
Multicriteria Optimization for
Radiotherapy
Multicriteria optimalisatie voor radiotherapie

Larissa Scholte

Te
ch
ni
sc
he

U
ni
ve
rs
ite

it
D
el
ft





Multicriteria Optimization for
Radiotherapy

Multicriteria optimalisatie voor radiotherapie

by

Larissa Scholte

in partial fulfillment of the requirements for the degree of

Bachelor of Science
in Applied Mathematics

at the Delft University of Technology,
to be defended publicly on Wednesday July 1, 2015 at 16:00 AM.

Supervisor: Dr. ir. M. Keijzer, TU Delft
Thesis committee: Ir. R. van Haveren, Erasmus MC Rotterdam

Drs. E. M. van Elderen, TU Delft
Dr. D. C. Gijswijt, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Summary

Radiotherapy is one of the main treatments for cancer, and a multi-disciplinary field of research, mostly
involving medicine, physics and mathematics. The focus of this thesis lies in improvements for the
treatment planning, which is a multi-criteria process. We have been constructing a new method to form
the Pareto front for certain objectives. For a Pareto optimal plan one objective cannot be improved
without worsening another objective.

The main question is with which plan the patient should be treated. To compare treatments we have
developed a new method to look at other optimal solutions on the Pareto front around a given solution.
This is done by quickly using of the reference point method. The main advantage is that, when a
clinical isn’t pleased enough with a certain objective in a given solution, it is possible the optimize that
objective some more.
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1
Introduction

There are different cancer treatments, such as surgery, chemotherapy and radiation therapy. Approx-
imately half of the patients diagnosed with cancer is treated with radiation therapy. Radiation therapy
is a treatment that makes use of ionizing radiation. The radiation injures or destroys cells in the area
being treated by damaging their genetic material, making it impossible for these cells to continue to
grow and divide.

Radiation damages both cancer cells and normal cells, although most normal cells can recover from
the effects of radiation. The goal is to destroy the tumour, while saving the healthy tissues as much as
possible. Hence, it is given in many fractions, allowing healthy tissue to recover between fractions.

Different mathematical problems show up in optimizing the treatment plan. For a treatment, the
accelerator is rotated around the patient and the leaf placement in the multileaf collimator (MLC) is
adjusted such that the beams overlap at the tumour to maximize the radiation delivered to the tumour
and minimize the dose to the surroundings. So one must know the directions from which to irradiate.
In addition to knowing the beam angles, one must also know the intensity of the beams at each point.
Optimizing the intensity profiles is a multi-criteria problem, i.e. there are several treatment objectives
which have to be taken into account.

We will focus on methods of computing the intensity of the irradiation, such that the tumour re-
ceives the prescribed dose and the healthy structures receive as little as possible. This is done by
first calculating an optimal solution by the 𝜖-constraint method introduced by Sebastiaan Breedveld
(Breedveld, 2013).

The main focus of this thesis is to obtain a new method to generate the Pareto front near the
solution derived by the 𝜖-constraint method. At this moment the methods that are used to look for
solutions near a given solution are very time-consuming. The goal is to derive a new method, which
uses the reference point method, such that it takes less time to compute the Pareto front. The idea
behind this is that we can compare different treatments plans.

In Chapter 2 we will give an overview of the subject radiotherapy. In Chapter 3 we will introduce
the concept of multi-criteria optimization and present two optimization methods, namely the 2-phase
𝜖-constraint method and the multiple reference point method. This latter method is the main focus
of this project. In Chapter 4 we will give an example of how the multiple reference method works in
two-dimensional space. Next, we will show how we used the reference point method to generate the
Pareto front for two objectives (Chapter 5) and three objectives (Chapter 6). Then we will show in
Chapter 7 how the method is applied on a realistic patient. Finally, Chapter 8 and Chapter 9 conclude
this report.
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2
Radiotherapy

Radiation therapy, or radiotherapy in short, is a medical treatment for cancer that kills tumour cells
by means of ionizing radiation. The main delivery techniques are external beam therapy, where the
patient is irradiated by external sources. The goal of the treatment is to destroy the tumour, while
saving the healthy tissues as much as possible. The absorbed dose in surrounding tissues should thus
be minimized in order to reduce damage to healthy organs.

2.0.1. Treatment

Cancer patients can be treated with radiation therapy with the intention to cure and for palliative care,
where the goal is to reduce suffering caused by cancer. Radiation therapy is also commonly used as a
complementary treatment for patients who undergo chemotherapy or surgery. Advantages of radiation
therapy include that the treatment is non-invasive, potentially organ preserving, and that systemic side
effects are generally avoided, because only a part of the body is irradiated.

Improving the treatment plans is one of the ways to achieve a small chance on complications. To
avoid treatment complications as much as possible, it is important to construct a treatment plan which
gives enough dose to the tumour and minimizes the dose to the surrounding healthy structures. Ex-
amples of side effects are pneunomitis when a tumour in the lung has been irradiated or reduced saliva
production when the patient has a tumour in the head-and-neck area. Another risk is development of
secondary cancer caused by the ionizing radiation.

Because each patient is anatomically unique, a personal treatment plan is generated. A treatment
plan contains information on how the dose, and consequently the probability of physical damage from
irradiation is distributed inside the patient. Prior to a treatment, a treatment plan for each patient is
made by making a CT-scan of the patient. The CT-scan produces cross-sectional X-ray slices that can
be processed into a three-dimensional volume image of the patient volume. The tumour, also called
the target volume, and the organs-at-risk (OARs) are delineated by a physican. After this a personal
treatment plan can be made. Sometimes to localize the tumour a MRI, PET or SPECT scan are required
as well. In Figure 2.1 we can see an example of delineated CT-slices of the head-and-neck area in the
axial (upper-left), sagittal (upper-right) and coronal (bottom-left) view.
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4 2. Radiotherapy

Figure 2.1: Example of a delineated CT-scan.

Ionizing radiation damages the cellular DNA and thereby stops the cell division of the radiated cells.
Since healthy cells can recover faster than the tumour cells, the patient receives the radiation dose in
multiple fractions, approximately 20 fractions on average. The treatment fractions are delivered with
daily intervals, which is a time-scale that permits the healthy cells to recover from the effects of the
irradiation.

Radiation therapy can be given by using an external radiation source: ’external beam radiation
therapy’ (EBRT). The most common medical device for external beam radiation therapy is a linear
accelerator whose beam rotates through a gantry around the patient, emitting beams of X-rays (see
Figure 2.2). The field shape is determined by a multileaf collimator (MLC) which is attached to the
gantry. Its adjustable heavy-metal acts as a filter, blocking or allowing radiation through, in order to
tailor the beam shape to the shape of the tumour.

Figure 2.2: Lineair accelerator whose beam can rotate
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2.0.2. Treatment planning

Different mathematical problems show up in optimizing the treatment plan. During treatment the
accelerator is rotated around the patient and the leaf placement in the MLC is adjusted such that the
beams overlap at the tumour. So one must know the directions from which to irradiate. In addition to
knowing the beam angles, one must also know the intensity of the beams at each point.

The main parameters that need to be determined during treatment planning are the number of
radiation fields, their orientations, and the intensity of the beams. Optimizing the intensity profiles is a
multi-criteria problem, i.e. there are several treatment objectives which have to be taken into account.

In Figure 2.3 a dose distribution for the example in Figure 2.1 inside the patient is shown. Red
indicates high-dose areas (high damage) and blue low-dose (less damage). The ultimate aim is to
colour only the red contour, the tumour.

Figure 2.3: Effect of a specified dose to a patient.

The patient geometry is for optimization purposes divided into volume elements called voxels, and
the beam planes are divided into surface elements called bixels. The corresponding minimization
problem will be discussed in Section 3.1. The treatment planning problem is assumed to be solved
only once and the optimized treatment plan is then kept identical during all treatment fractions. Beam
orientation optimization and adaptive replanning are not discussed in this thesis.





