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ABSTRACT
By extending static traffic assignment with explicit capacity con-
straints, quasi-dynamic traffic assignment yieldsmore realistic results
while avoiding many disadvantages of a dynamic assignment. We
analyse the computation of travel times in quasi-dynamic assign-
ment models. We formulate and check requirements for the cor-
rectness of resulting travel times, addressing both the calculation of
travel times for individual routes and links itself, as well as the differ-
ences between travel times of different travel choices. We demon-
strate that existing approaches for travel time computation in the
literature fail to satisfy all requirements and derive a new link travel
time formula from the vertical queuing theory that does meet all
requirements. We discuss expected changes to assignment results
and methodological advantages for pathfinding and model exten-
sions, including horizontal queuing. The new link travel time formu-
lation is finally applied to three example scenarios from literature.
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1. Introduction

There is a long tradition of static traffic assignment (STA) in transportation research. Albeit
dynamic traffic assignment (DTA) can yield more detailed and realistic results, it unfortu-
nately also comes with greater model complexity, higher computational costs, higher data
requirements, and poorer convergence. And hence, STA is still much used in practice and
research. The most important limitation of traditional STA models is the lack of explicit
capacity constraints, which results in errors in the modelled congestion patterns around
bottlenecks, and consequently also errors in travel times anddelays. To remedy this, Bakker,
Mijjer, and Hofman (1994), Bifulco and Crisalli (1998), Lam and Zhang (2000), Bundschuh,
Vortisch, and Van Vuuren (2006), and Gentile, Velonà, and Cantarella (2014) formulated
capacity-constrained STA models where excess traffic at bottlenecks can accumulate in
residual queues. These queues are initially empty and absorbwhatever traffic demand from
the studied time period that exceeds capacity. Hence, while in traditional STA based on
link performance functions (Bureau of Public Roads 1964) traffic is omnipresent, instead
in capacity-constrained STA traffic is instantaneously propagated over its entire route, but
the fraction of a route’s demand ending up in a residual queue is not propagated over the
remainder of that route.
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Table 1. Satisfaction of requirements for travel time calculation by various traffic assignmentmethodsa.

aThis comparison focuses on the calculation of travel times. Advances in the flow propagation model are not shown here.
For Nakayama and Connors (2014) it is assumed flow propagation is based on capacity constraints.

Bliemer et al. (2014) refer to this as quasi-dynamic traffic assignment (QDTA), and for-
mulate the capacity-constrained traffic propagation and assignment as two fixed-point
problems, including calculation of route travel times. Their formulation supports use of
generic first-order node models (Tampère et al. 2011), and correctly places vertical queues
in front of bottleneck nodes. Brederode et al. (2019) supplement the approach with an
additional horizontal queuing calculation to account for spillback and interaction effects
between bottlenecks, based on a dynamic model (Raadsen, Bliemer, and Bell 2016). Raad-
sen and Bliemer (2018) instead integrate spillback and bottleneck interactions directly into
the original flow propagation model. Nakayama and Connors (2014) formulate a variation
of QDTA where the residual queues are transferred to the next time period.

Within the context of QDTA, this paper focuses specifically on the computation of travel
times, while we discuss the propagation of traffic through the network to the extent rele-
vant. To this end, we formulate a list of requirements shown in Table 1 that can be divided
into two categories:

• requirements for absolute correctness that ensure a valid composition of the travel time
calculation for individual routes and links (I-III);

• requirements for relative correctness that ensure a valid comparisonbetween travel times
of alternative routes or alternative demand patterns (IV-VI).
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The six requirements are listed here for reference and will be introduced and discussed
throughout this paper. Correctness here refers to the consistency with reality and traffic
flow theory. The requirements can be summarised as follows:

(I) Corridor Compatibility: travel times on a corridor network are compatible with queu-
ing theory calculations;

(II) Route is Sum of Links: the travel time of a route equals the sum of travel times of the
links along the route;

(III) Steady State Consistency: link travel times are based on both instantaneous traffic
propagation and homogeneous traffic composition, or on neither;

(IV) Correct Derivatives: in case of a linkwith a fixed exit capacity, the partial derivatives of
the link’s travel time with respect to both the link’s demand and the link’s flow have
the correct sign;

(V) First-In-First-Out: route travel times respect the first-in-first-out property of links: it is
not possible to leave a link earlier by entering it later;

(VI) Stops have No Effect: insertion of intermediate stops in a route cannot change the
route’s travel time (other than the time spent stopped).

The requirements are specified in more detail later in this paper. As will be shown,
all requirements are satisfied by DTA, while QDTA formulations until now violate several
requirements. This is solved in this paper where we present a new procedure to correctly
compute travel times. Table 1 presents an overview of what model types satisfy which
requirements.

In this paper, we show that the existing QDTA travel time computation procedures fail
to meet requirements for both absolute and relative correctness. Our main contribution is
a new QDTA travel time formula derived from queuing theory that does satisfy all require-
ments and can readily replace the Bliemer et al. (2014) formula. We also analyse what this
formula replacement implies for assignment results and pathfinding, and illustrate how
horizontal queuingandother extensions canbe incorporated.Note thatournew travel time
formula can be used in combination with existing flow propagation models from Bliemer
et al. (2014) and Raadsen and Bliemer (2018), so wewill not discuss QDTA flow propagation
in detail.

The structure of this paper is as follows. First, Section 2 revisits the derivation of quasi-
dynamic travel time formulas from queuing theory, resulting in our new QDTA travel time
formula. Requirements for absolute correctness are formulated and investigated in the pro-
cess. Then, Section 3 formulates and investigates requirements for relative correctness,
by considering derivatives of the link travel time and analysing route travel times in an
example network. Section 4 analyses further implications of using our new formula for
assignment results and pathfinding with congested travel times, and shows how it can
be further extended with horizontal queuing and other improvements. Section 5 applies
our new travel time formula to three example scenarios from literature. Finally, Section 6
summarises our conclusions.

2. Theoretical derivation of quasi-dynamic travel times

In this section, we will derive a formula for the travel time τa of link a. Like Bliemer
et al. (2014, 371), we split the travel time into a free-flow travel time τ ffa and a queuing
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Figure 1. Network types: single-link network (left), diverges-only network (middle), general network
(right).

delay τ
queue
a :

τa = τ ffa + τ
queue
a . (1)

Here, τ ffa is either a constant or an increasing function of link inflow qa. Bakker, Mijjer, and
Hofman (1994, 320), LamandZhang (2000, 123), Gentile, Velonà, andCantarella (2014, 322),
and Brederode et al. (2019, 7) suggest the latter. Nevertheless, our focus is on deriving a
formula for τ

queue
a that indicates the extra travel time due to the link’s exit capacity being

exceededand the consequentqueuebeing formedon the link. The formula for this queuing
delay needs be consistent with the arrival and service rates of traffic, also in networks with
more than one bottleneck.

QDTA models traffic flows in a single time period, and unlike DTA does not distinguish
any departure times. Therefore, the (link and route) travel times in our computations are
static, and hence there is no time index. The traffic flow propagation component of any
QDTA model is set up such that all traffic demand either reaches their destination or accu-
mulates in residual queues. Eitherway,we seek toestimate the travel timeof anentire route.
If the route is long, congested, or both, these route travel timesmay exceed the duration of
the simulated time period (similar to STA).

