
use the estimate from the camera. 
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Figure 5-17 Orientation output of the MTx during the third experiment. The bottom right shows 
the relation between the acceleration in the x-direction (dotted line) and the roll angle. 

 

5.6.6 Camera pose accuracy 

In this experiment we could use six markers at the same time. This makes it possible to show 
the accuracy when one marker is used (four points), and when all markers are used (24 points). 
Since the robot, the camera, and the markers are not perfectly aligned, we needed a calibration 
step to guarantee that the coordinates from the camera pose estimation are in correspondence 
with the robot coordinates. We estimated the full pose of the camera coordinate frame with 
respect to the robot coordinate frame using the data from all experiments and all markers.  

Figure 5-18 shows the dynamic camera pose accuracy for our four experiments using all 24 
points, and Figure 5-19 shows the accuracy when only one marker is used. The pattern of the 
errors show that the error in angle is dependent on the position of the camera. It seems to 
follow the x-position (horizontal movement). As the horizontal movement is the largest, we 
expect the largest errors there. The angular errors in both figures are below 0.5°, and the positional errors 
are below 3 cm. Although some signals show lower error values, it is the maximum error that is 
important. As the marker was seen by the camera under an angle below 20°, we expect 
relatively high errors (see section 3.8.1). According to Table 3-6 an RMS error of 0.9° can be 
expected.  
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Using all six markers makes the data much less noisy, but the absolute error is still large. We 
expect that using multiple markers also makes these systematic errors smaller, but in this 
experiment the markers are all seen very close to one another; the coverage by the markers in 
the image is less than 4%. We estimated the noise in the measurements from data where the 
robot was moving less than 1cm/s. Table 5-7 shows the results, and we can conclude that 
measurement noise is not the limiting factor in our setup. As the observed error is largely dependent 
on the position, we conclude once again that the lens model is the most contributing factor to the error. 

We tried to estimate the positional accuracy in case of a better calibration by correcting for the 
orientation errors. We rotated every pose estimate to the zero error orientation; the results are 
shown in Figure 5-20. The accuracies are then better than 1.5cm. Moreover most points with 
high error are gone. This shows that these positional errors were the result of high angular 
errors. 

Table 5-7 Standard deviation of the noise in the pose when the robot is moving  
with speeds less than 1 cm/s. We used 800 data points after removal of 
outliers with errors larger than 6 times the standard deviation. 

 x (cm) y(cm) z(cm) rx(°) ry(°) rz(°) 

One marker 0.20 0.10 0.14 0.031 0.010 0.042 

All markers 0.072 0.035 0.098 0.019 0.005 0.015 

Another source of errors is the delay between acquiring the image and receiving it by the 
camera pose estimation application. Without a correct estimate of this delay, the estimated 
position would show errors of up to 10 cm in these experiments. We have calibrated and 
corrected for the delay in the presented results, and found that the camera image was delayed 
by 42 ms before processing starts. The total delay to a pose estimate is therefore around 90 
ms. This means that using our method to incorporate delayed measurements (section 4.4.2), 
the Kalman filter rolls back 9 time steps, and then re-estimates the current pose using the 
stored inertia cube measurements.  
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Figure 5-18 Dynamic camera pose accuracy in the four experiments on the SCARA robot, 
using the information from all six markers.  
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Figure 5-19 Dynamic camera pose accuracy in the four experiments on the SCARA robot, 
using only one  marker. 
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Figure 5-20 Dynamic camera pose accuracy in the four experiments on the SCARA robot after 
correction for orientation errors. 
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5.6.7 Kalman filter analysis 

Now we will present the performance of our Kalman filter. Our inertia and camera 
measurements had multiple problems. The timing problems are believed to be due to the way 
we recorded the measurements. To show the results, we have corrected the timing of the 
measurements. Since our filter cannot properly cope with missing inertia tracker data we used 
interpolated data to insert samples when real measurements were missing. 

Figure 5-13 showed the positional movement of the robot for all experiments. Figure 5-21 
shows the calculated x,y speeds and accelerations during one of the half circles in experiment 
three. It shows that the speed profile has a trapezoidal shape and that the calculated 
acceleration in the x and y directions is not smooth. The change in acceleration has to be 
modeled in the Kalman filter by the process noise.  
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Figure 5-21 Speeds and accelerations during one of the fast semi-circles of experiment three. 

We analysed the performance of our filter using different datasets. For the inertia tracker 
values we used three different datasets: 

• Calculated acceleration, angular velocity and orientation from the robot encoders. 

• Measured acceleration and angular velocity, with the calculated orientation. 

• All measured data. 

The measured data were not good enough to calibrate the inertia-tracker frame  with respect 
to the robot frame; however, we found no indication that the robot had an inclination with 
respect to the world coordinate frame. For the camera pose values we used five different 
datasets: 

• Calculated pose from robot encoders (with and without added noise of σz=0.1 cm). 

• Measured pose from all markers; corrected for orientation error. 

• Measured pose from all markers. 
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• Measured pose from one marker; corrected for orientation error. 

• Measured pose from one marker. 

The camera was calibrated to produce pose estimates in the robot coordinate frame. In that 
frame, the real orientation is per definition zero in these experiments, and a non-zero 
orientation is the result of an error in the lens calibration since the measurement noise is 
negligible. The correction for the orientation error was performed by rotating the pose such 
that a zero orientation was obtained. Using the corrected data, we can show the performance 
when the pose has little systematic error. 

