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Preface 

 

Already when I was a little boy, my biggest dream was to become an inventor someday. My 

role model in life was Gyro Gearloose (in Dutch: Willie Wortel), and every night I dreamt 

about new creations that I would build. Although I was raised inlands, and had never sailed a 

ship, one often recurring creation was “the perfect boat”. I remember often telling my parents 

about it, and at the age of 15, I even made a bet with a friend that I would build a boat before 

my 18
th

 birthday. Being more a thinker than a doer, I of course never did it… The big 

problem was that I could never wrap my head around what to optimize for: speed, comfort or 

maybe the ease of building it? 

 

Moving on during my bachelor study’s in physics, the fascination for the concept of the 

perfect boat continued to exist, which motivated me to pursue a master’s in ship design. Being 

used to solving problems analytically, and thus optimal, I was amazed about the often manual 

and sometimes hand-waving techniques still used to design these massive multimillion-dollar 

structures. It took a while before it became clear to me how complex the design of a ship 

really is, realizing that finding only one feasible floating design solution is already a piece of 

art
1
. Nonetheless the desire to work on a method, that at least tries to design ships more 

optimal, remained. The direction for this master thesis then became instantly clear when I 

encountered the TU Delft Packing Approach, a tool that automatically generates thousands of 

ship designs using a genetic algorithm. 

 

The professor in charge, prof. J.J. Hopman, then told me that while analyzing the results from 

the packing approach, it seemed that some designs look a lot like each other: “There might 

even be designs in the dataset which are totally the same, except the bridge is just shifted one 

meter.” It therefore became my job to investigate to what extend this was true, and if maybe 

the set of thousands of designs could be reduced to just a handful of different families of 

designs. 

 

Although this subject seemed to be valid, one of the main struggles during this thesis was 

defining exactly the need for this research. The puzzle pieces started fitting together when 

Koen Droste came up with an article stating that fundamentally, data first has to be structured 

in order to get to knowledge. Thus the reason why you would look whether designs can be 

classified into families, is the same reason why you would just plot two variables, and see 

how they are correlated; you just structure the data in various ways, and see whether new 

knowledge appears. 

 

This motivates a special thanks to my office mates, Koen Droste and Agnieta Habben Jansen, 

for giving such insights and discussing related subjects (often while drinking a nice cup of 

coffee). I furthermore gratefully thank my daily supervisor, Austin Kana, who has not only 

been amazingly kind and helpful, but mainly distinguished himself by being sincerely 

interested in the progress. The same holds for Bijan Ranjbarsahraei, who additionally 

supported me by sharing his wisdom on the various techniques and methods from the field of 

data science in regular meetings, and prof. Hans Hopman, for pointing me in the right 

direction and discussing the bigger picture, even with an overall lack of time.  

 

  

                                                 
1
 Probably every naval architect in training experiences this moment. 
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Last but definitely not least, I want to thank my family and girlfriend. Thanks sister, for your 

remaining interest in the normal human being, despite your incredible set of brains, thus 

helping me a lot with going through processes like these. Thanks mom and dad for the 

immense support I’m getting, every time I need some. And thank you, Simone, for talking 

about the important things in life in Limburgs, making phone calls through random objects, 

discussing whether to eat a sandwich with a croquette, and for dropping nearly every eatable 

item on your clothing. Thus for making me laugh. 

 
T.J.M. Jaspers 

Delft, July 2017 
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Glossary 

 

Term Definition 

Boa, Loa Beam/Length overall 

cb Block coefficient, the ratio of the volume of the submerged part of 

the ship, to the volume of the tightest box around this submerged 

part. 

CoG Centre of Gravity 

dcd Damage control deck, the lowest deck with access through the 

transverse bulkheads. 

displ Displacement 

GM, GMt Distance between CoG and the transverse metacentre height (positive 

if M is above G), which is a metric for initial stability of a ship.  

IECEM Interactive Evolutionary Concept Exploration Method, method 

proposed by Duchateau (2016) for enhancing concept exploration, by 

analysing results from the packing approach where numerical and 

architectural constraints could interactively be added. 

k-means A clustering algorithms that divides a dataset into k clusters. 

MCMV Mine-countermeasures vessel 

NSGA II A multi-objective genetic algorithm 

Packing density The ratio of the volume of the objects in a design, to the volume of 

the total design. Thus a high packing density indicates little empty 

space. 

pc Principal component, a basis vector resulting from PCA 

PCA Principal Component Analysis, a multi-variate data analysis method 

that rotates data, such that the first principal components align with 

directions of high variance. 

RCT Rationale Capturing Tool, the tool developed by DeNucci (2012) that 

captures and stores designer rationale from naval architects. 

SOM Self-organizing maps, a dimensionality reduction method that maps 

mostly a 2D or 3D grid to higher dimensional dataset, which can be 

used to visualize the underlying structure. 

t-SNE t-distributed Stochastic Neighbour Embedding, a dimensionality 

reduction method that mimics the structure of data, which is 

visualized in a 2D or 3D plot.  

WCSS Within Cluster Sum of Squares, the sum of Euclidean distances 

between every data point and its corresponding cluster centre. This is 

often used to validate clusters resulting from the k-means algorithm. 
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Abstract (Summary) 

 

The past decade the packing approach was developed at the TU Delft. This tool automatically 

generates tens of thousands of ship designs in order to fully explore the design space. This is 

opposed to the traditional way of ship design, where just a limited number of designs can be 

elaborated. The result is a set of ship designs that can be used both to obtain initial sizing 

parameters of the ship, and to relate the impact of design decisions on performance 

characteristics. 

