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Abstract 
As machine learning algorithms become more and more 
prevalent, so do the inherent risks of unfair classification of 
disadvantaged or underrepresented groups. Additionally, in a 
dynamic context, the underlying distributions can shift over 
time, so corrective measures that can work in a static context 
may end up being detrimental in the long run. In this paper, 
we propose a new algorithm with the aim to improve fairness 
in datasets, by modifying the commonly used SMOTE 
algorithm in a way to work better in a dynamic context, with 
an added focus on fairness criteria. The results in this paper 
indicate that this modification, labelled as the SMICT 
algorithm, can be a promising approach to improving fairness, 
albeit with limitations and challenges that need to be 
considered whenever the algorithm is used. 
 

1. Introduction 

Over the past years, the quantity of data has rapidly increased, 
and with it, there has also been a rise in automated decision-
making algorithms to process that data. Increasingly, these 
algorithms, with their rising scale and complexity, have 
become difficult to manually monitor for fairness and 
discriminatory practices, making the automation of these tasks 
vital to ensure the long-term wellbeing of those involved. 
 
Fairness however is not static. The distribution and features of 
classes can shift over time. As such, implementing fairness 
counterbalancing in a way that works in a static context, may 
prove ineffective or even harmful in a dynamic context 
(D’Amour et al. 2020)(Liu et al. 2018).  
 
Nevertheless, more traditional machine learning techniques 
can still have a positive impact on fairness. In a recent work 
by Zhou et Al. (2023b) the performance of the popular 
SMOTE algorithm (Chawla et al. 2002) for the purpose of 
fairness is evaluated. The SMOTE algorithm was originally 
designed to decrease numerical class imbalance in a dataset, 
by generating samples for under-represented classes in a 
synthetic way, by making new samples that are similar, but 
not identical to previously existing samples of that class. In 
the work by Zhou et Al, the SMOTE algorithm is analyzed 
both theoretically and empirically in the context of fairness, 
showing that both theoretically and empirically, SMOTE is a 
promising approach to fairness in AI models, while avoiding a 
significant loss in prediction accuracy.  
 
In this paper we present a new SMOTE variant called SMICT 
– Synthetic Minority Cross-Sampling Technique. This variant 
is most similar to Borderline-SMOTE (Han et al., 2005), 
which generates samples for a minority class by also 
considering the samples from the majority class that are 
closest to samples in the minority class (on the border). 
SMICT also utilizes samples from external classes (cross-
samples), with a few key differences.  
 
Throughout this research, we have found very few works that 
consider oversampling techniques like SMOTE and even 
fewer considering Borderline SMOTE in the context of 
fairness. This might be because of the unsuitability of these 
algorithms for large datasets, as both techniques are 
algorithmically expensive to run due to the cost of the Nearest 
Neighbors operation, as will be explained in Section 2.  

 
Monitoring fairness in machine learning is important, as the 
complexity of algorithms increases, and the impact of those 
algorithms becomes difficult to predict manually. Work like 
that of Albarghouthi et al. (2019) focuses on defining checks 
that alert a programmer whenever a fairness criterion is 
breached. This is a valid approach to long term fairness 
monitoring, however we felt that, while it could detect the 
underlying unfairness of a classification, it took no steps 
towards fixing it in a dynamic manner. As such, we started 
thinking of a way to dynamically reduce unfairness, rather than 
detecting it, and as such, we landed upon the SMOTE 
algorithm, and by extension designed the SMICT algorithm. 
 
In our research, we evaluate whether the SMICT algorithm can 
increase fairness in automated decision making in a more 
algorithmically cost-effective way than SMOTE or Borderline-
SMOTE.  
 
The results of this evaluation indicate that, in the right context, 
SMICT can indeed increase fairness in a more time-efficient 
manner. The accuracy and fairness of the predictions however 
do fluctuate, having cases when accuracy or fairness can be 
either higher or lower as a result of applying SMICT, on 
average performing slightly worse in terms of accuracy, but 
better in all fairness categories. Thus, SMICT, while not a 
perfect solution, can be a good step forward for dynamic 
algorithmic fairness. 
 
In Section 2 we discuss the preliminaries of the paper and 
relevant related work on the SMOTE algorithm in Section 3. 
Section 4 then presents the SMICT algorithm and its formal 
definition, followed by Section 5, which discusses the 
contributions of this paper to dynamic fairness methodology. In 
Section 6 we present an overview of the experimental setup 
and results, and finally in Section 6, 7, 8, we present our 
findings and wrap the research up with our analysis and 
conclusions on the topic as well as future research and work 
that can be done. 
 