In the datasets where all markers are used, all points in the detected markers are used to 
optimize the pose of the camera. If at least one marker was recognized, a pose could be 
calculated. In the sets where only one marker was used, no pose is estimated when that marker 
is not recognized. 

Images were recorded at a rate of 25Hz. In practice, only half of them can be processed in 
time. For this analysis we only used images at 12.5 Hz since the accuracy did not increase 
much by using all frames. 

Before showing the results, we will first show what the output of the Kalman filter looks like. 
In Figure 5-22 the dots show the x-position, the error in x-position and the error in x-velocity 
as estimated by the filter. This data comes from the third experiment, where the robot was 
moving at high speeds. In less than one second the robot moves from +55cm to -55 cm. The 
filter used the calculated position data from the encoders, so the position measurement 
(12.5Hz) was perfect. For this figure only, we also set the delay of these measurements to 0ms.  

The 1σ error-bars in the figure show the square root of the filter’s estimated variances of the 
estimated position and speed. After a position measurement, the error and the estimated 
uncertainty become zero because the measurement noise is zero. As the following eight 
acceleration measurements are incorporated using the process model, the process noise 
increases the uncertainty in position and speed. Also the actual error goes up due to the 
inaccurate constant acceleration model used in the process model. Now one can easily see that 
the actual error most of the time falls within the estimated uncertainty, the 1σ error bars. 

When the position measurement suffers from noise, the actual error will not be zero after a 
measurement update. The uncertainty will still decrease at each position measurement, but not 
so much. The uncertainty will be larger at all times, and the shape becomes more flat instead 
of cone shaped.  

 

 



178 CHAPTER 5. SYSTEM INTEGRATION AND PRACTICAL USE 
 

  

140.5 140.6 140.7 140.8 140.9 141 141.1 141.2
-50

0

50

p
x (

c
m

)

140.5 140.6 140.7 140.8 140.9 141 141.1 141.2

-0.2

0

0.2

p
x
,e

rr
 (

c
m

)

140.5 140.6 140.7 140.8 140.9 141 141.1 141.2
-5

0

5

v
x
,e

rr
 (

c
m

)

time (s)
 

Figure 5-22 Kalman filter output when the robot is accelerating fast. The measurements were calculated 
from the encoder values and the 1σ error bars show the estimated standard deviation of the 
estimated position and velocity. 

Figure 5-23 shows the ground truth, the filter output and the camera pose estimates just after 
the rapid movement from Figure 5-22. Here the measured camera pose was used, which 
introduces a systematic error. When the camera pose estimate is incorporated in the filter with 
the true noise value, the filter output will follow the camera. This is shown in the left part of 
the figure. We can artificially increase the measurement noise to incorporate the (position 
dependent) systematic error. The filter now trusts its internal estimate based on the 
acceleration measurements more, and slowly moves to the camera position. During this 
process the velocity is incorrectly updated, with an undershoot as a result. This is shown on 
the right hand side. Setting values for the process noise and measurement noise to balance 
between believing the camera or accelerometer is done by trial and error. We started with the 
measurement noises determined in section 5.4, and adapted the process noise parameters by 
hand. 
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Figure 5-23 x-position of the robot. Encoders: green solid line. Camera: red plusses. Filter: blue dots. 
Left: normal measurement noise for the camera in the Kalman filter. Right: increased 
measurement noise; the filter trusts its internal estimate more. 

We analysed the output of the filter for all four experiments, but found that the performance 
in experiments one, two and four were almost equivalent. Therefore, we only show the output 
for experiments three and four. The error in x-position was largest, so we show only the 
performance of the x-position filter output. Figure 5-24 shows the performance for each 
camera measurement set, using calculated acceleration data. For every subfigure, the noise 
parameters were optimized for low positional errors. The blue dots show the filter output, and 
the red plusses show the position measurements. The titles of the subfigures also show the 
parameters that were used in the filter (see Figure 5-3 and Figure 5-4). As can be seen,  we 
could use the same parameters for all shown sets, except for the measurement noise of the 
camera position ,z pσ . 

The top-left subfigure of Figure 5-24 shows the output when both the acceleration and 
position are calculated. Gaussian noise with standard deviation of 0.1 cm was added to the 
calculated position; this was comparable to the noise in the measured positions. The calculated 
position has a delay of 80ms, a realistic estimate. The figure shows that when no systematic 
errors are present, the position errors are below 0.3cm, except when the robot’s acceleration is 
changing fast (fast movement on the circle in experiment 3). Our model cannot follow those 
accelerations and the error  goes up to 1 cm. This shows the limitation of our state prediction 
model. 

The ‘no filter’ subfigure of Figure 5-24 shows what the error would be when no inertia sensors 
would be used. In addition to the error of the camera position measurement, an error 
proportional to the speed can be observed. A speed of 100cm/s translates to an error of 8 cm. 
Using the Kalman filter should give better results than using this very crude interpolation 
method. 

