
D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

Adaptive Neural Control
An Adaptive Neural Network Quadrotor
Trajectory Tracking Controller Tolerant
to Propeller Damage
July 2023
Mauro Villanueva Aguado

Adaptive Neural Control
An Adaptive Neural Network Quadrotor Trajectory
Tracking Controller Tolerant to Propeller Damage

by

Mauro Villanueva Aguado

in partial fulfillment of the requirements for the degree of
Master of Science in Aerospace Engineering

at the Delft University of Technology

to be defended publicly on Monday July 10th, 2023 at 10:00

Student Number: 4557824
Project Duration: December 2021 - July 2023
Thesis Committee: Dr. Ir. G.C.H.E. de Croon, Chair, TU Delft

Dr. Ir. C. de Wagter, Supervisor, TU Delft
Ir. R. Ferede, Additional, TU Delft
Dr. Ir. E.J.O. Schrama Examiner, TU Delft

Front Page Image Courtesy of DRL © 1

1https://thedroneracingleague.com/ [cited 10/12/2021]

https://thedroneracingleague.com/

Contents

I Scientific Paper 1

II Literature Review 18

Nomenclature i

List of Figures iii

List of Tables iv

Abstract v

1 Introduction vi

2 Literature Review 21
2.1 Quadrotor Trajectory Tracking Control . 21

2.1.1 Aerodynamic Model . 22
2.2 Adaptive Control . 23
2.3 Adaptive Neural Control . 23

3 Research Questions 25
3.1 Research Question . 25
3.2 Research Objective . 26

4 Methodologies 27
4.1 Problem Statement . 27
4.2 Coordinate Frames . 27
4.3 Quadrotor Model . 28

4.3.1 Aerodynamic Model . 29
4.4 Trajectory Planning . 29

4.4.1 Minimum Snap . 29
4.4.2 Time-Optimal . 31

4.5 Controllers . 31
4.6 Nonlinear Model Predictive Controller . 32
4.7 Differential-Flatness Based Controller . 33

4.7.1 Tilt Prioritized Control. 34
4.7.2 Neural-Fly . 34
4.7.3 Offline-Learning. 34
4.7.4 Online Adaptation . 36

5 Data Collection 38
5.1 Experimental Set-up . 38

5.1.1 Platform . 38
5.1.2 Software . 38
5.1.3 Environment . 39

5.2 Data Collection . 39
5.3 Data Processing . 41

6 Training 43

7 Thesis Planning 45

8 Results, Discussion & Relevance 47

9 Conclusion 48

i

Contents ii

References 51

III Additional Work 48

A Code Architecture 48

B OptiTrack Filtering 50

C Propeller Damage Estimation 52

D WandB Integration 54

Part I
Scientific Paper

An Adaptive Neural Network Quadrotor Trajectory
Tracking Controller Tolerant to Propeller Damage

Mauro Villanueva Aguado* and Christophe de Wagter†

Delft University of Technology, 2629 HS Delft, The Netherlands

ABSTRACT

Executing quadrotor trajectories accurately and
therefore safely is a challenging task. State-
of-the-art adaptive controllers achieve impres-
sive trajectory tracking results with slight per-
formance degradation in varying winds or pay-
loads, but at the cost of computational com-
plexity. Requiring additional embedded comput-
ers onboard, adding weight and requiring power.
Given the limited computational resources on-
board, a trade-off between accuracy and com-
plexity must be considered. To this end, we
implement ”Neural-Fly” a lightweight adaptive
neural controller to adapt to propeller damage,
a common occurrence in real-world flight. The
adaptive neural architecture consists of two com-
ponents: (I) offline learning of a condition in-
variant representation of the aerodynamic forces
through Deep Neural Networks (II) fast online
adaptation to the current propeller condition us-
ing a composite adaptation law. We deploy this
flight controller fully onboard the flight con-
troller of the Parrot Bebop 1, showcasing its
computational efficiency. The adaptive neural
controller improves tracking performance by ≈
60% over the nonlinear baseline, with minimal
performance degradation of just ≈ 20% with in-
creasing propeller damage.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) offer unmatched ver-
satility & agility, with the potential of revolutionizing a wide
range of industries including cinematography, defence, agri-
culture, logistics. Crucially, UAVs require a trained opera-
tor to fly increasing operational costs, hindering the wider
commoditization of UAVs. Autonomous UAVs make away
the need of a trained operator, they have already been de-
ployed in niche applications: from making history by execut-
ing the first controlled flight on another planet [1] to deliv-
ering crucial medical supplies to isolated hospitals in Africa

*Correspondence: contact@maurovillanueva.eu, Master Candidate Con-
trol & Simulation Department, Faculty of Aerospace Engineering, TU Delft

†C.deWagter@tudelft.nl, Associate Professor at the Micro Air Vehicle
Lab, Faculty of Aerospace Engineering, TU Delft

[2], showcasing their incredible potential. However, the lim-
ited sensors and computational capabilities available onboard
present significant challenges that must be solved to enable
the widespread adoption of autonomous UAVs.

One of these challenges is executing trajectories accu-
rately and thus safely in a wide range of conditions, essential
for autonomous UAV applications in complex cluttered envi-
ronments such as: search & rescue, aerial delivery/transport,
drone racing or even space exploration. Accurate trajectory
tracking of quadrotors, a common type of UAV with four ro-
tors, is an specially challenging problem due to the complex
aerodynamic disturbances at high speeds which consequently
introduce large tracking errors. These aerodynamic effects
are difficult to model, ”they consist of the propeller lift and
drag which are dependant on the induced airstream veloc-
ity, fuselage drag, downwash and turbulent interactions be-
tween propellers and fuselage” [3]. This problem is further
compounded in the case that the propellers are damaged sig-
nificantly changing the aerodynamic model of the quadrotor.
Designing such a controller does not only involve accurately
tracking a trajectory across a range of propeller damage con-
ditions but also designing one that remains computationally
tractable to run onboard. Thus, a trade-off between model
accuracy & complexity must be considered. To the best of
our knowledge no prior work has been performed on the field
of adaptive trajectory control to propeller damage, despite
the fact that propeller damage either caused by collisions or
degradation is a common occurrence in real-world situations.

Conventional approaches to trajectory tracking use simple
linear or quadratic [4] drag models to capture these aerody-
namic effects, while simple yet effective at low speeds their
accuracy quickly degrades at higher speeds. Additionally,
they cannot account for changes in the aerodynamic model.
While high-fidelity aerodynamic models have been derived
from Computational Fluid Dynamic (CFD) simulations [5],
these simulations require platform-specific meshing of hun-
dreds of millions of grid points and multiple days of solv-
ing in large compute clusters and ultimately are condensed
into simplified models to be computationally tractable on-
board. Advances in Neural Networks (NN) and small pow-
erfull GPUs have enabled promising results approximating
these aerodynamic effects [6, 7, 8] while remaining compu-
tationally tractable to run onboard a quadrotor. NN provide a
higher accuracy than the simple drag models while requiring
a fraction of the time and computation of CFD derived mod-
els. However implementing NN in a drone controller requires

1

addressing the unpredictable nature of their output, remaining
a largely unexplored challenge.

The remainder of this paper is structured as follows. An
overview of related work on quadrotor trajectory tracking
control, adaptive control and adaptive neural control is pre-
sented in Section 2. In Section 3 a detailed methodology of
the quadrotor model, adaptive neural controller and trajec-
tory generation is provided. The experimental setup is ex-
plained in Section 4. The main results are shown in Section
5, including neural network training & validation loss, un-
modeled force predictions, controller tracking performance
comparison and trajectory plots. Followed by a discussion of
these results and recommendations in Section 6. Lastly, the
main conclusions of the adaptive neural controller are raised
in Section 7.

2 RELATED WORK

2.1 Quadrotor Trajectory Tracking Control
Quadrotors are inherently unstable nonlinear platforms.

Early work on quadrotor control achieved stable hover and
near-hover flight using well established control schemes
such as Proportional-Integral-Derivative (PID) [9] or Linear-
Quadratic Regulator (LQR) [10]. These controllers rely on
the small-angle assumption to linearize the dynamics of the
system, thus are most effective at low speeds. Despite this
drawback cascaded PID control is the most common con-
troller architecture in off-the-shelf flight controllers due to its
simplicity, ease-of-tuning and good enough performance.

As quadrotors have become more powerfull and
lightweight, capable of executing aggressive trajectories,
nonlinear flight controllers have been proposed to cope with
the nonlinearities in the attitude dynamics. Nonlinear flight
controllers such as Nonlinear Dynamic Inversion (NDI) [11]
transform the nonlinear dynamics into a linear input-output
map enabling the use of a linear control law. However, ex-
act dynamic inversion suffers from a lack of robustness as
it quite sensitive to sensor noise as well as modelling uncer-
tainty [12]. Variants of NDI have been proposed to solve this
problem, such as backstepping design [13] which recursively
designs a controller, starting from a known stable inner sys-
tem and progressively backs-out stabilizing the entire nonlin-
ear system. A more recent variant is Incremental Nonlinear
Dynamic Inversion (INDI) [14], which improves robustness
by gradually applying control inputs based on inertial mea-
surements.

State-of-the-art trajectory tracking algorithms can be cat-
egorized into predictive or non-predictive methods. Non-
predictive methods track a single reference step while pre-
dictive methods encode several future timesteps into the con-
trol command. Differential-Flatness Based Control (DFBC),
a non-predictive method, takes advantage of the fact that
quadrotors are differentially flat systems [15] allowing for
the reformulation of the trajectory tracking problem into a
state tracking problem. DFBCs are combined with an outer

loop INDI controller and aerodynamic model to achieve im-
pressive tracking performances at high-speeds [16, 17], with
a Position Root-Mean-Squared Error (RMSE) of as little as
12.2 [cm] with a top speed of 20 [m/s] [17]. However, [17]
relies on optical encoders for direct motor speed feedback or
in the case [16], is limited to x-y plane trajectories and uses a
very high frequency attitude controller running at 4 [kHz].
Most importantly, DFBC relies on the quadrotor model to
generate the reference states and is thus susceptible to mod-
eling mismatch, for example reducing the thrust coefficient
by 30% will lead to significant performance degradation or
even crashing, with position RMSE degrading from 8.5 [cm]
to 100.4 [cm] [18] a more than tenfold increase.

Nonlinear Model Predictive Control (NMPC) is the most
prevalent predictive method. NMPCs generate motor com-
mands in a receding horizon fashion, solving the constrained
nonlinear optimization problem over the predicted time hori-
zon minimizing for tracking error. Similarly, the perfor-
mance of NMPCs is further improved by adding an outer loop
INDI controller and aerodynamic model. NMPCs are able to
minimize the tracking error across multiple future time-steps
whereas DFBCs are too short-sighted only considering one
reference point. This allows NMPCs to outperform DFBCs
at tracking trajectories at high speeds, specially for dynam-
ically infeasible trajectories. NMPCs achieve a state-of-the-
art position RMSE of 10.2 [cm] with a maximum speed of
20 [m/s] [18]. Albeit, solving this nonlinear optimization
problem over several future time-steps requires significant
computational resources, in the order of 100 times greater
than DFBC. Despite advances in powerfull embedded com-
puters and nonlinear solvers deploying NMPC onboard is still
a challenge, requiring an NVIDIA Jetson TX2 to run the algo-
rithm onboard at 100 [Hz] in [18] adding significant weight
and power consumption.

2.2 Adaptive Control

Adaptive control of systems with parametric uncertainty
has been extensively researched. Adaptive controllers are
often an augmentation to existing controllers rather than
a standalone controller. In the field of UAVs adaptive
controllers can be categorized into Model Identification
Adaptive Controllers (MIACs) or Model Reference Adaptive
Controllers (MRACs).

MRACs use an adaptive controller, typically an L1 adap-
tive controller, to drive the system towards a desired reference
model behaviour. MRACs have been successfully deployed
in quadrotors, demonstrating slight trajectory tracking degra-
dation with unmodeled weights attached [19, 20] or loss-of-
thrust [21]. Albeit, these results are achieved tracking simple
circular trajectories not exceeding 2 m/s with a ground sta-
tion in-the-loop [19], require powerful embedded computers
[20] or have poor tracking performance [21].

On the other hand, MIACs perform System Identification

(SI) online to estimate the values of unknown linear coef-
ficients which are then mixed with known basis functions.
The selection of basis functions may be challenging, they
should reflect important features of the underlying dynamics.
Physics-based modelling is typically used to design these ba-
sis functions [22], however this requires extensive knowledge
of the system and suffers from convergence problems when
there is lack of excitation. Alternatively, random Fourier fea-
tures can be used as basis functions as they can capture all
underlying dynamics given a sufficient amount of features.
However, the high-dimensional feature space may not be an
efficient representation as features are redundant or irrele-
vant. Nevertheless, random Fourier features are used in [23]
to learn an acceleration error model of a quadrotor with a drag
plate attached in windy conditions improving on the perfor-
mance of an L1 adaptive controller.

2.3 Adaptive Neural Control

The ability of NNs to accurately and computationally effi-
ciently approximate nonlinear functions has drawn interest in
the field of adaptive control. Early work used NNs in MRACs
to solve the identification problem of nonlinear systems cre-
ating a reference model [24, 25] whose weights are updated
online based on the error between the system and model out-
put. These networks where shallow and lacked pretraining,
limiting their performance and requiring the initial guess of
network weights to be close to the correct guess to ensure sta-
bility. More recently, a quadrotor has performed an impres-
sive flip in wind using a NN to predict the unknown forces
[7], the weights are updated based on the position & velocity
error. Albeit, the network is still limited to a 3-layer [6,3,3]
architecture lacking pretraining.

Lately, meta-learning has drawn attention as scheme that
“learns-to-learn” efficient models of systems from data gath-
ered in varying conditions. The learned model is capable
of fast adaptation to highly dynamic environments. Meta-
Learning algorithms typically can be decomposed into two
phases: offline learning and online adaptation. In the of-
fline learning phase the goal is to learn a model from data
collected in various environments that captures common fea-
tures shared across all environments. In the online adaptation
phase the goal is to adapt this model to the current environ-
ment based on the data available. A naive approach to online
adaptation would adapt the entire network online, however
this is a computationally expensive task severely limiting the
depth of the network and lacking stability guarantees. A more
sophisticated approach augments the NN output with latent
variables identified online which represent the unknown en-
vironmental factors allowing for rapid adaptation with little
computational burden. Meta-Learning adaptive control has
achieved successful adaptive control of quadrotors carrying
suspended payloads [26] and strong winds [27]. Of partic-
ular interest are the results achieved in [27] whose ”Neural-
Fly” controller demonstrates state-of-the-art tracking perfor-

mance in strong & varying wind conditions achieving a po-
sition RMSE of 9.4[cm] at wind speeds of 12.1 [m/s] with
little computational cost.

3 METHODOLOGY

In this paper vectors are denoted in lowercase bold let-
ters p and matrices in uppercase bold letters I, otherwise
they are scalars. Two right-handed coordinate frames are
used in this paper shown in Figure 1, the body frame: FB :
{xB ,yB , zB} located at the center of mass of the quadro-
tor with xB pointing forward and zB aligned with the col-
lective thrust direction and the inertial world frame: FW :
{xW ,yW , zW } with zW pointing in the opposite direction
of gravity. Vectors with the superscript □B are expressed in
the body frame and those without one are expressed in the
world frame. The rotation from inertial frame to body frame
is represented by the rotational matrix R = [xB ,yB , zB] ∈
SO(3).

BODY

WORLD

Figure 1: Coordinate System Definitions

3.1 Quadrotor Model
The quadrotor model is based on [17] modelled as a 6

degree-of-freedom rigid body with 4 inputs corresponding to
the commanded rpms of the motors. The translational dy-
namics is given by:

a =
ft + fa + fres

m
+ g (1)

where a is the acceleration of the quadrotor’s center of
gravity; ft is the collective thrust; m is the quadrotor mass;
fa represents the aerodynamic model forces; fres captures
the remaining unmodeled forces; g =

[
0, 0,−9.81 ms−2

]T
is the gravity vector. The rotational kinematics and dynamic
equations are expressed as:

q̇ =
1

2
q ⊗ΩB (2)

Ω̇B = I−1
(
τB + τB

ext −ΩB × IΩB
)

(3)

where ΩB is the body frame angular velocity vector; I ∈
R3×3 is the quadrotor diagonal moment of inertia matrix; τ

are the modeled body torques and τext accounts for the any
unmodeled disturbance moments. The symbol ⊗ represents
the Hamilton quaternion product.

3.1.1 Thrust and Torque Model

The thrust and torque acting on the quadrotor are modeled in
Equation 4 & Equation 5 respectively, we assume stiff pro-
pellers with no rotor drag and neglect moments caused by
aerodynamic effects, angular acceleration of rotors and gyro-
scopic effects.

fB
t =

[
0, 0, ct

4∑
i=1

ω2
i

]T

(4)

τB =

 lyct −lyct −lyct lyct
lxct lxct −lxct −lxct
cτ −cτ cτ −cτ

ω2 (5)

where ct is the propeller thrust coefficient and cτ the
propeller torque coefficient; lx and ly are the moment arms
shown in Figure 1. All values are provided in Table 1.

3.1.2 Aerodynamic Force Model

The aerodynamic model from [28] captures the major aerody-
namic effects in a computationally efficient manner, provided
in

fB
a = −

4∑
i=1

ωi

 kx
ky
kz

⊙vB+

 0
0

kh

(
vBx

2
+ vBy

2
)

 (6)

where vB = R (q)
T
v is the body frame velocity vec-

tor and kx, ky, kz, kh are the aerodynamic coefficients identi-
fied from flight data in [29]. The symbol ⊙ represents vector
element-wise multiplication.

3.2 Adaptive Neural Controller
The adaptive neural controller design follows closely to

the ”Neural-Fly” controller architecture in [27]. Neural-
Fly is a data-driven trajectory tracking controller that uses
a learning-based approach to achieve fast & accurate online
adaption by incorporating pre-trained representations using
deep learning. The controller is composed of two main com-
ponents: offline meta-learning and online adaptive control.
These two components together build a model of the residual
forces acting on a quadrotor of the form:

fres (x,k) ≈ ϕ (x)A (k) (7)

where ϕ is a representation function that maps the resid-
ual forces dependant on the quadrotors state x to a shared
representation across all sampled environments. A is a set of

linear coefficients that adapt to the current quadrotor environ-
ment k. The offline training phase consists of training ϕ, a
DNN using Domain Adversarial Meta-Learning (DAIML) to
learn a propeller damage invariant representation of the un-
modeled forces. The online adaptation phase aims to adapt
the linear coefficients in A to the current propeller damage
condition using a composite adaptive controller while main-
taining stability and robustness.

Combining the translational dynamics of a quadrotor in
Equation 1 with the estimate of the residual force in Equa-
tion 12 we arrive at the control law of the adaptive neural
controller:

uf = maB
r +RfB

a +mgB︸ ︷︷ ︸
nominal model feedforward

−Kpep −Kvev︸ ︷︷ ︸
PD feedback

−ϕ (x) Â︸ ︷︷ ︸
adaptation

(8)

where ep = p− pr is the position tracking error, the sub-
script □r denotes the reference trajectory, i.e. ar is the ref-
erence acceleration of the desired trajectory; ev = v − vr
is the velocity tracking term; Kp and Kv are positive def-
inite control gain matrices for position and velocity respec-
tively. The output of Equation 8 is the control law uf , a
vector of commanded forces from which the corresponding
attitude and thrust is obtained through inverse kinematics.