Note that Nakayama and Connors (2014) deviate from the above definition of QDTA by
modelling multiple time periods, and are closer to traditional DTA with large time steps.
Their flow propagation is also not necessarily based on capacity constraints. To ensure a
proper comparison with other QDTAmodels, we assume it is.

This section derives the link travel time formula for increasingly complex networks: a
single link in Section 2.1, a diverges-only network in Section 2.2, and a general network
in Section 2.3 (Figure 1). The main contribution is the general network formula presented
in Section 2.3, which is an improvement of the Bliemer et al. (2014) formula. In order to
derive it, we analyse the simpler networks first. A second contribution is the requirements
for absolute correctness that are formulated during its derivation.

2.1. Single link

We first consider a network consisting of a single link a, subject to a constant traffic demand
rate fa departing during time period [0, T]. Since there are no upstream queues, the link
inflow qa is equal to the demand rate fa. A queue may, however, build up at the exit of the
link, consisting of traffic waiting to traverse the next node, due to insufficient capacity as
determined by the node model. Let αa ∈ (0, 1] be the link flow reduction factor, such that
the link outflow is αaqa. Initially, at time 0, there is no queue on the link. Because traffic
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Figure 2. Cumulative numbers of vehicles entering and exiting the queue over time, on a single link
network.

propagation is instantaneous, a queue forms ‘immediately’. At the end of the study time
period, the number of vehicles in the queue is (Bliemer et al. 2014, 371)

Qa = qaT − αaqaT = (1 − αa)qaT . (2)

Assuming the link outflow remainsαaqa after T until all vehicles left, the last vehicle to enter
the queue has to wait

Qa

αaqa
= 1 − αa

αa
T =

(
1
αa

− 1
)
T (3)

time for the queue to dissolve before it can exit the link. Since the queue grew linearly from
0 to Qa, the average delay for all faT = qaT vehicles equals half of this (Bliemer et al. 2014,
371; Gentile, Velonà, and Cantarella 2014, 319):

τ
queue
a =

(
1
αa

− 1
)
T

2
. (4)

The build-up of the link’s queue over time is depicted in Figure 2 using cumulative curves.
Because of the first-in-first-out property, the horizontal distance between the entrance and
exit curves represents the delay of the Nth vehicle. This shows visually how the above
formulas are derived.

2.2. Diverges-only network

Now consider a link a that is part of a corridor network consisting ofmultiple links, where all
nodes are either one-to-one nodes or diverges. The link inflow qa during time period [0, T]
may now be constrained by queues in the set of links ηa upstream of link a (excluding itself,
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a /∈ ηa). More precisely (Bifulco and Crisalli 1998, 88; Bliemer et al. 2014, 369):

qa = fa
∏
a′∈ηa

αa′ . (5)

Thus traffic will keep flowing into the queue at the exit of link a after time period [0, T]
ended. We again assume the link outflow remains αaqa until all vehicles left. This implies
inflows into following links will also remain constant. Because both the inflow and outflow
of link a remain constant after [0, T] until the last vehicle enters/exits the link, therefore the
last vehicle enters the queue on link a at time T̄a such that the full link demand is processed,
i.e.

qaT̄a = faT , (6)

so

T̄a = fa
qa

T = 1∏
a′∈ηa

αa′
T . (7)

At time T̄a, the number of vehicles in the queue equals

Q̄a = qaT̄a − αaqaT̄a = (1 − αa)qaT̄a = 1 − αa∏
a′∈ηa

αa′
qaT . (8)

The last vehicle thus experiences a delay of

Q̄a

αaqa
= 1 − αa

αa
∏

a′∈ηa

αa′
T = 1∏

a′∈ηa

αa′

(
1
αa

− 1
)
T . (9)

The average delay on the link for all faT vehicles, therefore, equals half of this (Bliemer et al.
2014, 372):

τ
queue
a = 1∏

a′∈ηa

αa′

(
1
αa

− 1
)
T

2
. (10)

Figure 3 depicts the queue build-up in terms of cumulative numbers of vehicles
over time.

The total average delay of link a and all links before it equals (Bliemer et al. 2014, 372)

∑
a′∈ηa∪{a}

τ
queue
a′ =

∑
a′∈ηa∪{a}

1∏
a′′∈ηa′

αa′′

(
1

αa′
− 1

)
T

2

=
∑

a′∈ηa∪{a}

⎛
⎜⎝ 1∏

a′′∈ηa′∪{a′}
αa′′

− 1∏
a′′∈ηa′

αa′′

⎞
⎟⎠ T

2
=

⎛
⎜⎝ 1∏

a′∈ηa∪{a}
αa′

− 1

⎞
⎟⎠ T

2
.

(11)

As discovered by Bliemer et al. (2014, 371–372), this is consistent with the vertical queuing
theory on a corridor: the queuing delay of a series of consecutive bottlenecks is equal to the



TRANSPORTMETRICA A: TRANSPORT SCIENCE 871

Figure 3. Cumulative numbers of vehicles entering and exiting a link’s queue over time, in a network
with multiple links.

queuing delay of a single bottleneck with severities multiplied. It thereby satisfies our first
requirement in Table 1.

Requirement I. (Corridor Compatibility):

Travel times on a corridor network are compatible with queuing theory calculations with the corri-
dor inflow as arrival rate and the final link outflow as service rate. Depending on the capabilities of
the traffic propagationmodel, either vertical queuing or horizontal queuingmay be used.

The dynamicmodelling step of Brederode et al. (2019) correctlymodels horizontal queuing
on a corridor network and therefore satisfies this requirement. Albeit with vertical queuing
only, Bundschuh, Vortisch, and Van Vuuren (2006) similarly use a dynamic modelling step
to account for interactions between bottlenecks, thus also satisfying Requirement I. Bakker,
Mijjer, and Hofman (1994) and Lam and Zhang (2000) do not account for such interactions.
Gentile, Velonà, andCantarella (2014, 322) recognise theproblemwithmultiplebottlenecks
in a corridor, but do not develop a general solution like Equation (10). Nakayama and Con-
nors (2014) transfer the residual queue to a new timeperiodwhichwill have a smaller delay,
violating Requirement I. STA fails Requirement I because the link performance functions
do not capture flow metering due to capacity constraints and hence do not model queue
build-up and its effect on downstream links.

2.3. General network

Wenowproceed to calculating travel times in general networks. In a networkwithmerging
traffic, the traffic flow rate and the composition of traffic after a mergemay vary. Hence the
calculation of delays in general networks is a bit more involved. While Bliemer et al. (2014,
372) immediately infer the corridor result to also hold for general networks, we follow a
more rigorous derivation.
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We can convert a general network into a diverge-only network by replacing links after
merges with multiple parallel links, and assigning flows to the parallel links in such a way
that traffic flows never merge. Let Pa be the set of parallel links that replace link a:∑

p∈Pa
fp = fa,

∑
p∈Pa

qp = qa. (12)

Each parallel link p ∈ Pa now has a well-defined set of predecessor links ηp. Using the same
reasoning as for the diverge-only network, we can compute the average delay on any link
p ∈ Pa:

∀p ∈ Pa : τqueuep = 1∏
p′∈ηp

αp′

(
1
αp

− 1
)
T

2
= fp

qp

(
1
αp

− 1
)
T

2
. (13)

To preserve the composition of inflow into the node downstream of any original link a′,
including conservation of turning fractions (Daganzo 1995, 88; Tampère et al. 2011, 295),
we require

