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Abstract
Suppose that a compound Poisson process is observed
discretely in time and assume that its jump distribu-
tion is supported on the set of natural numbers. In this
paper we propose a nonparametric Bayesian approach to
estimate the intensity of the underlying Poisson process
and the distribution of the jumps. We provide a Markov
chain Monte Carlo scheme for obtaining samples from
the posterior. We apply our method on both simulated
and real data examples, and compare its performance
with the frequentist plug-in estimator proposed by Buch-
mann and Grübel. On a theoretical side, we study the
posterior from the frequentist point of view and prove
that as the sample size n → ∞, it contracts around the
“true,” data-generating parameters at rate 1∕

√
𝑛, up to a

log 𝑛 factor.

K E Y W O R D S
compound Poisson process, data augmentation, diophantine equation,
Gibbs sampler, Metropolis-Hastings algorithm, Nonparametric
Bayesian estimation

1 INTRODUCTION

1.1 Problem formulation
Let N = (Nt ∶ t ≥ 0) be a Poisson process with a constant intensity 𝜆 > 0, and let Yi be a sequence
of independent random variables, each with distribution P, that are also independent of N. By
definition, a compound Poisson process (abbreviated CPP) X = (Xt ∶ t ≥ 0) is
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𝑋𝑡 =
𝑁𝑡∑
𝑗=1

𝑌𝑗, (1)

where here and below the sum over an empty index set is understood to be equal to zero. In
particular, X0 = 0. CPP constitutes a classical model in, for example, risk theory, see Embrechts,
Mikosch, and Klüppelberg (1997).

Assume that the process X is observed at discrete times 0 < t1 < t2 < … < tn = T, where the
instants ti are not necessarily equidistant on [0,T]. Based on the observations 𝑋𝑡1 , 𝑋𝑡2 ,… , 𝑋𝑡𝑛

,
our goal is to estimate the jump size distribution P and the intensity 𝜆. We specifically restrict
our attention to the case where P is a discrete distribution, 𝑃 (N) = 1, and we will write 𝑝 =
(𝑝𝑘)𝑘∈N for the probability mass function corresponding to P, where pk = P({k}). A similar
notation will be used for any other discrete law. The distribution P is called the base distribu-
tion. Abusing terminology, we will at times identify it with the corresponding probability mass
function p. An assumption that P has no atom at zero is made for identifiability: otherwise
this atom gets confounded with e−𝜆, which does not allow consistent estimation of the inten-
sity 𝜆. For a discussion of applications of this CPP model in risk theory, see Zhang, Liu, and
Li (2014).

Define the increments𝑍𝑖 = 𝑋𝑡𝑖
−𝑋𝑡𝑖−1 , i = 1,… ,n. Then𝑛 = (𝑍𝑖 ∶ 𝑖 = 1,… , 𝑛) is a sequence

of independent random variables. When {ti} are equidistant on [0,T], the random variables Zi
have in fact a common distribution Q satisfying 𝑄(N0) = 1. As 𝑛 carries as much informa-
tion as (𝑋𝑡𝑖

∶ 𝑖 = 1,… , 𝑛) does, we can base our estimation procedure directly on the increments
𝑛. Since summing up the jumps Yjs amounts to compounding their distributions, the inverse
problem of recovering P and 𝜆 from Zi can be referred to as decompounding (Buchmann &
Grübel, 2003).

There are two natural ways to parameterize the CPP model: either in terms of the pair (𝜆, p),
or in terms of the Lévy measure 𝜈 = (𝜈𝑘)𝑘∈N of the process X (Sato, 2013). A relationship between
the two is 𝜆 =

∑∞
𝑘=1 𝜈𝑘 and p = 𝜈∕𝜆. Inferential conclusions in one parameterization can be easily

translated into inferential conclusions into another parameterization. However, for our specific
statistical approach the Lévy measure parameterization turns out to be more advantageous from
the computational point of view.

1.2 Approach and results
In this paper, we take a nonparametric Bayesian approach to estimation of the Lévy measure
𝜈 of X. See Ghosal & van der Vaart (2017) and Müller, Quintana, Jara, and Hanson (2015) for
modern expositions of Bayesian nonparametrics. A case for nonparametric Bayesian methods
has already been made elsewhere in the literature, and will not be repeated here. On the practi-
cal side, we implement our procedure via the Gibbs sampler and data augmentation, and show
that it performs well under various simulation setups. On the theoretical side, we establish
its consistency and derive the corresponding posterior contraction rate, which can be thought
of as an analogue of a convergence rate of a frequentist estimator (Ghosal and van der Vaart,
(2017)). The posterior contraction rate, up to a practically insignificant log 𝑛 factor, turns out
to be 1∕

√
𝑛, which is an optimal rate for nonparametric estimation of cumulative distribution

functions. Our contribution thus nicely bridges practical and theoretical aspects of Bayesian
nonparametrics.
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1.3 Related literature
To provide a better motivation for our model and approach, in this subsection we briefly survey
the existing literature. A Bayesian approach to nonparametric inference for Lévy processes is a
very recent and emerging topic, with references limited at the moment to Belomestny, Gugushvili,
Schauer, and Spreij (2019), Gugushvili, van der Meulen, and Spreij (2015), Gugushvili, van der
Meulen, and Spreij (2018) and Nickl and Söhl (2017). These deal exclusively with the case when
the Lévy measure is absolutely continuous with respect to the Lebesgue density. At least from the
computational point of view, these works are of no help in our present context.

Related frequentist papers for CPP models with discrete base distributions are Buchmann and
Grübel (2003) and Buchmann and Grübel (2004), which, after earlier contributions dating from
the previous century, in fact revived interest in nonparametric techniques for Lévy processes.
To estimate the base distribution p, Buchmann and Grübel (2003) employ a frequentist plug-in
approach relying on the Panjer recursion (i.e., an empirical cumulative distribution estimate of q
is plugged into the Panjer recursion equations to yield an estimate of p; see below on the Panjer
recursion). The drawback is that the parameter estimates are not guaranteed to be nonnegative.
Buchmann and Grübel (2004) fix this problem by truncation and renormalization. This works,
but looks artificial. As noted in Buchmann and Grübel (2004), in practice the latter approach
breaks down if no zero values are observed among Zis. Buchmann and Grübel (2004) establish
weak convergence of their modified estimator, but on the downside its asymptotic distribution is
unwieldy to give confidence statements on p. Most importantly, the plug-in approaches in Buch-
mann and Grübel (2003) and Buchmann and Grübel (2004) do not allow obvious generalisations
to nonequidistant observation times {ti}. In Lindo, Zuyev, and Sagitov (2018), another frequentist
estimator of the jump measure is introduced, that is obtained via the steepest descent technique as
a solution to an optimization problem over the cone of positive measures. The emphasis in Lindo
et al. (2018) is on numerical aspects; again, no obvious generalization to the case of nonequidistant
{ti} is available.

Finally, some important, predominantly theoretical references on inference for Lévy processes
are Comte and Genon-Catalot (2011), Duval and Hoffmann (2011), Kappus (2014), Neumann and
Reiß (2009), Nickl and Reiß (2012), van Es, Gugushvili, and Spreij (2007) and Trabs (2015). We
refer to Belomestny, Comte, Genon-Catalot, Masuda, and Reiß (2015), Coca (2018a, 2018b), and
Duval and Mariucci (2017) for more extensive literature surveys.

1.4 Outline
The rest of the paper is organized as follows: in Section 2 we introduce our approach and describe
an algorithm for drawing from the posterior distribution. In Sections 3 and 4 we study its per-
formance on synthetic and real examples. Section 5 is devoted to the examination of asymptotic
frequentist properties of our procedure. An outlook on our results is given in Section 6. Finally,
in Appendix A technical lemmas used in the proofs of Section 5 are collected, whereas Appendix
B contains some additional simulation results.

1.5 Notation
For two sequences {an} and {bn} of positive real numbers, the notation 𝑎𝑛 ≲ 𝑏𝑛 (or 𝑏𝑛 ≳ 𝑎𝑛) means
that there exists a constant C > 0 that is independent of n and such that an ≤ Cbn. We write
an ≍ bn if both 𝑎𝑛 ≲ 𝑏𝑛 and 𝑎𝑛 ≳ 𝑏𝑛 hold. We denote a prior (possibly depending on the sample



GUGUSHVILI et al. 467

size n) by Πn. The corresponding posterior measure is denoted by Π𝑛(⋅|𝑛). The Gamma distri-
bution with shape parameter a and rate parameter b (a, b > 0) is denoted by Gamma(a, b). Its
density is given by 𝑥 → 𝑏𝑎

Γ(𝑎)
𝑥𝑎−1𝑒−𝑏𝑥, 𝑥 > 0, where Γ is the Gamma function. The inverse Gamma

distribution with shape parameter a and scale parameter b is denoted by 𝐼𝐺(a, b). Its density is
𝑥 → 𝑏𝑎

Γ(𝑎)
𝑥−𝑎−1𝑒−𝑏∕𝑥, 𝑥 > 0. We use the notation Exp(a) for an exponential distribution with mean

1∕a. Finally, given a metric d on a set  and 𝜖 > 0, the covering number 𝑁(𝜖,, 𝑑) is defined as
the minimal number of balls of radius 𝜖 needed to cover .

2 ALGORITHM FOR DRAWING FROM THE POSTERIOR

A Bayesian statistical approach relies on the combination of the likelihood and the prior on the
parameter of interest through Bayes' formula. We start with specifying the prior. As far as the
likelihood is concerned, although explicit, it is intractable from the computational point of view
for nonparametric inference in CPP models. We will circumvent the latter problem by means of
data augmentation, as detailed below.

2.1 Prior
We define a prior Π on 𝜈 through a hierarchical specification

{𝜈𝑘}∞𝑘=1|𝑎, 𝑚, 𝛽𝑘 i.i.d.∼ Gamma(𝑎, 1∕𝛽𝑘) ⋅ 1{1≤𝑘≤𝑚},

𝛽1,… , 𝛽𝑚|𝛾 i.i.d.∼ IG(𝑐, 𝛾),

𝛾 ∼ Exp(1).