The adaptive neural controller replaces the position con-
troller with the output the desired attitude and thrust com-
mands sent to the inner attitude control loop and thrust mixer
respectively. In contrast to a traditional PID controller, the
adaptive neural controller also includes nominal model feed-
forward terms to account for the known aerodynamic effects
and desired acceleration, improving tracking of the reference
trajectory. The architecture of the adaptive neural controller
is shown in Figure 2.

This paper builds upon the work presented in [27] through
the following contributions: (I) validation of the ”Neural-
Fly” adaptive neural controller architecture (II) adaptation
to novel propeller damage conditions (III) analysis of the
residual force prediction performance on training, testing and
flight data (IV) sensitivity analysis of the neural network ar-
chitecture to hyperparameters (VI) implementation of the on-
line adaptation phase onboard the flight controller in C.

3.2.1 Offline Training

The goal of the offline training phase is to learn a representa-
tion function ϕ (x) such that for any condition k a latent vari-
able A exists such that ϕ (x)A (k) approximates fres (x, k)
well. A DNN is used to learn this representation function
ϕ, taking advantage of the representation power of DNNs to
accurately approximate any nonlinear function given a suffi-
cient amount of neurons and training data. The optimal rep-
resentation ϕ∗ is typically obtained by minimizing the loss:

Desired
Trajectory

Feedforward

Nominal
Aerodynamic Model

Feedback

Adaptation Network

Inverse
Kinematics

Residual
Force

Gravity

Adaptive Neural Controller

Figure 2: Control Diagram of the Adaptive Neural Controller

min
ϕ,A1,··· ,AK

K∑
k=1

Nk∑
i=1

∥∥yk
i − ϕ

(
xk
i

)
Ak

∥∥ (9)

where K is the total amount of conditions sampled and
Nk is the total amount of data-points collected with condi-
tion k. The loss is the euclidean norm of the error between
the measured unmodeled forces y and the network output
ϕ (x)A across all sampled conditions and data-points.

Note that the minimization problem also involves the la-
tent variables A1, · · · ,AK , thus back-propagation is also
performed through A to ensure that the optimal latent vari-
ables are found.

The distribution of the quadrotor states x will vary de-
pending on the propeller damage condition k flown. For ex-
ample, propeller rpm values will increase as propeller dam-
age worsens to cope with the loss of lift. This inherent domain
shift in x caused by a shift in k may lead to over-fitting of the
network ϕ. The network ϕ could learn the change in the un-
modeled forces due to k via the change in the distribution of
x, instead of learning a propeller damage invariant represen-
tation. To solve this domain shift problem an adversarial loss
is used instead:

max
h

min
ϕ,A1,··· ,AK

K∑
k=1

NK∑
i=1

(∥∥yk
i − ϕ

(
xk
i

)
Ak

∥∥
− α · Lh

(
h
(
ϕ
(
xk
i

))
, k

))
(10)

In this adversarial loss the discriminator network h is
competing against ϕ in a zero-sum game. The network h
attempts to predict the condition k from the output of the
network ϕ (x), while ϕ attempts to approximate the residual
force measurement y while making the job of h harder. The
influence of the discriminator network h is controlled through

the regularization term α ≥ 0. The loss function of h, is typi-
cally a cross entropy loss function used to train classification
models:

Lh = −
∑
i∈B

δk=j ⊙ log
(
h
(
ϕ
(
xk
i

)))
(11)

The cross entropy loss compares the log of the output of
the discriminator network h

(
ϕ
(
xk
i

))
, a vector containing

the classification probabilities of each of the K conditions,
with the ground truth classification vector δi. For example, if
a data point is collected with no propeller damage with index
k = 1 the corresponding ground truth vector is δi = [1, 0, 0].

The DAIML algorithm developed in [27] is shown in al-
gorithm 1. DAIML consists of three main steps: (I) the adap-
tation step solves the least squares problem on the adaptation
batch Ba to find the optimal latent variable A∗ with a fixed
network ϕ, (II) the ϕ training step updates the parameters
of the network ϕ using Stochastic Gradient Descent (SGD)
based on the adversarial loss over the training batch Bt with
A∗, (III) the h training step updates the parameters of the
discriminator network h using SGD based on the cross en-
tropy loss over the training batch Bt.

Nevertheless, training adversarial networks is a challeng-
ing task due to problems such as mode collapse, vanishing
gradients and unstable convergence. Fortunately, Genera-
tive Adversarial Networks (GANs) have been extensively re-
searched and various well documented features have been
shown to improve training. These improvements have been
implement in DAIML they include: (1) normalization of the
latent variable ||A∗|| > γ to improve robustness, (2) spec-
tral normalization of the weights of the discriminator network
Wh = Wh/σ(Wh) to improve the stability, (3) training net-
works ϕ and h in an alternating manner as well as training
the discriminator less frequently to improve convergence.

Algorithm 1: DAIML
Hyperparameters: α ≥ 0, γ > 0, 0 < η ≤ 1
Data: D = {D1, . . . ,DK}
Result: trained neural network ϕ and h

1 while not converged do
2 Randomly sample Dk ∈ D

3 Randomly sample disjoint batches Ba,Bt ∈ Dk

4 Solve A∗(ϕ) = argmin
A

∑
i∈Ba

∥∥yki − ϕ
(
xk
i

)
A
∥∥

5 Train ϕ with loss: Lϕ =∑
i∈Bt

(∥∥yki − ϕ
(
xk
i

)
A∗

∥∥− α · Lh

(
h
(
ϕ
(
xk
i

))
, k
))

6 if X ∼ U(0, 1) ≤ η then
7 Train h with cross-entropy loss:

Lh = −
∑

i∈Bt

δi ⊙ log
(
h
(
ϕ
(
xk
i

)))
8 end
9 end

3.2.2 Online Adaptation

An online adaptation law based on a Kalman-filter estima-
tor is used to update the estimate of the linear coefficients Â
through Equation 12. While in the offline training phase, the
optimal coefficients A∗ are obtained by minimizing the least
squares force prediction error. In the online adaptation phase
the ultimate goal is to minimize the position tracking error.
Thus, the linear coefficients are updated based on a compos-
ite error, consisting of the force prediction error and the posi-
tion tracking error, improving the trajectory tracking perfor-
mance of the controller. Additionally, the Kalman-filter esti-
mator performs automatic tuning of the gain matrix P given
by Equation 13. This allows the online adaptation law to es-
timate the complex latent variable in the presence of varying
uncertainties, alleviating the need of constant excitation for
accurate estimation.

˙̂A = −λÂ︸ ︷︷ ︸
regularization

− Pϕ (x)
⊤
R−1(ϕ (x) Â− y)︸ ︷︷ ︸

prediction error

+ Pϕ (x)
⊤
s︸ ︷︷ ︸

tracking error

(12)

Ṗ = −2λP +Q− Pϕ (x)
⊤
R−1 + ϕ (x)P (13)

In practice, the adaptation law outlined is implemented
in a digital system which requires the discrete version of the
Kalman-filter. This discrete Kalman-filter suffers from nu-
merical stability and convergence issues particularly in the
covariance matrix P . As discussed in [27], coarse integra-
tion step sizes of the continuous time adaptation law would
sometimes result in P becoming non-positive-definite. Their
proposed solution, splitting the adaptation law into two steps:
a propagation step and an update step, has been implemented.

3.3 Trajectory Generation
The desired trajectory of the quadrotor is defined using a

spline that minimizes snap, the derivative of acceleration with
respect to time ȧ. Minimum snap trajectories are desirable for
quadrotor tracking since motor commands and attitude accel-
erations are proportional to snap. By minimizing snap these
trajectories create a sense of gracefulness of the quadrotors
motion, desirable for reducing sensor measurement noise and
avoiding excessive control inputs. Additionally, polynomial
splines are easily differentiable useful when calculating the
velocity and acceleration of the reference trajectory.

Given a list of N waypoints W = [W1, . . . ,WN] and
Wn ∈ R3 the desired position of the quadrotor is given by
pm =

[
pmx (t) , pmy (t) , pmz (t)

]
with each axis described

by one spline consisting of M = N − 1 polynomials. The
minimum snap spline of each axis is obtained by solving the
minimization problem:

min
p1,··· ,pM

M∑
m=1

∫ T

0

∥
p m (t)∥ dt (14)

where T is the amount of time for each waypoint seg-
ment. Given that the distance between waypoints is arbitrary
using the same amount of time for all segments severely con-
strains the solution quality. To improve the overall solution
the segment times are included in the cost function in Equa-
tion 15 and allowed to vary. However, changing the segment
times also change the cost function resulting in a non-convex
optimization problem, an initial guess of segment times is re-
quired and then iteratively refined using gradient descent to
reach a minimum.

min
p1,T1,··· ,pM ,TM

M∑
m=1

∫ Tm

0

∥
p m (t)∥ dt+ µTm (15)

Subject to:
pm (0) = Wm, pm (Tm) = Wm+1 (16)

ṗ1 (0) = 0, ṗM (TM) = 0 (17)
ṗm (Tm) = ṗm+1 (0) , p̈m (Tm) = p̈m+1 (0) (18)

Tm ≥ 0, (19)

where µ > 0 is time penalty factor. The time penalty fac-
tor influences the trade-off between minimizing snap and total
trajectory time. The effect of different time penalty factors on
the minimum snap trajectory created is shown in Figure 3.

4 EXPERIMENTAL SETUP

The quadrotor platform used is the Parrot Bebop 1, re-
leased by Parrot in 2015 as a recreational drone, equipped
with a Parrot P7 dual-core Cortex A9 CPU and a MPU6050
IMU. The Parrot Bebop 1 is the workhorse of the Micro Air
Vehicle Laboratory (MAVLab) at the faculty of Aerospace
Engineering at TU Delft, the platform is well known and

Figure 3: Effect of time factor γ on minimum snap trajectory
with µ = [1, 40, 80] and corresponding total times Ttot =
[26.5s, 13.7s, 11.3s]

readily available. Relevant parameters of the Parrot Bebop
1 are included in Table 1.

The Parrot Bebop 1 has a thrust-to-weight ratio of
T/W ≈ 1.7 significantly lower than that of modern custom
drones, limiting the maximum speeds that can be reached.
Despite this drawback the Parrot Bebop 1 has certain advan-
tages for our application: (I) the aging onboard CPU has lim-
ited computational capacity forcing the online implementa-
tion of the adaptive neural controller to be computationally
efficient (II) the relatively large body fairing introduces com-
plex aerodynamic disturbances even at low speeds which are
hard to model (III) it is equipped with out-of-the-box rpm
sensors.

Table 1: Parrot Bebop 1 Parameters

Parameter Unit Value
m [kg] 0.390

(lx, ly) [m] (9.5e−2, 7.75e−2)
I [gm2] diag

(
9.06e−4, 1.24e−3, 2.05e−3

)
ct [N2] 4.36e−8

cτ [Nm2] 6.60e−12

(kx, ky, kz) [kg/s]
(
1.08e−5, 9.65e−6, 2.79e−5

)
kh [kg/m] 6.26e−2

The Parrot Bebop 1 has been flashed with the Paparazzi-
UAV open source autopilot project1 written in C. Designed
for autonomous applications in mind and highly customiz-
able, it allows for the straightforward implementation of mod-
ules onboard. The offline DNN training is performed in
Python using Pytorch2 an open-source deep learning frame-
work in combination with WandB3 a powerful tool for man-

1https://wiki.paparazziuav.org/wiki/Main_Page
2https://pytorch.org/
3https://wandb.ai/site

aging and tracking machine learning experiments.
The test flights are performed in the CyberZoo, an in-

door 10 × 10 × 7 [m3] square volume located in the Delft
Aerospace Structures and Materials Laboratory. The Cyber-
Zoo is equipped with an OptiTrack motion capture system
consisting of 8 infrared cameras which provide accurate po-
sition, velocity and orientation measurements indoors using
the drone’s infrared markers. The OptiTrack measurements
are fused together with the IMU measurements onboard us-
ing an Extended Kalman-Filter (EKF) for accurate state es-
timation. A diagram of the experimental setup is shown in
Figure 4.

OptiTrack

Ground Station

Motive
Paparazzi

Figure 4: Experimental Setup

5 RESULTS

5.1 Dataset
5.1.1 Data Collection

The DAIML algorithm requires data to train the DNN rep-
resentation ϕ. Data collection consists of logging relevant
time-stamped drone states as the quadrotor tracks minimum
snap trajectories using a conventional velocity PID controller.
These trajectories are generated from 10 randomly sampled
waypoints using the method outlined in subsection 3.3. If at
any point throughout the generated trajectory the position and
a tracking margin exceeds the limits of the CyberZoo a dif-
ferent set of waypoints is sampled till a suitable trajectory is
found. All trajectories will travel roughly the same distance
but with varying times, resulting in slower trajectories hav-
ing more datapoints than faster trajectories. To ensure a more
uniform distribution of datapoints across velocities multiple
trajectories are logged at higher speeds, preventing the net-
work from over-fitting to the most common velocity regime
due to it being over-represented in the data.

To simulate propeller damage all 4 propellers of the be-
bop are cut at the tip by approximately 2mm and 4mm cor-
responding to a 5.3% and 10.5% reduction in blade radius.
Replacing the smooth elliptical propeller tips with rough tips
increases the wing tip vortices generated by the fast spinning
propellers. Resulting in a reduction in propeller lift and in-
crease in propeller drag, altering the aerodynamic effects act-

Table 2: Training and Validation Dataset

Time
Factor (µ) # Total Time

(Ttot) [s] Datapoints

Train

0.2 1 270 7547
0.4 2 263 7486
0.6 3 311 8883
0.8 4 282 7968
1.0 5 287 7923
1.2 4 205 5691

Val
0.3 1 182 4815
0.7 1 81 2120
1.1 1 49 1223

Total - 22 1, 930 61, 624

ing on the quadrotor. Data is collected on the training and
validation trajectories outlined in Table 2 for all 3 propeller
conditions: (1) no damage, (2) slight damage (2mm) and (3)
significant damage (4mm).

5.1.2 Data Processing

The residual forces acting on the quadrotor are obtained by
rearranging Equation 1 to solve for fres. The quadrotor ac-
celeration is computed using 1st-order central difference of
the velocity measurements. However, the velocity measure-
ments contain significant noise which would be further am-
plified when calculating the acceleration derivative. To avoid
this, a low pass zero-phase ”filtfilt” filter is used to smoothen
out the velocity measurements, reducing the noise without in-
troducing lag.

The dataset is divided into the 3 different propeller condi-
tions D =

{
D1,D2,D3

}
with each dataset containing Nk

input-output pairs Dk =
{
xk
i ,y

k
i

}Nk

i=1
of the relevant drone

states and a noisy measurement of the unmodeled forces
y = fres + ϵ, where ϵ encompasses all source of noise.

5.2 Training
The DAIML algorithm outlined in subsubsection 3.2.1

is used to train an effective representation ϕ of the pro-
peller damage invariant aerodynamic effects from the data
collected. The inputs of the network ϕ are the velocity,
quaternion and rpm states x = [v, q, rpm], while the output
representation is concatenated y = [y1, y2, y3, 1] to provide
a constant term for the adaptation. The architecture of the
network ϕ consists of [11, 50, 60, 50, 4] fully connected lay-
ers with Rectified Linear Unit (ReLU) activation functions as
shown in Figure 5. Similarly, the discriminator network h
consists of [4, 128, 3] fully connected layers with ReLU acti-
vation functions.

The hyperparameters used during training are reported in
Table 3, obtained from the sensitivity analysis in Appendix.
C. The commonly used Adam optimizer, an extended version
of stochastic gradient descent, is used to update the weights

First Layer
50 Neurons

(ReLU)

Second Layer
60 Neurons

(ReLU)

Third Layer
50 Neurons

(ReLU)

Figure 5: Neural Network ϕ Architecture

of both networks ϕ and h with learning rates lrϕ = 2e−3

and lrh = 4e−4 and batch sizes Bt = 128 and Ba = 512
respectively. The normalization term γ = 17 ensures that the
learned adaptation coefficients remain bounded, important for
fast adaptation in the online phase. The regularization term α
influences the degree of adversarial training. A regularization
value of α = 0.1 was found to strike the right balance be-
tween ϕ network performance and disentangling the learned
linear coefficients into the separate propeller conditions. The
stability of the discriminator network h is improved by us-
ing a discriminator training frequency of η = 0.75, combined
with spectral normalization of the discriminator weights.

Table 3: Hyperparameters of DAIML Algorithm

Hyperparameter Symbol Value
ϕ Network

Learning Rate lrϕ 2e−3

Normalization γ 17
Training Batch Size Bt 128

h Network
Learning Rate lrh 4e−4

Regularization α 0.1
Training Frequency η 0.75

Adaptation Batch Size Ba 512

The evolution of the ϕ network loss given by
∥y − ϕ (x)A∗∥ is shown on the training and validation data
in Figure 6. The ϕ network efficiently learns to minimize this
loss with little over-fitting present in the validation loss.

The high dimensional adaptation coefficients are pro-
jected into a 2 dimensional plane using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) dimensionality re-
duction technique. The t-SNE algorithm preserves local sim-
ilarities in the higher dimensional data enabling visualization
of clusters and patterns. The t-SNE plots of the training adap-
tation coefficients A∗ with α = 0.1 and α = 0 are shown in
Figure 7. With α = 0 corresponding to the non-adversarial
training case. Adversarial training enforces the adaptation co-

0.00

0.02

0.04

0.06

0.08

0.10

 L
os

s [
N]

Training

0 100 200 300 400 500
Epoch

0.01

0.02

0.03

0.04

0.05

 L
os

s [
N]

Validation

Figure 6: Training and Validation Loss of ϕ Network

efficients into explaining clusters that contain the propeller
damage condition information, ensuring the trained represen-
tation ϕ is condition invariant.

t-SNE Plot of Training Adaptation Coefficients A* with = 0.1
Condition

no damage
slight damage
significant damage

t-SNE Plot of Training Adaptation Coefficients A* with = 0
Condition

no damage
slight damage
significant damage

Figure 7: t-SNE plots of the Training Adaptation Coefficients
A∗ with α = 0.1 and α = 0

5.2.1 Residual Force Prediction

The residual force predictions of the network ϕ are shown on
the training, testing and validation data for the no propeller
damage condition are shown in Figure 8. The adaptation co-

efficients learned during training corresponding to the no pro-
peller damage condition are used to compute the unmodeled
force predictions f̂ext = ϕ (x)A∗.

The ϕ network successfully learns a representation that
captures the main features of the residual forces acting on
the quadrotor, providing a filtering zero-lag estimate of these
unmodeled forces. Even at the relatively slow maximum
speeds the Parrot Bebop 1 can reach the conventional aero-
dynamic model fails to model aerodynamic forces in the or-
der of fres ≈ 0.3 in the x-y direction and fres ≈ 0.7 in the
z-direction, which the ϕ network models.

While the network captures the main features of the un-
modeled forces they may be off by a certain offset, this is
especially noticeable on the validation data. This may be
caused by either the different controller architecture between
train/test and validation or due to the fact that a different
quadrotor of the same model is used. Substantiating the need
of adapting coefficients online to account for differences be-
tween training data and real-life deployment.