2. Preliminaries 

To better understand the SMICT algorithm, it is important to 
first understand the SMOTE algorithm, as well as the 
Borderline-SMOTE algorithm.  
 
The SMOTE algorithm by Chawla et al. (2002), operates as 
follows: First, it calculates the nearest neighbors for each 
member of the minority class. This implies comparing every 
member of the class to every other member using a predefined 
distance metric. Then, given an oversampling ratio O, and a 
value K, the algorithm uses, for each sample, the K nearest 
neighbors to generate new synthetic samples, by generating a 
new datapoint on the line between a chosen neighbor and the 
specified sample. This is done until the ratio between original 
and synthetic samples corresponds to the value O.  
 
For Borderline-SMOTE (Han et al., 2005), the process uses 
only the edge values of the minority class. For a given distance 
metric, the datapoints in the minority class that are furthest 
from the center of the class are selected, then the nearest 
neighbor operation is performed between the selected samples 
and the elements of the negative class (i.e. those that do not 



belong to the minority class). The members of the negative 
class that are closest to the border are then used to generate 
new synthetic samples in combination with the edge values of 
the minority class. While this is initially defined only for a 
two class case, it can be trivially expanded to a multi-class 
algorithm, by defining the “negative class” as all datapoints 
that are not part of the minority class we are considering.  
 
In this paper, we also use a simple Logistic Regression 
classifier (LaValley, M. P. 2008) offered by Sklearn in python 
(LogisticRegression, n.d.). This model is trained on the data 
modified by SMICT, as well as SMOTE for comparison, and 
aim to predict the labels of the unmodified data. The accuracy 
of this serves to represent the utility of the oversampling 
algorithm. 
The performance of machine learning algorithms is typically 
evaluated with the use of a confusion matrix (Figure 1): 
 
Table 1: Confusion Matrix 

 
 

Predicted 
Positive 

Predicted 
Negative 

Actual 
Positive 

True Positive 
(TP) 

False 
Negative (FN) 

Actual 
Negative 

False Positive 
(FP) 

True Negative 
(TN) 

This confusion matrix determines how many samples were 
correctly classified, i.e. if the predicted label corresponds to 
the actual label. 
 
For all instances where the Logistic Regression classifier is 
used, the predictive rates for each class in the data set will be 
calculated, then further used to calculate, then compare 
Accuracy and fairness between classes and further between 
different subsets of the data. 
 
In this paper, the commonly used definition for predictive 
accuracy will be used: Accuracy = (TP + TN) / (TP + FP + 
TN + FN), to evaluate the performance of SMICT as an 
oversampling algorithm. We chose to use this simpler 
definition of accuracy over alternatives like the F-Score, as it 
also takes into account the True Negative rate. 
 
To evaluate fairness, two metrics are used. The first is the 
Equal Opportunity Measure, which aims to equalize the True 
Positive Rate (TP/ TP+FN) amongst all classes. 
The second measure that is Demographic Parity, (also known 
as Statistical Parity) which can be satisfied by equalizing, for 
every class, the rate at which a positive prediction is made 
((TP+FP) / (TP+FP+TN+FN)) 
 
To evaluate Equality of Opportunity and Demographic parity 
we took the Mean Squared Error of both. For Equality of 
Opportunity, the difference between each TPR (true positive 
rate) and the Mean TPR for all classes was taken, and squared, 
then we took the average squared error for all classes as an 
indicator of how different each true positive rate is from the 
dataset average, and hence how Unequal the true positive 
rates of the dataset are. The same is done for Demographic 
parity, as both measures aim to equalize a metric between all 
classes, with the Error rate in the MSE technique, indicating 
the unfairness in the dataset.  

 
The open-source Folktables database was used as a baseline, 
(Ding et al., 2021). The Folktables database was chosen as it is 
a more modern remade version of the original 1994 UCI Adult 
dataset that has been used for many works on machine learning 
algorithms due to its inherent class imbalance. Folktables 
provides several in-built prediction tasks for income, 
employment, health, transportation, and housing. For the scope 
of this research, we will be focusing primarily on employment 
status. 
 