∀p′ ∈ Pa′ : αp′ = αa′ , (14)

resulting in

∀p ∈ Pa : τqueuep = 1∏
p′∈ηp

αp′

(
1
αa

− 1
)
T

2
= fp

qp

(
1
αa

− 1
)
T

2
. (15)

The derivation is depicted in Figure 4. The difference with Figure 3 is that a separate
travel time τ

queue
p is calculated for each parallel link p ∈ Pa representing a portion of the

real link’s traffic.
Equation (15)matches the final result reported by Bliemer et al. (2014, 372). Even though

the links p ∈ Pa now have equal outflow-to-inflow ratios αa, they still have separate queues
with potentially different delays. Original link a does not yet have a unique travel time:
instead, the travel time one experiences still varies depending on what predecessor links
they came from, i.e. traffic followingdifferent routes experiencedifferent travel timeson the
same physical link. Because this difference cannot be attributed to differences in departure
time or total prior travel time, the following requirement in Table 1 is not met:

Requirement II. (Route is Sum of Links):

The travel time of a route equals the sum of travel times of the links along the route. The travel time
traffic experiences on a linkmay varywith the time the traffic enters the link, but notwithwhere the
traffic originates from.

For Nakayama and Connors (2014), link travel time also varies for different users of the link
in violation of this requirement. All other QDTA methods in Table 1 satisfy Requirement II,
as well as traditional STA.

In order to satisfy Requirement II, we continue our derivation by merging the parallel
links p ∈ Pa back into a single link a with a single travel time τa. Naïve summation of the
time-dependent inflows and outflows of links p ∈ Pa may lead to non-constant inflow and
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Figure 4. Cumulative numbers of vehicles entering and exiting the queue of one of the parallel links
over time.

outflow for link a, because according to Equation (7), the summed inflows qp can have dif-
ferent durations T̄p and the summed outflows αaqp can have different durations T̄p/αa. This
is also problematic, because it violates the stationarity of the traffic composition implied by
the instantaneous propagation of flows. Because the instantaneous flow propagation does
not take travel times into account, it is impossible to conclude from the flow profiles that
traffic from one origin arrives on average earlier at some point than the other traffic. Within
quasi-dynamic modelling, the only way to avoid implying such conclusions is to assume
a constant inflow for link a in which the separate contributions of different origins can no
longer be identified.1 This leads to the next requirement:

Requirement III. (Steady State Consistency):

Link travel times are based on both instantaneous traffic propagation and homogeneous traffic
composition, or on neither. Put differently, either traffic propagation and demand both are time-
dependent, or both are in steady state.

Despite violating Requirement III, the idea of summing the cumulative inflow and outflow
curves is further explored in the Appendix, which reveals another significant problem dis-
cussed later in Section 3.1. Bundschuh, Vortisch, and Van Vuuren (2006) and Brederode
et al. (2019) propose a different approach that restricts instantaneous flow propagation
to unconstrained flows only, using an additional dynamic network modelling phase inter-
action effects between bottlenecks, and in case of Brederode et al. (2019) also horizontal
queue build-up and spillback. This means link inflows and outflows are not constant, but
vary over a virtual time scale, referred to as queuing time, and travel times are calculated
using the resulting piecewise-linear cumulative inflow and outflow curves. Naturally, the
non-linearity of these curves also violates Requirement III. Nakayama and Connors (2014)
suffer from the same problem.

Below we continue by seeking to construct a homogenous constant inflow profile for
link a that is consistent with the inflow profiles of links p ∈ Pa. The inflow rate qa is already
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given by Equation (12). To preserve the total inflow, the duration T̄a is then the average of
durations T̄pweightedwith inflow ratesqp. Substituting Equation (7), thisweighted average
simplifies to

T̄a =
∑
p∈Pa

qp
qa

T̄p =
∑
p∈Pa

qp
qa

fp
qp

T =
∑
p∈Pa

fp
qa

T = fa
qa

T . (16)

Now that we made the link inflow constant, the link outflow is also constant. The number
of vehicles in the combined queue on link a at time T̄a therefore equals

Q̄a = qaT̄a − αaqaT̄a = (1 − αa)qaT̄a = (1 − αa)qa
fa
qa

T = (1 − αa)faT . (17)

The delay of the last vehicle is therefore

Q̄a

αaqa
= (1 − αa)faT

αaqa
= fa

qa

(
1
αa

− 1
)
T (18)

such that the average delay is

τ
queue
a = fa

qa

(
1
αa

− 1
)
T

2
. (19)

This result is fully consistent with the previous result for a diverges-only network. The evo-
lution of the cumulative numbers of vehicles entering and exiting the combined queue is
the same as Figure 3. The critical difference with Equation (15) is that this travel time only
depends on the total demand fa and the total flow qa on the link, instead of on a specific
demand component fp and flow component qp corresponding to a particular origin. The
travel time is therefore now the same for all traffic on the link regardless of origin.

3. Relative correctness of quasi-dynamic travel times

Nowthatwehavederived a travel time formula for links in ageneral network,weproceed to
assess the relative correctness of travel times inQDTA, i.e. the ability to compare route travel
times. This section is split into two parts. First, we look at the derivatives of the link travel
time formula while keeping the link exit capacity fixed. Second, we check the behavioural
incentives for travel choices in an example network.

3.1. Link with fixed exit capacity

Wenowstudy a linkwith a fixed exit capacity. Because of the invarianceprinciple (Lebacque
and Khoshyaran 2005, 370–371), this occurs when the turning fractions and competing
flows at its downstream node remain constant, even in advanced first-order node mod-
els (Tampère et al. 2011, 295). Assuming link a has fixed exit capacity Ca, we have (Bifulco
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and Crisalli 1998, 88)

αa = min
(
1,

Ca
qa

)
. (20)

Combining this with Equations (1) and (19) yields the following link travel time:

τa =
⎧⎨
⎩τ ffa if qa ≤ Ca,

τ ffa +
(

fa
Ca

− fa
qa

)
T
2 if qa ≥ Ca.

(21)

This structure of this formulation is comparable to link travel time functions in the static
assignment, for example, the well-known Bureau of Public Roads (1964, p. V20) function:

τa = τ ffa

(
1 + 0.15

(
fa
Ca

)4
)
. (22)

The comparison reveals the fundamental difference that in (non-capacitated) static assign-
ment the travel time τa only depends on the total demand fa for the link, andnot also on the
actual flow qa that is able to get into the link during the studied time period. (Static models
don’t compute qa.) Both static models and our quasi-dynamic model satisfy{

∀qa ∈ (0, fa] :
∂τa
∂fa

≥ 0,

∀qa ∈ (Ca, fa] :
∂τa
∂fa

> 0,
(23)

but our quasi-dynamic model additionally satisfies{
∀qa ∈ (0, fa] :

∂τa
∂qa

≥ 0,

∀qa ∈ (Ca, fa] :
∂τa
∂qa

> 0,
(24)

whereas static models always have ∂τa/∂qa = 0. Note that this also holds if τ ffa in Equation
(21) is not constant but itself increases with qa, as suggested at the beginning of Section 2.
In conclusion, we have the following requirement:

Requirement IV. (Correct Derivatives):

In case of a linkwith a fixed exit capacity, the partial derivatives of the link’s travel timewith respect
to both the link’s demand and the link’s flow have the correct sign, in accordance with Equations
(23) and (24).