3
Multicriteria optimization

3.1. Basic Concepts

A general multicriteria optimization problem consist of optimizing a set of 𝑘 ≥ 2 objective (or criterion)
functions 𝑓ኻ(𝑥), 𝑓ኼ(𝑥), … , 𝑓፤(𝑥). The objectives, denoted as 𝑓። ∶ ℝ፧ → ℝ for 𝑖 ∈ {1, … , 𝑘}, are assumed
to be convex. Each objective can be maximized or minimized. We assume, without loss of generality,
that all are to be minimized. The most important objective is to irradiate the tumour sufficiently enough,
otherwise the patient will not be cured. The other objectives involve minimizing the specified dose to
the healthy tissues. The decision vector 𝑥 ∈ ℝ፧ is a vector of 𝑛 variables: 𝑥 = (𝑥ኻ, 𝑥ኼ, … , 𝑥፧)ፓ, which are
the fluences in bixels. So the variables 𝑥 are the parameters that determine the intensity modulation
of the radiation fields.

A function 𝑓 ∶ ℝ፧ → ℝ is convex if

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) (3.1)

for all 𝑥, 𝑦 ∈ ℝ፧ and all 0 ≤ 𝛼 ≤ 1.

Let 𝑆 denote the set of feasible solutions in the decision space ℝ፧. The feasible set consists of
vectors satisfying the constraints imposed by the decision maker, e.g. each fluence 𝑥። ≥ 0. A number
of 𝑙 ∈ ℕ constraints 𝑔(𝑥) = (𝑔ኻ(𝑥), … , 𝑔፥(𝑥)) ≤ 0 has to be satisfied, so 𝑆 = {𝑥 ∈ ℝ፧|𝑔(𝑥) ≤ 0}. We
assume that all functions 𝑔። are convex and 𝑆 is a non-empty compact set.

To each decision vector 𝑥 ∈ 𝑆 one objective vector, 𝑧 = 𝑓(𝑥) = (𝑓ኻ(𝑥), 𝑓ኼ(𝑥), … , 𝑓፤(𝑥)), is assigned.
Therefore, we can consider the following multicriteria problem:

minimize {𝑓ኻ(𝑥), 𝑓ኼ(𝑥), … , 𝑓፤(𝑥)}
subject to 𝑥 ∈ 𝑆 (3.2)

Solving a multi-objective problem results in a set of optimal solutions. All optimization functions 𝑓
are defined with the dose distribution 𝑑 as the argument 𝑓(𝑑) = 𝑓(𝑑(𝑥)). Appropriate optimization
functions should not only accurately model the clinical goals, but also be convex in order to be suitable
for optimization. Below we will define a number of terms: Pareto optimality, the ideal objective vector,
anchor points, the nadir point and the wish-list.

3.1.1. Pareto optimality

In multicriteria optimization, several conflicting functions, or objectives, have to be optimized. Since
the objectives are conflicting, there is not one optimal solution, but there are multiple optimal solutions
to a multi-objective optimization problem. These optimal solutions are called Pareto optimal.
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8 3. Multicriteria optimization

In general, a decision vector 𝑥∗ ∈ 𝑆 is Pareto optimal if there does not exist another vector 𝑥 ∈ 𝑆
such that 𝑓።(𝑥) ≤ 𝑓።(𝑥∗) for all 𝑖 = 1,… , 𝑘 and 𝑓፣(𝑥) < 𝑓፣(𝑥∗) for at least one index 𝑗. The set of Pareto
optimal solutions is called the Pareto set and its image in the objective space is called the Pareto Front.
Further we denote the the objective vector as 𝑧∗ = 𝑓(𝑥∗) (Miettinen, 1999).

So Pareto optimality is a state of outcome in which it is impossible to improve any objective without
worsening at least one other objective.

3.1.2. Ideal Objective Vector

The ideal objective vector, 𝑧∗ = (𝑧∗ኻ, 𝑧∗ኼ, … , 𝑧∗፤) denotes the array with the lower bound of all objective
functions.

𝑧∗። = min፱∈ፒ 𝑓።(𝑥) 𝑖 ∈ {1, … , 𝑙} (3.3)

In general, the ideal objective vector corresponds to a non-existent solution except when the objective
functions are non conflicting.

Figure 3.1: An example of a Pareto front for two objective functions and the corresponding ideal point.

3.1.3. Anchor points

An anchor point 𝜇። corresponds to the optimal value of the 𝑖-th objective function in the feasible space.
Thus, 𝑛 objective functions give 𝑛 anchor points. An example for two objectives functions can be seen
in Figure 3.2
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Figure 3.2: An example of a Pareto front for two objective functions with the corresponding anchor points.

3.1.4. Nadir point

The nadir point 𝑧፧ፚ፝ = (𝑧፧ፚ፝ኻ , 𝑧፧ፚ፝ኼ , … , 𝑧፧ፚ፝፤ ) is the vector with the worst objective values over the
Pareto set. The 𝑚-th component of the nadir objective vector 𝑧፧ፚ፝ is the constrained maximum of the
following problem:

maximize 𝑓፦(𝑥)
subject to 𝑥 ∈ 𝑃 (3.4)

where 𝑃 is the Pareto optimal set. Unlike the ideal objective vector, 𝑧፧ፚ፝ represents the upper bound of
each objective function in the Pareto-optimal set. The nadir objective vector may represent an feasible
or non-feasible solution (depending on the convexity and continuity of the Pareto-optimal set). This
nadir point is much more difficult to compute. The nadir point can be approximated by taking the
maximal values of all objective functions obtained by their separated minimizations. An example of a
nadir point can be seen in Figure 3.3.
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Figure 3.3: An example of a Pareto front for two objective functions with the corresponding nadir point.

3.1.5. Wish-list

The objectives and their priorities and goals are given in a prioritized list, which we call a wish-list. For
𝑘 objectives, objective 𝑓።(𝑥) has priority 𝑖 and goal 𝑏።. Furthermore, the list contains (hard) constraints
𝑔(𝑥) which are to be met at all times. An objective 𝑓ኻ may be to minimize the dose in a certain organ.
The goal 𝑏። may be a certain threshold of that objective, minimize 𝑓። below that goal is nice, but 𝑓። has
a lower priority, the other objectives are then minimized first. An example is given in Table 3.1.

Table 3.1: General wish-list.

Priority Objective Goal
1 𝑓ኻ(𝑥) 𝑏ኻ
2 𝑓ኼ(𝑥) 𝑏ኼ

⋮
𝑘 𝑓፤(𝑥) 𝑏፤

𝑔(𝑥) ≤ 0
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3.2. 2-phase epsilon-constraint Method

The first optimization method used in this thesis is the 2-phase 𝜖-constraint method, introduced in
radiotherapy by Breedveld et al. (2007). In this method, a goal can be assigned to each objective.
When it is possible to minimize the dose below a certain threshold (i.e. its goal) for one objective, it
is often more desired to minimize the dose for other (lower priority) objectives first, than to directly
minimize the dose for the higher priority objectives to their fullest extent. In this thesis we denote the
𝜖-solution by 𝑧Ꭸ.

In this method, one of the objective functions is selected to be optimized and all the other objective
functions are converted into constraints by setting an upper bound to each of them. In the first iteration
of the first phase, the objective with the highest priority is optimized

minimize 𝑓ኻ(𝑥)
subject to 𝑔(𝑥) ≤ 0 (3.5)

This gives the result 𝑥∗, and a new bound is chosen as follows. If the goal for 𝑓። is reached, 𝑓።(𝑥።) < 𝑏።,
then we set 𝑓።(𝑥) ≤ 𝑏። as a new constraint. When the goal is not reached, 𝑓።(𝑥።) ≥ 𝑏።, we set
𝑓።(𝑥) ≤ 𝛿𝑓።(𝑥።) as a new constraint. 𝛿 is a slight relaxation to create some space for the subsequent
optimizations, usually set to 1.03:

𝜖። = {
𝑏። 𝑓።(𝑥∗)𝛿 < 𝑏።

𝑓።(𝑥∗)𝛿 𝑓።(𝑥∗)𝛿 ≥ 𝑏። (3.6)

And in the next optimization, 𝑓ኼ is optimized while keeping 𝑓ኻ constrained.

minimize 𝑓ኼ(𝑥)
subject to 𝑔(𝑥) ≤ 0

𝑓ኻ(𝑥) ≤ 𝜖ኻ
(3.7)

The 2-phase 𝜖-constraint problem is of the form

minimize 𝑓።(𝑥)
subject to 𝑔(𝑥) ≤ 0

𝑓፣(𝑥) ≤ 𝜖፣ 𝑗 ∈ {1, … , 𝑖 − 1}
(3.8)

where 𝑖 ∈ {1, … , 𝑘}
In this research project the solution obtained by the 𝜖-constraint method is used as a base. We are

going to look at optimal solutions around the 𝜖-constraint solution and investigate whether we can relax
one objective and maybe gain much on other objectives. These surrounding solutions are obtained
using the reference point method, explained in next section.
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3.3. Multiple Reference Point Method

The multiple reference point method can be used to approximate the Pareto front. In this research
project we use the same method used by van Haveren et al. (2015).