Note that the (fixed) hyperparameters 𝑚 ∈ N, a, c > 0 are denoted by Latin letters.
The hyperparameter m incorporates our a priori opinion on the support of the Lévy mea-

sure 𝜈, or equivalently, the base measure p. In applications, the support of p may be unknown,
which necessitates the use of a large m, for example, 𝑚 = max𝑖=1,… ,𝑛𝑍𝑖; this latter is the maxi-
mal value suggested by the data 𝑛 at hand. Nevertheless, we may simultaneously expect that the
“true,” data-generating 𝜈 charges full mass only to a proper, perhaps even a small subset of the
set {1,… ,m}. In other words, 𝜈 may form a sparse sequence, with many components equal to
zero. In fact, there are at least two plausible explanations for an occurrence of a large increment
Zi in the data: either a few large jumps Yj’s occurred, which points toward a large right endpoint
of the support of 𝜈0, or Zi is predominantly formed of many small jumps, which in turn indicates
that the intensity 𝜆 of the Poisson arrival process N may be large. To achieve accurate estima-
tion results, a prior should take a possible sparsity of 𝜈 into account. This is precisely the reason
of our hierarchical definition of the prior Π: a small 𝛽k encourages a priori the shrinkage of the
components 𝜈k of 𝜈 toward zero.

2.2 Data augmentation
Assume temporarily ti = i, i = 1,… ,n, and write 𝑞 = (𝑞𝑘)𝑘∈N0

for qk = q({k}). Then Zi have the
distribution
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𝑞 = 𝑒−𝜆
∞∑
𝑗=0

𝜆𝑗

𝑗!
𝑝∗𝑗 , (2)

with ∗ denoting convolution. The compounding mapping (𝜆, p) → q can be expressed explicitly
via the Panjer recursion (see Panjer (1981)):

𝑞0 = 𝑒−𝜆, 𝑞𝑘 =
𝜆

𝑘

𝑘∑
𝑗=1

𝑗𝑝𝑗𝑞𝑘−𝑗 , 𝑘 ∈ N.

This recursion can be inverted to give the inverse mapping q → (𝜆, p) via

𝜆 = − log 𝑞0, 𝑝𝑘 = − 𝑞𝑘

𝑞0 log 𝑞0
− 1
𝑘𝑞0

𝑘−1∑
𝑗=1

𝑗𝑝𝑗𝑞𝑘−𝑗 , 𝑘 ∈ N.

In view of (2), the likelihood in the CPP model is explicit. Nevertheless, an attempt to directly
use (2) or the Panjer recursions in posterior computations results in a numerically intractable
procedure. Equally important is the fact that a Panjer recursion-based approach would not apply
to nonequidistant observation times {ti}. Therefore, instead of (2) and the Panjer recursion, we
will employ data augmentation (Tanner & Wong, 1987). We switch back to the case when values
of {ti} are not necessarily uniformly spaced. The details of our procedure are as follows: when the
process X is observed continuously over the time interval [0,T], so that our observations are a full
sample path X(T) = (Xt ∶ t ∈ [0,T]) of CPP, the likelihood is tractable and is proportional to

𝑒
−𝑇

𝑚∑
𝑘=1

𝜈𝑘
𝑚∏
𝑘=1

𝜈
𝜇𝑘
𝑘
,

see Shreve (2004). Here

𝜇𝑘 = #{𝑌𝑗 = 𝑘}, (3)

that is, the total number of jumps of size k. Then the priorΠ from Subsection 2.1 leads to conjugate
posterior computations. In fact, the full conditionals are

𝜈𝑘|{𝜇𝑘}, {𝛽𝑘} i.i.d.∼ Gamma(𝑎 + 𝜇𝑘, 1∕𝛽𝑘 + 𝑇 ), 𝑘 = 1,… , 𝑚,

𝛽𝑘|{𝜈𝑘}, 𝛾 i.i.d.∼ IG(𝑎 + 𝑐, 𝛾 + 𝜈𝑘), 𝑘 = 1,… , 𝑚,

𝛾|{𝛽𝑘} ∼ Gamma

(
𝑐𝑚 + 1, 1 +

𝑚∑
𝑘=1

𝛽−1
𝑘

)
.

Therefore, the Gibbs sampler for posterior inference on 𝜈 can be implemented. The Gibbs sam-
pler cycles through the above conditionals a large number of times, generating approximate
(dependent) samples from the posterior. See, e.g., Gelfand and Smith (1990) and section 24.5 in
Wasserman (2004) on the Gibbs sampler and its use in Bayesian statistics.
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As we do not observe the process X continuously, we will combine the above with the data
augmentation device. First note that we have

𝑍𝑖 =
𝑚∑
𝑗=1

𝑗𝜇𝑖𝑗 ,

where (𝜇ij ∶ i = 1,… ,n, j = 1,… ,m) are independent, and 𝜇ij ∼ Poisson(Δi𝜈j) for 𝜈j = 𝜆pj and
Δi = ti − ti−1; see Corollary 11.3.4 in Shreve (2004, p. 498). Furthermore, for 𝜇k as in (3) we
trivially have 𝜇𝑘 =

∑𝑛

𝑖=1 𝜇𝑖𝑘. Data augmentation iterates the following two steps:

(i) Draw (𝜇ij) conditional on the data 𝑛 and the parameter 𝜈.
(ii) Draw 𝜈 conditional on (𝜇ij).

Once the algorithm has been run long enough, this gives approximate (dependent) samples
from the posterior of 𝜈. We already know how to deal with step (ii); now we need to handle
step (i).

Thus, keeping 𝜈 fixed, for each i we want to compute the conditional distribution
(𝜇ij ∶ j = 1,… ,m)|Zi, and furthermore, we want to be able to simulate from this distribution. In
turn, this will immediately allow us to simulate 𝜇k conditional on the data 𝑛. Now, with Pr(⋅)
referring to probability under the parameter 𝜈, it holds that

Pr(𝜇𝑖1 = 𝑘1,… , 𝜇𝑖𝑚 = 𝑘𝑚|𝑍𝑖 = 𝑧𝑖) =
1

Pr(𝑍𝑖 = 𝑧𝑖)
𝑒
−Δ𝑖

∑𝑚

𝑗=1 𝜈𝑗

𝑚∏
𝑗=1

(Δ𝑖𝜈𝑗)𝑘𝑗
𝑘𝑗!

1

{
𝑚∑
𝑗=1

𝑗𝑘𝑗 = 𝑧𝑖

}
.

Knowledge of the normalizing constant Pr(Zi = zi) will not be needed in our approach.
In general, simulation from a discrete multivariate distribution is nontrivial; some general

options are discussed in Devroye (1986, Chapter XI, Section 1.5), but are unlikely to work eas-
ily for a large m. We will take an alternative route and use the Metropolis-Hastings algorithm,
see, for example, section 24.4 in Wasserman (2004). We start by observing that for a fixed
i, the support of Pr(⋅ | Zi = zi) is precisely the set 𝑖 of nonnegative solutions (k1,… , km) of
the Diophantine equation

∑𝑚

𝑗=1 𝑗𝑘𝑗 = 𝑧𝑖. The R package nilde (see Pya Arnqvist, Voinov, &
Voinov, 2018) implements an algorithm from Voinov and Nikulin (1997) that finds all such
solutions for given integers m and zi. By Markovianity of the process X , we can simulate the
vectors (𝜇i1,… , 𝜇im) independently for each i = 1,… ,n. If zi = 0 or 1, there is only one solu-
tion to the Diophantine equation: the trivial solution (0,… , 0) in the first case, and the solution
(1, 0,… , 0) in the second case; for such zi, no simulation is required, as (𝜇i1,… , 𝜇im) is known
explicitly. We thus only need to consider each 𝑖 ∈  = {𝑖 ∶ 𝑧𝑖 ≠ 0 or 1} in turn, and design a
Metropolis-Hastings move on the set of the corresponding solutions 𝑖. Fix once and for all
an ordering of elements in 𝑖 (this could be, e.g., lexicographic, or reverse lexicographic); we
use the notation |𝑖| for the cardinality of 𝑖. Let 𝜇 = (𝜇i1,… , 𝜇im) be the current state of the
chain, corresponding to the 𝓁th element s𝓁 of 𝑖. A proposal 𝜇◦ = (𝜇◦

𝑖1,… , 𝜇◦
𝑖𝑚
) is obtained as

follows:

(i) If 𝓁 = 1, draw 𝜇◦ uniformly at random among the elements {𝑠2, 𝑠|𝑖|} of 𝑖.
(ii) If 𝓁 = |𝑖|, draw 𝜇◦ uniformly at random among the elements {𝑠1, 𝑠|𝑖|−1} of 𝑖.

(iii) If 𝓁 ≠ 1 or |𝑖|, draw 𝜇◦ uniformly at random among the elements {s𝓁−1, s𝓁+1} of 𝑖.
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Occasionally, one may want to propose another type of a move too.

(iv) Draw 𝜇◦ = (𝜇◦
𝑖1,… , 𝜇◦

𝑖𝑚
) uniformly at random from 𝑖.

The two proposals lead to reversible moves, and one may also alternate them with probabilities
𝜋 and 1 − 𝜋, for example, 𝜋 = 0.8. The logarithm of the acceptance probability of a move from
(𝜇i1,… , 𝜇im) to (𝜇◦

𝑖1,… , 𝜇◦
𝑖𝑚
) is computed as

log𝐴 =
𝑚∑
𝑘=1

(𝜇◦
𝑖𝑘
− 𝜇𝑖𝑘) log(Δ𝑖𝜈𝑘) +

𝑚∑
𝑘=1

{log(𝜇𝑖𝑘!) − log(𝜇◦
𝑖𝑘
!)}.

The move is accepted if log𝑈 ≤ log𝐴 for U an independently generated uniform random variate
on [0, 1], and in that case the current state of the chain is reset to (𝜇◦

𝑖1,… , 𝜇◦
𝑖𝑚
). Otherwise the

chain stays in (𝜇i1,… , 𝜇im).

3 SIMULATION EXAMPLES

In this section, we test performance of our approach in a range of representative simulation exam-
ples. For benchmarking, we use the frequentist plug-in estimator from Buchmann and Grübel
(2004). Two real data examples are given in Section 4. Unless otherwise stated, we took c = 2 and
a = 0.01 as hyperparameters in our prior specification. As can be seen from the update formulae
for the Gibbs sampler, as long as a is not taken too large, its precise value is not very influential
on the posterior, given a reasonable sample size. The value c = 2 ensures that the update step for
𝛽k has finite variance. At each step of updating the imputed data for increment size z we have
chosen with probability 0.2 to propose uniformly from all solutions to the Diophantine equation
(for that particular value of z).