 

It is questioned whether resulting sets of designs really contain tens of thousands of different 

ships, or just a couple of really different ships that have only minor variations. It is thus 

questioned whether such a set of ship designs can be divided into families. This is 

investigated in this thesis. 

 

In order to attack this problem in a generic fashion, the ship designs were approached from a 

numerical perspective. It was found that in the field of data science, clustering algorithms 

exist which are devoted to find clustering structures in data. Therefore these techniques, such 

as PCA and k-means, were applied to data at hand. In a test case this method is applied to 

divide the set of designs from a mine countermeasures vessel into families.  

 

First it was questioned whether families could be used in order to assess the survivability of 

machine systems of these ships. The resulting families matched the families regarding the 

position of the gun, which were already known upfront. Although these families are not 

sufficient to fully assess the survivability of these ships, this analysis showed that most 

probably no other structure is present, stimulating more straightforward definitions of 

families. 

 

In a second test case the same MCMV was divided into families regarding the layout of the 

designs. It then appeared that the dataset at hand was built by ten distinct runs of the packing 

approach which were combined to this one total set. The method showed that it could be 

pointed out, just by looking at the designs, which design was generated in which run. This 

showed that the dataset might not be as diverse as it seems. Since it is the core idea for the 

packing approach to explore a big part of the design space, thus generating a diverse set of 

ship designs, this motivates new research to tackle this issue. 
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1. Background 

 

Roughly ten years ago, B.J. van Oers started his PhD, and developed the packing approach 

van Oers (2011). The goal of this tool was to be able to automatically generate a vast number 

of ship designs, and thus explore a big part of the design space. When this objective was 

completed, and datasets were generated with thousands of ship designs, the next problem was 

how to analyze this data. This problem was attacked during the PhD thesis of Duchateau 

(2016), where he developed a method for plotting variables, and interactively adding 

constraints to these plots. This method revealed a lot of information, but also generated new 

questions, since sometimes families of designs appeared in his plots. It was therefore 

questioned whether there were more of these structures present, and how they could be found. 

This led to initiating this MSc thesis project
2
. 

 

In sections 1.2 to 1.5 the fundamental concepts of this thesis are elaborated, which are: 

 

1. The concept exploration phase within the early stage ship design, since this is the 

phase of the design process this thesis is operating in. 

2. The packing approach, which is the tool developed at the TU Delft that generates the 

results used in this thesis. 

3. The concept of families of designs, and why finding these families could be helpful. 

 

Finally in section 1.5 is described how this thesis fits in a broader perspective of ship design, 

and in section 1.6 the research objective is defined. But before discussing these fundamental 

concepts, this chapter is initiated by stating its basic axiom in section 1.1: the Data-

Information-Knowledge-Wisdom pyramid. 

1.1 DIKW pyramid 

 

Before going into the design of ships, this chapter starts on a more philosophical level by 

introducing the Data-Information-Knowledge-Wisdom pyramid (DIKW pyramid), which was 

first described by Ackoff (1989), and is displayed in Figure 1. Although often assumed 

implicitly, it is believed by the author that this pyramid is the basic axiom for justifying the 

need of this thesis. It shows that in order to get to knowledge and finally wisdom, data has to 

be gathered and converted into information, which in turn has to be interpreted. This 

corresponds to the structure of this thesis, since data is generated by the packing approach that 

is tried to be structured into families (information) in order to acquire knowledge and wisdom. 

The pyramid can be explained as follows
3
, using the definitions by Ackoff (1989): 

 

- Data is a collection of symbols. As an example assume having data collected on 

various ships, including seasickness of their captains. 

- Information is data that is processed to be useful. In the example plots can be made 

from the data, including a plot of the seasickness of the captain versus the position of 

the bridge. 

- Knowledge is the application of data and information. It answers “how” questions. 

Answering how seasickness of the captain and position of the bridge are related, the 

                                                 
2
 Parts of this thesis has been published in Jaspers and Kana (2017). 

3
 There is still disagreement on the exact shape and definitions, although there seems to be consensus that the 

definition of each element (except data) uses its predecessor Rowley (2006). 
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plot shows that when the bridge is closer to the bow, the captains suffer more from 

seasickness. 

- Wisdom is the appreciation of why. When the bridge is closer to the bow, it is further 

from the ships center of rotation. Following the law of the lever, the bridge, including 

the captain, will encounter higher accelerations, which causes seasickness. 

 

 

 
Figure 1: The DIKW pyramid as presented in Rowley (2006). 

In the jargon of ship design, acquiring knowledge is often seen as the goal, instead of 

generating wisdom. This is no problem, since the process of converting knowledge to wisdom 

does not need planning or description. People inherently try to explain why things happen. 

Thus in the rest of the thesis when the term knowledge appears, assume that wisdom will 

always result from it. 

1.2. Concept exploration 

 

Early stage design is the initial phase in ship design where the balance between the different 

desired performances of the ship is explored. The result is normally one design that is further 

elaborated during the subsequent contract design phase. Early stage design is often initiated 

by performing concept exploration. The main goal of concept exploration is acquiring 

knowledge about how designs decisions influence performance characteristics Duchateau 

(2016). This means investigating the relation between design space (spanned by the design 

variables) and performance space (spanned by the performance attributes), which is illustrated 

in Figure 2. Acquiring knowledge means running through the DIKW pyramid, therefore, as 

data source, various concept designs are elaborated. But, as is argued in Duchateau (2016), in 

ship design there are typically many dependencies and interactions between the design 

variables. In order to map this complex network of interrelations, the design space has to be 

searched thoroughly. 