If one were to derive a representative link travel time directly from Equation (15) (Bliemer
et al. 2014, 372), it would be based on the total travel time of all traffic demand of all routes
on the link, divided by the total traffic demand. This corresponds to the previously men-
tioned idea of summing the cumulative inflow and outflow curves, which was explored in
the Appendix. The Appendix shows that this results in a possibility of ∂τa/∂fa < 0, violating
Equation (23). The residual queue transfer to thenext timeperiod inNakayamaandConnors
(2014) similarly brings down the average travel time in violation of Equation (23).

Because Bundschuh, Vortisch, and Van Vuuren (2006, 4–5) and Brederode et al. (2019,
14–15) compute τ

queue
a from the average distance between the piecewise-linear cumula-

tive inflow and outflow curves. A fixed exit capacity here corresponds to a fixed maximum
outflow curve that the downstream node accepts. An increase in fa can result in a decrease
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Figure 5. Example network demonstrating the issues.

in τ
queue
a if the delay of an additional vehicle is lower than the current average delay. This

again violates Equation (23).
The QDTA travel time formulas of Bakker, Mijjer, and Hofman (1994), Lam and Zhang

(2000), Bundschuh, Vortisch, and Van Vuuren (2006), and Gentile, Velonà, and Cantarella
(2014) are only sensitive to qa and not to fa, thus also contradicting Equation (23).

3.2. Choice behaviour in example network

We will now study differences between route travel times in a simple example network,
which we use to formulate two more requirements for relative correctness. Because sat-
isfaction of Requirement II (Route is Sum of Links) automatically leads to satisfaction of
the new requirements, the issues discussed below cannot occur in any model in Table 1
other than Bliemer et al. (2014) and Nakayama and Connors (2014). While our numerical
example focuses on Bliemer et al. (2014), we alsomention how the discovered issues affect
Nakayama and Connors (2014).

To demonstrate the issues, we consider the example network from Figure 5.
We study a time period with duration T = 60min. The network consists of three links.

Link 1 has a long free-flow travel time but is never congested, while link 2 and link 3 have
a much shorter free-flow travel time, but also bottlenecks at their downstream ends with
limited exit capacities C2 and C32:

τ ff1 = 40min C1 = ∞
τ ff2 = 5min C2 = 2000 veh/h

τ ff3 = 5min C3 = 2250 veh/h. (25)

During the studied time period, there is traffic demand for origin-destination pairs AB and
AC, and we analyse the situation where both demands split equally over the two possible
routes:

fAB,1 = 1000 veh/h fAC,13 = 3000 veh/h

fAB,2 = 1000 veh/h fAC,23 = 3000 veh/h. (26)

Using this information, we can solve all link inflows q· and link flow reduction factors α·.
Normally, one would treat this as a fixed-point problem and use an algorithm like the one
proposed by Bliemer et al. (2014, 376), but due to the simple structure of this example, we
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can find the solution directly:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1 = fAB,1 + fAC,13 = 1000 veh/h + 3000 veh/h = 4000 veh/h

qAB,1,1 = fAB,1 = 1000 veh/h

qAC,13,1 = fAC,13 = 3000 veh/h

q1 = qAB,1,1 + qAC,13,1 = 1000 veh/h + 3000 veh/h = 4000 veh/h

α1 = min
(
1, C1q1

)
= min

(
1, ∞

4000 veh/h

) = 1,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f2 = fAB,2 + fAC,23 = 1000 veh/h + 3000 veh/h = 4000 veh/h

qAB,2,2 = fAB,2 = 1000 veh/h

qAC,23,2 = fAC,23 = 3000 veh/h

q2 = qAB,2,2 + qAC,23,2 = 1000 veh/h + 3000 veh/h = 4000 veh/h

α2 = min
(
1, C2q2

)
= min

(
1, 2000 veh/h4000 veh/h

)
= 1

2 ,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f3 = fAC,13 + fAC,23 = 3000 veh/h + 3000 veh/h = 6000 veh/h

qAC,13,3 = α1fAC,13 = 1 · 3000 veh/h = 3000 veh/h

qAC,23,3 = α2fAC,23 = 1
2 · 3000 veh/h = 1500 veh/h

q3 = qAC,13,3 + qAC,23,3 = 3000 veh/h + 1500 veh/h = 4500 veh/h

α3 = min
(
1, C3q3

)
= min

(
1, 2250 veh/h4500 veh/h

)
= 1

2 .
(27)

3.2.1. Travel times according to Bliemer et al. (2014)
Applying Equation (15) for queuing delays, like Bliemer et al. (2014, 372), the travel time on
link 1 is

τAB,1,1 = τAC,13,1 = τ ff1 + 1
1

(
1
α1

− 1
)
T

2
= 40min + 1

1

(
1
1

− 1
)
60min

2
= 40min , (28)

the travel time on link 2 is

τAB,2,2 = τAC,23,2 = τ ff2 + 1
1

(
1
α2

− 1
)
T

2
= 5min + 1

1

(
1
1
2

− 1

)
60min

2
= 35min, (29)

and the travel time one experiences on link 3 depends on whether it is preceded by link 1
or link 2:

τAC,13,3 = τ ff3 + 1
α1

(
1
α3

− 1
)
T

2
= 5min + 1

1

(
1
1
2

− 1

)
60min

2
= 35min

τAC,23,3 = τ ff3 + 1
α2

(
1
α3

− 1
)
T

2
= 5min + 1

1
2

(
1
1
2

− 1

)
60min

2
= 65min. (30)

The travel times of all four routes from A to B and from A to C are therefore

τAB,1 = τAB,1,1 = 40minτAC,13 = τAC,13,1 + τAC,13,3 = 40 min + 35 min = 75min

τAB,2 = τAB,2,2 = 35minτAC,23 = τAC,23,2 + τAC,23,3 = 35 min + 65 min = 100min. (31)
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This creates the following issue:

τAB,1 > τAB,2 ∧ τAC,13 < τAC,23. (32)

This violates the first-in-first-out assumption on link 3: travellers from A to C via B can
decrease their travel time on link 3, and thereby their travel time for the complete trip,
by increasing their travel time from A to B. It implies you can speed up your total trip by
replacing part of your route with a slower detour. This results in Requirement V:

Requirement V. (First-In-First-Out):

Route travel times respect the first-in-first-out property of links: it is not possible to leavea link earlier
by entering it later. In non-dynamic contexts, the words ‘earlier’ and ‘later’ are to be interpreted in
terms of the travel time spent since the beginning of the route.

Nakayama and Connors (2014) also suffer from this problem: their transfer of residual
queues to a less-congested next time period allows the transferred traffic to traverse the
remainder of their route faster, potentially resulting in lower total travel time.

Furthermore, note that the travel time for a trip from B to C is

τBC,3 = τ ff3 + 1
1

(
1
α3

− 1
)
T

2
= 5min + 1

1

(
1
1
2

− 1

)
60min

2
= 35min. (33)

Thus, if a traveller from A to C makes an intermediate stop at B, thus making a trip from A
to B followed by a trip from B to C, his travel time is

min(τAB,1, τAB,2) + τBC,3 = min(40min, 35min) + 35min = 70min. (34)

This creates the additional issue that the fastest way to travel from A to C involves an
intermediate stop at B:

min(τAB,1, τAB,2) + τBC,3 < min(τAC,13, τAC,23). (35)

This results in Requirement VI:

Requirement VI. (Stops have No Effect):

Insertion of intermediate stops in a route cannot change the route’s travel time (other than the time
spent stopped). In other words, when a route is split in two, the sum of the travel times of the route
parts must equal the travel time of the original route.

