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Influence of spatial variability of shear strength parameters on 3D slope 
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Technology, P.O. Box 5048, 2600 GA Delft, Netherlands; e-mail: 
1D.Varkey@tudelft.nl  2M.A.Hicks@tudelft.nl  3P.J.Vardon@tudelft.nl   

ABSTRACT 

A 3D slope stability problem with spatially varying shear strength parameters has been 
analysed using the 3D random finite element method. This method links random fields of the 
random variables, in this case, cohesion and friction angle, with the finite element method 
within a Monte Carlo framework. The influence of spatial variability on calculated factors of 
safety and failure consequence has been investigated, and the results compared with a simpler 
3D solution proposed by Vanmarcke. The simpler approach predicted a lower probability of 
failure under certain conditions, although, at high levels of anisotropy of the heterogeneity, 
the solutions converged. The reasons for the different solutions have been evaluated. 

1. INTRODUCTION

Various attempts have been made to investigate the influence of spatial variability, i.e. 
heterogeneity, of properties on the factors of safety and reliability of slopes. Of particular 
interest are slopes which are long in the longitudinal direction, as is often the case for 
transport embankments and flood defences. A detailed comparison between numerical and 
analytical approaches was recently made for long slopes characterised by spatially variable 
undrained shear strength (Li et al., 2015). This involved the random finite element method 
(RFEM) (Fenton & Griffiths, 2008) and a simpler approach developed by Vanmarcke (1977), 
based on idealising the failure mechanism as a cylindrical surface with additional resistance at 
both ends. This was later extended (Vanmarcke, 1980) to general drained and undrained 
cases, for spatially variable C–ϕ soils governed by the Mohr–Coulomb failure criterion.  

Intensive research has reported the influence of spatial variability on the reliability of 
2D and 3D soil slopes, as well as on the estimation of spatial correlations, reduction of 
uncertainty using conditioning, small-probability failure events and combining spatial 
variability with large deformations; for example, Spencer & Hicks (2007), Griffiths et al. 
(2009), Arnold & Hicks (2011), Lloret–Cabot et al. (2012), Ji & Chan (2014), Li et al. (2016), 
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Vardon et al. (2016), de Gast et al. (2017), van den Eijnden et al. (2017) and Wang et al. 
(2016). 

This paper compares the simpler method proposed by Vanmarcke with the more 
comprehensive, but computationally more intensive, 3D RFEM, where random fields of 
spatially varying cohesion and friction angle are coupled with the finite element method to 
compute slope stability within a Monte Carlo framework. A simple slope has been analysed 
by both methods and the results evaluated.  
   
2. VANMARCKE’S 3D MODEL FOR A GENERAL CASE 
 
Vanmarcke (1977) pioneered analytical 3D slope reliability analysis by assuming a 
cylindrical failure surface over a finite failure length b along the slope axis, bounded by 
resisting end sections (see Fig. 1). A 2D cross section at x=x0, was analysed deterministically 
(Fellenius, 1936), to give the factor of safety: 
 

F(x0) = MR(x0)/ MD(x0) (1) 

where MR(x0) and MD(x0) are the respective resisting and driving moments at x=x0. 

.  
FIG. 1. Problem geometry with cylindrical failure surface 

 
The 3D factor of safety depends on the location of the failure surface, unlike a 2D 

factor of safety where the failure is independent of slope length. For a failure of length b 
centred at x0, the safety factor may be given as: 

 

Fb(x0) = 
Resisting moment
Driving moment

 =  
MR,b(x0)+Re

MD,b(x0)
 

 

 
(2) 

 
 
 

Re = MRd (3) 

d
2
 = 

Sliding area (A) of the cross–section
Length (La) of the failure arc

 
 

(4) 
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MR,b(x0) = ∫ MR(x)dxx2
x1

 

 
(5) 

where |𝑥𝑥2 − 𝑥𝑥1| (=b) is a constant and Re is the contribution to the resisting moment from the 
bounding vertical end sections. On moving the centre x0 along the axis, MR,b(x0) represents a 
moving integral of MR(x).  