We implemented our procedure in Julia, see (Bezanson, Edelman, Karpinski, & Shah, 2017).
The code and datasets for replication of our examples are available on GitHub1 and Zenodo
(Gugushvili, Mariucci, & van der Meulen, 2019).

3.1 Uniform base distribution
This simulation example follows with some extensions that in Buchmann and Grübel (2004). Let
𝜆0 = 2, and let P0 be the discrete uniform distribution on {1, 4, 6}. We simulated data according
to the following settings:

(a) n = 100, Δi = 1 for 1 ≤ i ≤ n;
(b) n = 500, Δi = 1 for 1 ≤ i ≤ n (the data under (a) are augmented with 400 extra observations);
(c) n = 500, Δi = Unif(0, 2) for 1 ≤ i ≤ n.

We set𝑚 = min(15, 𝑍(𝑛)), where𝑍(𝑛) = max1≤𝑖≤𝑛𝑍𝑖. In all cases this led to m = 15, as the value
of Z(n) was equal to 30, 35, and 40 for the simulated data under settings (a), (b), and (c), respec-
tively. The Gibbs sampler was run for 500, 000 iterations, of which the first 250, 000 were discarded

1See https://github.com/fmeulen/Bdd

https://github.com/fmeulen/Bdd
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F I G U R E 1 Simulation example from Section 3.1. In each figure, the horizontal axis gives the magnitudes
of 𝜈k, k ∈ {1,… , 10}. The orange balls denote the true values, the black triangles the Buchmann-Grübel
estimator. The blue crosses give the posterior means, whereas the vertical blue line segments represent
(pointwise) 95% credible intervals. The settings corresponding to (a), (b), and (c) are explained in the main text.
Note the differences in vertical scale across the figures [Colour figure can be viewed at wileyonlinelibrary.com]

as burn-in. From the remaining samples, the posterior mean and 2.5% and 97.5% percentiles were
computed for each coefficient 𝜈k. The results for the first 10 coefficients are shown in Figure 1.
For comparison, the estimator from Buchmann and Grübel (2004) is also included in the figure.

For setting (b), traceplots of every 50th iteration for a couple of coefficients 𝜈k are shown in
Figure 2. We measure the error of an estimate {�̂�𝑘} by Err(𝜈, �̂�) =

∑∞
𝑘=1 |�̂�𝑘 − 𝜈𝑘|. The errors are

reported in Table 1. In all settings, for these particular realizations of the simulated data, the
Bayesian procedure outperformed the truncated estimator from Buchmann and Grübel (2004).
For setting (c), the latter produces a poor result, as was to be expected, given that it is derived under
the assumption Δi = 1 for all i. An advantage of the Bayesian procedure is the included measure
of uncertainty, namely the credible intervals for 𝜈k. On the other hand, for the Buchmann-Grübel
estimator it is hardly possible to derive confidence intervals via an asymptotic method, since the
limiting distribution of the estimator is fairly complicated. Although not considered in the original
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F I G U R E 2 Traceplots for the simulation example from Section 3.1 under setting (b). The posterior samples
were subsampled, with every 50th iteration kept. The displayed results are for parameters 𝜈1, 𝜈6, and 𝜈9

T A B L E 1 Results for scenarios (a)–(c) from Section 3.1

Simulation setting (a) (b) (c)

Buchmann-Grübel estimator 1.40 0.32 1.44

Posterior mean 0.15 0.07 0.12

publications Buchmann and Grübel (2003) and Buchmann and Grübel (2004), a natural alterna-
tive is the bootstrap. A detailed examination of the performance of the latter and its comparison
to that of the Bayesian method lies beyond the scope of the present paper. Indeed, any thorough
study would require, on one hand, the asymptotic justification of bootstrap confidence intervals,
and on another hand establishing frequentist coverage properties of our Bayesian procedure. In
that respect, good performance of neither method is automatically warranted (e.g., van der Pas,
Szabó, and van der Vaart (2017) and van der Vaart (1998), Chapter 23). Here instead we opt for a
numerical illustration, which is reported in Appendix B.

3.2 Geometric base distribution
The setup of this synthetic data example likewise follows that in Buchmann and Grübel (2004).
Assume q is a geometric distribution with parameter 𝛼, that is, qk = (1 − 𝛼)k𝛼 for 0 < 𝛼 < 1,
k ∈ 𝑁0. Then 𝜆 = − log 𝛼, and

𝑝𝑘 = −(1 − 𝛼)𝑘

𝑘 log 𝛼
, 𝑘 ∈ N.

Hence, 𝜈k = (1 − 𝛼)k∕k.
We consider two simulation setups:

(a) n = 500, Δi = 1 for 1 ≤ i ≤ n and 𝛼 = 1∕3;
(b) n = 500, Δi = 1 for 1 ≤ i ≤ n and 𝛼 = 1∕6.
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F I G U R E 3 Simulation example from Section 3.2. Settings (a) and (b) correspond to the true jump
distributions Geom(1∕3) and Geom(1∕6), respectively. The horizontal axis gives the magnitudes of 𝜈k,
k ∈ {1,… , 15}. The orange balls denote the true values, the black triangles the Buchmann-Grübel estimator.
The blue crosses give the posterior means, whereas the vertical blue line segments represent (pointwise) 95%
credible intervals [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 2 Results for scenarios (a)–(b) from Section 3.2

Simulation setting (a) (b)

Buchmann-Grübel estimator 0.28 0.60

Posterior mean 0.52 1.05

We set 𝑚 = min(15, 𝑍(𝑛)) and ran the sampler according to the settings of Section 3.1. The
results for both scenarios (a) and (b) are reported in Figure 3. In Table 2 we also report estimation
errors in one simulation run. For this example and these generated data, the Bayesian proce-
dure gives less precise point estimates than the Buchmann-Grübel method. Note that estimation
error for 𝛼 = 1∕3 is smaller than that for 𝛼 = 1∕6. This appears intuitive, as a smaller value of 𝛼
corresponds to a larger value of 𝜆. The latter implies that on average each Zi is a superposition of
a larger number of jumps, which renders the decompounding problem more difficult. However,
this argument is hard to formalise.

3.3 Monte Carlo study
For a more thorough comparison of the Buchmann-Grübel estimator and our Bayesian method,
we performed a small Monte Carlo experiment. We considered two settings:

(i) The setting from Section 3.1 with n = 250. We took 𝑚 = min(15, 𝑍(𝑛)).
(ii) The setting from Section 3.2 with 𝛼 = 1∕3. We took 𝑚 = min(20, 𝑍(𝑛)).

http://wileyonlinelibrary.com


474 GUGUSHVILI et al.
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F I G U R E 4 Monte Carlo study from Subsection 3.3 comparing the Buchmann-Grübel estimator and the
Bayesian method proposed in this paper. In this figure “bg” refers to the Buchmann-Grübel estimator, while
“bayesmedian” and “bayesmean” refer to the Bayesian method, where either the median or mean was used as a
point estimator for each 𝜈i. The leftmost panel corresponds to the setting (i), whereas the other two panels to the
setting (ii). In the latter we used both c = 2 and c = 0.01 in the prior specification [Colour figure can be viewed at
wileyonlinelibrary.com]

In both cases we assumed Δi = 1 for all 1 ≤ i ≤ n. The number of Monte Carlo repetitions was
taken equal to 50. We took 400, 000 Markov chain Monte Carlo (MCMC) iterations and discarded
the first half of these as burn-in. In Figure 4 we give a graphical display of the results by means
of boxplots of the errors. Here, as before, if the true values are denoted by 𝜈k and the estimate
within a particular simulation run by �̂�𝑘, the error is defined by Err(𝜈, �̂�) =

∑∞
𝑘=1 |�̂�𝑘 − 𝜈𝑘| (we

truncated the infinite summation to 50). The results agree with our earlier findings, in that there
is no clear “winner” in the comparison. Note that for the setting (ii) we considered both c = 2 and
c = 0.01 in the prior specification. Both values give similar performance of the Bayesian method.
This provides insight into sensitivity of our results with respect to the prior specification. A minor
difference between the middle and righmost panel of Figure 4 may be attributed to Monte Carlo
error: the 50 simulated datasets on which these panels are based are not the same. Note that
the prior promotes sparsity, and in that respect it is not surprising it does better when the true
data-generating Lévy measure is sparse.

3.4 Computing time
In terms of computational effort, the time it takes to evaluate the Buchmann-Grübel estimator is
negligible compared to our algorithm for sampling from the posterior. This is not surprising, as
that frequentist estimator relies on a plug-in approach, whereas in our case an approximation to
the posterior is obtained by MCMC simulation. However, if proper uncertainty quantification is
desired, then the Bayesian method is advantageous in the sense that it does not solely produce a
point estimate.

Note that the proposed MCMC scheme requires determination of the solutions to the Dio-
phantine equation

∑𝑚

𝑗=1 𝑗𝑘𝑗 = 𝑧 for all unique values z in the observation set. For moderate
values of z, say z ≤ 30, this is rather quick, but for large values of z the computing time
increases exponentially, as does the amount of the allocated memory. The computing time of each
Metropolis-Hastings step is then very small, but we potentially need a very large number of itera-
tions to reach stationarity. The latter is caused firstly by the fact that at a particular iteration, our
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proposals for 𝜇ij do not take into account the current values of 𝜈1,… , 𝜈m; secondly, the size of the
state space that needs to be explored increases exponentially with m.

4 REAL DATA EXAMPLES

4.1 Horse kick data
To further illustrate our procedure, we will use the von Bortkewitsch data on the number of sol-
diers in the Prussian cavalry killed by horse kicks (available by year and by cavalry corps); this
example was also employed in Buchmann and Grübel (2003). Each observation is an integer
from 0 to 4, giving the number of deaths for a given year and a given cavalry corps, with overall
counts reported in Table 3. The data are extracted from the table on p. 25 in von Bortkewitsch
(1898). Note that von Bortkewitsch corrects for the fact that the Guards and I, VI, and XI cavalry
corpses of the Prussian army had a different organization from other units, and justifiably omits
the corresponding counts from consideration.

It has been demonstrated by von Bortkewitsch that the Poisson distribution fits the horse kick
data remarkably well. Assuming instead that observations follow a compound Poisson distribu-
tion is a stretch of imagination, as that would correspond to a horse running amok and killing
possibly more than one soldier in one go. Nevertheless, this example provides a good sanity check
for our statistical procedure.

