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ABSTRACT
Motivation: The increasing availability of second-generation high-
throughput sequencing (HTS) technologies has sparked a growing
interest in de novo genome sequencing. This in turn has fueled the
need for reliable means of obtaining high-quality draft genomes from
short-read sequencing data. The millions of reads usually involved
in HTS experiments are first assembled into longer fragments called
contigs, which are then scaffolded, i.e. ordered and oriented using
additional information, to produce even longer sequences called
scaffolds. Most existing scaffolders of HTS genome assemblies are
not suited for using information other than paired reads to perform
scaffolding. They use this limited information to construct scaffolds,
often preferring scaffold length over accuracy, when faced with the
tradeoff.
Results: We present GRASS (GeneRic ASsembly Scaffolder) -
a novel algorithm for scaffolding second-generation sequencing
assemblies capable of using diverse information sources. GRASS
offers a mixed-integer programming formulation of the contig
scaffolding problem, which combines contig order, distance
and orientation in a single optimization objective. The resulting
optimization problem is solved using an Expectation-Maximization
(EM) procedure and an unconstrained binary quadratic programming
approximation of the original problem. We compared GRASS
to existing HTS scaffolders using Illumina paired reads of three
bacterial genomes. Our algorithm constructs a comparable number
of scaffolds, but makes fewer errors. This result is further improved
when additional data, in the form of related genome sequences, are
used.
Availability: GRASS source code is freely available from
http://code.google.com/p/tud-scaffolding/.
Contact: a.gritsenko@tudelft.nl
Supplementary information: Supplementary material is available at
Bioinformatics online.

1 INTRODUCTION
High-throughput sequencing (HTS) technologies, such as Illumina
(Illumina, Inc., San Diego, CA), 454 (Roche Applied Science,
Penzberg, Germany) and SOLiD and IonTorrent (Life Technologies,
Carlsbad, CA) produce millions of short DNA reads of typical
lengths of 36-500 bp at low cost, making them attractive for de
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novo sequencing applications. With the aid of assembly algorithms
(Zerbino and Birney, 2008; Miller et al., 2008; Peng et al.,
2010), short reads can be joined together into longer sequences
called contigs. However, contigs are typically shorter than the
sequenced DNA molecules, as genomic repeat regions longer than
the read length cannot be unambiguously assembled using the read
sequences alone. Scaffolding, the process of using additional data to
place contigs in the right order, orientation and at the right distance
in longer (gapped) supercontigs called scaffolds, is a crucial step in
obtaining high quality draft genome sequences.

Paired reads (mate pair or paired end reads, depending on the
sequencing protocol), i.e. reads of known relative orientation, order
and approximate physical distance, are often used for scaffolding.
Additional information, including reference sequences of related
organisms, restriction maps (Nagarajan et al., 2008) and RNA-seq
data, can be used to derive more accurate contig placement (Kent
and Haussler, 2010; Pop et al., 2004), thereby reducing the cost of
finishing experiments and allowing for more reliable downstream
analyses. However, most existing scaffolding algorithms are not
able to utilize such information for scaffolding. To our knowledge,
only Bambus (Pop et al., 2004) and SOPRA (Dayarian et al., 2010)
can make use of additional data sources, although the latter was not
originally designed for this purpose.

Generally, the Contig Scaffolding Problem (CSP) is finding
a linear ordering and orientation of contigs that minimizes the
number of unsatisfied scaffolding constraints. These constraints
are derived from the available data through translation of the
inherent distance, order and orientation constraints onto the contigs.
The derived constraints can be mutually exclusive, which makes
the problem of minimizing the number of unsatisfied constraints
NP-hard (Kececioglu and Myers, 1995; Huson et al., 2002).
Consequently, practical scaffolding algorithms only approximately
solve this problem: Bambus (Pop et al., 2004) separately finds
contig orientation and order and uses greedy heuristics to remove
inconsistent constraints; SSPACE (Boetzer et al., 2011) greedily
extends scaffolds using a heuristic stopping criterion; and SOPRA
(Dayarian et al., 2010) uses an iterative procedure to identify a
subset of contigs with consistent scaffolding constraints. Notable
exceptions are OPERA (Gao et al., 2011) and the MIP Scaffolder
(Salmela et al., 2011), which simplify the CSP by dropping types
of constraints. OPERA implements an algorithm for finding an
exact CSP solution without minimum contig distance constraints;

1© The Author (2012). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Associate Editor: Dr. Michael Brudno

 Bioinformatics Advance Access published April 6, 2012
 at B

ibliotheek T
U

 D
elft on M

ay 2, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://code.google.com/p/tud-scaffolding/
mailto:a.gritsenko@tudelft.nl
mailto:journals.permissions@oup.com
http://bioinformatics.oxfordjournals.org/


blj -
alj -

alj� blj�

µlj ± σlj

elj = 1

rlj = 0

+ lj

slj

alj - blj�

blj - alj�

µlj ± σlj

elj = 0

rlj = 1

slj

+ lj

Fig. 1. Examples of contig links lj between contigs alj and blj and their
corresponding relative orientation (elj ), relative order (rlj ) and distance
(µlj ± σlj ) constraints.

the MIP Scaffolder (Salmela et al., 2011) couples a Mixed-
Integer Programming (MIP) formulation of the contig scaffolding
problem that does not enforce order constraints with an algorithm
heuristically dividing the original problem into subproblems to be
solved exactly.