For a spatially variable shear strength, with spatial correlation governed by the scale 
of fluctuation (θ), and assuming a deterministic driving moment and neglecting any variance 
in the end resistance, the mean and standard deviation of the factor of safety, over the failure 
length b, Fb and F�b respectively, are: 

 

Fb = 
MR𝑏𝑏+Re

MD𝑏𝑏
 = F (1+ 

d
b
 ) 

 
(6) 

F�b = 
M�R𝑏𝑏
MD𝑏𝑏

 = F VsГ(La)Г(b) 

 

 
(7) 

where F = MR MD�  is the plane strain mean safety factor, Vs is the coefficient of variation of 
the point shear strength, and Г(La) and Г(b) are the reduction factors for shear strength due to 
averaging, given by: 
 

Г(b) = 1; b ≤ θh (8a) 

Г(b) = �θh b⁄ ; b > θh (8b) 

where θh is the horizontal scale of fluctuation. Г(La) is found by replacing b with the failure 
arc length La and θh by the equivalent scale of fluctuation θe for an anisotropic case, i.e. when 
θ is different in the horizontal and vertical directions. The procedure described by Li et al. 
(2015) is here used to evaluate θe. 

For the Mohr–Coulomb failure criterion, and assuming no influence of pore pressure, 
the random shear strength at any point on the failure surface is given as: 

 
S = C + NT (9) 

where, following the notation of Vanmarcke (1980), C is the cohesion, T is the tangent of the 
friction angle (ϕ) and N is the total normal stress.  

Assuming that the random variables may be treated as statistically independent and 
neglecting any variance in N, the mean and variance of the shear strength at a point may be 
approximated as: 

 
S ≈  C + N T  

 
(10a) 
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S�2 ≈  C�2+ N
2
T�2 

 

(10b) 

The 2D and 3D factors of safety, based on the spatial averages of shear strength along 
the sliding surface, were given as (Vanmarcke, 1980): 

 

F = 
MR
MD

 = S1Lar
Wa

 

 

 

(11) 

Fb = F (1+ 
d
𝑏𝑏

 ) 

 

 
(12) 

F�b = 
S�bLarb

Wab
 = 

S�b
S1

F 

 

 
(13) 

where S1 is the averaged shear strength along a unit failure length, Sb is the average shear 
strength along b, La is the length of the failure arc, r is the radius, W is the weight per unit 
failure length of material above the sliding surface and a is the distance between the centre of 
gravity of the sliding mass and the centre of rotation.  

For a stationary random field of shear strength, the average shear strength along the 
failure length b is Sb = S1 = S. If the standard deviation of cohesion and tangent of friction 
angle, respectively, along b, are given by C�b and T�b, then: 

 

S�𝑏𝑏 = �C�b
2+ N

2
T�b

2 

 

 
(14a) 

C�𝑏𝑏 = Г(La)Г(b)C� (14b) 

T�𝑏𝑏 = Г(La)Г(b)T�  (14c) 

Both Fb and F�b are dependent on b. Assuming a Gaussian distribution for Fb, the 
probability of failure is given by the area under the curve where P(Fb ≤ 1). This probability 
reaches a maximum for a critical failure length bc, derived as: 

 

bc =  
F

F – 1
 d; 

 
 bc > θh 

 
(15a) 

bc = θh;  bc ≤ θh (15b) 

 
3. RANDOM FINITE ELEMENT METHOD (RFEM) 
 
A 3D RFEM model has been used in this paper (e.g. Hicks & Spencer, 2010). Independent 
random fields for both shear strength variables were generated using local average 
subdivision (LAS) (Fenton & Vanmarcke, 1990), which requires only the mean, standard 
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deviation and scales of fluctuation in the three dimensions (θx, θy and θz), where θz is the 
vertical scale of fluctuation (θv) and θx = θy = θh. Random fields were generated based on 
the covariance function, β, i.e.,  
 

𝛽𝛽�τx, τy, τz� = σ2 exp�–  
2τz

θz
 –��

2τx

θx
�

2

+ �
2τy

θy
�

2

� 
 

(16) 

where τx, τy, τz are lag distances in the respective directions and σ is the standard deviation. 
Here, the authors have generated an isotropic random field using θ = θx = θy = θz in Eq. 
(16), and then post-processed this field by squashing and/or stretching in the respective 
directions to generate the required level of anisotropy, θh θv⁄ ; see Hicks & Samy (2002) and 
Hicks & Spencer (2010) for details. 

Following random field generation, the random field values are mapped to the Gauss 
points of a finite element mesh. Here, a strength reduction analysis has then been undertaken 
to determine the factor of safety for each realisation, and multiple realisations performed to 
determine the distributions of safety factor. 