In the middle and bottom row subfigures of Figure 5-24 real camera measurements were used, 
but combined with calculated acceleration data. In the middle row all markers were used to 
determine the pose. In the bottom row, we used only one fixed marker. On the left, the 
measurements were corrected for errors in orientation. We can see on the left that the 
accuracy using the corrected poses is better than 1.5 cm. 
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Figure 5-24 Kalman filter output for experiments three and four using calculated acceleration data. 
The blue dots show the filter output, and the red +’s show the position measurements. The 

units for the parameters given in the titles are cm, cm/s
2
 and cm/s

3
. 

On the right hand side the measurements were not corrected. One can observe large errors in 
the position. When using all markers the error is within 3 cm. When one marker is used, an 
error of up to 4 cm can be observed. When the movement is small, as in experiment four, then 
the observed errors are much lower. 
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Using multiple markers does not show significantly lower errors here. The benefit is the lower 
noise, and the much higher probability that at least one marker is detected by the camera. This 
is shown next. 

The analyses above used calculated acceleration and orientation data. Now we will use the 
measured data from the inertia tracker. We showed that the inertia cube’s orientation 
measurements had errors because of magnetic field distortions. Therefore, we also did a test in 
which we fixed the orientation measurements to a zero error. This we combined with 
calculated noisy position measurements and is shown in the top-left subfigure of Figure 5-25. 
With these unbiased camera measurements, and a perfect orientation estimate, the error is 
better than 0.4 cm, with spikes to 1cm. When the orientation is not corrected and again the 
calculated camera measurements are used (top right subfigure), the error goes up to 3 cm 
depending on the movement. This shows that the encountered errors in orientation greatly 
limits the achievable accuracy in this experiment. 
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Figure 5-25 Kalman filter output for experiments three and four using real acceleration data. The 
blue dots show the filter output, and the red +’s show the position measurements. The units 

for the parameters given in the titles are cm, cm/s
2
 and cm/s

3
. 
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The lower two subfigures of Figure 5-25 show the results when using the uncorrected 
measurements from all sensors. The filters show large overshoots. When all markers are used, 
the error stays below 6cm. With only one marker, the errors stay usually below 10cm. 
However, when this one marker is not detected for one second, the error can grow quickly, up 
to to 135cm.  

We can optimize the parameters of the Kalman filters such that the maximum error is much 
lower, but only in exchange of a larger mean error. The reason for the large overshoots is that 
due to the high process noise for the bias, a sudden error in camera measurement is attributed 
to an error in bias and speed. When the marker is not detected for some time just after such a 
sudden error, the filter error will grow due to the incorrect speed estimate. Two times this 
marker was not detected for one second, at the times indicated. 

Since the orientation errors in measurements from the sensor cube are larger than those from 
the camera, it is natural to trust the measurements from the camera over those from the sensor 
cube. Figure 5-26 shows the results when we do not use the orientation estimate by the sensor 
cube at all, and fully trust the camera’s orientation estimate. One may notice a fast decreasing 
error at the start of the two measurements. This is because a small orientation error is present, 
and the filter needs some time to compensate the resulting bias in acceleration.  

Getting rid of the faulty measurements makes the output much more stable and the velocity 
estimate is now more accurate since most overshoots in the position output are gone. The 
positional errors when the marker is not detected are much lower as well. When the marker is 
detected, the positional accuracy is better than 3cm, and even better than 1.2cm if the 
orientation errors in the camera measurements are corrected. 

From these results we can conclude that the Kalman filter does its job of calculating an 
estimate for the pose at the current time from slow delayed camera pose measurements and  
fast inertia tracker measurements. However, systematic errors limit the achievable accuracy. 
The following sources of error can be discerned: 

• The systematic error in position from the camera. With the camera being the only 
position sensor, these errors cannot be corrected. Using multiple markers can help in 
lowering the errors when their respective errors have opposite sign. 

• The systematic error in the orientation of the inertia tracker, resulting in an incorrect 
estimation of the gravitational acceleration. The inertia tracker orientation estimate is 
usually more accurate than the one from the camera. Only after high accelerations, 
when the estimate can be off by up to 5°, is the camera’s estimate then better. 

It is the combination of these systematic errors that makes the filter output exhibit errors 
higher than the error of the camera alone. We found that we can safely ignore the orientation 
estimate from the sensor cube altogether in this experiment. The filter is more stable and it 
was much easier to tweak the noise parameters. 

It must be said that this particular combination of high accelerations and magnetic field 
distortions is far from typical in normal pose estimation problems such as our augmented 
reality application. We therefore expect to be able to use the orientation measurement from 
the sensor cube in a real application.  
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The observed systematic error in the camera pose, however, is the limiting factor. We are 
convinced that this is a problem with the lens calibration and not with the pose estimation 
algorithm itself. This could be verified by calibrating the lens using a better method and 
performing this experiment a second time. Another method that might work is to change the 
calibration parameters and observe the changes in the accuracy of the estimated poses from 
the measured data. A non-linear optimization algorithm could optimize the parameters. 
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Figure 5-26 Kalman filter output for experiments three and four using the orientation from only the 
camera pose estimation. The blue dots show the filter output, and the red +’s show the 

position measurements. The units for the parameters are cm, cm/s
2
 and cm/s

3
. 
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5.7 Usage of the AR setup by the KABK 

In 2005 we started working together with the Royal Academy of Arts (KABK) in The Hague. 
We worked with artists and students who were very much interested in new media. The goal is 
to have interaction with the virtual world, and we added devices like a data-glove and a RFID-
tag reader to our system to enable that. Figure 5-27 shows the wearable system that we built. 
On the right, three different versions of the headset are shown. The top one used Sony 
Glastron displays on a safety helmet. The middle one is the Visette45 SXGA from Cybermind 
with the inertia tracker and camera mounted on it. The last one was designed by Niels Mulder, 
a student of the Post Graduate Course Industrial Design at the KABK. 