We propose a novel GeneRic ASembly Scaffolding (GRASS)
algorithm that can be applied to any type of scaffolding information.
Our work is similar to Salmela et al. (2011), as we propose
a MIP formulation of the scaffolding problem. However, we
combine contig orientation, order and distance in a single quadratic
optimization objective. Similar to Dayarian et al. (2010), we
employ an iterative procedure to select a consistent subset of
contigs. However, we apply an expectation-maximization strategy
to maximize the objective function that identifies inconsistent
constraints rather than contigs, thereby retaining more scaffolding
information.

We implemented the algorithm in C++ and tested it on de novo
assemblies of paired read data for the bacteria Eschrichia coli,
Pseudoxanthomonas suwonensis, and Pseudomonas syringae and
compared it to the SSPACE, OPERA and MIP scaffolders. GRASS
produces a competitive number of scaffolds with fewer scaffolding
errors, particularly when combining various sources of scaffolding
information.

2 METHODS

2.1 Data representation
Scaffolding constraints on contig distance, order and orientation are derived
from the data in a manner depending on the data type. For example,
the known relative orientation, relative order and approximate distance of
paired reads that map to different contigs can be translated into relative
contig orientation, order and approximate contig distance by taking mapping
orientations and positions into account; similarly, physical distance, relative
order and orientation of two contigs mapping to the same reference sequence
can be translated into corresponding constraints. However, different data
types eventually define the same type of pair-wise contig constraints,
which can be conveniently represented as arcs (i.e. directed edges) lj =

(alj , blj ) ∈ E of weight ωlj in a digraph G = (V,E) defined over the
set of contigs V (Huson et al., 2002; Pop et al., 2004; Gao et al., 2011).
The weight can be chosen to reflect information source importance and
consistency. A relative order rlj , relative orientation elj and approximate
distance suggested by the pair-wise constraints, are then associated with
every arc lj . The approximate distance is recorded as mean µlj and its
standard deviation σlj . This form is a natural choice for capturing variation
in contig distances derived from the paired read insert size. It is also suitable
for scaffolding constraints without (reliable) distance estimates, for example
constraints derived from paired RNA-seq data of an organism with abundant
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len(blj ) len(alj )xalj − xblj
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Fig. 2. Optimization variables xalj , xblj , talj and tblj associated with
contigs. Example for elj = 0 ∧ rlj = 0.

intron splicing, or by mapping contigs to genome of a distant relative. Such
constraints can use a large σlj to reflect the uncertainty in the data source.
We refer to lj , its importance weight ωlj , and the corresponding contig pair-
wise constraints as a contig link, and to G as the contig link graph. For
succinct notation, for every contig link constraints are recorded as

• elj =

{
0, alj and blj are from different strands
1, alj and blj are from the same strand

• rlj =

{
0, alj follows blj
1, blj follows alj

given that alj has forward orientation.

This abstract definition is illustrated in Figure 1. It allows capturing any
combination of contig order, distance and orientation, including constraints
derived from paired end reads, mate pair reads, and contig mapping.

2.2 Contig link bundling and erosion
We create a single contig link for every available piece of evidence (e.g.
pair of reads) and by default set its importance weight to one (a parameter
adjustable per information source). For high coverage HTS data this
procedure creates a large number of links. Contig link bundling is used to
reduce the number of links, and thereby the complexity of the problem. For
every ordered pair of contigs (u, v), arcs (u, v) ∈ E that agree on contig
distance, order and orientation are combined into one or more contig links
as in Huson et al. (2002). The weight of a link after bundling is equal to
the sum of weights of links bundled together to create it. Our definition of
contig links permits having links that agree on all constraints, yet cannot
be bundled together because they are oppositely directed in G. To enable
bundling of such links, we re-set rlj relative to one of the end points of
lj to make sure that all links connecting a pair of contigs have the same
directionality. Finally, contig links with importance weight smaller than a
predefined erosion threshold e are removed from the graph. This assumes
that erroneous links are rare.

2.3 Optimization formulation
We present a mixed-integer quadratic programming (MIQP) formulation
of the contig scaffolding problem. Our formulation is equivalent to the
traditional one (minimize the number of unsatisfied constraints, Huson et al.
(2002)), but uses slack variables as continuous measures of the extent
to which each order and orientation constraint is satisfied. This allows
for uncertain data, yielding less trustworthy constraints, to be accurately
exploited in the scaffolding process. A number of optimization variables
are associated with every contig and contig link. We maximize an objective
function f of these variables subject to scaffolding constraints expressed as
linear optimization constraints. The function reaches its maximum value
when all distance, order and orientation constraints are satisfied. Each
valid collection of the optimization variable values forms a solution to the
optimization problem. These values are sufficient to puzzle contigs into
scaffolds. For every contig ci, i = 1, . . . , n the following variables are
defined, as illustrated in Figure 2
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• ti =

{
0, ci comes from the forward strand of the scaffold
1, ci comes from the reverse strand of the scaffold

is used to define contig orientation in the scaffold.

• xi ∈ R+ corresponds to the 5′ position of ci in the scaffold (when
input contigs and the constructed scaffold are viewed as having a 5′ to
3′ orientation).

Naturally xi should be an integer variable, but it is relaxed to simplify the
optimization problem and is rounded to the nearest integer when the solution
is converted into scaffold nucleotide sequences. Additionally, with every link
lj , j = 1, . . . ,m the following variables are associated:

• Slack variables for distance constraints, ξlj = {
→
ξlj ,

←
ξlj } ∈ R+ ×

R+, and order constraints, ∆lj = {
→

∆lj ,
←

∆lj } ∈ R+ × R+, for
forward (talj = 0) and reverse (talj = 1) orientations of the contig
pair respectively. By design these variables reflect the degree to which
the corresponding constraints are violated. They are penalized in the
optimization objective f .