5.3 Tracking Performance
The tracking performance of the neural adaptive con-

troller is compared to that of the nonlinear controller in Equa-
tion 8 without the adaptation term and a baseline velocity PID
controller. The performance of these controllers is measured
tracking a randomized minimum snap trajectory with time
factor µ = 0.7 and µ = 1.1, shown in Figure 9 and Figure 13
respectively.

The adaptive neural controller outperforms the other con-
trollers by a substantial margin, achieving a tracking error one
order of magnitude lower than the conventional velocity PID
controller and approximately ≈ 60% lower than the nonlin-
ear controller. Most importantly, the tracking performance of
the adaptive neural controller barely degrades with a less than
3.0 [cm] increase in tracking error with increasing propeller
damage. This showcases the ability of the adaptive neural
controller at adapting to the current propeller condition flown.

The deterioration of the tracking performance of the adap-
tive neural controller with increasing speed is shown in Fig-
ure 10. Where the average position RMSE for a velocity
range is computed for all propeller conditions and both val-
idation minimum snap trajectories µ = 0.7 and µ = 1.1.
The tracking error at low speeds is quite high, this is may be
caused by the few amount of datapoints at these speeds com-
bined with position errors associated controller initialization.
Nevertheless, tracking errors quickly drop to ≈ 0.2 [m] and
then slowly increase with increasing speed to about ≈ 0.3 [m]
at a maximum velocity of vmax ≈ 3 [m/s].

The trajectories flown using the neural adaptive controller
and the nonlinear controller are shown in Figure 12 for all
propeller damage conditions.

5.4 Propeller Damage Estimation
An interesting feature of the adaptive neural controller

architecture is the ability to estimate the propeller damage

0 20 40 60
Time [s]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Re
sid

ua
l F

or
ce

 [N
]

X

0 20 40 60
Time [s]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Y

0 20 40 60
Time [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Z
Ground Truth
Prediction

Train

(a) Training Data

0 10 20 30 40
Time [s]

0.4

0.2

0.0

0.2

0.4

0.6

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Y

0 10 20 30 40
Time [s]

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Z

Ground Truth
Prediction

Test

(b) Testing Data

0 10 20 30 40
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4
Y

0 10 20 30 40
Time [s]

1.0

0.5

0.0

0.5

1.0

Z
Ground Truth
Prediction

Validation

(c) Validation Data

Figure 8: Residual Force Predictions f̂ext = ϕ (x)A∗ for No Propeller Damage Condition

No Damage Slight Damage Significant Damage
Propeller Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
sit

io
n

RM
SE

 [m
]

Controller Tracking Performance
Controller
Adaptive Neural
Nonlinear
PID

Figure 9: Controller Tracking Performance Comparison on
Minimum Snap Trajectory with µ = 0.7

0.0 0.5 1.0 1.5 2.0 2.5
Velocity [m/s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Po
sit

io
n

RM
SE

 [m
]

Tracking Performance vs. Speed

Figure 10: Adaptive Neural Controller Average Position
RMSE Bins vs. Speed with 99% Confidence Interval

Significant Damage Slight Damage No Damage

Propeller Damage Estimation
 from Online Adaptation Coefficients

Propeller Condition
No Damage
Slight Damage
Significant Damage

Figure 11: Propeller Damage Condition Estimation from
Online Adaptation Coefficients with µ = 1.1

condition from the online adaptation coefficients. The on-
line adaptation coefficients will differ from those in training
due to the position tracking term in the coefficient update in
Equation 12, nevertheless sufficient propeller condition in-
formation should still remain. To showcase the feasibility
of estimating the propeller damage condition from the on-
line adaptation coefficient, t-SNE is performed on the higher

dimension adaptation coefficients to reduce them into one di-
mension from which the propeller damage can be easily esti-
mated as shown in Figure 11.

6 DISCUSSION & RECOMMENDATIONS

The adaptive neural controller achieves impressive track-
ing results with minimal susceptibility towards propeller
damage. The neural network ϕ successfully learns a repre-
sentation of the unmodeled aerodynamic forces acting on the
quadrotor.

6.1 Computational Efficiency

Most quadrotor adaptive controllers in literature require
powerfull embedded computers or even a ground station. The
adaptive neural controller runs onboard an aging dual-core
CPU without breaking a sweat, a testament to its the compu-
tational efficiency. The efficient C implementation of the net-
work inference and adaptation allows the controller to run on-
board at ≈ 30 [Hz] with a CPU load of ≈ 60% but could even
run at a much faster ≈ 100 [Hz] at a CPU load of ≈ 80%. For
the offline learning phase, the DAIML algorithm is equally
fast at learning an efficient representation of the aerodynamic
forces taking approximately ≈ 3m to train a network from
scratch on a laptop.

6.2 Influence of Propeller Damage

The effect of propeller damage on the residual forces is
mainly limited to the vertical direction, with little change in
the lateral residual forces. This causes some instability in
the adversarial training procedure albeit these problems could
be solved through careful hyperparameter selection. Increas-
ing speed and propeller rpms or alternatively increasing pro-
peller damage should make the influence of propeller condi-
tion more noticeable, however we are ultimately limited by
the thrust-to-weight ratio of the quadrotor and the available
space of the CyberZoo.

6.3 Noisy Measurements

The ϕ network is susceptible like any other neural net-
work to the quality of the data it trains on. To compute the
unmodeled force measurements acting on the drone the veloc-
ity measurements are differentiated, which further amplifies
the noise. The OptiTrack velocity measurements experienced
high noise, frequency dropouts and occasional asynchronous
timing. Despite efforts to filter and clean the training and
testing data some of noise and errors made it through into the
ground truth data, degrading the quality of the learned repre-
sentation ϕ.

The poor quality of the OptiTrack measurements also in-
fluences the online adaptation. Significant filtering of the ve-
locity measurements is required before applying backward fi-
nite difference to obtain usable measurements of the residual
force y which have significant lag. This may cause oscilla-
tory behaviour as can be seen in some of the trajectories in
Figure 12.

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Adaptive Neural Controller - No Propeller Damage

0.0

0.1

0.2

0.3

0.4

0.5

 Position
 Error [m]

Reference vs Real Trajectory

(a) Adaptive Neural Controller w/ No Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Nonlinear Controller - No Propeller Damage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Position
 Error [m]

Reference vs Real Trajectory

(b) Nonlinear Controller w/ No Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Adaptive Neural Controller - Slight Propeller Damage

0.0

0.1

0.2

0.3

0.4

 Position
 Error [m]

Reference vs Real Trajectory

(c) Adaptive Neural Controller w/ Slight Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Nonlinear Controller - Slight Propeller Damage

0.0

0.2

0.4

0.6

0.8

 Position
 Error [m]

Reference vs Real Trajectory

(d) Nonlinear Controller w/ Slight Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Adaptive Neural Controller - Significant Propeller Damage

0.0

0.1

0.2

0.3

0.4

0.5

 Position
 Error [m]

Reference vs Real Trajectory

(e) Adaptive Neural Controller w/ Significant Propeller Damage

X [m]
3

2
1

0
1

2
3

Y [m]

3

2

1

0

1

2

3

Z
[m

]

2

1

0

1

2

3

4

Nonlinear Controller - Significant Propeller Damage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 Position
 Error [m]

Reference vs Real Trajectory

(f) Nonlinear Controller w/ Significant Propeller Damage

Figure 12: Comparison of Trajectories flown using Adaptive Neural Controller and Nonlinear Controller for all Propeller Conditions

6.4 Recommendations
Future work should focus on addressing the challenge of

significant noise in the residual force measurements in the
online adaptation. The quality of the residual force measure-
ments could be improved by implementing a properly tuned
Kalman-filter with accelerations as states. Additionally, ac-
celerometer measurement noise can be mitigated by using a
modern IMU or in the case of the OptiTrack velocity mea-
surements using ball infrared markers and limiting reference
trajectories to remain in areas with good OptiTrack coverage.

In terms of improving the architecture of the adap-
tive neural controller, research in artificial intelligence has
shifted towards using transformers which outperform conven-
tional fully connected or convolutional network architectures.
Transformers process a sequence of inputs in contrast to a
single input. Furthermore, transformers have recently been
employed in Generative Adversarial Networks in [30] similar
to DAIML achieving state-of-the-art performance.

The effect of propeller damage on the residual forces was
found to not be as significant as expected, diminishing the
benefits of using an adaptive controller. Instead adapting
to flying the Parrot Bebop 1 with and without bumpers at-
tached would be a better application. We believe that this
adaptive neural controller would be best suited for morphing
or VTOL UAVs which have multiple distinct aerodynamic
models which are challenging to model during the transition
phase.

7 CONCLUSION

The ”Neural-Fly” controller from [27] originally ap-
plied to wind speed conditions has been investigated fur-
ther. Neural-Fly is a lightweight yet powerful adaptive neural
controller that combined pre-trained condition invariant rep-
resentations of the unmodeled forces using Domain Adver-
sarially Invariant Meta-Learning (DAIML) with fast online
adaptation to the current condition. We apply this adaptive
neural architecture to various degrees of propeller damage a
common condition in real-work flight, demonstrating the ver-
satility of this controller architecture at adapting to various
conditions. We show that the adaptive neural architecture
is a computationally efficient and accurate trajectory track-
ing controller architecture. The adaptive neural controller
is deployed fully onboard the Parrot Bebop 1 without the
need of attaching powerful embedded computers, showcas-
ing the computational efficiency of our controller implemen-
tation. We perform a sensitivity analysis on the hyperparam-
eters of the DAIML algorithm consisting of 30 runs to de-
termine the optimal hyperparameters using Bayesian search,
further improving the performance of the controller. We show
that the learned propeller damage invariant representation ϕ
using DAIML successfully predicts a filtered zero-lag predic-
tion of the unmodeled forces even at the limited speeds and
propeller rpms of the experimental setup. The adaptive neural
controller successfully adapts to the various degrees of pro-

peller damage with minimal degradation in tracking perfor-
mance significantly outperforming the nonlinear and velocity
PID baseline controllers.

ACKNOWLEDGEMENTS

The author is grateful to Erik van der Horst for his guid-
ance & technical expertise and to my parents for their uncon-
ditional love.

REFERENCES

[1] NASA’s Ingenuity Mars Helicopter Successfully Completes
First Flight.

[2] Dara Kerr and Richard Nieva. Drones, sun — and a strong will
— elevate Rwanda’s health care.

[3] Guillem Torrente, Elia Kaufmann, Philipp Foehn, and Davide
Scaramuzza. Data-Driven MPC for Quadrotors. In IEEE
Robotics and Automation Letters, volume 6 of 2, pages 3769–
3776. IEEE, March 2021.

[4] James Svacha, Kartik Mohta, and Vijay Kumar. Improv-
ing quadrotor trajectory tracking by compensating for aerody-
namic effects. In 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 860–866, June 2017.

[5] Patricia Ventura Diaz and Steven Yoon. High-Fidelity Compu-
tational Aerodynamics of Multi-Rotor Unmanned Aerial Vehi-
cles. In 2018 AIAA Aerospace Sciences Meeting, Kissimmee,
Florida, January 2018. American Institute of Aeronautics and
Astronautics.

[6] Ivan Lopez-Sanchez, Francisco Rossomando, Ricardo Pérez-
Alcocer, Carlos Soria, Ricardo Carelli, and Javier Moreno-
Valenzuela. Adaptive trajectory tracking control for quadro-
tors with disturbances by using generalized regression neural
networks. Neurocomputing, 460:243–255, October 2021.

[7] Mahdis Bisheban and Taeyoung Lee. Geometric Adaptive
Control with Neural Networks for a Quadrotor UAV in Wind
fields, March 2019. arXiv:1903.02091 [math].

[8] Qiyang Li, Jingxing Qian, Zining Zhu, Xuchan Bao, Mo-
hamed K. Helwa, and Angela P. Schoellig. Deep Neural
Networks for Improved, Impromptu Trajectory Tracking of
Quadrotors, October 2016.

[9] Aminurrashid Noordin, Ariffanan Basri, and Zaharuddin Mo-
hamed. Simulation and experimental study on PID control of
a quadrotor MAV with perturbation. Bulletin of Electrical En-
gineering and Informatics, 9, October 2020.

[10] Luı́s Martins, Carlos Cardeira, and Paulo Oliveira. Linear
Quadratic Regulator for Trajectory Tracking of a Quadrotor.
IFAC-PapersOnLine, 52(12):176–181, January 2019.

[11] J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice
Hall, 1991.

[12] Daewon Lee, H. Jin Kim, and Shankar Sastry. Feedback lin-
earization vs. adaptive sliding mode control for a quadrotor
helicopter. International Journal of Control, Automation and
Systems, 7(3):419–428, June 2009.

[13] P.V. Kokotovic. The joy of feedback: nonlinear and adaptive.
IEEE Control Systems Magazine, 12(3):7–17, June 1992. Con-
ference Name: IEEE Control Systems Magazine.

[14] S. Sieberling, Q. P. Chu, and J. A. Mulder. Robust Flight Con-
trol Using Incremental Nonlinear Dynamic Inversion and An-
gular Acceleration Prediction. Journal of Guidance, Control,
and Dynamics, 33(6):1732–1742, November 2010. Publisher:
American Institute of Aeronautics and Astronautics.

[15] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory
generation and control for quadrotors. In 2011 IEEE Interna-
tional Conference on Robotics and Automation, pages 2520–
2525, 2011.

[16] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza.
Differential Flatness of Quadrotor Dynamics Subject to Rotor
Drag for Accurate Tracking of High-Speed Trajectories. In
Robotics and Automation Letters (RA-L), volume 3 of 2, pages
620–626. IEEE, April 2018. arXiv:1712.02402 [cs].

[17] Ezra Tal and Sertac Karaman. Accurate Tracking of Aggres-
sive Quadrotor Trajectories using Incremental Nonlinear Dy-
namic Inversion and Differential Flatness. In IEEE Transac-
tions on Control Systems Technology, volume 29 of 3, pages
1203–1218. IEEE, June 2020. arXiv:1809.04048 [cs] type: ar-
ticle.

[18] Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, and
Davide Scaramuzza. A Comparative Study of Nonlinear MPC
and Differential-Flatness-Based Control for Quadrotor Agile
Flight. arXiv, February 2022. arXiv:2109.01365 [cs] type:
article.

[19] Prasanth Kotaru, Ryan Edmonson, and Koushil Sreenath. Ge-
ometric L1 Adaptive Attitude Control for a Quadrotor Un-
manned Aerial Vehicle, March 2020. arXiv:1910.07730
[math].

[20] Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann,
and Davide Scaramuzza. Performance, Precision, and Pay-
loads: Adaptive Nonlinear MPC for Quadrotors. IEEE
Robotics and Automation Letters, 7(2):690–697, April 2022.
arXiv:2109.04210 [cs].

[21] Zachary T. Dydek, Anuradha M. Annaswamy, and Eugene
Lavretsky. Adaptive Control of Quadrotor UAVs: A De-
sign Trade Study With Flight Evaluations. IEEE Transac-
tions on Control Systems Technology, 21(4):1400–1406, July
2013. Conference Name: IEEE Transactions on Control Sys-
tems Technology.

[22] Xichen Shi, Patrick Spieler, Ellande Tang, Elena-Sorina Lupu,
Phillip Tokumaru, and Soon-Jo Chung. Adaptive Nonlinear
Control of Fixed-Wing VTOL with Airflow Vector Sensing. In
2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 5321–5327, May 2020. ISSN: 2577-087X.

[23] Alexander Spitzer and Nathan Michael. Feedback Lin-
earization for Quadrotors with a Learned Acceleration Er-
ror Model. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 6042–6048, May
2021. arXiv:2105.13527 [cs, eess].

[24] Fu-Chuang Chen and H.K. Khalil. Adaptive control of a
class of nonlinear discrete-time systems using neural net-
works. IEEE Transactions on Automatic Control, 40(5):791–
801, May 1995.

[25] A. Kondratiev and Y. Tiumentsev. Inverse Dynamics Approach
to Adaptive Damage-Tolerant Control for Unmanned Aerial
Vehicles. 2011.

[26] Suneel Belkhale, Rachel Li, Gregory Kahn, Rowan McAllis-
ter, Roberto Calandra, and Sergey Levine. Model-Based Meta-
Reinforcement Learning for Flight with Suspended Payloads.
IEEE Robotics and Automation Letters, 6(2):1471–1478, April
2021. arXiv:2004.11345 [cs].

[27] Michael O’Connell, Guanya Shi, Xichen Shi, Kamyar Aziz-
zadenesheli, Anima Anandkumar, Yisong Yue, and Soon-Jo
Chung. Neural-Fly Enables Rapid Learning for Agile Flight
in Strong Winds. In Science Robotics, volume 7 of 66, page
eabm6597. American Association for the Advancement of Sci-
ence, May 2022.

[28] James Svacha, Kartik Mohta, and Vijay Kumar. Improv-
ing quadrotor trajectory tracking by compensating for aerody-
namic effects. In 2017 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 860–866, 2017.

[29] Robin Ferede, Guido C. H. E. de Croon, Christophe De
Wagter, and Dario Izzo. An adaptive control strategy for neural
network based optimal quadcopter controllers, 2023.

[30] Drew A. Hudson and C. Lawrence Zitnick. Generative Adver-
sarial Transformers, March 2022. arXiv:2103.01209 [cs].

APPENDIX A: CONTROLLER PERFORMANCE
COMPARISON

The tracking performance of the neural adaptive, nonlin-
ear and PID controller on a minimum snap trajectory with
time factor µ = 1.1 is shown in Figure 13.

No Damage Slight Damage Significant Damage
Propeller Condition

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
sit

io
n

RM
SE

 [m
]

Controller Tracking Performance
Controller
Adaptive Neural
Nonlinear
PID

Figure 13: Controller Tracking Performance Comparison on
Minimum Snap Trajectory with µ = 1.1

APPENDIX B: RESIDUAL FORCE PREDICTIONS

The residual force predictions for the slight propeller
damage and significant damage condition on the training,
testing and validation data are shown in Figure 14 and Fig-
ure 15 respectively.

0 20 40 60
Time [s]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Re
sid

ua
l F

or
ce

 [N
]

X

0 20 40 60
Time [s]

0.4

0.2

0.0

0.2

0.4

0.6

Y

0 20 40 60
Time [s]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Z
Ground Truth
Prediction

Train

(a) Training Data

0 10 20 30 40
Time [s]

0.2

0.0

0.2

0.4

0.6

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Y

0 10 20 30 40
Time [s]

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Z
Ground Truth
Prediction

Test

(b) Testing Data

0 10 20 30 40
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

0.4

0.2

0.0

0.2

0.4

Y

0 10 20 30 40
Time [s]

0.5

0.0

0.5

1.0

1.5

Z
Ground Truth
Prediction

Validation

(c) Validation Data

Figure 14: Residual Force Predictions f̂ext = ϕ (x)A∗ for Slight Propeller Damage Condition

0 20 40 60
Time [s]

0.2

0.1

0.0

0.1

0.2

Re
sid

ua
l F

or
ce

 [N
]

X

0 20 40 60
Time [s]

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Y

0 20 40 60
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Z

Ground Truth
Prediction

Train

(a) Training Data

0 10 20 30 40
Time [s]

0.4

0.2

0.0

0.2

0.4

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

0.2

0.0

0.2

0.4

0.6

Y

0 10 20 30 40
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Z

Ground Truth
Prediction

Test

(b) Testing Data

0 10 20 30 40
Time [s]

0.2

0.0

0.2

0.4

0.6

Re
sid

ua
l F

or
ce

 [N
]

X

0 10 20 30 40
Time [s]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Y

0 10 20 30 40
Time [s]

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Z
Ground Truth
Prediction

Validation

(c) Validation Data

Figure 15: Residual Force Predictions f̂ext = ϕ (x)A∗ for Significant Propeller Damage Condition

APPENDIX C: SENSITIVITY ANALYSIS

A sensitivity analysis is performed on DAIML to deter-
mine the optimal hyperparameters shown in Table 3 using
Bayesian search that minimize the best test loss during train-
ing. The hyperparameters searched are given in Table 4.

