
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Do Code Smells Hamper Novice
Programming?

Felienne Hermans, Efthimia Aivaloglou

Report TUD-SERG-2016-006

SERG



TUD-SERG-2016-006

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: -

c© copyright 2016, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Do Code Smells Hamper Novice Programming?
A Controlled Experiment on Scratch Programs

Felienne Hermans, Efthimia Aivaloglou
{f.f.j.hermans, e.aivaloglou}@tudelft.nl

Delft University of Technology
The Netherlands

Abstract—Recently, block-based programming languages like
Alice, Scratch and Blockly have become popular tools for
programming education. There is substantial research showing
that block-based languages are suitable for early programming
education. But can block-based programs be smelly too? And does
that matter to learners? In this paper we explore the code smells
metaphor in the context of block-based programming language
Scratch. We conduct a controlled experiment with 61 novice
Scratch programmers, in which we divided the novices into three
groups. One third receive a non-smelly program, while the other
groups receive a program suffering from the Duplication or
the Long Method smell respectively. All subjects then perform
the same comprehension tasks on their program, after which
we measure their time and correctness. The results of the
experiment show that code smell indeed influence performance:
subjects working on the program exhibiting code smells perform
significantly worse, but the smells did not affect the time subjects
needed. Investigating different types of tasks in more detail, we
find that Long Method mainly decreases system understanding,
while Duplication decreases the ease with which subjects modify
Scratch programs.

I. INTRODUCTION

Scratch is a programming language developed to teach
children programming by enabling them to create games
and interactive animations. The public repository of Scratch
programs contains over 12 million projects. Scratch is a block-
based language: users manipulate blocks to program. Block-
based languages are visual languages, but also use some
successful aspects of text-based languages such as limited text-
entry and indentation, and as such are closer to ‘real’, textual
programming than other forms of visual programming, like
dataflow languages are.

Block-based languages have existed since the eighties,
but have recently found adoption as tools for programming
education. In addition to Scratch, also Alice [1], Blockly1

and App Inventor [2] are block-languages aimed at novice
programmers.

In this paper we explore code smells within the context
of block-based languages. Code smells, a concept originally
coined by Martin Fowler [3], were designed to indicate weak
spots in object-oriented source code that are in need of
improvement, i.e. refactoring. Well-known examples of code
smells are long methods or duplication in source code.

Because code smells were designed for object-oriented
source code, this raises the question whether they can also
occur in other programming paradigms, and whether they

1https://developers.google.com/blockly/

should be considered harmful there too. Recently, it has been
demonstrated that code smells occur in various alternative
programming environments including spreadsheets [4], [5],
Yahoo! Pipes [6] and LabView [7].

The above studies showed that end-users recognize
smells [4], [5] and prefer the non-smelly version of pro-
grams [6]. For example, the latter found that 63% of Yahoo!
Pipes users preferred non-smelly pipes. The preference for
clean pipes increased to 71% for tasks involving laziness
and redundancy smells. Furthermore, Yahoo! Pipes users
performed better on non-smelly pipes: Stolee and Elbaum
furthermore show that smelly pipes lead to worse performance
when asking users to identify a pipe’s output. Given a clean
pipe users succeeded 80% of the time, while for smelly pipes
this number dropped to 67%. Subjects’ completion times also
increased: analysis of smelly pipes took on average 68% longer
than for clean pipes.

Is this paper we explore whether we observe similar patterns
when looking at novices programming with Scratch. As such,
the goal of this paper is to investigate whether code smells
impact novices’ comprehension of Scratch code. To address
this goal, we conduct a controlled experiment using Scratch
with 61 high-school children. We create three different ver-
sions of a Scratch program implementing the ‘Pong’ game.
The first version of this program is a ‘non-smelly’ version,
in a second version we introduced the Long Method smell,
and the final version suffered from the Duplication smell.
We then divide the subjects into three random groups, and
have them perform the same comprehension tasks on their
program, including explaining the program’s behavior and
modifying it. We measure both the time to completion and
the correctness of the tasks of the three groups. The results
reveal that the novice Scratch programmers subjects perform
significantly better on the smell-free programs, but that there is
no difference in their completion time. Investigating different
types of tasks in more detail, we find that Long Method mainly
decreases subject’s understanding of the game as a whole,
while Duplication makes it harder for subjects to modify their
Scratch programs.

The contributions of this paper are as follows:

• The definition of code smells in the context of Scratch
programs (Section IV)

• An empirical evaluation of the impact of these smells
(Section VI)

SERG Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming?

TUD-SERG-2016-006 1



II. BACKGROUND AND MOTIVATION

Block-based languages go back to 1986, when Glinert intro-
duced the BLOX language [8]. BLOX consists of puzzle-like
programming statements that can be combined into programs
by combining them both vertically and horizontally. After
a decade of little activity into block-based languages, they
became a research topic again, starting with Alice [1]. More
recently, new block-based languages have gained widespread
popularity, especially powered by Scratch [9] and Blockly2.
Over 100 million students have tried Blockly via Code.org,
and the Scratch repository currently hosts over 12 million
projects. Unlike in BLOX, in these new block-based languages
the programming blocks can only be combined vertically,
resembling textual code more.