In cooperation with the artists Pawel Pokutycki, Wim van Eck and Marina de Haas we 
demonstrated our augmented reality system during a number of exhibitions, Figure 5-28 shows 
some impressions. We also have contacts with interior design companies that have expressed 
interest in the system. 

This shows that there is a lot of interest in augmented reality, with more serious applications as 
described in the introduction. When the constituting parts will become a lot smaller and more 
affordable, many exciting applications will arise. 

 

 

 

 

Figure 5-27 Augmented reality equipment. Three consecutive versions of the headset are shown on the 
right. 
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Words of dancing letters at Open Dag of KABK 
January 2007 

 

 
The AR view beamed for the audience 

 
Manipulating virtual scenes by means of RFID tags 
in objects at unDEAF, April 2007 
 

 
Virtual hand puppet manipulated by a data glove 

 
Queuing for the AR experience at the 
Todays Art Festival, September 2007 

 

 
Inverted AR experience by Marina de Haas 

Figure 5-28 A selection of demonstrations using our augmented reality setup. 
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5.8 Conclusion 

In this chapter we showed what is needed to integrate the different sensor devices with a 
headset to make a working AR system. A number of calibrations are needed, all of them 
crucial for accurate results. Most of these calibrations are still performed manually, by verifying 
a correct overlay of the virtual world with the real world by eye. A ground truth experiment 
for the error in overlay is therefore the only way to really quantify the quality of the augmented 
reality system. As we do not have a setup to do such an experiment, we can only assess the 
quality visually while wearing the headset. We found that due to the inclination and distortion 
of the displays, the virtual representation of the markers did not line up perfectly with the real 
markers, see the remarks at the end of section 5.2.4. 

In section 2.4, p.26 we specified the target accuracy of our pose estimation system. The pose 
accuracy target was calculated from the limitations of our headset’s displays: 60 Hz, 1280x1024 
pixels and a field-of-view of 36°. The error in pose estimation does not have to be better than 
the error due to the use of the display. 

The error can be expressed as the error in angle of a ray from the user’s eye to the projected 
virtual object. The used display has a horizontal field of view of 36° spread over 1280 pixels. 
Therefore, the observed angular resolution is limited to 0.03°. If the angle to the virtual object 
is changing, the update rate of 60Hz will introduce an unpreventable error as well. When a 
virtual object is projected at distance d of the eye, our target accuracies are given by: 

 target,max

target

max target,max

0.03
maximum

/60

sin( )
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pos d

α
α

α

°
∆ = 
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In a demo situation we expect the user to be smoothly looking around with a head rotation of 
at most 30° per second. The target rotational accuracy is then 0.03-0.5°, and the accompanying target 
positional error with a virtual object at 100cm is then 0.05-0.9cm. 

We set ourselves some restrictions while trying to meet these requirements. First of all, we 
wanted a wearable mobile system. Furthermore, we wanted to minimize the changes to the 
environment needed to estimate the pose. For us this meant using as few markers as possible 
and making the markers as small as possible. We chose an A4-sized marker with a 2D barcode 
to distinguish many different markers.  The marker’s four corners are used to calculate the 
pose of the camera. In Chapter 3 image processing methods were developed that allow the 
marker to be detected in conditions with high noise values and allow the most accurate pose 
estimate when the marker is seen at distances of up to 5m. 

We performed experiments in Chapters 3 and 5 to find the achievable pose accuracy when 
only one marker is used. When we only take the measurement noise of our sensors into 
account, we can use Table 5-7 and Table 5-1 to find the expected errors in orientation and 
position measured by our sensors. The orientation from the sensor cube shows noise with a 
standard deviation of around 0.06°. The camera shows noise in orientation and position with 
standard deviation of 0.04° and 0.2cm respectively (in case of one marker at 2.7m). In a 
hypothetical situation in which all systematic errors are corrected, we meet the target 
accuracies for angular speeds above 7°/s. (max orientation error of 2*0.06°). 
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In practice we encounter systematic errors. The systematic errors in the camera pose are 
position dependent and seem to be caused by lens model errors. In Chapter 3 we measured 
the camera pose accuracy  for many different viewing angles. At five meters distance, the root 
mean squared error in angle was 0.6°, provided the marker was viewed slightly from the side 
(angle larger than 20°). The position of the marker with respect to the camera has a sub-
millimeter accuracy except along the optical axis where a sub-centimeter accuracy was found. 
Therefore, the estimated orientation has the largest influence on errors in camera position. 

To achieve pose update rates higher than the number of image frames per second and to be 
able to cope with the delay in the camera pose measurements, we integrate the angular velocity 
and linear acceleration measured by a fast inertia tracker. In order to combine noisy 
measurements in a statistically optimal way, we developed the error-state Kalman filters 
described in Chapter 4 (detailed in Figure 5-3 and Figure 5-4). As a result of the unpredictable 
movements of the user, we concluded that the Kalman filter would not be able to achieve higher 
positional accuracies than the accuracies of the position estimated by our camera pose estimation method. 