Table 4: Sensitivity Analysis Hyperparameter Value Range

Hyperparameter Symbol Values
Min Max Distribution

Spectral Norm SN False True Categorical
Normalization γ 5 20 Int Uniform

Training Frequency η 0.2 0.8 Uniform
ϕ Learning Rate lrϕ 1e−4 1e−3 Uniform
h Learning Rate lrh 5e−4 5e−3 Uniform

Figure 17: Sensitivity Analysis Hyperparameter Importance
& Correlation

Figure 16: Sensitivity Analysis

Part II
Literature Review

Nomenclature

Abbreviations

Abbreviation Definition
CPC Complementary Progress Constraint

COBYLA Constrained Optimization BY Linear Approximation
DFBC Differential-Flatness Based Control
(D)NN (Deep) Neural Network
IMU Inertial Measurement Unit
INDI Incremental Nonlinear Dynamic Inversion
LQR Linear-Quadratic Regulator
MIAC Model Identification Adaptive Controllers
MPC Model Predictive Controller
MRAC Model Reference Adaptive Controllers
NDI Nonlinear Dynamic Inversion

NMPC Nonlinear Model Predictive Control
OCP Optimal Control Problem
PID Proportional-Integral-Derivative
RPM Rotations Per Minute

RMS(E) Root Mean Squared (Error)
SGD Stochastic Gradient Descent
SoC System on a Chip
t-SNE t-Distributed Stochastic Neighbor Embedding
UAV Unmanned Aerial Vehicle

i

ii

Symbols

Symbol Description Unit
α Angle of Attack [Rad]
θ Pitch Angle [Rad]
ϕ Roll Angle [Rad]
ψ Yaw Angle [Rad]
p Roll Rate [Rad/s]
q Pitch Rate [Rad/s]
r Yaw Rate [Rad/s]
q Quaternion Orientation [−]

fres Residual Force Vector [N]
fa Aerodynamic Force Vector [N]
f t Thrust Force Vector [N]
p Position Vector [m]
v Velocity Vector [m/s]
a Acceleration Vector [m/s2]
τ Torque Vector [Nm]
Ω Angular Velocities Vector [Rad/s]
α Angular Acceleration Vector [Rad/s2]
I Quadrotor Mass Moment of Inertia Matrix [kg ·m2]
Ir Rotor Inertia [kg ·m2]
x Residual Force Measurement Vector [N]
y Phi Network Input Vector [N]
K Controller Gain [−]

Constants
g Gravitational Acceleration Vector [0, 0, 9.81 m/s2]
m Parrot Bebop 1 Mass 0.390[kg]

List of Figures

1.1 UAV Market Revenue Forecast [9] . vi
1.2 Drone Flying in Windy Conditions at the Caltech Real Weather Wind Tunnel [25] 19
1.3 Drone Flying with a Suspended Payload [31] . 19
1.4 Propeller Damage from Flying ≈ 20 [m] in Abrasive Particles 19

2.1 Quadrotor PID Control Architecture . 21
2.2 Box plots of the position tracking root-mean-square-error tracking reference trajectories

with speeds up to 20 m/s [36] . 22
2.3 Processing time to generate control commands [36] . 22
2.4 Online adaptation block where the basis function is adapted online with the tracking &

prediction based error to obtain the force estimate f̂ext = ϕâ [25] 24
2.5 Illustration of the meta-learning algorithm DAIML on data collected from wind conditions

{w1, · · · , wK} [25] . 24

4.1 Coordinate Frame Definitions [36] . 27
4.2 Effect of time factor γ onminimum snap trajectory. Total times of TM = [26.5s, 13.7s, 11.3s]

with γ = [1, 40, 80] . 30
4.3 Position and acceleration of varying order polynomial and bang-bang trajectories. Bang-

bang trajectory is shortest by spending more time at the acceleration limits. [12] 30

5.1 Picture of Parrot Bebop 1 flying in the CyberZoo [7] . 38
5.2 Picture of a freestyle drone (Nazgul Evoque F5) [23] . 38
5.3 Long-exposure picture showing a drone flying through various gates in the CyberZoo [8] 39
5.4 Picture of the outdoor experiments performed in [25] using a GPS module for state esti-

mation and a weather station for wind data [25] . 39
5.5 Sample reference vs. measured drone trajectory . 40
5.6 Training dataset probability density functions of reference velocity 41
5.7 Smoothing of quadrotor x-direction velocity measurements using low-pass filtering with

ωc = 6/fnyq . 41
5.8 Boxplots of Residual Force . 42
5.9 Lateral Residual Force vs Speed Plots . 42

6.1 ϕ Training Loss . 44
6.2 ϕ Validation Loss . 44
6.3 Sample log of DAIML training run in wandb . 44

7.1 Gantt Chart . 46

A.1 Adaptive Neural Controller Code Architecture Diagram 48

B.1 ”FiltFilt” Zero-Phase Smoothing of OptiTrack Velocity Measurements and Residual Force 50

C.1 t-SNE Plots of Online Adaptation Coefficients (Â) . 52
C.2 Propeller Damage Condition Estimation from Online Adaptation Coefficients 53

D.1 Residual Force Prediction Plots of Testing Data . 54
D.2 Comparing Training & Validation Loss of Multiple Runs in WandB 55

iii

List of Tables

4.1 Aerodynamic model coefficients for the Parrot Bebop 2 drone from [11] 29

5.1 Total time, total distance and amount of data points of each reference trajectory recorded 40

6.1 DAIML Hyperparameters [25] . 43

iv

Abstract
Executing fast & precise trajectories with quadrotors in challenging environments is essential for appli-
cations such as: search & rescue, aerial delivery/transport, autonomous drone racing or even space
exploration. Complex aerodynamic disturbances arise during agile high-acceleration flight introduc-
ing large tracking errors, rendering traditional controller designs insufficient. State-of-the-art trajectory
tracking controllers achieve impressive tracking performances, but require highly accurate models to
achieve these results and require powerful embedded computers to run onboard. Modeling uncer-
tainties arising from varying payloads, propeller damage or parameter mismatch significantly degrade
controller performance. Adaptive controllers augment existing controllers, they learn and compensate
for these model uncertainties but crucially suffer from stability and excitation problems and require ad-
ditional computational resources, hindering their wider commercial adoption. Recent work on Adaptive
Deep Neural Network based control has shown impressive results adapting to high wind conditions,
as a computationally light-weight alternative with comparable performance to state-of-the-art adaptive
methods. This literature review aims to shed light into the largely unexplored field of adaptive neural
controllers, providing the necessary groundwork to improve the Adaptive Neural Controller architecture
and perhaps adapting it to different conditions.

v

1
Introduction

Autonomous Unmanned Aerial Vehicles (UAVs) are a disruptive technology that over the next decades
will revolutionize the agriculture, surveillance, transport, search & rescue industries to name a few. The
UAV market revenue size was valued at $30 Billion in 2020 and is project to reach $55 billion by 2030
according to DroneII [9], showing no signs of slowing down. Autonomous UAVs have already been
used in a wide range of applications from performing the first controlled flight on another planet [24] to
delivering life-saving medical supplies to remote African regions [42].

Figure 1.1: UAV Market Revenue Forecast [9]

Accurate trajectory tracking of quadrotors, a common type of UAV with four rotors, at high-speeds
is a challenging problem. Due to the complex relationship between aerodynamic forces and quadrotor
maneuverability at these speeds designing a controller using traditional control methods results in sig-
nificant tracking errors. Moreover, changes in conditions such as wind, propeller damage or payloads
is a common occurrence in real-world situations which significantly degrades the tracking performance
of controllers. However developing an accurate & light-weight adaptive trajectory tracking controller
is an essential step in the wider commoditization of UAVs. Allowing quadrotors to execute trajectories
accurately and therefore safely in a wide range of conditions is essential for applications such as search
& rescue, aerial delivery/transport, space exploration and autonomous drone racing applications.

vi

19

Figure 1.2: Drone Flying in Windy Conditions at the Caltech Real
Weather Wind Tunnel [25]

Figure 1.3: Drone Flying with a Suspended
Payload [31]

Figure 1.4: Propeller Damage from Flying ≈ 20 [m] in Abrasive Particles

Conventional Proportional-Integral-Derivative (PID) controllers use a cascaded controller architec-
ture, while simple yet effective at low speeds their accuracy quickly degrades at higher speeds. State-of-
the-art trajectory tracking controllers such as Nonlinear Model Predictive Control (NMPC) or Differential
Flatness Based Control (DFBC) achieve impressive tracking performances at high speeds with a Root-
Mean Squared (RMS) tracking error of 8.2 [cm] at speeds of up to 20 [m/s] [36], but require powerful
embedded computers to run onboard and rely on highly accurate models to achieve these results.

Adaptive controllers augment existing controllers by either estimating the values of unknown co-
efficients online or using an L1 adaptive controller to directly estimate the observable aerodynamic
residual force. However, online coefficient estimation suffer from convergence problems when there
is a lack of excitation and must perform a trade-off between lag and noise in the residual force signal.
Additionally, adaptive controllers add to the computational complexity of the controller further straining
the limited computational budget available onboard.

Recent work on ”Neural-Fly”, a lightweight controller combining pre-trained representations trough
Deep Neural Networks (DNNs) with rapid online adaptation achieves impressive results. Neural-Fly out-
performs state-of-the-art adaptive controllers in challenging wind conditions, achieving a RMS tracking
error of 9.4 [cm] at wind speeds of 12.1 [m/s] [25]. However this adaptive neural architecture is largely
unexplored lacking reproducibility, it is unknown how well these results would translate to other drones
or possibly adapting to different conditions.

The main challenge of developing an accurate trajectory tracking controller for aggressive quadrotor
flight is to perform an applicable trade-off between model accuracy and complexity. Identifying a model
capable of describing the complex aerodynamic effects at these high speeds while remaining tractable
to run the control loop at a high-frequency. The lack of onboard computational resources is further
compounded by the fact that autonomous applications devote most of the available computational bud-
get onboard towards image processing, rendering the implementation of most of these state-of-the-art
controllers impractical for autonomous applications.

The aim of this thesis is to investigate adaptive neural controllers as an accurate yet computationally
efficient adaptive controller architecture for high-speed trajectory tracking in varying conditions such as
wind, propeller damage or payloads. In this literature review the groundwork has been laid, starting with

20

a literature review on the progress of trajectory tracking controllers in Chapter 2. Followed in Chapter 3
by an explanation of relevant research questions and research objectives related to developing such
a controller. In Chapter 4 the methodologies regarding the trajectory planning and controller has been
outlined. The data collection & processing procedure has been explained in Chapter 5 while the training
results of the DAIML algorithm has been analyzed in Chapter 6. Lastly, the results, outcome& relevance
of this thesis has been discussed in Chapter 8.

2
Literature Review

The literature review has been divided into 3 main sections. First, the progress of conventional quadro-
tor trajectory tracking controllers is presented in Section 2.1 and aerodynamic models in Section 2.1.1.
Followed by an explanation of adaptive trajectory tracking controllers in Section 2.2. Lastly, a review
of adaptive neural controllers is included in Section 2.3.

2.1. Quadrotor Trajectory Tracking Control
Quadrotors are inherently unstable platforms. Initial work on quadrotor control achieved stable hover
and near-hover flight thanks to small-angle assumptions allowing for conventional linear control meth-
ods such as cascaded Proportional-Integral-Derivative (PID) [18] or Linear-Quadratic Regulator (LQR)
[18] to be implemented. These methods are simple yet effective in low-speed regimes, however their
performance quickly degrades in high-speed agile flight where the small angle assumptions no longer
hold. Despite these drawbacks cascaded PID controllers are widely used in off-the-shelf flight con-
trollers, due to ease of tuning and modular design, splitting the controller into position/velocity/atti-
tude/rate controllers and a thrust mixer as shown in Figure 2.1.

Position
Control

Reference
Trajectory

Thrust
Mixer

Quadrotor

P

50 Hz

Inertial Frame

Acceleration
and Yaw to

Attitude

Angle
Control

P

250 Hz

Body Frame

Rate
Control

PID

1 kHz

PID

Velocity
Control

Figure 2.1: Quadrotor PID Control Architecture

Non-linearities from the attitude dynamics render the small angle assumption no longer valid for
agile flight. Nonlinear flight controllers have been proposed to solve this problem, such as Nonlinear
Dynamic Inversion (NDI) [34], also referred to as feedback linearization, which enables ”the use of a
linear control law by transforming the nonlinear dynamics into a linear input-output map” [38]. How-
ever, exact dynamic inversion suffers from a lack of robustness. Variants of NDI have been proposed
to tackle this issue, such as backstepping design [13] which recursively designs a controller starting
from a known stable inner system and ”back out” progressively stabilizing the entire system. ”More
recently an incremental version of NDI (INDI) [41] has been proposed, which provides robustness by
incrementally applying control inputs based on inertial measurements” [38].

21

2.1. Quadrotor Trajectory Tracking Control 22

State-of-the-art trajectory tracking controllers can be categorized into: non-predictive and predictive
methods. Non-predictive methods track a single reference step, whereas predictive methods encode
several future timesteps into the control command.

DFBC is a non-predictive controller, which takes advantage of the fact that quadrotors are differen-
tially flat systems [10], enabling the reformulation of the trajectory tracking problem as a state tracking
problem. The tracking performance of DFBCs is improved by using an inner loop INDI controller and
aerodynamic model as shown in Figure 2.2, achieving a RMS tracking error of 12.2 [cm] at a speed of
20 [m/s] [38].

On the other hand, NMPC is a predictive method, which generates motor commands in a receding
horizon fashion, subject to solving a constrained optimization problem on the tracking error over the
predicted time horizon. Similarly, the performance of NMPCs is bolstered using an INDI rate controller
and aerodynamic model. NMPCs outperform DFBCs as they minimize the tracking error over multi-
ple timesteps whereas DFBCs are too short-sighted only considering one reference point achieving a
RMS tracking error of 10.2 [cm] at a maximum speed of 20 [m/s] [39]. However, solving this nonlinear
optimization problem over multiple time-steps come at the cost of significantly higher computational
power in the order of 100 times higher than DFBCs as shown in Figure 2.3. Crucially both of these
controllers require highly accurate quadrotor and aerodynamic models to achieve these results. Mod-
elling mismatch will occur in real-world conditions caused by either wind, propeller damage or payloads
significantly degrading controller performance. A reduction in the thrust coefficient by 30% will result in
a significant degradation in controller performance, with position RMSE rising from 0.08 [m] to 1.36 [m]
for NMPC and from 0.09 [m] to 1.01 [m] for DFBC [36].

Figure 2.2: Box plots of the position tracking root-mean-square-error tracking
reference trajectories with speeds up to 20 m/s [36]

Figure 2.3: Processing time to generate
control commands [36]

2.1.1. Aerodynamic Model
Operating a quadrotor at high speeds and through agile high-acceleration maneuvers involves complex
aerodynamic disturbances that consequently introduce large tracking errors. ”These effects are diffi-
cult to model, since they consist of a combination of propeller lift and drag dependent on the induced
airstream velocity, fuselage drag, and complex or even turbulent effects due to the interaction between
the propellers, the downwash of other propellers, and the fuselage” [39]. Flying with varying conditions
such as wind, propeller damage or suspended payloads further compounds the complexity of these
aerodynamic effects given the unsteady aerodynamic interactions caused by the induced airspeed, ro-
tors and payloads.

Most of the trajectory tracking controllers discussed improve tracking performance by compensat-
ing for these aerodynamic effects. A common approach partially captures these aerodynamic effects
using simple linear of quadratic drag models [37] obtained using system identification techniques from
external measurements. These models are effective at lower speeds where the complex aerodynamic
disturbances are not dominant and cannot adapt to changes in the aerodynamic model caused by

2.2. Adaptive Control 23

varying conditions. While higher fidelity aerodynamic model can be derived from Computational Fluid
Dynamics (CFD) simulations [40], they require large compute clusters and time-consuming platform-
specific meshing. Ultimately, CFD results must be interpolated to be computationally tractable onboard
at the required frequencies of the control loop.

2.2. Adaptive Control
Adaptive control consists of continuously monitoring the systems behaviour and updating the control
strategy accordingly to maintain optimal performance. Adaptive control of systems with parametric un-
certainty has been extensively researched. Adaptive controllers are often an augmentation to existing
controllers rather than standalone controllers, in the context of UAV control the two dominant adaptive
control architectures are Model Identification Adaptive Controllers (MIACs) and Model Reference Adap-
tive Controllers (MRACs).

MRACs achieve the desired behaviour of the system by continuously adapting the controller param-
eters, typically using an L1 adaptive controller, comparing the systems output with that of a reference
model. Ensuring that the controlled system closely follows the desired reference model’s response in
the presence of disturbances or uncertainties. MRACs have been successfully deployed for quadrotor
trajectory tracking, achieving slight tracking performance degradation with suspended weights attached
[14, 19]. Albeit, both of these implementations require significant computational resources either re-
quired a ground station in-the-loop [19] or attaching an NVIDIA Jetson TX2 [14] and in the case of [19]
is limited to tracking simple circular trajectories not exceeding 2 [m/s]. Furthermore, MRACs are sus-
ceptible to noise in the system output measurements requiring a trade-off in the filter design between
noise and lag.

MIACs utilize system identification techniques to estimate or learn the mathematical model of a sys-
tem online and adapting controller parameters accordingly. The mathematical model and correspond-
ing basis functions may be physics based or random Fourier feature based. Physics based modeling
is the more logical option, Physics based MIAC is used in [33] for aerodynamic coefficient estimation
using an airflow sensor of a VTOL aircraft, achieving hover flight with wind speeds of 9 [m/s]. However,
physic based modeling requires extensive knowledge of mathematical models describing system and
suffers from convergence issues when there is a lack of excitation. On the other hand, random Fourier
feature based modeling does not require any prior knowledge of the system but it is tricky to determine
the necessary frequencies that describe the system efficiently in the high dimensional Fourier feature
space. Nevertheless, random Fourier based MIACs are deployed in [3] to adapt to wind conditions with
a drag plate attached, outperforming a MRAC using L1 adaptive control.

2.3. Adaptive Neural Control
Neural network based adaptive control has been extensively researched [5, 22] but these networks
where limited to being too shallow and lacked efficient pre-training mechanisms. Early approaches
used NNs in MRACs to model the unknown system and generate the feedback control, updating the
weights based on the error between system output and model output [6]. Recent work in the field of
deep-learning-based trajectory tracking controllers, that better utilize the representation power of multi-
layered Deep Neural-Networks (DNN), has shown promising results. In [16], a combination of temporal
convolutions and a three-layered network is used to perform challenging acrobatic manoeuvres with a
tracking error of 24 [cm] at speeds of 4.5 [m/s], albeit they also run into computational load issues with
their network running at 100 Hz on an NVIDIA Jetson TX2.