Since their introduction, studies have demonstrated the
applicability of block-based languages as a tool for educa-
tion. Scratch, for example, was evaluated with a two-hour
introductory programming curriculum for 46 subjects aged
14 [10]. This study indicated that Scratch could be used to
teach computer science concepts: analysis of the pre- and
post-tests showed a significant improvement after the Scratch
course, although some concepts like variables and concurrency
remained hard for students.

Moskal et al. [11] compared computer science students who
studied Alice before or during their first programming course
to students that only took the introductory computer science
course. Their results show that exposure to Alice significantly
improved students’ grades in the course, and their retention
in computer science in general over a two year period. A
follow-up study by Cooper et al. [12] obtained similar results,
showing that a curriculum in Alice resulted in improved grades
and higher retention in computer science.

Most convincingly, Price and Barnes performed a controlled
experiment in which students were randomly assigned to either
a text-based or a block-based interface in which they had
to perform small programming tasks [13]. Their experiment
showed that students in the block-based interface were more
focused and completed more of the activity’s goals in less
time.

Summarizing the above, we conclude that block-based lan-
guages have a clear potential to be a great tool for introductory
programming education, in some cases even outperforming
text-based languages.

III. RELEVANT SCRATCH CONCEPTS

This paper is by no means an introduction into Scratch
programming, we refer the reader to [14] for an extensive
overview. To make this paper self-contained, however, we
explain a number of relevant concepts in this section.

Scratch is a block-based programming language aimed at
children, developed by MIT. Scratch can be used to create
games and interactive animations, and is available both as a
stand-alone application and as a web application. Figure 1
shows the Scratch user interface in the Chrome browser.

2https://developers.google.com/blockly/

Fig. 1. The Scratch user interface consisting of the ‘cat’ sprite on the left,
the toolbox with available blocks in the category ‘motion’ in the middle and
the code associated with the sprite on the right. The upper right corner shows
the actual location of the sprite.

A. Sprites

Scratch code is organized by ‘sprites’: two-dimensional
pictures each having their own associated code. Scratch allows
users to bring their sprites to life in various ways, for example
by moving them in the plane, having them say or think
words or sentences via text balloons, but also by having them
make sounds, grow, shrink and switch costumes. The Scratch
program in Figure 13 consists of one sprite, the cat, which is
Scratch’s default sprite and logo. The code in the sprite will
cause the cat to jump up, say “hello”, and come back down,
when the green flag is clicked, and to make the ‘meow’ sound
when the space bar is pressed.

B. Events

Scratch is event-driven: all motions, sounds and changes
in the looks of sprites are initiated by events. The canonical
event is the ‘when Green Flag clicked’, activated by clicking
the green flag at the top of the user interface. In addition to
the green flag, there are a number of other events possible,
including key presses, mouse clicks and input from a com-
puter’s microphone or webcam. In the Scratch code in Figure
1 there are two events: ‘when Green Flag clicked’ and ‘when
space key pressed’

C. Scripts

Source code within sprites is organized in scripts: a script
always starts with an event, followed by a number of blocks.
The Scratch code in Figure 1 has two distinct scripts, one
started by clicking on the green flag and one by pressing the
space bar. It is possible for a single sprite to have multiple
scripts initiated by the same event. In that case, all scripts
will be executed simultaneously. For example, the code on
the left of Figure 5 has five scripts associated with the ‘when
Green Flag clicked’ event.

3https://scratch.mit.edu/projects/97086781/

Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming? SERG

2 TUD-SERG-2016-006



D. Remixing

Scratch programs can be shared by their creators in the
global Scratch repository4. Shared Scratch programs can be
‘remixed’ by other Scratch users, which means that a copy of
this program is placed in the user’s own project collection, and
can be then further changed. The ‘remix tree’ of projects is
public, so users can track which users remix their programs,
a bit similar forking in GitHub. Contrary to forking though,
changes upstream cannot be integrated back into the original
project.

IV. DEFINITION OF SMELLS

We follow the approach of earlier work in smell detection
for end-user languages, where a mapping is defined between
OO concepts and concepts in the non-traditional programming
language. In spreadsheets, for example, worksheets are
mapped to classes and formulas to methods [5]. In work on
Yahoo! Pipes, modules are mapped to classes and subpipes to
methods [6]. In Scratch, we analogize a script (as explained
above, this is a group of blocks started by an event) to a
method, as scripts represents one unit of computation. As
such, an event that has a large number of associated blocks
can be considered to suffer from the Long Method smell. The
second smell that we investigate is the Duplication smell,
in which the similar code is repeated in multiple parts of
the program. This inhibits easy maintenance, as developers
have to make similar changes within the different ‘clones’.
Summarizing, we study the following code smells:

Long Method Scratch code suffers from the Long
Method smell if a group of blocks grows very large. In that
case, it will be hard to understand and modify.

