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Abstract

Over the past three decades, the singular value decomposition has been increasingly used for vari-
ous big data applications. As it allows for rank reduction of the input data matrix, it is not only able
to compress the information contained, but can even reveal underlying patterns in the data through
feature identification. This thesis explores algorithms for large-scale SVD calculation, and uses these
to demonstrate how the SVD can be applied to a variety of fields, including information retrieval,
recommender systems and image processing.

The algorithms discussed are Golub-Kahan-Lanczos bidiagonalization, randomized SVD and block
power SVD. Each algorithm is implemented in Matlab and both error and time taken by each algo-
rithm are compared. We find that the block power SVD is very effective, especially when only the
truncated SVD is required. Due to its simplicity, speed and relatively small error for low-rank matrix
approximation, it is an ideal method for the applications discussed in this thesis.

We show how the SVD can be used for information retrieval, through Latent Semantic Indexing.
The method is tested on the Time collection and we find that the SVD removes much of the noise
present in the data and solves the issues of synonymy and polysemy. Then, SVD-based algorithms for
recommender systems are presented. We implement a basic SVD algorithm called Average Rating
Filling, and a (biased) stochastic gradient descent algorithm, which was developed for the Netflix
recommender-system prize. These are tested on the Movielens 100k dataset, resulting in the best
performance by biased stochastic gradient descent. Finally, the SVD is used for image compression
and we find that, while not very useful for face recognition, the SVD could provide a time- and
space-efficient method for searching through an image database for similar images.
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1 Introduction

It is becoming increasingly important and challenging to make sense of, store, and efficiently search
through huge amounts of data. This challenge has led to the development of many complex algorithms,
each suited to its own specific application, in the fields of big data and machine learning. The objective
of this thesis is to show how the singular value decomposition (SVD) can be broadly used for a variety
of big data applications. This objective can be split into three sub-objectives:

1. To investigate large-scale applications of the SVD, such as information retrieval, recommender
systems and image processing.

2. To show how the SVD can be computed efficiently, considering the structure of the data and
outcomes required by the large-scale applications discussed.

3. To identify why the SVD can lead to an improvement in performance, increase in efficiency and
reduction of noise with respect to other, more traditional, algorithms.

This report is structured in four parts. We begin in Part 1 by providing some background information
about the SVD, and present three algorithms with which the SVD can be computed. Both the perfor-
mance and time taken by the algorithms are compared, in order to predict how they will perform on the
large-scale applications.

We then go on to discuss these applications, and the SVD algorithms are applied to each test problem
discussed. Part 2 shows how the SVD can be used for information retrieval. Specifically, the latent
semantic indexing (LSI) method for text retrieval is explained and demonstrated through both small-
and large-scale examples. In Part 3, the application of SVD for recommender systems is discussed and we
demonstrate another SVD-like approach applied to movie rating prediction. Finally, in Part 4 we apply
the SVD to a different type of data: images. The possibilities for image compression and face recognition
using the SVD are discussed.

1



Part I

The Singular Value Decomposition
The singular value decomposition (SVD) is a very useful tool from linear algebra. It is the factorization of
a matrix into a product of two orthogonal matrices, containing the singular vectors of the input matrix,
and one diagonal matrix, containing the singular values of the input matrix. The large-scale applications
discussed in this project require computation of the SVD for very large, often sparse matrices representing
huge datasets. Finding the SVD of such massive matrices is a numerically intensive process and cannot
be done analytically or using algorithms that change the structure of the matrix. Many simple algorithms
also rely on properties such as symmetry, or the matrix in question being square, that cannot be assumed
in most real-life cases. This part will first introduce the concept of the SVD and some properties that
will be relevant in later sections. Then, we will discuss and compare three algorithms suitable for finding
the SVD of such large matrices: Golub-Kahan-Lanczos bidiagonalization, (block) power SVD and ran-
domized SVD.

2 Properties of the Singular Value Decomposition

In this section, we first define the SVD, and present a number of useful properties. We end with the
definition of the truncated SVD, which is the form that will be most relevant to later sections.

Definition 2.1. (Golub & van Loan, 1996) The singular value decomposition, or SVD, of an m × n
matrix A of rank r is given by

A = UΣV T

where:

(i) U = [u1, u2, . . . , um] ∈ Rm×m is an orthogonal matrix of which the columns define the m orthonor-
mal eigenvectors of AAT , also referred to as the left singular vectors.

(ii) V = [v1, v2, . . . , vn] ∈ Rn×n is an orthogonal matrix of which the columns define the n orthonormal
eigenvectors of ATA, also referred to as the right singular vectors.

(iii) Σ ∈ Rm×n, Σ = diag(σ1, σ2, . . . σp), where p = min(m,n) and σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . =
σp = 0. The σi, i = 1, . . . , p are the singular values of A.

The triplet (σi, ui, vi) will be referred to as the i-th singular triplet of A.

The decomposition can be inferred from the following observation:

AAT = UΣV TV ΣTUT

= UΣIΣTUT

= U(ΣΣT )UT

This is the eigendecomposition of the matrix AAT , in which U holds the eigenvectors of AAT and
ΣΣT holds the eigenvalues. Orthogonality of U follows from AAT being symmetric and thus having an
orthonormal basis of eigenvectors. Furthermore, from ΣΣT = diag(λ1, λ2, . . . , λp) it follows that σi =

√
λi

for i = 1, 2, . . . , p. Note that the same can be done for the matrix V , where we use ATA = V ΣTΣV T .

Theorem 2.1. Let the SVD of A be given by Definition 2.1. We observe the following properties:

1. A =
∑r
i=1 ui · σi · vTi is the dyadic decomposition of A

2. Row(A) = span{v1, . . . , vr}

3. Col(A) = span{u1, . . . , ur}

4. Nul(A) = span{vr+1, . . . , vn}
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5. Nul(AT ) = span{ur+1, . . . , um}

6. The Frobenius norm of A is given by ‖A‖2F = σ2
1 + σ2

2 + . . .+ σ2
r

7. The 2-norm of A is given by ‖A‖22 = σ1

One way to understand the SVD is by examining what role each component (U , Σ and V ) plays in
the transformation given by the matrix A. An m× n matrix A maps a unit sphere in Rn to an ellipsoid
in Rm. For a 2 × 2 matrix this is visualized in Figure 1. Since U and V are orthogonal, applying V T

and U results in two rotations without distorting the shape, while application of Σ stretches the circle
along the coordinate axes to form an ellipse. For higher dimensions, with rank(A) = r, the unit sphere
is transformed to an r-dimensional ellipsoid with semi-axes in the direction of the left singular vectors ui
of magnitude σi (Kalman, 1996).

Figure 1: Geometric interpretation of SVD

The SVD allows for construction of a low-rank approximation of any matrix, as we see in the following
result:

Theorem 2.2 (Eckart & Young). Let the SVD of A be given by Definition 2.1 with r = rank(A) ≤ p =
min(m,n), and define

Ak =

k∑
i=1

ui · σi · vTi (1)

then
min

rank(B)=k
‖A−B‖2F = ‖A−Ak‖2F = σ2

k+1 + . . .+ σ2
p

Moreover, Ak is the best k-rank approximation for A for any unitarily invariant norm, hence

min
rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1

Equivalent to Equation 1 is the following form, which will be referred to as the truncated SVD:

Ak = Uk · Σk · V Tk (2)

where

Uk = [u1, u2, . . . , uk] ∈ Rm×k

Vk = [v1, v2, . . . , vk] ∈ Rn×k

Σk = diag(σ1, σ2, . . . , σk) ∈ Rk×k

Now, remember that the singular values σ2
i are the eigenvalues of the matrix ATA, which (in data

applications) happens to be the covariance matrix of the data represented by A (Prokhorov, 2011). The
covariance matrix defines both the spread and variance of the data. The eigenvector of ATA corresponding
to the largest eigenvalue of ATA lies in the direction of the most variance of the data. In other words,
the singular vectors corresponding to the largest singular values of A explain most of the data; it is even
quite likely that the singular vectors corresponding to the smallest singular values only represent noise
in the data. Since the singular values are ordered in decreasing order in Σ, the k left and right singular
vectors contributing most to the variance of the data represented by A are the first k columns of U and
V , respectively. The truncated SVD is very useful for many of the applications that will be discussed, as
it not only reduces the amount of space required to store data but can also remove associated noise, as
will be shown in later sections.
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3 Golub-Kahan-Lanczos Bidiagonalization

Golub-Kahan-Lanczos bidiagonalization (GKLB) is an iterative algorithm that approaches the truncated
SVD of a matrix A (Golub & Kahan, 1964). An advantage of GKLB as opposed to the more traditional
SVD based on Householder reflections (Golub & Reinsch, 1970) is that GKLB does not change the struc-
ture of the matrix, making it more suitable for very large matrices. Furthermore, (Golub & Kahan, 1964)
also states that while in general, the method involving Householder reflections is faster than GKLB, this
is not the case when the matrix in question is sparse.

Say we want to compute the k-dimensional truncated SVD Ak. First, the matrices Pk+1 and Qk are
computed such that the product PTk+1AQk is in bidiagonal (rather than diagonal) form, where Pk+1 and
Qk are unitary matrices with orthonormal columns, i.e.

PTk+1AQk = Bk =



α1

β2 α2

β3
. . .

. . . αk
βk+1

 (3)

Multiplying both sides of Equation 3 with Pk+1 gives

A(q1q2 . . . qk) = (p1p2 . . . pk+1)



α1

β2 α2

β3
. . .

. . . αk
βk+1


Expanding the kth column on both sides gives

Aqk = αkpk + βk+1pk+1

=⇒ βk+1pk+1 = Aqk − αkpk

In the same way, ATPk+1 = QkB
T
k gives

AT (p1p2 . . . pk+1) = (q1q2 . . . qk)


α1 β2

α2

. . .
. . .

αn βn+1


Here, expanding the kth column on both sides gives

AT pk = βkqk−1 + αkqk

=⇒ αk+1qk+1 = AT pk+1 − βk+1qk

From this, Algorithm 1 is obtained.

Algorithm 1: GKLB Algorithm

1 Choose w ∈ Rn randomly
2 β1p1 = w

3 α1q1 = AT p1
4 for i = 1, 2, . . . do
5 βi+1pi+1 = Aqi − αipi
6 αi+1qi+1 = AT pi+1 − βi+1qi
7 end
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where αi > 0, βi > 0 such that ‖qi‖ = ‖pi‖ = 1. Now

AQk = Pk+1Bk (4)

ATPk+1 = QkB
T
k + αk+1qk+1e

T
k+1 (5)

where αk+1qk+1e
T
k+1 is the error.

A singular value σ̃ and corresponding left and right singular vectors ũ and ṽ of Bk are related by

Bkṽ = σ̃ũ,

BTk ũ = σ̃ṽ

Substituting the above in Equations 4 and 5 gives:

AQkṽ = σ̃Pk+1ũ,

ATPk+1ũ = σ̃Qkṽ + αk+1qk+1e
T
k+1ũ

Comparing the above equations to AV = UΣ and ATU = V Σ, we see that the singular values of Bk
converge to the singular values of A, and Pk+1ũ and Qkṽ converge to the left and right singular vectors
of A, respectively. When we stop the algorithm at k < min(m,n), we obtain an approximation of the
first k singular triplets, forming the truncated SVD of A. However, only the first few singular triplets
(relative to k) will have converged, and it is usually necessary to perform far more than k iterations when
the true first k singular triplets are required.

Algorithm 1 is constructed to make the columns of P and Q orthonormal. However, orthogonality
may be lost due to round-off error, which can lead to large errors in the resulting SVD. To prevent this,
we can re-orthogonalize P and Q during the algorithm. It has been shown that it is only necessary to
re-orthogonalize one of the bases, say Q, to preserve orthogonality (Simon & Zha, 2006). This is called
one-sided re-orthogonalization and results in Algorithm 2.

