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Abstract

In this thesis we introduce a variation on the quantum random walk to discuss
shifts in an arbitrary range. The concept of Hadamard coin was therefore generalised
to a higher order. By a Fourier transform method and a tensor product decomposition
of the evolution matrix the long-range quantum random walk was found to converge
in distribution to a random variable, different for every range. The limiting random
variable consists of three parts: one part fast decaying with the range size, a non-
convergent part and a convergent part. Lastly, an introduction was made into the
topic of trapped quantum random walks. As a starting point, the survival probability
of such a walk on a 3-cycle was calculated and found to scale as 2−n, as does the
classical trapped random walk on this topology.
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Introduction

Over the past decades researchers have made efforts towards the realisation of a quantum
computer for the implementation of quantum algorithms [1]. A functioning quantum computer
could for instance be used for integer factorisation via Shor’s quantum algorithm, which is
substantially faster than any known classical factorisation algorithm [2]. In order for quantum
computation to be successful, quantum algorithms must be developed that supersede their
classical counterparts. A powerful tool in the development of quantum algorithms is the quantum
random walk [3].

The process of a quantum random walk has gained interest is the past years due to its potential
to speed up classical algorithms. The process describes the evolution of the state of a walker
in terms of a wave-function with an internal degree of freedom. The position of this walker at
time n, denoted by Xn, travels ballistically, contrary to a classical random walk. Meaning, Xn/n
converges to a limiting random variable as n tends to infinity [4]. Like the classical random walk,
there exist many variations on its standard version. In this thesis we focus on a variation on
the quantum random walk that extends the steps or shifts in the quantum random walk to a
longer range. An effort is made to investigate the resulting limiting random variable for arbitrary
ranges. In the classical random walk Xn/

√
n converges to a normal distribution, regardless of the

step-distribution [5]. We examine if the long-range quantum random walk shares this property
of universality. Furthermore, we investigate the limit of infinite range. Finally, an introduction is
made into the topic of trapped quantum random walks.

The thesis starts with an overview of the theory on quantum random walks in Section 1, where
the concept is described and a result of a limiting distribution is presented. Section 2 summarizes
a method for physical implementation of the quantum random walk in an ion-trap. An extension
of the quantum random walk to a long-range version is formalised in Section 3 where we discuss
the concept and investigate a limiting random variable for the process. We introduce the topic
of trapped quantum random walks and analyse a starting point for further research in Section 4.
Finally, Section 5 treats the conclusions of the obtained results. This thesis is part of the bachelor
programs Applied Mathematics and Applied Physics of the EEMCS and AS faculties of the Delft
University of Technology.
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1 Theory
Concept & limiting distribution

In this section we present an overview of the basics of quantum random walks (QRW) and some
important convergence results on the topic based on [4]. Section 1.1 starts with an introduction of
the formalism behind the QRW followed by the dynamics of the QRW in Section 1.2. We proceed
with a derivation of the limiting distribution of the process based on Fourier transform methods
in Section 1.3. The derivation continues with a theorem regarding convergence in distribution
based on the method of moments in Section 1.4 after which a more explicit calculation of the
limiting distribution is presented in Section 1.5.

1.1 State space

In the classical random walk a state is simply an integer value which we interpret as the position
of the walker. In order to describe the dynamics of a QRW, a more complicated setting is needed
[6]. A QRW is a quantum system that evolves in discrete time. The states that describe the
system consist of a position part which can be thought of as modelling the position of a particle,
and an internal degree of freedom analogous to quantum mechanical spin. In its most common

form, the state of the system is of the form ψ =

(
ψ(x, 1)
ψ(x,−1)

)
where ψ(·, i) ∈ `2(Z). Here ψ(·, i)

can be thought of as the position part and the internal degree of freedom, or coin state, is an
element of C2. With this choice for the position the QRW is a walk on the integers. The total
state ψ is then a tensor product of this position and coin state such that the total state is an
element of the space

H = `2(Z)⊗ C2 ' (`2(Z))2.

We will write {ex}x∈Z for the usual basis elements of `2(Z). i.e., ex is the column with 1 at x
and zero elsewhere and further denote{

|1〉 = w1 =

(
1
0

)
, |−1〉 = w−1 =

(
0
1

)}
for the basis of C2. We can now write the total state as

ψ =
∑
x∈Z

ψ(x, 1)ex ⊗ |1〉+ ψ(x,−1)ex ⊗ |−1〉 .

Or in shorter notation:
ψ =

∑
i=±1

∑
x∈Z

ψ(x, i)ex ⊗ wi.

With this state we associate a probability to find the particle at position x equal to

P(x) =
∑
i=±1

|〈ex ⊗ wi, ψ〉|2 = |ψ(x, 1)|2 + |ψ(x,−1)|2.

In order for this rule to be meaningful, we require that the state is normalised. Meaning that the
sum of this probability over all integers equals one:

∑
i=±1

∑
x∈Z |ψ(x, i)|2 = 1. Essentially, the

state of a QRW is a wave-function on the integers with an internal degree of freedom. In contrast
to a classical random walk, there is no localisation of position. As such, it is important to note
that the QRW does not define a stochastic process like the classical random walk, but rather a
sequence of probability measures. Like in quantum mechanics, the position is a probabilistic
concept.
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1.2 Dynamics

In this section we describe the evolution between states that compose a QRW. Given an initial

state ψ0 =

(
ψ0(x, 1)
ψ0(x,−1)

)
the QRW defines a time-evolution of ψ0 in discrete time by repeated

application of a unitary operator U ; ψn = Unψ0. Indeed, the operator must be unitary to ensure
conservation of total probability. We denote by Xψ

n a random variable assuming integer values
with probability as described in Section 1.1 using the state ψn. The unitary operator U consists
of two parts, one acting on the coin-state and the other on the position. These two parts of the
dynamics are explained in Section 1.2.1 and Section 1.2.2 respectively.

1.2.1 Coin operation

In the simplest case one can take the Hadamard operator H as operator on the coin state:

H =
1√
2

(
1 1
1 −1

)
H acting on a state ψ gives

Hψ =
1√
2

(
1 1
1 −1

)(
ψ(x, 1)
ψ(x,−1)

)
=

1√
2

(
ψ(x, 1) + ψ(x,−1)
ψ(x, 1)− ψ(x,−1)

)
.

In Section 1.2.2 we will see that the |1〉-part of the state, ψ(x, 1), undergoes a shift to the right.
Similarly the | − 1〉-part of the state, ψ(x,−1), undergoes a shift to the left. The Hadamard coin
is considered a fair coin, in the sense that it does not favor a shift to the right over a shift to the
left or vice versa. More precisely: after the operation of the Hadamard coin, the parts of the
state that previously corresponded to a right shift and left shift are distributed in superpositions
of equal amplitude over both coin-states. But one might also consider a more general unitary
operator A, for example:

A =

( √
ρ

√
1− ρ√

1− ρ −√ρ

)
As long as A ∈ U2(C), that is A is a unitary operator on C2. A acting on a state ψ gives:

Aψ =

( √
ρ

√
1− ρ√

1− ρ −√ρ

)(
ψ(x, 1)
ψ(x,−1)

)
=

( √
ρψ(x, 1) +

√
1− ρψ(x,−1)√

1− ρψ(x, 1)−√ρψ(x,−1)

)
.

Choosing ρ unequal to 1/2 introduces a bias in the walk. If for example ρ > 1/2, the part of
Hψ that is shifted to the right consist is a superposition of the previous coin-states. But in this
superposition, the part that previously corresponded to a right shift has a higher amplitude.

1.2.2 Shift operation

As mentioned in Section 1.2.1, the second part of the evolution U is a shift to the right or left,
corresponding to the coin-state. The shift operator is defined as follows:

Sψ = S

(
ψ(x, 1)
ψ(x,−1)

)
=

(
ψ(x− 1, 1)
ψ(x+ 1,−1)

)
.
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We can now define the total evolution operator U as U = S(I ⊗ A), with I the identity on
`2(Z). The tensor product with the identity indicates that the coin operator A only acts on the
coin-state. In case we take the Hadamard coin as coin operator, we find the evolution of a state
to be the following:

Uψ = U

(
ψ(x, 1)
ψ(x,−1)

)
=

1√
2

(
ψ(x− 1, 1) + ψ(x− 1,−1)
ψ(x+ 1, 1)− ψ(x+ 1,−1)

)
Recall that the evolution operator is repeatedly applied to an initial state ψ0 to constitute a
QRW; ψn = Unψ0. In the current setting it is complicated to express Un for arbitrary n ∈ N.
This makes it hard to investigate the behaviour of the QRW after an arbitrary amount of steps.
In Section 1.3 we present a solution to this difficulty.

1.3 Fourier transform

In this section we introduce the Fourier transform methods which enable us to show that Xn/n
converges in distribution to a limiting random variable as n→∞. This result is comparable to
the convergence of the classical random walk, where Xn/

√
n converges to a Gaussian as n→∞.

However, the division by n instead of
√
n forms a remarkable difference between the classical

random walk and the QRW. To this extend we will perform calculations in the Fourier space

L2(K) = `̂2(Z) of `2(Z). Here K denotes the torus. That is the interval [0, 2π] with opposite
ends identified. Alternatively we can think of K as R with al points that are 2π apart identified.
For ψ(x) ∈ `2(Z) we have ψ̂(k) =

∑
x∈Z e

ikxψ(x). This allows us to describe the total state as
an element of L2(K)⊗ C2. So:

ψ̂(k) =

(
ψ̂(k, 1)

ψ̂(k,−1)

)
The evolution of states as described in Section 1.2 is somewhat cumbersome to work with. We
will see that the evolution takes a much simpler form in the Fourier space. Let us therefore

compute Ûψ = ŜAψ (without specifying the coin operator A). Note that

(̂Sψ)(k) =

(
̂ψ(x− 1, 1)
̂ψ(x+ 1,−1)

)
=

( ∑
x∈Z e

ikxψ(x− 1, 1)∑
x∈Z e

ikxψ(x+ 1,−1)

)
=

( ∑
x∈Z e

ik(x+1)ψ(x, 1)∑
x∈Z e

ik(x−1)ψ(x,−1)

)
=

(
eik
∑

x∈Z e
ikxψ(x, 1)

e−ik
∑

x∈Z e
ikxψ(x,−1)

)
=

(
eikψ̂(k, 1)

e−ikψ̂(k,−1)

)
=

(
eik 0
0 e−ik

)
ψ̂(k).

Also, A acts only on the coin state, and therefore commutes with the Fourier transform:

Aψ =

(
a b
c d

)(
ψ(x, 1)
ψ(x,−1)

)
=

(
aψ(x, 1) + bψ(x,−1)
cψ(x, 1) + dψ(x,−1)

)
Such that by linearity of the Fourier transform

Âψ =

(
aψ̂(k, 1) + bψ̂(k,−1))

cψ̂(k, 1) + dψ̂(k,−1)

)
= Aψ̂.

So we can describe one step of the QRW in the Fourier space as

Ûψ = ŜAψ =

(
eik 0
0 e−ik

)
Aψ̂(k) = Û(k)ψ̂(k),
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with

Û(k) =

(
eik 0
0 e−ik

)
A.

And for the n-th state we obtain

ψ̂n(k) = Ûn(k)ψ̂0(k).