Spencer & Hicks (2007) and Hicks & Spencer (2010) conducted similar 3D RFEM 
analyses for a cohesive slope with θv = 1 m, and proposed three categories of failure mode, 
for different values of θh with respect to the slope height (H) and length (L): 

a) Mode 1 (θh < H): Failure propagates through weak and strong zones alike, resulting in 
considerable averaging of property values along the entire slope length. This is similar 
to a 2D analysis based on the mean property values. 

b) Mode 2 (H < θh < L/2): Failure propagates through semi–continuous weak zones, 
causing discrete 3D failures and a wide range of possible solutions. 

c) Mode 3 (θh > L/2): Failure propagates through weak zones and there is a wider range 
of possible solutions. The failure impacts the entire slope length, and the solution is 
analogous to that for a 2D stochastic analysis. 

 
4. PROBLEM DESCRIPTION AND SOLUTIONS 
 
A 3D slope reliability analysis has been carried out on a slope with the dimensions shown in 
Fig. 1. The finite element mesh uses 20-node hexahedral elements of size 1 m × 1 m × 0.5 m 
and each element uses 2 × 2 × 2 Gaussian integration. The mesh is fixed at the base, whereas 
rollers are applied on the back (x–z) face preventing displacements perpendicular to that face, 
and also on the two end (y–z) faces allowing only vertical displacements (see Hicks & 
Spencer (2010) for an explanation of these boundary conditions). The soil has a unit weight 
of 20 kN/m3, Poisson’s ratio of 0.3 and Young’s modulus of 1x105 kPa. The cohesion and 
friction angle were considered to be spatially varying and represented by truncated normal 
distributions, a coefficient of variation of 0.2, and means of 10 kPa and 25o, respectively. The 
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same scales of fluctuation are assumed for both parameters; specifically, θv = 1 m and a range 
of values of θh.  
 
4.1 Vanmarcke solution (VM) 
Based on the given mean values, the plane strain safety factor (F) was found (using the 
strength reduction method) to be 1.4, for a 12 m2 block of soil sliding along a circular arc of 
length 9.3 m. This failure geometry was determined using finite elements and the same ridge 
finding procedure reported in Hicks et al. (2014). Based on Eq. (4), d is then computed as 
2.58 m. 

The procedure to compute the standard deviation of the shear strength along the 
failure arc was as follows. If Cf and 𝜙𝜙f are the reduced values of cohesion and friction angle, 
respectively, at the onset of failure (see Fig. 2), the average shear and normal stresses at 
failure along the failure arc are given by:  

 
σ𝑆𝑆  ≈ (∑ 𝜎𝜎𝑠𝑠

𝑁𝑁𝑒𝑒
𝑖𝑖=1 )/Ne (17a) 

 σ𝑁𝑁  ≈ (∑ 𝜎𝜎𝑁𝑁)𝑁𝑁𝑒𝑒
𝑖𝑖=1 /Ne 

 
(17b) 

 
 
 

where σS and σN are the shear and normal stresses, respectively, and Ne is the number of 
elements along the arc. Hence, for a given F, S1 is given as a function of the average shear 
strength at failure: 
 

S1 = F × σ𝑠𝑠 
 

(18) 

  
FIG. 2. Stresses at failure 

 
Based on Eqs. (17)–(18) and the assumption of stationary fields, S is computed as 17.7 

kPa. Considering, as an example, θh = 2 m, the critical failure length is calculated using Eq. 
(15) to be 9.03 m. Since a cylindrical failure mechanism is assumed, this gives a failure 
volume of 108.4 m3, which is 5.78% of the total slope volume. Substituting these values into 
Eq. (12), the mean factor of safety against 3D failure is calculated to be 1.8. The equivalent 
scale of fluctuation θe was determined based on a 1D exponential correlation function, fitted 
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to the back–figured values along the failure arc (Li et al., 2015). For θh = 2 m, θe ≈ 1.48 m. 
Hence, based on the calculated values, the reduction factors are calculated from Eq. (8) as 0.4 
and 0.47, due to averaging along the failure arc and failure length, respectively. On 
substitution into Eq. (14), this gives C�𝑏𝑏 = 0.376 kPa, T�𝑏𝑏 = 0.016 and S�𝑏𝑏 = 0.46 kPa. Finally, 
the standard deviation of the factor of safety is estimated as 0.036 using Eq. (13). 

Table 1 shows the VM results obtained for all the values of θh considered. Note that, 
for θh ≥ 50 m, the critical failure length was limited to the slope length, i.e. 50 m, in 
calculating the factor of safety statistics.  
 