3.3.1. The reference points

A reference point gives desirable or acceptable values for each one of the objective functions (𝑓።). The
resulting objective vector is called a reference point and can be defined either in the feasible or in the
infeasible region of the objective space. The reference points have to be chosen such that all objectives
should improve for all subsequent reference points. The first reference point consists of pessimistic
aspiration levels for the 𝑓። while the last one consists of too optimistic reference levels.

The decision maker specifies 𝑝 ∈ ℕ reference points in the objective space. The reference points
𝑟፣ ∈ ℝ are denoted as 𝑟ኻ, … , 𝑟፩, with 𝑟፩ < … < 𝑟ኼ < 𝑟ኻ, such that the objectives only improve. The
reference points are collected in a reference list, see Table 3.2.

Table 3.2: General reference list.

Priority Reference Point 𝑓ኻ 𝑓ኼ … 𝑓፧
1 𝑟ኻ 𝑟ኻኻ 𝑟ኻኼ … 𝑟ኻ፧
2 𝑟ኼ 𝑟ኼኻ 𝑟ኼኼ … 𝑟ኼ፧
⋮ ⋮ ⋮ ⋮ ⋮
𝑝 𝑟፩ 𝑟፩ኻ 𝑟፩ኼ … 𝑟፩፧

Table 3.2 can be read as follows: 𝑟ኻኻ is the goal for the first objective 𝑓ኻ, 𝑟ኻኼ is the goal for the second
objective 𝑓ኼ, ... , 𝑟ኻ፧ is the goal for the last objective 𝑓፧. With 𝑝 priority levels, we get 𝑝 reference points
𝑟፣, 𝑗 = 1,…𝑝.

Figure 3.4: An example of a reference path for two objective functions. The circular points are the reference points and ፲̂
represents the most desired point of the decision maker.
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3.3.2. The partial achievement functions

In this subsection we describe how a convex optimization problem is obtained. Using the reference
list a referene pad can automatically be constructed by applying linear interpolation to the reference
points. This results in a path 𝛾 ∶ ℝ → ℝ፧, for which every value 𝑧 ∈ ℝ corresponds to a unique point
on the reference path.

The entries of the strictly decreasing sequence (𝑣፣)፩፣዆ኻ ⊆ ℝ, defined later in Section 4.1, are mapped
to the reference points 𝛾(𝑣፣) = 𝑟፣ for all 𝑗 ∈ {1, … , 𝑝}. The values in between are linearly interpolated.

The partial achievement functions 𝑠። are given by:

𝑠።(𝑓።(𝑥)) = {
𝑣፩ + 𝛼ኻ𝑤፩። (𝑓።(𝑥) − 𝑟

፩
። ), 𝑓።(𝑥) ≤ 𝑟፩።

𝑣፣ +𝑤፣። (𝑓።(𝑥) − 𝑟
፣
። ), 𝑟፣። < 𝑓።(𝑥) ≤ 𝑟

፣ዅኻ
። , 𝑗 ∈ {2, … , 𝑝}

𝑣ኻ + 𝛼ኼ𝑤ኼ። (𝑓።(𝑥) − 𝑟ኻ። ), 𝑟ኻ። < 𝑓።(𝑥),
(3.9)

where,

𝑤፣። =
𝑣፣ዅኻ − 𝑣፣
𝑟፣ዅኻ። − 𝑟፣።

, 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {2, … , 𝑝}, (3.10)

Parameters 𝛼ኻ and 𝛼ኼ satisfy 0 < 𝛼ኻ ≤ 1 ≤ 𝛼ኼ. Parameter 𝛼ኻ models the increase of the satisfaction of
the decision maker in case better outcomes than the last reference level 𝑟፩ are generated. Parameter
𝛼ኼ represents the increase of the decision makers dissatisfaction for generated outcomes worse than
the first reference point 𝑟ኻ. Note that these parameters are irrelevant when all aspiration levels of the
first reference point 𝑟ኻ are feasible while all aspiration levels of the last reference point 𝑟፩ are infeasible
(𝑟፩። ≤ 𝑓።(𝑥) ≤ 𝑟ኻ። for all 𝑖 ∈ [𝑛] and 𝑥 ∈ 𝑋).

By choosing appropriate values for (𝑣፣)፩፣዆ኻ, the convexity of all partial achievement functions can
be guaranteed. It suffices to choose an initial pair 𝑣፩ < 𝑣፩ዅኻ and ensure that the following inequalities
hold

𝑣፣ዅኻ ≥ 𝑣፣ + (𝑣፣ − 𝑣፣ዄኻ) max
።∈{ኻ,…,፧}

𝑟፣ዅኻ። − 𝑟፣።
𝑟፣። − 𝑟

፣ዄኻ
።

, 𝑗 ∈ {2, … , 𝑝 − 1} (3.11)

This condition guarantees that the slopes 𝑤፣። are monotonic, 𝑤ኼ። ≥ 𝑤ኽ። ≥ … ≥ 𝑤፩። , which results
in convex partial achievement functions. Defining the achievement functions 𝑎። ∶ ℝ፦ → ℝ as 𝑎።(𝑥) =
𝑠።(𝑓።(𝑥)), we can formulate the convex optimization problem with multiple reference points as follows:

minimize 𝑧 + ∑
።∈{ኻ,…,፧}

𝜌።𝑎።

subject to 𝑎። ≤ 𝑧, 𝑖 ∈ {1, … , 𝑛}
𝑣፩ + 𝛼ኻ𝑤፩። (𝑓።(𝑥) − 𝑟

፩
። ) ≤ 𝑎። , 𝑖 ∈ {1, … , 𝑛}

𝑣፣ +𝑤፣። (𝑓።(𝑥) − 𝑟
፣
። ) ≤ 𝑎። , 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {2, … , 𝑝}

𝑣ኻ + 𝛼ኼ𝑤ኼ። (𝑓።(𝑥) − 𝑟ኻ። ) ≤ 𝑎። , 𝑖 ∈ {1, … , 𝑛}
𝑥 ∈ 𝑆

(3.12)

with 𝑧 and 𝑎። unbounded variables. Sensitivity parameters 𝜌 = (𝜌ኻ, … , 𝜌፧) > 0 are small positive
scalars forming the regularization term, ∑𝜌።𝑎።, and are used to guarantee Pareto optimal solutions.
Effectively, the scalarizing achievement function is minimized (Ogryczak & Kozlowski):

𝑆(𝑠ኻ(𝑓ኻ(𝑥), … , 𝑠፧(𝑓፧(𝑥))) ∶= max
።∈{ኻ,…,፧}

𝑠።(𝑓።(𝑥)) + ∑
።∈{ኻ,…,፧}

𝜌።𝑠።(𝑓።(𝑥)). (3.13)





4
Reference Point Method

4.1. The reference point method for two objectives

For an explanation of the method, we start with a test patient with two objectives. Later on we extend
this to three objectives and use this as a generalization for 𝑛 objectives. As an example we consider a
wish-list for two objectives, namely for the average dose in the left and right parotid. In table 4.1 you
can see that the objectives alternate.

Table 4.1: Wish-list for two objectives

Priority Objective Name Goal
1 𝑓ኻ(𝑥) Parotid Left 39
2 𝑓ኼ(𝑥) Parotid Right 39
3 𝑓ኻ(𝑥) Parotid Left 20
4 𝑓ኼ(𝑥) Parotid Right 20
5 𝑓ኻ(𝑥) Parotid Left 10
6 𝑓ኼ(𝑥) Parotid Right 10
7 𝑓ኻ(𝑥) Parotid Left 2
8 𝑓ኼ(𝑥) Parotid Right 2

By the method explained in Section 3.3.1 we gain the reference points listed in Table 4.2.

Table 4.2: Reference list for the left parotid and right parotid.