The matrix Û that characterises evolution in the Fourier space has the advantageous property
that it is unitary and therefore normal. So each state has an eigendecomposition of orthonormal
eigenvectors v1(k), v2(k) with corresponding eigenvalues λ1(k), λ2(k). In the case that λ1(k) =
λ2(k) = λ(k) the evolution is somewhat trivial, see Appendix C.1. Let us therefore assume that
λ1(k) 6= λ2(k). Since the eigenvectors v1(k) and v2(k) are orthogonal and span C2 we can write

ψ̂0 = 〈v1(k), ψ̂0〉v1(k) + 〈v2(k), ψ̂0〉v2(k),

such that the state at time n reads

ψ̂n = U(k)nψ̂0 = λ1(k)n〈v1(k), ψ̂0〉v1(k) + λ2(k)n〈v2(k), ψ̂0〉v2(k) =

2∑
j=1

λj(k)n〈vj(k), ψ̂0〉vj(k).

1.4 Method of moments

The moments of a random variable can provide helpful insights for understanding its behaviour.
Moreover, a bounded random variable is uniquely determined by its moments [7] (Hausdorff
moment problem). We will investigate the moments of Xn/n as n tends to infinity and find
that each sequence of moments converges to some limiting moment. Theorem 1 then ensures
that Xn/n converges in distribution to a random variable whose moments are these limits. See
Definition 1 for the precise meaning of convergence in distribution.

Definition 1. A sequence of random variables Xn converges in distribution to a random variable
X if for every bounded and continuous φ : R→ R and every integer n:

E(φ(Xn))→ E(φ(X))

And we write Xn
d→ X.

Theorem 1. Let X be a random variable of bounded support and Xn a sequence of random
variables such that for each k ∈ N

E[Xk
n]→ E[Xk].

Then if φ : R→ R is bounded and continuous, Xn
d→ X.

See Appendix B for a proof of Theorem 1. Note that Xn must be divided by n, in contrast to
the convergence of Xn√

n
in the classical random walk. This scaling is called ballistic. Intuitively, it

means that the QRW spreads faster than its classical counterpart.

Let us now examine the moments of Xn. They are by definition given by

E(Xr
n) = 〈ψn, Xrψn〉.
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Where the inner product is that of `2(Z)⊗C2. We can make use of the Fourier transform results
obtained in Section 1.3 to find a more explicit expression. Inner products in this space are related
to those in L2(K) and C2 by

〈ψ, φ〉`2(Z)⊗C2 =

∫ 2π

0
〈ψ̂, φ̂〉C2

dk

2π
.

See Appendix C.2 for a derivation. In order to express the moments of Xn in terms of the Fourier

transform of the state ψn we must calculate X̂rψ or as a first step X̂ψ:

X̂ψ =
∑
x∈Z

xeikxψ(x) = −i d
dk

∑
x∈Z

eikxψ(x) = −i d
dk
ψ̂(k),

hence

X̂rψ =

(
−i d
dk

)r
ψ̂.

Finally we can express the moments of Xn in terms of its Fourier transforms:

E(Xr
n) = 〈ψn, Xrψn〉`2(Z)⊗C2 =

∫ 2π

0

〈
ψ̂n, D

rψ̂n

〉
C2

dk

2π
,

where D = −i ddk . Drψ̂n can be expressed more explicitly using the eigendecomposition found in
Section 1.3 and Leibniz rule:

Drψ̂n = (−i)r
2∑
j=1

〈vj(k), ψ̂0〉nrλj(k)n−r
drλj
dkr

vj(k) +O(nr−1).

See Appendix C.3 for a derivation. Consequently,

Drψ̂n
nr

=

2∑
j=1

λj(k)n−r (Dλj)
r 〈vj(k), ψ̂0〉vj(k) +O(n−1).

And the moments are given by

E
[(

Xn

n

)r]
=

∫ 2π

0

〈
ψ̂n,

Drψ̂n
nr

〉
dk

2π

=

∫ 2π

0

2∑
j=1

λj(k)n−r (Dλj)
r 〈vj(k), ψ̂0〉〈ψ̂n, vj(k)〉dk

2π
+O(n−1).

Note that 〈ψ̂n, vj(k)〉 = λj(k)−n〈ψ̂0, vj(k)〉, leaving us with:

E
[(

Xn

n

)r]
=

∫ 2π

0

2∑
j=1

(
Dλj
λj(k)

)r
|〈vj(k), ψ̂0〉|2

dk

2π
+O(n−1).

We recognise in this last expression the moments of a random variable. Indeed, take Ω = K×{1, 2}
and let µ be the probability measure on Ω defined by |〈ψ̂0, vj(k)〉|2 dk2π . Now define h(k, j) =

Dλj
λj(k) .

Then h : K × {1, 2} → R is a random variable. To see that h is indeed real we note that
|λj(k)| = 1 such that we can write λj(k) = eiaj(k) with aj(k) ∈ R. Now

hj(k) =
−i ddkeiaj(k)

eiaj(k)
=

d
dkaj(k)eiaj(k)

eiaj(k)
=

d

dk
aj(k) ∈ R.

6



With this interpretation we can write

E
[(

Xn

n

)r]
→
∫

Ω
hrdµ as n→∞.

And Theorem 1 guarantees that
Xn

n

d→ Y = h(Z),

with Z a random element of Ω whose distribution is given by µ. Here ‘
d→’ denotes convergence

in distribution. This result allows us, with a suitable initial state, to compute the asymptotic
cumulative distribution of Xn

n and its asymptotic probability density function by examining the

eigenvalues of Û(k).

1.5 Limiting distribution

Let us now apply the results of the previous section to the Hadamard case. That is

H =
1√
2

(
1 1
1 −1

)
.

Therefore,

Û(k) =

(
eik 0
0 e−ik

)
H =

(
eik 0
0 e−ik

)
1√
2

(
1 1
1 −1

)
=

1√
2

(
eik eik

e−ik −e−ik
)
.

For convenience we first compute the eigenvalues λ̃ of
√

2Û(k):∣∣∣∣ eik − λ̃ eik

e−ik −e−ik − λ̃

∣∣∣∣ = (eik − λ̃)(−e−ik − λ̃)− 1 = 0

−1− λ̃eik + λ̃e−ik + λ̃2 − 1 = 0

λ̃2 − 2i sin(k)λ̃− 2 = 0

=⇒ λ̃j(k) = i sin(k)±
√

2− sin2(k)

So we find for the eigenvalues λ of Û(k):

λj(k) =
λ̃j(k)√

2
=
i sin(k)√

2
±
√

1− 1

2
sin2(k)

Furthermore,

Dλj = −i d
dk
λj(k) =

cos(k)√
2
± sin(k) cos(k)√

4− 2 sin2(k)
i.

The random variable h now equals

h(j, k) =
Dλj
λj(k)

= hj(k) = ± cos(k)√
2− sin2(k)

.

See Appendix C.4 for a derivation. We can use this expression to gain more insight in the limit
distribution. First of all note that h takes values in [− 1√

2
, 1√

2
]. If we take an initial state with

7



X0 = 0 and one of w1 =

(
1
0

)
and w−1 =

(
0
1

)
, then ψ̂0(k) =

(
1
0

)
or

(
0
1

)
. In which

case

µ = |〈ψ0(k), vj(k)〉|2 dk
2π

= |vji(k)|2 dk
2π
.

If we instead consider a random initial state, that is

(
1
0

)
or

(
0
1

)
with equal probability,

then the measure µ becomes

µ =
1

2

∑
i=1,2

|vji(k)|2 dk
2π

= |vj(k)|dk
4π

=
dk

4π
.

We can then calculate explicitly the cumulative distribution function:

P(Y ≤ y) =

∫
h−1([−∞,y])

dµ = 2

∫
cos(k)/

√
1+cos2(k)≤y

dk

4π

=

∫ 2π−cos−1(y/
√

1−y2)

cos−1(y/
√

1−y2)

dk

2π

= 1− 1

π
cos−1

(
y√

1− y2

)

Finally we can take the derivative with respect to y to obtain the probability density function:

d

dy

[
1− 1

π
cos−1

(
y√

1− y2

)]
= − 1

π

d

du
cos−1(u)

d

dy

(
y√

1− y2

)

where u = y√
1−y2

. So

f(y) =
1

π

√
1− y2√
1− 2y2

1

(1− y2)3/2
dy =

dy

π
√

1− 2y2(1− y2)
.

This result can be summarised in the following theorem:

Theorem 2. Let Xn be a random variable defined by a QRW with the Hadamard coin

A =

(
1 1
1 −1

)
,

then Xn/n
d→ Y . Where Y is a random variable with probability density function

fY (y) =
dy

π
√

1− 2y2(1− y2)
.

See Figure 1a for a plot of this probability density. In Section 1.2 we have seen that a biased
coin can be used to form a biased QRW. The derivation for its limiting distribution is analogous
to that of the Hadamard coin. It is presented in Appendix C.5 and the result is summarised in
the following theorem:

8



Theorem 3. Let Xn be a random variable defined by a QRW with biased coin

A =

( √
ρ

√
1− ρ√

1− ρ −√ρ

)
,

then Xn/n
d→ Y . Where Y is a random variable with probability density function

fY (y) =

√
1− ρdy

π
√
ρ− y2(1− y2)

.

Indeed, if we choose ρ = 1
2 we retrieve the result of Theorem 2. This probability density is

plotted in Figure 1b.
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(a). Probability density of the limiting distribution of
Xn/n with Hadamard coin.
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(b). Probability density of the limiting distribution of
Xn/n with biased coin (ρ = 0.9).
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2 Theory
Physical implementation

In this section we present the basic idea behind a physical implementation of a QRW. A variety
of systems might be used to physically implement a QRW, see for example [8, 9, 10]. This
section focusses on the ion-trap configuration as described in [8, 11] as this is perhaps the
simplest concept for physical implementation. We start with an overview of the configuration in
Section 2.1. Then, we present an approach for treating a harmonic perturbation in Section 2.2.
Finally, we discuss the concept of coherent states and displacement in Section 2.3 based on [12].

2.1 Ion-trap

More specifically, we consider a 9Be+ ion confined in a coaxial-resonator radio frequency trap.
For a detailed overview of the set-up, see [13, 14]. The state of the ion is initially of the form
|0〉| ↓〉 where |α〉 denotes a coherent state of the ion-trap and the | ↓〉 indicates the internal state,
or spin state of the ion. The meaning of coherent state will be explained later in Section 2.3. The
ion then goes through a series of four laser pulses each serving a different purpose. How these
pulses affect the state of the ion in the desired way will be explained in Section 2.2. The first
pulse acts on internal state. A π/2-pulse creates equal superpositions of |0〉| ↓〉 and |0〉| ↑〉. This
is exactly the function of the Hadamard coin in the dynamics of a QRW. After this first pulse, a
displacement beam shifts the coherent state corresponding to | ↑〉 by one position. This results in
a state 1√

2
|α〉| ↓〉+ 1√

2
|0〉| ↑〉. So this pulse partly accomplishes the function of the shift operation.

The third pulse, a π-pulse, interchanges the internal states, resulting in: 1√
2
|α〉| ↑〉+ 1√

2
|0〉| ↓〉.

Lastly, a displacement beam is applied again that creates the state 1√
2
|α〉| ↓〉 + 1√

2
| − α〉| ↑〉.

After this last pulse, the shift operation is completed. With these four pulses, we are left with a
state that corresponds to a QRW after one iteration. Repeating the process will then induce a
QRW as desired.

2.2 Harmonic perturbation

In order to investigate the effect of a laser pulse on an ion we use the rotating frame approach for
time-dependent perturbations of a Hamiltonian, as explained in Appendix C.6. We consider a
Hamiltonian acting on a two-level system consisting of a constant part H0 and a time-dependent
part V (t):

H(t) = H0 + V (t).