 

Another typical property of ship design is the vast number of design options, which results in 

a very high dimensional design space Duchateau (2016). Examples for variations start on a 

high level as there are often various functions needed, with multiple distinct system 

configurations covering the same functional requirements, which in turn consist of multiple 

possibilities for sub-systems. Additional there are numerous design variations, such as length, 

beam, positions of all compartments, sizes of the compartments, hull shape, shape of the 
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superstructure, and so on. Combining the high dimensionality of the design space with the 

need for a thorough search means that a vast amount of designs has to be elaborated. 

 

During concept exploration of complex ships, new requirements and/or new relations between 

requirements can be elucidated. This results in an iterative process called requirements 

elucidation Andrews (2013). On top of that, the traditional method of manually iterating 

through the design spiral is very time consuming. These aspects cause that in general only a 

small part of the design space is explored, which leads to an increased probability of 

converging to a suboptimal design, Vasudevan (2008), Duchateau (2016). In order to explore 

the design space more extensively, the ‘packing approach’ was developed at the Delft 

University of Technology, which automatically generates tens of thousands of coarse feasible 

ship designs.  

 
Figure 2: Illustration of the main purpose of concept exploration; investigate the relation 

between design and performance space Duchateau (2016) 

1.3 The packing approach 

 

The packing approach is a tool that assists in the concept exploration process. The idea is to 

automatically generate a vast number of low level of detail feasible ship designs that cover a 

significant part of the design space. The resulting dataset of ships can then be used to identify 

design drivers and trade-offs for the particular design, and to deduce initial sizing parameters 

for starting the design process. The packing approach, as displayed in Figure 3, consists of 

three steps which are iterated to constitute the desired set of ship designs: 

 

1. The packing algorithm includes the parametric model of the ship. Its input is a 

chromosome vector of values between zero and one, which is converted to a ship 

description regarding the ship model. This model consists of the definition of its 

building blocks and the rules of how these blocks may be packed (packing-rules), 

which is all defined upfront for a particular design. 

2. Then performance measures are calculated for the design. Examples are: packing 

density, building cost, operating cost, resistance/speed, stability and displacement. 
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3. These performance measures are fed into a genetic algorithm (NSGA II) allowing the 

values for the predefined objective function and constraints to be calculated. The 

default objective is maximizing the packing density
4
, thus stimulating the generation 

of denser designs. If the constraints are met, the design with its performances is stored. 

These constraints are typically non-negotiable requirements as: sufficient initial 

stability, all objects are packed, and the initial assumed design draft exceeds the final 

calculated draft (guaranteeing that the design speed is reached). The genetic algorithm 

returns a new chromosome, initializing a new iteration. It uses a very high mutation 

rate, intended to result in a high diversity
5
. This motivates referring to the algorithm as 

a search algorithm instead of an optimization algorithm. 

 

This process and more details of this approach can be found in van Oers (2011), van Oers 

(2012) and Duchateau (2016). 

 

 

 
Figure 3: Illustration of the packing approach Duchateau (2016) 

 

The resulting data set may consist of tens of thousands of designs, where each design has 

hundreds of design and performance attributes. Structuring and visualizing this data converts 

it into information, so that knowledge might be acquired. One visualization method applied to 

the packing approach is described in the Interactive Evolutionary Concept Exploration 

Method (IECEM) by Duchateau (2016). He proposed a method of displaying the data in 

                                                 
4
 In practice it minimizes the negative packing density, which is equivalent. 

5
 Diversity in this context is different from diversity as used in Doerry (2015), where it is defined as a metric 

measuring the adaptability of systems in a single design while remaining feasible. 



       

18 

 

matrix scatter plots, where numerical and architectural constraints could interactively be 

added. In Figure 4, L, B, GM and packing density are plotted, and the constraint added is that 

designs have deck 4 as damage control deck (dcd) instead of deck 5. Several results can be 

deducted from this figure. The bottom left plot shows for instance that the length and packing 

density are negatively correlated (this is knowledge). The reason is that since a longer design 

has more space available, it has therefore more empty space to fit the same number of objects 

(this is wisdom). Furthermore looking at the blue group (where dcd = 4) versus the grey group 

(where dcd = 5) in the middle plot, a higher dcd results in a lower GM. This is because 

objects (such as the main gun) should be located above dcd, which raises the center of gravity, 

and thus lowers the GM. 

 

 
Figure 4: Visualization method of packing data as described by Duchateau (2016). 

Various features are selected for plotting in matrix plots and interactively constraints can 

be added. 

 

Although the plots in Figure 4 contain a lot of information, they also raise new questions. 

Looking for instance at the families present in the middle plot, they are not separated in the 

plot in the lower left corner. Realizing that these plots all represent the same multi-

dimensional data cloud, projected on different 2D subspaces, this then automatically raises the 

question whether other perspectives might reveal other families. These other families might 

then be even more different than the families already obtained in these plots. Or more 

importantly, these families might reveal new knowledge of the data at hand. These questions 

are the essence for initiating this research project, which is further elaborated in the next 

section. 
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1.4 Families of designs 

 

The goal of this thesis is to investigate whether the resulting designs from the packing 

approach are dividable into families of ship designs. Families of ship designs are defined as 

being subsets of designs that share a clear similarity within design and performance attributes. 