An important goal in autonomy is to enable autonomous robots to learn from prior experience and
quickly adapt to new tasks or environments, so called ”meta-learning” or ”learning-to-lean”. Meta-
learning is a field of research which aims to learn an efficient model from data collected in various
conditions. ”The learned model, typically represented as a DNN, ideally should be capable of rapid
adaptation to unseen environments/tasks” [25]. Meta-Learning has shown great potential in the field
of robotics, enabling online dynamics model identification of highly-dynamic systems even in unknown
environments. For example, meta-learning has enabled the quick adaptation of legged millirobots to

2.3. Adaptive Neural Control 24

unseen terrain [21] and to varying suspended payloads from drones [2].

Impressive results have been achieved in [25] with a four-layered network, called Neural-Fly, achiev-
ing state-of-the-art tracking performance of 9.4 [cm] at wind speeds of 12.1 [m/s] running onboard a
less powerful Raspberry Pi 4 computer at 100 [Hz]. The Neural-Fly controller can be divided into two
main components: the offline learning phase and the online adaptive control phase. The offline learn-
ing phase consists of using a novel Domain Adversarially Invariant Meta-Learning (DAIML) algorithm
to learn a wind condition independent DNN representation of the aerodynamics acting on the quadrotor
from as little as 12 minutes of flight data. The output of the DNN is then combined with a set of linear
coefficients from a composite online adaptive controller which combines the position and aerodynamic
force prediction errors to finally obtain the estimate of the aerodynamic forces. With this architecture
Neural-Fly demonstrates state-of-the-art tracking performance with an average improvement of ≈ 35%
over an INDI controller, without the need of additional sensors or powerful embedded computers” [25].

Figure 2.4: Online adaptation block where the basis function is adapted
online with the tracking & prediction based error to obtain the force

estimate f̂ext = ϕâ [25]

Figure 2.5: Illustration of the meta-learning
algorithm DAIML on data collected from wind

conditions {w1, · · · , wK} [25]

While impressive results have been achieved with Neural-Fly on significantly less powerfull embed-
ded hardware, these test are limited to being done in high-wind conditions instead of propeller damage,
it is unknown wherever this performance could translate to high-speed flight.

3
Research Questions

This section consists of two parts: the research question & sub-questions in Section 3.1 and the re-
search objective & sub-goals in Section 3.2 .

3.1. Research Question
Based on the literature review in Chapter 2 the following research question is proposed:

Howwell does an Adaptive Neural Network controller perform at quadrotor trajectory track-
ing with various propeller damage conditions in terms of tracking error and computational
complexity?

The main research question raises several sub-questions explained below:

1. How well does Neural-Fly controller architecture perform adapting to propeller damage in
high-speed flight and (if applicable) what areas can be improved?
The Neural-Fly controller architecture was designed with varying wind-speed conditions in-mind,
various changes mey be necessary to re-design the controller for propeller damage conditions.
Additionally, a sensitivity analysis will be performed on the important design choices of the con-
troller to identify potential areas of improvement. These improvements will then be applied to
enhance the performance of the controller in terms of tracking error or computational complexity.

2. Can close-loop stability and robustness guarantees be provided?
Guaranteeing closed-loop stability and robustness guarantees is a difficult task when designing
a DNN-based controller, however it is an important safety consideration to ensure that the con-
troller does not generate unpredictable outputs that lead to close-loop instability. Thanks to the
innovative split architecture of the Neural-Fly controller into a pre-trained network and a relatively
small online adaptation, stability and robustness guarantees can be proven mathematically.

3. How well does the controller perform in unseen conditions?
An important challenge of any machine learning project, specially one used in a quadrotor con-
troller, is to design a controller that can extrapolate to speeds or trajectories which it has not
training on, so called ”unseen conditions”. The performance of the controller in these unseen
conditions will be investigated and suggestions could be provided to reduce the performance
degradation.

4. How can the performance of the controller be validated and compared to other state-of-
the-art controllers?
There is no standardized testing procedure of trajectory tracking controllers which in addition to the
extensive amount of variables influencing the performance of the controller leads to widely varying
results across different research papers. To ensure that the results obtained are comparable to
those from other research papers a testing procedure will be designed that is repeatable and
comparable. Additionally, other controllers will be tested in this testing procedure if possible.

25

3.2. Research Objective 26

3.2. Research Objective
The main research objective of this thesis is:

To deploy an Adaptive Deep-Neural-Network controller for quadrotor trajectory tracking
with comparable performance to state-of-the-art controllers and lower computational com-
plexity with varying propeller damage conditions.

Achieving this research objective is a complex & challenging task, to aid in this the main objective has
been divided into smaller more manageable sub-tasks that have been outlined in chronological order
below:

1. Data Collection & System Identification
The first step consists of collecting real-world data which typically consists of logging the drone’s
velocity, orientation and motor speeds while the drone tracks a trajectory with varying propeller
damage conditions. The data is then processed to calculate the unmodeled forces acting on the
quadrotor which are obtained by comparing the expected forces from an identified drone model
or from an existing model to the measured forces.

2. Offline-Learning & Online Adaptation
In the offline learning phase, the inputs: relevant drone states and the output: the residual forces
are fed into a DNN which learns a propeller damage invariant representation of the unmodeled
forces using the DAIML algorithm. The online adaptation phase involves fast online adaptation
to the current propeller damage conditions based on the composite position and force prediction
errors. The output of the DNN is combined with online adaptation coefficients to hopefully ob-
tain an unfiltered zero-lag prediction of the residual force, which is then compensated for by the
trajectory tracking controller.

3. Design Sensitivity Analysis & Improvement Implementation
The design sensitivity analysis consists of varying key design choices of the controller andmeasur-
ing their impact on the performance of the controller in terms of tracking error and computational
complexity. For example, this could involve a hyper-parameter search of the DNN architecture
or changing the input drone states of the network. The results of the sensitivity analysis can then
be used to identify improvements and implement them.

4. Unseen Conditions Analysis
The ability of the controller to extrapolate to speeds and/or trajectories which it has not trained
on will be analyzed. The average tracking performance of the controller at various speeds will be
determined, starting at low speeds which the controller has trained on and ending at high-speeds
which it has not trained on.

5. Validation & Comparison
The final sub-goal consists of validating the performance of the proposed adaptive DNN-based
controller in terms of RMS position error and computational complexity. To do this a testing proce-
dure will be designed that is repeatable and comparable to those used in other research papers.
Additionally, if time allows other state-of-the-art controllers will be tested using identical testing
procedures & drone to be able to accurately compare controller performance.

4
Methodologies

In the methodology section, first the problem statement is discussed in Section 4.1 followed by co-
ordinate and notation definitions in Section 4.2. In Section 4.3, the quadrotor model as well as the
aerodynamic model used are explained. Then quadrotor trajectory planning methods are discussed in
Section 4.4 and finally high-speed trajectory tracking controllers are explained in detail in Section 4.5.

4.1. Problem Statement
Executing agile trajectories requires an accurate and efficient controller that tracks the desired trajec-
tories. However, due the complex relationship between aerodynamic forces and quadrotor maneuver-
ability at high speeds designing such a controller using traditional control design methods is insufficient.

Adaptive trajectory tracking of quadrotors is challenging due to complex and varying aerodynamic
forces that cause significant disturbances and in turn introduce large positional errors. These aero-
dynamic effects are difficult to model on the scarce computational resources available on-board the
quadrotor, yet are essential for accurate trajectory tracking of quadrotors. This justifies the design of a
controller that is able to efficiently adapt to these aerodynamic effects in real-time versatile to propeller
damage conditions, without a significant performance degradation.

4.2. Coordinate Frames
Two right-handed coordinate frames are used, shown in Figure 4.1. The inertial frameFI :

{
xI ,yI , zI

}
with zI pointing opposite direction of gravity and FB :

{
xB ,yB , zB

}
with zB pointing in the thrust di-

rection and xB pointing in the forward direction. Vectors expressed in the body frame are indicated by
the superscript B while those expressed in the inertial frame have no superscript.

Figure 4.1: Coordinate Frame Definitions [36]

27

4.3. Quadrotor Model 28

The rotation from FI to FB is represented by the rotational matrix R (q) =
[
xB ,yB , zB

]
parame-

terized by quaternion q = [qω, qx, qy, qz]
T .

4.3. Quadrotor Model
The quadrotor is modelled as a 6 Degree of Freedom rigid body kinematic and dynamic model. The
translational dynamics of a quadrotor are expressed in Equation 4.1 as:

a = (T + fa + fres) /m+ g, (4.1)

Where a is the position of the center of gravity of the quadrotor in the inertial frame; m is the mass
of the quadrotor; g is the gravitational vector; T is the collective thrust modeled in Equation 4.4; fa are
the aerodynamic forces modeled using Equation 4.9 and fres are the residual unmodeled forces not
captured by the nominal model acting on the quadrotor.

The rotational kinematic and dynamic equations of a quadrotor are expressed in Equation 4.2 &
Equation 4.3, respectively.

q̇ =
1

2
q ⊗

[
0

ΩB

]
(4.2)

IΩ̇
B
= IαB = τB + τBres −ΩB × IΩB (4.3)

Where ΩB is the projection on FB of the angular velocity of FB with respect to FI directly mea-
surable on the onboard Inertial Measurement Unit (IMU), ΩB = [p, q, r]

T . Its derivative, the angular
acceleration is is denoted by αB . I is the mass moment of inertia matrix of the quadrotor and τ are
the torques generated by the rotors modeled in Equation 4.4 and τ res are the residual body torques.

The collective thrust TB and torque τB in the body frame are modeled as functions of the rotor Rotation
Per Minute (RPM) speeds ω = [ω1, ω2, ω3, ω4]

T :[
TB

τB

]
= G1u+G2ω̇ +G3(Ω

B)ω (4.4)

where:

u = ct

4∑
i=0

ω2
i (4.5)

G1 =


1 1 1 1

l sin(β) −l sin(β) −l sin(β) l sin(β)
−l cos(β) −l cos(β) l cos(β) l cos(β)
cq/ct −cq/ct cq/ct −cq/ct

 (4.6)

G2 =


0 0 0 0
0 0 0 0
0 0 0 0
Ir −Ir Ir −Ir

 (4.7)

G3 =


0 0 0 0
Irq −Irq Irq −Irq
−Irp Irp −Irp Irp
0 0 0 0

 (4.8)

where ct is the thrust coefficient and cq is the torque coefficient provided in Table 4.1; β and l are
geometric parameters of the quadrotor defined in Figure 4.1; Ir is the inertia of the rotor along the z axis.
Torques caused by the angular acceleration of the rotor’s and the gyroscopic effects corresponding to
terms G2 & G3 respectively are negligible and typically omitted.

4.4. Trajectory Planning 29

4.3.1. Aerodynamic Model
Quadrotors will experience significant aerodynamic forces during high-speed flight that lead to large
tracking errors. The parametric aerodynamic drag model from [37] shown in Equation 4.9 has proven
to be effective at approximating these aerodynamic forces.

fBa =

4∑
i=0

ωi

 −kxvBx
−kykBy
−kzvBz

+

 0
0

kh

(
vBx

2
+ vBy

2
)
 (4.9)

WhereR (q)vI = vB
[
vBx , v

B
y , vzB

]
are the velocity components in the body frame and kx, ky, kz, kh

are coefficients identified from flight data. Thankfully these coefficients have already been identified for
the Parrot Bebop 2 drone in [11] and are shown in Table 4.1.

Table 4.1: Aerodynamic model coefficients for the
Parrot Bebop 2 drone from [11]

Coefficient Value
kx 4.43E-6
ky 3.96E-6
kz 1.14E-5
kh 2.57E-2
ct 1.79E-8
cq 6.60E−12

4.4. Trajectory Planning
Two common approaches for planning quadrotor trajectories are continuous-time polynomials and
discrete-time state space representations. Within continuous-time polynomial trajectories two popular
approaches are bang-bang and minimum snap trajectories with the latter discussed in detail in Sec-
tion 4.4.1. With regards to discrete-time state space trajectories the method used in [12] to generate
truly time-optimal trajectories that fully exploit the actuation limits of the quadrotors has been outlined
in Section 4.4.2. Ultimately, minimum snap trajectories are used in the preliminary experiment due to
the ease of their implementation.

4.4.1. Minimum Snap
Quadrotors are differentially flat systems [10] that can be described based on the flat output of the
position & yaw states. The evolution of these flat outputs can be represented as smooth differentiable
polynomials on time, which can be obtained by minimizing snap (4th derivative of time) while satisfying
waypoint and continuity constraints. Trajectories through many waypoints can be efficiently generated
by concatenating separate polynomials for each waypoint segment. The reasoning behind using mini-
mum snap trajectories is to ”minimize and smooth the required body torques and therefore single motor
thrust differences to track the trajectory, which are dependant on the snap” [12].

Given a list of N waypoints and thusM = N − 1 trajectories, the desired position of the quadrotor
for a waypoint segmentm is described by pr(t) = [xm (t) , ym (t) , zm (t)] with each axis represented by
a polynomial. The minimum snap trajectory is obtained by solving the minimization problem in Equa-
tion 4.10 in Python using the Constrained Optimization BY Linear Approximation (COBYLA) solver.

p⋆r(t) = argmin
pr(t)

M∑
m=1

∫ Tm

0

∥∥....p rm (t)
∥∥ dt (4.10)

Subject to the start & end zero-velocity constraints in Equation 4.11, the waypoint constraints in
Equation 4.12 where pwm

denotes the position of waypoint m and the continuity constraints in Equa-
tion 4.13.

4.4. Trajectory Planning 30

Subject to:
ṗr1 (0) = 0, ṗrM (TM) = 0 (4.11)

prm (0) = pwm
, prm (Tm) = pwm+1

(4.12)
ṗrm (Tm) = ṗrm+1

(0) , p̈rm (Tm) = p̈rm+1
(0) (4.13)

According to the theory of Euler-Lagrangian mechanics, the principle of least action dictates that
the solution of the minimization problem must satisfy Equation 4.14.

∂L

∂pr
− d

dt
∂L

∂ṗr
+ · · ·+ d4

dt4
∂L

∂
....
p r

= 0 (4.14)

where L = ||....p r||. Indicating that the reference trajectory pr should be represented as a 7th order
polynomial given that p(8)

r = 0.

The time allocated to each waypoint segment T is manually chosen. To ensure that the speed of the
reference trajectory does not vary significantly between segments pain-staking tuning is required. In-
stead, the total time of the reference trajectory is included in the cost function as shown in Equation 4.15,
where γ is the time penalty. However, given that the cost function and constraints are dependant on
the segment times the minimization problemmust now be solved iteratively starting with an initial guess
of segment times and then using gradient descent.

p⋆r(t) = argmin
pr(t)

M∑
m=1

(∫ Tm

0

∥∥....p rm (t)
∥∥ dt+ γTm

)
(4.15)

When penalizing only the snap of a trajectory ”the cost function could be arbitrarily driven close to
zero by increasing the total time, but Equation 4.15 has a definite optimal solution that only varies with
γ” [30]. The effect of the time penalty γ on the minimum snap trajectory is shown in Figure 4.2.

Figure 4.2: Effect of time factor γ on minimum snap
trajectory. Total times of TM = [26.5s, 13.7s, 11.3s] with

γ = [1, 40, 80]

Figure 4.3: Position and acceleration of varying order polynomial
and bang-bang trajectories. Bang-bang trajectory is shortest by

spending more time at the acceleration limits. [12]

Minimum snap trajectories are by definition smooth which are relatively easy for a quadrotor to track
but do not fully maximize the acceleration of the quadrotor at all times. Thus minimum snap trajectories
are not truly agile high-acceleration trajectories. In fact, ”due to the polynomial nature of minimum snap
trajectories, the boundaries of the reachable input spaces can only be touched at one or multiple points,
but not at sub-segments of the trajectory” [12] as can be seen by comparing minimum snap trajectories
with a bang-bang trajectory in Figure 4.3.

4.5. Controllers 31

4.4.2. Time-Optimal
Conventional discrete-time state space formulations are ineffective at time-optimal trajectory genera-
tion. If multiple waypoints must be passed through the trajectory, constraints must be allocated to
specific nodes on the trajectory, However the time spent between waypoints is unknown.

This problem is solved in [12] by ”introducing a formulation of progress along the trajectory allowing
for the simultaneous optimization of the time-allocation and the trajectory itself” [12]. More specifically
the proposed Complementary Progress Constraint (CPC) is composed of two complementary factors:
the completion of a waypoint (progress) and the local proximity to a waypoint. This method allows for
the generation of truly time-optimal trajectories that fully exploit the quadrotor‘s actuation limits.

The time-optimal trajectory is obtained by solving the optimization problem in Equation 4.16. Where x
is the full space of optimization variables consisting of x = [tN ,x0, . . . ,xN], the overall time tN and all
variables assigned to nodes k as xk = [xk,uk,λk,µk,νk].

x∗ = argmin
x

tN (4.16)

Subject to the system dynamics & initial constraint in Equation 4.17, the input constraints in Equa-
tion 4.18. Additionally subject to the progress evolution, boundary & sequence constraints in Equa-
tion 4.19 where λ is a vector defining the progress variables and the vector µ indicates the progress
change at every timestep. Finally, subject to the complementary progress constraint with tolerance in
Equation 4.20 where νjk is a slack variable allowing the distance to waypoint to be relaxed to zero when
smaller than dtol.

Subject to:
xk+1 − xk − dt · fRK4 (xk,uk) = 0 (4.17)

x0 = xinit

umin − uk ≥ 0, uk − umax ≥ 0 (4.18)
λk+1 − λk + µk = 0 (4.19)

λ0 − 1 = 0, λN = 0, µk ≥ 0, λjk − λj+1
k ≤ 0

µjk ·
(∥∥∥prk − pwj

∥∥∥2 − νjk

)
= 0 (4.20)

−νjk ≤ 0, νjk − d2tol ≤ 0

In [12] this method is used to generate a time-optimal trajectory through 2.5 laps of racing track
consisting of 18 waypoints with a maximum thrust-to-weight ratio of T/W = 3.3 in t ∼ 40 [min] on a
desktop computer. The generated trajectory is demonstrated to outperform professional human pilots
in terms of lap times (thum = 6.79 [s] vs. topt = 6.12 [s]) while staying within a safe margin of the
quadrotors absolute limits (T/W ∼ 4).

4.5. Controllers
Conventional high-speed trajectory tracking controllers can be classified into either predictive or non-
predictive frameworks. Predictive methods encode multiple future time-steps into the control command
while non-predictive methods only track a single reference step. Two state-of-the-art controllers are
the Nonlinear Model Predictive Controller (NMPC) and the non-predictive Differential-Flatness-Based-
Controller
(DFBC) both of which are explained further in Section 4.6 and Section 4.7 respectively.

The Neural-Fly controller architecture is outlined in Section 4.7.2, more specifically it’s two main
components: the offline learning phase and the online adaptation phase are explained in detail in
Section 4.7.3 & Section 4.7.4 respectively. Neural-Fly is a standalone controller, however in practice it
is an aerodynamic model at its core, which could be used to replace the aerodynamic model used in
the NMPC or DFBC controllers to further improve performance.