Algorithm 2: GKLB algorithm with one-sided re-orthogonalization

1 Choose w ∈ Rm randomly
2 β1p1 = w

3 α1q1 = AT p1
4 for i = 1 to k do
5 pi+1 = Aqi − αipi
6 βi+1 = ‖pi+1‖
7 pi+1 = pi+1/βi+1

8 Pi+1 = [Pi pi+1]

9 qi+1 = AT pi+1 − βi+1qi
10 hi = QTi qi+1

11 qi+1 = qi+1 −Qihi
12 αi+1 = ‖qi+1‖
13 qi+1 = qi+1/αi+1

14 Qi+1 = [Qi qi+1]

15 end
16 [UB ,ΣB , VB ] = SVD(B)
17 U ← Pk+1UB
18 Σ← ΣB
19 V ← QkVB

Another way to efficiently calculate the SVD is by using Matlab’s SVDS method. The command
svds(A,k) returns the first k singular triplets of A without having to calculate the full SVD of A, which
is precisely what is required for the applications discussed. Older versions of Matlab used ARPACK
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(ARnoldi PACKage) for the SVDS, which relied on the Implicitly Restarted Arnoldi Method (IRAM).
However, more recent versions, including the version used for this paper, also use GKLB. Matlab also has
a standard svd(A) command, which performs the full SVD of A. However, this command is not suited
for large and sparse matrices.

We can implement the GKLB algorithm in Matlab and test its efficiency and error with and without
one-sided re-orthogonalization. The corresponding Matlab code can be found in Appendix A.1. The time
taken is also compared to Matlab’s SVDS method. This is done for a random sparse 5000×500 matrix A
with 4% density, as we will later see is often typical for the applications discussed. The error is computed
using Equation 5 as:

error = ‖ATPk+1 −QkBTk ‖
= ‖αk+1qk+1e

T
k+1‖

= αk+1‖qk+1‖
= αk+1

The process of computing the time and error for each method is repeated ten times, and the average of
these trials is shown in the results.

In Figure 2 the error is shown for GKLB with and without one-sided re-orthogonalization for increasing
values of k, where k ranges from 1 to 500, the rank of A. We can see that for the GKLB algorithm without
re-orthogonalization, the size of the error oscillates wildly showing that the method is very unstable.
Furthermore, the error does not converge to 0, which is be caused by the lack of orthogonality of P and
Q. The GKLB algorithm with one-sided re-orthogonalization has a much smoother performance, and
the error eventually converges to 0 as desired. However, the most significant drop in error is not reached
until the last possible iteration: for k = 499 the error is 0.0511, while for k = 500 the error drops to
5.8009 · 10−14.

(a) Logarithmic scale (b) Decimal scale

Figure 2: Error of GKLB method with and without one-sided re-orthogonalization

Before looking at the time taken by the algorithm, it is interesting to analyse the theoretical time
complexity. We see in Algorithm 2 that there are k iterations; in each iteration, 2 matrix-vector products
are performed which take O(mn) time. For the re-orthogonalization step, a matrix-vector multiplication
with the matrices Qi and QTi is performed, of which the size increases at every iteration, thus taking
O(nk2) time. In total, the for-loop takes O(mnk + nk2) time. Computing the SVD of the (k + 1) × k
matrix B takes O(k3) time. The matrix products to obtain U and V take O(mk2) and O(nk2) time
respectively. This leaves us at O(mnk + nk2 + k2(k + m + n)) time. For the applications discussed in
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this project, k will often be significantly smaller than n and m, which puts us at O(mnk) time.

The time taken in practice for the three different methods (GKLB with and without one-sided re-
orthogonalization, and SVDS) for increasing values of k is shown in Figure 3. It is interesting to note
that the time taken by the SVDS method increases rapidly until k = 167, then drops and stabilizes
to 0.5 seconds, regardless of the value of k. Furthermore, as one might expect, the GKLB algorithm
with re-orthogonalization is slower than without, although this is a small price to pay for the significant
increase in numerical stability. We can also see that, when k is increased and m and n are kept constant,
the time required for the GKLB methods seems to increase quadratically, as we would expect from our
previous analysis.

The reason for the sudden drop in time taken by the SVDS algorithm is that, from k > 1
3 min{m,n}

(in this case, k > 167), Matlab calculates the full SVD using a different method than SVDS. The full
SVD method takes a constant amount of time regardless of the value of k, as the only difference is the
number of singular triplets returned.

Figure 3: Time taken by GKLB and SVDS methods

For the remainder of this report, when GKLB is used for comparisons to other algorithms and large-
scale applications, the reader may assume that one-sided orthogonalization is performed.

4 Power Method

The power method, also known as power iteration or Von Mises iteration, is an algorithm that iteratively
approaches the largest eigenvalue λ1 and corresponding eigenvector ξ1 of a diagonalizable matrix A (von
Mises & Pollaczek-Geiringer, 1929). This section will discuss this method and extend it to a power
method for computing the truncated SVD.

4.1 Power Method for Eigenvalue Problems

IfA is a symmetric n×nmatrix with eigenvalues λ1, λ2, . . . , λn and corresponding eigenvectors ξ1, ξ2, . . . , ξn
such that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|, then A is diagonalizable as A = V ΛV T where V = [ξ1, ξ2, . . . , ξn] is
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orthogonal and Λ = diag(λ1, λ2, . . . , λn). Since V is orthogonal we have V TV = I and thus

Ak = (V ΛV T )(V ΛV T ) . . . (V ΛV T )

= V ΛkV T

Now, if we choose a random unit vector x0 ∈ R and we iteratively multiply by A so that xn = Axn−1
then

x1 = Ax0 = V ΛV Tx0, and

xk = Akx0 = V ΛkV Tx0

=

n∑
i=1

λki ξiξ
T
i x0

Setting ξTi x0 = ci where ci is some constant, and dividing λ1 out of the sum, we obtain:

xk = λk1

(
c1ξ1 +

n∑
i=2

ci

( λi
λ1

)k
ξi

)
Under the assumption that |λ1| > |λ2| (i.e. there is one dominant eigenvalue) then it follows that

(
λi

λ1

)k
converges to zero for increasing values of k. If this is the case, then we are left with

xk = Akx0

≈ λk1c1ξ1

If we normalize the vector xi at each step such that ‖xi‖ = 1, then the method eventually converges to a
unit vector that lies in the same direction as the dominant eigenvector ξ1, since λ1 and c1 are constants.
We can then use the Rayleigh quotient to determine the dominant eigenvalue as limk→∞ xTkAxk = λ1.

The further away |λ1| lies from |λ2|, the faster the convergence of the method. In the case that
|λ1| = |λ2|, the method will converge to a vector that lies in the span of the first two eigenvectors.

If we wish to calculate the first m eigenvalues of A, then method can be extended to the block power
iteration. This can be done in almost the same way, where we initialize a random n×m matrix X and
apply the iteration rule Xk+1 = orth(AXk). Here, normalization is replaced by orthogonalization.

4.2 Power Method for SVD

The power method for SVD, as proposed in (Bentbib & Kanber, 2015), is a simple extension to the
method described above. Let A be an m×n matrix; we wish to approach the decomposition A = UΣV T .
Now,

ATA = V ΣTUTUΣV

= V Σ2V T and so,

(ATA)p = V Σ2pV T

where we use Σi to denote diag(σi1, σ
i
2, . . . , σ

i
r, 0, . . . , 0) such that Σi ∈ Rn×n. Now, say we were to start

with a random vector x0 ∈ R and apply the iteration xj = ATAxj , then

xj = (ATA)jx0

= (V Σ2jV T )x0

=

j∑
i=1

σ2j
i viv

T
i x0

8



Again, we can replace vTi x0 by a constant ci and factor out σ1, resulting in

xj = σ2j
1

(
c1v1 +

j∑
i=1

(
σi
σ1

)2j

civi

)

Again, under the assumption that |σ1| > |σ2|, the factor
(
σi

σ1

)2j
will converge to 0 for j →∞, and so we

are left with xj ≈ σ2j
1 c1v1, i.e. xj is a vector in the same direction as the first right singular vector v1.

Since v1 is a unit vector, normalizing xj such that ‖xj‖ = 1 will result in limj→∞ xj = v1.

On its own, v1 is not of much use to us; we also want σ1 and u1. For this, we consider that for the
i-th singular triplet, Avi = σiui. Since ui are unit vectors and all σi are constants, we find

σ1 = ‖Av1‖, and

u1 =
1

σ1
Av1

Combining the previous with the relation ATu1 = σ1v1 results in Algorithm 3.

Algorithm 3: Power method for first singular triplet of matrix A

1 Choose v10 ∈ Rn randomly with ‖v0‖ = 1
2 for i = 1 to j do
3 σ1i = ‖Av1i−1

‖
4 u1i =

Av1i−1

σ1i

5 v1i =
ATu1i

‖ATu1i
‖

6 end

As with the eigenvalue power method, this method can be simply extended to calculate the first
singular triplets of an m× n matrix A, resulting in Algorithm 4.

Algorithm 4: Block power method for k singular triplets of matrix A

1 Choose orthogonal matrix V0 ∈ Rn×k randomly
2 for i = 1 to j do
3 Uki = orth(AVi−1)

4 Vki = orth(ATUi)

5 end

6 Σk = UTkjAVkj
7 S = sign(Σk)
8 Σk ← SΣk
9 Uk ← UkjS

Normalization is again replaced by orthogonalization, as we know that the columns of U and V should
be orthonormal. The algorithm eventually converges to Uk ≈ Ukj , Vk ≈ Vkj and Σk. The resulting SVD is
not strictly correct, especially considering the definition of Σ in Section 2. We find that the singular values
are only somewhat in decreasing order, and some of the singular values are negative. For this reason, the
last step on lines 7-9 of the algorithm is added as it ensures that the singular values in Σk are positive. It
does so by locating the negative singular values, and changing the sign of the corresponding columns of U .

The method is tested for a sparse 5000× 500 matrix A with density 4%. The corresponding Matlab
code can be found in Appendix A.3. The results shown are the average of 5 runs for the same matrix,
due to random initialization of V0. We will first look at the convergence of the method, measured by
‖Ak − Âk‖, where Ak is the true k-rank truncated SVD and Âk is the approximation achieved by the
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block power SVD. Figure 4 shows that the difference converges to 0 when the number of iterations is
increased, as desired, for k = 50.

Figure 4: Convergence of block power method

The error of the k-rank approximation is given by ‖A − Ak‖2 = ‖A − UΣV ‖2. As we have seen in
Section 2, it holds that

min
rank(X)≤k

‖A−X‖2 = ‖A−Ak‖ = σk+1

where σk is the k-th largest singular value of A. This provides us with a lower error bound, which is
achievable by a perfect SVD computation.

We first measure the error ‖A − Ak‖2 for increasing values of k, when 5, 20, 50 and 100 iterations
are performed, as shown in Figure 5. The plot also shows the minimum reachable error σk+1. We see
that the method has very unstable behaviour, especially for larger values of k, when only 5 iterations are
performed. However, the performance improves quickly when more iterations are performed, and there
is quite minimal difference between the error for 50 and 100 iterations, and the minimum possible error.

Figure 5: Performance of block power method

We can also see that the time increases (almost) linearly with the number of iterations in Figure 6,
which makes sense since each iteration should take the same amount of time. Now, considering that the

10



errors for 50 and 100 iterations were so similar, and 100 iterations would take twice as long as 50, we
see that it may not be worth performing more than 50 iterations in this case when on a time limit. For
the remainder of this report, when block power SVD is used for comparisons to other algorithms and
large-scale applications, the reader may assume that 50 iterations are performed.