The estimation results are graphically depicted in Figure 5. Clearly, point estimates of both
methods are in agreement and lend support to the Poisson model for this dataset.

4.2 Plant data
Our second real example is the one used in Buchmann and Grübel (2004). Consider the data in
Table 4, taken from Evans (1953). The data were collected as follows: the area was divided into
plots of equal size and in each plot the number of plants was counted; the number of plants in each

T A B L E 3 Data on the number of soldiers in the Prussian cavalry killed by horse
kicks. See the table on p. 25 in von Bortkewitsch (1898)

Deaths 0 1 2 3 4

Counts 109 65 22 3 1

0.0

0.2

0.4

0.6

4321

k

νk

F I G U R E 5 Estimation for the horse kick data from Subsection 4.1. The horizontal axis gives the
magnitudes of 𝜈k, k ∈ {1,… , 4}. The black triangles denote the Buchmann-Grübel estimator, the blue crosses
give the posterior means, whereas the vertical blue line segments represent (pointwise) 95% credible intervals
[Colour figure can be viewed at wileyonlinelibrary.com]
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T A B L E 4 Plant population data from Evans (1953)

Plants 0 1 2 3 4 5 6 7 8 9 10 11 12

Counts 274 71 58 36 20 12 10 7 6 3 0 2 1

0.0
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1 2 3 4 5 6 7 8 9 10
k

νk

F I G U R E 6 Estimation results for the plant data from Subsection 4.2. The horizontal axis gives the
magnitudes of 𝜈k, k ∈ {1,… , 10}. The black triangles denote the Buchmann-Grübel estimates, the blue crosses
give the posterior means, whereas the vertical blue line segments represent (pointwise) 95% credible intervals
[Colour figure can be viewed at wileyonlinelibrary.com]

plot ranges from 0 to 12. The second row of Table 4 gives the counts of plots containing a given
number of plants; thus, there were 274 plots that contained no plant, 71 that contained 1 plant,
etc. It is customary in the ecological literature to model such count data as i.i.d. realizations from a
compound Poisson distribution. Thus, for example, Neyman (1939) advocated the use of a Poisson
base distribution in this context; another option here is a geometric base distribution. Given exis-
tence of several distinct modeling possibilities, performing an exploratory nonparametric analysis
appears to be a sensible strategy.

The estimation results are graphically depicted in Figure 6. There are some small differences
between the posterior mean and the Buchmann-Grübel estimate, but overall they are very similar.

5 FREQUENTIST ASYMPTOTICS

In this section we assume that the observation times {ti} are equidistant: ti = i, i = 1,… ,n. To
evaluate our Bayesian method from a theoretical point of view, we will verify that it is consistent,
and we will establish the rate at which the posterior contracts around the “true,” data-generating
Lévy measure 𝜈0; see Ghosal and van der Vaart (2017) for a thorough treatment of Bayesian
asymptotics from the frequentist point of view. From now on the subscript 0 in various quantities
will refer to the data-generating distribution.

Our strategy consists in proving that the posterior contraction rate for 𝜈0, given the sample
𝑛 = (𝑍1,… , 𝑍𝑛), can be derived from the posterior contraction rate for q0 given 𝑛, which is
mathematically easier since Z1,… ,Zn is a sequence of independent and identically distributed
random variables with distribution q0. We therefore effectively avoid dealing directly with the
inverse nature of the problem of estimating p0.

The prior we consider in this section is defined as follows:

• Endow the rate 𝜆 of the Poisson process with a prior distribution.
• Independently, endow the vector (p1,… , pm) with a Dirichlet distribution with parameter

(𝛼1,… , 𝛼m).
• Set a priori pk = 0 for all k > m.
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This is a somewhat simplified version of the prior we used in Section 2, which allows us to con-
centrate on essential features of the problem, without need to clutter the analysis with extra and
unenlightening technicalities. Also remember the well-known relationship between the Gamma
and Dirichlet distributions: if 𝜉1,… , 𝜉m are independent Gamma distributed random variables,
𝜉i ∼ Gamma(𝛼i, 1), then for 𝜂𝑖 = 𝜉𝑖∕

∑𝑚

𝑗=1 𝜉𝑗 , the vector (𝜂1,… , 𝜂m) follows the Dirichlet distribu-
tion with parameter (𝛼1,… , 𝛼m); furthermore, we have that

∑𝑚

𝑗=1 𝜉𝑗 ∼ Gamma
(∑𝑚

𝑗=1 𝛼𝑗, 1
)
, and

𝜂i are independent of
∑𝑚

𝑗=1 𝜉𝑗 .
In our asymptotic setting, we will make m = mn dependent on n and let mn → ∞ at a suitable

rate as n → ∞.
Recall that we write𝑄 = (𝑞𝑘)𝑘∈N0

for qk = Q({k}). Let  denote the collection of all probability
measures supported on N.

Theorem 1. Suppose there exists 𝛼, such that 0 < 𝛼 ≤ 𝛼𝑖 ≤ 1 for all 1 ≤ i ≤ mn. Suppose 𝜆 ∼
𝐺𝑎𝑚𝑚𝑎(a, b) with a ∈ (0, 1] and that 𝜈0 has a compact support. Then, for any 𝛾 > 1,

Π𝑛

(||𝜈 − 𝜈0||1 ≥ log𝛾𝑛√
𝑛
|𝑛

)
→ 0

in 𝑄𝑛
0-probability, as n → ∞.

Remark 1. Note that since the support of 𝜈0 is not assumed to be known, our CPP model is still
naturally nonparametric. The assumption of the compact support of 𝜈0 does not cover the sim-
ulation example of Section 3.2. However, its relaxation appears to pose very difficult technical
challenges and is not attempted in this work.

The remainder of this section is devoted to the proof of Theorem 1.

5.1 Basic posterior inequality via the stability estimate
A key step of the proof of Theorem 1 is the stability estimate in Equation (5) below, which bounds
the total variation distance between the Lévy measures 𝜈, 𝜈′ in terms of the total variation distance
between the corresponding compound distributions q, q′.

In principle, it is conceivable that the Panjer recursion should allow one to bound probability
distances between P-probabilities via distances between Q-probabilities; we call such a bound
a stability estimate. Nevertheless, explicit as the equations of the Panjer recursion are, they are
still somewhat unwieldy for that purpose. Hence we will use another inversion formula from
Buchmann & Grübel (2003), that will lead to the stability estimate we are after.

First we introduce some notation, and also recall a few useful facts summarised in Buch-
mann & Grübel (2003). The space of absolutely summable sequences is defined as 𝓁1 ∶={
𝑎 ∈ RN0 ∶

∑∞
𝑗=0 |𝑎𝑗| < ∞

}
, with a norm given by ||𝑎||1 =

∑∞
𝑗=0 |𝑎𝑗|. For probability vectors a, b,

the norm ||a − b||1 is (twice) the total variation distance between a and b. For any a, b ∈ 𝓁1, we
have the inequality

||𝑎 ∗ 𝑏||1 ≤ ||𝑎||1||𝑏||1, (4)

where ∗ denotes convolution of a and b. We define a mapping 𝑎 → exp(𝑎) from 𝓁1 into 𝓁1 via
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exp(𝑎) =
∞∑
𝑗=0

𝑎∗𝑗

𝑗!
.

The exponential has the following two useful properties:

exp(𝑎 + 𝑏) = exp(𝑎) ∗ exp(𝑏), 𝑎, 𝑏 ∈ 𝓁1,

and
exp(𝑎) = exp(𝑏) ⇒ 𝑎 = 𝑏, 𝑎, 𝑏 ∈ 𝓁1.

We define a sequence 𝛿0 = (𝛿0, 𝑘)𝑘∈N0
, such that 𝛿0, 0 = 1 and its all other entries are equal to zero.

Then, using the above properties of the exponential, we can write concisely the compounding
mapping in (2) in terms of convolutions of infinite sequences: 𝑞 = exp(𝜆(𝑝 − 𝛿0)). Its convolution
inverse, that is, q∗(−1) such that q∗(−1) ∗ q = 𝛿0, is given by 𝑟 = 𝑞∗(−1) = exp(−𝜆(𝑝 − 𝛿0)). Note that
r ∈ 𝓁1. We have the following recursive expressions

𝑟0 = 1
𝑞0
, 𝑟𝑘 = − 1

𝑞0

𝑘∑
𝑗=1

𝑞𝑗𝑟𝑘−𝑗 , 𝑘 ∈ N.

Lemma 1. Let q, q′ correspond to two pairs (𝜆, p) and (𝜆′, p′), respectively (and r correspond to
q, i.e. the pair (𝜆, p)). Then, in accordance with the notation introduced above and provided that||𝑞′ − 𝑞||1 < ||𝑟||−1

1 , it holds that

||𝜈′ − 𝜈||1 = ||𝜆′𝑝′ − 𝜆𝑝||1 ≤ ||𝑟||1||𝑞′ − 𝑞||1
1 − ||𝑟||1||𝑞′ − 𝑞||1 . (5)

Proof. The result is a direct consequence of Lemma 3 in Buchmann & Grübel (2003), which
states that

(𝜆′ − 𝜆)𝛿0 + 𝜆𝑝 − 𝜆′𝑝′ =
∞∑
𝑗=1

1
𝑗
(𝑟 ∗ (𝑞 − 𝑞′))∗𝑗 ,

whenever ||𝑞′ − 𝑞||1 < ||𝑟||−1
1 . Taking the || ⋅ ||1-norm on both sides and some elementary bounding

via (4) imply that |𝜆′ − 𝜆| + ||𝜆′𝑝′ − 𝜆𝑝||1 ≤ ||𝑟||1||𝑞′ − 𝑞||1
1 − ||𝑟||1||𝑞′ − 𝑞||1 ,

and thus Equation (5) follows. ▪

We will use Equation (5) to establish the key inequality for the posterior measure Π(⋅|𝑛). We
recall once again that the subscript 0 refers to “true,” data-generating quantities.

Proposition 1. For any prior Π on 𝜈, for any 𝜀 ∈ (0, 1] and for any n ≥ 1, the following posterior
inequality holds:

Π(||𝜈 − 𝜈0||1 ≥ 𝜀 |𝑛) ≤ 2Π
(||𝑞 − 𝑞0||1 ≥ 𝜀

2||𝑟0||1 𝑛

)
.