• Switch variables for distance constraints, αlj ∈ {0, 1}, and order
constraints, βlj ∈ {0, 1} (0, constraint is disabled; 1, enabled) used
for disabling contig link constraints with high penalties.

As distance and order constraints are influenced by the orientation, different
slack variables are required for both orientations. We omit orientation arrows
above slacks ξlj and ∆lj when the contig pair orientation is not important,
or is clear from the context.

Contig links impose scaffolding constraints, which can be modeled as
MIQP optimization constraints. We demonstrate here how such constraints
can be derived from paired read data; the same type of constraints can be
derived in a similar way from other sources of scaffolding information (for
example, see section 3.2).

Distance constraints are expressed as:

|d(alj , blj )− µlj |
σlj

≤ ξlj , (1)

where d(alj , blj ) is the distance between contigs alj and blj , and ξlj is a
distance slack variable. This inequality captures uncertainty in the distance
by measuring the difference with the mean in standard deviations. We derive
contig distance d(alj , blj ) from the paired read insert size as the gap size
plus the contig lengths. The calculation then depends on the order and
orientation of contigs connected by lj . It can be fixed by assuming that the
contigs have relative orientation and order suggested by lj . For example, for
the case of (elj = 0 ∧ rlj = 0) shown in Figure 2, the distance expression
depends on contig pair orientation through talj :

d(alj , blj ) = xalj
− xblj + len(alj ) + len(blj ), talj

= 0

d(alj , blj ) = xblj
− xalj + len(alj ) + len(blj ), talj

= 1.

Combined with (1) the following constraints are obtained:

xalj
− xblj ≤ σlj

→
ξlj + µlj − len(alj )− len(blj )

xalj
− xblj ≥ −σlj

→
ξlj + µlj − len(alj )− len(blj )

xblj
− xalj ≤ σlj

←
ξlj + µlj − len(alj )− len(blj )

xblj
− xalj ≥ −σlj

←
ξlj + µlj − len(alj )− len(blj )

, (2)

where different slack variables are used for the two contig pair orientations.
The expressions for other combinations of elj and rlj are derived similarly.

Order constraints are derived from read order constraints (i.e. if cj
follows ci, then they should not overlap and cj must be upstream of ci),
which additionally can be relaxed. The relaxation is necessary because (a)
assembled contigs may overlap (Pop et al., 2004); (b) in some cases the order
constraints on data are not valid when extended to contigs, as illustrated in

-

-

a

b

xaxb

�

-l

r

-

Fig. 3. Contigs a and b are not in the order predicted by mapped paired reads
l and r, although the paired reads are in the correct order.

Figure 3. Translating order constraints into optimization constraints as xalj
− xblj ≥ −len(blj ) ·

→
∆lj , talj

= 0

xblj
− xalj ≥ −len(alj ) ·

←
∆lj , talj

= 1
(3)

(formulas shown for elj = 0 ∧ rlj = 0) discourages overlaps while
still allowing the order constraint to be violated when ∆lj > 1. These
slack variables are weighed by the length of the downstream contig to
allow measuring them on a single scale. As for the distance optimization
constraints, it is assumed that the relative contig orientation is correct.

Orientation constraints are modeled in the optimization objective
function, which is designed to attain larger values when more orientation
constraints are satisfied. The function is given by a polynomial

g(t) =

elj
=0∑

j=1,...,m

qalj blj
ωlj +

elj
=1∑

j=1,...,m

(1− qalj blj )ωlj ,

where qab = ta + tb − 2tatb ≡
{

0, a and b are equally oriented
1, otherwise

.

It is equal to the sum of weights of contig links with satisfied orientation
and serves as a basis for the optimization objective that is further penalized
proportionally to slack variables.

Slack penalties. The distance and order constraints are added to the
optimization problem through slack variable penalization. The penalty is
proportional to the importance weight of the corresponding contig link and
to the value of the slack variable. To avoid situations when a low-weight
violated constraint results in a large penalty, a maximum penalty of half of
the importance weight is enforced, after which the constraint is considered
disabled. Doing this has the additional benefit of equalizing the influence of
order and distance constraints. To this end we penalize as follows

ωlj

2
·

min(ξlj , Sξ)

Sξ
, (4)

where ξlj is chosen as
→
ξlj or

←
ξlj , according to the contig pair orientation

and Sξ is the maximum slack threshold (after which the slack is disabled).
Because the expression min(ξ, Sξ) is not suitable for direct use in a MIP, it
is unrolled using the switch variables as [αlj ξlj + (1 − αlj )Sξ]. Similar
penalties with variables ∆lj and βlj , and maximum slack threshold S∆ are
used for the order constraints. We set Sξ = 6 (i.e. six standard deviations),
as in Li and Durbin (2009); Gao et al. (2011); and S∆ = 1, as at this value of
slack the physical order constraint is not satisfied anymore. Further, only the
slacks for the appropriate contig pair orientation have to be penalized. This

is achieved by penalizing (1 − talj
)
→
ξlj + talj

←
ξlj in place of ξlj in (4).

This expression “chooses” which slack variable to penalize depending on
the contig pair orientation. Finally, the constraints have to be penalized only
when they are meaningful (i.e. the relative contig orientation elj is assumed
to be satisfied). The resulting function looks as follows:

h(t, α, ξ, Sξ) =

elj
=0∑

j=1,...,m

qalj blj

ωlj

2Sξ

[
(1− talj )

→
ξlj + talj

←
ξlj

]
+

+

elj
=1∑

j=1,...,m

(1− qalj blj )
ωlj

2Sξ

[
(1− talj )

→
ξlj + talj

←
ξlj

]
.