Figure 6: Time taken by block power method

5 Randomized SVD

Another method for computing the truncated SVD is the randomized SVD algorithm proposed in (Halko,
Martinsson, & Tropp, 2011). The method computes the decomposition Ak = UkΣkV

T
k by using random

sampling to approximate the range of A. The algorithm can be split into two distinct stages:
Stage A: Compute an approximate basis for the range of input matrix A, i.e. a matrix Q for which Q
has orthonormal columns and A ≈ QQTA. Q should have less columns than A.
Stage B: Given matrix Q, use B = QTA to compute the SVD factorization of A.
Stage A is done using random input, while Stage B is completely deterministic.

First, some intuition will be provided concerning the use of randomness for Stage A. In this stage, we
desire a basis for the range of matrix A with rank(A) = k. Now, draw random vectors ωi, i = 1, 2, . . . , k
and form the product yi = Aωi, i = 1, 2, . . . , k. Due to randomness, it is likely that {ωi : i = 1, 2, . . . , k}
is a linearly independent set, and so the sample vectors yi are also linearly independent. Also, each yi is
in the range of A, and so we can conclude that {yi : i = 1, 2, . . . , k} spans the range of A. To produce an
orthonormal bases we simply need to orthonormalize the vectors yi.

Now say we want to approximate the range of a lower-dimensional subspace with dimension k <
rank(A). If we generate k + p sample vectors, we obtain the enriched set {yi : i = 1, 2, . . . , k + p}, which
has a higher probability of spanning the required subspace. (Halko et al., 2011) find that typically, small
values of p already work quite well for this purpose.

Using this intuition, we obtain Algorithm 5 to compute the desired k-rank matrix Q for an m × n
matrix A, with oversampling parameter p.
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Algorithm 5: Stage A

1 Choose Ω ∈ Rn×(k+p) randomly
2 Y ← AΩ
3 Q← orth(Y )
4 return Q

However, when the singular value spectrum of A decays too slowly, so will the approximation error.
To overcome this problem, (Halko et al., 2011) propose performing a small number of power iterations
on AAT , as shown in Algorithm 6. The motivation behind this is that if the singular values of A are Σ,
then the singular values of (AAT )q are Σ2q+1, which drives down the spectrum, and with it the error,
exponentially. In practice, q = 1 or 2 works sufficiently.

Algorithm 6: Stage A with power iteration

1 Choose Ω ∈ Rn×(k+p) randomly

2 Y ← (AAT )qAΩ
3 Q← orth(Y )
4 return Q

The method for Stage B is shown in Algorithm 7. When B = QTA we obtain the low-rank approxi-
mation A ≈ QB = QŨΣV T . Note that B is a (k+ p)×m matrix, while A is m× n and (k + p)� n, so
the SVD of B is much easier to compute than that of A.

Algorithm 7: Stage B

1 B ← QTA

2 Compute the SVD: B = ŨΣV T

3 U ← QŨ
4 return U,Σ, V

As with GKLB, the time complexity for randomized SVD is O(mnk), although it can be reduced
asymptotically to O(mn log k) by using a specially structured random sampling matrix, such as the sub-
sampled random Fourier transform. Furthermore, only a constant number of passes over A are required,
as opposed to O(k) passes for GKLB. Especially in the case of huge input matrices, this can make a
significant difference in the time required for computing the SVD.

We again measure the error using ‖A− Ak‖2, of which the lower bound is σk+1. The expected error
of randomized SVD, for computing the k-rank approximation of matrix A with oversampling parameter
p and q power iterations, is (Erichson, Voronin, Brunton, & Kutz, 2016):

E‖A− UΣV T ‖ ≤

[
1 +

√
k

p+ 1
+
e
√
k + p

√
min{m,n} − k
p

] 1
2q+1

σk+1

We can test the implementation on a sparse 5000 × 500 matrix of 4% density, as in Section 3. The
Matlab code for randomized SVD can be found in Appendix A.2. The results shown are the average of
5 runs for the same matrix. Figure 7 shows the effect of using oversampling, where we use q = 1 as the
baseline for power iterations. We see that the error is indeed bounded from below by the singular values.
We also see a slight improvement in performance as p is increased, especially for low values of k.
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Figure 7: Performance of randomized SVD for different values of p

Figure 8 shows us the importance of the power iteration, where p = 5 is used as the baseline for
oversampling. When the power iteration is not performed at all, the error is significantly higher than
when it is performed once or twice. The difference between q = 1 and q = 2, however, is quite small, and
may not be worth it due to the substantial increase in time taken by the algorithm, caused by two more
multiplications of the large and sparse matrix A.

Figure 8: Performance of randomized SVD for different values of q

For the remainder of this report, when randomized SVD is used for comparisons to other algorithms
and large-scale applications, the reader may assume that q = 1 power iteration is performed and we use
the oversampling parameter p = 5.

6 Comparison of methods

In this section, the GKLB, randomized SVD and block power algorithms will be compared to the Matlab
SVDS algorithm in order to test which is most suitable for further use in large-scale applications. For
testing, both a 5000× 500 matrix of 4% density, as in the previous sections, and a full 5000× 500 matrix
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are used, as some applications that will be discussed also require the SVD of a full matrix, such as image
processing or the ARF algorithm from Section 13.

For GKLB, one-sided re-orthogonalization is used, and for randomized SVD the oversampling param-
eter p is set to 5, and q = 1 power iteration is performed. For block power SVD, 50 iterations are used
in order to balance error with time taken. The methods are all run 5 times for values of k between 5 and
100. We have seen that some methods, such as GKLB, show instability for very low values of k. This
skews the axes and doesn’t allow for closer comparison of the methods for higher values of k. The reason
we stop at k = 100 is that the applications discussed further on use the truncated SVD, so we are not
interested in relatively higher dimensions.

6.1 Error

In previous sections, different error measures have been used to measure performance of the various
algorithms. In order to compare the methods, we will measure error using ek = ‖A−Ak‖2, remembering
that minrank(X)≤j ‖A − X‖2 = σj+1. Figure 9 shows the error of each method for the sparse and full
matrices.

(a) Sparse matrix (‖A‖ = 32.19) (b) Full matrix (‖A‖ = 92.75)

Figure 9: Performance of algorithms discussed

We see that the relative performance is very similar for both sparse and full matrices. The perfor-
mance of the block power SVD almost matches that of SVDS; more iterations would have brought the
difference even closer together. The randomized SVD and GKLB algorithms also have similar perfor-
mance, although worse than the other two methods. It is interesting that the GKLB algorithm has much
worse performance than SVDS, despite SVDS being based on GKLB. Closer inspection of Matlab’s SVDS
code proves that it contains many checks for convergence and two-sided reorthogonalization, which would
explain the superior performance.

It is also important to realize why there is such a difference in performance between the algorithms.
In randomized SVD, error can originate in the multiplication of AAT . In practice, this multiplication of
large and sparse matrices can lead to significant numerical errors and should be avoided.

Another portion of this difference lies in the distribution of the singular values, and in the way they
are calculated. In GKLB and randomized SVD, the first k singular values of the input matrix A are found
by computing the SVD of a smaller k-rank matrix B. This is not the case for the block power SVD, since
there we compute Σk = UTk AVk. The result of these different approaches is best seen by comparing the
singular value spectra found by each algorithm. The singular values found by each algorithm for k = 50
for a random sparse 5000 × 500 matrix A are shown in Figure 10, compared to the true singular values
found by Matlab’s SVD.
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At first sight, it seems as though the singular values found by the block power SVD are not shown
in Figure 10; however, the line is simply difficult to see as it almost exactly follows the line of the true
singular values, showing why block power SVD performed so well in our error tests. The randomized
SVD method appears to maintain a rather constant difference between the singular values found and
the true value. The singular values found by the GKLB method show rather different behaviour, as
they first appear to match the true values, but decline quickly. The reason for this behaviour is that
GKLB approaches the singular values of A by calculating the singular values of the matrix B, which is
bidiagonal. We see that the first few singular values of B correspond closely to the true values.

Figure 10: Singular values of A found by algorithms discussed for k = 50

We should also examine the difference between the true and the calculated singular values when a
full SVD is performed using each algorithm. This is shown in Figure 11. Since we saw a significant drop
in the error of GKLB between k = 499 and k = 500, both results are shown here to compare where this
drop originates, as GKLB 500 and GKLB 499, respectively.

Figure 11: Difference between true singular values and singular values found by algorithms for full SVD

Contrary to the results we saw earlier, GKLB and randomized SVD now seem much more effective in
calculating the SVD than the block power SVD. Also, we see that GKLB with 499 iterations performs
very well for approximately the first half of the singular values, and the error suddenly increases for the
second half, while GKLB with 500 iterations shows essentially no error in the singular values calculated,
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explaining the error drop. However, it is important to realise that in the case of both GKLB and
randomized SVD, the SVD of a matrix B with rank(B) = 500 must be calculated as one of the last steps-
which is what we were trying to do in the first place!

6.2 Time

For large-scale applications, it is of importance that the algorithm used is very efficient. For example,
Facebook has suggested using SVD for their adjacency matrix of Facebook users to Facebook pages
induced by likes, with size O(109) × O(108) (Tulloch, 2014), and it would not be practical to incur a
waiting time of possibly hours for computation of the SVD only. The time taken for each algorithm is
shown in Figure 12.

(a) Sparse matrix (b) Full matrix

Figure 12: Time taken by algorithms discussed

There is more difference between the algorithms when it comes to time taken. As one would expect,
the time taken for the truncated SVD of a full matrix is generally longer than that of a sparse one. While
for a sparse matrix, the time taken by GKLB and randomized SVD is very similar, randomized SVD
clearly outperforms the other algorithms when it comes to full matrices. We also see that for small values
of k, the block power SVD takes much less time than SVDS, which may make it desirable to choose this
method over SVDS for specific cases due to similarity in performance.
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Part II

SVD for Information Retrieval
This part will introduce the first large-scale application of the singular value decomposition: information
retrieval. To be more specific, we will be focussing on the Latent Semantic Indexing (LSI) method, which
is used for searching documents in a large database. The method was originally described in (Berry,
Dumais, & O’Brien, 1995).

In that time, traditional search engines, which were most commonly used for retrieving documents
from scientific databases, relied on matching the words in a user’s query to the words contained in a
document. This method is very bad at handling two language-associated problems: synonymy and poly-
semy. Synonymy implies that there are many ways to describe the same object or concept. There is an
enormous variation in the words people use to describe a document: it has been found that two people
choose the same keyword for a well-known object less than 20% of the time (Furnas, Landauer, Gomez, &
Dumais, 1983). Not using the correct words to describe a document when using such a traditional search
engine leads to very poor recall, and often the user will not be able to find the document in question.
Therefore, an ideal search engine would understand, for example, that car means the same as automobile.

Polysemy occurs when a word has two different meanings. A gardener searching for tree may not be
so interested in results about graphs that don’t contain cycles. Thus our ideal search engine should also
be able to recognize the conceptual meaning of the query and documents. As we will see, LSI uses the
truncated SVD to handle both of these problems quite well.

7 Latent Semantic Indexing method

This section will explain the LSI method described in (Berry et al., 1995). The method first requires
construction of a data matrix A representing the documents and terms in the database we want to search
through. Given such a database of documents D, containing a set of terms T , with |D| = n, |T | = m, we
can construct a data input matrix A by setting At,d to the frequency of word t ∈ T in document d ∈ D.
A is then factored into U , Σ and V using the SVD and subsequently the dimensionality is reduced to k
dimensions by constructing the truncated SVD as in Equation 2. The resulting factors can be referred
to as the word-feature matrix Uk, document-feature matrix Vk and truncated singular value matrix Σk.
Here, k is the suspected number of features, or concepts, present in the data.

Each row of A represents a term vector, signifying the frequencies with which that term appears in
each document. The corresponding rows of Uk represent term-feature vectors for each term. Similarly,
each column of A represents a document vector, containing the frequencies with which each term ap-
pears in that document, and so the corresponding rows of Vk represent document-feature vectors for each
document. The truncated SVD has mapped the terms and documents to the same k-dimensional space,
which will be referred to as the semantic space.

For example, the word phone might be a represented as a combination of the following features:

phone = 40% technology + 30% communication + 15% social media + 5% photography + . . .