Proof. Write {𝜈 ∶ ||𝜈 − 𝜈0||1 ≥ 𝜀} as a union of the sets

{𝜈 ∶ ||𝜈 − 𝜈0||1 ≥ 𝜀} ∩ {𝜈 ∶ ||𝑟0||1||𝑞 − 𝑞0||1 < 1∕2},
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and
{𝜈 ∶ ||𝜈 − 𝜈0||1 ≥ 𝜀} ∩ {𝜈 ∶ ||𝑟0||1||𝑞 − 𝑞0||1 ≥ 1∕2}.

Thanks to Lemma 1, the set

{𝜈 ∶ ||𝜈 − 𝜈0||1 ≥ 𝜀} ∩ {𝜈 ∶ ||𝑟0||1||𝑞 − 𝑞0||1 < 1∕2},

is a subset of {𝜈 ∶ ||q − q0||1 ≥ 𝜀∕(2||r0||1)}. The proof is concluded by observing that {𝜈 ∶ ||𝜈 −
𝜈0||1 ≥ 𝜀} ∩ {𝜈 ∶ ||𝑟0||1||𝑞 − 𝑞0||1 ≥ 1∕2} is a subset of {𝜈 ∶ ||q − q0||1 ≥ 𝜀∕(2||r0||1)}, too, since
𝜀 ≤ 1. ▪

In general, stability estimates like the one in Equation (5) are unknown in the literature on
Lévy processes. Consequently, studying Bayesian asymptotics for Lévy models, even in the CPP
case, necessitates the use of very intricate arguments under restrictive assumptions (e.g., Nickl
and Söhl (2017)).

5.2 Proof of Theorem 1
The usefulness of Proposition 1 above lies in the fact that the posterior contraction rate in the
inverse problem of estimating the Lévy measure 𝜈0 from indirect observations 𝑛 can be now
deduced from the posterior contraction rate in the direct problem of estimating the compound
distribution q0, which is easier (observe that r0 is determined by 𝜈0 and is therefore fixed in the
proofs). The general machinery developed in Ghosal, Ghosh, and van der Vaart (2000) can be
applied to handle the latter, and also several inequalities obtained in Gugushvili et al. (2015) are
useful in that respect. In particular, we make use of the following inequality for the Hellinger
distance,

ℎ(𝑞𝜆,𝑝, 𝑞𝜆′,𝑝′ ) ≤
√
𝜆ℎ(𝑝, 𝑝′) + |||√𝜆 −√𝜆′||| , (6)

compare Lemma 1 in Gugushvili et al. (2015). To ease our notation, in the sequel we will often
write q and q′ instead of q𝜆,p and 𝑞𝜆′,𝑝′, respectively.

Denote

KL(𝑞0, 𝑞) = 𝑄0

(
log 𝑞0

𝑞

)
, 𝑉 (𝑞0, 𝑞) = 𝑄0

(
log 𝑞0

𝑞

)2

.

Another two inequalities we will use are the following: let 𝜆, 𝜆0 ∈ [𝜆, 𝜆]. Then there exists a
positive constant 𝐶 , such that

KL(𝑞0, 𝑞) ≤ 𝐶(KL(𝑝0, 𝑝) + |𝜆0 − 𝜆|2),
𝑉 (𝑞0, 𝑞) ≤ 𝐶(𝑉 (𝑝0, 𝑝) + KL(𝑝0, 𝑝) + |𝜆0 − 𝜆|2); (7)

Compare with Equations (14) and (15) in Lemma 1 in Gugushvili et al. (2015).
These three inequalities can be obtained by adjustment of the arguments used in Gugushvili

et al. (2015). However, we opted to give their direct proofs in Lemma 5 from Appendix A under
slightly weaker conditions than required in Gugushvili et al. (2015).

Our proof of Theorem 1 proceeds via verification of the conditions for posterior contraction in
theorem 2.1 in Ghosal et al. (2000). In our setting, the latter result reads as follows.
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Theorem 2. Assume 𝑛 = (𝑍1,… , 𝑍𝑛), where Z1,… ,Zn are independent and identically dis-
tributed with distribution q0. Let h denote the Hellinger metric on , a collection of all measures with
support in N. Suppose that for a sequence {𝜖n} with 𝜖n → 0 and 𝑛𝜖2

𝑛 → ∞, a constant C > 0 and sets
𝑛 ⊂ , we have

log𝑁(𝜖𝑛,𝑛, ℎ) ≤ 𝑛𝜖2
𝑛,

Π𝑛(∖𝑛) ≤ exp(−𝑛𝜖2
𝑛(𝐶 + 4)),

Π𝑛(𝑞 ∶ KL(𝑞0, 𝑞) ≤ 𝜖2
𝑛, 𝑉 (𝑞0, 𝑞) ≤ 𝜖2

𝑛) ≥ exp(−𝐶𝑛𝜖2
𝑛).

Then, for sufficiently large M > 0, we have that Π𝑛(𝑄 ∶ ℎ(𝑞, 𝑞0) ≥ 𝑀𝜖𝑛|𝑛) → 0 in 𝑄𝑛
0-probability.

We will now verify the three conditions of this theorem, which we refer to as the entropy
condition, the remaining mass condition, and the prior mass condition, respectively. To that end,
fix strictly positive sequences {Λ

𝑛
}, {Λ𝑛}, and define the sieves

𝑛 = {𝑞𝜆,𝑝 ∶ 𝜆 ∈ [Λ
𝑛
,Λ𝑛], 𝑠𝑢𝑝𝑝 𝑝 ⊆ {1,… , 𝑚𝑛}}.

5.2.1 Entropy
We start with bounding the entropy of the sieve 𝑛 for h-balls of radius 𝜖n.

Lemma 2. Assume that as n → ∞,

𝑚𝑛 → ∞, 𝜖𝑛 → 0, Λ
𝑛
→ 0, Λ𝑛 → ∞. (8)

Then

log𝑁(𝜖𝑛,𝑛, ℎ) ≲ 𝑚𝑛

{
log(𝑚𝑛) + log(Λ𝑛) + log

(
1
𝜖𝑛

)}
+ log

(
1
Λ
𝑛

)
. (9)

Proof. For 𝜆, 𝜆′ ≥ Λ
𝑛
,

|√𝜆 −√𝜆′| = |𝜆 − 𝜆′|√
𝜆 +
√
𝜆′

≤ 1
2
√
Λ
𝑛

|𝜆 − 𝜆′|.
Furthermore, from section 3.3 in Pollard (2002),

ℎ(𝑝, 𝑝′) ≤√||𝑝 − 𝑝′||1 ≤√𝑚𝑛||𝑝 − 𝑝′||∞.
Combining the preceding two displays and Equation (6), we get

ℎ(𝑞𝜆,𝑝, 𝑞𝜆′,𝑝′ ) ≤
√

Λ𝑛𝑚𝑛||𝑝 − 𝑝′||∞ + 1
2
√
Λ
𝑛

|𝜆 − 𝜆′|.
Hence, if ||𝑝 − 𝑝′||∞ ≤ 𝜖2

𝑛

4Λ𝑛𝑚𝑛

, |𝜆 − 𝜆′| ≤√Λ
𝑛
𝜖𝑛,
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then the Hellinger distance between q𝜆,p and 𝑞𝜆′,𝑝′ is bounded by 𝜖n. To cover [Λ
𝑛
,Λ𝑛], we need

at most
⌊

Λ𝑛

2𝜖𝑛
√
Λ
𝑛

⌋
+ 1 intervals of length 2

√
Λ
𝑛
𝜖𝑛. To cover discrete distributions with support in

{1,… ,mn}, we need at most (⌊
2Λ𝑛𝑚𝑛

𝜖2
𝑛

⌋
+ 1

)𝑚𝑛

L∞-balls of radius 𝜖2
𝑛∕(4Λ𝑛𝑚𝑛). Under assumption (8), the summand 1 in the above display is

asymptotically negligible and can be omitted. In that case, the number of h-balls that we need to
cover 𝑛 is of order (

Λ𝑛𝑚𝑛

𝜖2
𝑛

)𝑚𝑛

× Λ𝑛

𝜖𝑛
√
Λ
𝑛

.

Taking the logarithm and next a straightforward rearrangement of the terms gives the statement
of the lemma. ▪

5.2.2 Remaining prior mass
Now we will derive an inequality for the remaining prior mass.

Lemma 3. For 𝜆 ∼ 𝐺𝑎𝑚𝑚𝑎(a, b) with 0 < a ≤ 1,

Π𝑛(∖𝑛) ≲ Λ
𝑎−1
𝑛 𝑒−𝑏Λ𝑛 + Λ

𝑛
.

Proof. We have (with a slight abuse of notation)

Π𝑛(∖𝑛) = Π𝑛([Λ𝑛,∞)) + Π𝑛([0,Λ𝑛
)).

Now,

Π𝑛(𝜆 ≥ Λ𝑛) =
𝑏𝑎

Γ(𝑎) ∫
∞

Λ𝑛

𝜆𝑎−1𝑒−𝑏𝜆d𝜆 ≲ Λ
𝑎−1
𝑛 𝑒−𝑏Λ𝑛 .

Furthermore,

Π𝑛([0,Λ𝑛
)) = 𝑏𝑎

Γ(𝑎) ∫
Λ
𝑛

0
𝜆𝑎−1𝑒−𝑏𝜆d𝜆 ≲ Λ𝑎

𝑛
.

The proof is concluded. ▪

5.2.3 Prior mass
Finally, we lower bound the prior mass in a small Kullback-Leibler neighbourhood of the
data-generating compound distribution q0. Define the function g ∶ (0,∞) × (0, 1) → (0,∞) by

𝑔(𝜖, 𝑐) = 𝐶
𝜖2

2[log(𝑒∕𝑐)]2 ,

where C is the constant appearing in the statement of Lemma 6 below.
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Lemma 4. Assume that
(i) there exists 𝛼, such that 0 < 𝛼 ≤ 𝛼𝑖 ≤ 1 for all 1 ≤ i ≤ mn;

(ii) strictly positive sequences 𝑝
𝑛
→ 0, 𝜖n → 0 and mn → ∞ satisfy the inequalities 𝑚𝑛𝑔(𝜖𝑛, 𝑝

𝑛
) < 1

and 𝑝
𝑛
< 𝑔(𝜖𝑛, 𝑝

𝑛
)2.