In Nakayama and Connors (2014), an intermediate stop can make the route slower instead
of faster, since an intermediate stop undoes any residual queue transfers to less congested
time periods.

3.2.2. Travel times according to Equation (19)
Using our proposed Equation (19) for travel time calculations instead satisfies Requirement
II and therefore resolves these issues. Reusing the flow propagation results from Equation
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(27), the travel times now become

τAB,1 = τ1 = τ ff1 + f1
q1

(
1
α1

− 1
)
T

2
= 40min + 4000 veh/h

4000 veh/h

(
1
1

− 1
)
60min

2
= 40min

τAB,2 = τ2 = τ ff2 + f2
q2

(
1
α2

− 1
)
T

2
= 5min + 4000 veh/h

4000 veh/h

(
1
1
2

− 1

)
60min

2
= 35min

τBC,3 = τ3 = τ ff3 + f3
q3

(
1
α3

− 1
)
T

2
= 5min + 6000 veh/h

4500 veh/h

(
1
1
2

− 1

)
60min

2
= 45min

τAC,13 = τ1 + τ3 = 40min + 45min = 85min

τAC,23 = τ2 + τ3 = 35min + 45min = 80min. (36)

The travel times from A to B via links 1 and 2 remained the same, but the travel time from B
toC via link 3 changed, aswell as the travel times fromA toC via both routes. The travel time
on link 3 no longer depends onwhat route it is part of. Instead of the problematic Equations
(32) and (35), we now have

τAB,1 > τAB,2 ∧ τAC,13 > τAC,23

min(τAB,1, τAB,2) + τBC,3 = min(τAC,13, τAC,23). (37)

Requirements V and VI are thus satisfied.

4. Implications and outlook

In this section, we discuss the implications of adopting our new travel time formula for
QDTA and explore possible further enhancements. We particularly compare our formu-
lation to the one of Bliemer et al. (2014), since their results are identical on diverge-only
networks. First, Section 4.1 discusses the consequences of adopting our new travel time
formula for the results of quasi-dynamic user-equilibriumand system-optimal assignments.
Then, Section 4.2 explains how our proper definition of link costs enables pathfinding algo-
rithms to operate in congestion, aiding in the computation of quasi-dynamic assignments.
Section 4.3 considers the possibility to extend our travel time calculation to convert the
quasi-dynamicmodel basedonvertical queues into amodelwithhorizontal queues. Finally,
Section 4.4 discusses other possible improvements.

4.1. Assignment results

Compared to Equation (19), the travel time formula of Bliemer et al. (2014) penalises routes
passing through many bottlenecks. This is evident from their multiplication of link reduc-
tion factors and is also visible in Section 3.2. Therefore switching to our formula will shift
traffic in the user-equilibrium solution towards routes passing through more bottlenecks.
As a result, less traffic will make detours to avoid congestion. In the example of Section
3.2, the user equilibrium would have more travellers using link 2. As a side-effect, conver-
gence to the user-equilibrium is expected to require fewer iterations, reducing assignment
computation time.
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In a full strategic transportation model, this will have more impacts than just route
choice. If destination choice is considered elastic, the average trip distance can be expected
to increase, because longer trips tend to pass through more bottlenecks. If the demand
model allows scheduling intermediate stops, the relative attractiveness of making an inter-
mediate stop in long trips will decrease because there is no more multiplicative effect of
bottlenecks that can be avoided.

Theproper handlingof travel times in caseof intermediate stops also removes ambiguity
in the travel time of public transport or taxi passengers who join only a part of the vehicle’s
route. A bus or taxi can be assigned to the network as a single trip with a long and complex
route, so that the same vehicle does not count towards queue formation multiple times. A
passenger joining a part of this long route experiences the same travel time as the vehicle
for that part of the route.

Tajtehranifard et al. (2018) turn the user-equilibrium assignment of Bliemer et al. (2014)
into a system-optimal assignment, using approximatedpathmarginal costs. The sameprin-
ciple could bemaintainedusingour new travel time formula. Equation (A3) in our Appendix
shows that for any fixed route loads, the change of formula can only reduce the average link
travel time of a link’s demand. Therefore the formula change should result in lower total
travel time in the optimum. The corresponding optimal route choices may also differ.

4.2. Pathfindingwith congestion

Unlike Bliemer et al. (2014), our Equation (19) satisfies Requirement II and therefore unam-
biguously defines link travel times that are the same regardless of how links are used in a
route. Besides increasing realism, this greatly reduces the complexity of route choice mod-
elling. Bliemer et al. (2014) had to rely on pre-generated finite route choice sets to compute
their stochastic user equilibrium, and compute congested route travel times for all routes
to find the least-cost paths for the next equilibration iteration. With our travel time formu-
lation, fixed route sets are no longer necessary: one can now directly employ pathfinding
algorithms with congested travel times. The pathfinding algorithms to be used depending
on the nature of the sought equilibrium:

• For deterministic user equilibrium, the Dijkstra (1959) algorithm can find the least-cost
paths for each origin to all destinations.

• For stochastic user equilibrium based on probit (Daganzo and Sheffi 1977), link costs
ca can be sampled using ca − τ

queue
a ∼ �(τ ffa /θ , θ), where �(·, ·) refers to the gamma

distribution. To obtain new route fractions, the Dijkstra algorithm can be used for each
origin to all destinations repeatedly on networks with sampled link costs.3

• For stochastic user equilibrium based on logit, Gentile (2018) reformulates the problem
as a deterministic user equilibrium problem with modified link costs. Compared to pro-
bit, this avoids the need of sampling. It can be extended to C-logit (Cascetta et al. 1996)
to correct for path overlap. Gentile (2018) limits the implicit route choice set to efficient
routes. The Dijkstra algorithm can determinewhich links are efficient for all destinations.
For each origin-destination pair, the acyclic efficient subnetwork can be sorted topolog-
ically, after which the algorithm of Bellman (1958) and Ford (1956, 8–9) can find the new
route in a single outer iteration.
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If one is only interested in a single destination, computation time can be reduced by
replacing Dijkstra with A* (Hart, Nilsson, and Raphael 1968). Its heuristic can, for example,
be based on crow-fly distance and maximum speed or pre-determined with Dijkstra on an
empty network.

The routing of demand-responsive transport such as taxis can also be optimised using
link travel times in congestion, using any fleet dispatching optimisation or heuristic accept-
ing fixed link travel times. Similar to route choice for private vehicles, the resulting routes
of taxi vehicles can be input to the next iteration of a user-equilibrium assignment.

For system optimum as in Tajtehranifard et al. (2018), the complex structure of path
marginal costs may prevent direct use of routes found through pathfinding, but pathfind-
ing in congestion can at least be used to check whether realistic routes are missing from
the route set, in order to possibly add them.