Priority Reference Point 𝑓ኻ 𝑓ኼ
1 𝑟ኻ 𝑟ኻኻ = 39 𝑟ኻኼ = 39
2 𝑟ኼ 𝑟ኼኻ = 20 𝑟ኼኼ = 20
3 𝑟ኽ 𝑟ኽኻ = 10 𝑟ኽኼ = 10
4 𝑟ኾ 𝑟ኾኻ = 2 𝑟ኾኼ = 2

We start with choosing appropriate 𝑣፣ ’s such that the sequence (𝑣፣)፩፣዆ኻ is strictly decreasing and
such that inequality 3.11 holds. So we take

𝑣፣ዅኻ = 𝑣፣ + (𝑣፣ − 𝑣፣ዄኻ) max
።∈{ኻ,…,፧}

𝑟፣ዅኻ። − 𝑟፣።
𝑟፣። − 𝑟

፣ዄኻ
።

+ 1, 𝑗 ∈ {2, 3} (4.1)

With 𝑣ኾ = 0 and 𝑣ኽ = 1 we can calculate the other two values 𝑣ኼ and 𝑣ኻ:

𝑣ኼ = 𝑣ኽ + (𝑣ኽ − 𝑣ኾ) max።∈{ኻ,ኼ}
𝑟ኼ። − 𝑟ኽ።
𝑟ኽ። − 𝑟ኾ።

+ 1 = 1 + 1.25 + 1 = 3.25 (4.2)

15
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𝑣ኻ = 𝑣ኼ + (𝑣ኼ − 𝑣ኽ) max።∈{ኻ,ኼ}
𝑟ኻ። − 𝑟ኼ።
𝑟ኼ። − 𝑟ኽ።

+ 1 = 3.25 + (3.25 − 1) ⋅ 1.9 + 1 = 8.525 (4.3)

Now we can calculate the values for 𝑤፣። 𝑖 ∈ {1, 2}, 𝑗 ∈ {2, 3, 4}, where 𝑤
፣
። =

፯ᑛᎽᎳዅ፯ᑛ
፫ᑛᎽᎳᑚ ዅ፫ᑛᑚ

: see Table 4.3 .

Table 4.3: The values for ፰ᑛᑚ for the given reference points for the left parotid and right parotid.

j 𝑤፣።
2 0.2776
3 0.2250
4 0.1250

Note that 𝑟፣ኻ = 𝑟፣ኼ and 𝑤፣ኻ = 𝑤፣ኼ for all 𝑗 ∈ {2, 3, 4}. For these value levels with 𝛼ኻ = 𝛼ኼ = 1, the
partial achievement functions for the two objectives (𝑖 = 1, 2) take the following form:

𝑎።(𝑥) =
⎧
⎪
⎨
⎪
⎩

0.125(𝑓።(𝑥) − 2), 𝑓።(𝑥) ≤ 2
0.125(𝑓።(𝑥) − 2), 2 < 𝑓።(𝑥) ≤ 10

1 + 0.225(𝑓።(𝑥) − 10), 10 ≤ 𝑓።(𝑥) ≤ 20
3.25 + 0.2776(𝑓።(𝑥) − 20), 20 ≤ 𝑓።(𝑥) ≤ 39
8.525 + 0.2776(𝑓።(𝑥) − 39), 39 < 𝑓።(𝑥),

(4.4)

Also note the first two and last two equations are the same since 𝛼ኻ = 𝛼ኼ = 1, so we get for the
partial achievement functions

𝑎ኻ(𝑥) = {
0.125(𝑓።(𝑥) − 2), 𝑓።(𝑥) ≤ 10

1 + 0.225(𝑓።(𝑥) − 10), 10 ≤ 𝑓።(𝑥) ≤ 20
3.25 + 0.2776(𝑓።(𝑥) − 20), 𝑓።(𝑥) > 20

(4.5)

Next we take 𝜌ኻ = 𝜌ኼ = 0. By the method described in Section 3.3 we can solve the following
optimization problem:

minimize 𝑧
subject to 𝑎። ≤ 𝑧, 𝑖 ∈ {1, 2}

0 + 0.1250(𝑓።(𝑥) − 2) ≤ 𝑎። , 𝑖 ∈ {1, 2},
1 + 0.2250(𝑓።(𝑥) − 10) ≤ 𝑎። , 𝑖 ∈ {1, 2},
3.25 + 0.2776(𝑓።(𝑥) − 20) ≤ 𝑎። , 𝑖 ∈ {1, 2}
𝑥 ∈ 𝑆.

(4.6)

The 𝑓።(𝑥)’s and 𝑥 ∈ 𝑆 are computed with the Erasmus iCycle program, where the solution of the
multiple reference point method is given in Table 4.4.

Table 4.4: Solution in Gray of the reference point method for the left parotid (፟Ꮃ) and right parotid (፟Ꮄ).

𝑓ኻ(𝑥) 𝑓ኼ(𝑥)
4.0404 21.3741



5
Generate the Pareto front with the

reference point method

In this chapter we are introducing a new method to generate the Pareto front. This can be done by
taking different points as reference points and then solve them with the reference point method, still
having the same constraints as the original problem. We are going to discuss which reference points
are preferable to generate the Pareto front. The different types of reference points we are going to
investigate are the zero point, the ideal point and the nadir point. For simplicity we will first discuss
this method for two objectives.

5.1. Generate useful reference points

In this section we will generate a new reference point by taking the 𝜖-solution and optimize with a
stepsize 𝑠 in the first or second objective.

Assume we obtained 𝑧Ꭸ = (𝑧Ꭸኻ, 𝑧Ꭸኼ) as the 𝜖-constraint solution in the objective space. So for example,
when we want to further optimize with respect to the first objective we can generate a new reference
point 𝑟ኻ = (𝑧Ꭸኻ − 𝑠, 𝑧Ꭸኼ). Furthermore we take for the second reference point, 𝑟ኼ, the zero point or the
ideal point. In the case we use the nadir point instead of the zero or ideal point, the nadir point is the
first reference point 𝑟ኻ. With this two reference points, 𝑟ኻ and 𝑟ኼ, the multiple reference point method
is applied to determine the new solution 𝑧ᖣኻ on the Pareto front. The same procedure is applied to
the new solution 𝑧ᖣኻ and this gives an other solution 𝑧ᖣኼ. In this way we can proceed until the first
reference point has reached its maximum, i.e. until the reference path has no solution on the Pareto
front.

5.1.1. The reference point method using the zero point

In this section we apply the reference point method using the zero point. We are going to optimize with
respect to the first objective, 𝑓ኻ. With zero as the second reference point, 𝑟ኼ = (0, 0), the reference
list for the first iteration is shown in Table 5.1.

Table 5.1: Reference list for the first iteration.

Priority Reference Point 𝑓ኻ 𝑓ኼ
1 𝑟ኻ 𝑟ኻኻ = 𝑧Ꭸኻ − 𝑠 𝑟ኻኼ = 𝑧Ꭸኼ
2 𝑟ኼ 𝑟ኼኻ = 0 𝑟ኼኼ = 0

This problem is solved with the reference point method. The solution is then notated as 𝑧ᖣኻ and we
have for the second iteration

17
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Table 5.2: Reference list for the second iteration.

Priority Reference Point 𝑓ኻ 𝑓ኼ
1 𝑟ኻ 𝑟ኻኻ = 𝑧ᖣኻኻ − 𝑠 𝑟ኻኼ = 𝑧ᖣኻኼ
2 𝑟ኼ 𝑟ኼኻ = 0 𝑟ኼኼ = 0

In this way we can iterate further until we have generated 𝑛 reference points in the direction of
the first objective. In the same way we can optimize in the direction of the second objective. The
reference points then are constructed as in Table 5.3.

Table 5.3: Reference list for the first iteration for further optimizing ፟Ꮄ.

Priority Reference Point 𝑓ኻ 𝑓ኼ
1 𝑟ኻ 𝑟ኻኻ = 𝑧Ꭸኻ 𝑟ኻኼ = 𝑧Ꭸኼ-s
2 𝑟ኼ 𝑟ኼኻ = 0 𝑟ኼኼ = 0

and the same procedure as in optimizing the first objective follows.

5.1.2. The reference point method using the ideal point

In the case we make use of the ideal point, we proceed the same as in the case with the zero point.
The only difference is the second reference point. In this case the second reference point equals 𝑧∗.
As an example we only give the the reference list for the first iteration, Table 5.4.