Define

𝐵𝑛(𝜖) = {𝑞 ∈ 𝑛 ∶ KL(𝑞0, 𝑞) ≤ 𝜖2, 𝑉 (𝑞0, 𝑞) ≤ 𝜖2}.

Then

Π𝑛(𝐵𝑛(𝜖𝑛)) ≳ Π𝑛(|𝜆0 − 𝜆| ≤ 𝜖𝑛) × Γ

(
𝑚𝑛∑
𝑖=1

𝛼𝑖

)
exp(−𝑚𝑛 log(1∕(𝑔(𝜖𝑛, 𝑝

𝑛
)2 − 𝑝

𝑛
)) − 𝑚𝑛 log(1∕𝛼)).

Here 𝜖𝑛 = 𝜖𝑛∕
√

3𝐶, with a constant 𝐶 > 0 not depending on n.

Proof. Define

�̃�𝑛(𝜖) =
{
(𝜆, 𝑝) ∶ 𝜆 ∈ [Λ

𝑛
,Λ𝑛], min

1≤𝑖≤𝑚𝑛

𝑝𝑖 ≥ 𝑝
𝑛
, 𝑠𝑢𝑝𝑝 𝑝 ⊆ {1,… , 𝑚𝑛},

KL(𝑝0, 𝑝) ≤ 𝜖2, 𝑉 (𝑝0, 𝑝) ≤ 𝜖2, |𝜆0 − 𝜆| ≤ 𝜖

}
.

For all n large enough and 𝜖 small, we have {𝜆 ∶ |𝜆0 − 𝜆| ≤ 𝜖} ⊆ [Λ
𝑛
,Λ𝑛]. Then by inequali-

ties in Lemma 5, �̃�𝑛(𝜖) ⊂ 𝐵𝑛

(√
3𝐶𝜖
)
, with a constant 𝐶 that can be taken the same for all large

enough n; see the arguments in Section 4.2 in Gugushvili et al. (2015). Hence, using the a priori
independence of p and 𝜆,

Π𝑛(𝐵𝑛(𝜖𝑛)) ≥ Π𝑛(�̃�𝑛(𝜖𝑛)) = Π𝑛(|𝜆0 − 𝜆| ≤ 𝜖𝑛) × 𝑈𝑛,

where

𝑈𝑛 = Π𝑛

({
𝑝 ∶ KL(𝑝0, 𝑝) ≤ 𝜖2

𝑛, 𝑉 (𝑝0, 𝑝) ≤ 𝜖2
𝑛, min

1≤𝑖≤𝑚𝑛

𝑝𝑖 ≥ 𝑝
𝑛

})
.

Furthermore, by Lemma 6 from Appendix A, we have

𝑈𝑛 ≥ Π𝑛

({
𝑝 ∶

𝑚𝑛∑
𝑖=1
|𝑝0𝑖 − 𝑝𝑖| ≤ 2𝑔(𝜖𝑛, 𝑝

𝑛
), min

1≤𝑖≤𝑚𝑛

𝑝𝑖 ≥ 𝑝
𝑛

})
.

The statement of the lemma now follows upon applying Lemma 7 from Appendix A with
𝜂 = 𝑝

𝑛
and 𝜖 = 𝑔(𝜖𝑛, 𝑝

𝑛
). ▪

5.2.4 Using bounds in Theorem 2
We take

𝑚𝑛 ≍ log 𝑛, 𝜖𝑛 ≍
log𝛾𝑛√

𝑛
, 𝑝

𝑛
≍ 1
𝑛2 ,

Λ𝑛 ≍ log2𝛾𝑛, Λ
𝑛
≍ exp(−const ⋅ log2𝛾𝑛)
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with appropriately selected proportionality constants, and verify the conditions in Theorem 2.
Firstly, condition (8) is trivially satisfied. Therefore, we can invoke Lemma 2 and conclude

that the entropy is upper bounded by a multiple of log2𝛾𝑛, since 𝛾 > 1. Now log2𝛾𝑛 ≲ 𝑛𝜖2
𝑛 , and this

verifies the entropy condition in Theorem 2.
Be Lemma 3, for a suitable choice of the constant C the remaining prior mass condition is

likewise satisfied.
Finally, for the prior mass condition in a small Kullback-Leibler neighbourhood to hold, by

Lemma 4 we need that the term

Π𝑛(|𝜆0 − 𝜆| ≤ 𝜖𝑛) exp(−𝑚𝑛 log(1∕(𝑔(𝜖𝑛, 𝑝
𝑛
)2 − 𝑝

𝑛
)) − 𝑚𝑛 log(1∕𝛼))

is lower bounded by exp(−𝐶𝑛𝜖2
𝑛) for some large enough C > 0. Now, Π𝑛(|𝜆0 − 𝜆| ≤ 𝜖𝑛) ≍ 𝜖𝑛. Take

the logarithm on both sides of the above display and note that by our conditions

log(Π𝑛(|𝜆0 − 𝜆| ≤ 𝜖𝑛)) ≳ log(𝜖𝑛) ≳ −𝑛𝜖2
𝑛.

Likewise,
𝑚𝑛 log(1∕(𝑔(𝜖𝑛, 𝑝

𝑛
)2 − 𝑝

𝑛
)) + 𝑚𝑛 log(1∕𝛼) ≲ 𝑛𝜖2

𝑛,

so that the prior mass condition holds.
Thus we have verified all the conditions of Theorem 2. The resulting posterior contraction rate

is 𝜖𝑛 ≍ log𝛾𝑛∕
√
𝑛.

6 OUTLOOK

In this paper we introduced a nonparametric Bayesian approach to estimation of the Lévy mea-
sure 𝜈 of a discretely observed CPP, when the support of 𝜈 is a subset of N. We constructed an
algorithm for sampling from the posterior distribution of 𝜈, and showed that in practice our
procedure performs well and measures up to a benchmark frequentist plug-in approach from
(Buchmann & Grübel, 2004). Although computationally more demanding and slower than the
latter, our method has an added benefit of providing uncertainty quantification in parameter esti-
mates through the spread of the posterior distribution. On the theoretical side we show that our
procedure is consistent, in that asymptotically, as the sample size n → ∞, the posterior concen-
trates around the “true,” data-generating distribution. The corresponding posterior contraction
rate is the (nearly) optimal rate log𝛾𝑛∕

√
𝑛 for an arbitrary 𝛾 > 1, if we are to ignore a practically

insignificant log 𝑛 factor.
Among several generalizations of our results, the one that looks the most promising is exten-

sion of our methodology to CPP processes with jump size distributions supported on the set of
integers Z. The corresponding model has garnered substantial interest in financial applications
(see Barndorff-Nielsen, Pollard, & Shephard, 2012). We leave this extension as a topic of possible
future research.
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APPENDIX A. TECHNICAL RESULTS

Lemma 5. Let q (resp. q′) be the law at time 1 of a CPP with intensity 𝜆 (resp. 𝜆′) and jump
distribution p (resp. p′). Suppose that p and p′ are distributions concentrated on C. Then,

KL(𝑞, 𝑞′) ≤ 𝜆KL(𝑝, 𝑝′) + 𝜆′ − 𝜆 + 𝜆 log 𝜆

𝜆′
,

𝑉 (𝑞, 𝑞′) ≤ 2𝜆(𝑉 (𝑝, 𝑝′) + 2KL(𝑝, 𝑝′)) + 2KL(𝑝, 𝑝′)2𝜆2

+ 2𝜆 log
(
𝜆

𝜆′

)(
2(𝜆′ − 𝜆) + (𝜆 − 1) log

(
𝜆

𝜆′

))
+ 2(𝜆′ − 𝜆)2,

ℎ(𝑞, 𝑞′) ≤√𝜆ℎ(𝑝, 𝑝′) +√1 − 𝑒
− 1

2
(
√
𝜆−
√
𝜆′)2 ≤√𝜆ℎ(𝑝, 𝑝′) + |√𝜆 −√𝜆′|.

In particular, if𝜆, 𝜆′ ∈ [Λ,Λ] with 0 < Λ ≤ Λ < ∞, then there exists a positive constant 𝐶 , that
depends on Λ, Λ, such that

KL(𝑞, 𝑞′) ≤ 𝐶(KL(𝑝, 𝑝′) + |𝜆 − 𝜆′|),
𝑉 (𝑞, 𝑞′) ≤ 𝐶(𝑉 (𝑝, 𝑝′) + KL(𝑝, 𝑝′) + (𝜆 − 𝜆′)2),

ℎ(𝑞, 𝑞′) ≤ 𝐶ℎ(𝑝, 𝑝′) + |√𝜆 −√𝜆′|.
Proof. If KL(p, p′) and V(p, p′) are infinite, then the above inequalities are trivially satisfied.
Therefore, we can assume these two divergences are finite. With this in mind, the proof of the
lemma is divided into three steps.

Step 1: We begin by proving that for any n ≥ 1,

KL
(
𝑝∗𝑛, 𝑝′∗𝑛

) ≤ 𝑛KL(𝑝, 𝑝′),

𝑉
(
𝑝∗𝑛, 𝑝′∗𝑛

) ≤ 𝑛𝑉 (𝑝, 𝑝′) + 4𝑛KL(𝑝, 𝑝′) + 𝑛(𝑛 − 1)KL(𝑝, 𝑝′)2,

ℎ2 (𝑝∗𝑛, 𝑝′∗𝑛) ≤ 𝑛ℎ2(𝑝, 𝑝′).

The assertions are trivial for n = 1. Assuming that the first one holds for n − 1 with n ≥ 2, we
will now show that it holds for n as well. Using the notation p∗n(i) for the ith element of p∗n and
similarly in the case of p′∗n, we have

KL
(
𝑝∗𝑛, 𝑝′∗𝑛

)
=
∑
𝑖∈N

𝑝∗𝑛(𝑖) log
(
𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

)
=
∑
𝑖∈N

∑
𝑘∈N

𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘) log

( ∑
𝑘∈N 𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘)∑
𝑘∈N 𝑝′∗(𝑛−1)(𝑘)𝑝′(𝑖 − 𝑘)

)
≤∑

𝑖∈N

∑
𝑘∈N

𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘) log
(
𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘)
𝑝′∗(𝑛−1)(𝑘)𝑝′(𝑖 − 𝑘)

)
=
∑
𝑖∈N

∑
𝑘∈N

𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘)
(

log
(
𝑝∗(𝑛−1)(𝑘)
𝑝′∗(𝑛−1)(𝑘)

)
+ log

(
𝑝(𝑖 − 𝑘)
𝑝′(𝑖 − 𝑘)

))
= KL

(
𝑝∗(𝑛−1), 𝑝′∗(𝑛−1)) + KL(𝑝, 𝑝′),
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where the inequality follows from the log-sum inequality, and the last equality is obtained by
means of Fubini's theorem combined with the facts that∑

𝑘∈N

𝑝∗(𝑛−1)(𝑘) = 1,
∑
𝑖∈N

𝑝(𝑖 − 𝑘) = 1, ∀𝑘 ∈ N.