The final conclusions regarding the SMICT algorithm are 
reached while taking into account Equal Opportunity, 
Demographic Parity, as well as the resulting Accuracy of the 
algorithm, when compared to the equivalent evaluation of 
SMOTE, as well as the baseline Fairness and accuracy 
measures of the Logistic Regression model on the unaltered 
dataset. 

3. Related Work 

As mentioned before, there are not many articles that directly 
evaluate SMOTE or borderline-SMOTE in the context of 
fairness. 
 
The previously referenced work by Zhou et Al. (2023b) goes in 
depth into the application of SMOTE and provides both a 
theoretical and empirical justification for the success of 
SMOTE in fairness balancing. The main critique of the authors 
was that, while there are works that use SMOTE and 
empirically prove its effectiveness, little study was previously 
made looking into the theoretical aspects of why exactly 
SMOTE is effective. 
 
SMOTE however is not equally effective for all datasets. For 
instance, in a separate study, (Lucentia & De Alicante 
Departamento De Lenguajes Y Sistemas Informáticos, 2022) 
SMOTE performed worse than oversampling and under 
sampling, and the best performing technique for that dataset 
was to remove the sensitive attribute entirely. This could imply 
that, depending on the original bias and shape of the data, 
smote can end up accentuating the bias in the original 
distribution, causing a decrease in fairness. 
 
Lastly, another relevant article by Sha et Al. (2022) discusses 
the effectiveness of class-balancing techniques on both 
predictive accuracy and fairness in the context of education. It 
compares 4 under sampling, 4 oversampling and 3 hybrid 
techniques of class balancing, amongst which borderline-
SMOTE is also evaluated. However, as this work is more 
general and is not focused on a single algorithm or type of 
algorithm, there is no direct evaluation or consideration given 
to borderline-SMOTE. In their work, they conclude that there 
does not necessarily need to be a trade-off between accuracy 
and fairness, and that, in some cases, increasing fairness 
directly leads to increased accuracy. 

4. SMICT – Problem Definition 

As an oversampling technique, SMICT aims to solve several 
issues. The first being that of a low variety of base samples in 
the minority class – leading to a flawed prediction of the class 
true distribution. SMICT solves this by sampling from other 
classes. 



 
The second issue is that of the function cost. In Borderline-
SMOTE, the nearest-neighbors from other classes are used. 
For large datasets, this operation is very computationally 
expensive, something that should be minimized in a dynamic 
context. SMICT solves this through random choice, in both 
the minority and majority class. 
 
Lastly, SMICT also is designed to have a greater focus on 
fairness. By using samples from existing majority classes for 
minority class predictions, a classifier would learn to treat a 
minority class more similarly to a majority class, reducing 
class prediction imbalance.  
 
In a multi-class setting, SMICT interpolates existing minority 
class samples with samples from all the classes that are more 
heavily represented, in proportion to their relative size. 
As such, take the following assumptions: 
 
Assumption A: For a given dataset A, and a known set of 
classes C in A with their true distributions in C’, for any class 
c’ in C’ there exists at least one element in each of the other 
classes in C’ which are similar to at least one element in class 
c’. 
 
Assumption B: The more represented a class c is in the 
dataset, the closer class c is to the true distribution c’. For 
any class c with true distribution c’ and n samples, if for any 
class f with true distribution f’ and m samples, m > n then f’ – 
f <= c’ – c. 
 
Intuitively Assumption A would imply that there are no 
classes in the dataset with true distributions that are entirely 
disjoint from one another. This assumption is difficult to 
verify or enforce, as it relies on the true distribution of the 
classes. However, it can still prove useful when deciding 
whether to use SMICT or not if one has knowledge of the 
dataset and believes the assumption could reasonably hold.  
 
Assumption B requires you to be able to trust the source of 
your data and that all new samples that are added are added to 
a class do in fact belong to that class. Adding new real 
samples should never increase the difference to the true 
distribution.  
 
If both assumptions hold, then we can make certain 
guarantees about the performance of SMICT as a predictor 
algorithm, as, it would mean that at least one element in each 
other class can be chosen randomly and perform at least as 
well as a member of the minority class when predicting 
samples for the minority class (Assumption A). Additionally, 
following Assumption B, the classes with highest accuracy 
with respect to their true distributions should be prioritized for 
sampling, hence the procedure of taking samples from other 
classes based on class size difference, with the largest classes 
generating more samples.  
 