Here, the percentages are indicative of the weights of the corresponding features in the term-feature vector
of phone. Now, when searching for documents about phones, we are interested in documents of which
the document-feature vectors have similar weightings. In practice, we will not know which dimension
represents which feature, and this is also unnecessary in most applications.

7.1 Semantic effects of reduction

The dimension reduction from A to Ak removes much of the noise present in the original data. As we
have seen in Section 2, the last m− k columns of U and last n− k columns of V contribute least to the
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variance of the data. Thus the removal of these columns can be seen as the removal of noise from the
data, which can reveal the underlying latent semantic structure. Furthermore, for a very large database,
m and n can be very high, reaching to hundreds of thousands, or even in the millions. Experimen-
tal results for the optimal value of k for such large databases, however, have often ranged in the mere
hundreds. This results in much smaller quantities of data to be stored, searched through and manipulated.

This reduction has two effects desirable for natural language processing. The first is that similar terms
will be close together in the k-dimensional space, even when they never occur in the same document. For
example, one document may use the word car and another might prefer automobile. However, it is likely
that both documents contain related words such as steering wheel, drive, wheel and so forth. Based on
these similarities, the words car and automobile will be close together in k-dimensional space, so that
a query for car will also return documents containing automobile. This handles the problem of synonymy.

The second effect is that documents with only a small overlap in the same terms will not be close
together in k-dimensional space. It is desirable that a user looking for computer chips, for example, does
not get results about Pringles. Given a large enough document database, LSI should be able to place
a query for computer chips in a very different context than a query for potato chips, while traditional
methods would consider these queries very similar. As a result, LSI is much more capable of handling
polysemy than traditional methods. To summarize, LSI is based on conceptual information retrieval
rather than literal matching of document terms with queries.

7.2 Queries

A query can be represented similarly to a document, as a vector q ∈ Rm where element qt is the
frequency of term t ∈ T of the query. In order to represent the query in the semantic space, we apply
the transformation

q̂ = qTUkΣ−1k

The component qTUk represents a summation over the k-dimensional term vectors, and subsequent mul-
tiplication by Σ−1k applies weights to the different dimensions.

Now that the query is represented in the same semantic space as the documents, the most similar,
and thus relevant, documents can be returned to the user. Similarity is expressed by comparing which
documents are closest to the query, which is typically done using the cosine similarity measure, defined
as

similarity(q, d) =
q · d
‖q‖‖d‖

7.3 Folding-in

When a new document is added to the database, it must be incorporated into the document matrix Vk,
and any new terms must be incorporated into the term matrix Uk. Computing a new SVD from scratch,
however, is very time-consuming and impractical, sometimes even impossible, for large databases. To
solve this issue, (Berry et al., 1995) propose a method called folding-in, whereby the original document
and term matrices are updated to hold the new terms and documents.

Folding in a document essentially follows the same process as posing a query. In order to fold in a
new document vector d ∈ Rm into an existing LSI model, compute

d̂ = dTUkΣ−1k

Now, d̂ is a weighted projection of d onto the span of the current term vectors, and can be added to the
rows of Vk. In the same way, folding in a new term t is done by computing the projection

t̂ = tVkΣ−1k

While having the benefit of avoiding the expensive SVD recomputation, folding-in is not an ideal
process. This is because the new terms and documents have no effect on the existing term and document
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representations. Eventually, folding-in many documents can drastically decrease the quality of the LSI
database.

8 Data representation

Previously, we have assumed that our data input matrix A contained the raw frequencies of words in
documents, given by

At,d = ft,d

where At,d denotes the entry in the tth row and dth column of A, and ft,d denotes the frequency of term t
in document d. However, this does not take into account that shorter documents will contain less words,
or that some words, called stop words, occur much more than others in all documents, such as the, and,
and of. To solve this problem, term frequency-inverse document frequency, or tf-idf, can be used in order
to apply weightings to terms (Manning, Raghavan, & Schütze, 2008).

8.1 Term frequency

A number of methods can be discerned to apply a local weighting to the terms within a document, which
will be discussed here.

1. Raw term frequency: tft,d = ft,d

2. Boolean frequency: tft,d =

{
1 if term t ∈ document d

0 otherwise

3. Logarithmically scaled frequency: tft,d =

{
1 + log ft,d if ft,d > 0

0 otherwise

This method takes into account that a term appearing 20 times more often than another term in a
document is not strictly 20 times more important.

4. Normalized frequency: tft,d = α+ (1− α)
ft,d

maxt∈d ft,d

This method normalizes the term frequency weights over all terms occurring in the document. Here,
α is a smoothing parameter between 0 and 1, typically set to 0.4.

8.2 Inverse document frequency

The idea of inverse document frequency is to scale down the term frequency of a term, based on how often
this term appears in the entire document collection. In this way, terms which are very specific to certain
documents will become more relevant, and the weightings of stop words are scaled down drastically. Thus
we define

idft = log
N

dft

where N is the number of documents in the database and dft is the document frequency of term t, i.e.
the number of documents containing t. Note that if a term is present in all documents in the database,
then N = dft and so idft = 0.

Applying these methods now allows for construction of a weighted input data matrix A with

At,d = tft,d × idft

Now, words (such as stop words) that are present in every document, while they may have a very high
term frequency, will have a tf-idf of 0. This is very useful, since it removes the need to keep a “blacklist”
of stopwords, a so-called stop list, that the search engine should not take into account. Furthermore,
words which are present in only a few documents will have a relatively high weighting, which is desirable
since these can carry much more information about document context and topic.
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9 Small-scale LSI examples

In this section, two small-scale examples of LSI implementation will be shown. The first example was
created for the purposes of this paper in order to demonstrate LSI, tf-idf and queries, and the second is
copied from (Berry et al., 1995) in order to validate the implementation.

9.1 Example 1

We will consider the following documents:

• d1 is about a smartphone with a navigation app.

• d2 is about a mobile phone.

• d3 is about a car with a navigation app.

• d4 is about an automobile.

Furthermore, since d1 and d2 are about phones, they both contain the words call and app, while d3
and d4 both contain the words transport and navigation since they are both about cars. Using boolean
term frequency, we obtain the following table:

Table 1: Term-document matrix corresponding to Example 2

d1 d2 d3 d4
smartphone 1 0 0 0

mobile 0 1 0 0
call 1 1 0 0
app 1 1 1 0
car 0 0 1 0

automobile 0 0 0 1
transport 0 0 1 1
navigation 1 0 1 1

From the table, we can see two distinct categories: the first four terms are about phones, while the
last four are about cars. There is a small amount of noise, due to two documents from different categories
also containing information about a navigation app.

Computing the 2-dimensional truncated SVD of this matrix gives

A2 =



−0.215 0.195
−0.133 0.316
−0.347 0.512
−0.562 0.316
−0.215 −0.195
−0.133 −0.316
−0.347 −0.512
−0.562 −0.316


[
2.803 0

0 1.902

] [
−0.602 −0.372 −0.602 −3.72
0.372 0.602 −0.372 −0.602

]
= U2Σ2V

T
2

Now, each word is represented by its corresponding row of U2 and each document by its corre-
sponding row in V2. For example, smartphone corresponds to (−0.215, 0.195), while d3 corresponds to
(−0.602,−0.372). Thus each word and document is a coordinate (x, y) which can be plotted in order
to visualize the semantic space, as shown in Figure 13a. The figure also contains the projection for the
query automobile navigation app.

We see that the words from the first two documents about phones are all in the upper quadrant, while
the words from the other documents are in the lower quadrant. Furthermore, the words smartphone and
mobile are very close together, while those words do not occur in the same documents. The same goes
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for the words car and automobile. Remember that similarity of words and documents is determined by
their cosine similarity, so it is important to compare words based on the angle they make relative to the
origin, rather than the Euclidian distance between two words. Using this, we see that transport is also
very similar to car and automobile.

(a) Without IDF (b) With IDF

Figure 13: 2-dimensional plot of terms and documents corresponding to Example 1

Figure 13b shows the results of also applying inverse document frequency to the term-document ma-
trix. We can see that this gives a much stronger clustering effect, placing the phone-related words very
close to the first two documents, and the car-related words very close to the last two. There is also
a significant change in the location of app and navigation, which are placed closer together since they
co-occur in two documents. However, app lies more in the direction of the phone documents since it ap-
pears in both of those, while for the same reason navigation lies more in the direction of the car documents.

Another important thing to note is that the query for automobile navigation app is much closer to d3
and d4 than to d1 and d2, even though d1, d3 and d4 each contain exactly two words from the query. We
obtain the following cosine similarity ranking:

1. d3 with similarity(query, d3) = 0.9738

2. d4 with similarity(query, d4) = 0.9332

3. d1 with similarity(query, d1) = 0.3528

4. d2 with similarity(query, d2) = 0.2206

A traditional search method which only compares the overlap between words in the query and in the
documents would return d1, d3 and d4 with equal ranking. However, the LSI method appears to have
given a higher weight to automobile than to navigation and app, thus giving a very high similarity score
for the documents about cars, and a much lower score for the other documents.

9.2 Example 2

The example from (Berry et al., 1995) considers a database of 17 mathematical book titles, which can
be found in Appendix E.1. The corresponding term-document matrix can be found in Appendix E.2.

21



From this matrix, we can compute the 2-dimensional reduced SVD A2 = U2Σ2V
T
2 of the term-document

matrix and plot the terms and documents as in Example 1.

Figure 14: Term-document plot generated for Example 2

The plot from (Berry et al., 1995) can be found in Appendix E.3; we can see that the coordinates for
the words and documents are the same, thus validating the implementation. Furthermore, we can see
some interesting word groupings, such as differential equations, nonlinear systems, oscillation delay and
ordinary partial methods.

10 Text representation

The LSI method uses the bag-of-words model for document representation. This means that it only takes
the term frequencies into account and not the order in which they appear in the document. Thus it
makes no distinction between the sentences the cat ate the mouse and the mouse ate the cat, or between
A not B and B not A. For the purposes of comparing documents this will not hinder us too much, since
it is safe to assume that documents about similar topics will contain a similar bag of words.

Unfortunately, the process of turning a document into a bag of words is not simple. Two impor-
tant steps must be made: tokenization and normalization (Manning et al., 2008). Tokenization is the
process of splitting up a piece of text into its constituent terms, or tokens. A simple approach is to
split up the words along spaces and punctuation such as , . : ; ! and ?. However, we can run into
problems with apostrophes or hyphens: state-of-the-art should become state of the art, while thirty-two
should become thirtytwo. Another difficulty is text containing dates or website links, as we would want
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brightspace.tudelft.nl to remain as one token while standard tokenization splits this into brightspace tudelft
nl.

After having tokenized the text, the tokens must be normalized. This is especially important for
determining term frequencies, since we do not want to count, for example, run and Running as different
terms, even though these are very different strings. To do so, we must create equivalence classes of words,
so that we can classify tokens into sets of words. For example, the equivalence class for word should also
contain Word, words, Words and so forth. There are a number of approaches that should be considered:

1. Capitalisation: an obvious strategy is to reduce all the letters to lowercase, also called case-folding.
This works well in most cases, although it may cause problems for names or organisations, which
should be capitalized regardless of their place in a sentence or enthusiasm of the author.

2. Removing diacritics, such as classifying näıve and naive in the same equivalence class, is fairly
intuitive for the English language. In some other languages, however, the meaning of a word can
be completely dependent on an accent.

3. Stemming: a document can contain many different grammatical instances of the same word, such
as analyze, analysis and analytical. Stemming reduces words to a common base form, often by
removing the characters at the end of words according to a set of rules. For example, a word ending
in -ss, such as dress, should not be altered, while a word ending in a single s should have that
s removed. There are many difficulties with stemming, as this example rule will turn leaves into
leave when it should become leaf, while caves should not become caf. The most commonly used
stemming algorithm for English is the Porter Stemming algorithm.