By induction, we deduce that KL(p∗n, p′∗n) ≤ nKL(p, p′).
The proof of the inequality for V is similar: we assume the inequality is true for n − 1 with

n ≥ 2, and will show it holds for n as well. Write 𝑉 (𝑝∗𝑛, 𝑝′∗𝑛) = 𝑅1 + 𝑅2 for

𝑅1 =
∑
𝑖∈N

𝑝∗𝑛(𝑖)log2
(
𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

)
1{ 𝑝∗𝑛(𝑖)

𝑝′∗𝑛(𝑖)≥1
},

𝑅2 =
∑
𝑖∈N

𝑝∗𝑛(𝑖)log2
(
𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

)
1{ 𝑝∗𝑛(𝑖)

𝑝′∗𝑛(𝑖)<1
}.

Observe that the function 𝑥 → (𝑥 log2 𝑥)1{𝑥≥1} is convex. By Jensen's inequality we have for
positive ak, bk that(∑

𝑘

𝑎𝑘

)
log2
(∑

𝑘𝑎𝑘∑
𝑘𝑏𝑘

)
1{∑𝑘𝑎𝑘≥∑𝑘𝑏𝑘} ≤∑

𝑘

𝑎𝑘log2
(
𝑎𝑘

𝑏𝑘

)
1{𝑎𝑘∕𝑏𝑘≥1}.

Using this inequality and

𝑝∗𝑛(𝑖) =
∑
𝑘∈N

𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘), 𝑝′∗𝑛(𝑖) =
∑
𝑘∈N

𝑝′∗(𝑛−1)(𝑘)𝑝′(𝑖 − 𝑘),

we get that

𝑅1 ≤∑
𝑖∈N

∑
𝑘∈N

𝑝(𝑖 − 𝑘)𝑝∗(𝑛−1)(𝑘)log2
(
𝑝(𝑖 − 𝑘)𝑝∗(𝑛−1)(𝑘)
𝑝′(𝑖 − 𝑘)𝑝′∗(𝑛−1)(𝑘)

)
=
∑
𝑖∈N

∑
𝑘∈N

𝑝(𝑖 − 𝑘)𝑝∗(𝑛−1)(𝑘)
(

log
(
𝑝(𝑖 − 𝑘)
𝑝′(𝑖 − 𝑘)

)
+ log

(
𝑝∗(𝑛−1)(𝑘)
𝑝′∗(𝑛−1)(𝑘)

))2

= 𝑉
(
𝑝∗(𝑛−1), 𝑝′∗(𝑛−1)) + 𝑉 (𝑝, 𝑝′) + 2KL(𝑝, 𝑝′)KL

(
𝑝∗(𝑛−1), 𝑝′∗(𝑛−1))

≤ 𝑉
(
𝑝∗(𝑛−1), 𝑝′∗(𝑛−1)) + 𝑉 (𝑝, 𝑝′) + 2(𝑛 − 1)KL(𝑝, 𝑝′)2

≤ 𝑛𝑉 (𝑝, 𝑝′) + 4(𝑛 − 1)KL(𝑝, 𝑝′) + 𝑛(𝑛 − 1)KL(𝑝, 𝑝′)2,

where in the last inequality we used the induction hypothesis. Now recall an elementary
inequality

𝑒−𝑥𝑥2 ≤ 4(𝑒−𝑥∕2 − 1)2

valid for x ≥ 0; see Gugushvili et al. (2015, p. 12). Applying this inequality to

𝑥 = − log
(
𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

)
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such that p∗n(i)∕p′∗n(i) < 1, we get

𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

log2
(
𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

)
≤ 4
⎛⎜⎜⎝
√

𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

− 1
⎞⎟⎟⎠

2

.

By multiplying both sides of the above inequality with p′∗n(i), summing the result through i and
recalling the definition of the Hellinger distance, we get that

𝑅2 ≤ 4
∑
𝑖∈N

(√
𝑝∗𝑛(𝑖) −

√
𝑝′∗𝑛(𝑖)

)2
= 4ℎ2(𝑝∗𝑛, 𝑝′∗𝑛)

≤ 4KL(𝑝∗𝑛, 𝑝′∗𝑛) ≤ 4𝑛KL(𝑝, 𝑝′).

To conclude the proof of the inequality for V , we combine the bounds derived for R1 and R2.

As far as the inequality for the Hellinger distance is concerned, we observe that

ℎ2(𝑝∗𝑛, 𝑝′∗𝑛) =
∑
𝑖∈N

𝑝∗𝑛(𝑖)𝑔
(
𝑝′∗𝑛(𝑖)
𝑝∗𝑛(𝑖)

)

for a convex function 𝑔(𝑥) = (1 −
√
𝑥)21[0,∞)(𝑥). Then, by the same reasoning as above, we have

ℎ2 (𝑝∗𝑛, 𝑝′∗𝑛) ≤∑
𝑖∈N

∑
𝑘∈N

𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘)𝑔
(
𝑝′∗(𝑛−1)(𝑘)𝑝′(𝑖 − 𝑘)
𝑝∗(𝑛−1)(𝑘)𝑝(𝑖 − 𝑘)

)
=
∑
𝑖∈N

∑
𝑘∈N

((√
𝑝∗(𝑛−1)(𝑘) −

√
𝑝′∗(𝑛−1)(𝑘)

)√
𝑝(𝑖 − 𝑘)

+
√
𝑝′∗(𝑛−1)(𝑘)

(√
𝑝(𝑖 − 𝑘) −

√
𝑝′(𝑖 − 𝑘)

))2

= ℎ2(𝑝∗(𝑛−1), 𝑝′∗(𝑛−1)) + ℎ2(𝑝, 𝑝′)

+ 2
∑
𝑖∈N

∑
𝑘∈N

(√
𝑝∗(𝑛−1)(𝑘) −

√
𝑝′∗(𝑛−1)(𝑘)

)
× (
√
𝑝(𝑖 − 𝑘) −

√
𝑝′(𝑖 − 𝑘))

√
𝑝(𝑖 − 𝑘)𝑝∗(𝑛−1)(𝑘).

Now note that the last summand satisfies

2

(∑
𝑘∈N

√
𝑝′∗(𝑛−1)(𝑘)𝑝∗(𝑛−1)(𝑘) − 1

)(
1 −
∑
𝑘∈N

√
𝑝(𝑘)𝑝′(𝑘)

)
= −1

2
ℎ2(𝑝∗(𝑛−1), 𝑝′∗(𝑛−1)(𝑘)

)
ℎ2(𝑝, 𝑝′) ≤ 0.

We therefore conclude that

ℎ2 (𝑝∗𝑛, 𝑝′∗𝑛) ≤ ℎ2(𝑝∗(𝑛−1), 𝑝′∗(𝑛−1)) + ℎ2(𝑝, 𝑝′),

which leads to the desired inequality, by an induction argument.
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Step 2: Now we prove the inequalities

KL(𝑞, 𝑞′) ≤
∞∑
𝑛=0

P(𝑁 = 𝑛)KL(𝑝∗𝑛, 𝑝′∗𝑛) + KL(𝑁,𝑁 ′),

𝑉 (𝑞, 𝑞′) ≤ 2
∞∑
𝑛=0

P(𝑁 = 𝑛)(𝑉 (𝑝∗𝑛, 𝑝′∗𝑛) + 2KL(𝑝∗𝑛, 𝑝′∗𝑛)) + 2𝑉 (𝑁,𝑁 ′),

ℎ(𝑞, 𝑞′) ≤
√√√√ ∞∑

𝑛=0
P(𝑁 = 𝑛)ℎ2(𝑝∗𝑛, 𝑝′∗𝑛) + ℎ(𝑁,𝑁 ′).

Here N and N′ are Poisson random variables with means 𝜆 and 𝜆′, respectively, and with a slight
abuse of notation, KL(N,N′), V(N,N′) and h(N,N′) are the KL and V divergences and the Hellinger
distance between the corresponding laws.

Note that

𝑞(𝑖) =
∞∑
𝑛=0

𝑝∗𝑛(𝑖)𝑃 (𝑁 = 𝑛), 𝑞′(𝑖) =
∞∑
𝑛=0

𝑝′∗𝑛(𝑖)𝑃 (𝑁 ′ = 𝑛).

Using this and the log-sum inequality,

KL(𝑞, 𝑞′) =
∑
𝑖∈N

𝑞(𝑖) log
(
𝑞(𝑖)
𝑞′(𝑖)

)
≤∑

𝑖∈N

∑
𝑛∈N

𝑝∗𝑛(𝑖)𝑃 (𝑁 = 𝑛) log
(
𝑝∗𝑛(𝑖)𝑃 (𝑁 = 𝑛)
𝑝′∗𝑛(𝑖)𝑃 (𝑁 ′ = 𝑛)

)
=
∑
𝑖∈N

∑
𝑛∈N

𝑝∗𝑛(𝑖)𝑃 (𝑁 = 𝑛)
(

log
(
𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

)
+ log

(
𝑃 (𝑁 = 𝑛)
𝑃 (𝑁 ′ = 𝑛)

))
=

∞∑
𝑛=0

𝑃 (𝑁 = 𝑛)KL(𝑝∗𝑛, 𝑝′∗𝑛) + KL(𝑁,𝑁 ′).