4.3. Horizontal queuing extensions

We also analyse the implications of our results for vertical queuing on applications with
horizontal queuing based on the traffic flow theory of Lighthill and Whitham (1955), and
Richards (1956) usinga fundamental diagram. Letq = Kqueuea (q)Uqueue

a (q)describe theden-
sity on the congested branch of the fundamental diagram as a function of flow. The length
of the horizontal queue encountered by the last vehicle would be Q̄a/K

queue
a (αaqa). Using

Equation (17), the average encountered queue length is therefore

Lqueuea = Q̄a

2Kqueuea (αaqa)
= (1 − αa)fa

Kqueuea (αaqa)

T

2
. (38)

This corresponds to link travel time

τa = La − Lqueuea

Uff
a (qa)

+ Lqueuea

Uqueue
a (αaqa)

, (39)

where q → Uff
a (q) and q → Uqueue

a (q) describe the free-flow speed and congested speed
according to the fundamental diagram, as functions of flow. Because τa is linear in
Lqueuea , this travel time corresponding to the average queue length is also the average
travel time. Combining Equations (39) and (38), and using the fundamental relation q =
Kqueuea (q)Uqueue

a (q), we find

τa =
La − (1−αa)fa

Kqueuea (αaqa)
T
2

Uff
a (qa)

+ (1 − αa)fa
Kqueuea (αaqa)U

queue
a (αaqa)

T

2

=
La − (1−αa)fa

Kqueuea (αaqa)
T
2

Uff
a (qa)

+ (1 − αa)fa
αaqa

T

2

=
La − (1−αa)fa

Kqueuea (αaqa)
T
2

Uff
a (qa)

+ fa
qa

(
1
αa

− 1
)
T

2
. (40)

This result matches with Equation (19) and is compatible with the structure of Equation
(1): the two terms represent τ ffa and τ

queue
a respectively, consistent with queuing theory

calculations. Furthermore, for a congested linkwith fixed exit capacity Ca (αa < 1 ∧ αaqa =
Ca):
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• Equation (39) is a weighted average of 1/Uff
a (qa) and 1/Uqueue

a (Ca);
• 1/Uff

a (qa) < 1/Uqueue
a (Ca);

• the weight of 1/Uqueue
a (Ca) increases with increasing fa;

• the weight of 1/Uqueue
a (Ca) increases with increasing qa;

• 1/Uff
a (qa) cannot decrease with increasing qa.

Thus, the properties of Equations (23) and (24) are preserved. This reasoning holds even
if Lqueuea > La and the weight of 1/Uff

a (qa) becomes negative, so ∂τa/∂fa > 0, ∂τa/∂qa > 0,
and thus τa > 0despite τ ffa < 0.We can thus extendour travel time calculation fromvertical
queuing to horizontal queuing without problems, although it does become impossible to
interpret spatially if Lqueuea > La.

To avoid calculating travel times with excessive Lqueuea , Raadsen and Bliemer (2018)
extend the quasi-dynamic flow propagation problem of Bliemer et al. (2014) with a storage
constraint to keep the queue length at time T under the link length La, based on a funda-
mental diagram. However, because the queue length grows linearly under stationary flow
conditions, themaximumqueue length occurs at time T̄a and is larger by a factor fa/qa. For
the average encountered queue length we therefore find

Lqueuea ≤ fa
qa

La
2
. (41)

When using Equation (40) in combination with the Raadsen and Bliemer (2018) flow prop-
agation model, one accounts not only for horizontal queuing, but also for consequent
spillback and interaction effects between bottlenecks, all while fully preserving instanta-
neous flow propagation and including delays experienced after the studied time period
ended. Compared to the approach of Brederode et al. (2019), this has the advantage that
Requirements III and IV are satisfied. A limitation is that the extent of spillback is assumed
constant despite queue lengths growing linearly over time.

4.4. Further extensibility of travel times

Above, we discussed the extensibility with horizontal queuing. But the possibilities for
extensions to our travel time formula go further than that. It is easy to make extensions
beyond Lighthill-Whitham-Richards theory, for example, to include the delay due to sta-
tionary queues for traffic lights on top of any delay due to oversaturation (Gentile, Velonà,
and Cantarella 2014, 322–323), or to produce different travel times for vehicle types other
than passenger cars (e.g. trucks, public transport, automated vehicles).

For dynamic assignment, extensions like these would be difficult to formulate and
often result in a large computational burden. However, in our quasi-dynamic assignment
these changes are fairly trivial, because the instantaneous flow propagationmodel remains
unchanged and only changes in the travel time formula are needed.

Additionally, because traffic conditions are stationary, it is easier to account for traffic-
responsive traffic control schemes than in dynamic assignment. For example, in case of
demand-responsive signalised intersections, lane management, or variable speed limits,
there is only one set of constant link flows to optimise for. They can be integrated directly
into the node model and link travel time formula. QDTA is also easier than STA in this
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respect, because in the static assignment you do not know towhat extent the link demands
will materialise as link flows.

These extensibility advantages of quasi-dynamicmodelling arepreservedwith theRaad-
sen and Bliemer (2018) improvement to model spillback and bottleneck interactions, with
which our travel time calculation can be combined. They are lost in the setup of Brederode
et al. (2019), because its additional dynamic network modelling phase requires a dynamic
traffic propagation model to be formulated, with all associated difficulties.

5. Example applications

To demonstrate the ease of adopting our new travel time formula in a QDTA model, we
revisit the three hypothetical scenarios presented as examples in Bliemer et al. (2014) and
Brederode et al. (2019). The first two examples use vertical queues demonstrating Equation
(19), while the last example uses the extension with horizontal queues and spillback from
Equation (40).

5.1. Scenario 1: multiple origin-destination pairs with a single route

The first example network of Bliemer et al. (2014) is shown in Figure 6. It possesses rotational
symmetry. All links have a capacity of 2000 veh/h. There are three origin-destination pairs
with one route each: to reach the destination, all trafficmust traverse two-thirds of the inner
triangle counter-clockwise. The demand for each origin–destination pair is 2000 veh/h. The
time period of the simulation is 2 h. The Tampère et al. (2011) node model is used for the
flow propagation.

Because this example has no route choice, the resulting flows on the network are exactly
the same as reported by Bliemer et al. (2014). They can be computed in the exact sameway.
The only thingwe do differently is the travel time calculation. Since Bliemer et al. (2014) use
Equation (15) for link delays, the computation of route delays simplifies to Equation (11).
Hence they report a route delay of (Bliemer et al. 2014, 378)

τ
queue
route =

(
1

α2α4α7α9
− 1

)
T

2
=
(

1
0.618 · 0.618 · 0.618 · 1 − 1

)
2 h
2

= 3.236 h. (42)

Conversely, our new formula from Equation (19) predicts the following route delay:

τ
queue
route = τ

queue
2 + τ

queue
4 + τ

queue
7 + τ

queue
9

= f2
q2

(
1
α2

− 1
)
T

2
+ f4

q4

(
1
α4

− 1
)
T

2
+ f7

q7

(
1
α7

− 1
)
T

2
+ f9

q9

(
1
α9

− 1
)
T

2

= 2000 veh/h
2000 veh/h

( 1
0.618 − 1

) 2 h
2 + 4000 veh/h

2000 veh/h

( 1
0.618 − 1

) 2 h
2 + 4000 veh/h

2000 veh/h

( 1
0.618 − 1

) 2 h
2

+ 2000 veh/h
472 veh/h

( 1
1 − 1

) 2 h
2

= 0.618 h + 1.236 h + 1.236 h + 0 = 3.090 h. (43)

As predicted in the Appendix, the delay we calculate is smaller than the delay calculated
in Equation (42).
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Figure 6. Network with multiple origin-destination pairs with a single route (Bliemer et al. 2014, 377).
Demands and capacities in veh/h.