While the minimal fulfilment of these assumptions provides 
only a minimal guarantee of accuracy, it still provides a 
boundary beyond which the SMICT algorithm is applicable. 
The more heavily Assumption A is met (the more the classes 
are inter-connected) the better SMICT will perform, however, 
SMICT does not need 100% overlap to offer a better 

prediction, or to perform better than SMOTE for a given 
dataset. 
 
Finally, a theoretical example of a dataset for which SMICT 
would be optimal, would be a dataset with heavily overlapping 
true distributions for the various classes, for which, however, 
the known distributions are numerically heavily imbalanced, 
leading to improper classification of underrepresented classes. 
 

5. Contributions – Methodology 

In this paper, we present and evaluate a new variant of 
SMOTE, called SMICT for the purpose of algorithmic fairness 
in a dynamic context. We outline the theoretical advantages as 
well as evaluate empirical results.  
 
This is done by comparing the implemented SMICT algorithm 
to a simple implementation of SMOTE on the open source 
“Folktables” Database (Ding et al., 2021), using an existing 
Logistic Regression algorithm from Sklearn 
(LogisticRegression, n.d.). We compare the predictive accuracy 
when oversampling with SMOTE and SMICT respectively, as 
well as contrasting those results with the baseline accuracy of 
the model on the dataset without any oversampling.  
 
We also compare the resulting fairness of the predictions, using 
the metrics of Equality of Opportunity and Demographic Parity 
as defined in Section 2. 
 
From the Folktables Database, the employment subsection of 
the database was chosen under the hypothesis that it would be 
able to satisfy Assumption A of the SMICT algorithm as 
defined in Section 4 of having some overlap between the true 
distributions of each class. As the status of whether someone is 
employed or not should not be unequal to the extent that there 
exists absolutely no overlap between different groups.  
 
The findings of our research can be summarized as follows: 
 
Out of the 102 aggregated statistical performance 
measurements, SMICT on average resulted in an increase of 
both Equality of Opportunity (55% of the time)  and 
Demographic Parity (47% of the time but larger increase) when 
compared to both SMOTE and the classification on the dataset 
without modifications. SMICT however has overall lowered 
the accuracy of the algorithm in the majority of data instances 
(Increased accuracy in only 39% of instances). There were 
however instances, about 11%, where SMICT performed the 
best in all categories: Accuracy, EQOpportunity and 
DEMParity.   
 

6. Experimental Setup and Results.  
6.1 – Experimental setup 

From the Folktables database, the Employment data was used 
to test the ability of the SMICT algorithm. Elements in this 
dataset used 16 features and 9 different classes. Each datapoint 
was also labelled either true, or false, depending on whether the 
person was employed at the time.  
 
SMOTE was modified slightly in implementation to account 
for this structure. To generate both true and false instances for 



employment synthetically, the algorithm was run twice, once 
with only existing true samples, to generate true samples, and 
once with only existing false samples to generate false 
samples. Additionally, due to the size of some of the datasets, 
SMOTE had to be limited to only be performed on minority 
classes rather than ALL classes, as performing the Nearest 
Neighbors operation on 20,000+ would not be realistic for 
testing, Additionally, for all tests, an oversampling ratio of 6 
was used for SMOTE.  
 
SMICT similarly was divided into true and false generated 
instances, however, due to the innate random choice, it was 
able to be performed on all classes without any additional 
time investment. Additionally, SMICT generates samples 
based on the difference in class size between the target class 
and the largest class, and as such does not use an 
oversampling ratio, and, similarly to the implemented 
SMOTE, affected minority classes a lot more than majority 
classes.  
 
A random seed was used for all operations involving 
randomness, and the implementation of the SMICT algorithm 
within the Folktables database framework can be found at 
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-
q4/Lukina/bbadale-Dynamic-Algorithmic-Fairness-in-
Machine-Learning. That is also where you can find all the 
results and statistics generated by the SMICT algorithm 
evaluation mentioned in the following section 6.2. 
 
Of note, of the 9 classes one or two of them do not appear in 
every single state. Only the classes present in each state are 
considered for evaluation. 
 
6.2 – Results 

The two algorithms SMOTE and SMICT were run over a total 
of 102 data subsets, once for each of the 50 US States (and the 
District of Columbia) over the years 2017 and 2018 
respectively.  
 