For the divergence V, write V(q, q′) = B1 + B2 for

𝐵1 =
∑
𝑖∈N

𝑞(𝑖)log2
(
𝑞(𝑖)
𝑞′(𝑖)

)
1{ 𝑞(𝑖)

𝑞′(𝑖)≥1
}

≤∑
𝑖∈N

∑
𝑛∈N

𝑝∗𝑛(𝑖)P(𝑁 = 𝑛)log2
(
𝑝∗𝑛(𝑖)P(𝑁 = 𝑛)
𝑝′∗𝑛(𝑖)P(𝑁 ′ = 𝑛)

)
≤ 2
∑
𝑖∈N

∑
𝑛∈N

𝑝∗𝑛(𝑖)P(𝑁 = 𝑛)
(

log2
(
𝑝∗𝑛(𝑖)
𝑝′∗𝑛(𝑖)

)
+ log2

(
P(𝑁 = 𝑛)
P(𝑁 ′ = 𝑛)

))
= 2

∞∑
𝑛=0

𝑉 (𝑝∗𝑛, 𝑝′∗𝑛)P(𝑁 = 𝑛) + 2𝑉 (𝑁,𝑁 ′),

𝐵2 =
∑
𝑖∈N

𝑞(𝑖)log2
(
𝑞(𝑖)
𝑞′(𝑖)

)
1{ 𝑞(𝑖)

𝑞′(𝑖)<1
}.

To control B2, we use the same arguments as in the proof of inequalities (12) and (15) in Gugushvili
et al. (2015), getting

𝐵2 ≤ 4KL(𝑞, 𝑞′) ≤ 4
∞∑
𝑛=0

KL(𝑝∗𝑛, 𝑝′∗𝑛)P(𝑁 = 𝑛).
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This gives the required inequality for the V divergence.
Finally, we prove the inequality for the Hellinger distance. Denoting the law of

∑𝑁

𝑗=1 𝑌𝑗 by 𝑞,
it holds by the triangle inequality that ℎ(𝑞, 𝑞′) ≤ ℎ(𝑞, 𝑞) + ℎ(𝑞, 𝑞′). Since 𝑔(𝑥) = (1 −

√
𝑥)21[0,∞)(𝑥)

is a convex function,

ℎ2(𝑞, 𝑞) ≤∑
𝑖∈N

∑
𝑛∈N

𝑝∗𝑛(𝑖)P(𝑁 = 𝑛)𝑔
(
𝑝′∗𝑛(𝑖)
𝑝∗𝑛(𝑖)

)
=
∑
𝑛∈N

P(𝑁 = 𝑛)ℎ2(𝑝∗𝑛, 𝑝′∗𝑛).

It remains to prove that ℎ(𝑞, 𝑞′) ≤ ℎ(𝑁,𝑁 ′). This again follows by convexity of g, since

ℎ2(𝑞, 𝑞′) =
∑
𝑖∈N

∑
𝑛∈N

𝑝′∗𝑛(𝑖)P(𝑁 = 𝑛)𝑔
(∑∞

𝑛=0 𝑝
′∗𝑛(𝑖)P(𝑁 ′ = 𝑛)∑∞

𝑛=0 𝑝
′∗𝑛(𝑖)P(𝑁 = 𝑛)

)
≤∑

𝑖∈N

∑
𝑛∈N

𝑝′∗𝑛(𝑖)P(𝑁 = 𝑛)𝑔
(

P(𝑁 ′ = 𝑛)
P(𝑁 = 𝑛)

)
= ℎ2(𝑁,𝑁 ′).

Step 3: From Steps 1 and 2 we derive that

KL(𝑞, 𝑞′) ≤ KL(𝑝, 𝑝′)E[𝑁] + KL(𝑁,𝑁 ′),

𝑉 (𝑞, 𝑞′) ≤ 2E[𝑁](𝑉 (𝑝, 𝑝′) + 2KL(𝑝, 𝑝′)) + 2𝑉 (𝑁,𝑁 ′)

+ 2(E[𝑁2] − E[𝑁])KL(𝑝, 𝑝′)2,

ℎ(𝑞, 𝑞′) ≤ ℎ(𝑝, 𝑝′)
√

E[𝑁] + ℎ(𝑁,𝑁 ′).

Now the proof of the lemma follows from these three inequalities upon noticing that KL(p, p′)2

≤ V(p, p′), and recalling that

E[𝑁] = 𝜆,

E[𝑁2] = 𝜆 + 𝜆2,

KL(𝑁,𝑁 ′) = 𝜆′ − 𝜆 + 𝜆 log 𝜆

𝜆′
≲ (𝜆 − 𝜆′)2,

ℎ2(𝑁,𝑁 ′) = 1 − 𝑒
− 1

2
(
√
𝜆−
√
𝜆′)2 ≤ |√𝜆 −√𝜆′|,

𝑉 (𝑁,𝑁 ′) = 𝜆 log
(
𝜆

𝜆′

)(
2(𝜆′ − 𝜆) + (𝜆 − 1) log

(
𝜆

𝜆′

))
+ (𝜆′ − 𝜆)2 ≲ (𝜆 − 𝜆′)2.

▪

Lemma 6. Let 𝜖 > 0. Suppose p = (p1,… , pm) and 𝑝′ = (𝑝′1,… , 𝑝′𝑚) are points in the
m-dimensional unit simplex, and let min1≤𝑖≤𝑚 𝑝𝑖 ≥ 𝑐 for some c ∈ (0, 1). Then there exists a
universal constant C > 0, such that the inequality

𝑚∑
𝑖=1
|𝑝′𝑖 − 𝑝𝑖| ≤ 𝐶

𝜖2

[log(𝑒∕𝑐)]2 ,

implies that KL(p′, p) ≤ 𝜖2 and V(p′, p) ≤ 𝜖2 hold.
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Proof. Lemma 8 in Ghosal and van der Vaart (2007) assures that there exists a constant 𝐶 (not
depending on either p or p′), such that

KL(𝑝′, 𝑝) ≤ 𝐶ℎ2(𝑝′, 𝑝)
[

1 + log
(‖‖‖‖𝑝′𝑝 ‖‖‖‖∞

)]
and

𝑉 (𝑝′, 𝑝) ≤ 𝐶ℎ2(𝑝′, 𝑝)
[

1 + log
(‖‖‖‖𝑝′𝑝 ‖‖‖‖∞

)]2

.

From section 3.3 in Pollard (2002) we have ℎ2(𝑝′, 𝑝) ≤ ∑𝑚

𝑖=1 |𝑝′𝑖 − 𝑝𝑖|. Furthermore, since 0 < c < 1
and min1≤𝑖≤𝑚𝑝𝑖 ≥ 𝑐,

1 ≤ 1 + log
(‖‖‖‖𝑝′𝑝 ‖‖‖‖∞

)
≤ 1 + log(1∕𝑐) = log(𝑒∕𝑐).

Therefore,

max(KL(𝑝′, 𝑝), 𝑉 (𝑝′, 𝑝)) ≤ 𝐶[log(𝑒∕𝑐)]2
𝑚∑
𝑖=1
|𝑝′𝑖 − 𝑝𝑖|,

from which the assertion of the lemma follows trivially. ▪

Lemma 7. Let m ≥ 2 be an integer. Suppose (p1,… , pm) ∼ Dir(𝛼1,… , 𝛼m). Let p0 = (p01,… , p0m)
be an arbitrary point in the m-dimensional unit simplex. Assume there exists 𝛼, such that 0 < 𝛼 ≤
𝛼𝑖 ≤ 1 for all 1 ≤ i ≤ m. Let 𝜖 > 0, and let 𝜂 be such that 𝜂 < 𝜖2. Then if m𝜖 < 1,

Π𝑛

(
𝑚∑
𝑖=1
|𝑝𝑖 − 𝑝0𝑖| ≤ 2𝜖, min

1≤𝑖≤𝑚 𝑝𝑖 ≥ 𝜂

)
≥ Γ

(
𝑚∑
𝑖=1

𝛼𝑖

)
exp(−𝑚 log(1∕(𝜖2 − 𝜂)) − 𝑚 log(1∕𝛼)). (A1)

Proof. By arguments analogous to those in the proofs of lemma 6.1 in Ghosal et al. (2000) and
lemma 10 in Ghosal and van der Vaart (2007), we obtain that the left-hand side of (A1) can be
lower bounded by

Γ
(∑𝑚

𝑖=1 𝛼𝑖
)∏𝑚

𝑖=1 Γ(𝛼𝑖)

𝑚−1∏
𝑖=1 ∫

min(𝑝0𝑖+𝜖2,1)

max(𝑝0𝑖−𝜖2,𝜂2)
𝑥
𝛼𝑖−1
𝑖

d𝑥𝑖.

The length of the integration interval in each of the integrals in the above product is lower
bounded by 𝜖2 − 𝜂. Using that 𝛼 ≤ 𝛼𝑖 ≤ 1, we deduce that the preceding display is lower
bounded by

Γ

(
𝑚∑
𝑖=1

𝛼𝑖

)
𝛼𝑚 exp

(
−(𝑚 − 1) log

(
1

𝜖2 − 𝜂

))
.

This entails the result. ▪

APPENDIX B. BOOTSTRAP CONFIDENCE INTERVALS

Here we report a small comparison between the Bayesian credible intervals and the boot-
strap confidence intervals for the Buchmann-Grübel estimator. The setup and the simulated
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dataset that we used are the same as in Subsection 3.1. The bootstrap confidence intervals were
computed as follows: B = 9, 999 bootstrap samples were generated from the compound Poisson
model under the Buchmann-Grübel estimates computed from the observed data. These bootstrap
samples were then fed back to the Buchmann-Grübel procedure to yield B bootstrap estimates
of the Lévy measure 𝜈. Finally, for each k, the 𝛼∕2th and (1 − 𝛼∕2)-th sample quantiles were
obtained to yield 1 − 𝛼 bootstrap confidence intervals for 𝜈k.The results with 𝛼 = .05 are displayed
in Figure B1. One observes that while both methods result in a good coverage for this specific
dataset, the bootstrap appears to be noticeably more conservative than the Bayesian approach, as
evidenced by the width of the intervals.

7 8 9

4 5 6

1 2 3

0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75

method bayes boot

F I G U R E B1 95% bootstrap confidence intervals and Bayesian credible intervals for the simulation
example from Section 3.1 under setting (a). The displayed results are for parameters 𝜈1 through 𝜈9, with panels
labeled sequentially from 1 to 9. The true parameter values are visualised with orange vertical lines. The coloring
scheme is the same as in Figure 1. Note that some of the narrow Bayesian credible intervals are overshadowed by
the symbol (star) used to visualise the posterior mean [Colour figure can be viewed at wileyonlinelibrary.com]
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