Additionally these families should be clearly different when comparing designs between 

different subsets. The justification of this goal finds its origin in the DIKW pyramid: it’s 

another way (besides the IECEM) of structuring the data, thus converting it to information. 

This in turn might result in acquiring new knowledge of the relation between design and 

performance space, which might not have been possible before. 

 

Figure 4 already showed that certain families can be detected using the IECEM. But in order 

to show that the IECEM is not sufficient to reveal all structure, the artificial dataset in Figure 

5 was created. Looking at the data from the 2D plots (Figure 5a-c), there is no special 

structure present. But rotating the data in 3D space (Figure 5d), reveals that the data actually 

consists of two distinct families. These are exactly the type of structures that are sought in this 

thesis. Examples of how the identification of families might result in knowledge are: 

 

1. Relating families: When families in the design space relate to specific parts of the 

performance space. 

2. Hypothesis generation: Explaining why these families appear. 

3. Data reduction: When the families hand a structure to the naval architect for 

systematically analyzing it. 

 

These examples will be elaborated further in the following sections. 

 

 
Figure 5: In this artificial dataset no clusters are detected by looking at 2d plots of (a), (b) 

and (c), whereas looking in 3d does reveal two clusters (d). 

 

1.4.1 Relating families 

 

Finding families of designs could aid in predicting certain performance characteristics. This 

happens when the families of designs correspond to specific regions of the performance space 

as is illustrated in Figure 6. The naval architect would then have a better understanding of the 

relation between design and performance space, thus improving the quality of concept 

exploration. 
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Figure 6: Illustration of how families in the design space 

could be related to certain parts of the performance 

space  

 

An example is presented in Droste (2016), where he defined different luxury levels for a 

cruise ship design. Examining the impact of these families (regarding the design parameter 

“luxury level”) in a performance space is shown in Figure 7. High luxury level causes a jump 

in both building costs and earning potential, creating two distinct families, clearly showing a 

tradeoff to be made. 

 

 
Figure 7: Various designs plotted in performance space, divided 

into families based on luxury level, Droste (2016) 

 

When such a gap appears as in Figure 7, it is either not possible for a design to fit in the gap, 

or the algorithm failed to find such designs. Which of these two hypotheses to accept, is likely 

to be motivated by explaining why the gap occurs. For this case the explanation that 

implementing a higher luxury level causes both higher building costs as earnings seems valid, 

thus is expected that it is not possible for a design to be in the gap. On the other hand, the 

small gap within the medium luxury level family could be caused by the algorithm failing to 

find designs in this region, especially since in the same region for the higher luxury level, this 

gap is much smaller.  

 

Another example can be found in Sileryte et all (2016), where a parametric varied design set 

of a swimming stadium is analyzed using multivariate techniques. Various clusters are 

identified, which relate to particular performance characteristics. For instance several clusters 

have very poor aesthetical performance, which are thus discarded. 
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1.4.1.1 Analogy with machine learning 
 

Machine learning is the field of study where algorithms are developed that are able to learn 

from existing data (referred to as the training set) in order to make predictions Fox and 

Guestrin (2015). An example is the prediction of house prices from known features such as 

location, living area, presence of a garden and volume. There is a wide variety of predicting 

algorithms available, but an often used approach is artificial neural networks. An important 

step in building a good predictor is feature building, where new features are being built from 

the existing features which are important to make better predictions. An example is adding the 

feature “garden area”, when the area of the lot and first floor living area are known. Another 

example is clustering the houses. Whether a house then belongs to a certain clusters (for 

instance corresponding to our notion of social housing), could be important to predict its 

price. Applying clustering algorithms for feature building is a commonly used technique Liu 

and Motoda (2008). 

 

In the analogy, concept exploration is the process of training a natural neural network (the 

naval architect) to predict performance characteristics from design features. ‘Predicting 

performance characteristics from design features’ in this sense thus corresponds to 

‘understanding the relation between design space and performance space’. Finding families of 

ship designs in the design space could then reveal new features to allow the naval architect to 

make better predictions of its performance characteristics. This shows why the identification 

of families could be useful. 

 

1.4.2 Hypotheses generation 

 

 
Figure 8: Illustration of hypothesis 

generation 

Finding families of designs automatically leads to the generation of hypotheses about why 

these families exist. In fact, these hypotheses might elucidate the discontinuous response 

behavior caused by continuous input variables as discussed by Duchateau (2016). He argues 

that the continuous longitudinal position of a working deck may cause discontinuous behavior 

in displacement, due to the restructuring of the top-deck layout around the working deck. He 

finally concludes that Duchateau (2016, pp. 10): “The challenge lies in identifying when 

these jumps occur”.  

 

The middle plot of the GM value versus beam in Figure 4, which consists of two families 

serves as an example of hypotheses generation. When these families were detected, it was 

first hypothesized that the height of the double bottom (which could be either 1m or 1.5m) 

caused the gap. It was expected that all objects would increase in height, resulting in a higher 
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center of gravity (CoG), causing a lower GM value. However, this effect was apparently too 

small to cause the gap. Later it was confirmed, as illustrated by the blue color, that the 

families are caused by the damage control deck (dcd) being either deck 4 or 5. The reasoning 

is very similar, since many objects should be above dcd, resulting in an increased CoG when 

the dcd is increased. 

1.4.3 Data reduction 

 

 
Figure 9: Illustration of data reduction.  

 

As is illustrated in Figure 9 it is questioned whether the tens of thousands of designs resulting 

from the packing approach are really different, or whether the total set can be represented by 

only a handful. This might be obtained by dividing the set into families and selecting a 

representative design for each family. Since the manual analysis of a ship design is time 

consuming, reducing the data would aid the naval architect in selecting which designs to 

investigate.  