Expansion of this function leads to a fourth degree polynomial, containing
only terms that consist purely of binary variables, or one continuous and up
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to three binary variables. To construct a MIQP formulation, using the big-
M formulation (Nemhauser and Wolsey, 1988), these terms can be replaced
by a single new auxiliary variable each at the expense of introducing new
optimization constraints.

Putting it all together. We maximize

f(x, t, α, β, ξ,∆) ≡ g(t)− h(t, α, ξ, Sξ)− h(t, β,∆, S∆),

s.t. constraints (2) and (3) are satisfied. Here g(t) is maximized for
orientation, h(t, α, ξ, Sξ) is minimized for orientation and distance,
and h(t, β,∆, S∆) is minimized for orientation and order, in a single
optimization objective. Given the NP-hard nature of MIPs and the large
number of binary variables in the proposed formulation, this problem
becomes intractable even for small numbers of contigs.

2.4 Problem splitting
We tackle this intractability with an expectation-maximization (EM) -like
procedure.

The maximization step assumes the contig orientations are known (i.e. ti
and qab are fixed). Knowing ti allows us to choose the slack variables (

→
ξ lj

or
←
ξ lj , and

→
∆lj or

←
∆lj ) depending on the contig pair orientations, and to

select contig links with satisfied relative orientation before the optimization
problem is constructed, significantly reducing the number of optimization
constraints and the complexity of the optimization problem:

f(x, α, β, ξ,∆) = g − h(α, ξ, Sξ)− h(β,∆, S∆)

g =
∑
ωlj ≡ const , h(α, ξ, Sξ) =

∑
min(ξlj , Sξ) ·

ωlj
2Sξ

. (5)

This fixed optimization problem, however, is still NP-hard due to the binary
variables αlj and βlj involved in expansion of the min terms. We obtain an
approximate solution to this problem by first exactly solving its continuous
relaxation, choosing αlj and βlj according to the slack values in the
relaxation solution and finally, re-solving the problem with these values
fixed. The relaxation is obtained by replacing h(α, ξ, Sξ) by h(ξ, Sξ) =

1
2Sξ

∑
ωlj ξlj in (5). This eliminates all binary variables, allowing the use

of efficient optimization algorithms (Dantzig, 1988). The solution for the
relaxed problem gives us optimal values for slacks ξlj and ∆lj , which are
used to choose αlj and βlj as

αlj =

{
0, ξlj > Sξ
1, ξlj ≤ Sξ

, βlj =

{
0, ∆lj > S∆

1, ∆lj ≤ S∆
,

and allows us to re-solve problem (5). The rationale behind is that, since the
majority of link information is assumed to be correct, large slack values will
be associated with incorrect constraints that have to be disabled. The total
penalty for lj is memorized (initially set to zero) for use in the expectation
step as

Θlj ←
min(ξlj , Sξ)

2Sξ
ωlj +

min(∆lj , S∆)

2S∆
ωlj .

The expectation step is used to obtain the expected contig orientations
ti, which maximize the objective function for the previously observed
penalties. Consider the MIQP problem when penalties associated with the
links are known (i.e. ∆lj , ξlj , αlj and βlj are fixed), and the optimal
contig orientation is sought. In this problem, when a contig link is enabled,
its weight is penalized by the associated slack Θlj . We can, therefore,
consider an equivalent problem where all slacks are zero and link weights
are modified as ω̃lj ← ωlj −Θlj . The problem is then to maximize

f(t) ≡ g(t) =

elj
=0∑

j=1,...,m

qalj blj
ω̃lj +

elj
=1∑

j=1,...,m

(1− qalj blj )ω̃lj (6)

free of any constraints. This is an unconstrained binary quadratic
programming (UBQP) problem (Beasley, 1998), the problem of maximizing
a function c(t) = ttCt, where x is a binary vector of length n and C is
an n × n real matrix. Consider a vector of orientations t ∈ {0, 1}n and a

matrix C of size n. Starting from a zero matrix, C = (cij) can be obtained
by updating it for every link lj = (a, b) as

caa ← (−1)
elj ω̃lj + caa , cbb ← (−1)

elj ω̃lj + cbb

cab ← (−1)
elj

+1 · 2ω̃lj + cab .

The functions f(t) and c(t) will then differ by a constant and, therefore,
reach maxima for the same t. Solving a UBQP is known to be an NP-
hard, but well-studied problem with efficient heuristic algorithms available
(Nesterov, 1997; Merz and Katayama, 2004; Pardalos et al., 2008). Thus, the
UBQP formulation of the problem is preferred over (6) for obtaining values
of ti.

The EM steps are iterated while contig orientations change. The algorithm
can be viewed as an iterative UBQP approximation of the original MIQP
problem. In practice, it converges to a solution within 7 iterations.

2.5 Scaffold extraction and post-processing
Repeat contigs in the contig link graph G are connected by ambiguous
links, hindering a confident positioning in scaffolds. In a pre-processing
step, we detect such contigs using a modification of the A-statistic (Myers
et al., 2000) proposed by Zerbino (2009), and prevent their incorporation in
scaffolds by removing all links from G incident to them. The connected
components of G correspond to separate subproblems, which are solved
independently.

After optimization, each solution tuple (x, t, α, β) and corresponding
subgraph G′ are converted into one or more scaffolds. First, contig links
with disabled constraints (i.e. αlj = 0 ∨ βlj = 0) are removed from
G′ to minimize the chance of incorrectly incorporating contigs in the
same scaffold. Every connected component of the resulting G′ is used to
construct a single nucleotide sequence. Contigs are processed in order of
their downstream end coordinates. The left end of the first contig is put at
the start of the sequence; every new contig is added to the scaffold such that
the gap between two consecutive contigs is preserved. When consecutive
contigs are predicted to overlap (i.e. have a negative gap size), the new contig
is pushed upstream to eliminate the overlap.