Duplication Scratch code suffers from the Duplica-
tion smell when similar computations or events occur in
multiple places in the program, either within or across sprites.

V. RESEARCH QUESTIONS AND EXPERIMENTAL SETUP

The goal of this paper is to investigate the effect of
code smells on the performance of Scratch users. Similar to
other experiments on program comprehension [15], [16] we
make a distinction between time spent on the tasks and their
correctness. As such, we focus on the following three research
questions:

1) Does the presence of the code smells Long Method or
Duplication in Scratch increase the time that is needed
to complete typical comprehension tasks?

2) Does the presence of the code smells Long Method or
Duplication in Scratch decrease the correctness of the
solutions given during those tasks?

3) Are there certain types of comprehension tasks are
disproportionately affected by the code smells Long
Method or Duplication?

Associated with the first two research questions are two null
hypotheses, which we formulate as follows:

4https://scratch.mit.edu/explore/projects/all/

H10 The presence of the code smells Long Method or
Duplication does not impact the time needed to
complete typical comprehension tasks.

H20 The presence of the code smells Long Method or
Duplication does not impact the correctness of the
solutions given during comprehension tasks.

The alternative hypotheses that we use in the experiment
are the following:
H11 The presence of the code smells Long Method or

Duplication increases the time needed to complete
typical comprehension tasks.

H21 The presence of the code smells Long Method or
Duplication decreases the correctness of the solutions
given during comprehension tasks.

To test the null hypotheses, we create three versions of a
simple Scratch game: a non-smelly version and two smelly
versions: one exhibiting the Long Method smell and one with
the Duplication smell. For these three versions of a Scratch
game, we define a series of typical code comprehension tasks
that are both to be solved by a three groups, each working on
one of the three versions. We use a between-subjects design,
meaning every Scratch user is either in the control group or
in one of the two experimental, ‘smelly’ groups.

A. Subjects

We perform our experiment with 61 high-school children,
in the first year of Dutch high-school. Note that Dutch high-
schools start at the age 12 rather than at the age of 14 as
common in many other countries. Before the experiment we
gathered personal information from the subjects. The subjects
vary in age between 12 and 14, with an average age of
12.8. Out of the 61 subjects, 45 had no prior exposure to
programming, while 16 did have programming experience,
either in Scratch or in the LEGO Mindstorms environment.
We divided the experienced children equally over the different
test groups, as shown in Figure 2. Among the subjects were
38 boys and 23 girls. We did not distribute them evenly over
the test groups as gender was not one of the variables under
study. However, the genders turned out to be balanced quite
evenly, as demonstrated by Figure 3.

B. Program under study

As program in our experiment, we selected a project from
the Creative Computing Handbook [14]. This book consists of
numerous animation and game ideas, plus the corresponding
Scratch code. While called Pong, this game is not the classical
Pong where two players have to hit a ball. The aim of this Pong
game is to ensure that the ball does not touch the lower line
(red in Figure 4). In that case, players lose all their points. For
every time the player hits the ball, they earn a point.

C. Smells

We implemented three different versions of the Pong pro-
gram: one without the smells, one exhibiting the Duplica-
tion smell and one suffering from the Long Method smell.

SERG Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming?

TUD-SERG-2016-006 3



Fig. 2. Subject’s previous exposure to programming divided over the three
different test groups

Fig. 3. Subjects’ gender divided over the three different test groups

Fig. 4. The game of Pong programming instructions as taken from the
Creative Computing Handbook [14].

Fig. 5. Two versions of the movement logic for the Ball sprite in Pong, on the
left hand side the non-smelly version and on the right hand side the version
suffering from a Long Method smell.

The three versions are available in the Scratch repository5.
We have introduced smells in the programs as follows:

1) Long Method : Long Method is introduced in the Ball
sprite, by combining as much logic of the sprite into one script.
For example, instead of having one block for movement and
one to detect touching, everything is combined together within
an if statement. Figure 5 depicts two versions of the logic
for the movement of the Ball sprite in Pong. The non-smelly
version on the left has five separate scripts, one for the start
position, the movement, an event in case of 5 points, and touch
detection for the Paddle and Line respectively, while the smelly
one combines everything in one script.

2) Duplication : Duplication is introduced in the program
by having duplicated events in different sprites. Figure 6 shows
two versions of our programs, the non-smelly version on the
left and the version suffering from Duplication on the right.
The figure shows that, for example, both the Ball detects a
touch of the Paddle, and the Paddle detects a touch of the
Ball. The Ball sprite controls the movement and the points
while the Paddle creates the sound. In the non-smelly version
on the left there is just one script containing all actions when
the Ball touches the Paddle.

Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming? SERG

4 TUD-SERG-2016-006



Fig. 6. Two versions of the movement logic for the Ball (top) and Paddle
(bottom) sprites in Pong, on the left hand side the non-smelly version and on
the right hand side the version suffering from the Duplication smell, since the
‘wait until 5 points’ block occurs in two sprites.

D. Tasks

To select appropriate comprehension tasks, we employ the
comprehension framework from Pacione et al. [17]. Pacione
studied several sets of tasks used in software comprehension
literature and divided them into nine distinct activities. Table
I presents an overview of Pacione’s categories. Table II lists
the tasks we use in our experiment mapped to Pacione’s tasks.
We divide the tasks into three different categories. Tasks T11
to T12 are tasks in which subjects have to explain the code of
one single sprite. In tasks T21 to T23 subjects have to explain
the functionality of the entire system, and in tasks T31 to

5https://scratch.mit.edu/users/Felienne/

TABLE I
PACIONE’S COMPREHENSION ACTIVITIES

Activity Description

A1 Investigating the functionality of the system
A2 Adding to or changing the system’s function-

ality
A3 Investigating the internal structure of an arti-

fact
A4 Investigating dependencies between artifacts
A5 Investigating run-time interactions in the sys-

tem
A6 Investigating how much an artifact is used
A7 Investigating patterns in the system’s execu-

tion
A8 Assessing the quality of the system’s design
A9 Understanding the domain of the system

T33 finally, subject have to make modifications to the game’s
functionality.

We print all tasks on paper answer sheets on which the chil-
dren have to write their answers. We chose for a paper answer
sheet rather than a digital one because we felt that switching
between Scratch and a digital answer sheet on a computer, in
a computer room with relatively small screens, would make
the experiment unnecessarily difficult for participants.

The first and second group of tasks, code explanation (T11
and T12) and system explanation (T21 to T23) are performed
by subjects by only looking at the Scratch code on the
paper answer sheets, on which we included screenshots of
the Scratch code for the two different sprites: the Ball and the
Paddle. Figure 7 shows such a page from the workbook.

When subjects start the modification tasks, they are allowed
to open the program on their computers. For that, the work-
book contains a link to one of the three versions of the Pong
game, which subjects were then asked to ‘remix’. For the
modification tasks (T31 to T33) the subjects both have to write
down a strategy for how to address the change on their paper
workbooks, as well as perform the described change in Scratch
and save their program.

Note that Table II does not have a task associated with
A8 “Assessing the quality of the system’s design”. We do
however close the experiment by asking subjects questions
that reflect on the experiment: including whether they like
the program and why, and whether they like programming
in general and why. In that sense, we have included a task
for A8. However we do not count the scores for that task
towards subjects’ performance and therefore it is not present
in the table. We exclude this task because we feel that,
contrary to professional developers for which Pacione made
the framework of activities, judging a system’s design is not a
core competency for novices. Furthermore, we did not want to
prepare the children for assessing quality, by explaining them
what type of code is good or bad, as that might influence their

SERG Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming?

TUD-SERG-2016-006 5



TABLE II
COMPREHENSION TASKS USED IN THE SCRATCH EXPERIMENT AND THEIR MAPPING TO PACIONE’S COMPREHENSION ACTIVITIES (TABLE I).

WE DISTINGUISH THREE DIFFERENT GROUPS OF TASKS: CODE EXPLANATION (T11 AND T12), SYSTEM UNDERSTANDING (T21 TO T23) AND SYSTEM
MODIFICATION (T31 TO T33)

Task Description Points A1 A2 A3 A4 A5 A6 A7 A8 A9
T11 What does the code in the ball sprite do? 1 X X
T12 What does the code in the paddle sprite do? 1 X X
T21 What are the ways to get points in the pong game? 1 X X X X X X
T22 When have you won the game and what happens then? 2 X X X X X
T23 When have you lost the game and what happens then? 2 X X X X X
T31 Change the game so that is runs up to 10 points. 2 X X X
T32 Make the ball say something if you lose. 2 X X X
T33 Make the ball say something if the ball hits the paddle. 2 X X X
Total 13

Fig. 7. A page from the paper workbook on which subjects filled out their
answers (in Dutch).

performance.

E. Experimental procedure

The experiment is conducted during three guest lectures by
the authors at a high school in Delft. Every session lasted two
hours, of which the first lesson was spent teaching the children
to program in Scratch, by making the maze game using a step-
by-step tutorial. This tutorial is available online6, but note that
it is in Dutch. After the tutorial hour, the experiment starts. The
subjects are then given one of the three versions of the Pong

6http://www.felienne.com/archives/4587

game and all have to answer the same tasks, as summarized
in Section V-D.

F. Variables and Analysis Procedure

The independent variable in our experiment is the presence
of code smells in the programs under study. The first depen-
dent variable is the time spent on the comprehension tasks
as listed in Table II. Time needed is measured by having
the subjects write down the current time on their answer
sheets every time they start a new task. Figure 7 shows a
box for the time on the right. The second dependent variable
is the correctness of the given solutions. This is measured by
applying our solution model to the subjects’ solutions, which
specifies the required elements and the associated scores,
further detailed in Section VI-B.