However, without the filter, the delay of up to 80ms in the pose estimate from the images will 
introduce an error proportional to the angular and linear velocities. Using the Kalman filters, 
we were able to achieve better results than using the camera images alone. Figure 5-26 shows 
that the accuracy of the position is not much dependent on the velocity. Ignoring situations in 
which the marker was not detected, the accuracy is better than 4 cm (with the marker at 2.7m). 
Without the filter, the error was better than 20 cm in our experiment with the SCARA robot. 
Four centimetres translates to an error of 2.3° in the angle to a virtual object at one meter. 
This offset will be clearly visible on head motions slower than 120° per second, but the offset 
is stable when there is no movement. 

Using multiple markers makes the camera pose precision much better, and the sporadic high 
errors when using one marker are gone. Another benefit is that a pose can be estimated by the 
camera as long as at least one marker is detected. There is only a slight increase in accuracy in 
comparison to using one marker since the markers are too close to one another to cancel out 
their systematic errors. 

The systematic errors in camera orientation are the main contribution to the camera’s 
positional errors. Without the systematic error, we estimate that the errors would be below 0.5cm in this 
experiment using one marker. Whether we can actually achieve this accuracy with a better lens 
calibration remains to be determined. It is certainly plausible, considering that when we correct 
for the orientation error, use calculated acceleration measurements and have limited motion as 
in experiment four (bottom left subfigure of Figure 5-24) the errors are below 0.5 cm. 

The orientation estimated by the inertia tracker can be used to track the orientation at a higher 
rate than the camera’s estimates. In our augmented reality application we use the orientation 
output, but ignore the heading/yaw angle since magnetic field disturbances introduce errors of 
up to 45°. These errors were also encountered in our experiment with the SCARA robot. 
Additionally the roll and pitch angles showed high errors in our experiments, up to 5°. The 
error in the correction for the gravitational acceleration is then 85 cm/s2. 
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When both the camera position and the orientation estimates have systematic errors, the 
Kalman filter cannot accurately estimate the velocity. Both integrating the acceleration and 
differentiating the position gives errors in velocity. Due to these velocity errors, the filter 
output shows overshoots. In case the marker is not seen for some time, the positional error 
can grow quickly to 135 cm, as shown in Figure 5-25. 

We believe that the cause of the orientation error is the fundamental inability to distinguish 
between a rotation and an acceleration. Due to a continuous acceleration during our robot 
experiments, the orientation estimation by the inertia tracker had varying systematic errors 
(Figure 5-17, bottom right). In a real demo situation, the observed accelerations are much lower, more 
irregular and the highest frequency will lie around 6 Hz. Therefore, we expect that the error in orientation from 
the inertia tracker will not be as high as 5°. 

We can think of a number of methods to decrease the observed errors. First of all, we can 
adapt our Kalman filter: 

• Increase the process noise for the accelerometer bias. The apparent bias in the 
accelerometers due to errors in orientation can be attributed to a sensor bias within 
the filter. The velocity error will therefore be smaller. This, however, is not a good 
solution since the error in orientation itself is not corrected. 

• Estimate an offset in orientation in the position filter. Since the accelerometer 
bias is quite stable, the apparent bias should be attributed to an error in orientation. 
This is an option to be investigated. 

• Use the calibrated sensor data from the inertia cube. If we could read out the 
magnetic field sensors along with the values from the accelerometers and gyroscopes, 
our Kalman filter would be able to distinguish a rotation from an acceleration using 
the camera position estimates. 

• Use the proposed plug-in architecture from Figure 2-14 and Figure 4-7 for the 
inertia tracker. The tracker can estimate the orientation better with the camera pose 
as (indirect) feedback from the central filter. In addition, the central filter will take 
care of the process model and the expected process noise of the position/velocity 
and acceleration; hence, the inertia tracker can benefit from the application dependent 
expected motions. 

Secondly, we can try to make the errors in our camera pose estimation lower:  

• View markers under an angle of more than 20°. Viewing a marker straight on, can 
introduce errors up to two°. In an AR demo situation virtual objects can be projected 
such that the markers will be viewed from the side. 

• Calibrate the lens better, such that the systematic errors are minimized. A last 
resort is not using a radial distortion model but instead a region based approach in 
which for each region, for instance 100 by 100 pixels, the distortion is calibrated 
separately. In this way, any distortion can be modelled. 

• Use multiple markers. A greater coverage of markers in the image will lower the 
observed error. However, this violates our requirement of low environmental impact. 
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• Use the Kalman orientation to optimize the pose in the last step of the camera 
pose estimation algorithm. When the Kalman filter’s estimate of the orientation is 
better than the camera’s estimate, the recalculated position will be more accurate. 
Using a correct orientation is even more crucial then. Therefore, the orientation at the 
time of capture must be accurately estimated. 