4.6. Nonlinear Model Predictive Controller 32

4.6. Nonlinear Model Predictive Controller
Model predictive control is a ”popular method in robotics due to its predictive nature and ability to
handle input constraints” [36]. The main principle of a model predictive controller (MPC) is to generate
control commands that minimize the tracking error by solving an Optimal Control Problem (OCP) over
a receding horizon.

Receding Horizon
The simplest method to obtain a control sequence that minimizes the trajectory tracking error is to use
fixed horizon optimization. Fixed horizon optimization finds the optimal control sequence over a fixed
interval [ui,, ui+N−1 starting at the current time step i and ending at some future time-step i+N −1.

However, the fixed horizon principle suffers from two major drawbacks:

• If there is an unexpected change in the system at some time over the predicted control se-
quence [i, i+N − 1] that is not predicted by the model it renders the predicted control sequence
[ui,, ui+N−1 obsolete.

• As the control sequence approaches the final time-step i+N − 1 the performance of the control
law at tracking the desired trajectory decreases due to a lack in the reduction of the objective
function.

The receding horizon optimization addresses these issues by determining the optimal control se-
quence over a fixed future interval at each time-step and then applying the first control step of this
sequence. At time i with state xi the optimal control sequence [ui,, ui+N−1 is determined, the first
control step ui is then applied. The optimal control sequence at time-step i+1 with the new state xi+1

is determined [ui+1,, ui+N , repeating the same process.

If disturbances are negligible or time-steps are short, the state of the system measured at the next
time-step i + 1 should be the same as the one predicted by the model. However using the measured
state rather than the predicted state results in a more robust and accurate controller at the cost of a
higher computational load.

First, the reference states xr and inputs ur are first obtained from a trajectory planner that can
generate full states such as the one from [12]. The NMPC then minimizes the error between the
predicted states and the reference states over a receding horizon discretized into N equal intervals,
yielding the constrained nonlinear optimization problem of Equation 4.21.

uNMPC = argmin
u

N−1∑
k=0

(
∥xk − xk,r∥Q + ∥uk − uk,r∥Qu

)
+ ∥xN − xN,r∥QN

(4.21)

s.t. x0 = xinit,

xk+1 = f (xk,uk) ,

Where u ∈ [umin umax] is the vector of motor thrust defined in Equation 4.5 bounded to the range
between the minimum and maximum thrust a motor can provide. The state vector x is defined as
x =

[
p ṗ q ΩB

]
and the body angular rates are bounded to the rangeΩB ∈

[
ΩB

min ΩB
max

]
for improved

stability.

MPC is very computationally demanding compared to non-predictive methods, especially when
using Nonlinear-MPC with a full-state nonlinear model of a quadrotor. Thanks to advancements in
small embedded computers & nonlinear solvers, running NMPCs with fully nonlinear dynamic models
has recently become computationally tractable on quadrotors.

4.7. Differential-Flatness Based Controller 33

4.7. Differential-Flatness Based Controller
Quadrotors are differentially flat systems [10] meaning that ”all states and inputs can be written as
algebraic functions of the flat outputs and its derivatives” [10], allowing for the direct mapping of the
flat outputs (position p and heading ψ) to the angular rates/accelerations. This property is leveraged
by DFBC, including the position and heading outputs as feed-forward terms, improving the tracking
accuracy.

First the desired acceleration is computed using the PD controller in Equation 4.22.

ad = Kp (pr − p) +Kv (vr − v) + ar (4.22)

where Kp and KI are positive-definite gain matrices. The desired thrust is computed by solving the
translational dynamic model from Equation 4.1 in the thrust direction zB,d shown in Equation 4.23.

T dzB,d = m (a− g)−R(q)fa (4.23)

Given the reference heading angle ψr, the desired attitude of the quadrotor is obtained using Equa-
tion 4.24, Equation 4.25 & Equation 4.26.

xC,d = [cos (ψr) , sin (ψr) , 0]T (4.24)

yB,d =
zB,d × xC,d
∥zB,d × xC,d∥

(4.25)

R (qd) =
[
xB,d, yB,d, zB,d

]
(4.26)

Taking the derivative of the translation dynamic model from Equation 4.22 and assuming constant
aerodynamic force fa we have Equation 4.27.

mȧ = Ṫ zB + TΩ× zB (4.27)

Substituting jerk ȧ with reference jerk ȧr in Equation 4.27 and rearranging for hΩ ≜ Ω× zB yields
Equation 4.28.

hΩ =
(
mȧr − Ṫ zB

)
/ T (4.28)

Where the collective thrust derivative Ṫ , which cannot be directly measured, is approximated by
the reference jerk Ṫ ≈ mȧr · zB . The reference angular velocity can then be obtained by using Equa-
tion 4.29.

ΩB
r =

[
−hΩ · yB , hΩ · xB , ψ̇rzI · zB

]T
(4.29)

Deriving Equation 4.27 further as well as replacing snap ȧ with the reference snap ȧr and rearrang-
ing for hα ≜ Ω̇× zB yields Equation 4.30.

hα =
m

T

....
p r −

(
Ω× (Ω× zB) +

2Ṫ

T
Ω× zB +

T̈

T
zB

)
(4.30)

Similarly, the double derivative of the collective thrust is approximated by the reference snap T̈ =
mȧr ·zB +m (Ω× zB) · ȧr. The desired angular acceleration can then be obtained with Equation 4.31.

αBr =
[
−hα · yB , hα · xB , ψ̈rzI · zB

]T
(4.31)

4.7. Differential-Flatness Based Controller 34

4.7.1. Tilt Prioritized Control
Quadrotors suffer from poor heading responsiveness, with control effectiveness around one order of
magnitude lower than for pitch and roll often leading to motor saturation. Fortunately, the thrust ori-
entation of a quadrotor is independent of it’s heading angle, thus tilt-prioritized control proposed in
[4] improves trajectory tracking performance while preventing motor saturation. Tilt-prioritized control
regulates the reduced-attitude (pitch & roll) error q̃e,θ&ϕ and yaw error q̃e,ψ separately computed in
Equation 4.33 & Equation 4.34 respectively.

[qe,w, qe,x, qe,y, qe,z]
T
= qd ⊗ q−1 (4.32)

q̃e,θ&ϕ =
1√

q2e,w + q2e,z

 qe,wqe,x − qe,yqe,z
qe,wqe,y + qe,xqe,z

0

 (4.33)

q̃e,ψ =
1√

q2e,w + q2e,z

[
0 0 qe,z

]T (4.34)

The desired angular accelerations can then be computed using the attitude control law in Equa-
tion 4.35.

αBd = kq,θ&ϕq̃e,θ&ϕ + kq,ψ sgn (qe,w) q̃e,ψ +KΩ

(
ΩB
r −ΩB

)
+αBr (4.35)

Where kq,θ&ϕ and kq,ψ are positive gains of the reduced-attitude and yaw control respectively, a
kq,θ&ϕ and kq,ψ >> kq,ψ is desired for improved trajectory tracking performance while preventing motor
saturation.

Finally, the thrust commands of each motor are determined by solving for u in Equation 4.4 resulting
the direct-inversion control allocation in Equation 4.36, while satisfying the minimum and maximum
thrust constraints in Equation 4.37.

u = G−1
1

[
T d

IαBd +ΩB × IΩB

]
(4.36)

uDFBC = max (umin,min (u,umax)) (4.37)

4.7.2. Neural-Fly
Neural-Fly is a data-driven trajectory tracking controller that uses a learning-based approach to achieve
fast & accurate online adaption by incorporating pre-trained representations using deep learning. Al-
lowing the controller to quickly adapt to changing wind conditions while maintaining a high tracking
accuracy.

The Neural-Fly controller can be divided into two main phases: offline learning & online adapta-
tion, which have been explained in greater detail in Section 4.7.3 & Section 4.7.4 respectively. The
purpose of the offline learning phase is to learn a wind condition independent model from real-world
data collected in various conditions. While the goal of the online adaptation phase is to ”update the
wind-dependent linear coefficients using a composite of the position tracking error term and the aero-
dynamic force prediction error term” [25]. The wind-effect force estimate is then obtained by combining
the wind-dependent coefficients with the output of the pre-trained DNN.

4.7.3. Offline-Learning
Given a dataset, the goal of the offline meta-learning phase is to learn a representation ϕ (x) that for
any condition w a latent variable A(w) exists that allows ϕ (x)A(w) to approximate the unmodeled
forces f(x, w). This optimal ϕ representation can be found by solving the optimization problem in
Equation 4.38, note that the representation ϕ is shared across all conditions but the optimal weight Ak

is specific to each condition.

4.7. Differential-Flatness Based Controller 35

min
ϕ,A1,··· ,AK

K∑
k=1

Nk∑
i=1

∥∥∥y(i)
k − ϕ

(
x
(i)
k

)
Ak

∥∥∥ (4.38)

When a quadrotor tracks a trajectory at varying speeds the trajectory that is actually flown will vary
vastly depending on the speed, additionally the distributions of the in data x will also vary significantly
for example due to the drone pitching more aggressively during higher speed flight. As a consequence
of the inherent domain shift in x caused by the change in condition w the optimization problem in Equa-
tion 4.38 will struggle to find an optimal representation of ϕ.This may lead to the DNN ϕ over-fitting to
the data instead of finding a condition invariant representation. In other words, ”the DNN may learn
the shift in distributions of x across the different conditions such that the variation in the unmodeled
forces f (x, w1) , ..., f (x, wK) is reflected via the distribution of x instead of the condition w1, ...wK” [25].

To solve the domain shift problem an adversarial network with loss function shown in Equation 4.39
is used. The adversarial network consists of two main components: the DNN representation ϕ and a
discriminator h that predicts the condition index from the output of ϕ. These two networks compete
against each other in a zero-sum game which allows the adversarial network to learn a condition invari-
ant representation ϕ in an unsupervised manner.

max
h

min
ϕ,A1,··· ,AK

K∑
k=1

Nk∑
i=1

(∥∥∥y(i)
k − ϕ

(
x
(i)
k

)
Ak

∥∥∥− α · loss
(
h
(
ϕ
(
x
(i)
k

))
, k
))

(4.39)

Where loss(·) is a classification loss function such as cross-entropy loss and α ≥ 0 is a hyperpa-
rameter that controls the degree of regularization. The state vector is defined as x = [v q ω] but could
potentially include other variables such as the angular velocities ΩB .

The Domain Adversarially Invariant Meta-Learning (DAIML) algorithm shown in algorithm 1 is a
gradient based meta-learning algorithm but with a least squares adaptation step.

Algorithm 1: Domain Adversarially Invariant Meta-Learning [25]
Hyperparameters: α ≥ 0, γ > 0, 0 < η ≤ 1
Data: D = {D1, . . . ,DK}
Result: trained neural network ϕ and h

1 while not converged do
2 Randomly sample Dk ∈ D

3 Randomly sample two disjoint batches Ba and B from Dk

4 Solve a∗(ϕ) = argmina
∑
i∈Ba

∥∥∥y(i)k − ϕ
(
x
(i)
k

)
A
∥∥∥

5 if ∥A∗∥ > γ then
6 A∗ = γ · A∗

∥A∗∥
7 end
8 Train ϕ with loss: Lϕ =

∑
i∈B

(∥∥∥y(i)k − ϕ
(
x
(i)
k

)
A∗
∥∥∥− α · loss

(
h
(
ϕ
(
x
(i)
k

))
, k
))

9 if rand() ≤ η then

10 Train h with loss: Lh = −
∑K
j=1 δkj log

(
h
(
ϕ
(
x
(i)
k

))⊤
ej

)
11 end
12 end

The DAIML algorithm can be divided into three steps:

1. The adaptation step (Lines 1-7) solves the least squares problem on the adaptation set Ba to find
the optimal latent variable A∗.

2. The training step (Line 8) updates the parameters of the DNN ϕ on the training set B using SGD
based on the optimal latent variable A∗ from the adaptation step.

4.7. Differential-Flatness Based Controller 36

3. The regularization step (Line 9-12) updates the parameters of the DNN h on training set B using
Stochastic Gradient Descent (SGD).

DAIML builds upon the baseline adversarial network architecture of Equation 4.39 by adding addi-
tional features. In the adaptation step the latent variable A∗ is a function of ϕ, therefore in the training
step SGD will also back-propagate through A∗ ensuring that the latent variable used remains optimal.
The robustness of the adaptive controller is improved by normalizing the latent variable (Line 6) by
ensuring that ∥A∗∥ ≤ γ. Additionally, ”spectral normalization is used during training of ϕ to control the
Lipschitz property and improve the generalizability of the neural network” [25]. At each iteration, ϕ is
updated while keeping h fixed, then with a certain probability h is updated while ϕ is fixed to improve
the convergence of the adversarial network.

4.7.4. Online Adaptation
For the online adaptation phase there are two common approaches. In the first one, the adaptation
phase adapts the entire model online [21, 2], via gradient descent, this however incurs a large computa-
tional cost. It is infeasible to run such adaptation onboard at the required frequency of the control loop
⩾ 100 Hz. Additionally such a method lacks robustness, allowing for unpredictable outputs to lead to
close-loop instability. In the second approach the online adaptation only adapts a small segment of the
model [25, 32], which significantly reduces the computational burden onboard and provides robustness
guarantees.

In the offline-learning phase the latent variableA∗ was determined by minimizing the least-squares
force prediction error, while this is sufficient for training, in the online phase the ultimate goal is mini-
mizing the position tracking error.

A standard PID controller is the simplest solution but they typically only include PI feedback on posi-
tion error, D feedback on velocity error and gravity compensation which only leads to local exponential
stability about a fixed point. While this is sufficient during hover and gentle manoeuvres it leads to
large tracking errors during agile flight. A nonlinear controller such as the one shown in Equation 4.40
could be used, which includes velocity PI feedback where s = v − vr and model feedforward terms
to account for the known system dynamics. Allowing the controller to perform well at tracking agile
high-acceleration trajectories in the presence of nonlinearities, however it suffers from being slow to
react to changes in the unmodeled dynamics and disturbance forces through the integral term.

uNL = mar + fa + g︸ ︷︷ ︸
nominal model feedforward

−Ks−KI

∫
sdt︸ ︷︷ ︸

PI feedback

(4.40)

A composite adaptation law has been designed which solves the aforementioned issues based on
a Kalman filter estimator. The latent variable update ˙̂A ”depends on both the prediction error of the
dynamics model as well as the tracking error, which allows the adaptation law to quickly identify and
adapt to new conditions without requiring persistent excitation” [25].

The online adaptation law can be expressed as the control law in Equation 4.41, the adaptation law
in Equation 4.42 and the covariance update in Equation 4.43.

uNF = mar + fa + g︸ ︷︷ ︸
nominal model feedforward

− Ks︸︷︷︸
feedback

− ϕ (x) Â︸ ︷︷ ︸
learning feedforward

(4.41)

˙̂
A = − λâ︸ ︷︷ ︸

regularization

− Pϕ (x)
⊤
R−1(ϕ (x) Â− y)︸ ︷︷ ︸
force error

+ ϕ (x)
⊤
s︸ ︷︷ ︸

tracking error

(4.42)

Ṗ = −2λP +Q− Pϕ (x)
⊤
R−1ϕ (x)P (4.43)

The adaptation law replaces the integral term in the nonlinear controller in Equation 4.40 with the
learned force term f̂ = ϕ (x) Â for faster model miss-match feedback. Where uNF is the control law,

4.7. Differential-Flatness Based Controller 37

˙̂A denotes the latent variable update and P is the estimate covariance matrix used for gain tuning,
y is the residual force measurement f (x, w) = y + ϵ with measurement noise ϵ. Q,R are the pro-
cess noise covariance matrix and the observation noise covariance matrix respectively while λ is the
damping gain. Note that the controller takes velocity feedback despite the ultimate goal being minimiz-
ing the position tracking error as it ”simplifies the analysis and gain tuning without losing accuracy” [25].

A Kalman-filter estimator is used to update the latent variable A as it is the optimal estimator that
minimizes the variance of the parameter error [15]. Analyzing the Kalman-filter, the regularization term
λ ensures that the latent variable update does not ”blow-up” when there is a lack of persistent exci-
tation of the learned model ϕ, useful when using deep multi-layered networks. The matrix Q tracks
how quickly the environment/conditions change while R tracks the representation error d defined as
f (x, w) = ϕ (x) Â + d. Simply combining the Kalman-filter into the controller may lead to instabilities
in the closed-loop system, thus the adaptation law also includes a tracking error term, making it a com-
posite adaptation law, guaranteeing stability and simplifying gain tuning.

”The control & adaptation law have been designed such that the closed-loop stability is robust to
imperfect learning and time-varying conditions” [25]. In terms of theoretical guarantees, the tracking
error has been proven in [25] to exponentially converge to an error ball with size proportional to the
representation error and measurement noise ||d+ ϵ|| and ||Ȧ|| the change in the latent variable.

5
Data Collection

In this chapter the experimental set-up is outlined in Section 5.1. In Section 5.2 the data collection as
well as some data analysis is included. Lastly, the data processing is explained in Section 5.3.

5.1. Experimental Set-up
The experiments will be performed at the Micro Air Vehicle Laboratory (MAVLab) Department of the TU
Delft Faculty of Aerospace Engineering [20]. The experimental-setup is divided into three categories:
the platform (drone) in Section 5.1.1, the software in Section 5.1.2 and the environment in Section 5.1.3.

5.1.1. Platform
The Parrot Bebop 1 shown in Figure 5.1 is the chosen platform for the experimentation phase. The
Bebop is a cheap commercial drone that can run custom autopilot software that has been used ex-
tensively at the MAVLab. It is the ideal platform for fast-prototyping as it has been thoroughly tested
and is readily available, and for these reasons has been chosen for the initial experimentation phase.
However, the bebop is an eight year old under-powered platform, having a thrust-to-weight ratio of
T/W ≈ 1.5 compared to T/W ≥ 4 on modern racing drones such as the owned by the author shown
in Figure 5.2. Given that the bebop can only reach speeds of up to 3 [m/s] a more powerful drone may
be used to reach higher speeds to properly design a high-speed trajectory tracking controller.

Figure 5.1: Picture of Parrot Bebop 1
flying in the CyberZoo [7] Figure 5.2: Picture of a freestyle drone (Nazgul Evoque F5) [23]

5.1.2. Software
Customizability, good documentation, and hardware compatibility should all be considered when choos-
ing an autopilot software. The Paparazzi-UAV open-source autopilot [27] is the chosen software as it
is highly customizable and is already flashed on the Parrot Bebop 1, furthermore it has been used for

38

5.2. Data Collection 39

many years at the MAVLab, thus gathering extensive documentation and experience. Paparazzi-UAV
is coded in C, which is slightly faster than C++ but also lacks some features and has fewer modules.
There are other autopilots that also satisfy these requirements such as PX4 Autopilot [28] or Ardupilot
[1], both of which are coded in C++ and are compatible with newer commercial flight controllers. All of
these three autopilot software are suitable options to use on a more powerful drone, the final choice
being subject to hardware compatibility between the autopilot software and the onboard flight controller.