Because resolving contig overlaps in this way potentially leads
to erroneous sequence reconstruction, we also explore an optional
post-processing approach that performs global sequence alignment on
consecutive contigs to find the best overlap. Global alignment is performed
using a divide-and-conquer version of the Needleman-Wunsch algorithm
(Hirschberg, 1975). Algorithm implementation from the NCBI C++ Toolkit
was used (National Center for Biotechnology Information, 2011). For every
consecutive pair of contigs predicted to have a gap of µ bp, all gap sizes of at
most d = 100 bp away from the predicted value are examined. Negative gap
sizes indicate overlaps. For each gap size g, global alignment of overlapping
contig ends is performed (match score of pmatch = 2, mismatch penalty of
pmismatch = −3). The best gap size is then chosen based on the alignment
score S and proximity to the predicted gap size µ by maximizing

S

g · pmatch
·
d− |g − µ|

d
. (7)

With the (mis)match scores chosen as above, this expression takes values in
[−1.5; 1]. Due to computational complexity only overlaps of no more than
1500 bp are considered (gap sizes with longer overlaps are assigned a score
of -1). The decision to join two contigs, to leave a gap between them or to
split the scaffold is then made:

• If none of the considered gap sizes suggest overlaps, the two contigs
are positioned in a scaffold with a gap of µ bp.

• If value of expression (7) for the chosen gap size g passes a quality
threshold of 0.8, the contigs are positioned to have an overlap of g bp.
The overlap is replaced with the alignment consensus sequence, where
mismatches are masked with unknown nucleotides.
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• If the chosen gap size does not pass the quality threshold and is shorter
than 50 bp, the two contigs are positioned successively one following
another with no overlap.

• Finally, if the chosen gap size suggests a longer overlap, the currently
constructed scaffold is split into two with a new scaffold starting from
a contig that was predicted to lie upstream.

In principle, the proposed post-processing step with scaffold splitting allows
for construction of more accurate scaffolds compared to the naı̈ve scaffold
extraction. We refer to the combination of GRASS and post-processing as
GRASS+.

2.6 Evaluation criteria
Similar to assemblies, scaffolds are evaluated based on accuracy and
contiguity. Scaffold accuracy can be assessed by comparing scaffolds to
available reference sequences. We adopted the evaluation criteria from
Dayarian et al. (2010); Gao et al. (2011) and counted the number of scaffold
breakpoints, i.e. consecutive contig pairs in the scaffold that do not agree
with the reference on contig distance, order or orientation. We perform
local alignment of scaffolds to the reference and count the number of
breakpoints within each scaffold. Two consecutive alignments are counted as
a breakpoint if any of these hold: (a) they align to two different chromosomes
in the reference; (b) their relative orientations in the scaffold and in the
reference do not match; (c) their relative orders in the scaffold and in the
reference do not match; (d) the difference in distance in the scaffold and in
the reference is larger than ∆. We used ∆ = 10 kbp and ∆ = 500 bp to
asses contig distance correctness at low and high resolution respectively.

MUMmer (Delcher et al., 2002) was used to align scaffolds to references.
Best hits for each position in the scaffold were computed. Only hits with at
least 90 aligned bases (alignment length × alignment identity), were taken
into account. In practice, very few alignments do not pass this cutoff. The
alignments are also used to calculate the percentage of the scaffold bases and
the reference bases that are aligned (Salmela et al., 2011). These numbers
capture scaffold accuracy and completeness.

Finally, scaffold completeness and contiguity are captured as in sequence
assembly, calculating total length of all scaffolds, number of scaffolds,
maximum scaffold length and the N50 statistic.

3 IMPLEMENTATION
GRASS source code is available under the GNU GPL v3 license. It was
developed in C++ and tested on Linux. GRASS consists of linker and
scaffolder modules. The linker takes contigs and the available information
sources as input and produces linking and coverage data, which is then used
by the scaffolder module. It filters out repeat contigs and uses the remaining
data to produce scaffolds. Scaffolds are output both as lists of contigs with
assigned coordinates and orientations, and as linear FASTA sequences with
gaps.

3.1 Paired read data processing
To obtain contig links from paired read data, the linker module performs
single-end mapping of the reads to contigs. The algorithm used for mapping
depends on the data type: BWA (Li and Durbin, 2009) for Illumina reads,
NovoAlign (http://www.novocraft.com/) for 454 data. The aligners are set to
output all mapping locations, including non-unique hits, as a SAM file (Li
et al., 2009), which is then converted to BAM for further processing. This
process is applied to each paired read library.

Read alignments are preprocessed to remove read pairs with low-quality
and ambiguous alignments. As a rule, only unique hits with no mismatches
and minimum read length of 30 bp are kept. The filtered alignments are
then scanned for paired reads that align to different contigs. Each such read
pair mapping is used to create a single contig link with distance, order and
orientation constraints derived from the mapping and the given read pairing
method (i.e. paired ends or mate pairs). The BamTools API (Barnett et al.,
2011) is used for filtering and processing read alignments.