Although we did not meet the requirements set in Chapter 2, acceptable augmented reality 
demos can still be given. Our system is currently extensively used at the Royal Academy of 
Arts in The Hague. Besides using multiple markers and larger markers, two methods can be 
used to make the errors less noticeable: 

• Show virtual objects near a marker. As Figure 3-46 shows, a virtual object on the 
marker is always accurately positioned. This is true if the camera orientation is used, 
because the errors in orientation and position estimated by the camera pose 
estimation are correlated. We use the heading angle from the camera, as we do not 
trust the heading calculated from the magnetic field sensors. Therefore, when we 
place the markers such that under normal movements only the heading determines 
the viewing angle to the marker (for instance marker on a wall, eye height), errors are 
less noticeable. 

• Show moving virtual objects. Preferably floating. This will remove the direct 
correspondence between virtual and real objects. But the user will still be able to 
appreciate the virtual object by moving around. 

5.9 Recommendations for future research 

In this thesis, the pose of a camera was calculated from images of man-made markers. One 
marker is enough to calculate a full pose. When we need a more accurate pose estimate 
without using additional markers, natural features can be used. As mentioned in section 2.2 a 
Self Localisation And Map building method can be used to detect and find the positions of 
natural landmarks which are recognizable parts of objects such as tables, posters, door signs 
etc. Combining natural landmarks that cover all parts of the image with our known markers to 
ground the positions of those landmarks in the real world is the next step to immersive optical 
see through augmented reality. This will enable a user to walk around in much larger 
environments, without having to place many markers such that a marker is always in view. 

Our current fixed, single camera setup has the severe limitation that the user has to keep a 
marker in the camera’s view. We know that a mechanical eye is being developed which 
contains a small camera as used on cell phones. We could use such mechanical eyes to rotate 
the camera automatically to parts of the world that enable the calculation of the most accurate 
pose. The challenge is then where to direct the attention of the camera, and possibly how to 
connect multiple eyes to get a better estimate. 

When the pose of the camera is known, a number of coordinate frame transformations is 
needed to find the pose of the user’s eye. Ultimately, the pose of the eye is used for rendering 
images on the headset’s displays. It would be very convenient to have a method to 
automatically calibrate those transformations. The challenges are to model the display’s 
distortions, and to find a method in which the positions of the eyes for each different user can 
be easily calibrated. 
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Several improvements are possible for the sensor fusion part of our setup. Maturing our idea 
of the pluggable filter can benefit sensor manufacturers as well as application builders. We 
already observed that the used inertial tracker was not able to cope with prolonged times of 
accelerations. In the pluggable filter setup, the filter inside the tracker can benefit from other 
sensors that are plugged in to the central filter transparently. 

Lastly, all the equipment needs to be miniaturized in order to enable the exploitation of 
augmented reality systems in the consumer market. The largest component is currently the 
laptop that is used for image processing and rendering the virtual world. Image processing 
algorithms could be implemented on fast dedicated hardware such as FPGAs. Generating the 
stereo images of the virtual world is then still a problem to be solved. 
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Appendix A      Federated Filter 

To prove that the time-update and observation-update equations are equal for the central and 
federated filters, we will derive these equations for both filters. We split the states up in normal 
states (which we call common states for compatibility with the decentralized filter below) and 

drift states. The local state 
m

x  and its corresponding error covariance 
m

P  of the central filter 

is defined as: 
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with cmx  the common states and dmx  the drift states. Rewriting the observation update gives: 
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and: 
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These equations we will compare with the ones from the federated filter that we will derive 

next. The general setup of the FKF was illustrated in Figure 4-6.  The local state 
i

x  and its 

corresponding error covariance 
i

P  of local filter i is defined as: 
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with cix  the common states and dix  the drift states of the ith local filter. The two local filters 

for the orientation are exactly the same as the central filter. Therefore the observation update 
formulas are given by: 
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The master filter can be seen as a global filter with augmented state vector: 
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with N the number of local sensors. The corresponding error covariance is: 

 
11 1

1

N

N NN

 
 =  
 
 

P P

P

P P

⋯

⋮ ⋱  (A.9) 

Given a set of local state-estimates ˆ
ci

x , the globally best estimate ˆ
f

x is the one that minimizes 

the weighted least squares cost function:  

 ( ) ( )1

1 1

ˆ ˆ
N N

T

ci ci ij cj cj

j i

−

= =

− −∑ ∑ x x P x x  (A.10) 

When we assume that the cross variances in eq (4.83) are 0, the solution is simple: 

 

1 1 1

11

1 1 1

1

( )

( )

f NN

cc ccN

− − −

− − −

= + +

= + +

P P P

P P

⋯

⋯
 (A.11) 

 1 1 1

1 1
ˆ ˆ ˆ( )

f f cc c ccN cN

− − −= + +x P P x P x⋯  (A.12) 

The last assumption actually means that the local filter states are treated as being uncorrelated. 
If the fusion update formula is such that the local filters and central filter are equal again after 
fusion, then the assumption is valid. 