Fortunately, both the Matlab Text Analytics toolkit as the Python Natural Language toolkit contain
all text-standardization functions described above. The Matlab code constructed for preprocessing doc-
uments can be found in Appendix B.1.

11 Large-scale implementation of LSI search

In this section, we will demonstrate a large-scale implementation of Latent Semantic Indexing on the
Time collection (Krovetz, 1988). This is a collection of 423 articles from Time magazine about a variety
of subjects. The collection also includes a set of 83 queries and relevance judgments as to which docu-
ments are relevant to each query. These can be used to test the implementation.

First, the documents are preprocessed according to the methods described in Section 10, using the
Matlab code in Appendix B.1. From the resulting bag of words, a tf-idf matrix is created using logarithmic
term frequency as described in Section 8. The queries, too, are preprocessed and the documents and query
vectors are translated to k-dimensional space using the LSI method as described in Section 7. For each
query, we can return the 20 most relevant documents using the k-nearest neighbors method. The returned
documents are then compared to the expected relevant documents, and we can calculate the recall score
of the method using:

Recall =
# Relevant documents retrieved

# Relevant documents

Note that, when the number of returned documents is increased, the recall score will also increase. For
example, returning all the documents will result in a recall score of 100%. For the purposes of this ex-
periment, the value of 20 is chosen so that a small number of documents is returned relative to the large
size of the database, taking into account that the maximum number of relevant documents for a query
in the Time collection is 18. The relevant Matlab code for LSI search and calculation of the recall score
can be found in Appendix B.2.

Now we can calculate the recall score of the method for different values of k, in order to find the
optimal value for this document collection. Here, k ranges from 1 to 423, the number of documents in
the collection. For this, we can use the different algorithms discussed in Part 1, in order to test their
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performance on this real-life test problem rather than the random sparse matrix used previously. This
may also show us what effect the errors incurred by the algorithms have on their usefulness in large-scale
applications. After all, a small change in the document-feature vectors can strongly affect which docu-
ments are returned first.

The results are shown in Figure 15. The recall score shown is the average of the recall scores for each
of the 83 queries posed for that value of k. We see that, in general, the recall score increases dramatically
initially. All methods but GKLB then peak around k = 60 and slowly decrease afterwards. This decrease
in performance shows that the dimension reduction provides us with more information about the latent
semantic structure of the document database than the tf-idf matrix alone.

(a) Full plot (b) Close up plot

Figure 15: Recall of LSI method for different algorithms and different values of k

In Section 6 we saw that the error incurred by the block power SVD and SVDS methods were very
similar for relatively low values of k. Now, we also see that their performance for LSI barely differs. The
block power SVD even performs ever so slightly better at its highest point, peaking at k = 60 with a
score of 0.7338 whereas SVDS peaks at k = 68 with a score of 0.7321. What is especially interesting,
is that GKLB performs so much worse than the other methods, while its error was comparable to that
of the randomized SVD. The latter two methods also show much more unstable behaviour than the former.

The time taken by each algorithm for calculating the SVD of the tf-idf matrix is shown in Table 2.
The times shown are the average of 5 runs, measured in seconds. We see somewhat different results than
those in Section 6, remembering that the tf-idf matrix is sparse. Most notable is that the randomized
SVD takes much longer than the other methods for low values of k, while in Section 6 we had seen
that randomized SVD had quite efficient performance on both sparse and full matrices. We also see
that the block power SVD is only faster than SVDS for k = 5. As we saw in Section 3, the time taken
by SVDS significantly decreases after k > 1

3 rank(A) as it switches to a different SVDS method. Since
rank(A) = 423 here, this explains the time reduction seen for k = 200 and k = 300. It is hard to tell
what the cause is of the sudden time reduction seen in randomized SVD for those same values of k, as
the algorithm uses the built-in qr and svd commands of Matlab, of which the code is not available.

Table 2: Time taken for computing the SVD of the tf-idf matrix

Value of k 5 25 50 75 100 200 300
GKLB 0.0088 0.0429 0.1029 0.2370 0.4869 1.7988 3.5143
Randomized SVD 0.6986 1.6544 2.6949 3.7397 4.7898 1.0569 1.3006
Block power SVD 0.0594 0.3092 0.6751 1.1456 1.7027 4.0436 6.8957
SVDS 0.0967 0.1977 0.4459 0.8843 1.0091 0.4478 0.4066
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The semantic space can be visualised by reducing the word matrix U to 2 dimensions and plotting the
words at their respective coordinates, as in Section 9. The result is displayed in Figure 16. Remember
that the similarity of words is determined by the cosine similarity metric, and thus similar words lie in the
same direction relative to the origin. For example, here we can see the words egypt, syria, syrian, cairo,
iraq, egyptian, jordan and so forth all in the same direction. Similarly, just below are the words buddhust,
viet, china, chinese, mao and communist. However, we may not immediately see the connections between
all words displayed. This is because we have reduced the dimension to k = 2, for which the recall score
is very low as we can see in Figure 15, and thus is not the optimal dimension for the semantic space.

Figure 16: Visualisation of the semantic space of Time collection
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Part III

SVD for Recommender Systems
With the unlimited options available to us when searching for a movie on Netflix, music on Spotify or
products on online stores, recommender systems have become almost essential to us for making a selection
in this huge amount of data. Collaborative filtering recommender systems rely on past feedback on items
and user behaviour to infer new user-item associations (Ricci, Rokach, & Shapira, 2011). This can be
based on explicit feedback, such as ratings, or implicit feedback, such as click counts or the amount of
time spent viewing an item.

Traditional collaborative filtering systems often rely on finding a so-called neighbourhood of users who
gave similar ratings for the same items, and predicting the ratings for unrated products for a user based
on the ratings given by users in the neighborhood. However, this approach has many flaws. Firstly, for
large item databases, most users will often only have rated less than 1% of the items, making it extremely
difficult to find exact matches between users. Secondly, the number of computations required for calcu-
lating the correlation between each customer can grow extremely fast, rendering such algorithms useless
for very large problems. Finally, different item names often refer to very similar items, which attempting
to exactly match items across users cannot accommodate for. These issues are called sparsity, scalability
and synonymy respectively.

In 2006, Netflix announced a contest to improve their movie recommender system, releasing a database
of 100 million movie ratings for approximately 500,000 users and 17,000 movies. A prize of 1 million dollars
was awarded to the algorithm that could predict unknown ratings for movies with 10% higher accuracy
than Netflix’s own CineMatch algorithm. Many of the best algorithms used matrix factorization algo-
rithms such as SVD to explore the latent structure of the database (Koren, Bell, & Volinsky, 2009). This
part discusses some of the winning SVD-based algorithms.

12 The Method

In the case of LSI for document searching, the truncated SVD was used to map the words and docu-
ments to the same semantic space, and the value of k was the dimension of that space. Now we wish to
map users and items to the same k-dimensional feature space, so that these, too, can be compared. For
example, when applying SVD to a movie database, each dimension may represent a different genre, and
the weight of that dimension in the user-feature or item-feature vectors indicates how much the user likes
that genre or to what extent the movie adheres to that genre.

The basic method, as described by (Sarwar, Karypis, Konstan, & Riedl, 2002), works as follows: a
matrix is constructed with users as rows and items (such as movies) as columns. Each entry Au,i is the
rating given by user u for item i. Calculating the truncated SVD now supplies us the matrices Uk, Vk
and Σk. We now have a latent k-dimensional space where related items should be close together, and
users should be close to items they like. We can now predict the rating r̂u,i for user u of item i using

r̂u,i = Uk
√

Σk
T

(u) ·
√

ΣkV
T
k (i) (6)

Now, the user-feature matrix is the product Uk
√

Σk
T

, and the item-feature matrix is
√

ΣkV
T
k . Thus the

prediction is equal to the dot product of the corresponding user-feature and item-feature vectors.

As we have seen in previous sections, this technique is very good at handling both sparsity and syn-
onymy, as it will not match items exactly, but discovers underlying features in the data. Furthermore,
it solves the scalability issue because new users and items can be folded-in with very low computational
cost. Adding on many users will require recomputation of the SVD, but this process can be done offline.
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The difficulty with this approach lies in the construction of the user-item matrix A. If constructed in
a similar fashion to the word-document matrices, we will have treated unrated items as having a rating
of 0. This works for approaches where we do not analyse ratings, but the presence of items, in the same
way as analysing the presence of words in a document. We can apply this, for example, when comparing
groceries bought by consumers at a supermarket, or music in playlists. However, if a user has not yet
watched a certain movie or used a certain item, we cannot assume a rating of 0, since there is still the
possibility that the user will enjoy the item.

There are various solutions to this problem. A standard approach is to fill the empty entries with the
average rating for that product or user (in most cases, average product ratings appear to yield better re-
sults). Another approach, first developed by Simon Funk for the Netflix contest, uses stochastic gradient
decent to approach the SVD for the known values, without having to fill in or assume unknown values in
the process. This part will discuss both approaches.

13 Average rating filling

First, we will implement the SVD-based algorithm in which we fill the zero entries in the user-item
matrix with the average of each movie rating and calculate the truncated SVD of the user-movie ma-
trix, as is done by (Sarwar et al., 2002). We will refer to this as the average-rating filling (ARF) algorithm.

The algorithm will be tested on the MovieLens 100k dataset (Harper & Konstan, 2016). This is a
dataset comprising of 100,000 ratings by 943 users on 1682 movies. Ratings take on integer values in the
range of 1-5. The dataset is split into a training set and a test set, where the training set comprises of
80% of the data and the test set of 20%. In this way, the ARF algorithm can be applied to the training
set, and we can test the performance of the algorithm by predicting the ratings for the test set. The
overall performance is calculated using the root mean squared error (RMSE):

RMSE =

√√√√ ∑
(u,i)∈κ

(ru,i − pu · qi)2
N

where N is the total number of test cases, pu is the u-th row of the user-feature matrix Uk
√

Σk
T

, and
qi is the i-th row of the item-feature matrix

√
ΣkV

T
k . The predicted rating r̂u,i = pu · qi is clipped to

improve performance. This entails that when r̂u,i < 1 we set r̂u,i = 1, and when r̂u,i > 5 we set r̂u,i = 5
since we can be sure that none of the real ratings are outside the 1-5 range. Clearly, we wish to minimize
the RMSE. The relevant Matlab code for ARF can be found in Appendix C.1.

Since we are working with the truncated SVD, we can test for which value of k, and for which of the
SVD algorithms from Part 1, the ARF algorithm will work best. For consistency, and due to random
initialization of some of the SVD algorithms, testing is done using 5-fold cross-validation. The results are
shown in Figure 17. At first sight, there appears to be no yellow line for the block power SVD algorithm;
however, this line is in fact present and almost exactly follows the plot line for SVDS. We can see that
the error is minimized at k = 13 for both SVDS and block power SVD with an RMSE of 0.9815. This
would indicate that the optimal number of features with which the users and movies in this database
can be described and compared is 13, and that on average a predicted rating will differ approximately 1
point from the true rating.
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Figure 17: RMSE of ARF algorithm for different values of k

Table 3 shows how long each algorithm takes to perform the SVD of the ARF matrix. The times
shown are the average of 5 runs, measured in seconds. We saw in Section 6 that the block power SVD
has relatively faster performance for full matrices than sparse matrices, in comparison to SVDS. Since
the ARF matrix is full, while the LSI matrix was sparse, this explains why the block power SVD shows
better time performance than SVDS now. For this application, we would prefer the block power SVD
over the SVDS since it takes less time while having very similar performance.

As for the GKLB and randomized SVD algorithms, we again see that they show worse performance.
However, in this case GKLB outperforms randomized SVD, while in the error analysis and LSI search
implementation the opposite was true. Randomized SVD now has much faster performance than it did
for the LSI implementation; this was to be expected as in Section 6 we saw that the algorithm is much
faster for full than for sparse matrices.