For each state and year, the confusion matrix for each 
demographic group was calculated as described in Section 2. 
The resulting matrix was then used to calculate the Accuracy 
for each group, and hence the accuracy of the data subset, as 
well as the overall Eqality of Opportunity and Demographic 
parity between the groups for each state. 
 
The average dataset accuracy, Equality of Opportunity and 
Demographic Parity is then calculated for all 102 data 
samples. 

 
  Baseline Average(No Oversampling) (1) 

o  Accuracy: 0.76958 
o MSE EQ-Opp: 0.0347 
o MSE Dem Parity: 0.017 

Before being able to properly compare SMICT and SMOTE, 
it is important to establish what the baseline accuracy and 
fairness of the predictive model is when the data is 
unmodified (1).  
 

The accuracy is measured as a percentage, in this case 76.9% 
accuracy baseline.  
 
For equal opportunity and demographic parity, the measure 
indicates the mean square error in each fairness metric 
respectively. As such, the lower the better, wherein an MSE of 
0 would imply 100% fairness.  
 
 Average ACCURACY Difference (2) 

o SMOTE: -0.00103 
o SMICT: -0.0058 

On average, both SMOTE and SMICT had lower accuracy than 
the baseline (as shown in statistic (2)). SMOTE being 0.1% 
less accurate, and SMICT being 0.6% less accurate.  

 
 Average MSE EQ Opp Difference (3) 

o SMOTE: 0.00040 
o SMICT: -0.00160 

For Equal Opportunity (3), SMOTE decreased fairness on 
average, indicated by a positive value (0.00040) difference 
between the average SMOTE equal opportunity and the 
baseline equal opportunity. 
 
SMICT performed significantly better than SMOTE, as well as 
overall increasing Equality Of Opportunity. The negative value 
(-0.0016) indicating a decrease in the Equality of Opportunity 
Mean Square Error compared to the baseline. 
 
 Average MSE DP Difference (4) 

o SMOTE: 0.00048 
o SMICT: -0.00051 

Similarly, for Demographic Parity (4), the error, compared to 
the baseline was higher for SMOTE, whereas the fairness error 
for SMICT decreased. 
 
 Average Time Taken (Seconds) (5) 

o SMOTE: 107.7188s 
o SMICT: 0.54398s 
o Highest difference: 2197.51s 

Importantly, throughout the testing, it became clear that 
SMOTE heavily bottlenecked the runtime. In some of the more 
populous states, (specifically Texas and California), the 
difference was most apparent, the highest difference being in 
California 2017 where SMOTE was 36 minutes slower than 
SMICT.  
 
Additionally, as SMICT does not use the Nearest Neighbors 
operation, it was able to keep a consistently low runtime at an 
average of 0.544 seconds. With the highest value being 
California 2017 with 2.6 seconds runtime compared to the 
2200 seconds taken for SMOTE.  
 
Incidentally in that example, SMICT also performed better 
than SMOTE in all fairness categories, with SMOTE having 
slightly higher accuracy. 
 



Figure 1- Maryland 
2018 - SMICT 
performance PCA 
Per Class 

 
 
 California 2017 – (Green marks best performance) (7) 
 
 Baseline SMOTE SMICT 
Accuracy 0.759426 0.760070 0.759907 
MSE EQ-OP 0.001835 0.002005 0.001753 
MSE DP 0.006650 0.007030 0.006798 
 
For this example (7), SMICT performed better than the 
baseline in accuracy, and the best for Equal Opportunity. For 
Demographic Parity, it was only a slight decrease compared to 
the baseline. SMOTE had the highest accuracy, but the worst 
fairness metric, and, as mentioned before, took almost a 
thousand times more time than SMICT to run. 
 
 SMICT outperformed SMOTE (8) 

o Accuracy: 35/102 Files 
o EQ-Opp: 50/102 Files 
o DP: 52/102 Files 

Significantly, while SMICT outperformed SMOTE in both 
Equal Opportunity and Demographic parity on average, 
SMICT performed better in slightly fewer instances than 
SMOTE for Equal Opportunity, but overall, the numerical 
increase was more significant for SMICT resulting in a higher 
overall average as shown in the (3) statistic earlier this 
section.  
 