In the rotating frame approach we switch to a rotating frame of reference for which we choose
a rotation equal to R(t) = e−iH0t/~. The approach then states that in order to find the wave
function |ψ(t)〉 for our Hamiltonian, we need to solve for the Hamiltonian in the rotated frame

Hrot := R†(t)V (t)R(t),

and then apply the rotation R(t). This approach can be applied to a perturbing oscillatory
magnetic field on a two-level system in an otherwise constant magnetic field. We investigate
the situation where the constant magnetic field point is the z-direction and the perturbing field
points in the x-direction, such that the Hamiltonian takes the form

H(t) =
~ω
2
σz + εσx cos(ω1t),
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where ~ω is the energy gap between | ↑〉 and | ↓〉 and σx, σz are Pauli spin matrices. So
according to the rotating frame approach we separate this Hamiltonian into H0 = ~ω

2 σz and

V (t) = εσx cos(ω1t). We then take the rotation equal to R(t) = e−iH0t/~ = e−iωtσz/2, such that
the Hamiltonian in the rotated frame becomes

Hrot = eiωtσz/2σxe
−iωtσz/2ε cos(ω1t).

In order to proceed with the calculation we will first prove a useful equality:

eiασz = cos(α) + i sin(α)σz.

By definition

eiασz =

∞∑
n=0

(iασz)
n

n!
,

and when we separate this sum into even and odd powers we find

eiασz =
∞∑
m=0

(iασz)
2m

(2m)!
+
∞∑
m=0

(iασz)
2m+1

(2m+ 1)!
.

On can verify that all even powers of σz equal the identity, and as a consequence all odd powers
equal σz. So we have

eiασz =
∞∑
m=0

(iα)2m

(2m)!
+
∞∑
m=0

(iα)2m+1

(2m+ 1)!
σz = cos(α) + i sin(α)σz.

By writing R(t) in this form the Hamiltonian in the rotated frame becomes

Hrot = [cos(ωt/2) + i sin(ωt/2)σz]σx [cos(ωt/2)− i sin(ωt/2)σz] ε cos(ω1t).

And after multiplication:

Hrot =
[
cos2(ωt/2)σx + i cos(ωt/2) sin(ωt/2)(σzσx − σxσz) + sin2(ωt/2)σzσxσz

]
ε cos(ω1t).

Now we simplify further by noting that σzσx − σxσz = 2iσy and σzσxσz = −σx, hence

Hrot =
[
(cos2(ωt/2)− sin2(ωt/2))σx − 2 cos(ωt/2) sin(ωt/2)σy

]
ε cos(ω1t).

We recognise the terms between brackets from the doubling formula, so

Hrot = [cos(ωt)σx − sin(ωt)σy] ε cos(ω1t).

Let us investigate the case where ω1 = ω:

Hrot =
[
cos2(ωt)σx − cos(ωt) sin(ωt)σy

]
ε.

Again the doubling formula can be used for simplification:

Hrot =
ε

2
σx +

ε

2
cos(2ωt)σx −

ε

2
sin(2ωt)σy.

These last two terms do not contribute over time to the solution. They are an example of
non-secular terms, their oscillation is non-resonant. See for example [15]. So finally, we find that
the Hamiltonian in the rotated frame is that of a constant magnetic field in the x-direction. So
in the rotated frame, the spins undergo Larmor precession about the x-axis with an angular
frequency of ε/2~. The transition from the rotated frame to the original frame R(t) is a precession
about the z-axis with angular frequency ω/2. By combining these two rotations about orthogonal
axes for appropriate times any rotation of the spin state can be achieved. This is a consequence of
the fact that the Pauli spin matrices, after multiplication with the complex number i, generate the
rotation group SU(2) [16]. So essentially, the strength and duration of the perturbing magnetic
field can be tuned to obtain any rotation of the spin.

11



2.3 Coherent state and displacement

As mentioned before, the implementation of a QRW with an ion-trap is not a walk over actual
positions. For simplicity, we can regard the ion-trap as a harmonic potential; giving rise to the
motional states of the ion. The Hamiltonian of a harmonic potential is given by

Ĥ = ~ω(â†â+
1

2
),

where â† and â denote the creation operator and annihilation operator respectively. The
eigenstates of this Hamiltonian are called number states or Fock states, for which we write |n〉.
In order to implement the shift operation of the QRW, a laser is applied to the ion. This affects
the motional state of the ion as the operator

D̂(α) = eαâ
†−ᾱâ,

the displacement operator. It has the following effect on the ground state:

D̂(α)|0〉 = |α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉

We call this resulting state |α〉 a coherent state. Such a state is an eigenstate of the annihilation
operator. Its definition shows that the outcome of an energy measurement on |α〉 is distributed
as a Poisson distribution. Coherent states have various interesting properties. For instance, the
expected value of position oscillates according to classical harmonic oscillation. The coherent
state also minimises the Heisenberg uncertainty relation. Due to these properties, coherent states
resemble the behaviour of classical states. Repeated application of the displacement operator
further displaces the state as D̂(α)|α〉 = |2α〉, enabling a walk over coherent states.

It is however not straightforward to measure the coherent state of an ion. Indeed, the coherent
states are eigenstates of the non-hermitian annihilation operator which is not observable. There
do exist methods for distinguishing two different coherent states using the method of photon
counting. See for instance [17].
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3 Long-range QRW

In this section we introduce a variation on the QRW that allows for multiple steps, meaning
that we will not restrict the QRW to shifts of +1 or −1 but allow shifts of −s up to +s. The
section aims to investigate how this extension of the dynamics affects the limiting distribution.
Furthermore, we attempt to identify the behaviour in the limit of a long range. i.e. when s tends
to infinity. We start by describing the setting of a long range QRW in Section 3.1 whereafter we
generalise the results of Section 1 to this extension in Section 3.2. An extension of the Hadamard
coin is introduced in Section 3.3. Thereafter, we focus on the most simple extension where we
restrict the QRW to shifts between +2 and −2 in Section 3.4 after which we analyse the general
case of shifts between −s and s in Section 3.5. We conclude by investigating the limit of an
infinite range of shifts in Section 3.6.

3.1 Setting & notation

We start by extending the coin-state to an element of C2s instead of C2. We will write
|i〉 = wi =


0
...
1
...
0




i∈σ(s)

as a basis for C2s, with σ(s) = {−s, . . . ,−1, 1, . . . , s}. The total state now reads

ψ =
∑
i∈σ(s)

∑
x∈Z

ψ(x, i)ex ⊗ wi.

With this state we associate a probability to find the particle at position x equal to

P(x) =
∑
i∈σ(s)

|〈exwi, ψ〉|2 =
∑
i∈σ(s)

|ψ(x, i)|2.

The coin operator A must now be a unitary 2s× 2s matrix. We alter the shift S : `2(Z)⊗ C2 →
`2(Z)⊗ C2 on the total state to:

S(p⊗ |i〉) = τip⊗ |i〉
Here τi denotes a shift of i steps to the right. This construction allows for a maximum of s steps
either to the left or right. We can extend the results of Section 1.3 by writing

ψ̂ =

 ψ̂(k, s)
...

ψ̂(k,−s)


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for the Fourier transform of ψ. The shift operator in the transform space generalises to:

(̂Sψ)(k) =


̂ψ(x− s, s)

...
̂ψ(x+ s,−s)

 =


∑

x∈Z e
ikxψ(x− s, s)

...∑
x∈Z e

ikxψ(x+ s,−s)

 =


∑

x∈Z e
ik(x+s)ψ(x, s)

...∑
x∈Z e

ik(x−s)ψ(x,−s)



=

 eiks
∑

x∈Z e
ikxψ(x, s)

...
e−iks

∑
x∈Z e

ikxψ(x,−s)

 =

 eiksψ̂(k, s)
...

e−iksψ̂(k,−s)

 =

 eiks ø
. . .

ø e−iks

 ψ̂(k).

Such that a step is described by

Ûψ = ŜAψ =

 eiks ø
. . .

ø e−iks

Aψ̂(k) = Û(k)ψ̂(k),

with

Û(k) =

 eiks ø
. . .

ø e−iks

A.

We denote by v1(k), . . . , v2s(k) and λ1(k), . . . , λ2s(k) the eigenvectors and corresponding eigen-
values of Û . Again we have

ψ̂n(k) = Ûn(k)ψ̂0(k),

and a result for the total evolution similar to that in Section 1.3:

ψ̂n = U(k)nψ̂0 =
2s∑
j=1

λj(k)n〈ψ̂0, vj(k)〉vj(k).

3.2 Convergence

The method of moments can also be extended to the multiple step walk. As before

E(Xr
n) = 〈ψn, Xrψn〉.

The appropriate relation of inner products of the state-space and transform-space is now

〈ψ, φ〉`2(Z)⊗C2s =

∫ 2π

0
〈ψ̂, φ̂〉C2s

dk

2π
.

The remainder of the derivation leading to the limiting distribution can simply be extended to
the multiple step walk by replacing all sums over j = 1, 2 to sums over j = 1, . . . , 2s. This results
in

E
[(

Xn

n

)r]
=

∫ 2π

0

2s∑
j=1

(
Dλj
λj(k)

)r
|〈ψ̂0, vj(k)〉|2 dk

2π
+O(n−1).

It now follows that if we take Ω = K × {1, . . . , 2s} and let µ be the probability measure on

Ω defined by |〈ψ̂0, vj(k)〉|2 dk2π . Now define h(k, j) =
Dλj
λj(k) . Then h : K× {1, . . . , 2s} → R is a

random variable. With this interpretation we can write

E
[(

Xn

n

)r]
→
∫

Ω
hrdµ as n→∞.

14



And Theorem 1 guarantees that
Xn

n

d→ Y = h(Z),

with Z a random element of Ω whose distribution is given by µ.

3.3 Multiple Hadamard coins

In Section 1.2 we introduced the Hadamard coin:

H =
1√
2

(
1 1
1 −1

)
This coin was chosen because it is fair in the sense that it creates equal superpositions from single
coin states, yet different for every coin state. Namely H on |1〉 gives |1〉+|−1〉√

2
and H on |−1〉

gives |1〉−|−1〉√
2

. The key property here is that all entries of the matrix have the same absolute

value, meaning that it will create superpositions of the coin states with equal probability. In this
sense the coin is fair. This property can easily be extended to higher order matrices by defining
the 2m-th order Hadamard coin as a tensor product

H2m = H ⊗H ⊗ . . .⊗H︸ ︷︷ ︸
m

= H⊗m.

We will start with the case of s = m = 2, after which we can continue to the more difficult
general case.

3.4 Example: range two

In this case we have
H4 = H ⊗H

and

Û4(k) =


e2ik 0 0 0
0 eik 0 0
0 0 e−ik 0
0 0 0 e−2ik

 (H ⊗H).

Or by decomposing the first matrix into a Kronecker product

Û4(k) =

 e
3
2 ik 0

0 e−
3
2 ik

⊗
 e

1
2 ik 0

0 e−
1
2 ik

 (H ⊗H).

We have a degree of freedom in choosing the decomposition, due to the fact that we can multiply
one of the two matrices by a constant as long as we divide the other by the same constant. This
particular decomposition was chosen because the elements on the diagonal are now conjugates.
From the mixed-product property it follows that

Û4(k) =

 e
3
2 ik 0

0 e−
3
2 ik

H

⊗
 e

1
2 ik 0

0 e−
1
2 ik

H

 .
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The eigenvalues of a Kronecker product A ⊗ B are products of the eigenvalues of A and B.
Therefore we would like to calculate the eigenvalues of the two matrices above. These are both
of the form (

eaik 0
0 e−aik

)
H =

1√
2

(
eaik eaik

eaik −e−aik
)
,

which is a product of unitary matrices and is therefore unitary. Note that its eigenvalues lie on
the unit circle in C2. They are determined in the usual fashion:∣∣∣∣ eaik − λ eaik

e−aik −e−aik − λ

∣∣∣∣ = (eaik − λ)(−e−aik − λ)− 1

= λ2 + (e−aik − eaik)λ− 2

= λ2 − 2i sin(ak)λ− 2 = 0

=⇒ λ1,2 = i sin(ak)±
√

2− sin2(ak)

Where we have excluded the factor 1√
2
. With this factor the eigenvalues read

λ1,2 =
i sin(ak)√

2
±
√

1− sin2(ak)/2,

and

Dλj(k) = a
cos(ak)√

2
± a sin(ak) cos(ak)√

4− 2 sin2(ak)
i.