Now suppose that after initialization a few time updates are done. Both filters have the same 
states, the same transition matrix and the same process noise. The states and covariance 
matrices will therefore stay the same. Or: 

 2 1

2 1

c c

cc cc

x x

P P

− −

− −

=

=
 (A.13) 

Then an observation is made by local filter 2. By means of (A.7) the state and covariance for 
local filter 2 is changed. When a fusion is done now, the result will be: 

 

1 1 1

1 2

1 1 1

1 1 2 2

( )

ˆ ˆ ˆ( )

f cc cc

f f cc c cc c

− − −

− − −

= +

= +

P P P

x P P x P x
 (A.14) 

The following relations will be used extensively in the formulas that follow: 

 

( )
( )

( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

1 11 1

1 11 1

− − − −

− − − −

− −− −

− −− −

+ = +

+ = +

+ = +

+ = +

A B B A B A

A B A A B B

A B B A B A

A B A A B B

 (A.15) 

With this, (A.7) can be rewritten as: 
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 (A.16) 

 

Using (A.13) and (A.16): 
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 (A.17) 

That becomes with (A.15): 
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 (A.18) 

Comparing the result for the federated filter and the central filter: 
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 (A.19) 

The formulas are equal if at initialization the following is chosen: 

 
2

ˆ ˆ

cci ccm

ci m

=

=

P P

x x
 (A.20) 

This relation should hold even after time updates and that means that the entire covariance 
matrix should be twice as big as the one in the central filter.  Also the process noise for all 
states should be twice as big: 

 
2
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i m

i m

=

=

P P

Q Q
 (A.21) 
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After a fusion update we would like both local filters to have the same estimate as the 
centralized filter. 

The local filters will be updated with the best estimate for the common states and the 
covariance matrix for these common states. Using those values the local filters should be 
updated. Let’s first find the relation for the drift states of local filter 1: 

 ( ) ( )
( ) ( )

1

1

1
1

1 1 12

ˆ

ˆ
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d dm
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 (A.22) 

Let’s now write the updated drift state also as an observation update: 

 ( ) ( )
1 1 1

1

1 1d d cdc cc f f

−+ − −= + + −x x P P R y x  (A.23) 

If we take ˆ
f f

+=y x  and 
f
=R 0  then using (A.19) we get: 
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 (A.24) 

Comparing this with (A.22) shows that because 
1

2
dc dcm

=P P , the result is equal to the central 

filter version. 

Now the same can be done for local filter 2. The following relation is useful: 
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 (A.25) 

Now similar as in (A.24) the formulas become:  
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 (A.26) 

This is again the same as the central filter. 

Now the covariance matrices of the local filters should be updated. First let us repeat some 
findings from the formulas above. We only want to update the covariance matrix of local filter 
1 for now: 
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 (A.27) 

The central filter result for the covariance matrix can now be rewritten to use only variables 
that are known to local filter 1: 
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 (A.28) 

Knowing that the covariance matrix should be twice as big as the central filter covariance, the 
final result for local filter 1 is: 
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 (A.29) 

For local filter 2 we can do the same, but we can start from the last result: 
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 (A.30) 

Only 
2dd

++P , the covariance matrix after the fusion step, has to be determined still: 
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 (A.31) 

With this final result, the fusion update formulas can be summarized by: 
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And: 
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This is valid as long as at initialization the covariance matrix is increased: 

 2
i m
=P P  (A.34) 

And to be sure the relation holds under time-updates, the process noise should be increased as 
well: 

 
2

2

i m

i m

=

=

P P

Q Q
 (A.35) 

The above result can be generalized where there are not two but γ  local filters. In that case all 

2’s in (A.33)-(A.35) can be replaced by γ . 
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Summary 

Pose estimation for mobile devices and augmented reality 

In this thesis we introduce the reader to the field of Augmented Reality (AR) and describe 
aspects of an AR system. We show the current uses in treatment of phobias, games, sports and 
industry. We present the challenges for Optical See-Through Augmented Reality in which the 
real world is perceived normally by the user and is augmented with virtual objects by means of 
two displays and two half-translucent mirrors. Since the user does not perceive the world 
through camera images, as in Video See-Through Augmented Reality, the requirements for 
accurate alignment between the real and virtual worlds are more strict. 

Based on the design requirements for optical see through augmented reality, a system-
architecture for the full AR system is proposed. A pose (position and orientation) estimation 
architecture is introduced, which separates an application that needs an estimate of a pose, 
from the sensors that provide partial measurements for this pose. It is a modular architecture 
in which modules can publish “magazines” to which other modules can subscribe. A magazine 
is a data stream of which issues can be read concurrently by multiple subscribers. The read-out 
rate may be lower than the publishing frequency. Each issue of a magazine is a time stamped 
data package from a stream, such as an image or measurement. 

The core of the work addresses the largest challenge in optical see-through AR: real-time pose 
estimation of the user’s eyes by fusing information from various sensors. Image processing 
techniques and sensor data fusion filters were developed to provide the most accurate 
estimation of the pose of a user’s head. The system is general enough to be used in other less 
demanding applications that need an estimate of a pose, such as free roaming automated 
vehicles in industrial settings. We explored image processing techniques for determining the 
pose of the camera from a single image of a marker. A marker is presented that minimizes the 
impact on the environment. Starting from well-known methods to detect edges and corners 
we developed our own corner detector that is accurate, precise and robust to noise. We 
presented a method to estimate the camera’s pose from four corners, and evaluated the 
accuracy in practical experiments. 

A Kalman filter is constructed and presented in detail that optimally combines the data from 
various sensors with different update rates, delays and accuracies. We also propose a pluggable 
Kalman filter set-up that enables sensors to be added and removed easily without changing the 
central filter that communicates with the application. This facilitates the separation between 
the sensor modules, the central filter and the application. 