 

Additionally it might be possible to reduce the data, using data characteristics 

corresponding to a specific performance characteristic. If families do emerge, an initial 

estimation of the performance characteristic could then maybe be obtained. This is only the 

case if the performance is roughly constant for designs within a family. For instance 

aesthetics is a typical performance characteristic which is hard to quantify, and is therefore 

often manually investigated. But since aesthetics is mostly depending on the silhouette of 

the design, reducing the data regarding the silhouette parameters of the design could 

therefore aid the designer to efficiently quantify such a performance characteristic. 

1.5. Scope of this thesis 
 

In this section is discussed how this thesis, and the packing approach in general, fit in the 

broader perspective of ship design. A widely used and fairly simple illustration of the ship 

design process is the design spiral, which was first proposed by Evans (1959) as depicted in 

Figure 10. Advantages of the design spiral are the illustrations of both the inherent iterative 

nature of ship design, and the dependencies of each individual step on its predecessors 

Andrews (1998). Downsides are however that convergence is not guaranteed Hopman 

(2017), the order of calculation of its elements can vary per ship type and iteration Andrews 

(1998), and it only describes the technical aspect of the design, thus omitting the holistic 

perspective. 

 

The packing approach can be viewed as repeatedly running through the outer circle of the 

design spiral, since it defines or calculates every aspect of a particular design just once. 

Assuring the convergence of the spiral during next iterations is obtained by implementing 
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various constraints. An example is the draft 𝑇 (which is an input value), and is amongst 

others used to calculate the necessary propulsion power. At the end, when weight 

estimations are completed, a constraint is verified whether the new draft 𝑇′ is smaller or 

equal to the initial design draft 𝑇. This ensures that the propulsion plant is at least big 

enough. 

 

Furthermore, the order of calculating each aspect is different from the order depicted in 

Figure 10. The initial fixed values are the hull shape and size (L, B, T), followed by the 

internal compartment division (deck and bulkhead
6
 positions). Next the required size for the 

propulsion room (and potentially other objects) is determined, which is followed by the 

packing process, meaning that the positions of all objects are determined. Finally 

performances such as cost, weight and GM are calculated and corresponding constraints are 

evaluated. 

 

 

 
Figure 10: The design spiral as presented in Evans (1959). Packing 

only calculates the outer circle. 

The scope of this research however is harder to grasp using the design spiral, since it is 

‘the’ model for designing a single design (i.e. point-based design), while this research is 

based on a set of designs, which fits better in the philosophy of set-based design Singer et 

all (2009). On the other hand, in the V-diagram depicted in Figure 11 the scope of this 

research can be visualized. An advantage of this diagram, resulting from the field of 

systems engineering, is that it shows the design system being part of a bigger system (i.e. 

the holistic view). In this representation, the packing approach itself deals with integration 

of the physical architecture. This thesis however (just as the IECEM), engages on the data 

resulting from the packing approach, aiming to both understand the structure of the design 

space itself as to relate design attributes to performance characteristic, thus expanding the 

scope as indicated in Figure 11. 

                                                 
6
 An exception is that bulkheads can sometimes be replaced in order to increase the probability of packing large 

systems such as the propulsion plant. 
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Figure 11: Systems engineering V-diagram as used in Hopman (2017), with scope of 

this research included. 
 

Finally, Figure 12 represents a decomposition of information needed for the design of a ship, 

as presented in Brefort et all (2017). The three main classes of information are identified to be 

the physical, logical and operational architectures which represent respectively the spatial 

information, functional relationships between components, and temporal behavior 

characteristics. Within this framework, the research presented in this thesis focusses on the 

physical architecture of the designs. This class can in turn be divided into information on the 

overall ship configuration, and information on the components of a certain distributed system, 

where this research focusses on the former. 

 

 
Figure 12: Representation of the framework that 

decomposes the information needed for a system, 

as presented in Brefort et all (2017) 

 



       

25 

 

 

1.6. Research objective 

This thesis aims to expand the amount of information extracted from the data resulting from 

the packing approach in order to enhance the concept exploration phase in ship design. This is 

obtained by dividing the resulting design sets into families of ship designs. Therefore the 

research objective reads: 

 

Elucidate families of ship designs within the design set resulting from the packing 

approach, leading to new knowledge of the data at hand. 

 

A first step in approaching this objective is investigating which designs are resulting from the 

packing approach, how these designs can be compared, and which differences between 

various existing sets resulting from the packing approach exist. This is elaborated in chapter 

2. Next, in chapter 3 the method for finding these families is discussed, which is in turn 

applied to various test cases in chapter 4. Finally, the results feed into the discussion, 

conclusion and contributions in respectively sections 5-7.  
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2. Initial packing results investigation 

 

In order to get a hang of the data sets at hand, some initial investigations are performed in this 

chapter. Since families are defined on the basis of comparison between designs, it is first 

investigated what it means for designs to be either different or similar. Second a comparison 

is made between the available design sets, revealing certain characteristics of these sets, and 

enabling making a decision which data set is best for a test case. 

 

2.1. Design comparison 

 

As an initial investigation, designs with similar performances (and thus from a single cluster) 

are analyzed manually. It is questioned to what extent these designs are really different. For 

this purpose, the design set of cruise ships as designed by Droste (2016) is used. Due to the 

competitive commercial industry of cruises, the main relevant performance characteristics are 

their cost performances. Therefore in this section a selection is made based on the cost and 

operating expenditures (OPEX) of the designs, see Figure 13. Six designs are selected with a 

cost of 57 MEUR and an OPEX of 24.5 MEUR, which are plotted in Figure 14. First the 

designs are compared based on direct physical attributes, and then based on numerical 

analysis of their chromosomes. 