Table 5.4: Reference list for the first iteration.

Priority Reference Point 𝑓ኻ 𝑓ኼ
1 𝑟ኻ 𝑟ኻኻ = 𝑧Ꭸኻ − 𝑠 𝑟ኻኼ = 𝑧Ꭸኼ
2 𝑟ኼ 𝑟ኼኻ = 𝑧∗ኻ 𝑟ኼኼ = 𝑧∗ኼ

5.1.3. The reference point method using the nadir point

When we apply the reference point method using the nadir point, 𝑧፧ፚ፝, the reference point method is
slightly different. In this case we use the nadir point as the first reference point, as the first priority
now lies on the nadir point. The reference list for the first iteration is given in Table 5.5.

Table 5.5: Reference list for the first iteration.

Priority Reference Point 𝑓ኻ 𝑓ኼ
1 𝑟ኻ 𝑟ኼኻ = 𝑧፧ፚ፝ኻ 𝑟ኼኼ = 𝑧፧ፚ፝ኼ
2 𝑟ኼ 𝑟ኻኻ = 𝑧Ꭸኻ − 𝑠 𝑟ኻኼ = 𝑧Ꭸኼ

This method has been tested on several simplified test cases, which can be seen in the following
sections.
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5.2. The reference point method for the left and right parotid

In this section we will generate the Pareto front for different reference points as described in the
previous section. We will do this for different simplified test cases. The first test case involves the
average doses in the left parotid gland (𝑓ኻ) and in the right parotid gland (𝑓ኼ). Radiotherapy to the
salivary glands can cause side effects such as a sore, dry mouth, taste changes and teeth problems.
So 𝑓ኻ and 𝑓ኼ have to be minimized.

5.2.1. The reference point method for the left and right parotid, using the zero
point

For this test case the wish-list is as Table 4.1 and the reference points are generated as discussed in
Section 5.1.1. For the average doses in the left parotid gland (𝑓ኻ) and the right parotid gland (𝑓ኼ) the
𝜖-constraint solution is given by (𝑧Ꭸኻ, 𝑧Ꭸኼ) = (2.1600, 22.0153).

To form the Pareto front we first optimized the first objective and thereafter did the second one.
With stepsize 𝑠 = 0.3 the max iterations we could do optimizing the first objective, i.e. the right parotid,
was four. There is a maximum number of iterations because it is possible to generate a line between
the two reference points which does not intersect the Pareto front. We did fifteen iterations optimizing
the second objective, i.e. the left parotid. The results can be seen in Figure 5.1. Notice that the axis
are not equal, which we have done to represent the generated solutions more clearly and that the zero
point is not the left corner of Figure 5.2 but lies further beneath.

Figure 5.1: Pareto front generated with the zero point as second reference point, ፬ ዆ ኺ.ኽ.
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Figure 5.2: Pareto front generated with the zero point as second reference point, ፬ ዆ ኺ.ኽ.

In Figure 5.1 it can be seen that the the solution space 𝑆 generated with zero as the second
reference point is clearly convex, which we expected since the reference point method generates a
convex solution space. However, with zero as second reference point we see that the solutions do not
form a very nice Pareto front. The explanation is that the Pareto front is not near to the zero. So the
lines drawn from zero to the generated reference points give small differences in the solutions when
optimizing the second objective, i.e. the left parotid. Higher differences in solutions occur when the
first objective is optimized further, i.e. the left parotid. To clarify this we’ve added Figure 5.2.

5.2.2. The reference point method for the left and right parotid, using the
ideal point

The reference points in this subsection are generated as discussed in Section 5.1.2. For this test case
the ideal vector is given by (𝑧∗ኻ, 𝑧∗ኼ) = (0.9934, 21.3741). To generate the Pareto front we optimized
both the first objective and the second objective further. With stepsize 𝑠 = 0.2 the maximum number
of iterations we could do optimizing the first objective, for the right parotid, was nine and we did three
iterations while optimizing the second objective, for the left parotid. The results can be seen in Figure
5.3. Notice again that the axis are not equal.
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Figure 5.3: Pareto front generated with the ideal point as second reference point, ፬ ዆ ኺ.ኼ

In Figure 5.3 it can be seen that with the ideal point as second reference point we gain a better
shaped Pareto front than with the zero, since the ideal point is closer to the Pareto front than the zero
point. Here again we can see that the solutions form a convex Pareto front. Also we see that with the
ideal point the solutions from the reference point method are mainly located at the points where the
Pareto front is most curved.

5.2.3. The reference point method for the left and right parotid, using the
nadir point

Here again the method is as discussed in 5.1.3. For this test case the nadir vector is given by
(𝑧፧ፚ፝ኻ , 𝑧፧ፚ፝ኼ ) = (4.0404, 26.4702). We took stepsize 𝑠 = 0.5 and did eighteen iterations in both the
first objective and the second objective. This results in the Figure 5.4.
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Figure 5.4: Generated Pareto front with the nadir point as first reference point, ፬ ዆ ኺ.኿

In Figure 5.4 it can be seen that the reference point method with the nadir point as first reference
point generates a nice Pareto front. In this case we can see that the most points are generated in the
neighbourhood of the anchor points.
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5.3. The referencemethod for the left parotid and left submandibu-
lar gland

Next, we considered an other test case. This test case involves the average doses in the right parotid
(𝑓ኻ) and the left submandibular gland (𝑓ኼ). The wish-list for this test case can be seen in Table 5.6.

Table 5.6: Wish-list for two objectives, SMG stands for submandibular gland

Priority Objective Name Goal
1 𝑓ኻ(𝑥) Parotid Right 39
2 𝑓ኼ(𝑥) SMG Left 39
3 𝑓ኻ(𝑥) Parotid Right 20
4 𝑓ኼ(𝑥) SMG Left 20
5 𝑓ኻ(𝑥) Parotid Right 10
6 𝑓ኼ(𝑥) SMG Left 10
7 𝑓ኻ(𝑥) Parotid Right 2
8 𝑓ኼ(𝑥) SMG Left 2

For these objective functions the 𝜖-constraint solution is given by (𝑧Ꭸኻ, 𝑧Ꭸኼ) = (1.6824, 39.3118).
The ideal vector is given by (𝑧∗ኻ, 𝑧∗ኼ) = (0.9934, 38.1668) and the nadir vector by (𝑧፧ፚ፝ኻ , 𝑧፧ፚ፝ኼ ) =
(5.7343, 42.3313). In exactly the same way as before we obtain Figures 5.5, 5.6 and 5.7.

Figure 5.5: Pareto front generated with zero as first reference point, ፬ ዆ ኺ.ኼ
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Figure 5.6: Pareto front generated with the ideal point as first reference point, ፬ ዆ ኺ.ኼ

Figure 5.7: Pareto front generated with the nadir point as first reference point, ፬ ዆ ኺ.኿

We can see that the same conclusions can be drawn as for the test case in Section 5.2. The method
with the ideal point generates the most solutions in the most curved part of the Pareto front and the
method with the nadir point generates the most solutions close to the anchor points. However, the
figure with zero as a second reference point is slightly different (Figure 5.5). The Pareto front of this
test case is located even further away from the zero than in the test case in Section 5.2. This results
in more stacked solutions when optimizing the second objective, for the left submandibular grand.
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5.4. Conclusions

As we have seen in the previous two subsections, the reference point method using the zero point
does not generate a well-distributed Pareto front. This is caused by the fact that the Pareto front is not
located near the zero; the further away the Pareto front, the more the solutions are stacked.

Since we are most interested in the points where we can gain something for one objective while
giving in a little on the other objective, the most interesting part of the Pareto front is the part where
the front is the most ’curved’. The reference point method using the ideal objective vector generates
the most points in this part of the Pareto front.

Thus when we do an equal number of iterations, we can conclude that the ideal objective vector is
the most ideal point to use with the reference point method.

All Pareto fronts formed in two-dimensional space are clearly convex, which we expected since the
solution space 𝑆 is convex.

A disadvantage of this method is that the calculations of the Pareto front simultaneously are very
time consuming, because for each iteration an optimization has to be done before we can derive the
new reference point. For 𝑛 iterations thus 𝑛 optimizations have to be done one after one other.