Figure 7. Network with a single origin-destination pair with multiple routes (Bliemer et al. 2014, 379).
Demands and capacities in veh/h.

5.2. Scenario 2: single origin-destination pair withmultiple routes

The second example network of Bliemer et al. (2014) is shown in Figure 7. All links have a
free-flow travel time of 0.02 h. This example features route choice among four routes, with
the multinomial logit model determining route choice probabilities

e−θτroute∑
routes

e−θτroute
(44)

with θ = 1 h−1 and a total demand of 8000 veh/h for a 2 h time period. All nodes again use
the Tampère et al. (2011) model. We solve the same flow propagation problem as Bliemer
et al. (2014).

The equilibrium link flows, route demands and travel times are reported in Tables 2 and
3. As predicted in Section 4.1, drivers are less hesitant to choose routes with multiple bot-
tlenecks, resulting in lower travel times for routes through link 2 and thus more drivers
choosing them. This increases the queuing on link 1 and reducing the queue on link 4.
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Table 2. Comparison of stochastic user-equilibrium link flows for Scenario 2.

Link a Equilibrium inflow qa Equilibrium flow reduction factor αa

Bliemer et al. (2014) result Our result Bliemer et al. (2014) result Our result

1 8000 veh/h 8000 veh/h 0.845 0.822
2 3000 veh/h 3000 veh/h 0.655 0.655
3 3762 veh/h 3578 veh/h 1.000 1.000
4 3762 veh/h 3578 veh/h 0.696 0.732
5 2500 veh/h 2500 veh/h 0.444 0.444
6 2083 veh/h 2083 veh/h 0.960 0.960
7 2000 veh/h 2000 veh/h 0.444 0.444
8 2000 veh/h 2000 veh/h 1.000 1.000

Table 3. Comparisonof stochastic user-equilibrium route demands and travel times for Scenario 2.

Equilibrium demand Equilibrium travel time

Route Bliemer et al. (2014) result Our result Bliemer et al. (2014) result Our result

1-2-5-8 1941 veh/h 1990 veh/h 3.146 h 3.120 h
1-2-6-7-8 1608 veh/h 1658 veh/h 3.334 h 3.302 h
1-3-4-5-8 2423 veh/h 2374 veh/h 2.924 h 2.944 h
1-3-4-6-7-8 2028 veh/h 1978 veh/h 3.102 h 3.126 h

Table 4. Comparison of stochastic user-equilibrium
convergence speed for Scenario 2.

Iteration number

Relative gap Bliemer et al. (2014) result Our result

< 10−1 9 1
< 10−2 13 11
< 10−3 22 14
< 10−4 33 16
< 10−5 47 19
< 10−6 63 29
< 10−7 82 41
< 10−8 > 100 56

The convergence of the equilibrium over the iterations is compared in Table 4. Despite
that we use the same method of successive averages with the same weights i−0.5, we typ-
ically reach the same level of convergence in about half the number of iterations. This is
consistent with our prediction in Section 4.1.

5.3. Scenario 3: fixed routes with horizontal queuing and spillback

Finally,we revisit an exampleof Brederodeet al. (2019, 15–19)whichuses the samenetwork
as Figure7.4 Insteadof route choice, this example featureshorizontal queuingand spillback.
We compare their results with our ownmodelling proposal from Section 4.3. Bothmethods
start with a quasi-dynamic flow propagation calculation without spillback, which can be
solved with Bliemer et al. (2014).

Thenourmethods diverge. Brederode et al. (2019) proceedwith aDTA-like dynamic flow
propagation with the previous results as initial conditions. The resulting cumulative inflow
and outflow curves are used to compute flows and travel times with spillback.
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Table 5. Route demands for Sce-
nario 3 (Brederode et al. 2019, 16).

Route Demand

1-2-5-8 5867 veh/h
1-2-6-7-8 984 veh/h
1-3-4-5-8 984 veh/h
1-3-4-6-7-8 165 veh/h

In contrast, we repeatedly solve the same quasi-dynamic flow propagation problem
with adjusted link inflow capacities ra to account for spillback within the time period [0, T]
(Raadsen and Bliemer 2018, 4):

ra = min
(

αaqa + La
T
Kqueuea (αaqa),Cina

)
(45)

where Cina indicates the link inflow capacity without spillback. Equation (45) means that the
inflow is constrained by the outflow αaqa plus the number of vehicles it can store at the
correspondingdensityKqueuea (αaqa).We refer to Raadsen andBliemer (2018) formore infor-
mation on this quasi-dynamic flow propagation technique. Afterwards, we use Equation
(40) to produce travel times with spillback.

As before, all links are 2 km longandhave a free speedof 100 km/h. The capacities are the
same as in Figure 7. For all links, the speed in free-flow now depends on traffic conditions,
with the speed at capacity being 80 km/h. The jam density on all links is 180 veh/km/lane.
Links 5 and 7 have one lane. Link 1 has four lanes. All other links have two lanes. The funda-
mental diagram shapes are quadratic-linear (Smulders 1990, 117). The fixed route demands
are listed in Table 5.

The results are shown in Table 6. The final flows are similar despite the methodological
differences in spillback modelling. Congestion spills back into the origin which we model
as a vertical queue. Queue lengths and travel times for links are computed with Equations
(38) and (40).

Themodellingof spillback improves the realismof our averagequeue lengthsper link. As
predicted in Section 4.3 queue lengths still exceed the 2 km link lengths because fa/qa > 2.
Spillback improves our travel times τa near the bottlenecks but deteriorates travel times
upstream. Brederode et al. (2019, 17) show cumulative inflow and outflow curves for link 5
from their calculation. These correspond to an average travel time of 0.084 h, which can be
compared to our final result of 0.157 h.

6. Conclusions

In this paper, we derived a new formula for link travel times in quasi-dynamic assignment,
theoretically underpinned with vertical queuing and instantaneous propagation of traffic
flows. We formulated requirements for both the absolute correctness and relative correct-
ness of the travel times, and showed that the existing travel time computation procedures
listed in Table 1 violatemultiple. Contrary to this, we demonstrated that our own proposed
definition of link travel times in Equation (19) does satisfy all requirements.

We also showed that our definition of link travel times has further advantages:
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Table 6. Link flows, queue lengths, and travel times for Scenario 3.

Link a Outflow αaqa Flow reduction factor αa Our queue length Lqueuea Our travel time τa

Result without
spillback

Brederode
et al. (2019)
final result Our final result

Result without
spillback Our final result

Result without
spillback Final result

Result without
spillback Final result

origin 8000 veh/h n/a 2796 veh/h 1.000 0.349 n/a n/a 0.000 h 1.862 h
1 3503 veh/h 2091 veh/h 2250 veh/h 0.438 0.805 10.03 km 2.86 km 1.183 h 0.685 h
2 2416 veh/h 1722 veh/h 1756 veh/h 0.805 0.911 13.30 km 3.56 km 0.411 h 0.329 h
3 503 veh/h 301 veh/h 323 veh/h 1.000 1.000 0.00 km 0.00 km 0.020 h 0.020 h
4 503 veh/h 302 veh/h 323 veh/h 1.000 1.000 0.00 km 0.00 km 0.020 h 0.020 h
5 1581 veh/h 1709 veh/h 1701 veh/h 0.632 0.956 29.31 km 3.85 km 1.252 h 0.157 h
6 419 veh/h 291 veh/h 299 veh/h 1.000 1.000 0.00 km 0.00 km 0.020 h 0.020 h
7 419 veh/h 291 veh/h 299 veh/h 1.000 1.000 0.00 km 0.00 km 0.021 h 0.021 h
8 2000 veh/h 2000 veh/h 2000 veh/h 1.000 1.000 0.00 km 0.00 km 0.025 h 0.025 h
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• the new travel time definition may speed up convergence of equilibrium traffic assign-
ments;

• when used in a travel demand model, public transport travel times can be modelled
consistently, including demand-responsive transport;

• pathfinding and fleet dispatching algorithms can be used directly with congested link
travel times;

• using a fundamental diagram, the vertical queuing model can be transformed into the
horizontal queuing model of Equation (40), to which the flow propagation model of
Raadsen and Bliemer (2018) can contribute spillback and other interactions between
bottlenecks;

• it is easy to introduce further extensions to account for stationaryqueues associatedwith
traffic lights, to model traffic control optimised for the network flows, and to produce
different travel times for different vehicle classes.