 SMICT outperformed No modification (9) 

o Accuracy: 39/102 
o EQ-Opp: 55/102 
o DP: 47/102 

Lastly, we can see that compared to the baseline, SMICT had 
a positive impact in accuracy approximately 39% of the time, 
and in more than half of the data instances, the Equal 
Opportunity was increased. Demographic Parity was 
increased in slightly fewer instances, but more significantly, 
as indicated by statistic 4.  
 
In 11/102 files, SMICT performed better across every 
category: accuracy, Equality of Opportunity and Demographic 
parity.  
More specifically those instances are the following: (10) 
 2017: 

o Kentucky – Massachusetts – Michigan – 
Oklahoma – South Carolina - Utah 

 2018: 
o Texas – Iowa – Maryland – Missouri – South 

Carolina 

Figure 1 is a visualization of the SMICT algorithm prediction 
for Maryland 2018. After performing a basic Principle 
Component Analysis to condense the 16 features of the 
datapoints into two principle components. The proximity of 
the Real Points (Green) to the Synthetic Points (Red) can be a 
measure of how accurately the synthetic data captures the 
distribution of the class.  

 
However, this does not necessarily translate to 
predictive accuracy, as a predicted distribution 
with a different shape from the original can still, 
when trained on by a classifier, can still perform 
accurate predictions for new data. For instance, 
in Figure 1, numerically, SMICT was more 
accurate only for classes 5, 7, 8.  
  
Class 8 appears to have almost full overlap 
between predicted and actual datapoints, whereas 
class 5 has had the highest increase in accuracy, 
72% -> 77% despite the predicted distribution 
having a completely different shape. 
 
For all 102 instances of data, a similar plot was 
generated for both SMOTE and SMICT, to see 
whether there is a visible trend between the 
predictive strategy and the accuracy of the 
classification. 
 
6.3 – SMICT as a predicter 
Overall, in terms of Accuracy, SMICT 
performed worse than predicted given the dataset 
that was used. While there were instances where 
SMICT performed better than SMOTE, and 
instances in which SMICT improved accuracy 
significantly, overall running the SMICT 
algorithm has decreased the accuracy of the 
predictions.  
 
An interesting trend in the data that we weren’t 
quite able to capture visually, shows that, even 
for datasets where SMICT is on average more 
accurate, most of the classes are individually less 
accurately predicted, with one or two exceptions 
balancing out the predictions.  
 
In practice, using cross-samples to generate 
minority samples tends to create quite similar 
predictions for every class. As seen in Figure 1, 
this is sometimes beneficial, corresponding to the 
actual data, but this “averaging” almost of the 
data points is more often detrimental in terms of 
accuracy for other distributions. This 
“averaging” effect was not as noticeable for 
classes that were already large, as they required 
less data samples to be generated (as seen in 
class 1 and 2 of Figure 1) 
 
6.4 – SMICT for fairness 
As a fairness balancing measure, SMICT overall 
has shown positive results. Increasing Equality 
of Opportunity in over half of the analyzed 
distributions. Despite only increasing 
Demographic Parity in 47/102 class distributions, 
Demographic Parity was more noticeable when it 
was increased than when it was decreased.  
 
This increase in fairness can likely be attributed to 
the use of cross-samples, as classes that share a lot 
of similarities are likely to be classified in an equal 
way more often. 



 
In regards to dynamic fairness, the SMICT algorithm in many 
ways is a static fairness measure, however, the low runtime 
and processing requirements compared to SMOTE allows 
SMICT to also be effective in a dynamic environment, as, 
regardless of the size of the data, it can be run at any time to 
increase fairness over the currently observed distribution. 
 

7. Discussion 

7.1 – Reflection on the research approach. 
Overall, the Folktables database, and particularly the subset 
used for these experiments, provided a good indication of the 
capabilities of SMICT as both a predicter algorithm and a 
Fairness measure. The belief that it satisfied the assumptions 
laid out in Section 4 was to some extent proven by the 
performance of SMICT which, while not optimal, was overall 
beneficial in terms of fairness.  
 
However, the database proved to not be fully suited for the 
SMOTE algorithm. In our comparison to SMICT, SMOTE 
ended up performing a lot worse than expected for the given 
dataset, while also doing so a lot slower, bottlenecking the 
experiment.  
 
Regarding the accuracy of the predictions, while SMICT did 
on average lower accuracy, the increase overall increase in 
fairness is still relevant and significant. The assumptions laid 
out in Section 4 only provided minimal guarantees towards 
the accuracy of SMICT, and as such, for a database more 
suited to the use of SMICT, we can safely assume that the 
accuracy will also be increased alongside the fairness criteria. 
 