 

 
Figure 13: Cost versus OPEX plot of all designs resulting from 

the packing algorithm as used in Droste (2016), including the 

selection constraints for the six designs in Figure 14. 
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2.1.1 Compare physical attributes  

 

Initially the designs are compared based on their main dimensions, which are listed in Table 

1. It reveals that regarding these main dimensions, the designs are quite similar. This was to 

be expected, since cost and displacement are often heavily correlated, and the designs were 

selected to have the same price. The only notable differences are that design F is a bit longer 

and narrower, and that the GM values fluctuate a bit. For designs A to E, the fluctuating GM 

reveals that there are differences in the layout, since the only cause can be a change in weight 

distribution. For design F the lower GM seems to be caused by its higher L/B. 

 

Table 1: Table of the main properties of the six selected cruise ship designs 

Tag ID Loa Boa T Displ Volume Cost Packing density GMt 

A 63460 139 19.9 5.92 8828 35974 57.03 0.75 0.5 

B 60330 139 20.2 5.86 8844 35695 57.03 0.75 1.0 

C 15941 140 20.5 5.79 8878 35277 57.04 0.74 1.6 

D 15231 139 20.2 5.85 8854 35700 57.04 0.75 0.8 

E 85601 139 20.2 5.89 8902 35721 57.04 0.74 1.1 

F 69788 146 19.1 5.90 8862 35741 57.08 0.75 0.2 

 

 

The layouts of the different designs are plotted in Figure 14. A first thing to notice is that 

there are no two designs clearly similar. A comparison of the shapes and sizes of the different 

superstructures is already sufficient to confirm this notion. It is however possible to find 

similarities based on various properties, especially when assessing the layout: 

 

- The three recreational spaces (restaurant, lounge and theater) are in the same location 

for designs A and E (encircled with dots). 

- Generator room positions, indicated with dark green, are the same for the designs A, 

B, C and F 

- The positions of both hospitals, indicated in red, are near the bridge for all designs. 

 

This list can easily be expanded, and shows that there is no clear way to define the designs as 

being similar. In fact, while the designs are very much alike regarding their main properties, 

visually they are all different in various ways. 
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Figure 14: Side view representation of the six selected cruise ship designs 

2.1.2 Chromosomal comparison 

 

Since the packing approach uses a genetic algorithm, each design in the packing approach is 

fully described by a chromosomal representation X, which is a vector of values between 0 and 

1. For the cruise ship designs the length of its chromosome N=166. Numerically comparing 

two of these chromosomes could then be obtained by calculating the distance between the 

chromosomes in N-dimensional space. A large distance would ten correspond to designs 

being very different. Therefore as a first step in comparing two chromosomes, a normalized 

version of the city block distance is calculated: 

 

3

𝑁
∑|𝑋1,𝑖 − 𝑋2,𝑖|

𝑁

𝑖=1

 

 

The factor 3/N is for normalization, since if the two chromosomes would be created 

completely random, the expected value for the proposed sum would be N/3. A value of about 

1 (or higher) would therefore indicate that the chromosomes are as different as randomly 

generated chromosomes while a value of 0 means that the chromosomes are identical. The 

results listed in Table 2 show that, while all values are drastically lower than 1, designs can be 

divided into three groups; A, B, E and F form one group and designs C and D form two 

individual groups. 

 

Table 2: Comparison of the designs by normalized city block distance 

Normalized Σabs(∆xi) A B C D E F 

A 0 0.18 0.54 0.58 0.29 0.18 

B 

 

0 0.55 0.57 0.24 0.16 

C 

  

0 0.47 0.57 0.53 

D 

   

0 0.62 0.56 

E 

    

0 0.22 

F 

     

0 
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Next is investigated how the designs are related to each other in the family structure of the 

genetic algorithm, but the problem is that this information is not directly available in the data. 

This is attacked by looking at the number of genes that are exactly the same, since when a 

new offspring is generated, they will have approximately half of their genes exactly match the 

genes of both parents. In Table 3 gives the percentage of fully equal genes between the 

different designs, which is called the Hamming similarity (inverse of the Hamming distance 

as defined by Hamming (1950)). The result looks a lot like Table 2, showing that the four 

designs A, B, E and F are probably 1
st
 order related (direct parents children relations), while 

designs D and C are probably 4 or 5 generations detached from all other designs. 

 

Table 3: Comparison of the designs by Hamming similarity 

Percentage equal xi A B C D E F 

A 100% 58% 4% 1% 41% 53% 

B 

 

100% 4% 3% 45% 56% 

C 

  

100% 4% 5% 5% 

D 

   

100% 3% 3% 

E 

    

100% 49% 

F 

     

100% 

 

The similarity metrics used in this section give a much better grasp on the comparison of the 

designs. It for instance gave a fair argument how the designs can be divided into three 

different groups (group A-B-E-F, group C and group D). Furthermore although all designs 

were very close to each other in Figure 13, they are still different. 