6
The reference point method for three

objectives

6.1. Themethod for the left and right parotid and left submandibu-
lar gland

In this chapter we are going to extend the method of Chapter 5 to three objectives, the average doses
the left parotid, the right parotid and the left submandibular gland. The wish-list for these objectives
is shown in Table 6.1

Table 6.1: Wish-list for three objectives

Priority Objective Name Goal
1 𝑓ኻ(𝑥) Parotid Left 39
2 𝑓ኼ(𝑥) Parotid Right 39
3 𝑓ኽ(𝑥) SMG Left 39
4 𝑓ኻ(𝑥) Parotid Left 20
5 𝑓ኼ(𝑥) Parotid Right 20
6 𝑓ኽ(𝑥) SMG Left 20
7 𝑓ኻ(𝑥) Parotid Left 10
8 𝑓ኼ(𝑥) Parotid Right 10
9 𝑓ኽ(𝑥) SMG Left 10
7 𝑓ኻ(𝑥) Parotid Left 2
8 𝑓ኼ(𝑥) Parotid Right 2
9 𝑓ኽ(𝑥) SMG Left 2

Again this is first solved with the 𝜖-constraint method, which gives as solution
(𝑧Ꭸኻ, 𝑧Ꭸኼ, 𝑧Ꭸኽ) = (2.7858, 23.4667, 39.3118). Since we concluded in Chapter 5 that the ideal point is the
most useful to use as the second reference point, we will apply the method in three dimensional
case only with the ideal objective vector. The ideal objective vector is given by 𝑟ኼ = (𝑧∗ኻ, 𝑧∗ኼ, 𝑧∗ኽ) =
(0.9934, 21.3741, 38.1668). When we take stepsize 𝑠 = 0.2 and do ten iterations optimizing the first
objective, fourteen optimizing the second and seven optimizing the third objective, we obtain the Pareto
front as in Figure 6.1.
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Figure 6.1: Three-dimensional Pareto front generated with the ideal point as second reference point, ፒ ዆ ኺ.ኼ.

To determine whether the front is convex we will show a mesh plot of this Pareto front. This results
in Figure 6.2.

Figure 6.2: Three-dimensional mesh plot of the Pareto front generated with the ideal point as second reference point, ፬ ዆ ኺ.ኼ.

We can conclude that the method from Chapter 5 also generates a convex Pareto front for three
objective functions. Since the solutions for both two objectives and three objectives seem to work, we
assume that it also generates a convex Pareto front for 𝑛 dimensions. In Chapter 7 we will show some
examples of the method applied to a realistic patient.



7
The reference point method for

multiple objectives

In the previous two chapters the method was generalized to two or three objectives. In real life
applications there are many more objectives to be considered. In this chapter the method of Chapter
5 is extended to a problem with a realistic number of objectives. A realistic wish-list is shown in table
7.1.

Table 7.1: Wish-list for a realistic patient.

Priority Objective Name Type Goal
1 𝑓ኻ(𝑥) Parotid Left Average 39
2 𝑓ኼ(𝑥) Parotid Right Average 39
3 𝑓ኽ(𝑥) Submandibular Right Average 39
4 𝑓ኾ(𝑥) Submandibular Left Average 39
5 𝑓ኻ(𝑥) Parotid Left Average 20
6 𝑓ኼ(𝑥) Parotid Right Average 20
7 𝑓ኽ(𝑥) Submandibular Right Average 20
8 𝑓ኾ(𝑥) Submandibular Left Average 20
9 𝑓኿(𝑥) Oral Cavity Average 39
10 𝑓ዀ(𝑥) Cord Maximum 40
11 𝑓዁(𝑥) External Ring Average 𝐴 ⋅ 0.9
12 𝑓ዂ(𝑥) Larynx Average 𝐴 ⋅ 0.75
13 𝑓ዃ(𝑥) MCM Average 𝐴 ⋅ 0.75
14 𝑓ኻኺ(𝑥) MCI Average 𝐴 ⋅ 0.75
15 𝑓ኻኻ(𝑥) PTV Ring 1 cm Maximum 𝐴 ⋅ 0.75
16 𝑓ኻ(𝑥) Parotid Left Average 10
17 𝑓ኼ(𝑥) Parotid Right Average 10
18 𝑓ኽ(𝑥) SMG Right Average 10
19 𝑓ኾ(𝑥) SMG Left Average 10
20 𝑓ኻኼ(𝑥) PTV Ring 4 cm Maximum 𝐴 ⋅ 0.4
21 𝑓ኻ(𝑥) Parotid Left Average 2
22 𝑓ኼ(𝑥) Parotid Right Average 2
23 𝑓ኽ(𝑥) SMG Right Average 2
24 𝑓ኽ(𝑥) SMG Right Average 2

Here 𝐴 = 46 is the prescribed dose in Gray. Around the tumour, also called the planning target
volume (PTV), some rings are delineated. The PTV rings are delineated around the PTV at 1 cm (𝑓ኻኻ)
and 4 cm (𝑓ኻኼ) to realize a steep dose 𝑓 all-off outside the PTV. Note from Table 7.1, that in the cord,
PTV ring 1 cm and PTV ring 4 cm the maximum dose is used instead of the average dose.
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For the realistic patient the method described in Chapter 5 can also be applied. In this chapter we
will only do one iteration for comparison with the 𝜖-constraint solution. It is also possible to optimize
multiple objectives at the same time.

7.1. Optimizing the dose in the left parotid

When we optimize the average dose in the left parotid, we gain the following as first reference vector;
𝑟ኻ = (𝑧Ꭸኻ − 𝑆, 𝑧Ꭸኼ, 𝑧Ꭸኽ, 𝑧Ꭸኾ, 𝑧Ꭸ኿, 𝑧Ꭸዀ, 𝑧Ꭸ዁, 𝑧Ꭸዂ, 𝑧Ꭸዃ , 𝑧Ꭸኻኺ, 𝑧Ꭸኻኻ, 𝑧Ꭸኻኼ). And for the second reference vector we again take
the ideal vector, so 𝑟ኼ = 𝑧∗. we can compare the 𝜖-constraint solution and the reference point solution,
with step size 𝑆 = 1 the results are as in Table 7.2 .

Table 7.2: Solution for a realistic patient, optimizing the left parotid.

Objective Name 𝑧Ꭸ RPM
𝑓ኻ(𝑥) Parotid Left 2.4986 1.5318
𝑓ኼ(𝑥) Parotid Right 19.1684 19.2664
𝑓ኽ(𝑥) Submandibular Right 10.4397 10.6621
𝑓ኾ(𝑥) Submandibular Left 33.9262 33.9536
𝑓኿(𝑥) Oral Cavity 28.0858 28.5243
𝑓ዀ(𝑥) Cord 27.1355 26.5696
𝑓዁(𝑥) External Ring 4.2773 4.2724
𝑓ዂ(𝑥) Larynx 30.9777 31.3349
𝑓ዃ(𝑥) MCM 33.5097 33.4689
𝑓ኻኺ(𝑥) MCI 30.7560 31.1919
𝑓ኻኻ(𝑥) PTV Ring 1 cm 40.3714 40.5106
𝑓ኻኼ(𝑥) PTV Ring 4 cm 34.1791 34.6345

We can see that 𝑓ኻ has been reduced by approximately 0.9668, while 𝑓ኼ up to 𝑓ኻኼ have stayed the
same approximately.

7.2. Optimizing the dose in the oral cavity and larynx

It is also possible to optimize certain objectives at the same time, so for example assume we want to
obtain a lower average dose in the oral cavity (𝑓኿) and the larynx (𝑓ዂ). Then the first reference vector
can be taken as 𝑟ኻ = (𝑧Ꭸኻ, 𝑧Ꭸኼ, 𝑧Ꭸኽ, 𝑧Ꭸኾ, 𝑧Ꭸ኿ − 𝑆, 𝑧Ꭸዀ, 𝑧Ꭸ዁, 𝑧Ꭸዂ − 𝑆, 𝑧Ꭸዃ , 𝑧Ꭸኻኺ, 𝑧Ꭸኻኻ, 𝑧Ꭸኻኼ). And for the second reference
vector we again take the ideal vector. We compare the 𝜖-constraint solution and the reference point
solution, with step size 𝑆 = 1, see Table 7.3 .

Table 7.3: Solution for a realistic patient, optimizing the left parotid.