This yields for the random variable hj(k) related to these eigenvalues:

hj(k) = ± a cos(ak)√
2− sin2(ak)

See Appendix C.7. Note that we have found eigenvalues for Û4(k) of the form ν = λµ, where
λ, µ are eigenvalues of matrices of the discussed form. Now, since λ and µ lie on the unit circle
in C2 we can write λ = eia(k) and µ = eib(k). Therefore ν = ei(a(k)+b(k)). Recall that the random
variable hj(k) equals the derivative of the phase of the eigenvalues. i.e. hj(k) = d

dkφj(k) for the

eigenvalue µj = eiφj(k). We conclude that

hν =
d

dk
[a(k) + b(k)] =

d

dk
a(k) +

d

dk
b(k) = hλ + hµ.

So the random variables associated with the total evolution operator is the sum of the random
variables associated with the matrices in its tensor-product decomposition. Therefore we can
substitute a = 3/2 and a = 1/2 in the result for hj(k) and sum the results which gives four
values for the total hj(k) that is associated with Û4(k):

h1,2(k) = ±
3
2 cos

(
3
2k
)√

2− sin2(3
2k)
±

1
2 cos

(
1
2k
)√

2− sin2(1
2k)

and

h3,4(k) = ±
3
2 cos

(
3
2k
)√

2− sin2(3
2k)
∓

1
2 cos

(
1
2k
)√

2− sin2(1
2k)
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To see how this results compares to the 1-step QRW we will the moments of the 1-step QRW with

the moments of the 2-step QRW. If we take an initial state with X0 = 0 and one of w2 =


1
0
0
0



, w1 =


0
1
0
0

 , w−1 =


0
0
1
0

 and w−2 =


0
0
0
1

 , then ψ̂0(k) =


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 or


0
0
0
1

. In which case

µ = |〈ψ0(k), vj(k)〉|2 dk
2π

= |vji(k)|2 dk
2π
.

If we instead consider a random initial state, that is


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 or


0
0
0
1

 with

equal probability, then the measure µ becomes

µ =
1

4

4∑
i=1

|vji(k)|2 dk
2π

= |vj(k)|dk
8π

=
dk

8π
.

And the moments of the 2-step QRW read

E
[(

Xn

2n

)r]
→
∫

Ω
hrdµ =

1

8π

∫ 2π

0

4∑
i=1

(hj(k)/2)r dk

=
1

8π

∫ 2π

0

 3
2 cos

(
3
2k
)

2
√

2− sin2(3
2k)

+
1
2 cos

(
1
2k
)

2
√

2− sin2(1
2k)

r

+

− 3
2 cos

(
3
2k
)

2
√

2− sin2(3
2k)
−

1
2 cos

(
1
2k
)

2
√

2− sin2(1
2k)

r

+

− 3
2 cos

(
3
2k
)

2
√

2− sin2(3
2k)

+
1
2 cos

(
1
2k
)

2
√

2− sin2(1
2k)

r

+

 3
2 cos

(
3
2k
)

2
√

2− sin2(3
2k)
−

1
2 cos

(
1
2k
)

2
√

2− sin2(1
2k)

r

dk.

We have divided over 2n to compensate for the 2 steps. Note that all terms cancel for odd r,
such that we can also write the moments as

0 , r odd

1
4π

∫ 2π
0

(
3
2 cos

(
3
2k
)

2

√
2−sin2(

3
2k)

+
1
2 cos

(
1
2k
)

2

√
2−sin2(

1
2k)

)r
+

(
3
2 cos

(
3
2k
)

2

√
2−sin2(

3
2k)
−

1
2 cos

(
1
2k
)

2

√
2−sin2(

1
2k)

)r
dk , r even.
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Recall that the moments of the 1-step QRW are given by

E
[(

Xn

n

)r]
→
∫

Ω
hrdµ =

1

4π

∫ 2π

0

2∑
i=1

(hj(k))r dk

=
1

4π

∫ 2π

0

(
cos(k)√

2− sin2(k)

)r
+

(
− cos(k)√

2− sin2(k)

)r
dk.

Here the terms cancel for odd r too: 0 , r odd

1
2π

∫ 2π
0

(
cos(k)√

2−sin2(k)

)r
dk , r even

These results are plotted in Figure 2 for comparison.
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Figure 2. The first 50 moments of the limit distribution for the first 5 multiple-step QRW’s. More precisely,
for i = 1, . . . , 50 the ith root of the ith moment was plotted. That is lim

n→∞
E[(Xn/sn)r]1/r for an s-step

QRW.
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3.5 General case

For s > 2, or better s = 2m−1 where m > 2 ∈ N, we would like to find a decomposition of Û(k)
similar to

Û4(k) =

 e
3
2 ik 0

0 e−
3
2 ik

H

⊗
 e

1
2 ik 0

0 e−
1
2 ik

H

 .

We will try to find a general decomposition by first considering Ŝ2m for the cases m = 2, 3. In
the decomposition above the right hand matrix was chosen because the powers on the diagonal
of Ŝ decrease with steps of one, except in the middle. Let us try a similar approach for m = 3.

Ŝ8 =



e4ik

. . . ø
eik

e−ik

ø
. . .

e−4ik



=


e

7
2 ik ø

e
3
2 ik

e−
3
2 ik

ø e−
7
2 ik

⊗
 e

1
2 ik 0

0 e−
1
2 ik



This leaves us with a matrix on the left whose powers on the diagonal decrease with steps of two,
except in the middle. We will therefore we try write the remaining matrix as a tensor product of

a matrix with

(
eik 0
0 e−ik

)
, which also has powers on the diagonal decreasing with steps of

two. We find the decomposition

Ŝ8 =

 e
5
2 ik 0

0 e−
5
2 ik

⊗ ( eik 0
0 e−ik

)
⊗

 e
1
2 ik 0

0 e−
1
2 ik

 .

In general, when we use this approach for the decomposition of higher orders we will find after
each iteration a matrix on the left whose powers on the diagonal decrease with steps twice as big
as before. So our decomposition is of the form

Ŝ2m =

(
eaik 0

0 ebik

)

⊗
(
e2m−3ik 0

0 e−2m−3ik

)
⊗
(
e2m−4ik 0

0 e−2m−4ik

)
⊗ . . .⊗

 e
1
2 ik 0

0 e−
1
2 ik


︸ ︷︷ ︸

m−1

or

Ŝ2m =

(
eaik 0

0 ebik

)
⊗

m−3⊗
j=−1

(
e2jik 0

0 e−2jik

)
.
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The top left entry of Ŝ2m equals e2m−1ik, therefore a +
∑m−3

j=−1 2j = 2m−1 =⇒ a = 2m−1 −
(2m−2 − 1

2) = 1
2 + 2m−2. In a similar way we find that b = −(1

2 + 2m−2). Now we can apply the
mixed product property to obtain our result:

Û2m(k) = Ŝ2mH2m

=

((
e(1/2+2m−2)ik 0

0 e−(1/2+2m−2)ik

)
H

)
⊗

m−3⊗
j=−1

((
e2jik 0

0 e−2jik

)
H

)
and thus we find for the random variables associated with this matrix

hj(k) = ±(1/2 + 2m−2) cos
(
(1/2 + 2m−2)k

)√
2− sin2((1/2 + 2m−2)k)

+

m−3∑
n=−1

± 2n cos(2nk)√
2− sin2(2nk)

.

The expression is a sum of m terms in which the terms are separated by a ±-sign. Also, we
have 2m different eigenvalues of Û2m , so j can take 2m values. Each choice of j corresponds to a
different choice of + or − from the ±-signs. Now we consider an initial state with X0 = 0 and
some wi ∈ {wm . . . , w−m}, so ψ0(x, i) = 1(0,i), then ψ̂0(k, i) = 1 and ψ̂0(k, j) = 0 for j 6= i. In
which case

µ = |〈ψ0(k), vj(k)〉|2 dk
2π

= |vji(k)|2 dk
2π
.

If we instead consider a random initial coin state, that is all wi ∈ {wm . . . , w−m} with equal
probabilities, then

µ =
1

2s

∑
i∈σ(s)

= |vji(k)|2 dk
2π

=
1

2s
|vj |2

dk

2π
=

1

2s

dk

2π
=

1

2m
dk

2π
.

So now the expression for the limit of the moments of Xn/n with this choice of initial state
becomes

E
[(

Xn

n

)r]
→
∫ 2π

0

1

2m

2m∑
j=1

hj(k)r
dk

2π
.

Alternatively, we can write this expression as

E
[(

Xn

n

)r]
→
∫ 2π

0

1

2m

∑
η∈{±1}m

h(η, k)r
dk

2π
,

where

h(η, k) =
m∑
n=1

η(n)α(n, k),

and

α(n, k) =


2n−2 cos(2n−2k)√

2−sin2(2n−2k)
, n = 1, . . . ,m− 1

(1/2+2n−2) cos((1/2+2n−2)k)√
2−sin2((1/2+2n−2)k)

, n = m.

Note that these are the moments of a random variable Ym = h(η, k) on Ω = K× {±1}m with

measure µ = 1
2m

dk
2π . By Theorem 1 we conclude that Xn/n

d→ Ym. This result shows that the
limiting random variable of the long-range QRW is a sum over functions α(n, k) evaluated at a
random point in [0, 2π] multiplied with a random sign.

The result shows that the limiting random variable of a long-range QRW is different for each
range. This finding illustrates another difference between the QRW and the classical random
walk whose limiting random variable does not depend on the step-distribution.
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3.6 Limit of infinite range

Now that we have identified the limiting random variable for a s-step QRW with the Hadamard
coin Ym. We will examine the behaviour of this random variable as the number of steps s
increases. For the purposes of this calculation, it is convenient to write Ym in the following form:

Ym
2m−1

=
1

2

m−1∑
n=1

ηnφ(2n−2U)2−(m−n) + (2−m +
1

2
)ηmφ((

1

2
+ 2m−2)U),

where (ηn)mn=1 is a sequence of iid Bernouilli random variables taking values ±1 with equal

probability, U is uniform on [0, 1] and φ(x) = cos(2πx)√
2−sin2(2πx)

. Note that we have also normalised

the limiting random variable by the maximum amount of shifts in this QRW. Let (ξi)
∞
i=1 be a

sequence of iid Bernouilli random variables taking values in {0, 1} with equal probability. Then

U
d
= k(ξ) :=

∑∞
i=1 ξi2

−i and

2nUmod1
d
= k(θnξ), n ≥ 0

with θn the shift of n to the left, i.e. (θn(ξ))m = ξm+n. And because φ has period 1 we can write

φ(2nU)
d
= φ(k(θnξ)), n ≥ 0.

Hence:

Ym
2m−1

d
= η1φ(

1

2
k(ξ))2−m +

1

2

m−1∑
n=2

ηnφ(k(θn−2ξ))2
−(m−n) + (2−m +

1

2
)ηmφ((

1

2
+ 2m−2)k(ξ)).

We can change the summation index to i = m− n to obtain

Ym
2m−1

d
= η1φ(

1

2
k(ξ))2−m +

1

2

m−2∑
i=1

ηm−iφ(k(θm−i−2ξ))2
−i + (2−m +

1

2
)ηmφ((

1

2
+ 2m−2)k(ξ)).