 

2.2. Set comparison 
 

At the TU Delft, next to the design set of the cruise ship model from the previous section, a 

design set from a mine counter measures vessel (MCMV) is available, which was created in 

Duchateau (2016). An example of one design is displayed in Figure 15 including an 

explanation of its objects. The goal in this section is twofold. First an initial assessment of the 

composition of these design sets is made. This could aid in understanding emerging families 

in the rest of this thesis. A second goal is to select one of these sets which can be used for a 

test case.  
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Figure 15: Example of a MCMV design from Duchateau (2016) 

The number of designs is in the same order of magnitude for both sets. The cruise ship design 

set has about 22000 designs, while the MCMV design set has just over 17000 designs. 

Regarding the columns of the datasets, there are many differences in both design 

characteristics as performance attributes, which makes comparison difficult. However, they 

do share the property that both designs are fully represented by a chromosome, which is thus 

a logic starting point for the comparison. 

 

Table 4 shows the composition of the chromosome for the MCMV model. It contains 106 

genes, of which 43𝑥2 = 86 genes correspond to the initial x- and z-positions of its 43 

objects
7
. The remaining 20 genes consist of: 

 

- 3 for varying requirement settings 

- 6 variables define the envelope 

- 3 for varying deck heights 

- 4 define the positions of the bulkheads 

- The last 4 genes are switches influencing the layout:  

o Whether a gun is present, and its firing direction 

o Whether there are Davits on deck 

o How the uptake is connected to the engine. 

 

The chromosome defining the cruise ship model on the other hand consists of 166 genes. 

Although this is just about a 50% increase in the amount of genes, the amount of variation in 

the design space increases exponentially regarding its dimensionality. The design space is 

therefore less likely to be sufficiently explored. For this model, 75𝑥2 = 150 genes define the 

initial positions of the 75 objects. The other 16 genes correspond to the remaining genes 

discussed for the MCMV, but without any genes defining switches for the layout.  

  

                                                 
7
 When the objects positions are initialized, the packing algorithm starts shifting these objects to positions so that 

they fit inside the hull, and do not overlap with other objects. 
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Table 4: Composition of the chromosome as defined for the MCMV model 

Group Number Component Remark 

R
eq

. 1 V_max   

2 V_cruise   

3 Range   
En

ve
lo

p
e 

4 Hull type always the same 

5 L_oa   

6 T   

7 B   

8 Bow factor   

9 Stern factor   

D
ec

ks
 10 Tank top height 1 or 1.5m 

11 Deck height always 2.5m 

12 
Damage control 
deck deck 4 or 5 

  13-16 2 objects x,z   

B
u

lk
h

ea
d

s 17 Number bulkheads 

Cosine bulkhead 
placing 

18 Minimal distance 

19 fwd_l_fact 

20 aft_l_fact 

  21-28 4 objects x,z   

  29 Uptake side switch   

  30-43 7 objects x,z   

  44 MRSV Davits on/off   

  45-48 2 objects x,z   

G
u

n
 49 Gun on/off   

50 Firing direction   

  51-106 28 objects x,z   

 

The next step in comparing the design sets is examining histograms of the gene values. In 

Figure 16 and Figure 17 six examples are displayed of respectively the cruise ship and the 

MCMV. In all histograms there are one or more peaks present, which is due to using a genetic 

algorithm in the packing approach. The genes from Figure 17 a-c and f, have a relatively high 

variety with multiple peaks, which do not exceed 20% presence. The genes from the cruise 

ship on the other hand show a much smaller variety, with peaks often exceeding 40% 

presence. It seems therefore that for the cruise ship design the packing algorithm remained 

searching in the same region, opposed to the MCMV data. 

 

However, the genes from Figure 17 d-e also show high peaks. Investigating all 106 genes 

form the MCMV showed 7 genes with such peaking behavior. It appeared that these peaks 

were caused by a variety of reasons: 

- After synthesizing a design from a chromosome, the genes corresponding to z-

positions of objects are fixed to correspond the final position of the object. This 

correction is implemented in order to save run time of the packing approach
8
. But 

                                                 
8
 The bin packing algorithm will have to check less available positions for the offspring of a design if the initial 
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since the up- and downtake have a limited number of possible z-positions, they show 

peaks. 

- Three genes are overwritten in the code, and are therefore never used. 

- Two genes correspond to the x- and z-positions of the main gun. But when there is no 

gun present, the values for the position is set to zero, which causes peaks. 

 

 

 
Figure 16: Six histograms of the gene values for the cruise ship 

 

 

                                                                                                                                                         
positions of the objects are closer to their final position. 
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Figure 17: Six histograms of the gene values from the MCMV 

 

Wrapping up, the MCMV dataset seems to have a higher diversity in the design space due to 

both a lower number of genes and gene values with smaller peaks. Therefore this design set 

will be used for the test case presented in chapter 4. The analysis of gene values furthermore 

showed, that there are a number of discrete input variables present which could cause families 

in the data. These are: 

- Tank top height is either 1 or 1.5m 

- Damage control deck is either deck 4 or deck 5 

- The presence of the main gun, and if it is on the bow or the aft (corresponding to its 

firing direction). This is illustrated in Figure 18. 

- The presence of Davits. 
 