VI. RESULTS

A. Time Needed to Complete the Exercises

Figure 8 shows an overview of the completion times of
all tasks (T11 to T33). A Shapiro-Wilk test showed that all
three samples follow the normal distribution, with means of
respectively 21.6, 20.0 and 21.9 and standard deviations of
5.2, 5.2 and 6.3. Furthermore the three groups have equal
variance as demonstrated by Levene’s test. An ANOVA test
however resulted in a p-value of 0.520, meaning we cannot
reject H10. In other words there is no significant difference
between the three test groups.

There is no significant difference in completion time
between Scratch users comprehending smelly and non-
smelly Scratch programs.

B. Correctness

To calculate the correctness of the answers given by subjects
we created an answer model. For tasks T11, T12 and T21
subjects could score 1 point, and for T22 and T23, and T31
to T33 they could obtain 2. For T22 and T23 one point is
assigned for correctly answering the first part ‘when have you
lost or won the game’ and one point is assigned for a correct

Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming? SERG

6 TUD-SERG-2016-006



Fig. 8. Time in minutes spent on comprehension tasks (T1 to T33) by three
different test groups. Center lines indicate the medians; boxes indicate the
25th and 75th percentiles; whiskers extend 1.5 times the interquartile range
from the 25th and 75th percentiles. n = 20, 20, 21 sample points.

answer to ‘what happens then’. For tasks T31 to T33 one
point can be obtained for the explanation part and one for
the actual implementation. As such, subjects can score a total
of 13 points. The highest score achieved by subjects was 12,
which two of the subjects achieved, both in the non-smelly
group,while the lowest score was zero, scored by only one
subject in the Long Method group. Figure 9 represents the
correctness data of our experiment for the three test groups.
In this figure, as in all other box plots in this paper, white
boxes represents groups with a significantly different mean.

We used the Shapiro-Wilk test and found all three sample
groups to follow the normal distribution, with means 5.3, 8.2
and 4.9 and standard deviations 2.8, 3.2 and 1.8 respectively.
Furthermore, the three groups have equal variance as demon-
strated by Levene’s test. We thus used the ANOVA test to
compare the three samples, which showed that the means of
the groups differ significantly (p<0.05).

Once we knew about the variation in the three groups, we
used pair-wise student t-tests to compare the groups with
each other. Table III shows an overview of the pairwise
comparisons. There is a significant difference between
performance of students in the non-smelly version of the
Pong game, compared to both the Long Method and the
Duplication groups, with effect sizes 0.892 and 1.276
respectively.

There is a significant difference (p<0.05) in subject’s per-
formance between the non-smelly version of the programs
and both the smelly versions.

Table III furthermore shows that there is no difference
between the two smell types. Apparently it does not matter for
the subjects’ performance which of the two smelly versions
they received.

TABLE III
P-VALUES AND EFFECT SIZES (COHEN D’S) OF THE PAIRWISE STUDENT-T

TESTS BETWEEN THE THREE SAMPLES

Long Method Non-Smelly
p-value

Non-Smelly 0.004
Duplication 0.238 0.001

Effect Size (Cohen’s d)
Non-Smelly 0.892
Duplication — 1.276

Fig. 9. Number of points obtained by the three different test groups. Center
lines indicate the medians; boxes indicate the 25th and 75th percentiles;
whiskers extend 1.5 times the interquartile range from the 25th and 75th
percentiles. n = 20, 20, 21 sample points.

There is no significant difference in subject’s performance
between the Long Method and the Duplication versions
of the program.

C. Differences Between the Tasks

To address our third research question, whether certain types
of comprehension tasks are disproportionately affected by the
two code smells in Scratch, we examine the performance
per task in more detail by examing the three categories of
questions separately. Figures 10, 11 and 12 present the total
scores for each of the three subject groups, for the tasks T11
to T12, T21 to T23 and T31 to T33 respectively.

1) Code Explanation: As hinted on by Figure 10, the
differences in performance in the first two tasks are fairly
small. We did not measure a significant difference between
the three groups for the first three tasks.

We suspect that some subjects were supported by the pic-
tures and the background of the sprites (see Figure 7), reducing
the impact of the smelly code. One of the subjects wrote “You
make something like ping pong” and another subject said “this
looks like Atari BreakOut”. Of course, we could have supplied
the subjects with just the source code without the pictures, but

SERG Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming?

TUD-SERG-2016-006 7



Fig. 10. Number of points obtained by the three different test groups on tasks
T11 and T12. Center lines indicate the medians; boxes indicate the 25th and
75th percentiles; whiskers extend 1.5 times the interquartile range from the
25th and 75th percentiles. n = 20, 20, 21 sample points.