Table 3: Time taken for computing the SVD of the ARF matrix

Value of k 5 25 50 75 100 200 300
GKLB 0.0125 0.0911 0.1845 0.2507 0.3462 1.1194 1.7612
Randomized SVD 0.1678 0.2831 0.3913 0.4943 0.5566 0.2017 0.2793
Block power SVD 0.2159 0.3229 0.4843 0.7268 0.9208 2.2860 3.3308
SVDS 0.2529 0.5795 1.0681 1.1472 1.6790 4.2612 7.8470

14 Stochastic gradient descent

This section discusses the stochastic gradient descent (SGD) method first proposed by Simon Funk for the
Netflix prize (Funk, 2006). The goal of stochastic gradient descent is to approach the k-dimensional user-
feature vectors pu and item-feature vectors qi. This is done using a learning algorithm, which minimizes
the mean squared error on the set of known ratings:

f(p∗, q∗) =
∑

(u,i)∈κ

(ru,i − qi · pu)2

=
∑

(u,i)∈κ

fu,i(pu, qi)

where κ is the set of (u, i) pairs for which the rating ru,i is known, and qi · pu = r̂u,i is the predicted
rating of user u for item i.
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In order to minimize f , we can take the derivative ∂f
∂θ and attempt to find a minimum iteratively using

the rule θ ← θ − α∂f∂θ . This lets us follow the error landscape in the direction of the steepest downward
gradient, hence the name gradient descent. Now, for fu,i(pu, qi) = (ru,i − qi · pu)2, we have

∂fu,i
∂pu

= −2qi(ru,i − qi · pu)

∂fu,i
∂qi

= −2pu(ru,i − qi · pu)

This gives the learning rule:

error = ru,i − qi · pu
pu ← pu + α · error · qi
qi ← qi + α · error · pu

where α is the learning rate (the factor 2 is incorporated into α). A high learning rate makes the algo-
rithm work faster but can be unstable and skip over true minima. A low learning rate is slower, but more
accurate.

The SGD algorithm then initializes pu and qi as random vectors, and loops over each rating a fixed
number of times, each time applying the learning rule. Eventually, it should converge to the user-feature
and item-feature vectors, and we can calculate the predicted rating for user u of item i as r̂u,i = qi ·pu. In

other words, the vectors pu form the rows of the user-concept matrix Uk
√

Σk
T

, and the vectors qi form
the rows of the item-concept matrix

√
ΣkV

T
k as in Equation 6.

As with the ARF algorithm, we will test the SGD algorithm on the MovieLens 100k dataset. The
corresponding Matlab code can be found in Appendix C.2. In the implementation, there are a number
of factors that can be fine-tuned. The first is k, the number of suspected features. The second is α, the
learning rate. The value of α is closely tied to the number of epochs, which is the number of times the
algorithm loops over the training set. For a very low value of α, a higher number of epochs is required
since the algorithm learns at a much slower rate. However, the number of epochs should not be too high,
since this will cause the model to overfit on the training data, which can cause worse performance on the
test data. For the purposes of optimizing these values, the base values will be set at k = 15, α = 0.005
and epochs = 20. The user-feature and item-feature vectors are initialized as random vectors drawn from
the normal distribution. Again, 5-fold cross-validation is used for testing the algorithm, and the average
of these trials is shown in the results.

Figure 18: RMSE of SGD algorithm for different values of k
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First, we will attempt to optimize for the number of features, k. The results are shown in Figure 18.
We can see that the algorithm seems to perform best for k = 15, with an RMSE of 0.9539. However, the
behaviour of the SGD algorithm is much more unstable than that of ARF, as the random initialization
of the vectors can greatly influence the outcome.

Since the learning rate (α) and number of epochs required can influence each other greatly, these
should be varied simultaneously in order to optimize both values. In Figure 19 we see that high values of
the learning rate indeed lead to overfitting, especially when the number of epochs is increased. The error
also increases rapidly when α is set very low and the number of epochs is decreased, as it will not have
converged by this point. The minimum seems to occur around α = 0.005 and epochs = 35. More precise
analysis provides the optimal values α = 0.003 and epochs = 37 for an RMSE of 0.9517. However, we
must also consider that 37 epochs of training takes almost twice as long as 20 epochs, for an average
improvement of only 0.0022.

Figure 19: RMSE of SGD algorithm for different values of α

15 Biased stochastic gradient descent

In making the ARF and SGD models, we have assumed that users show no bias in their ratings and
all movies are of equal quality. For example, the model will predict that a user who enjoys romantic
comedies will give a high rating to all movies for which the “romance” and “comedy” weightings of the
item-feature vector are high. However, this does not take into account the vast difference in (perceived)
quality of movies, or that some users give harsher ratings than others.

These observations have been incorporated by (Koren et al., 2009) into the existing SGD model by
using biases: a constant bi for each movie, and bu for each user. A positive bu indicates that user u
gives kinder ratings than average, while a positive bi indicates that movie i is perceived to be better,
regardless of the genres it contains. Say we would want to calculate Alice’s rating of The Godfather,
without knowing anything about Alice’s movie preferences or movies The Godfather is similar to. Now,
The Godfather is a better than average movie, and tends to receive ratings 0.7 higher than the average.
However, Alice is a very critical user, who rates movies 0.5 lower than her average counterparts. If the
average rating for all movies is 3.5, our estimated rating would be 3.5 + 0.7− 0.5 = 3.9.
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Using biases, the predicted rating can be extended as follows:

r̂u,i = µ+ bi + bu + qi · pu

where µ is the global average of all movie ratings. In (Koren et al., 2009) it is also proposed to minimize
the regularized squared error, rather than the mean squared error:

f(p∗, q∗) =
∑

(u,i)∈κ

(ru,i − r̂u,i)2 + λ(‖pu‖2 + ‖qi‖2 + b2u + b2i )

where λ is the regularization constant. Now we have the following learning rules:

error = ru,i − r̂u,i
bu ← bu + α(error − λbu)

bi ← bi + α(error − λbi)
pu ← pu + α(error · qi − λpu)

qi ← qi + α(error · pu − λqi)

Again, the user-feature and item-feature vectors are initialized as random vectors drawn from the
normal distribution, and the biases are initialized as 0. The corresponding Matlab code can be found in
Appendix C.3. For the values k = 10, α = 0.005, epochs = 38 and λ = 0.04 the RMSE is minimized
at an average value of 0.9440, indicating an improvement in performance compared to SGD without biases.

We have seen that the SGD algorithm, both with and without bias, shows much better performance
than the ARF algorithm. However, SGD is much more difficult to finetune, since there are more variable
factors that are reliant on each other, and the random initialization can lead to more unpredictable
performance. The times taken for the algorithms for different values of k are shown in Table 4. For the
SGD algorithms, the optimal values found for α, epochs and λ are used, and ARF is performed using
block power SVD. The times shown are the averages of 5 runs, measured in seconds. We see that ARF
is the fastest by far, performing 3-4 times faster than the SGD algorithms.

Table 4: Time taken to predict Movielens ratings

Value of k 5 10 20 50 100
ARF 0.2458 0.3001 0.3704 0.4972 0.9915
SGD 3.7268 4.0225 4.2213 5.1231 6.8440
Biased SGD 4.4049 4.8031 5.1526 5.7820 7.5401
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Part IV

SVD for Image Processing
Previously, we have discussed applying the SVD in situations where our data can be represented as a
two-dimensional matrix containing frequencies or ratings. Another data that can be represented in such a
way is image data. An image can be represented as a matrix where each element represents the intensity
of the pixel at that location. This part will discuss how the SVD can be used for image compression and
face recognition.

16 Image compression

As we have seen in previous sections, the truncated SVD is very useful for drastically reducing the di-
mension of large data matrices. In the case of LSI and recommender systems, this was especially useful
as it removed the noise present in the data. In this section, we will see that this can also be applied
for image compression, as the truncated SVD can capture the most important information of the image
using much fewer dimensions (Sadek, 2012).

A grayscale m× n pixel image can be represented as a m× n matrix A where Ai,j is the intensity of
pixel pi,j . In most cases, the intensity lies in the range [0, 255] where 0 is black and 255 is white. When the
original image takes up O(mn) space, the truncated SVD of the image matrix takes up O(k(m+ n+ 1))
space. Thus the space needed is reduced when k < mn

m+n+1 . Furthermore, in Section 2 we saw that
the truncated SVD is the best k-rank approximation for the original matrix, minimizing the difference
between the original and truncated matrix. Accordingly, we would expect this method to minimize the
difference between the original and compressed image for k-rank compression.

Figure 20 shows the resulting image Ak = UkΣkV
T
k for increasing values of k when we compress the

Lena image using SVD. The original image is 512×512, and so the space needed is reduced for all k < 255.
For k = 100, we can barely notice any difference between the original image and the compressed image.
An example implementation of SVD image compression in Matlab can be found in Appendix D.1.

(a) Original (b) k = 5 (c) k = 20

(d) k = 50 (e) k = 100 (f) k = 200

Figure 20: Image compression for Lena image
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We can also use this form of image compression to visualize the performance of the algorithms discussed
in Part 1. The Lena image is compressed using GKLB with one-sided re-orthogonalization, randomized
SVD with p = 5 and q = 1, block power SVD with 50 iterations and Matlab’s SVDS for k = 15. The
results are shown in Figure 21. We see that GKLB clearly performs the worst, as the image bears least
resemblance to the original. This was to be expected since we saw in Section 6 that GKLB had the
highest error ‖A−Ak‖ in comparison to the other methods, and thus the largest difference between the
truncated SVD of the image and the original. Randomized SVD appears to perform much better than
GKLB, although not as well as the block power SVD and SVDS, which show very similar performance.

(a) GKLB (b) Randomized SVD (c) Block power SVD (d) SVDS

Figure 21: Lena image compressed using different algorithms, k = 15

Table 5 shows the times taken by each algorithm discussed for compressing the Lena image using the
values of k shown in Figure 20. We see very similar performance of the block power SVD and SVDS;
neither seems to perform consistently better than the other. For very low values of k, GKLB has a clear
time disadvantage although this does not outweigh the much worse compression performance seen in
Figure 21. As the image matrix is full, randomized SVD shows very good time performance relative to
the other methods, especially considering higher values of k.

Table 5: Time taken for computing the SVD of the Lena image matrix

Value of k 5 20 50 100 200
GKLB 0.0020 0.0061 0.0179 0.0820 0.4328
Randomized SVD 0.0229 0.0170 0.0266 0.0306 0.0538
Block power SVD 0.0375 0.0738 0.1195 0.2784 0.6183
SVDS 0.0382 0.0590 0.1292 0.3778 0.0894

A colour image has three colour channels: R (red), G (green) and B (blue), and can be represented
as an m×n× 3 matrix. For compression purposes, we can compute the truncated SVD for each channel
separately, and recombine them to form the compressed image. An example is shown in Figure 22 for
an image of Mondriaan’s Composition with Yellow, Blue and Black, with original size 790 × 800. This
example also shows that SVD compression works exceptionally well for images containing mostly vertical
and horizontal lines, as the image is already recognizable for very low values of k.

(a) Original (b) k = 1 (c) k = 5 (d) k = 10 (e) k = 50

Figure 22: Image compression for Mondriaan image
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17 Face recognition

Just as the SVD allows us to search more efficiently for similar documents in a lower-dimensional space
through LSI, we can also use the SVD to search for similar images in a lower-dimensional image space.
This section will explore the possibility of using the SVD for face recognition (Zeng, 2007).

The method will be tested on the FEI faces database (Thomaz, 2005). The database contains images
of 200 individuals, all between 19 and 40 years old, cropped to contain only their face. Of each individual,
two images are used: one where the individual has a neutral expression, which is used to construct the
database, and one where they are smiling, which is used for testing. Some examples from the database
are shown in Figure 23 and 24.