Note that Ym
2m−1 is a function on (η1, ηm−1, ηm−2, . . . , η2, ηm, ξ, θm−3ξ, θm−4ξ, . . . , θ0ξ, ξ) which

equals in distribution (η1, η3, η4, . . . , ηm, η2, θmξ, θ3ξ, θ4ξ, . . . , θmξ, θmξ). So we find that Ym
2m−1

equals in distribution

Ym
2m−1

d
= η1φ(

1

2
k(θmξ))2

−m + (2−m +
1

2
)η2φ((

1

2
+ 2m−2)k(θmξ)) +

1

2

m∑
i=3

ηiφ(k(θiξ))2
−i.

Or in terms of U and η:

Ym
2m−1

d
= η1φ(

1

2
(2mUmod1))2−m + (2−m +

1

2
)η2φ((

1

2
+ 2m−2)(2mUmod1)) +

1

2

m∑
i=3

ηiφ(2iU)2−i.

As m tends to infinity the first term will vanish and the last term converges to 1
2

∑∞
i=3 ηiφ(2iU)2−i.

In fact, the division by 2m−1 ensures the convergence of the last term. Another expression of
the same leading order, 2m, would also suffice. If we consider the classical analogue of the QRW
with range s = 2m−1, a different choice of division must be made to obtain convergence. For
the classical random walk that takes steps uniformly distributed in {−s, . . . ,−1, 1, . . . , s}, the
division should be of leading order

√
2m. See Appendix C.8 for a derivation. Much like the

ballistic scaling of the QRW, the appropriate scaling correction for the range of the QRW is
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the square of the classical correction. Histograms of Ym
2m−1 for various values of m are plotted

in Figure 4. Histograms of the convergent term are plotted in Figure 3. These show that the
convergent term takes values between −0.1 and 0.1. This relatively small range might be caused
by interference of the signs brought about by the ηi’s. Their distribution appears symmetric,
unsurprisingly. In Figure 4a we see that in case of m = 1 we retrieve the expected probability
density as calculated in Section 1.5. Figure 4b shows a more complicated histogram, perhaps due
to the fact that the first term still plays a significant role for this low value of m. For slightly
higher values of m we can see in Figures 4 that the peaks in the histogram move more towards
the middle, thereby narrowing the bowl-shaped middle section and the range of the histogram.
The narrowing of the range is compliant with Figure 2, where we see that the moments decrease
as the range increases.
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(a). 50000 trials, m = 1000.
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(b). 50000 trials, m = 1001.

Figure 3. Histograms of the convergent term 1
2

∑m
i=3 ηiφ(2iU)2−i. The y-axis has been scaled such that

the total area in the histogram equals 1.
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(a). 50000 trials. m = 1, s = 1.
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(b). 50000 trial. m = 2, s = 2.
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(c). 50000 trials. m = 4, s = 8.
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(d). 50000 trials. m = 8, s = 128.
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(e). 50000 trials. m = 12, s = 2048.
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(f). 50000 trials. m = 20, s = 524288.

Figure 4. Histograms of Ym/2
m−1. The y-axis has been scaled such that the total area in the histogram

equals 1.
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4 Further extensions; Traps

So far we have encountered the QRW on the integers in Section 1, which we extended to a
long-range QRW in Section 3. There are however many more variations on a QRW worth
examining. In this section we introduce a QRW with traps. We start with some background
information on the problem in Section 4.1. In Section 4.2 we analyse an elementary setting, a
trapped QRW on a 3-cycle, which may serve as a starting point for further research.

4.1 Context and classical trapped random walk

The concept arises from the classical random walk. In a trapped classical random walk on the
integers, some integers are assigned as traps. These traps may also be randomly distributed.
For instance, one can assign a Bernoulli random variable to each integer that decides whether it
becomes a trap site. After the traps are assigned, a classical walk is initiated as usual. However
if at some point the walker arrives at a trap site, the walk ends. Clearly, the trapped random
walk does not necessarily continue indefinitely like the regular random walk. A topic of interest
in this trapped classical random walk is the survival probability. That is the probability that
the walker will live through n steps. For the classical random walk on the integers where traps
are randomly distributed this probability scales as e−cn

1/3
for large n, the Donkser-Varadhan

(DV) regime [18]. More generally, on a d-dimensional lattice the survival probability scales as

e−cn
d/(d+2)

for large n [19]. Intuitively, in order to survive a walker should find a large trap-free
area. Such area’s are however exponentially rare. The question arises whether a QRW would
perform better or worse than a classical random in an environment with traps. In other words,
how does the survival probability of a QRW compare to the classical case. And, how does the
ballistic scaling of the QRW affect the survival probability. It has been shown in [20] that for

a QRW evolving in continuous time the survival probability scales as e−cn
1/4

. Hence, a slower
decay of the survival probability compared to the classical case. Numerical simulations have
been made in [21] that suggest a similar behaviour in the discrete case. It would be interesting
to analytically derive such a result. Before this behaviour can be examined, the formalism of a
trapped QRW must be formulated. Say we have a set T ⊂ Z of traps. In the QRW there is not
really a walker in the sense that a QRW does not produce a sequence of walker positions, but
rather a sequence of probability measures. In terms of probability measures, the key property of
a trap would be that it removes all probability of being at the trap site. So we define the QRW
with traps as follows: The first part of each iteration remains the same, so the operator U is
applied to a state ψ. After this unitary operation the state is projected on all non-trap sites by
the operator pT : `2(Z)2 → `2(Z)2 as

(
ψ(x, 1)
ψ(x,−1)

)
7→
(

ψ(x, 1)1Z\T
ψ(x,−1)1Z\T

)
.

4.2 Trapped QRW on a 3-cycle

In this section we analyse an elementary case; instead of a QRW on the integers we consider a
QRW on a 3-cykel with one trap. In this variation on a QRW the coin state does not determine
a shift to the right or left, but a clockwise shift or counter-clockwise shift. In this simple setting
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we can write a state as

ψ =



ψ1,�

ψ1,	

ψ2,�

ψ2,	

ψ3,�

ψ3,	

 .

Let us for simplicity take the Hadamard coin. It acts only on the coin state, and therefore
consists of blocks on the diagonal:

H3 =

 H 0 0
0 H 0
0 0 H


To figure out what the shift operation is, we examine its effect on ψ1,�. As we can see in Figure 5a
ψ1,� should move to ψ3 and should keep its internal state, so ψ3,�. Considering each of the
elements of ψ we find that the shift operator equals

S3 =



0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0

 .

And the total evolution is given by U3 = S3H3. With the introduction of a trap at site 3, it is
no longer necessary to consider ψ3. We simply have to alter the shift operation to make sure
that sites 1 and 2 do not receive anything from the trap site. See Figure 5b. The state may be
written as

ψ =


ψ1,�

ψ1,	

ψ2,�

ψ2,	

 .

The resulting coin operation and shift are then

HT,3 =

(
H 0
0 H

)
and

ST,3 =


0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

 .

The total evolution becomes

UT,3 = ST,3HT,3 =
1√
2


0 0 1 1
0 0 0 0
0 0 0 0
1 −1 0 0

 .
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The powers of UT,3 take a simple form which allows us to examine the n-th state of the trapped
QRW on a 3-cycle. To see this, we first calculate

(
√

2UT,3)2 =


1 −1 0 0
0 0 0 0
0 0 0 0
0 0 1 1

 , (
√

2UT,3)3 =


0 0 1 1
0 0 0 0
0 0 0 0
1 −1 0 0

 =
√

2UT,3.

So the powers of UT,3 for arbitrary n ∈ N are

U2n
T,3 = 2−n


1 −1 0 0
0 0 0 0
0 0 0 0
0 0 1 1

 , U2n+1
T,3 = 2−(n+1/2)


0 0 1 1
0 0 0 0
0 0 0 0
1 −1 0 0

 .

Suppose we start from a state

ψ0 =


ψ1,�

ψ1,	

ψ2,�

ψ2,	

 .

After n steps the state equals

ψ2n = 2−n


ψ1,� − ψ1,	

0
0

ψ2,� + ψ2,	

 , ψ2n+1 = 2−(n+1/2)


ψ1,� + ψ1,	

0
0

ψ2,� − ψ2,	

 .

Finally, let us calculate the probability that the walker is still at sites 1 or 2. This equals
Pn(Xn = 1 ∨Xn = 2) = |ψn|2:

P2n =
|ψ1,� − ψ1,	|2 + |ψ2,� + ψ2,	|2

2n
, P2n+1 =

|ψ1,� + ψ1,	|2 + |ψ2,� − ψ2,	|2
2n+1/2

.

Consider an initial state where the total probability to find the walker equals 1, for instance

ψ0 =


1/
√

2
0

1/
√

2
0

 .

We find in this case Pn = 2−n. For comparison, it is a straightforward exercise to calculate
the surviving probability in the classical case with equal transition probabilities to either side.
Assuming that the walk starts at site 1 or 2, the only way for the walker to survive is by hopping
between sites 1 and 2. Thereby never visiting the trap site. The survival probability after n
steps therefore equals Pn = 2−n. So in the simple topology of a 3-cycle the survival probability
of the classical random walk and the QRW behave the same.
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(a). 3-cycle.

T

1 2

(b). 3-cycle with trap.

Figure 5. Topology of the 3-cycle QRW with and without trap.
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5 Conclusions

A long-range extension was made of the QRW which allows shifts from −s up to s by extending
the coin state from C2 to C2s. The coin operator was changed to a unitary 2s × 2s matrix,
consistent with the coin state. Both the coin operator and shift operator take a simple form in the
Fourier transform space, as 2s× 2s matrices. As with the single-step QRW, the unitary evolution
guarantees an eigendecomposition of any state. Parseval’s theorem allows for a calculation of the
moments of the random variable Xn/n in an s step QRW. By the method of moments we have
proven that Xn/n converges in distribution to h(Z). Here Z is a random variable taking values
in K× {1, . . . , 2s} with distribution proportional to the projection of the initial state on the

eigenvectors of the evolution matrix and h(k, j) =
Dλj
λj(k) with λj the eigenvalues of the evolution

matrix.

The concept of a fair Hadamard coin was generalised to a coin of higher order by taking tensor
powers of Hadamard coins. The behaviour of the limiting random variable was investigated first
for a 2-step QRW with Hadamard coin. The eigenvalues of the evolution matrix were calculated
by a tensor product decomposition. The resulting moments were calculated for an initial position
at position 0 with random coin state. The odd moments were found to be 0 as expected. The
2-step moments did not equal the 1-step moment, suggesting that a long-range QRW differs in
distribution from the single-step QRW.

The same approach of the tensor product decomposition of the evolution matrix was applied to
the general case of a s-step QRW. An alternative characterisation of the limiting random variable
was identified, which consists of a sum over functions evaluated at a random point multiplied by a
random sign. The limiting random variable was found to be different for each range, revealing yet
another difference between the QRW and its classical counterpart. It appears that the limiting
random variable of a QRW does depend on the single-step distribution, whereas it does not in
the classical case.

The behaviour of this random variable was investigated for a long-range by rewriting a uniform
random variable into a sum of Bernoulli distributed digits. This yielded an expression for
the limiting random variable consisting of three dependent parts: A fastly decaying part, a
non-convergent part and a convergent part. Histograms of the limiting random variable were
created which were in agreement with the probability density for the single-step QRW. The
histograms for longer ranges showed a decreased range and more smoothed peaks.

Finally, a starting point for the investigation of trapped QRW’s was presented; a QRW on a
3-cycle with one trap. A calculation of the survival time showed that it scales with 2−n, just like
its classical counterpart. Further research may be done to investigate the behaviour of survival
time in more complex topologies.
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A Higher dimensions

Like the classical random walk a QRW can be extended into higher dimensions. This is extension
is the topic of the following section based on [4].