The offline-learning phase will be performed in python. Python was the chosen programming lan-
guage given the wide availability of easy-to-use & well documented machine learning modules such as
Pytorch [29] or Keras [17] in addition to the considerable experience I have using these modules.

5.1.3. Environment
The environment where flights will be performed is the CyberZoo, shown in Figure 5.3. The CyberZoo
is a research and test laboratory for flying and walking robots, it is a cage measuring 10 × 10 × 7 m3

[35] located in the Delft Aerospace Structures and Materials Laboratory. The CyberZoo is equipped
with an OptiTrack motion capture system, consisting of eight infra-red cameras, which provide accu-
rate estimates of the drone’s position and orientation indoors, ideal for data collection and validation.
However, for higher-speed flights the CyberZoo is simply too small, in [36] they used a 30× 30× 8 [m3]
flight volume motion capture system to reach speeds of up to 20 [m/s]. To achieve these high-speed
conditions alternatives such as flying outdoors using GPS as shown in Figure 5.4 could be used.

Figure 5.3: Long-exposure picture showing a drone flying
through various gates in the CyberZoo [8]

Figure 5.4: Picture of the outdoor experiments performed in [25]
using a GPS module for state estimation and a weather station

for wind data [25]

5.2. Data Collection
Data is required to learn a propeller damage invariant representation of the residual forces using the
DAIML algorithm. Data collection consists of logging the relevant drone states: velocity, orientation
and motor speeds while the drone tracks a randomized minimum snap trajectory from Section 4.4.1
using a baseline PID quaternion controller at varying propeller damage conditions.

For the purpose of the initial experimentation phase data collected for only one propeller damage
condition: no propeller damage with α = 0 corresponding to the non-adversarial training case. A ref-
erence and measured drone trajectory is shown in Figure 5.5, as can be seen there are significant
tracking errors specially in the vertical direction.

The set of input-output pairs of the trajectory with speed factor w is referred to as sub-dataset Dk
w

with k = 1 corresponding to the no propeller damage condition. The training dataset consists of six

5.2. Data Collection 40

Figure 5.5: Sample reference vs. measured drone trajectory

different trajectories with speed factors ω = [0.2, 0.4, 0.6, 0.8, 1.1, 1.4] and reference velocities ranging
from −0.3 to 3.0 [m/s]. The testing dataset consists of two trajectories with speed factors unseen in
training ω = [0.7, 0.9]. Information regarding the sub-dataset trajectories is included in Table 5.1.

Table 5.1: Total time, total distance and amount of data points of each reference trajectory recorded

Sub-Dataset (D1
w)

Speed
Factor (w)

Total Time
(Tend) [s]

Total Distance
(dtot) [m] Datapoints

Train

1 0.2 264.1 85.2 27,045
2 0.4 123.8 76.7 12,676
3 0.6 97.9 95.3 10,021
4 0.8 68.5 85.6 7,011
5 1.1 43.3 65.4 4,438
6 1.4 43.8 87.7 4,481

Test 1 0.7 152.2 115.2 15,586
2 0.9 76.9 81.8 7,875

The probability density functions of the reference velocity of training trajectories are shown in Fig-
ure 5.6. The speed factor has a significant influence on the reference velocity distribution. However,
there is a significant overlap in reference velocities at low speeds, this in-balance in the training data
should be addressed at a later stage to prevent the network from over-fitting to the most common
velocity regime.

5.3. Data Processing 41

Figure 5.6: Training dataset probability density functions of reference velocity

5.3. Data Processing
The data collected is then processed to calculate the residual force acting on the drone. The measured
forces are compared to the nominal quadrotor model comprised of the the thrust approximated in Sec-
tion 4.3 and aerodynamic forces from Section 4.3.1.

First, the velocity measurements must be filtered. As can be seen in Figure 5.7 there is signifi-
cant noise in the velocity measurements which would be further amplified when differentiating to obtain
acceleration. Various smoothing methods for the velocity measurements, such as moving average, ex-
ponentially weighted moving average and low-pass filtering have been considered. Ultimately low pass
zero-phase ”filtfilt” filtering is used as it removes most of the noise components without introducing lag
by applying a filter forwards and then backwards. Allowing for the calculation of the residual force that
is closest to the true ”ground-truth” value.

70 75 80 85 90 95 100
Time [s]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

V
[m

/s
]

Velocity Measurement Filtering
velocity
filtered velocity

Figure 5.7: Smoothing of quadrotor x-direction velocity measurements
using low-pass filtering with ωc = 6/fnyq

5.3. Data Processing 42

Then the acceleration is obtain through first-order central finite difference of the velocity measure-
ments given by Equation 5.1 with error of order h4.

f ′i =
fi−2 − 8fi−1 + 8fi+1 − fi+2

12h
+O

(
h4
)

(5.1)

where h is the uniform grid spacing and the grid position is given by fi+1 = f(xi + h). Finally the
residual force can calculated using the computed acceleration measurement by solving Equation 4.1
for fres which yields Equation 5.2.

fres = m (ameas. − g)− T − fa (5.2)

The thrust and aerodynamic model perform well at approximating the forces acting on the quadrotor,
with only a slight offset in the z-component residual forces as seen in the residual force boxplots in
Figure 5.8. The residual lateral forces vs speed are plotted in Figure 5.9.

Figure 5.8: Boxplots of Residual Force

Figure 5.9: Lateral Residual Force vs Speed Plots

6
Training

The meta-learning DAIML algorithm is used to train a DNN on the data collected in Section 5.2 with
the hyperparameters in Table 6.1. The DAIML algorithm has already been implemented in python with
pytorch in [26], this implementation has been modified to allow for streamlined logging and hyperpa-
rameter sweeps using the wandb module, a sample log from a training run in the wandb website is
shown in Figure 6.3 .

Table 6.1: DAIML Hyperparameters [25]

Hyperparameter Value
Regularization (α) 0
Normalization (γ) 10
Spectral Normalization (SN) 2
Adaptation Batch Size (Ba) 128
Training Batch Size (B) 256
Learning Rate ϕ (lrϕ) 5E-4
Learning Rate h (lrh) 1E-3
Architecture ϕ Net [11, 50, 60, 50, 4]
Architecture h Net [4, 128, 6]
Loss Type h Cross-Entropy
Training Frequency h (γ) 0.5

Important DAIML hyperparameters are explained:

• The regularization parameter (α ≥ 0) determines the weight of the discriminator network h loss
in the loss function in Equation 4.39. Having α > 0 avoids over-fitting and ensures that the learnt
ϕ network is to an extent invariant to speed conditions, however if α >> 0 it may degrade the
residual force prediction performance of ϕ. Note that given only one propeller damage condition
has been recorded for this initial experimentation phase the regularization parameter used is
α = 0 corresponds to non-adversarial learning.

• Spectral normalization is a technique used for GANs to stabilize the training of the discriminator
h. It normalizes the spectral norm of the weight matrix W of each layer of the discriminator such
that it satisfies the Lipschitz constraint σ (W) = 1.

• The discriminator training frequency 0 < γ ≤ 1 controls how often the discriminator network is
trained each time the ϕ network is trained. A value of γ = 1 corresponds to training h and ϕ at
each iteration while γ = 0.1 corresponds to training h once for every 10 times ϕ is trained. ”A
value of γ = 0.5 is commonly used for training stability for GANs” [25].

The training procedure of the meta-learning DAIML algorithm is outlined in algorithm 1 and illus-
trated in Figure 2.5 but is explained in further detail as follows. For each epoch the sub-dataset for

43

44

each propeller condition is chosen in a random order. Then, for each sub-dataset a training & adapta-
tion batch are randomly sampled. The output of ϕ network on the adaptation batch is determined, then
the optimal linear coefficients A∗ are determined by performing ordinary least squares. Afterwards,
the ϕ network and discriminator h network are trained normally on the training batch using the linear
coefficients A∗ determined previously.

The training & validation loss using the DAIML algorithm trained on the data collected in Section 5.2
are shown in Figure 6.1 & Figure 6.2 respectively. The training loss is composed of the force predic-
tion loss which reflects how well ϕ approximates the residual forces and the classification loss which
represents how well the discriminator h classifies the output of ϕ into a propeller damage condition.
However, given that data for only one condition is recorded the classification loss is zero for this case.
The validation loss is entirely composed of the force prediction loss.

Figure 6.1: ϕ Training Loss Figure 6.2: ϕ Validation Loss

As can be seen in training loss, the DAIML algorithm quickly converges to a quasi-minimum within
100 epochs indicating that the DAIML algorithm quickly learns the residual forces acting on the quadro-
tor. However, past 100 epochs the DAIML algorithm struggles to minimize the loss further indicating
that DAIML is over-fitting the training data, this is also supported by the fact the validation loss does
not decrease further past 100 epochs. To avoid over-fitting more training data should be used or if
over-fitting persists the DAIML algorithm saved at 100 epochs should be used in the online adaptation
phase.

Figure 6.3: Sample log of DAIML training run in wandb

7
Thesis Planning

A project plan has been proposed by dividing the tasks mentioned in Chapter 3 into 23 work packages.
These work packages have been incorporated into a work schedule that spans a duration of 8 months
and consists of 3 phases: literature, mid-term and final review culminating in milestones shown as a
Gantt Chart in Figure 7.1. Out of these work packages it is important to note that the ordering/building
of the high-speed drone must occur before the validation in the final review phase.

45

46

Fi
gu

re
7.
1:

G
an

tt
C
ha

rt

8
Results, Discussion & Relevance

The DAIML algorithm has shown promising results, quickly learning the residual forces from our cus-
tom dataset. However many unknowns remain, namely regarding the implementation and performance
of the online-adaptation phase as well as the effect of propeller damage on the aerodynamic model.
Furthermore, the dataset generation should ideally be comprised of uniform distribution of velocities to
prevent the NN from over-fitting to a certain velocity regime.

The proposed controller will be validating by testing the controller on unseen minimum snap trajec-
tories and measuring the RMS position error between the reference and measured trajectory of the
drone. The onboard computational time to run the proposed controller will also be measured to asses
the computational efficiency of the adaptive neural controller implementation. The performance of the
proposed controller will then be compared against other trajectory tracking controllers in the same or
similar conditions to obtain a good picture of the state of field. Verification steps will be performed by
comparing the results obtained with those shown in [25] and to the data & code they have released.

The relevance ofmy thesis is to research the viability of adaptive DNNbased controllers for trajectory
tracking with varying propeller damage conditions. The performance of the adaptive neural controller
is compared to state-of-the-art controllers in terms of accuracy and computational time. This research
could motivate others to pursue further research in this field, aiding in the deployment of accurate
trajectory tracking controllers for UAVs, allowing UAVs to fly through cluttered environments with a
wide range of operating conditions.

47

9
Conclusion

An accurate & light-weight adaptive trajectory tracking controller is necessary to safely fly quadrotors
with varying conditions in cluttered environments, such as in search & rescue, aerial delivery/transport,
space exploration and autonomous drone racing. However, developing such a controller is a challeng-
ing task due to the complex aerodynamic disturbances that introduce large tracking errors during flight.

State-of-the-art adaptive controllers achieve impressive accuracies of 8.2 cm at speeds of up to
20m s−1 [36] with slight degradation in performance to varying condition. However, they require pow-
erful embedded computers or expensive sensors to reach these accuracies which hinders their wider
adaptation in commercial applications. Recent work on adaptive Deep Neural Network based con-
trollers [25] has shown promising results as a computationally light-weight alternative to these state-of-
the-art controllers. DNN based controllers leverage the representation power of DNN to quickly learn
the complex disturbances acting on the quadrotor which combined with a simple yet effective online
adaptation phase allows for the controller to accurately track trajectories with a low computational bur-
den even in unseen conditions. Despite these promising results there is a lack of research on designing
such a controller for different conditions, with former experimentation being limited to tracking simple
circular of figure-8 trajectories in a wind tunnel.

The aim of this thesis is to investigate an adaptive DNN based controller for trajectory tracking with
propeller damage. In this literature review the groundwork to achieve this goal has been laid. First, a
literature review on the progress and state-of-the-art of trajectory tracking controllers has been included
in Chapter 2. Followed by an explanation of relevant research questions and objectives regarding devel-
oping such a controller in Chapter 3. In Chapter 4 the methodologies regarding the trajectory planning
and controller have been outlined. The data collection & processing procedure have been explained in
Chapter 5 while the training results of the DAIML algorithm have been analyzed in Chapter 6. Lastly,
the results, outcome & relevance of this thesis have been discussed in Chapter 8.

48

References
[1] ArduPilot. URL: https://ardupilot.org (visited on 07/30/2022).
[2] S. Belkhale et al. “Model-Based Meta-Reinforcement Learning for Flight with Suspended Pay-

loads”. In: IEEE Robotics and Automation Letters 6.2 (Apr. 2021), pp. 1471–1478. ISSN: 2377-
3766, 2377-3774. DOI: 10.1109/LRA.2021.3057046. URL: http://arxiv.org/abs/2004.11345
(visited on 07/28/2022).

[3] M. Bisheban and T. Lee. Geometric Adaptive Control with Neural Networks for a Quadrotor UAV
in Wind fields. arXiv:1903.02091 [math]. Mar. 2019. URL: http://arxiv.org/abs/1903.02091
(visited on 05/23/2023).

[4] D. Brescianini and R. D’Andrea. “Tilt-Prioritized Quadrocopter Attitude Control”. In: IEEE Transac-
tions on Control Systems Technology 28.2 (Mar. 2020). Conference Name: IEEE Transactions
on Control Systems Technology, pp. 376–387. ISSN: 1558-0865. DOI: 10.1109/TCST.2018.
2873224.

[5] F.-C. Chen and H. Khalil. “Adaptive control of a class of nonlinear discrete-time systems using
neural networks”. In: IEEE Transactions on Automatic Control. Vol. 40. May 1995, pp. 791–801.
DOI: 10.1109/9.384214.

[6] Fu-Chuang Chen and H. Khalil. “Adaptive control of a class of nonlinear discrete-time systems
using neural networks”. en. In: IEEE Transactions on Automatic Control 40.5 (May 1995), pp. 791–
801. ISSN: 00189286. DOI: 10.1109/9.384214. URL: http://ieeexplore.ieee.org/documen
t/384214/ (visited on 05/23/2023).

[7] G. de Croon. TOP grant on self-supervised learning. Section: Geen categorie. May 2018. URL:
http://www.bene- guido.eu/wordpress/2018/05/16/top- grant- on- self- supervised-
learning/ (visited on 07/30/2022).

[8] Delftse wetenschappers maken kleinste autonome race-drone ter wereld. URL: https://www.
tudelft.nl/2019/tu-delft/delftse-wetenschappers-maken-kleinste-autonome-race-
drone-ter-wereld (visited on 07/30/2022).

[9] Drone Market in 2021-2026 Infographic | Drone Industry Insights. Diagram. URL: https://dron
eii.com/project/drone-market-in-2021-2026 (visited on 07/26/2022).

[10] M. Faessler, A. Franchi, and D. Scaramuzza. “Differential Flatness of Quadrotor Dynamics Sub-
ject to Rotor Drag for Accurate Tracking of High-Speed Trajectories”. In: Robotics and Automa-
tion Letters (RA-L). Vol. 3. 2. IEEE Robotics and Automation Letters, Apr. 2018, pp. 620–626.
DOI: 10.1109/LRA.2017.2776353. URL: http://arxiv.org/abs/1712.02402 (visited on
05/23/2022).

[11] R. Ferede. “An Adaptive Control Strategy for Neural Network based Optimal Quadcopter Con-
trollers”. PhD thesis. 2022. URL: https://repository.tudelft.nl/islandora/object/uuid%
5C%3Ab43a9703-082c-47c7-a56e-d50794ee8c1c (visited on 07/31/2022).

[12] P. Foehn, A. Romero, and D. Scaramuzza. “Time-Optimal Planning for Quadrotor Waypoint
Flight”. In: Science Robotics. Vol. 6. 56. American Association for the Advancement of Science,
July 2021, eabh1221. DOI: 10.1126/scirobotics.abh1221. URL: http://arxiv.org/abs/
2108.04537 (visited on 05/23/2022).

[13] E. Frazzoli, M. Dahleh, and E. Feron. “Trajectory tracking control design for autonomous heli-
copters using a backstepping algorithm”. In: vol. 6. Feb. 2000, pp. 4102–4107. DOI: 10.1109/
ACC.2000.876993.

[14] D. Hanover et al. “Performance, Precision, and Payloads: Adaptive Nonlinear MPC for Quadro-
tors”. In: IEEE Robotics and Automation Letters. Vol. 7. 2. IEEE, Apr. 2022, pp. 690–697. DOI: 10.
1109/LRA.2021.3131690. URL: http://arxiv.org/abs/2109.04210 (visited on 05/23/2022).

49

https://ardupilot.org
https://doi.org/10.1109/LRA.2021.3057046
http://arxiv.org/abs/2004.11345
http://arxiv.org/abs/1903.02091
https://doi.org/10.1109/TCST.2018.2873224
https://doi.org/10.1109/TCST.2018.2873224
https://doi.org/10.1109/9.384214
https://doi.org/10.1109/9.384214
http://ieeexplore.ieee.org/document/384214/
http://ieeexplore.ieee.org/document/384214/
http://www.bene-guido.eu/wordpress/2018/05/16/top-grant-on-self-supervised-learning/
http://www.bene-guido.eu/wordpress/2018/05/16/top-grant-on-self-supervised-learning/
https://www.tudelft.nl/2019/tu-delft/delftse-wetenschappers-maken-kleinste-autonome-race-drone-ter-wereld
https://www.tudelft.nl/2019/tu-delft/delftse-wetenschappers-maken-kleinste-autonome-race-drone-ter-wereld
https://www.tudelft.nl/2019/tu-delft/delftse-wetenschappers-maken-kleinste-autonome-race-drone-ter-wereld
https://droneii.com/project/drone-market-in-2021-2026
https://droneii.com/project/drone-market-in-2021-2026
https://doi.org/10.1109/LRA.2017.2776353
http://arxiv.org/abs/1712.02402
https://repository.tudelft.nl/islandora/object/uuid%5C%3Ab43a9703-082c-47c7-a56e-d50794ee8c1c
https://repository.tudelft.nl/islandora/object/uuid%5C%3Ab43a9703-082c-47c7-a56e-d50794ee8c1c
https://doi.org/10.1126/scirobotics.abh1221
http://arxiv.org/abs/2108.04537
http://arxiv.org/abs/2108.04537
https://doi.org/10.1109/ACC.2000.876993
https://doi.org/10.1109/ACC.2000.876993
https://doi.org/10.1109/LRA.2021.3131690
https://doi.org/10.1109/LRA.2021.3131690
http://arxiv.org/abs/2109.04210

References 50

[15] R. E. Kalman and R. S. Bucy. “New Results in Linear Filtering and Prediction Theory”. In: Journal
of Basic Engineering 83.1 (Mar. 1961), pp. 95–108. ISSN: 0021-9223. DOI: 10.1115/1.3658902.
URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.361.6851&rep=
rep1&type=pdf (visited on 08/11/2022).

[16] E. Kaufmann et al. “Deep Drone Acrobatics”. In: Robotics, Science, and Systems (RSS). IEEE,
June 2020. DOI: 10.48550/arXiv.2006.05768. URL: http://arxiv.org/abs/2006.05768
(visited on 05/23/2022).