3.2 Related genome data processing
An available reference sequence, such as the genome of a related organism,
can be used for guiding the scaffolding process. For this purpose, contigs
are aligned to the reference sequence. For every contig, a position in the
reference sequence is obtained from contig tiling constructed from local
alignments using MUMmer. Contig links are then created for every pair of
consecutive contigs aligning to the same reference sequence, with relative
orientation and order derived from the tiling. To capture alignment quality,
weights for links lj = (alj , blj ) are set to Ialj ×Iblj ×Calj ×Cblj ×W ,
where Ialj and Iblj are alignment identities, Calj and Cblj are alignment
coverages reported by MUMmer for the corresponding contigs, and W > 0
is a weight assigned to the reference sequences as a scaffolding information
source. This procedure is applied for each available reference sequence to
create links, which are then used together in the optimization.

3.3 Optimization problem solution
The EM procedure proposed for solving the MIQP formulation of the
contig scaffolding problem splits it into a continuous linear programming
(LP) problem, and an UBQP problem. Although more efficient algorithms
for solving UBQPs are available (Nesterov, 1997; Pardalos et al., 2008),
a memetic algorithm from Merz and Katayama (2004) was chosen for
ease of implementation. Usually, contig link graphs are sparse due to the
linear scaffold structure that they encompass. Memetic algorithms improve
individual solutions through local search, which in turn is well-suited for
smooth search landscapes (as in the case of sparse contig link graphs). Graph
sparsity is further exploited by implementing sparse matrix operations as in
Merz and Katayama (2004).

We use the C++ Concert API for the CPLEX Optimizer (IBM ILOG,
2011) to solve LPs. CPLEX is freely available for academic use.

4 RESULTS AND DISCUSSION
4.1 Experimental setup
We have evaluated GRASS on de novo HTS assemblies of
three bacterial genomes: Escherichia coli K12, substr. MG1655;
Pseudoxanthomonas suwonensis 11-1; and Pseudomonas syringae
B728a. For these organisms, finished genome sequences and HTS
data from resequencing experiments are available. Presence of
a finished genome sequence allows for reliably evaluating the
algorithm and comparing it to other scaffolders in a de novo setup.
This is achieved by using the reference sequence only in scaffold
evaluation (thus not as an additional information source in the
scaffolding process). The available test data is summarized in Table
1. Insert size and coverage were obtained from paired read mapping
using BWA and BEDTools (Quinlan and Hall, 2010).

Velvet (Zerbino and Birney, 2008) was used to assemble reads
into contigs. All assemblies had a coverage cutoff of 6 and were
not scaffolded by the assembler. Only contigs longer than 150 bp
were kept. Repeat resolution was disabled (i.e. no expected coverage
was provided). For each organism, the k-mer length was chosen
by performing assemblies for various k and choosing one based
on assembly contiguity, length, percentage of mapped single reads,
and percentage of properly paired reads (Li and Durbin, 2009)
(Supplementary Tables 1, 2 and 3). For E. coli, P. suwonensis
and P. syringae, k = 31, k = 59 and k = 23 were chosen
respectively. This way of choosing k reflects real-life de novo
assembly scenarios, yielding a realistic algorithm evaluation. Final
assemblies are characterized in Tables 2-4.
4.2 Comparison to other scaffolders
We compared GRASS to SSPACE, MIP and OPERA scaffolders.
Where required, insert size estimates from Table 1 were used.
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Table 1. Available datasets. NCBI/EBI accession numbers are given for reference sequences and read sets. In all
cases reads were produced by the Illumina sequencing platform.

E. coli P. suwonensis P. syringae

Genome size 4.64 Mbp 3.42 Mbp 6.09 Mbp
Reference NC 000913.2 CP002446.1 NC 007005.1

Dataset SRR001665 SRR001666 SRR097515 SRR191848 ERR005143
Read count 2× 10, 408, 224 2× 7, 047, 668 2× 23, 960, 004 2× 19, 789, 425 2× 3, 551, 133
Read length 36 bp 36 bp 76 bp 76 bp 36 bp
Coverage 160× 107× 709× 824× 38×
Insert size 216± 10 488± 18 189± 17 189± 17 401± 33

(a) E. coli data. Running time ranges in
[8 sec; 27 min 49 sec].

(b) P. suwonensis data. Running time ranges in
[13 sec; 8 min 19 sec].

(c) P. syringae data. Running time ranges in
[1 sec; 72 min 22 sec].

Fig. 4. Scaffold accuracy and contiguity tradeoff on the available datasets. Marker size indicates scaffolding running time in minutes, exact numbers are given
in Supplementary Table 4. GRASS+ using paired reads and two related genomes is shown in (a) as “GRASS+ (all)”.

Tables 2-4 show evaluation metrics calculated for these scaffolders
and the available test data. Unless stated otherwise, all scaffolders
were run with default parameter settings. BWA was used to map
reads to scaffolds and produces SAM files required by MIP. As
in Salmela et al. (2011), at most two mismatches were allowed
in read mapping. For SSPACE and OPERA, reads were aligned
with Bowtie (Langmead et al., 2009) using scripts provided with
the scaffolders.

GRASS used an erosion cutoff of 4 (although better results can be
obtained by tuning this parameter) and coverage estimates obtained
from exact mapping of the reads to the assembly contigs. The latter
is available from output of the linker module.

The SSPACE maximum distance parameter was set to 6 standard
deviations for each paired library. Libraries were input in order of
increasing insert size.

The MIP Scaffolder was also provided with coverage estimates
computed from exact read mapping. Following the original
publication, we tried different filtering parameters (ω, p) and
chose those which gave the highest N50 value. Settings (36, 0.8),
(70, 0.4) and (50, 0.6) were selected for the E. coli, P. suwonensis
and P. syringae data respectively. Maximum partition sizes were set
to 100 for the E. coli scaffolds and 50 for the P. suwonensis and
P. syringae scaffolds. Maximum and minimum insert sizes were
chosen by adding and subtracting 6 standard deviations to the mean
insert size.