A.1 Concept & limiting distribution

The one-dimensional QRW can be extended to an arbitrary number of dimensions by taking a
state of the form

ψ =

 ψ(x, d)
...

ψ(x,−d)


for a d-dimensional walk. Here we use ψ(·, i) ∈ `2(Zd) with i ∈ {−d, . . . ,−1, 1, . . . , d} = σ(d) to
form a probability distribution on Zd given by

P(x) =
∑
i∈σ(d)

〈exwi, ψ〉 =
∑
i∈σ(d)

|ψ(x, i)|2

where {ex}x∈Zd are the usual basis elements of `2(Zd) and {wi = |i〉}i∈σ(d) the basis elements

of C2d. Note that the total state is an element of the space `2(Zd)⊗ C2d. Again, `2(Zd) can be
thought of as the position part and C2d as the coin state. We need 2d components to allow for all
2d steps in the directions of the unit vectors {ei}i∈σ(d) where we mean e−i = −ei for positive i.
In order to describe the dynamics for the d-dimensional walk it is convenient to write the state as∑

i∈σ(d)

∑
x∈Zd

ψ(x, i)ex ⊗ wi.

The first part of the dynamics is a unitary operator A acting on the coin state. The second part
is a shift in the direction of a unit vector, depending on the coin state. With τm : `2(Zd)→ `2(Zd)
we denote the shift to the right such that for p =

∑
x∈Zd axex we have τmp =

∑
x∈Zd axex+m.

We define the shift S : `2(Zd)⊗ C2d → `2(Zd)⊗ C2d on the total state by:

S(p⊗ wi) = τeip⊗ wi

Again we define U by U = S(I ⊗A) with I the identity on `2(Zd), such that the time evolution
becomes

ψn = Unψ0

where ψ0 is the initial state. With this state at time n we associate a random vector Xn

taking values in Zd with probability as described above. As with the one-dimensional QRW we

will perform calculations in the Fourier-transform space, which is now L2(Kd) = `̂2(Zd). For
ψ(x, i) ∈ `2(Zd) we have ψ̂(k, i) =

∑
x∈Zd eik·xψ(x, i) and for the total state we have

ψ̂ =

 ψ̂(k, d)
...

ψ̂(k,−d)

 .
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In the Fourier-transform space, the shift S becomes

(̂Sψ)(k) =


̂ψ(x− ed, d)

...
̂ψ(x + ed,−d)

 =


∑

x∈Zd eik·xψ(x− ed, d)
...∑

x∈Zd eik·xψ(x + ed,−d)

 =


∑

x∈Zd eik·(x+ed)ψ(x, d)
...∑

x∈Zd eik·(x−ed)ψ(x,−d)



=

 eik·ed
∑

x∈Zd eik·xψ(x, d)
...

e−ik·ed
∑

x∈Zd eik·xψ(x,−d)

 =

 eik·edψ̂(k, d)
...

e−ik·edψ̂(k,−d)


=

 eik·ed ø
. . .

ø e−ik·ed

 ψ̂(k).

Such that a step is described by

Ûψ = ŜAψ =

 eik·ed ø
. . .

ø e−ik·ed

Aψ̂(k) = Û(k)ψ̂(k),

with

Û(k) =

 eik·ed ø
. . .

ø e−ik·ed

A.

We denote by v1(k), . . . , v2d(k) and λ1(k), . . . , λ2d(k) the orthonormal eigenvectors and corre-
sponding eigenvalues of Û(k). This allows us to write the initial state ψ̂0(k) as

ψ̂0(k) =

2d∑
j=1

〈vj(k), ψ̂0(k)〉vj(k)

and the state at time n as

ψ̂n(k) =
2d∑
j=1

λnj (k)〈vj(k), ψ̂0(k)〉vj(k).

By the method om moments we will show that each component Xi,n of the random vector Xn

converges in distribution to some random variable as n→∞. By definition the moments of Xi,n

are given by
E[Xr

i,n] = 〈ψn(x), Xr
i ψn(x)〉.

In order to use Parseval’s theorem for the d-dimensional Fourier transform we need to find an
appropriate expression for the inner product in `2(Zd)⊗ C2d. Let ψ, φ ∈ `2(Zd)⊗ C2d and let us
write them as ψ =

∑
j∈σ(d) ψjwj and φ =

∑
k∈σ(d) φkwk. The inner product can then be written

as

〈ψ, φ〉 =

〈 ∑
j∈σ(d)

ψjwj ,
∑
k∈σ(d)

φkwk

〉
=
∑
j∈σ(d)

∑
k∈σ(d)

〈ψjwj , φkwk〉

=
∑
j∈σ(d)

∑
k∈σ(d)

〈ψj , φk〉〈wj , wk〉 =
∑
j∈σ(d)

〈ψj , φj〉.
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At this point we can use Parseval’s theorem to obtain

〈ψ, φ〉 =
∑
j∈σ(d)

∫
Kd

¯̂
ψjφ̂j

dk

(2π)d
=

∫
Kd

〈ψ̂, φ̂〉C2d

dk

(2π)d
.

And the moments of E[Xr
i,n] of Xi,n now read

E[Xr
i,n] =

∫
Kd

〈ψ̂n, X̂r
i ψn〉C2d

dk

(2π)d
.

In order to obtain a more explicit expression, we take a closer look at X̂r
i ψn or to begin with

X̂iψn:

X̂iψn =
∑
x∈Zd

xie
ik·x =

∑
x∈Zd

xie
i(k1x1+...+kdxd)

= −i d
dki

∑
x∈Zd

ei(k1x1+...+kdxd) = −i d
dki

∑
x∈Zd

eik·x

= −i d
dki

ψ̂n

Thus we find X̂r
i ψn = Dr

i ψ̂n with Di = −i d
dki

. Next we can calculate Dr
i ψ̂n which yields

Dr
i ψ̂n =

2d∑
j=1

n(n− 1) . . . (n− r + 1)λj(k)n−r(Diλj)
r〈vj(k), ψ̂0, 〉vj(k) +O(nr−1),

and

Dr
i ψ̂n
nr

=

2d∑
j=1

λj(k)n−r(Diλj)
r〈vj(k), ψ̂0, 〉vj(k) +O(n−1).

We can use this result to calculate the moments E[(Xi,n/n)r] of Xi,n/n.

E
[(

Xi,n

n

)r]
=

∫
Kd

〈
ψ̂n,

Dr
i ψ̂n
nr

〉
dk

(2π)d

=

∫
Kd

2d∑
j=1

λj(k)n−r(Diλj)
r〈vj(k), ψ̂0, 〉〈ψ̂n, vj(k)〉 dk

(2π)d
+O(n−1)

=

∫
Kd

2d∑
j=1

(
Diλj(k)

λj

)r
|〈vj(k), ψ̂0(k)〉|2 dk

(2π)d
+O(n−1)

We recognise in this last expression the moments of a random variable. Indeed, take Ω =
Kd × {1, 2, . . . , 2d} and let µ be the probability measure on Ω defined by |〈vj(k), ψ̂0(k)〉|2 dk

(2π)d
.

Now define hi(k, j) =
Diλj
λj

. Then hi : K× {1, 2, . . . , 2d} → R is a random variable.

With this interpretation we can write

E
[(

Xi,n

n

)r]
→
∫

Ω
hridµ as n→∞.
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And the method of moments guarantees that

Xi,n

n

d→ Yi = hi(Z),

with Z a random element of Ω whose distribution is given by µ. Here ‘
d→’ denotes convergence

in distribution.

This result shows that the components Xi,n/n of the random vector Xn/n converge in distribution
to some random variable Yi as n → ∞. However, this does not necessarily mean that Xn/n
converges to the random vector Y as n → ∞. In order to prove that it does, we will use the
theorem below.
Theorem 4. Consider a sequence Xn = (X1,n, X2,n, . . . , Xd,n), n ≥ 1, of random vectors, and
let Y = (Y1, Y2, . . . , Yd) be a random vector. If

d∑
j=1

cjXj,n
d→

d∑
j=1

cjYj,n as n→∞

for all c = (c1, . . . , cd) ∈ Rd, then Xn
d→ Y.

We will show that the sequence Xn of random vectors satisfies the conditions for the theorem
above in the case of d = 2. Then, we will argue that the result extends to arbitrary d. As a first
step we compute

E
[(

c1X1,n + c2X2,n

n

)r]
=

1

nr

r∑
p=0

(
n

p

)
cr−p1 cp2E[Xr−p

1,n X
p
2,n]

=
1

nr

r∑
p=0

(
n

p

)
cr−p1 cp2〈ψn, Xr−p

1 Xp
2ψn〉

=
1

nr

r∑
p=0

(
n

p

)
cr−p1 cp2

∫
K2

〈ψ̂n, Dr−p
1 Dp

2ψ̂n〉
dk

(2π)2
,

and furthermore

Dp
2ψ̂n(k) =

4∑
j=1

npλj(k)n−p(D2λj)
p〈vj(k), ψ̂0, 〉vj(k) +O(np−1)

Dr−p
1 [Dp

2ψ̂n](k) =

4∑
j=1

nrλj(k)n−r(D1λj)
r−p(D2λj)

p〈vj(k), ψ̂0, 〉vj(k) +O(nr−1).
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We can substitute this result to find

E
[(

c1X1,n + c2X2,n

n

)r]
→

1

nr

r∑
p=0

(
n

p

)
cr−p1 cp2

∫
K2

〈ψ̂n,
4∑
j=1

nrλj(k)n−r(D1λj)
r−p(D2λj)

p〈vj(k), ψ̂0, 〉vj(k)〉 dk

(2π)2

=
r∑
p=0

(
n

p

)
cr−p1 cp2

∫
K2

4∑
j=1

λj(k)−r(D1λj)
r−p(D2λj)

p|〈vj(k), ψ̂0, 〉|2
dk

(2π)2

=
r∑
p=0

(
n

p

)
cr−p1 cp2

∫
K2

4∑
j=1

(
D1λj
λj

)r−p(D2λj
λj

)p
|〈vj(k), ψ̂0, 〉|2

dk

(2π)2

=

∫
K2

4∑
j=1


r∑
p=0

(
n

p

)
cr−p1 cp2h1(k, j)r−ph2(k, j)p

 |〈vj(k), ψ̂0, 〉|2
dk

(2π)2

=

∫
K2

4∑
j=1

{c1h1(k, j) + c2h2(k, j)}r |〈vj(k), ψ̂0, 〉|2
dk

(2π)2

=E [(c1Y1 + c2Y2)r] .

As before, the method of moments guarantees that

c1X1,n + c2X2,n
d→ c1Y1,n + c2Y2,n as n→∞,

as desired. So indeed, Xn/n converges in distribution to the random vector Y as n→∞. The
same argument extends to the case of d > 2 where one can use the multinomial theorem instead
of the binomial theorem to calculate the expectation E [(c1X1,n + . . .+ cdXd,n/n)r].

A.2 Hadamard coin in two dimensions

In this section we focus on the Hadamard coin of order 4 to illustrate the results of the previous
section in the two dimensional case. Recall from Section 3.3 that the Hadamard coin of order 4
is given by

H4 = H ⊗H =
1

2


1 1 1 1
1 −1 1 1
1 1 −1 −1
1 −1 −1 1

 .