Objective Name 𝑧Ꭸ RPM
𝑓ኻ(𝑥) Parotid Left 2.4986 2.5132
𝑓ኼ(𝑥) Parotid Right 19.1684 19.1943
𝑓ኽ(𝑥) Submandibular Right 10.4397 10.4986
𝑓ኾ(𝑥) Submandibular Left 33.9262 33.9335
𝑓኿(𝑥) Oral Cavity 28.0858 27.1960
𝑓ዀ(𝑥) Cord 27.1355 27.2204
𝑓዁(𝑥) External Ring 4.2773 4.1728
𝑓ዂ(𝑥) Larynx 30.9777 30.0664
𝑓ዃ(𝑥) MCM 33.5097 33.6126
𝑓ኻኺ(𝑥) MCI 30.7560 30.4482
𝑓ኻኻ(𝑥) PTV Ring 1 cm 40.3714 40.4082
𝑓ኻኼ(𝑥) PTV Ring 4 cm 34.1791 34.23984

Again 𝑓኿ and 𝑓ዂ have been reduced by approximately 0.99, while the other 𝑓። ’s have not changed
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much as well.

In this manner we can specify different objectives which we want to optimize further. The out-
come of the method can be compared by a clinician. The different treatment plans that result can be
compared by a clinician.





8
Conclusions

The main goal of this thesis was to generate a new method to form the Pareto front with the reference
point method. We did research to look which points are the most optimal to use as reference points.

When we use zero as second reference point, the 𝑛 optimizations have not to be done to calculate
the ideal point. However, we concluded that the ideal vector is the most ideal vector to take as second
reference point, since the applied method with the ideal vector of Chapter 5 generates most points in
the most interesting region of the Pareto front. So, despite it takes more time to generate the Pareto
front with the ideal point, we conclude that this results in a better distribution of Pareto optimal points
on the Pareto front. If the ideal point is close to one of the anchor points, it might be better to use the
reference point method with the nadir point.

The main advantage of this method is that, when a clinical isn’t pleased enough about a certain
objective from the 𝜖-constraint solution. It is possible the optimize a certain objective some more.

Unfortunately we didn’t have time to design a method where the optimizations can be calculated
simultaneously. This method is introduced in the recommendations, Chapter 9.
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Recommendations

Finally I have a few recommendations for further research. In this thesis we investigated a method
which uses an iterative way of calculating the Pareto front. The disadvantage of this method is that
the calculation of the Pareto front is very time consuming, because for each iteration an optimization
has to be done before we can derive the new reference point. For 𝑛 iterations thus 𝑛 optimizations
have to be done one after one other.

This can be prevented by choosing other reference points. In my research project I only imple-
mented this method for two dimensions. The method goes as follows: draw line 𝑙 with slope −1
through the first solution, the 𝜖-constraint solution. Then you draw two other lines, 𝑙ኻ and 𝑙ኼ, from
the anchor points to the zero. Choose reference points on the segment of 𝑙 that lies between 𝑙ኻ and
𝑙ኼ. Then the solutions generated with the reference point method lie on the Pareto front. You then
can generate 𝑛 points on the line 𝑙, and solve the 𝑛 optimizations with the reference point method in
a parallel way.

A Pareto front of this method with 15 optimizations of the right and left parotid can be seen in
Figure 9.1.
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Figure 9.1: Pareto front generated with the ideal point as second reference point, and the first reference points on the blue line
፥

For three objectives the points should be generated on a sphere and for 𝑛 objectives on a 𝑛-sphere
centered around the ideal point. The advantage of this method is that the optimizations can be done
at the same time, and thus the method is less time consuming.

Furthermore, the stepsizes 𝑆 in this thesis where determined random, just such that a nice Pareto
front was generated. In order to conclude which stepsize gives the most interesting solutions further
research has to be done.
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A
Matlab codes

A.1. Calculating the ideal vector and nadir vector
1 function [anchor_pts, ideal_pt, nadir_pt] = compute_anchor_points(data_in,

cons_in)
2 % Computes the ideal and nadir point and anchor points
3

4 % Gather all active objectives of the wish-list
5 [obj_uniq, obj_all] = gather_obj(cons_in);
6 n_obj = length(obj_uniq);
7

8 % Do the n_obj optimizations
9 ideal_pt = zeros(n_obj,1);

10 anchor_pts = cell(n_obj,1);
11 opt.DisplayExternal=’’;
12 opt.DisplayInfoWarn = 0;
13 opt.DisplayIter = 0;
14 opt.DisplayInfo = 0;
15 fprintf(’\nComputing anchor points and the ideal/nadir point \nNeed to do

%2d optimizations:\n’, n_obj)
16

17 for i = 1:n_obj
18 % copy constraints structure
19 cons_temp = cons_in;
20

21 % disable other objectives
22 for j = 1:length(obj_all)
23 if obj_uniq(i) ~= obj_all(j)
24 cons_temp(obj_all(j)).Active = 0;
25 end
26 end
27

28 % optimize
29 fprintf(’\nStarting optimization %2d of %2d\n’, i, n_obj)
30 xopt = primaldual(data_in.misc.size, data_in, cons_temp, opt);
31

32 % evaluate objective values
33 ev = evaluate_objectives(xopt, data_in, cons_temp);
34 fprintf(’Results:\n--------\n’)
35 for k = 1:n_obj

39
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36 fprintf(’%-20s (%2d): %g\n’, cons_in(obj_uniq(k)).VolName,
obj_uniq(k), ev(obj_uniq(k)));

37 end
38

39 % save optimal value and anchor point
40 ideal_pt(i) = ev(obj_uniq(i));
41 anchor_pts{i} = ev(obj_uniq);
42 end
43

44 % Approximate nadir point
45 nadir_pt = anchor_pts{1};
46 for i = 1:n_obj
47 if i > 1
48 adept = find(nadir_pt < anchor_pts{i});
49 nadir_pt(adept) = anchor_pts{i}(adept);
50 end
51 end
52

53

54 end
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A.2. Optimizing with the zero as second reference point.

1 function ev_zero = ref_zero(ev, constraints, objective, n_iter, stepsize,
dataopt)

2 %REF_ZERO Generate reference points locally to the optimum and optimize
3 % with the single reference point method
4 %

--------------------------------------------------------------------------

5 % input: ev: matrix which evaluates the objectives from the epsilon
6 % constraint solution
7 % constraints: constraints of the patient data
8 % objective: the index of the objective you want to minimize
9 % n_iter: the number of iterations you wish to make

10 % stepsize: difference between the solution and reference point
11 % output: ev_zero: matrix wich evaluates the objectives after applying

the
12 % reference point method to different reference points
13 %

--------------------------------------------------------------------------

14

15

16 options.DisplayIter = 0;
17 options.DisplayInfoWarn = 0;
18 [obj_act_uniq, obj_act_all, LTCP_all] = gather_obj(constraints);
19 obj_act_uniq = gather_obj(constraints);
20

21 % Some sensitivity parameter
22 n_obj = length(obj_act_uniq);
23 rho = zeros(1,n_obj);
24

25 fprintf(’\nThe max iterations you can do is: \n’)
26 n_iter_max = floor((ev(obj_act_uniq(objective)))/stepsize)
27

28 for j=2:n_iter+1
29

30 point = ev(obj_act_uniq,j-1);
31

32

33 % Generate the reference points
34 for i=1:length(point)
35 if i == objective && i == 1
36 ref_pts = [point(1)-stepsize; 0];
37 elseif i == 1
38 ref_pts = [point(1); 0];
39 elseif i == objective
40 ref_pts = [ref_pts [point(i)-stepsize; 0]];
41 else
42 ref_pts = [ref_pts [point(i); 0]];
43 end
44 ref_pts
45 end
46

47 [weight, constant, wfull, cfull, val_lvls] = convex_pafs(constraints,
obj_act_uniq, ref_pts, 1, 1);
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48

49

50 % Change the WS model to the LRPM model in the system and optimize
51 [constraints_lrpm, dataopt_lrpm] = convert_to_lrpm(constraints,

dataopt, obj_act_uniq, obj_act_all, weight, constant, rho);
52 [xopt_lrpm, ofval, output, pddata, pdvars, constraints_out] =

primaldual(dataopt_lrpm.misc.size, dataopt_lrpm, constraints_lrpm,
options);

53 xopt = xopt_lrpm(dataopt.misc.real);
54

55

56 ev_temp = evaluate_objectives(xopt, dataopt, constraints);
57 ev = [ev ev_temp];
58 end
59

60 ev_zero = ev;
61

62 end
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A.3. Optimizing with the ideal vector as second reference point.