[17] Keras: the Python deep learning API. URL: https://keras.io/ (visited on 07/30/2022).
[18] S. Khatoon, D. Gupta, and L. K. Das. “PID & LQR control for a quadrotor: Modeling and sim-

ulation”. In: 2014 International Conference on Advances in Computing, Communications and
Informatics (ICACCI). Sept. 2014, pp. 796–802. DOI: 10.1109/ICACCI.2014.6968232.

[19] P. Kotaru, R. Edmonson, and K. Sreenath.Geometric L1 Adaptive Attitude Control for a Quadrotor
Unmanned Aerial Vehicle. arXiv:1910.07730 [math]. Mar. 2020. DOI: 10.48550/arXiv.1910.
07730. URL: http://arxiv.org/abs/1910.07730 (visited on 05/21/2023).

[20] MAVLab. URL: https://mavlab.tudelft.nl/ (visited on 07/30/2022).
[21] A. Nagabandi et al. Learning to Adapt in Dynamic, Real-World Environments Through Meta-

Reinforcement Learning. Feb. 2019. DOI: 10.48550/ARXIV.1803.11347. URL: http://arxiv.
org/abs/1803.11347 (visited on 07/28/2022).

[22] K. Narendra and S. Mukhopadhyay. “Adaptive control using neural networks and approximate
models”. In: IEEE Transactions on Neural Networks. Vol. 8. May 1997, pp. 475–485. DOI: 10.
1109/72.572089.

[23] Nazgul Evoque F5 4S/6S Analog FPV Drone- BNF. URL: https://shop.iflight- rc.com/
Nazgul-Evoque-F5-Analog-BNF-Pro1630 (visited on 07/30/2022).

[24] K. Northon. NASA’s Ingenuity Mars Helicopter Succeeds in Historic First Flight. Website. Apr.
2021. URL: http://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-
succeeds-in-historic-first-flight (visited on 07/26/2022).

[25] M. O’Connell et al. “Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds”. In:
Science Robotics. Vol. 7. 66. American Association for the Advancement of Science, May 2022,
eabm6597. DOI: 10.1126/scirobotics.abm6597. URL: http://arxiv.org/abs/2205.06908
(visited on 05/23/2022).

[26] M. O’Connell et al. Public facing code for Neural Fly. en. Apr. 2022. URL: https://github.com/
aerorobotics/neural-fly (visited on 09/11/2022).

[27] PaparazziUAV. URL: https://wiki.paparazziuav.org/wiki/Main_Page (visited on 07/30/2022).
[28] PX4 Autopilot. URL: https://px4.io/ (visited on 07/30/2022).
[29] PyTorch. URL: https://www.pytorch.org (visited on 07/30/2022).
[30] C. Richter, A. Bry, and N. Roy. “Polynomial Trajectory Planning for Aggressive Quadrotor Flight

in Dense Indoor Environments”. In: Springer International Publishing 114 (Apr. 2016), pp. 649–
666. ISSN: 1610-7438. URL: https://dspace.mit.edu/handle/1721.1/106840 (visited on
08/13/2022).

[31] rshaffer. Drone Payloads Vs. Performance: A Balancing Act. en-US. Apr. 2021. URL: https :
//consortiq.com/uas-resources/how-to-balance-your-drones-payload-performance
(visited on 06/26/2023).

[32] G. Shi et al. “Meta-Adaptive Nonlinear Control: Theory and Algorithms”. In: 35th Conference on
Neural Information Processing Systems (NeurIPS 2021). Vol. 34. Sydney, Australia: arXiv, Oct.
2021. DOI: 10.48550/arXiv.2106.06098. URL: http://arxiv.org/abs/2106.06098 (visited
on 05/23/2022).

[33] X. Shi et al. “Adaptive Nonlinear Control of Fixed-Wing VTOL with Airflow Vector Sensing”. In:
IEEE International Conference on Robotics and Automation (ICRA). IEEE, May 2020, pp. 5321–
5327. DOI: 10.1109/ICRA40945.2020.9197344. URL: http://arxiv.org/abs/2003.07558
(visited on 05/23/2022).

https://doi.org/10.1115/1.3658902
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.361.6851&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.361.6851&rep=rep1&type=pdf
https://doi.org/10.48550/arXiv.2006.05768
http://arxiv.org/abs/2006.05768
https://keras.io/
https://doi.org/10.1109/ICACCI.2014.6968232
https://doi.org/10.48550/arXiv.1910.07730
https://doi.org/10.48550/arXiv.1910.07730
http://arxiv.org/abs/1910.07730
https://mavlab.tudelft.nl/
https://doi.org/10.48550/ARXIV.1803.11347
http://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1803.11347
https://doi.org/10.1109/72.572089
https://doi.org/10.1109/72.572089
https://shop.iflight-rc.com/Nazgul-Evoque-F5-Analog-BNF-Pro1630
https://shop.iflight-rc.com/Nazgul-Evoque-F5-Analog-BNF-Pro1630
http://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-succeeds-in-historic-first-flight
http://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-succeeds-in-historic-first-flight
https://doi.org/10.1126/scirobotics.abm6597
http://arxiv.org/abs/2205.06908
https://github.com/aerorobotics/neural-fly
https://github.com/aerorobotics/neural-fly
https://wiki.paparazziuav.org/wiki/Main_Page
https://px4.io/
https://www.pytorch.org
https://dspace.mit.edu/handle/1721.1/106840
https://consortiq.com/uas-resources/how-to-balance-your-drones-payload-performance
https://consortiq.com/uas-resources/how-to-balance-your-drones-payload-performance
https://doi.org/10.48550/arXiv.2106.06098
http://arxiv.org/abs/2106.06098
https://doi.org/10.1109/ICRA40945.2020.9197344
http://arxiv.org/abs/2003.07558

References 51

[34] J.-J. E. Slotine and W. Li. Applied nonlinear control. Englewood Cliffs, N.J: Prentice Hall, 1991.
ISBN: 978-0-13-040890-7.

[35] J. Slump. “Home of Innovation”. In: Robotics Special by TU Delft (2017), p. 25. URL: https:
//issuu.com/tudelft-mediasolutions/docs/hoi-robotics (visited on 07/30/2022).

[36] S. Sun et al. “A Comparative Study of Nonlinear MPC and Differential-Flatness-Based Control
for Quadrotor Agile Flight”. In: arXiv, Feb. 2022. DOI: 10.48550/arXiv.2109.01365. URL: http:
//arxiv.org/abs/2109.01365 (visited on 05/23/2022).

[37] J. Svacha, K. Mohta, and V. Kumar. “Improving quadrotor trajectory tracking by compensating for
aerodynamic effects”. In: IEEE, June 2017, pp. 860–866. DOI: 10.1109/ICUAS.2017.7991501.

[38] E. Tal and S. Karaman. “Accurate Tracking of Aggressive Quadrotor Trajectories using Incre-
mental Nonlinear Dynamic Inversion and Differential Flatness”. In: IEEE Transactions on Control
Systems Technology. Vol. 29. 3. IEEE, June 2020, pp. 1203–1218. DOI: 10.48550/arXiv.1809.
04048. URL: http://arxiv.org/abs/1809.04048 (visited on 05/23/2022).

[39] G. Torrente et al. “Data-Driven MPC for Quadrotors”. In: IEEE Robotics and Automation Letters.
Vol. 6. 2. IEEE, Mar. 2021, pp. 3769–3776. DOI: 10.48550/arXiv.2102.05773. URL: http:
//arxiv.org/abs/2102.05773 (visited on 05/23/2022).

[40] P. Ventura Diaz and S. Yoon. “High-Fidelity Computational Aerodynamics of Multi-Rotor Un-
manned Aerial Vehicles”. en. In: 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida:
American Institute of Aeronautics and Astronautics, Jan. 2018. ISBN: 978-1-62410-524-1. DOI:
10.2514/6.2018-1266. URL: https://arc.aiaa.org/doi/10.2514/6.2018-1266 (visited on
05/17/2023).

[41] Y. Zhou, E.-J. Van Kampen, and Q. Chu. “Incremental Model Based Heuristic Dynamic Program-
ming for Nonlinear Adaptive Flight Control”. In: IMAV 2016, Oct. 2016.

[42] Zipline - Instant Logistics. Website. URL: https://www.flyzipline.com/ (visited on 07/26/2022).

https://issuu.com/tudelft-mediasolutions/docs/hoi-robotics
https://issuu.com/tudelft-mediasolutions/docs/hoi-robotics
https://doi.org/10.48550/arXiv.2109.01365
http://arxiv.org/abs/2109.01365
http://arxiv.org/abs/2109.01365
https://doi.org/10.1109/ICUAS.2017.7991501
https://doi.org/10.48550/arXiv.1809.04048
https://doi.org/10.48550/arXiv.1809.04048
http://arxiv.org/abs/1809.04048
https://doi.org/10.48550/arXiv.2102.05773
http://arxiv.org/abs/2102.05773
http://arxiv.org/abs/2102.05773
https://doi.org/10.2514/6.2018-1266
https://arc.aiaa.org/doi/10.2514/6.2018-1266
https://www.flyzipline.com/

Part III
Additional Work

A
Code Architecture

The onboard adaptive neural controller implementation in Paparazzi-UAV is available at https://
github.com/MauroVA98/paparazzi-ANC while the offline DAIML training implementation in Pytorch
is available at https://github.com/MauroVA98/training-ANC.

The code architecture of the adaptive neural controller implementation onboard the Parrot Bebop 1
is shown in Figure A.1. The code is implemented in a modular architecture comprised of four programs:
min_snap.c, phi.c, adapt.c & main.c corresponding to the trajectory generation, network inference,
coefficient adaptation and the controller itself. The code implementation is easy-to-use yet versatile
with all tunable parameters defined in the init.h header file shown in Listing 1. Additionally, the network
weights and biases and the trajectory polynomial coefficients are not hard-coded, instead they are
loaded from .txt files which allows for effortless changing of networks or trajectories on-the-fly.

main.c

 - Filtering & Differentiation
 - Combining all programs

Output: Control Forces

init.h

Tunable Parameters

phi.c

 - Loads Neural Network from .txt file
 - Performs Inference

Output: Phi Network Output

adapt.c

Linear Weights Adaptation using
Composite Adaptive Controller

Output: Linear Weights Estimate

state.h

Drone State

Inverse Kinematics

network.txt

Neural Network
Weights and Biases

min_snap.c

Computes minimum snap trajectory

Output: Desired Position, Velocity,
Acceleration

trajecotry.txt

Minimum Snap Polynomial
Coefficient

To Rate Controller and Thrust Mixer

Figure A.1: Adaptive Neural Controller Code Architecture Diagram

48

https://github.com/MauroVA98/paparazzi-ANC
https://github.com/MauroVA98/paparazzi-ANC
https://github.com/MauroVA98/training-ANC

49

For example, if the network output size PHI_OUT_DIM is increased not only will the network
loading and inference work seamlessly with the new size but also the adaptation coefficient matrix size
will change such that the output of the controller ϕ (x)A remains a 3×1 vector of the unmodeled forces.

1 /// ADAPTIVE NEURAL CONTROLLER
2 #define P_TRIM -0.060 // pitch trim [rad]
3 #define R_TRIM -0.002 // roll trim [rad]
4 static float K_P[3] = {0.2f, 0.2f, 1.0f}; // position feedback gain
5 static float K_V[3] = {1.0f, 1.0f, 2.0f}; // velocity feedback gain
6 static float f_cutoff[3] = {0.7f, 0.7f, 0.7f}; // butterworth cut-off frequency
7

8 // Thrust & Aerodynamic Model
9 static float k_t = 6.70e-08;

10 static float k_x = 1.08e-05;
11 static float k_y = 9.65e-06;
12 static float k_z = 2.79e-05;
13 static float k_h = 6.26e-02;
14

15

16 /// PHI NETWORK
17 static float RPM_ratio = 10000.0f; // RPM normalization ratio
18

19 // Dimensions
20 #define PHI_IN_DIM 11 // input dimensions
21 #define LAY1_DIM 50 // layer 1 output dimensions
22 #define LAY2_DIM 60 // layer 2 output dimensions
23 #define LAY3_DIM 50 // layer 3 output dimensions
24 #define PHI_OUT_DIM 4 // output dimensions
25

26 // Neural Network .txt file path (Drone & Sim)
27 #if AP == 1
28 #define NET_PATH "/data/ftp/internal_000/nn/03_30_19_31.txt"
29 #elif AP == 0
30 #define NET_PATH ".../03_30_19_31/600.txt"
31 #endif
32

33

34 /// ADAPTATION
35 #define ADAPT_IN_DIM PHI_OUT_DIM // adaptation input dimension
36 #define ADAPT_MEAS_DIM 1 // adaptation measurement dimensions
37 static float lambda = 0.01f; // damping coefficient @50Hz
38

39 // Adaptation Matrix Diagonal Values
40 static float q = 10.0f; // State Noise Covariance Matrix
41 static float r = 50.0f; // Measurement Noise Covariance Matrix

Listing 1: Sample Section of init.h Header File

B
OptiTrack Filtering

A zero-phase ”filtfilt” filter is used to remove noise in the OptiTrack velocity measurements. The quadro-
tor acceleration is then obtained through 4th-order central difference of the filtered velocity measure-
ments, followed by computing the residual force acting on the quadrotor by solving Equation 5.2.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

t
[s

]

OptiTrack Velocity Measurements Time Difference

1.5

1.0

0.5

0.0

0.5

1.0

1.5

V
[m

/s
]

Velocity Measurements
velocity
filtered velocity

40 60 80 100 120 140
Time [s]

0.10

0.05

0.00

0.05

0.10

0.15

0.20

A
[m

/s
2]

Residual Force Measurements
residual force
filtered residual force

Figure B.1: ”FiltFilt” Zero-Phase Smoothing of OptiTrack Velocity Measurements and Residual Force

The filtered velocity signal removes most of the noise in the unfiltered velocity measurements with-
out introducing lag. This always for the computation of closest possible ”ground-truth” of the residual

50

51

force. The quality of the residual force is mostly acceptable, however for seemingly random inter-
vals the quality of the residual force significantly deteriorates. Upon further investigation it was found
that this was caused by asynchronous OptiTrack measurements during this interval, with time differ-
ences between OptiTrack measurements considerably increasing as seen in Figure B.1. Given that
the zero-phase filter assumes a constant dt the asynchronous measurements would result in bumps in
the filtered velocity signal which are amplified when performing central difference to obtain acceleration.

A second zero-phase ”filtfilt” filter is applied on the acceleration signal to improve the quality of
the residual force and thus also the predictions of the ϕ network without sacrificing valuable training
data. The filtered residual force significantly reduces the differentiation noise during the asynchronous
OptiTrack measurement intervals in addition to removing the unwanted high-frequency components.

C
Propeller Damage Estimation

An interesting feature of the adaptive neural control architecture is ability to estimate the in-flight pro-
peller damage condition from the online adaptation coefficients Â. The online adaptation coefficients
will differ from those obtained during training due to the regularization and position tracking terms in
the coefficient update in Equation 4.42. To determine wherever the online adaptation coefficients con-
tain propeller condition information the high dimensional adaptation coefficients are displayed in a 2-D
plane using t-SNE dimensionality reduction with speed factors w = 0.7 & w = 1.1 in Figure C.1a and
Figure C.1b respectively.

4 2 0 2 4 6 8
6

4

2

0

2

4
T-SNE Plot of Online Adaptation Coefficients A with = 0.8

Propeller Condition
No Damage
Slight Damage
Significant Damage

(a) with w = 0.7

2 0 2 4 6 8

6

4

2

0

2

T-SNE Plot of Online Adaptation Coefficients A with = 1.1
Propeller Condition

No Damage
Slight Damage
Significant Damage

(b) with w = 1.1

Figure C.1: t-SNE Plots of Online Adaptation Coefficients (Â)

We notice in the t-SNE plots that the grouping of propeller damage conditions becomes more signif-
icant as the speed factor increases. Indicating that at higher speeds the propeller condition information
is more dominant in the adaptation coefficients whereas at lower speeds the tracking error or source
of noise are more dominant.

52

53

To better showcase the ability of estimating the propeller damage condition from the online adapta-
tion coefficients t-SNE dimensionality reduction is performed to 1-D. These t-SNE plots are shown with
speed factors w = 0.7 & w = 1.1 in Figure C.2a and Figure C.2b respectively.

Significant Damage Slight Damage No Damage

Propeller Damage Estimation
 from Online Adaptation Coefficients

Propeller Condition
No Damage
Slight Damage
Significant Damage

(a) with w = 0.8

Significant Damage Slight Damage No Damage

Propeller Damage Estimation
 from Online Adaptation Coefficients

Propeller Condition
No Damage
Slight Damage
Significant Damage

(b) with w = 1.1

Figure C.2: Propeller Damage Condition Estimation from Online Adaptation Coefficients

It should be noted that t-SNE groups propeller conditions based on local similarities in the higher
dimensional data with any random order, thus various t-SNE attempts where required to obtain the
decreasing proper condition order shown (i.e. significant damage, slight damage & no damage). Ad-
ditionally, t-SNE is an iterative algorithm for which the dimension reduction transformation is unknown
but does show that it is possible. More advanced dimensionality reduction methods with known trans-
formations would be required to deploy propeller condition estimation on-the-fly.

D
WandB Integration

Tracking the neural network training results using the Domain Adversarially Invariant Meta-Learning
(DAIML) algorithm is usually a tedious and time-consuming task prone to errors. Thankfully, the DAIML
training implementation has been integrated with WandB 1 a intelligence tracking and versioning tool
for neural network experiments. In addition to the standard training and validation loss, WandB can
track any plots, table and values throughout each training run. We use WandB to log the loss plots,
t-SNE plots, force prediction plots, adaptation coefficients and test loss metrics at various epochs, for
example the testing force prediction plots for epoch = 100 and epoch = 400 are shown in Figure D.1a
& Figure D.1b. This allows us to easily see the training progress and its influence on the force predic-
tions. Comparing results between runs in also straightforward as shown in Figure D.2. Additionally,
WandB supports hyperparameter sweeps through a .yaml file to determine the optimal hydrometers
that minimize a tracked value.

(a) at epoch = 100

(b) at epoch = 400

Figure D.1: Residual Force Prediction Plots of Testing Data

1https://wandb.ai/site

54

https://wandb.ai/site

55

Figure D.2: Comparing Training & Validation Loss of Multiple Runs in WandB

	Nomenclature
	List of Figures
	List of Tables
	Abstract
	Literature Review
	Quadrotor Trajectory Tracking Control
	Aerodynamic Model

	Adaptive Control
	Adaptive Neural Control

	Research Questions
	Research Question
	Research Objective

	Methodologies
	Problem Statement
	Coordinate Frames
	Quadrotor Model
	Aerodynamic Model

	Trajectory Planning
	Minimum Snap
	Time-Optimal

	Controllers
	Nonlinear Model Predictive Controller
	Differential-Flatness Based Controller
	Tilt Prioritized Control
	Neural-Fly
	Offline-Learning
	Online Adaptation

	Data Collection
	Experimental Set-up
	Platform
	Software
	Environment

	Data Collection
	Data Processing

	Training
	Thesis Planning
	Results, Discussion & Relevance
	Conclusion
	References
	Additional Work
	Code Architecture
	OptiTrack Filtering
	Propeller Damage Estimation
	WandB Integration