Figure 23: Neutral faces

Figure 24: Smiling faces

The database is constructed as follows: each face image fi, i = 1, 2, . . . , n of size a× b is reshaped to a
vector of length m = ab by stacking the columns of the image. Then, we take the average fµ = 1

n

∑n
i=1 fi

of the faces. The “average face” is shown in Figure 25. The average face is subtracted from the other
faces for normalization. We can then construct a matrix A, where each column is a normalized face
vector. As with LSI search, we can take the truncated SVD A = UkΣkV

T
k , where each row of Vk is a

face-feature vector.

Figure 25: Average face of FEI database

To recognize a new face vector f , we first subtract the average face fµ and then project the face onto
the face-space. This is done in the same way as projecting a query for LSI, as f ′ = fTUkΣ−1k . The face
closest to the projection f ′, using the cosine similarity metric, is the recognized face. The corresponding
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Matlab code for face recognition can be found in Appendix D.2.

Figure 26 shows the performance of this method on the database for values of k between 1 and 200,
the rank of the face matrix of the database. After k = 13, already 180 out of the 200 test faces are
recognized correctly. The best recognition score is 190 for k = 51. The baseline shown in Figure 26 is
the recognition score for simply finding the nearest face for each new face vector without applying SVD,
which is 189/200. Although the face recognition works just as well with and without applying SVD, the
space required to store the face vectors is significantly decreased: from ab × n to n × k, where typically
k � ab. Also, searching through the smaller database for a matching face is much faster than searching
through the original full-size images. It should be noted that in this case, as opposed to what we have
seen in Part 2 and 3, the performance of the method does not decrease for high values of k.

Figure 26: Faces correctly recognized using SVD method for different values of k

Some of the faces that were not recognized correctly are shown in Figure 27. We can see clearly why
these were chosen as the nearest faces, as they are very similar.

(a) Test face (b) Recognized (c) Test face (d) Recognized

Figure 27: Incorrectly recognized faces

Compared to modern methods such as convolutional neural networks (Lawrence, Giles, Tsoi, & Back,
1997), the SVD face recognition method is far from ideal. A large disadvantage is that it is not shift-
invariant: it only works when the face has already been detected and cropped out of the image so
that it has exactly the same placing as the test face. We have seen that changes in facial expression are
handled with relative ease, but if the head would be moved or rotated performance could greatly decrease.

An advantage to the method is that only one face is needed for training data, while most other
methods only work when many examples of the same face are given. We have also seen that the method
is very good at searching for similar images in a much lower-dimensional space. Although this may not
be the answer for facial recognition, it is a good method for efficiently finding images similar to an input
image, taking up much less time and space.
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18 Further applications of the SVD

We have seen that the SVD is very useful for data compression, removal of noise and recognition of
features in big data applications. In Section 2 it was also shown that the SVD also provides us with
many important matrix properties; not only the singular triplets, but also the (effective) rank, rowspace,
column space and many more. As we will see in this section, there are many other areas in which the
SVD is useful.

18.1 The pseudoinverse and linear least squares problems

Definition 18.1. (Golub & Reinsch, 1970) Let A be an m× n matrix. Then an n×m matrix X is the
pseudoinverse of A if X satisfies the following properties:

(i) AXA = A

(ii) XAX = X

(iii) (AX)T = AX

(iv) (XA)T = XA

The pseudoinverse of A is denoted by A†.

Now, when A = UΣV T , then A† = V Σ†UT , where Σ† = diag(σ†i ) and

σ†i =

{
1
σi

if σi > 0

0 if σi = 0

With respect to the algorithms discussed in Part 1, it is important to note that in calculation of the
pseudoinverse, the smallest singular values of A will become the largest values of Σ†. Now, while we have
seen excellent performance by the block power SVD for calculation of the largest singular values, the
method is much less precise for the smallest singular values, so one should exercise caution when using it
for the pseudoinverse.

In practice, the pseudoinverse is only calculated using the singular values for which σi > tol, also
referred to as the regularized pseudoinverse (Hansen, 1987). This is because the smallest singular values
often only represent noise in the data (as we have seen ourselves), and inverting these will only cause the
amount of noise to increase. The regularized pseudoinverse can, for example, be used to remove noise
from images (Shim & Cho, 1981). In such cases, the block power SVD is again a good candidate for
calculation of the SVD.

The pseudoinverse can also be used to solve linear least squares problems, which are used in regression
analysis to solve overdetermined systems. Given an m×n matrix A and a vector b ∈ Rm with m ≥ n ≥ 1,
then a least squares problem is given by

min
x
‖Ax− b‖2

The unique solution to such a problem is given by x = A†b. As such, the SVD is a very useful tool for
solving problems of this type.

18.2 Principal component analysis

In literature, the SVD is often mentioned alongside the term principal component analysis (PCA), one
of the most important and wide-spread methods for multivariate data analysis first described by Karl
Pearson (Pearson, 1901). The reason for this is that they are essentially the same thing. PCA is described
as a method for simplifying data matrices in order to identify the principal components, i.e. essential
patterns and features, of the data.

Consider a data matrix A of which the rows represent objects, and the columns represent variables.
The findings for each object may be represented by a linear combination of these, possibly dependent,
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variables. PCA is a transformation of the data from this set of dependent variables to a set of linearly
independent variables. These variables are the principal components: orthogonal vectors that lie in the
direction of the greatest variance of the data. Calculating these allows for better explanation of the data
(Wold, Esbensen, & Geladi, 1987).

The principal component vectors are calculated and stored in a matrix W , and a score matrix T = AW
is calculated which maps the original data to a feature space. The first k principal components are the
eigenvectors of the covariance matrix ATA belonging to the k largest eigenvalues of ATA. Remembering
from Section 2 that ATA = V Σ2V T , we see that the principal components are the right singular vectors,
and thus W = V . Also, from T = AW = AV it follows that T = UΣ. Since calculating ATA and
subsequently finding its eigenvectors is a numerically unstable process, PCA is almost always performed
using the SVD. Like SVD, PCA allows for dimension reduction which makes it a desirable technique for
many data analysis applications.

19 Conclusion

This report has examined both the computation and some of the large-scale applications of the singular
value decomposition. The algorithms discussed include Golub-Kahan-Lanczos Bidiagonalization, ran-
domized SVD, block power SVD and Matlab’s SVDS. We have seen that the SVD is useful for many
applications, the main focus being on information retrieval, recommender systems and image processing.

The first algorithm discussed for computing the SVD was GKLB. Here we found that performance
and numerical stability were significantly increased when one-sided re-orthogonalization was applied. De-
spite this, the algorithm seemed to perform worse than other algorithms when comparing error and in
large-scale implementations. We saw that the spectrum of the singular values of the bidiagonal matrix
B played a large role in this difference. Strong oversampling, i.e. allowing many more than k iterations,
could solve this issue. However, we saw in the LSI implementation that an optimal value of k = 60 was
found for rank(A) = 483. The amount of oversampling required for convergence of the first 60 singular
values can be high, and leads us to calculation of the SVD for the bidiagonal matrix B of size similar to
that of A, which can seem quite pointless.

Matlab’s SVDS algorithm also implements GKLB and finds much better results. A part of this im-
provement comes from the convergence checks Matlab performs, which ensure that the error is minimized,
but also cost much more time to perform. SVDS also uses strong oversampling, and even switches to a
different SVD method when k > 1

3 rank(A), as the amount of oversampling required after this point is as
much work as calculating the full SVD.

The GKLB algorithm was often on par with randomized SVD. This algorithm has the advantage
that it does not require iteration and is much simpler to follow than GKLB. For information retrieval
and image processing, randomized SVD outperformed GKLB, while the opposite was true for the ARF
recommender system.

However, neither algorithms performed as well as the block power SVD. This method showed smooth
convergence to 0 in error as the number of iterations was increased and had incredibly similar performance
to SVDS in all applications discussed. We also saw that the block power SVD was able to calculate the
SVD much faster than SVDS for the recommender system application. The method is especially suitable
for calculating the truncated SVD of full matrices when the value of k is small relative to the rank of
the matrix. However, the block power SVD should only be used for low-rank approximations as it is not
precise in calculating the full SVD.

The SVD is a very useful tool for many data applications where it is necessary to search through, and
compare, large quantities of data. The reason for this is that the SVD identifies the component vectors
contributing most to the spread, or variance, of the data, where the singular values can be seen as the
weights assigned to these vectors. Furthermore, truncating the SVD not only reduces the space required
to store the data, but can also reduce much of the noise present and uncover latent features and patterns
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that would not have been visible in the raw data.

We saw in Part 2 that this reduction of noise and exploitation of latent features made it possible
to overcome the problems of polysemy and synonymy so often found in the fields of natural language
processing and information retrieval. Representing words and documents in a lower-dimensional space
provided us with much more information than only the raw data would have done. Because of this, the
LSI search algorithm performs very well as opposed to literal word matching.

Part 3 subsequently showed that what can be done for words and documents, can also be done for
items and users. This not only allows us to find items similar to the user’s tastes, but also predict unseen
ratings. The presence of unseen and biased ratings also led us to consider (biased) stochastic gradient
descent, which provided a different approach to finding lower dimensional SVD-like vectors to represent
the data. Considering this, further research could be done as to whether, and how, the SVD can be
extracted from the results of SGD.

Lastly, we saw in Part 4 that the SVD can also be used for image compression, as image data is
represented with minimal error compared to the original for k-rank compression. This also provided
an opportunity to visualize the differences in performance between the algorithms discussed previously.
Compared to modern methods, the SVD is not quite suited for face recognition, although it does provide
a very (space-)efficient way to search through a large database for similar images.

A disadvantage to using the SVD for LSI and the ARF recommender system is that it does not
provide us with information about how the data is structured, or why, for example, certain words and
documents or users and items are placed close to each other in the reduced (semantic) space. We have
often referred to word-feature, document-feature, user-feature and item-feature vectors, while not having
any information about what these features may be. Especially in the case of users wanting to know why
certain products have been recommended for them, this can be problematic. More research on the topic
would be needed to investigate if, and how, it would be possible to extract more information on the
nature of the identified features.
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Appendices

A Matlab Code for Part 1

A.1 GKLB

1 function [U,S,V] = GKLBR(A,k)
2 % Returns the k-dimensional truncated SVD of A using Golub-Kahan Lanczos ...