And the operator that evolves the walk is now Û4 = ŜH4 where

Ŝ =


eik2 0 0 0

0 eik1 0 0
0 0 e−ik1 0
0 0 0 e−ik2

 ,

which can alternatively be written as

Ŝ =

(
ei(k1+k2)/2 0

0 e−i(k1+k2)/2

)
⊗
(
ei(k2−k1)/2 0

0 e−i(k2−k1)/2

)
.
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This yields for the total evolution

Û4 =

((
ei(k1+k2)/2 0

0 e−i(k1+k2)/2

)
⊗
(
ei(k2−k1)/2 0

0 e−i(k2−k1)/2

))
(H ⊗H),

and by the mixed-product property

Û4 =

((
ei(k1+k2)/2 0

0 e−i(k1+k2)/2

)
H

)
⊗
((

ei(k2−k1)/2 0

0 e−i(k2−k1)/2

)
H

)
.

If we now define k+ = (k1 + k2)/2 and k− = (k2− k1)/2 we see that the evolution corresponds to
Û4 = Û(k+)⊗Û(k−). Its eigenvalues are products of the eigenvalues of Û(k+) and Û(k−) such that
the corresponding random variable equals hi(k) = hi(k+)+hi(k−) with hi(k+) = λ(k+)−1Diλ(k+)
and hi(k−) = λ(k−)−1Diλ(k−). The calculation of hi(k+) is exactly the same as that of h(k) in
the one dimensional QRW except for a factor 1

2 as result of the chain rule for (k1 + k2)/2. hi(k−)
receives an additional factor (−1)i due to the minus sign in (k2 − k1)/2. So in total

hi(k, j) = ± cos(k+)

2
√

2− sin2(k+)
± (−1)i

cos(k−)

2
√

2− sin2(k−)
.

B Proof of the method of moments

In Section 1.4 we have found the limiting distribution of Xn/n as n→∞. Here we have used
that convergence of moments implies convergence in distribution (Theorem 1). In this section we
proof this claim. We start with a weak formulation of this implication (Theorem 5) which is
restricted to bounded random variables. After that we proceed towards the main result of the
section, Theorem 1.

Lemma 1. Let X be a random variable and Xn a sequence of random variables such that for
each k ∈ N

E[Xk
n]→ E[Xk],

then if p is a polynomial:
E[p(Xn)]→ E[p(X)]

Proof. Suppose ε > 0. Let p(x) = a1x+ . . .+ amx
m. Define a = max{a1, . . . , am}. For each k

we have E[Xk
n]→ E[Xk], so

∀k∃nk : n ≥ nk =⇒ |E[Xk
n −Xk]| < ε/ma.

Pick n0 = max{n1, . . . , nm}. Then ∀n ≥ n0:

|E[p(Xn)]− E[p(X)]| = |E[a1(Xn −X) + . . .+ am(Xm
n −Xm)]|

= |a1E[(Xn −X)] + . . .+ amE[(Xm
n −Xm)]|

≤ a1|E[(Xn −X)]|+ . . .+ am|E[(Xm
n −Xm)]|

≤ a|E[(Xn −X)]|+ . . .+ a|E[(Xm
n −Xm)]|

≤ aε/ma+ . . .+ aε/ma = ε

Hence,
E[p(Xn)]→ E[p(X)].
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Theorem 5. Let X be a random variable and Xn a sequence of random variables such that for
each k ∈ N

E[Xk
n]→ E[Xk],

with X,Xn ∈ [a, b] for each n. then if φ : R→ R is bounded and continuous:

E[φ(Xn)]→ E[φ(X)]

Proof. Suppose ε > 0. Let φ : R → R be a bounded and continuous function. By the Stone-
Weierstrass theorem [22] the polynomials are dense in the bounded and continuous functions on
[a, b]:

∃p : ||φ− p||∞ < ε/3.

Where || · ||∞ is the supremum-norm on [a, b]. Lemma 1 guarantees that for this p

∃n0 ∈ N : n ≥ n0 =⇒ |E[p(Xn)]− E[p(X)]| < ε/3.

Then ∀n ≥ n0:

|E[φ(Xn)]− E[φ(X)]| = |E[φ(Xn)]− E[p(Xn)] + E[p(Xn)]− E[p(X)] + E[p(X)]− E[φ(X)]|
= |E[φ(Xn)− p(Xn)] + E[p(Xn)− p(X)] + E[p(X)− φ(X)]|
≤ |E[φ(Xn)− p(Xn)]|+ |E[p(Xn)− p(X)]|+ |E[p(X)− φ(X)]|
≤ ||φ− p||∞ + ε/3 + ||φ− p||∞
< ε/3 + ε/3 + ε/3 = ε

Hence,
E[φ(Xn)]→ E[φ(X)].

Next, we extend Theorem 5 to Theorem 1, which does not require that Xn ∈ [a, b].

Definition 2. A random variable X is called tight, if for every ε > 0 there exists a compact
K ⊂ R such that

P(X /∈ K) < ε.

Theorem 6 (Prokhorov [23]). If a sequence of random variables Xn is tight, then it has a
subsequence Xni that converges in distribution to some random variable Y .

Theorem 7 (Hausdorff [7]). Let X,Y be random variables of bounded support such that

E[Xk] = E[Y k]

for each k ∈ N. Then X
d
= Y .

Theorem 8. Let Xn be a sequence of random variables that converges in distribution to Y and
for each k ∈ N

E[Xk
n]→ E[Xk].

Then, if X is a bounded random variable 1, X
d
= Y .

1Bounded support is a sufficient condition, but it is not necessary. In fact we require X to be uniquely
determined by its moments. More generally, this requirement is met when ∃t > 0 :

∑∞
n=0

tn

n!
E[Xn] <∞ [24].
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Proof. Let X be bounded. Denote by P,Pn and P∗ the probability measures of X,Xn and Y

respectively. We will show that for each k ∈ N,
∫
xkdP =

∫
xkdP∗. That is X

d
= Y . Pick k ∈ N.

Let fk(x,M) : R2 → R be a continuous function satisfying

fk(x,M)


= xk, x ∈ [−M,M ]

≤ xk, x ∈ [−M − 1,M + 1]

0, otherwise.

Let ε > 0 be given. By hypothesis,
E[Xk

n]→ E[Xk]

or ∫
xkdPn →

∫
xkdP.

So there exists an n0 such that ∣∣∣∣∫ xkdP−
∫
xkdPn

∣∣∣∣ < ε/3

for all n ≥ n0. Also, by Cauchy-Schwarz we find∣∣∣∣∫ xkdPn −
∫
fk(x,M)dPn

∣∣∣∣ ≤ E[Xk
n1|Xn|>M ] ≤

√
E[X2k

n ]
√
P(|Xn| > M).

Now it follows from Chebyshev’s inequality that∣∣∣∣∫ xkdPn −
∫
fk(x,M)dPn

∣∣∣∣ ≤√E[X2k
n ]

√
E[X2k

n ]

M2
=

E[X2k
n ]

M
.

But E[X2k
n ] converges to E[X2k] and is therefore bounded, say by c. Thus∣∣∣∣∫ xkdPn −

∫
fk(x,M)dPn

∣∣∣∣ ≤ c

M
.

Now pick M0 > 3c/ε, then ∣∣∣∣∫ xkdPn −
∫
fk(x,M)dPn

∣∣∣∣ ≤ ε/3.
Furthermore, because fk is bounded and continuous, and Xn converges in distribution to Y we
have some nM such that ∣∣∣∣∫ fk(x,M)dPn −

∫
fk(x,M)dP∗

∣∣∣∣ < ε/3

for all n ≥ nM . Let M > M0 and pick n ≥ max{n0, nM}, then∣∣∣∣∫ xkdP−
∫
fk(x,M)dP∗

∣∣∣∣
≤
∣∣∣∣∫ xkdP−

∫
xkdPn +

∫
xkdPn −

∫
fk(x,M)dPn +

∫
fk(x,M)dPn −

∫
fk(x,M)dP∗

∣∣∣∣
≤
∣∣∣∣∫ xkdP−

∫
xkdPn

∣∣∣∣+

∣∣∣∣∫ xkdPn −
∫
fk(x,M)dPn

∣∣∣∣+

∣∣∣∣∫ fk(x,M)dPn −
∫
fk(x,M)dP∗

∣∣∣∣
≤ ε/3 + ε/3 + ε/3 = ε.
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Hence

lim
M→∞

∫
fk(x,M)dP∗ =

∫
xkdP.

Also, by choice of fk and the monotone convergence theorem

lim
M→∞

∫
fk(x,M)dP∗ =

∫
xkdP∗.

We conclude that
∫
xkdP =

∫
xkdP∗, and because X is bounded and therefore characterised by

its moments (Theorem 7) we find that X
d
= Y .

Lemma 2. If every subsequence ani of a sequence an has a sub-subsequence anij
that converges

to a, then an converges to a.

Proof. The following is a proof by contradiction. Let an be a sequence such that each subsequence
ani has a sub-subsequence anij

that converges to a. Suppose an does not converge to a. Then
there exists some ε > 0 such that

∀m∃n ≥ m : |an − a| ≥ ε.

We construct a subsequence ani of an as follows. Pick n1 such that |an1 − a| ≥ ε. Now pick
n2 ≥ n1 + 1 : |an2 − a| ≥ ε, and in general pick ni ≥ ni−1 + 1 : |ani − a| ≥ ε. For each element of
the subsequence we have |ani − a| ≥ ε, so it does not have a sub-subsequence that converges to a.
But this is a contradiction.

Theorem 1. Let X be a random variable of bounded support and Xn a sequence of random
variables such that for each k ∈ N

E[Xk
n]→ E[Xk].

Then, if φ : R→ R is bounded and continuous:

E[φ(Xn)]→ E[φ(X)]

Proof. Let φ : R→ R be a bounded and continuous function and Xni a subsequence of Xn. By
Chebyshev’s inequality we have for each i, and arbitrary A > 0

P(Xni /∈ [−A,A]) ≤ E[X2
ni

]

A2
.

But the subsequence E[X2
ni

] converges to E[X2] and is therefore bounded, say by c, hence

P(Xni /∈ [−A,A]) ≤ c

A2
.

Given an ε > 0 we can pick A >
√
c/ε, such that

P(Xni /∈ [−A,A]) < ε,

thus the subsequence Xni is tight. By Prokhorov’s theorem we now find a sub-subsequence Xnij

of Xni that converges in distribution to some random variable Y . But since this sub-subsequence
is a subsequence of Xn, we have for each k ∈ N

E[Xk
nij

]→ E[Xk].
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Now it follows from Theorem 8 that X
d
= Y , hence Xnij

converges in distribution to X. But the
subsequence Xni was arbitrary, thus every subsequence of Xn has a sub-subsequence Xnij

that
converges in distribution to X, so

E[φ(Xnij
)]→ E[φ(X)].

By Lemma 2 we find that
E[φ(Xn)]→ E[φ(X)].

Hence Xn converges in distribution to X.

C Derivations and calculations

C.1 Degenerate eigenvalues

In Section 1.3 we stated that the degenerate eigenvalues of the evolution operator in the Fourier
transform space lead to a trivial evolution. To show that this, we can use the eigenvectors of Û
as a basis to write

Û(k)ψ = Û(k)(〈ψ̂, v1〉v1 + 〈ψ̂, v2〉v2)

= λ1(k)〈ψ̂, v1〉v1 + λ2(k)〈ψ̂, v2〉v2 = λ(k)ψ̂.

So Û is diagonal:

Û =

(
λ(k) 0

0 λ(k)

)
.

Therefore A must be diagonal as well. With a diagonal coin operator there is no interference
between the two components of the state. Meaning that starting from an initial state ψ0 =
p⊗ |1〉+ q ⊗ | − 1〉 the n-th state becomes ψn = anτnp⊗ |1〉+ bnτ−nq ⊗ | − 1〉 with |a| = |b| = 1.
So a diagonal coin is totally biased in the sense that evolution with a diagonal coin simply shifts
the |1〉 and | − 1〉 parts right and left respectively (up to a phase factor).