A prototype AR system was built and evaluated. We present the practical aspect of integrating 
the sensors and pose estimation methods into a working augmented reality system. Using a 
SCARA robot to move our set-up, we determined practical accuracies for our system. We 
showed that one small marker is in general not enough for a full immersive augmented reality 
experience. We propose some solutions to increase the accuracy of the system and finally we 
show how we made convincing Augmented Reality demonstrations in our standing 
cooperation with the AR-lab of the Royal Academy of Arts in The Hague. 

 Jurjen CAARLS, Delft, September 2009 
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Samenvatting 

Pose bepaling voor mobiele apparaten en augmented reality 

In dit proefschrift wordt de lezer geïntroduceerd in het veld van Augmented Reality (AR) en 
worden de aspecten van een AR-systeem beschreven. We laten het huidige gebruik ervan zien 
in spelletjes, sporten, behandeling van fobieën en in de industrie. We laten de uitdagingen voor 
Optical See-Through Augmented Reality zien waarbij de echte wereld, die normaal kan 
worden waargenomen door een gebruiker, voorzien wordt van virtuele voorwerpen door 
middel van twee beeldschermpjes en twee halfdoorlatende spiegels. Omdat de gebruiker de 
echte wereld niet waarneemt door middel van camerabeelden, zoals in Video See-Through 
Augmented Reality, zijn de eisen voor het nauwkeurig uitlijnen van de echte en virtuele wereld 
strenger. 

Uitgaande van de ontwerpeisen voor optical see-through augmented reality, wordt er een 
voorstel gedaan voor een systeemarchitectuur van een volwaardig AR-systeem. Er wordt een 
architectuur voor de pose (positie en oriëntatie) schatting geïntroduceerd die een applicatie, 
waarvoor een schatting van de pose nodig is, scheidt van de sensoren die deelmetingen voor 
de pose verschaffen. Het is een modulaire architectuur waarin elke module “tijdschriften” kan 
uitgeven waar andere modules zich op kunnen abonneren. Een tijdschrift is een datastroom 
waarvan de afzonderlijke uitgaven tegelijk door meerdere abonnees (modules) bekeken kunnen 
worden. Het lezen van de uitgaven kan in een lager tempo dan de frequentie van uitgifte. Elk 
uitgegeven nummer van een tijdschrift is een datapakket uit een datastroom, met een 
tijdstempel, bijvoorbeeld een foto of een meting. 

De kern van dit werk richt zich op de grootste uitdaging in optical see-through AR: het in 
‘real-time’ bepalen van de positie van de ogen van de gebruiker door het combineren van de 
metingen van de verschillende sensoren. Er zijn beeldverwerkingtechnieken en sensordata 
fusie filters ontwikkeld om de meest accurate schatting van de pose van het hoofd van de 
gebruiker te leveren. Het systeem is algemeen genoeg om ook gebruikt te worden in andere, 
minder veeleisende applicaties die een pose nodig hebben, zoals vrij rondrijdende 
geautomatiseerde voertuigen in industriële omgevingen. We hebben beeldverwerking-
technieken onderzocht om de pose van een camera te bepalen met behulp van een enkel beeld 
van een markerpatroon. Deze marker is zo ontworpen dat hij zo min mogelijk invloed heeft 
op de omgeving. Beginnend met bekende technieken voor het detecteren van randen en 
hoekpunten hebben we een eigen hoekpuntdetector ontwikkeld die nauwkeurig, precies, en 
robuust tegen ruis is. Een methode om de pose van de camera te schatten met observaties van 
de vier hoekpunten van de marker wordt uitgelegd en de nauwkeurigheid ervan wordt 
geëvalueerd in praktische experimenten. 

Een Kalman filter dat de metingen van de verschillende sensoren, met verschillende 
updatefrequenties, vertragingen en nauwkeurigheden, in optimale zin combineert wordt 
geconstrueerd en in detail gepresenteerd., We doen ook een voorstel voor een “plugbare” 
Kalman filter set-up die het mogelijk maakt om eenvoudig sensoren toe te voegen en te 
verwijderen zonder dat het centrale filter dat met de applicatie communiceert aangepast hoeft 
te worden. Dit vergemakkelijkt de scheiding tussen de sensormodules, het centrale filter en de 
applicatie. 
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Er is een prototype AR-systeem gebouwd en geëvalueerd. We tonen de praktische aspecten 
van de integratie van sensoren en posebepalingmethoden in een werkend Augmented Reality 
systeem. Gebruik makend van een SCARA-robot om onze opstelling te verplaatsen, hebben 
we de praktische nauwkeurigheid van het systeem bepaald. We hebben laten zien dat een 
enkele, kleine marker in combinatie met optical see-through technieken in het algemeen niet 
voldoende is om het gevoel te krijgen helemaal ondergedompeld te zijn in Augmented Reality. 
We stellen een aantal oplossingen voor om de nauwkeurigheid van het AR-systeem te 
verbeteren en we laten zien hoe we overtuigende Augmented Reality demonstraties hebben 
gegeven in de lopende samenwerking met het AR-lab van de Koninklijke Academie van 
Beeldende Kunsten in Den Haag. 

Jurjen CAARLS, Delft, september 2009 
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