OPERA does not allow using multiple read sets. It was applied to
each read library separately, and in the case of P. suwonensis, also
to a join of the available read sets, as they have the same insert size.

The minimum contig length was set to 150 bp, i.e. the contig length
cutoff parameter used in Velvet. We used the default PET parameter
value whenever possible and increased it to the minimum value that
allowed OPERA to finish without triggering a timeout abort. Cutoff
values 6 and 7 were used for the E. coli dataset; cutoffs 27, 5 and 5
were used for the P. suwonensis dataset; and 11 was used for the P.
syringae dataset (values are given in the order of the experiments in
Tables 2-4).

SOPRA was applied to assembly graphs produced by Velvet.
However, when used with parameters chosen in accordance to the
manual provided, SOPRA produced highly fragmented scaffolds
compared to results from Salmela et al. (2011). To allow for a fair
comparison, its results were not taken into account.

As a scaffolder, Velvet was provided with mean insert size and
standard deviation for each library. The data was reassembled with
repeat resolution (expected coverage estimated automatically) and
scaffolding turned on. Its performance was used as a baseline
over which all scaffolders improved on P. syringae data and only
SSPACE and GRASS improved on E. coli and P. suwonensis data.

Tables 2-4 contain the results. Note that the minimum number of
breakpoints is one, due to the circular structure of bacterial genome.
Breakpoints at ∆ = 10 kb and ∆ = 500 bp differ only slightly,
suggesting that gap lengths are estimated with high precision.
SSPACE produced the longest scaffolds for E. coli. It also produced
the smallest number of scaffolds for E. coli and P. suwonensis.
The longest scaffolds and the smallest number of scaffolds on the
P. syringae dataset are achieved by the MIP Scaffolder. Similar
scaffold and reference coverage percentages were achieved by
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all scaffolders. However, GRASS+ has the smallest number of
breakpoints for all considered organisms. Additionally, for the case
of P. suwonensis, GRASS constructed the longest scaffolds and
GRASS+ produced breakpoint-free scaffolds while providing a 2-
fold reduction in the number of contigs. Scaffolds produced by the
MIP Scaffolder and OPERA are either very fragmented or have a
large number of breakpoints.

When constructing scaffolds, scaffolding algorithms balance
between scaffold contiguity and scaffold accuracy. This tradeoff
is captured in Figure 4 by plotting the number of breakpoints (at
∆ = 10 kbp) against the number of scaffolds. A good scaffolder
would be located in the lower left corner of such a plot. In many
cases, GRASS combines a smaller number of breakpoints with a
small number of scaffolds, compared to other scaffolders. The MIP
Scaffolder and SSPACE can achieve smaller numbers of scaffolds,
but at the cost of (much) larger numbers of breakpoints. Clearly,
GRASS and SSPACE represent two possible choices of scaffolding
algorithms, with GRASS being more accurate with respect to the
number of breakpoints and SSPACE constructing longer scaffolds.
This behavior of the two algorithms is consistent over all datasets.

We also measured scaffolding running times, these are depicted
in Figure 4 using marker size. Exact numbers, as well as read
mapping running times are available in Supplementary Table 4.
Like most scaffolders, GRASS spends a majority of its time
on read alignment, making running times of different scaffolders
comparable and running time of the core scaffolding part of GRASS
on the considered datasets negligible. Based on simulation results,
we do not expect computation to become a bottleneck for large
genomes. Nevertheless, to reduce computational load it is always
possible to split the contig graph into graphs of manageable size by
increasing the erosion parameter e.

4.3 Using additional information
To demonstrate the ability of GRASS to utilize various scaffolding
information sources, we used two related genomes (see Figure 5)
to help scaffold the E. coli assembly: DH10B and BW2952. These
genomes were used individually, together and in combination with
paired reads. When combining several information sources, care has
to be taken in choosing the weights Wr and the erosion threshold
parameter e. In individual genome experiments, W = 100 and
e = 80 were chosen to remove links derived from low-quality
alignments. In the experiment using only two related genomes (thus
no links derived from paired read data) a higher weight was given
to the more closely related strain: e = 70 and WDH10B = 80,
WBW2952 = 100 were used for the DH10B and BW2952 strains
correspondingly. For experiments combining a single genome with
paired reads, W = 10 and e = 4 were chosen. Finally, WDH10B =
WBW2952 = 3 and e = 5 were used in the experiment combining
all data (including the paired read constraints) to emphasize use
of links supported by at least two information sources. When
used in the experiment, paired read link weights were set to 1.
A standard deviation of 3000 bp was used for links derived from
related genomes.

Interestingly, using just related genomes GRASS constructs a
smaller number of scaffolds than when only paired reads are used.
Table 5 shows, however, that this is achieved at the expense
of scaffold accuracy: besides having an increased number of
breakpoints, scaffolds constructed based on related genomes alone
have a high total assembly length and, as a consequence, a low

Fig. 5. Phylogenetic tree showing evolutionary distance between the E. coli
MG1655 strain and two related strains. Genome sequences were obtained
from GenBank.

scaffold coverage. The higher than anticipated total assembly length
is due to differences in contig distances (i.e. physical distances
obtained by aligning contigs to a genome sequence) between the
MG1655 strain and the related strains. This is also the reason for
the large differences observed between breakpoints at ∆ = 10 kbp
and ∆ = 500 bp: while relative order and orientation have been
preserved for large parts of the genomes of the considered strains,
the exact physical distances have not. This situation is partially
alleviated when information from the two genomes is combined,
because (a) consistent links (derived from the two genomes) get
higher weights after link bundling, and (b) the more closely related
strain BW2952 was given a higher weight. In this case GRASS is
able to further reduce the number of scaffolds without introducing
new breakpoints.