4.2 RFEM solution  
In this section, RFEM results are compared with the VM results for a range of θh. A total of 
500 Monte Carlo realisations have been performed for each case, which was sufficient to 
achieve convergence in the mean and standard deviation of the calculated factor of safety. 
Table 1 compares RFEM and VM solutions for all θh. 
 

TABLE 1. Comparison of mean and SD of factors of safety for different θh 
 

 θh = 1m θh = 2m θh = 6m θh = 12m θh = 24m 

VM RFEM VM RFEM VM RFEM VM RFEM VM RFEM 
Mean 1.8 1.396 1.8 1.382 1.8 1.356 1.71 1.34 1.55 1.34 

SD 0.02 0.0108 0.036 0.022 0.07 0.047 0.1 0.059 0.103 0.07 

 
 θh = 50m θh = 100m θh = 1000m θh = 2000m θh = 10000m 

VM RFEM VM RFEM VM RFEM VM RFEM VM RFEM 
Mean 1.47 1.348 1.44 1.349 1.41 1.354 1.4 1.39 1.4 1.398 

SD 0.105 0.079 0.106 0.085 0.107 0.097 0.107 0.101 0.107 0.104 

 
The mean and standard deviation of Fb depend largely on the predicted failure length. 

For each realisation, the slide volume is computed on the basis of the elements having an out-
of-face displacement more than some calibrated threshold value, as described in Hicks et al. 
(2008; 2014). For this investigation, this was 37% of the maximum computed out-of-face 
displacement. The integrated failure length has been calculated as the number of elements in 
the row, directly above the slope toe, whose out-of-face displacements are greater than the 
threshold. In Fig. 3, the mean failure volume (as a percentage of the total mesh volume) and 
failure length from the RFEM analyses, are obtained by averaging over all the realisations for 
each θh. 

Figs. 4 (a)–(c) show how the RFEM and VM safety factor distributions (fitted normal) 
evolve with increasing θh. Also plotted are the RFEM slide volumes, from each realisation, 
against their corresponding factors of safety.  
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FIG. 3. Comparison of mean failure volume and mean failure length from RFEM 

analyses with analytical solutions 
 

  

     
 
 

       
  
 
 
 
 
 
 

 
 

FIG. 4. PDFs of factor of safety and RFEM failure volumes 

The large difference between the two solutions at low θh θv⁄  is partly due to the 
considerable averaging of properties and, thereby, to a long failure length and a reduced 
standard deviation of the factor of safety in the RFEM analysis; and partly due to the short 
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predicted failure lengths and resulting relatively large contributions from the end resistance in 
the analytical solution. However, at high levels of θh θv⁄ , both methods converge to the same 
2D solution. The RFEM solutions are consistent with the 3 categories of failure mode 
described in Section 3. As is seen in Figs. 3–4, convergence to a 2D solution at high θh θv⁄  is 
difficult with two random variables. Also, the failure length is shorter than the slope length 
for failure Modes 1 and 3. This is attributed to the failed zone not reaching the ends of the 
slope mesh, resulting in shorter (Mode 1 type) failures, due to the boundary conditions which 
have a greater influence due to the non-zero friction angle. 

 
5. CONCLUSIONS  
  
An idealised 3D slope has been analysed by the random finite element method (RFEM) and a 
simpler approach developed by Vanmarcke (1980). The relative performance of the two 
approaches has been investigated by comparing the distributions of factors of safety and 
failure consequence, quantified in terms of mean failure length and mean slide volume. 

The RFEM results confirm three categories of failure mode, which are influenced by 
the scales of fluctuation relative to the slope dimensions, as found in previous research for an 
undrained cohesive slope (Hicks & Spencer, 2010; Hicks et al., 2014). For values of θh 
associated with Mode 1 failure using RFEM, the simpler model predicts a larger mean and 
standard deviation of the factor of safety, due to the shorter predicted failure length. This 
difference arises because the simpler solution is based on the spatial averages of the shear 
strength along a predefined cylindrical failure surface, whereas RFEM solutions seek out the 
weakest failure path along the slope length, resulting in considerable averaging of properties 
and hence, a reduced standard deviation for a small θh θv⁄ . Similar findings were reported by 
Li et al. (2015) for a purely cohesive slope. Conversely, for very large values of θh θv⁄ , the 
two methods give similar solutions.  
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