The practicality of our new link travel time formula was demonstrated with three exam-
ple scenarios from literature. We look forward to uses of our new formula in larger practical
studies and all sophisticated possibilities quasi-dynamic assignment has to offer.

Notes

1. An alternative solution is to insteadget rid of instantaneous flowpropagation, but then thequasi-
dynamic model turns into a traditional dynamic model (with rectangular demand profiles and
without spillback).

2. For simplicity, this example assumes fixedexit capacities, but they could alsobevariable, resulting
from a node model.

3. Daganzo and Sheffi (1977, 260) recommend the gamma distribution only for short links and sug-
gest the normal distribution otherwise, but the normal distribution may generate negative link
costs hindering the Dijkstra algorithm.

4. Brederode et al. (2019) display the network mirrored vertically and with different link numbers.
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Appendix

In this appendix we explore the derivation of the travel time formula in case we do not linearise
cumulative inflow and outflow of each link as in Section 2.3, ignoring Requirement III.

The total delay fpτ
queue
p on each link p ∈ Pa equals the surface under its cumulative inflow curve

minus the surface under its cumulative outflow curve. If we sum the cumulative inflow curves of all
links p ∈ Pa to construct the cumulative inflow curve of link a, the surface underneath is the sum of
the surfaces under the separate cumulative inflow curves. Likewise, if we sum the cumulative outflow
curves of all links p ∈ Pa to construct the cumulative outflow curve of link a, the surface underneath
is the sum of the surfaces under the separate cumulative outflow curves. Therefore, the total delay
faτ

queue
a on link a, i.e. the surface under the combined cumulative inflow curve minus the surface

under the combined cumulative outflow curve, that equals

faτ
queue
a =

∑
p∈Pa

fpτ
queue
p . (A1)

This clearly yields the same total travel time as Bliemer et al. (2014), but it is distributed differently
so that all users of the same link experience the same travel time on that link. Rearranging and
substituting Equation (10) for τqueuep , we obtain

τ
queue
a =

∑
p∈Pa

fp
fa

τ
queue
p =

∑
p∈Pa

fp
fa

1∏
p′∈ηp

αp′

(
1
αa

− 1
)

T

2fa
=
∑
p∈Pa

f2p
faqp

(
1
αa

− 1
)
T

2
. (A2)

Compared to Equation (19), we now have a coefficient of
∑

p∈Pa f
2
p /(faqp) instead of fa/qa. In general,

the delay calculated by Equation (A2) is larger than the delay calculated by Equation (19), because the
weighted arithmetic mean of 1/

∏
p′∈ηp

αp′ is greater than or equal to the weighted harmonic mean
of the same data with the same weights fp/fa:

∑
p∈Pa

f2p
faqp

=
∑
p∈Pa

fp
fa

1∏
p′∈ηp

αp′
≥ 1∑

p∈Pa
fp
fa

∏
p′∈ηp

αp′
= 1∑

p∈Pa
qp
fa

= fa
qa

. (A3)

For example, in Section 3.2, the demand-weighted average travel time on link 3 based on Equation
(30) is

fAC,13τAC,13,3 + fAC,23τAC,23,3
f3

= 3000 veh/h · 35min + 3000 veh/h · 65min
6000 veh/h

= 50min. (A4)

This is indeed greater than the 45min resulting from Equation (36).
Aside from the theoretical problem with using Equation (A2) discussed in the main text, more

reasons to avoid using it are revealed after combining with Equations (20) and (1):

τa =
⎧⎨
⎩

τ ffa if qa ≤ Ca,

τ ffa + ∑
p∈Pa

f2p
f2a

qa
qp

(
fa
Ca

− fa
qa

)
T
2 if qa ≥ Ca.

(A5)
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Unlike Equation (21), derivatives with respect to fa and qa depend on which fp or qp is varied.
Moreover, for qa ≥ Ca, we can write

τ
queue
a =

∑
p∈Pa

f2p
f2a

qa
qp

(
fa
Ca

− fa
qa

)
T

2
=

∑
p∈Pa

f2p
qp

fa

(
qa
Ca

− 1
)
T

2
=

∑
p∈Pa

f2p
qp∑

p∈Pa
fp

(
qa
Ca

− 1
)
T

2
, (A6)

so for any particular p ∈ Pa we have

∀p ∈ Pa : τqueuea =

f2p
qp

+ ∑
p′∈Pa\{p}

f2
p′
qp′

fp + ∑
p′∈Pa\{p}

fp′

(
qa
Ca

− 1
)
T

2
, (A7)

whose derivative towards demand component fp follows from the quotient rule:

∀p ∈ Pa :
∂τ

queue
a

∂fp
=

(
fp + ∑

p′∈Pa\{p}
fp′

)(
2 fp
qp

)
−
(

f2p
qp

+ ∑
p′∈Pa\{p}

f2
p′
qp′

)
(
fp + ∑

p′∈Pa\{p}
fp′

)2

(
qa
Ca

− 1
)
T

2

=
2 fp
qp

− ∑
p′∈Pa

f2
p′

faqp′

fa

(
qa
Ca

− 1
)
T

2
=

2 1∏
p′∈ηp

αp′
− ∑

p′∈Pa

fp′
fa

1∏
p′′∈ηp′

αp′′

fa

(
qa
Ca

− 1
)
T

2
.

(A8)

From this, we can see that the properties of Equation (23) no longer hold. For qa ∈ (Ca, fa], instead of
∂τ

queue
a /∂fp > 0, we now have

∀p ∈ Pa : sgn
∂τ

queue
a

∂fp
= sgn

⎛
⎜⎜⎝ 1∏

p′∈ηp

αp′
− 1

2

∑
p′∈Pa

fp′

fa

1∏
p′′∈ηp′

αp′′

⎞
⎟⎟⎠ . (A9)

This implies that if:

• the exit capacity of the considered link is fixed;
• we increase a particular demand component fp;
• due to some upstream bottleneck, this extra demand does not reach the considered link within

the study period (qp constant);
• other demand components and flow components also remain the same;
• the severity 1/

∏
p′∈ηp

αp′ of the upstream bottlenecks of the demand component that increases
is less than half the demand-weighted severity of upstream bottlenecks of the entire link demand;

then the increase in link demand leads to a decrease in link travel time, violating Requirement IV. Like
the issues in Section 3.2, this is not possible in static assignment, dynamic assignment, or reality.

Because of the violation of both Requirements III and IV, we recommend to not use Equation (A2).
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