Combining paired read data with information from individual
related genomes allows for construction of a smaller number
of scaffolds with fewer breakpoints than when using these data
individually. The results vary between repeated runs of the
algorithm, due to inconsistencies between linking information
provided by paired reads and related genomes, combined with the
stochastic nature of the optimization strategy used for solving the
MIQP formulation. Depending on the intermediate solutions found,
different contig links are disabled in the optimization process,
leading to different final solutions and, thereby to different scaffolds.
Table 5 hence shows a range of scaffold and breakpoint counts, and
other results as averages over five repeated runs. This variability is
smaller when all data is combined, since a “voting” approach can
be implemented by setting W and e in such a way that all links
supported by only a single information source have low weights
and are ignored. Using all available information, GRASS reduced
the number of scaffolds by 40% compared to just using paired
reads, at the expense of introducing a single new breakpoint. The
increase in the number of breakpoints is not surprising, as the de
novo scaffolding information is augmented with links derived for
a different (related) organism. The best result on combined data is
shown in Figure 4 (a).

5 CONCLUSION
We presented GRASS, a generic scaffolding algorithm suitable
for combining multiple information sources, as well as GRASS+,
incorporating a post-processing scaffolding step. Its use was
demonstrated by scaffolding genomes based on paired read data
and information in related genome sequences, both individually
and combined. GRASS achieves the best results when all
available scaffolding information is used, as this allows conflicting
information from a single source to be ignored when the majority
of sources do not support it. Such a mode of operation is supported
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Table 2. Contiguity and accuracy statistics of the initial assembly of E. coli and its scaffolds. Results with the smallest number of breakpoints or
scaffolds are shown in bold.

Scaffolder
Breakpoints
∆ = 10 kbp

Breakpoints
∆ = 500 bp

Number of
scaffolds

N50
Maximum
length, bp

Total length, bp
Reference

covered
Scaffolds

covered

Velvet contigs 1 1 481 19,872 73,062 4,535,181 97.44% 99.79%
Velvet scaffolds 9 10 106 171,726 312,219 4,561,490 97.98% 99.74%

SSPACE 15 16 63 178,023 374,265 4,547,685 97.79% 99.70%
GRASS 6 6 116 117,964 267,989 4,546,975 97.53% 99.55%
GRASS+ 2 2 120 112,254 268,030 4,546,640 97.53% 99.55%
MIP Scaffolder 11 12 148 89,070 221,548 4,546,430 97.54% 99.59%
OPERA (SRR001665) 36 38 323 32,799 131,842 4,544,447 97.52% 99.67%
OPERA (SRR001666) 26 28 262 37,330 126,797 4,556,203 97.52% 99.42%

Table 3. Contiguity and accuracy statistics of the initial assembly of P. suwonensis and its scaffolds.

Scaffolder
Breakpoints
∆ = 10 kbp

Breakpoints
∆ = 500 bp

Number of
scaffolds

N50
Maximum
length, bp

Total length, bp
Reference

covered
Scaffolds

covered

Velvet contigs 1 1 303 26,043 90,572 3,394,128 99.01% 99.90%
Velvet scaffolds 4 5 134 57,614 153,169 3,395,148 99.03% 99.78%

SSPACE 2 2 127 60,526 151,961 3,388,872 99.09% 99.99%
GRASS 2 2 138 62,908 152,258 3,394,155 99.02% 99.91%
GRASS+ 1 1 144 53,211 151,938 3,389,098 99.02% 99.91%
MIP Scaffolder 31 32 138 52,743 115,278 3,390,104 99.03% 99.93%
OPERA 17 18 184 45,559 186,349 3,413,751 99.01% 99.34%
OPERA (SRR097515) 1 1 302 26,053 90,582 3,397,028 99.01% 99.81%
OPERA (SRR191848) 4 4 225 34,214 90,582 3,397,065 99.02% 99.84%

by the possibility of choosing weights for the individual information
sources, combined with the contig link erosion threshold.

We compared GRASS to a number of state-of-the-art scaffolders
(SSPACE, MIP and OPERA) on three datasets. GRASS constructs
the most accurate scaffolds on all datasets, while keeping the
number of scaffolds low. Only SSPACE consistently produces lower
numbers of scaffolds, but these are significantly less accurate. The
accuracy/contiguity tradeoff displayed by GRASS puts it in a unique
niche compared to existing scaffolders.

The current implementation of GRASS supports the use of paired
read information and related genomes for scaffolding. However, the
algorithm is not limited to any particular set of information sources.
We will extend GRASS to allow use of other sources, such as optical
restriction maps, RNA-seq and EST data.
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Table 4. Contiguity and accuracy statistics of the initial assembly of P. syringae and its scaffolds.

Scaffolder
Breakpoints
∆ = 10 kbp

Breakpoints
∆ = 500 bp

Number of
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N50
Maximum
length, bp

Total length, bp
Reference
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Scaffolds
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OPERA 14 14 705 18,108 76,357 5,950,236 96.58% 99.17%

Table 5. Contiguity and accuracy statistics of E. coli scaffolds obtained with GRASS+ using additional data. The “≈” sign indicates mean values over 10
repeated runs in cases, when variation was observed.

Reads
used

DH10B
used

BW2952
used

Breakpoints
∆ = 10 kbp

Breakpoints
∆ = 500 bp

Number of
scaffolds

N50
Maximum
length, bp

Total length, bp
Reference

covered
Scaffolds

covered

yes no no 2 2 120 112,254 268,030 4,546,640 97.53% 99.55%
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