Fig. 11. Number of points obtained by the three different test groups on tasks
T21 to T23. Center lines indicate the medians; boxes indicate the 25th and
75th percentiles; whiskers extend 1.5 times the interquartile range from the
25th and 75th percentiles. n = 20, 20, 21 sample points.

we wanted to simulate a realistic Scratch code comprehension
setting, and within Scratch children have access to all sprites
too.

We believe the impact of the pictures was limited however,
as many subjects specifically referred to program elements in
their answers, for example one subject explaining the Paddle
program saying: “with the one arrow it goes left and with
the other it goes right” and another one even specifying “if
you press the arrow left, x changes with -25 and if you press
right x changes with 15”, which does indicate subjects read
the Scratch code.

Code explanation is unaffected by the presence of code
smells.

2) System Understanding: Figure 11 indicates that in tasks
T21 to T23, the tasks pertaining to understanding the entire

Fig. 12. Number of points obtained by the three different test groups on tasks
T31 to T33. Center lines indicate the medians; boxes indicate the 25th and
75th percentiles; whiskers extend 1.5 times the interquartile range from the
25th and 75th percentiles. n = 20, 20, 21 sample points.

system, the differences are bigger between the three groups,
but these differences are not significant. While there is no
significant difference, it seems that Long Method performs
worst. In the Long Method group, 6 subjects out of 20
indicated they did not know what happened in case the game
was lost or won (as opposed to answering wrong), while
this was only 2 out of 21 for the Duplication group and
3 in the Non-Smelly group. Although the differences are
small, this seems to indicate that the subjects in the Long
Method group perceived the program as more difficult. This
was corroborated by answers to the reflection question in
which we asked what subjects thought of the quality of the
programs they worked with. One of the subjects in the Long
Method group answered the program was “too hard for just
clicking on a some arrows”. We hypothesize that subjects
in the Duplication group performed better here because
they could find answers to the system understanding tasks
in multiple places. For example: the task to answer “when
have you won the game” (which is when reaching 5 points)
for them could be answered by inspecting any of the three
sprites, as they all have events waiting for 5 points are reached.

While not significant, system understanding seems af-
fected more by the Long Method smell.

3) System Modification: In the third final category of tasks
the subjects had to modify the system, by changing the end of
the game to 10 points, and adding text boxes when the game
is lost or the Ball touches the Paddle. Here the differences
between the groups are large, we measure a significant dif-
ference between the three categories (p = 0.002). Comparing
the three categories with pairwise student t-tests, reveled a
significant difference between both the non-smelly and the
Long Method group (p=0.03) and between the non-smelly and
the Duplication group (p=0.0001). There was a difference in
the effect sizes: 0.6 for the comparison of non-smelly with
Long Method and 1.3 compared to Duplication . Thus, the

Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming? SERG

8 TUD-SERG-2016-006



Duplication smell affects system modification more heavily.
When looking into the individual results, we observed

that 5 out of the 21 participants in the Duplication group
made typical ‘duplication mistakes’: they made a change in
one of the clones, but not in the other ones. For example,
they changed the “if points = 5” block in the Ball sprite but
not in the Paddle sprite, resulting in inconsistent behavior
where the winning message is shown at 10 points, but the
cheering sound still sounds at 5 points. We observed subjects
struggling with this inconsistency in the experiment.

System modification is hampered most by the Duplica-
tion smell.

VII. RELATED WORK

A. Code Smells

Efforts related to our research include works on code
smells, initiated by the work by Fowler [3]. His book gives
an overview of code smells and corresponding refactorings.
Fowler’s work was followed by efforts focused on the au-
tomatic identification of code smells by means of metrics.
Marinescu [18] for instance, uses metrics to identify suspect
classes: classes which could have design flaws. Lanza and
Marinescu [19] explain this methodology in more detail. Alves
et al. [20] focus on a strategy to obtain thresholds for metrics
from a benchmark. Olbrich et al. furthermore investigates
the changes in smells over time, and discusses their im-
pact [21]. Moha et al. [22] designed the ‘DECOR’ method
which automatically generates a smell detection algorithms
from specifications. The CCFinder tool [23] finally, aims at
detecting clones in source code, which are similar to our
Duplication smell.

B. Smells beyond the OO paradigm

In recent times, code smells have been applied to programs
outside of the regular programming domain. In our past work,
we have, for example, studied code smells within spreadsheets,
both at the formula level [5] and between worksheets [4].

More recently, we compared two datasets: one containing
spreadsheets which users found unmaintainable, and a version
of the same spreadsheets rebuilt by professional spreadsheet
developers. The results show that the improved versions suf-
fered from smells to a lesser degree, increasing our confidence
that presence of smells indeed coincides with users finding
spreadsheets hard to maintain [24].

In addition to spreadsheets, code smells have also been
studied in the context of Yahoo! Pipes a web mashup tool. An
experiment demonstrated that users preferred the non-smelly
versions of Yahoo Pipes programs [6].