7.2 – Limitations 
SMICT is very much dependent on the type of data it is used 
on. Throughout my testing, I have also performed an analysis 
on a dataset that could reasonably be assumed to not satisfy 
the class overlap assumption laid out in Section 4. The 
Income database from Folktables has true and false values 
corresponding to whether a person had an income of over 
500,000 that year. Intuitively, the underlying true distribution 
for this is much more likely to be heavily imbalanced across 
different societal groups.  
 
As such, when running SMOTE and SMICT on the income 
database, SMICT performed worse than SMOTE and No 
modification in all categories (apart from time taken), whereas 
SMOTE, at the cost of 0.05% accuracy, was able to increase 
both Equal Opportunity and Demographic Parity. (These 
statistics can be found and generated in the same Gitlab 
repository)  
 
Lastly it is worth noting that the SMICT algorithm could be 
heavily impacted by the random selection it uses for its 
operation. Further testing is required to be able to fully 
conclude how much of an impact random selection has on the 
overall performance of the algorithm.  
 
As such, the conclusions of this work are not a conclusive 
evaluation of the SMICT algorithm as a technique. 
Nevertheless, we believe that, while not conclusive, the 
observations made over 102 different data distributions can 

still provide a good indication towards whether or not SMICT 
shows any promise for the purpose of dynamically improving 
fairness. 
 

8. Conclusions and Future Work 
8.1 Conclusion 
The original research question asked whether SMICT could be 
used to improve fairness in a dynamic setting, and while in this 
case it came at the cost of some accuracy, it was able to overall 
perform better in both the “Equality of Opportunity” and 
“Demographic Parity” fairness measures, and do so with low 
computational time requirements, allowing SMICT to be run in 
a dynamic setting. 
 
In conclusion, while the SMICT algorithm would need more 
testing to get a full grasp of its capabilities, the research done 
shows that the techniques employed by SMICT may be a 
promising approach towards dynamic algorithmic fairness 
correction in datasets. 
 
8.2 Use Cases 
SMICT is situational. It can not and should not be applied to 
every dataset used for machine learning. Its advantage however 
is that it’s easy to implement and test on existing data. As new 
data of the same type is often similar to older data, SMICT 
would continue to perform well and ensure a degree of fairness 
even if the accuracy of the changing distribution may decrease 
over time. 
 
Additionally, while not the intended purpose, SMICT can also 
be used to gain insight into the true distribution imbalance of a 
dataset. As SMICT relies on two assumptions to ensure 
accuracy (outlined in Section 4) which both relate to the true 
distributions of the classes in the dataset. A decrease in the 
accuracy of SMICT could potentially indicate an increase in 
the true class imbalance.  
 
8.3 Future Work 
Currently there is little research being done towards active 
dynamic fairness balancing. The SMICT algorithm could be a 
starting point for other attempts to adapt static fairness 
measures to dynamic contexts.  
 
SMICT itself can be improved and evaluated more, by running 
it on different and more varied datasets, and performing a more 
in-depth analysis of exactly what type of datasets SMICT could 
be used for. Additionally, more research on the impact of the 
random variance of SMICT on its performance would also give 
a more accurate evaluation of SMICT for the general use case. 
 
 
 
 
 
 
 
 
 
 
 
 
 



9. Responsible Research  

Responsible research is necessary for any academic work. In 
the context of this paper, the main issue addressed was that of 
reproducibility of results, as the methods used make use of 
random sampling as well as custom-built code.  
The issue of randomness is solved by using random seeds, 
such that any researchers can, when running the same code, 
reproduce the same results as those displayed and referenced 
in the Experimental Results section. The code itself is open 
source at https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-
q4/Lukina/bbadale-Dynamic-Algorithmic-Fairness-in-
Machine-Learning.  
For transparency, it is worth noting that ChatGPT 4.0 was 
used to assist in writing the code used to parse the data 
generated and aggregate the statistics displayed in Section 6. 
It was also used to help with unfamiliar syntax and was not 
used at any point in the design and creation of the SMICT 
algorithm, which is the original work of this paper.  
All analysis, conclusions and experiments shown in this paper 
are our own, and any use of work that belongs to others is 
clearly indicated and referenced in the text and the references 
at the end of this paper. 
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