Bidiagonalization; include lines 28 and 29 for one-sided re-orthogonalization
3

4 % initialization empty matrices
5 [m,n] = size(A);
6 B = zeros(k+1, k);
7 P = zeros(m, k+1);
8 Q = zeros(n, k+1);
9 rand('state',0);

10 w = randn(m,1);
11 alpha = zeros(k+1,1);
12 beta = zeros(k+1,1);
13

14 % initialization starting values
15 beta(1) = norm(w);
16 P(:,1) = (1/beta(1)) * w;
17 Q(:,1) = transpose(A)*P(:,1);
18 alpha(1) = norm(Q(:,1));
19 Q(:,1) = (1/alpha(1)) * Q(:,1);
20

21 % Bi-diagonalization algorithm
22 for i = 1:k
23 p = (A*Q(:,i)) - (alpha(i)*P(:,i));
24 beta(i+1) = norm(p);
25 P(:,i+1) = (1/beta(i+1)) * p;
26

27 q = transpose(A)*P(:,i+1) - beta(i+1)*Q(:,i);
28 h = (q'*Q(:,1:i))'; % re-orthogonalization of V
29 q = q - Q(:,1:i)*h; % re-orthogonalization of V
30 alpha(i+1) = norm(q);
31 Q(:,i+1) = (1/alpha(i+1)) * q;
32

33 B(i,i) = alpha(i);
34 B(i+1,i) = beta(i+1);
35 end
36 Q = Q(:, 1:k);
37 [Ub, S, Vb] = svd(B); % Use SVD of bidiagonal B to approach SVD of A
38 S = S(1:k,1:k); % Singular values of A
39

40 % Compute left and right singular vectors of A
41 U = zeros(m,k);
42 V = zeros(n,k);
43 for i = 1:k
44 U(:,i) = P * Ub(:,i);
45 V(:,i) = Q * Vb(:,i);
46 end

A.2 Randomized SVD

1 function [U,S,V] = randomSVD(A,k,p,q)
2 % Returns the k-dimensional truncated SVD of A using randomized SVD
3

4 [¬,n] = size(A);
5 ohm = randn(n,k+p); % initialize random matrix
6 Y = A*ohm;
7 % perform power iteration
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8 if q > 0
9 for i = 1:q

10 Y = A*A'*Y;
11 end
12 end
13 [Q,¬] = qr(Y,0); %orthogonalize Y
14 B = Q'*A;
15 [U2,S,V] = svd(B); % perform SVD of smaller matrix B
16 U = Q*U2;
17 U = U(:,1:k);
18 V = V(:,1:k);
19 S = S(1:k,1:k);

A.3 Block power SVD

1 function [U,S,V] = powerblocksvd(A,k,iter)
2 % Returns the k-dimensional truncated SVD of A using block power SVD
3

4 [¬,n] = size(A);
5 V = randn(n,k); % initialize random matrix
6 % perform block power method
7 for i = 1:iter
8 [U,¬] = qr(A*V,0);
9 [V,¬] = qr(A'*U,0);

10 end
11 S = diag(diag(U'*A*V)); % keep only diagonal values; other values are close to 0
12 sgn = sign(S);
13 S = sgn*S; % ensure singular values are positive
14 U = U*sgn;

B Matlab code for Part 2

B.1 Preprocess documents

1 function A = preprocess(filename)
2 % Returns term-document matrix of texts contained in 'filename'
3

4 str = extractFileText(filename);
5 str = strsplit(str,'*TEXT'); % split file into separate documents
6 str(1) = []; % first element is an empty string
7

8 % Normalize text in files and make bag of words
9 cleantext = erasePunctuation(str); % remove all punctuation

10 cleantext = lower(cleantext); % make text lowercase
11 cleantext = tokenizedDocument(cleantext); % tokenize text
12 cleantext = removeShortWords(cleantext,2); % remove tokens shorter than 2 characters
13 cleantext = removeLongWords(cleantext,15); % remove tokens longer than 15 characters
14 cleantext = normalizeWords(cleantext); % normalize words using Porter stemmer
15 bag = bagOfWords(cleantext); % create bag of words
16 bag = removeInfrequentWords(bag,3); % remove words that appear less than 3 times
17 bag = removeWords(bag,stopWords); % remove stop words
18 bag = removeEmptyDocuments(bag); % remove documents that no longer contain words
19 A = tfidf(bag,'TFWeight','log'); % Make term-document matrix A
20 end
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B.2 LSI search and testing

1 function [average] = LSIsearch(A,Q,k)
2 % Performs LSI on term-frequency matrix A and returns average recall score for query ...

matrix Q
3

4 % Initialization
5 [U,S,V] = svds(A,k);
6 [¬,n] = size(Q);
7 Q2 = zeros(k,n);
8

9 % Transform queries to document space
10 for i = 1:n
11 query = Q(:,i);
12 newquery = transpose(query)*U*inv(S);
13 Q2(:,i) = newquery;
14 end
15

16 % Process query relevance test file
17 filename = 'time/TIME.REL';
18 reldocs = extractFileText(filename);
19 reldocs = strsplit(reldocs,'\n');
20 reldocs(84) = [];
21

22 % Calculate relevance scores
23 founddocs = knnsearch(V, transpose(Q2),'K',20,'Distance','cosine'); % find 20 most ...

relevant documents for each query using k-nearest neighbours
24 scores = zeros(1,83);
25 for i = 1:length(reldocs)
26 idx = str2num(reldocs(i));
27 idx(1) = [];
28 score = length(intersect(idx,founddocs(i,:))); % number of relevant documents found by LSI
29 scores(i) = score/length(idx);
30 end
31 average = sum(scores)/83; % return average of relevance scores

C Matlab code for Part 3

C.1 Average rating filling (ARF)

1 function rmse = ARF(trainset,testset,total users,total movies,k)
2 % Performs ARF using k-dimensional SVD on training set; returns RMSE when tested on ...

testset.
3

4 % Initialize matrix with ratings from training set
5 A = zeros(total users,total movies);
6 for i = 1:length(trainset)
7 user = trainset(i,1);
8 movie = trainset(i,2);
9 rating = trainset(i,3);

10 A(user,movie) = rating;
11 end
12

13 % Fill zero values of A with average ratings
14 for i = 1:total movies
15 n = nnz(A(:,i));
16 if n 6= 0
17 avg = sum(A(:,i))/n;
18 for j = 1:total users
19 if A(j,i) == 0
20 A(j,i) = avg; % fill with average movie rating
21 end
22 end
23 else
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24 for j = 1:total users
25 avg = sum(A(j,:))/total movies;
26 A(j,i) = avg; % if movie has not been rated, fill with average user rating
27 end
28 end
29 end
30

31 [U,S,V] = svds(A,k);
32 P = U*transpose(sqrt(S)); % compute user-feature matrix
33 Q = sqrt(S)*transpose(V); % compute movie-feature matrix
34

35 % compute RMSE for data in test set
36 errors = zeros(1,length(testset));
37 total = 0;
38 for i = 1:length(testset)
39 user = testset(i,1);
40 movie = testset(i,2);
41 rating = testset(i,3);
42 predrating = dot(P(user,:),Q(movie,:));
43 if predrating < 1 % clip ratings lower than 1
44 predrating = 1;
45 elseif predrating > 5 % clip ratings higher than 5
46 predrating = 5;
47 end
48 errors(i) = rating - predrating;
49 total = total + (errors(i)ˆ2);
50 end
51 rmse = sqrt(total/length(testset));

C.2 Stochastic gradient descent (SGD)

1 function [rmse] = SGD(trainset,testset,total users,total movies,k,alpha,e)
2 % Performs SGD with k-dimensional vectors, learning rate alpha and e epochs on training ...

set; returns RMSE when tested on testset.
3

4 P = 0.1*randn(total users,k); % randomly initialize user-feature vectors
5 Q = 0.1*randn(total movies,k); % randomly initialize movie-feature vectors
6

7 % learn user-feature and item-feature vectors using training set
8 for i = 1:e % loop over training set e times
9 for j = 1:length(trainset)

10 user = trainset(j,1);
11 movie = trainset(j,2);
12 rating = trainset(j,3);
13 p = P(user,:);
14 q = Q(movie,:);
15 error = rating - dot(p,q);
16 P(user,:) = p + alpha*error*q; % learning rule for p u
17 Q(movie,:) = q + alpha*error*p; % learning rule for q i
18 end
19 end
20

21 % calculate RMSE on testset
22 errors = zeros(1,length(testset));
23 total = 0;
24 for j = 1:length(testset)
25 user = testset(j,1);
26 movie = testset(j,2);
27 rating = testset(j,3);
28 predrating = dot(P(user,:),Q(movie,:));
29 if predrating < 1 % clip ratings lower than 1
30 predrating = 1;
31 elseif predrating > 5 % clip ratings higher than 5
32 predrating = 5;
33 end
34 errors(j) = rating - predrating;
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35 total = total + (errors(j)ˆ2);
36 end
37 rmse = sqrt(total/length(testset));

C.3 Biased stochastic gradient descent

1 function rmse = BiasedSGD(trainset,testset,total users,total movies,k,alpha,e,lambda)
2 % Performs biased SGD with k-dimensional vectors, learning rate alpha and e epochs on ...

training set; returns RMSE when tested on testset.
3

4 P = 0.1*randn(total users,k); % randomly initialize user-feature vectors
5 Q = 0.1*randn(total movies,k); % randomly initialize movie-feature vectors
6 b i = zeros(1,total movies); % randomly initialize user biases
7 b u = zeros(1,total users); % randomly initialize movie biases
8 mu = sum(trainset(:,3))/nnz(trainset(:,3)); % calculate global average
9

10 for i = 1:e
11 for j = 1:length(trainset)
12 user = trainset(j,1);
13 movie = trainset(j,2);
14 rating = trainset(j,3);
15 p = P(user,:);
16 q = Q(movie,:);
17 error = rating - (mu + b i(movie) + b u(user) + dot(p,q));
18 b u(user) = b i(user) + alpha*(error - lambda*b u(user)); % learning rule for ...

user bias
19 b i(movie) = b i(movie) + alpha*(error - lambda*b i(movie)); % learning rule ...

for movie bias
20 P(user,:) = p + alpha*(error*q - lambda*p); % learning rule for p u
21 Q(movie,:) = q + alpha*(error*p - lambda*q); % learning rule for q i
22 end
23 end
24

25 % calculate RMSE on testset
26 errors = zeros(1,length(testset));
27 total = 0;
28 for j = 1:length(testset)
29 user = testset(j,1);
30 movie = testset(j,2);
31 rating = testset(j,3);
32 predrating = mu + b i(movie) + b u(user) + dot(P(user,:),Q(movie,:));
33 if predrating < 1 % clip ratings lower than 1
34 predrating = 1;
35 elseif predrating > 5 % clip ratings higher than 5
36 predrating = 5;
37 end
38 errors(j) = rating - predrating;
39 total = total + (errors(j)ˆ2);
40 end
41 rmse = sqrt(total/length(testset));

D Matlab code for Part 4

D.1 Image compression

1 img = imread('lena.jpg'); % read in Lena image
2 img = im2double(img);
3 k = 100;
4 [U,S,V] = svds(img,k); % compute k-dimensional truncated SVD of image
5 newimg = U*S*V';
6 imshow(newimg); % display compressed image
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D.2 Face recognition

1 function score = facerec(A,k,avg)
2 % Performs k-dimensional SVD face recognition on face matrix A with average
3 % face avg
4

5 [U,S,V] = svds(A,k);
6 score = 0;
7 for i = 1:200
8 name = strcat('faces/',num2str(i),'b.jpg'); % name of smiling faces
9 img = imread(name);

10 img = im2double(img);
11 img = reshape(img,[75000 1]); % reshape face to vector
12 img = img - avg; % normalize face
13 img = img'*U*inv(S); % map face to face-space
14 res = knnsearch(V,img,'K',1,'Distance','cosine'); % find nearest neutral face
15 if ismember(i,res)
16 score = score + 1; % increment score by 1 if face is correctly recognized
17 end
18 end

E Material for Example 2

E.1 Book titles for Example 2

1. B1: A Course on Integral Equations

2. B2: Attractors for Semigroups and Evolution Equations

3. B3: Automatic Differentiation of Algorithms: Theory, Implementation, and Application

4. B4: Geometrical Aspects of Partial Differential Equations

5. B5: Ideals, Varieties, and Algorithms An Introduction to Computational Algebraic Geometry and
Commutative Algebra

6. B6: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem

7. B7: Knapsack Problems: Algorithms and Computer Implementations

8. B8: Methods of Solving Singular Systems of Ordinary Differential Equations

9. B9: Nonlinear Systems

10. B10: Ordinary Differential Equations

11. B11: Oscillation Theory for Neutral Differential Equations with Delay

12. B12: Oscillation Theory of Delay Differential Equations

13. B13: Pseudodifferential Operators and Nonlinear Partial Differential Equations

14. B14: Sinc Methods for Quadrature and Differential Equations

15. B15: Stability of Stochastic Differential Equations with Respect to Semi-Martingales

16. B16: The Boundary Integral Approach to Static and Dynamic Contact Problems

17. B17: The Double Mellin-Barnes Type Integrals and Their Applications to Convolution Theory
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E.2 Term-document matrix for Example 2

Table 6: Term-document matrix corresponding to Example 1

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

algorithms 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
application 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

delay 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
differential 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0
equations 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0

implementation 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
integral 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

introduction 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
methods 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
nonlinear 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
ordinary 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

oscillation 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
partial 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

problem 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
systems 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
theory 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1
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E.3 Term-document plot for Example 2
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