C.2 Inner product relation

Here we derive the following inner product relation used in Section 1.4:

〈ψ, φ〉`2(Z)⊗C2 =

∫ 2π

0
〈ψ̂, φ̂〉C2

dk

2π
.

Let us first rewrite the state ψ as

ψ =

(
ψ1

ψ−1

)
,
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where the subscript 1 or −1 refers to the coin state instead of time to avoid overcrowded notation.
For ψ, φ ∈ `2(Z)⊗ C2 we now have

〈ψ, φ〉`2(Z)⊗C2 = 〈ψ1w1 + ψ−1w−1, φ1w1 + φ−1w−1〉`2(Z)⊗C2

= 〈ψ1w1, φ1w1〉`2(Z)⊗C2 + 〈ψ1w1, φ−1w−1〉`2(Z)⊗C2

+〈ψ−1w−1, φ1w1〉`2(Z)⊗C2 + 〈ψ−1w−1, φ−1w−1〉`2(Z)⊗C2

= 〈ψ1, φ1〉`2(Z)〈w1, w1〉C2 + 〈ψ1, φ−1〉`2(Z)〈w1, w−1〉C2

+〈ψ−1, φ1〉`2(Z)〈w−1, w1〉C2 + 〈ψ−1, φ−1〉`2(Z)〈w−1, w−1〉C2

= 〈ψ1, φ1〉`2(Z) + 〈ψ−1, φ−1〉`2(Z).

We can now use Parseval’s theorem to write

〈ψ, φ〉`2(Z)⊗C2 =

∫ 2π

0

¯̂
ψ1φ̂1

dk

2π
+

∫ 2π

0

¯̂
ψ−1

ˆφ−1
dk

2π

=

∫ 2π

0

¯̂
ψ1φ̂1 +

¯̂
ψ−1

ˆφ−1
dk

2π
.

We conclude

〈ψ, φ〉`2(Z)⊗C2 =

∫ 2π

0
〈ψ̂, φ̂〉C2

dk

2π
.

C.3 Leibniz rule

In Section 1.4 we used an expression for Drψ̂n which we prove here.

Drψ̂n = (−i)r d
r

dkr
ψ̂n = (−i)r d

r

drk

2∑
j=1

λj(k)n〈vj(k), ψ̂0〉vj(k)

= (−i)r
2∑
j=1

〈vj(k), ψ̂0〉
dr

dkr
(λnj vj)(k)

Using the Leibniz rule we can further write dr

dkr (λnj vj)(k) as

dr

dkr
(λnj vj)(k) =

r∑
s=0

(
r

s

)
dr−s

dkr−s
(λnj )(k)

ds

dks
(vj)(k).

Note that the term dr−s

dkr−s (λnj )(k) is a power series in n for fixed k. As a consequence dr

dkr (λnj vj)(k)

is a power series in n for fixed k as well, and then so is Drψ̂n. The term for s = 0 contains the
leading term in the power series dr

dkr (λnj vj)(k):

dr

dkr
(λnj vj)(k) = n(n− 1) . . . (n− r + 1)λj(k)n−r

drλj
dkr

vj(k) +O(nr−1)

= nrλj(k)n−r
drλj
dkr

vj(k) +O(nr−1).

Now we substitute this result and find

Drψ̂n = (−i)r
2∑
j=1

〈vj(k), ψ̂0〉nrλj(k)n−r
drλj
dkr

vj(k) +O(nr−1).
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C.4 Division

In Section 1.5 we used the result

hj(k) = ± cos(k)√
2− sin2(k)

,

which we prove here. To evaluate this fraction we make use of the identity

a+ bi

c+ di
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i,

with

a =
cos(k)√

2
, b = ± sin(k) cos(k)√

4− 2 sin2(k)
, c = ±

√
1− 1/2 sin2(k), d =

sin(k)√
2
.

The denominator reduces to

c2 + d2 = 1− 1

2
sin2(k) +

1

2
sin2(k) = 1.

So the real part equals

ac+ bd = ±1

2
cos(k)

√
2− sin2(k)± sin2(k) cos(k)

2
√

2− sin2(k)

= ± 1√
2− sin2(k)

[
cos(k)− 1

2
sin2(k) cos(k) +

1

2
sin2(k) cos(k)

]
= ± cos(k)√

2− sin2(k)
.

The imaginary part yields

bc− ad =
1

2
sin(k) cos(k)− 1

2
sin(k) cos(k) = 0,

hence

hj(k) = ± cos(k)√
2− sin2(k)

.

C.5 Biased coin

Here we repeat the calculation of the limiting probability density for a biased coin

A =

( √
ρ

√
1− ρ√

1− ρ −√ρ

)
.

In this case we have

Û(k) =

(
eik 0
0 e−ik

)
A =

(
eik 0
0 e−ik

)( √
ρ

√
1− ρ√

1− ρ −√ρ

)
=

(
eik
√
ρ eik

√
1− ρ

e−ik
√

1− ρ −e−ik√ρ

)
.
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It’s eigenvalues are given by∣∣∣∣ eik
√
ρ− λ eik

√
1− ρ

e−ik
√

1− ρ −e−ik√ρ− λ

∣∣∣∣ = (eik
√
ρ− λ)(−e−ik√ρ− λ)− 1 + ρ = 0

−ρ− λeik√ρ+ λe−ik
√
ρ+ λ2 − 1 + ρ = 0

λ2 − 2i
√
ρ sin(k)λ− 1 = 0

=⇒ λj(k) = i
√
ρ sin(k)±

√
1− ρ sin2(k).

Furthermore,

Dλj = −i d
dk
λj(k) =

√
ρ cos(k)± ρ sin(k) cos(k)√

1− ρ sin2(k)
i.

The random variable h now equals

h(j, k) =
Dλj
λj(k)

.

To evaluate this fraction we make use of the identity

a+ bi

c+ di
=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i,

with

a =
√
ρ cos(k), b = ± ρ sin(k) cos(k)√

1− ρ sin2(k)
, c = ±

√
1− ρ sin2(k), d =

√
ρ sin(k).

The denominator reduces to

c2 + d2 = 1− ρ sin2(k) + ρ sin2(k) = 1.

So the real part equals

ac+ bd = ±√ρ cos(k)

√
1− ρ sin2(k)±√ρρ sin2(k) cos(k)√

1− ρ sin2(k)

= ±
√
ρ√

1− ρ sin2(k)

[
(1− ρ sin2(k)) cos(k) + ρ sin2(k) cos(k)

]
= ± cos(k)√

ρ−1 − sin2(k)
.

The imaginary part yields

bc− ad = ρ sin(k) cos(k)− ρ sin(k) cos(k) = 0,

hence

hj(k) = ± cos(k)√
ρ−1 − sin2(k)

.
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Again we calculate the cumulative density function for the random initial state:

P(Y ≤ y) =

∫
h−1]([−∞,y])

dµ = 2

∫
cos(k)/

√
ρ−1−1+cos2(k)≤y

dk

4π

=

∫ 2π−cos−1(
√
ρ−1−1y/

√
1−y2)

cos−1(
√
ρ−1−1/

√
1−y2)

dk

2π

= 1− 1

π
cos−1

(√
ρ−1 − 1y√

1− y2

)
.

Finally we can take the derivative with respect to y to obtain the probability density function:

d

dy

[
1− 1

π
cos−1

(√
ρ−1 − 1y√

1− y2

)]
= − 1

π

d

du
cos−1(u)

d

dy

(√
ρ−1 − 1y√

1− y2

)

where u =

√
ρ−1−1y√

1−y2
. So

f(y) =
1

π

1√
1− (ρ−1−1)y2

1−y2

√
ρ−1 − 1

(1− y2)3/2
dy =

√
1− ρdy

π
√
ρ− y2(1− y2)

.

C.6 Rotating frame

Here we derive the rotating frame approach used in Section 2.2. We consider a Hamiltonian
acting on a two-level system consisting of a constant part H0 and a time-dependent part V (t):

H(t) = H0 + V (t).

Furthermore, we consider for this Hamiltonian its evolution operator U(t) defined by |ψ(t)〉 =
U(t)|ψ(0)〉 or equivalently i~U̇(t) = H(t)U(t). To see that these formulations are indeed
equivalent simply substitute either in the Schrödinger equation. Next write U(t) as the product
of some rotation R(t) and a remaining part U ′(t), so U(t) = R(t)U ′(t). We substitute this
representation of U(t) into i~U̇(t) = H(t)U(t) to find

i~Ṙ(t)U ′ + i~R(t)U̇ ′ = H0R(t)U ′ + V (t)R(t)U ′.

We then pick R(t) such that i~Ṙ(t) = H0R(t) which cancels to terms of the equation. This
differential equation is solved by R(t) = e−iH0t/~. We are left with

i~R(t)U̇ ′(t) = V (t)R(t)U ′(t),

and after multiplication from the left with R†(t):

i~U̇ ′(t) = R†(t)V (t)R(t)U ′(t).

Note that this equation defines U ′(t) as the evolution operator of the Hamiltonian Hrot :=
R†(t)V (t)R(t) which we will call the Hamiltonian in the rotated frame. Denote by |φ(t)〉 the
wave-function corresponding to this Hamiltonian with |φ(0)〉 = |ψ(0)〉. Then

|ψ(t)〉 = U(t)|ψ(0)〉 = R(t)U ′(t)|φ(0)〉 = R(t)|φ(t)〉.

So to find |ψ(t)〉 we need to solve for the Hamiltonian in the rotated frame and then apply the
rotation R(t).
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C.7 Division for long range

In Section 3.4 we stated that the random variables hj(k) related to matrices of the form

1√
2

(
eaik eaik

eaik −e−aik
)

are given by

hj(k) = ± a cos(ak)√
2− sin2(ak)

.

Here we show this calculation. Again we use that

α+ βi

γ + δi
=
αγ + βδ

γ2 + δ2
+
βγ − αδ
γ2 + δ2

i

with

α = a
cos(ak)√

2
, β = ±a sin(ak) cos(ak)√

4− 2 sin2(ak)
, γ = ±

√
1− sin2(ak)/2, δ =

sin(ak)√
2

.

The denominator reduces to

γ2 + δ2 = 1− 1

2
sin2(ak) +

1

2
sin2(ak) = 1,

and the imaginary part yields

βγ − αδ = a
sin(ak) cos(ak)

2
− asin(ak) cos(ak)

2
= 0.

Therefore all that is left is

αγ + βδ =
a

2
cos(ak)

√
2− sin2(ak)± a

2

sin2(ak) cos(ak)√
2− sin2(ak)

= ± a√
2− sin2(ak)

[
cos(ak)

(
1− sin2(ak)

2

)
± 1

2
sin2(ak) cos(ak)

]
hj(k) = ± a cos(ak)√

2− sin2(ak)
.

C.8 Scale correction

Here we show that the appropriate scale correction of the classical random walk taking steps
equally distributed in {−s, . . . ,−1, 1, . . . , s} = {−2m−1, . . . ,−1, 1, . . . , 2m−1} is of leading order√

2m. We consider the random variable X
(m)
n =

∑n
i=1A

(m)
i where the Ai’s are iid random

variables taking values in {−2m−1, . . . ,−1, 1, . . . , 2m−1} uniformly. The central limit theorem [5]
guarantees that

X
(m)
n√

nVar[Ai]
→ N (0, 1), as n→∞.

We will show that
√

Var[Ai] is indeed of leading order
√

2m.

Var[Ai] = E[A2
i ] =

2

2m

m−1∑
i=0

4i = 2−(m−1) 1− 4m

1− 4
= O(22m2−m) = O(2m)

Hence
√

Var[Ai] = O(
√

2m).
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