C. Quality of Scratch programs

Finally, there are other works on the quality of Scratch
programs. There is for example the Hairball Scratch exten-
sion [25], which is a lint-like static analysis tool for Scratch
that can detect, for example, unmatched broadcast and receive
blocks, infinite loops and duplication. An evaluation of 100

Scratch programs showed that Scratch programs indeed suffer
from duplication and bad naming [26].

Most related to our study is the work by Moreno et al. [27]
who gave automated feedback on Scratch programs to 100
children aged 10 to 14. Their results demonstrated that feed-
back on code quality helped improve students’ programming
skills.

VIII. DISCUSSION

A. Threats to validity

There are a number of threats to the internal validity of
this study. First of all, some subjects had prior knowledge
of Scratch or programming in general. We have reduced this
threat by distributing the experienced students over the three
groups. Secondly, subjects might have been aware of the goals
of the study. We minimized this threat by not revealing to
students what type of experiment we were performing, we
simply told them after the introductory hour, we wanted to
test what they had learned.

There are threats to the external validity of our study
too. The generalizability of our results could be impacted
by both limited representativeness of the programs and the
participating subjects. To mitigate the risks we used programs
stemming from the Creative Computing guide designed by the
ScratchEd research team at Harvard [14] and we performed
the experiment on subjects from three different school classes.

B. Impact on Scratch remixing

Our findings indicate that Scratch users find it harder to
interpret smelly programs, especially comprehending Scratch
code in the presence of Long Method and modifying code with
Duplication seems to be hard. As Scratch users can inspect
and remix other programs as a tool for learning, this remixing
can be inhibited by smells in programs. A smell detection or
refactoring tool offered to users to improve their code before
sharing might increase the ease with which other Scratch users
could read and adapt their programs.

C. Smell Detection as a Tool for Education

Originally, smells were designed to improve the code, not
the developer. An interesting opportunity of applying code
smells to the educational paradigm is to view smells as
learning opportunities. When a Scratch user inadvertently uses
four subsequent move blocks, instead of a loop, this could be
an excellent opportunity to introduce the concept of a loop to
the user and help them get there from the current code, i.e.
perform a refactoring. However the goal in that case is not to
improve the maintainability of the code, but to make the user
aware of a better way to program, and to introduce them to
or remind them of a programming concept.

IX. CONCLUDING REMARKS

The aim of this paper is to examine code smells in the
context of block-based Scratch programs. As such we have
firstly defined two canonical code smells to be applicable to
Scratch. We have then evaluated those Scratch smells in a

SERG Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming?

TUD-SERG-2016-006 9



controlled experiment with 61 high-school kids. The results
of this evaluation show that subjects performed significantly
worse in the presence of the Long Method and the Duplica-
tion code smell, while not affecting the time subjects need
for the assignments. When investigating the different types of
tasks in more detail, we observe that Long Method mainly
decreases subject’s understanding of the game as a whole,
while Duplication makes it harder for subjects to modify their
Scratch programs.

The contributions of this paper are as follows:
• The definition of code smells in the context of Scratch

programs (Section IV)
• An empirical evaluation of the effect of these smells

(Section V,VI)
The current work gives rise to several avenues for future

work. Firstly, of course, bigger and longer experiments with
a more diverse range of subjects are needed. Would we
measure a bigger effect on eight-year olds? Would the effect
of code smells remain after children become experienced
Scratch programmers? And what about adults like teachers
and parents, using Scratch?

Furthermore, we could research a more diverse range of
code smells. For example. Scratch code could suffer from
the Temporary Field smell, when users define variables or
signals—user created events—that are not used in the program.
Furthermore, Scratch users can define their own programming
blocks with parameters, which could lead to the Many Param-
eter smell.

REFERENCES

[1] M. Conway, R. Pausch, R. Gossweiler, and T. Burnette, “Alice: A
Rapid Prototyping System for Building Virtual Environments,” in
Conference Companion on Human Factors in Computing Systems, ser.
CHI ’94. New York, NY, USA: ACM, 1994, pp. 295–296. [Online].
Available: http://doi.acm.org/10.1145/259963.260503

[2] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor: Create
Your Own Android Apps, 1st ed. Sebastopol, Calif: O’Reilly Media,
May 2011.

[3] M. Fowler, Refactoring: improving the design of existing code. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[4] F. Hermans, M. Pinzger, and A. v. Deursen, “Detecting and Visualizing
Inter-Worksheet Smells,” in Proceeding of the 34rd international con-
ference on Software engineering (ICSE 2012). ACM Press, 2012, pp.
451–460, to appear.

[5] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and
refactoring code smells in spreadsheet formulas,” Empirical Software
Engineering, vol. 20, no. 2, pp. 549–575, 2014. [Online]. Available:
http://link.springer.com/article/10.1007/s10664-013-9296-2

[6] K. T. Stolee and S. Elbaum, “Refactoring Pipe-like Mashups for
End-user Programmers,” in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11. New York,
NY, USA: ACM, 2011, pp. 81–90. [Online]. Available: http:
//doi.acm.org/10.1145/1985793.1985805

[7] C. Chambers and C. Scaffidi, “Smell-driven performance analysis for
end-user programmers,” in 2013 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), Sep. 2013, pp. 159–166.