1 function ev_ideal = ref_ideal(ev, constraints, objective, obj_act_uniq,
obj_act_all, n_iter, stepsize, dataopt, ideal_pt)

2 %REF_IDEAL Generate reference points locally to the optimum and optimize
3 % with the reference point method
4 %

--------------------------------------------------------------------------

5 % input: ev: matrix which evaluates the objectives from the epsilon
6 % constraint solution
7 % constraints: constraints of the patient data
8 % objective: the index of the objective you want to minimize
9 % n_iter: the number of iterations you wish to make

10 % stepsize: difference between the solution and reference point
11 % output: ev_zero: matrix wich evaluates the objectives after applying

the
12 % reference point method to different reference points
13 %

--------------------------------------------------------------------------

14

15

16 for j=2:n_iter+1
17 % choose the index values from the wishlist you want to look at

locally
18 options.DisplayIter = 0;
19 options.DisplayInfoWarn = 0;
20 point = ev(obj_act_uniq,j-1);
21

22 % Some sensitivity parameter
23 n_obj = length(obj_act_uniq);
24 rho = zeros(1,n_obj);
25

26 fprintf(’\nThe max iterations you can do is: \n’)
27 n_iter_max = floor((ev(obj_act_uniq(objective))-ideal_pt(objective))/

stepsize)
28

29

30 for i=1:length(point)
31 if any(i == objective) && i == 1
32 ref_pts = [point(1)-stepsize; ideal_pt(1)];
33 elseif i == 1
34 ref_pts = [point(1); ideal_pt(1)];
35 elseif any(i == objective)
36 ref_pts = [ref_pts [point(i)-stepsize; ideal_pt(i)]];
37 else
38 ref_pts = [ref_pts [point(i); ideal_pt(i)]];
39 end
40 end
41

42 [weight, constant, wfull, cfull, val_lvls] = convex_pafs(constraints,
obj_act_uniq, ref_pts, 1, 1);

43

44

45 % Change the WS model to the LRPM model in the system and optimize
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46 [constraints_lrpm, dataopt_lrpm] = convert_to_lrpm(constraints,
dataopt, obj_act_uniq, obj_act_all, weight, constant, rho);

47 [xopt_lrpm, ofval, output, pddata, pdvars, constraints_out] =
primaldual(dataopt_lrpm.misc.size, dataopt_lrpm, constraints_lrpm,
options);

48 xopt = xopt_lrpm(dataopt.misc.real);
49

50

51 ev_temp = evaluate_objectives(xopt, dataopt, constraints);
52 ev = [ev ev_temp];
53 end
54

55 ev_ideal = ev;
56 end
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A.4. Optimizing with the nadir point as first reference point.

1 function ev_nadir = ref_nadir(ev, constraints, objective, obj_act_uniq,
obj_act_all, n_iter, stepsize, dataopt, nadir_pt)

2 %REF_NADIR Generate reference points locally to the optimum and optimize
3 % with the single reference point method
4 %

--------------------------------------------------------------------------

5 % input: ev: matrix which evaluates the objectives from the epsilon
6 % constraint solution
7 % constraints: constraints of the patient data
8 % objective: the index of the objective you want to minimize
9 % n_iter: the number of iterations you wish to make

10 % stepsize: difference between the solution and reference point
11 % output: ev_zero: matrix wich evaluates the objectives after applying

the
12 % reference point method to different reference points
13 %

--------------------------------------------------------------------------

14

15

16

17 for j=2:n_iter+1
18 % choose the index values from the wishlist you want to look at

locally
19 options.DisplayIter = 0;
20 options.DisplayInfoWarn = 0;
21 point = ev(obj_act_uniq,j-1);
22

23 % Some sensitivity parameter
24 n_obj = length(obj_act_uniq);
25 rho = zeros(1,n_obj);
26

27 fprintf(’\nThe max iterations you can do is: \n’)
28 n_iter_max = floor((nadir_pt(objective)-ev(obj_act_uniq(objective)))/

stepsize)
29

30 for i=1:length(point)
31 if i == objective && i == 1
32 ref_pts = [nadir_pt(1); point(1)-stepsize];
33 elseif i == 1
34 ref_pts = [nadir_pt(1); point(1)];
35 elseif i == objective
36 ref_pts = [ref_pts [nadir_pt(i); point(i)-stepsize]];
37 else
38 ref_pts = [ref_pts [nadir_pt(i); point(i)]];
39 end
40 end
41

42 [weight, constant, wfull, cfull, val_lvls] = convex_pafs(constraints,
obj_act_uniq, ref_pts, 1, 1);

43

44

45 % Change the WS model to the LRPM model in the system and optimize
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46 [constraints_lrpm, dataopt_lrpm] = convert_to_lrpm(constraints,
dataopt, obj_act_uniq, obj_act_all, weight, constant, rho);

47 [xopt_lrpm, ofval, output, pddata, pdvars, constraints_out] =
primaldual(dataopt_lrpm.misc.size, dataopt_lrpm, constraints_lrpm,
options);

48 xopt = xopt_lrpm(dataopt.misc.real);
49

50

51 ev_temp = evaluate_objectives(xopt, dataopt, constraints);
52 ev = [ev ev_temp];
53 end
54

55 ev_nadir = ev;
56 end
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A.5. Optimizing with the nadir point as first reference point.

1 function ev_line = ref_line_zero(ev, constraints, num_points, dataopt,
anchor_pts, nadir_pt, ideal_pt)

2 %REF_LINE_ZERO Generate reference points on a line of 45 degrees through
the

3 %epsilon constraint solution and solve this with the reference point
method

4 %
--------------------------------------------------------------------------

5 % input: ev:
6 % constraints:
7 % objective: the index of the objective you want to minimize
8 % n_iter: the number of iterations you wish to make
9 % output: ev_zero: matrix wich evaluates the objectives after applying the

10 % reference point method to different reference points
11 %

--------------------------------------------------------------------------

12

13

14 options.DisplayIter = 0;
15 options.DisplayInfoWarn = 0;
16 [obj_act_uniq, obj_act_all, LTCP_all] = gather_obj(constraints);
17 obj_act_uniq = gather_obj(constraints);
18

19 % Some sensitivity parameter
20 n_obj = length(obj_act_uniq);
21 rho = zeros(1,n_obj);
22

23

24 % Generate lines from the zero points through the anchor points
25 l1 = [0 0 anchor_pts{1}(1) anchor_pts{1}(2)];
26 l2 = [0 0 anchor_pts{2}(1) anchor_pts{2}(2)];
27

28 % Generate a line of 45 degrees, through te epsilon-constraint
solution

29 l3 = [0 ev(obj_act_uniq(1))+ ev(obj_act_uniq(2)) ev(obj_act_uniq(1))+
ev(obj_act_uniq(2)) 0];

30

31

32 % Calculate the points where the lines intersect
33 [x1, y1] = lineintersect(l3,l1);
34 [x2, y2] = lineintersect(l3,l2);
35

36 % generate n reference points on the line
37 ref_pts_2 = points_line([x1 y1], [x2 y2], num_points);
38

39

40 % Optimize for the n reference points
41 for j=1:num_points
42

43 % Generate reference points
44 ref_pts = [ref_pts_2(j,1) ref_pts_2(j,2); 0 0]
45
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46

47 [weight, constant, wfull, cfull, val_lvls] = convex_pafs(constraints,
obj_act_uniq, ref_pts, 1, 1);

48

49

50 % Change the WS model to the LRPM model in the system and optimize
51 [constraints_lrpm, dataopt_lrpm] = convert_to_lrpm(constraints,

dataopt, obj_act_uniq, obj_act_all, weight, constant, rho);
52 [xopt_lrpm, ofval, output, pddata, pdvars, constraints_out] =

primaldual(dataopt_lrpm.misc.size, dataopt_lrpm, constraints_lrpm,
options);

53 xopt = xopt_lrpm(dataopt.misc.real);
54

55

56 ev_temp = evaluate_objectives(xopt, dataopt, constraints);
57 ev = [ev ev_temp];
58 end
59

60 ev_line = ev;
61

62 end
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