[8] E. Glinert, “Towards ”Second Generation” Interactive, Graphical Pro-
gramming Environments,,” in Proceedings of the IEEE Workshop on
Visual Languages, 1986.

[9] M. Resnick, J. Maloney, A. Monroy-Hernndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for All,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[10] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning
Computer Science Concepts with Scratch,” in Proceedings of the
Sixth International Workshop on Computing Education Research, ser.
ICER ’10. New York, NY, USA: ACM, 2010, pp. 69–76. [Online].
Available: http://doi.acm.org/10.1145/1839594.1839607

[11] B. Moskal, S. Cooper, and D. Lurie, “Evaluating the Effectiveness of a
New Instructional Approach,” in Proceedings of the SIGCSE technical
symposium on Computer science education, 2005.

[12] S. Cooper, W. Dann, and R. Pausch, “Teaching Objects-first in
Introductory Computer Science,” in Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education, ser. SIGCSE
’03. New York, NY, USA: ACM, 2003, pp. 191–195. [Online].
Available: http://doi.acm.org/10.1145/611892.611966

[13] T. W. Price and T. Barnes, “Comparing Textual and Block Interfaces in
a Novice Programming Environment,” in Proceedings of the Eleventh
Annual International Conference on International Computing Education
Research, ser. ICER ’15. New York, NY, USA: ACM, 2015, pp. 91–99.
[Online]. Available: http://doi.acm.org/10.1145/2787622.2787712

[14] K. Brennan, C. Balch, and M. Chung, CREATIVE COMPUTING.
Harvard Graduate School of Education, 2014.

[15] C. Lange and M. Chaudron, “Interactive Views to Improve the Compre-
hension of UML Models - An Experimental Validation,” in 15th IEEE
International Conference on Program Comprehension, 2007. ICPC ’07,
Jun. 2007, pp. 221–230.

[16] J. Quante, “Do Dynamic Object Process Graphs Support Program
Understanding? - A Controlled Experiment.” in The 16th IEEE Interna-
tional Conference on Program Comprehension, 2008. ICPC 2008, Jun.
2008, pp. 73–82.

[17] M. Pacione, M. Roper, and M. Wood, “A novel software visualisation
model to support software comprehension,” in 11th Working Conference
on Reverse Engineering, 2004. Proceedings, Nov. 2004, pp. 70–79.

[18] R. Marinescu, “Detecting Design Flaws via Metrics in Object-Oriented
Systems,” in Proceedings of TOOLS. IEEE Computer Society, 2001,
pp. 173–182.

[19] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice,
2006. [Online]. Available: http://www.springer.com/alert/urltracking.do?
id=5907042

[20] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from
benchmark data,” in 26th IEEE International Conference on Software
Maintenance (ICSM 2010). IEEE Computer Society, 2010, pp. 1–10.

[21] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution
and impact of code smells: A case study of two open source systems,”
in Proceedings of International Symposium on Empirical Software En-
gineering and Measurement. Los Alamitos, CA, USA: IEEE Computer
Society, 2009, pp. 390–400.

[22] N. Moha, Y. Guhneuc, L. Duchien, and A. Le Meur, “DECOR: A
Method for the Specification and Detection of Code and Design Smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
Jan. 2010.

[23] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
TSE, vol. 28, no. 7, Jul. 2002.

[24] B. Jansen and F. Hermans, “CODE SMELLS IN SPREADSHEET
FORMULAS REVISITED ON AN INDUSTRIAL DATASET,” in Pro-
ceedings of the International Conference on Software Maintenance and
Evolution, Bremen, Germany, 2015, pp. 372–380.

[25] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and D. Franklin,
“Hairball: Lint-inspired Static Analysis of Scratch Projects,” in
Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’13. New York, NY, USA: ACM,
2013, pp. 215–220. [Online]. Available: http://doi.acm.org/10.1145/
2445196.2445265

[26] J. Moreno and G. Robles, “Automatic detection of bad programming
habits in scratch: A preliminary study,” in 2014 IEEE Frontiers in
Education Conference (FIE), Oct. 2014, pp. 1–4.

[27] J. Moreno-Len, G. Robles, and M. Romn-Gonzlez, “Dr. Scratch:
Automatic Analysis of Scratch Projects to Assess and Foster
Computational Thinking,” RED : Revista de Educacin a Distancia,
no. 46, pp. 1–23, Jan. 2015. [Online]. Available: https://doaj.org

Felienne Hermans, Efthimia Aivaloglou - Do Code Smells Hamper Novice Programming? SERG

10 TUD-SERG-2016-006





TUD-SERG-2016-006
ISSN 1872-5392 SERG