Section 2.1 showed that it is hard, when looking at different designs, to assess which designs 

are more similar than others. The chromosomal comparison did show however that looking at 

their numeric values, and calculating distance metrics, handed a more structured approach to 

make a comparison. Additionally these distance metrics can be calculated fast, and could 

therefore be helpful to quickly compare the tens of thousands of ship designs within one 

design set. How this concept is used to find families, is further elaborated in the next chapter. 
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Figure 18: Logarithmic histogram of the x-position of the main gun. Three 

families emerge: no gun, gun on the aft or at the bow. 
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3. Method 

 

In order to select a decent approach for dividing the set of designs resulting from the packing 

approach into families, various fields of science corresponding to similar problems were listed 

and investigated, such as: 

 

- Big data 

- Pattern recognition 

- Machine learning 

- Markov theory 

- Network theory 

- Neural network theory 

- Bayesian statistics 

 

It finally turned out that all these fields of science share a common ground in being related to 

“clustering algorithms”. The first three fields use clustering algorithms for various purposes, 

whereas the last four fields serve as mathematical foundations for a variety of clustering 

algorithms. Examples are the application of Markov random walks Meilă and Shi (2000) or 

SOM analysis based on neural networks Kohononen (1990). Therefore the method of choice 

in this thesis is found to be clustering algorithms themselves. These algorithms, as their name 

suggests, are devoted to find clustering structures in data. An example of their application is 

in companies as Facebook and Google where people are divided into clusters to achieve better 

assessment of which advertisement suits which person best Schutt and O’Neil (2013). The 

analogy is that in this case the designs are divided into clusters to achieve better assessment of 

which design decisions suits which performance requirement best. Assuming that the function 

mapping the design space to the performance does contain a trend (i.e. is not completely 

random), the more distinct the clusters are, the more probable they reveal knowledge of the 

relation between design and performance space.  

 

A problem is however, that there is no clear notion of what ‘being distinct’ means. Studying 

for example the designs in Figure 19, there are various ways of comparing them. Looking at 

main dimensions designs A, B and C are similar, while design D is a bit longer. Whereas 

looking at the position of the working deck designs A and C have a working deck amidships, 

while at designs B and D it’s positioned at the stern. Finally if assessing the main gun, only 

design A has one, while it is absent in the rest of the designs. These examples show that 

clustering is inherently a subjective science, as there is no single right or wrong way to cluster 

any given data Theodoridis and Koutroumbas (2009). It is therefore important to investigate 

various sensible ways of clustering the set of designs, in both design features as applied 

clustering methods. 
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Figure 19: Four MCMV-designs resulting from the packing approach, where various 

differences and similarities are pointed out. 

Clustering is a six step process, see Figure 20, which is described in Theodoridis and 

Koutroumbas (2009). In Figure 20 the six step process is illustrated using LEGO blocks. The 

reason is that it is very common in clustering to set up the problem in various different ways, 

in order to extract multiple results. The LEGO blocks thus represent the iterative nature, 

where multiple block stacks can be made with its own results and conclusions. The steps 

including their specific algorithms used in this method are discussed more in-depth below. 

 

 

 
Figure 20: Six step clustering method visualized with LEGO blocks. Every block stack is a 

new method on its own. 

3.1 Feature selection/creation 

 

As illustrated in Figure 19 which features are considered important, greatly influence the 

families that will emerge. Therefore the features which are important for the specific analysis 

should be selected. This could concern the total set of features, or maybe only a subset of the 

features is of interest. Examples of potential interesting subsets are features concerning the 

layout of a design, all performance features or features regarding the global parameters of the 
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designs. It could furthermore be necessary to add new features. An example of a new feature 

is adding displacement, when L, B, T and 𝑐𝐵 are available. 

 

Next it is very important in this step to consider whether the selected features should be 

normalized/standardized. In general, when the features use different units and scales, they 

should be standardized. The reason is that for most distance metrics, which will be defined in 

the next section, a comparison is made between the absolute values of the variables. For 

instance if one variable is displacement it has typical values in the order of thousands [ton], 

while the draft has typically values in the order of maximum 10 [m]. This would thus mean 

that variations in displacement would always dominate variations in draft, which is unwanted. 

Standardization of a variable can be obtained by taking the z-score. This sets its mean to zero 

and its standard deviation to one, with the following transformation: 

 

𝑧𝑖 =
𝑥𝑖 − 𝜇𝑥

𝜎𝑥
 

 

For all data points 𝑥𝑖. 

3.2 Proximity measure 
 

The proximity measure defines how similarity between data points is measured by selecting a 

distance metric. In selecting a distance metric, it is first important to check which distance 

metrics are able to coop with the type of features. For instance if the features are solely 

binary, the Hamming distance is probably a good option, since it measures the number of 

equal symbols. An example would be if the designs have a number systems which are 

optional, where the variables for the presence of these systems are 0 when the system is 

absent, and 1 when the system is present. Hamming distance would then measure the number 

of corresponding systems on board of two designs, which seems a valid comparison. 

Hamming distance is thus normally a bad choice for real valued features, except if there is a 

reason for the symbols to be equal. Which is true for vectors resulting from a genetic 

algorithm, as is used in the packing approach as shown Table 3 in chapter 2.1. 

 

The features resulting from the packing approach are in general real valued. The most 

common distance metrics are Minkowski distances like Euclidean (p=2) and city block (p=1) 

distance: 

 

𝑑(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|𝑝
𝑝

 

 

Euclidean distance measures the shortest path (straight line) between two points, whereas city 

block corresponds better to walking distances. Other interesting metrics concerning real 

valued features are cosine similarity and Mahalanobis distance Theodoridis and Koutroumbas 

(2009). Cosine similarity measures equality between the proportions of the scalar components 

of the data points, and Mahalanobis distance is a special normalized form of Euclidean 

distance. In the rest of this thesis Euclidean distance is used. 
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3.3. Dimensionality reduction 
 

Reducing the dimensionality of the data means that the same data is represented with less 

features. An example is a dataset with variables L, B, T, cb, and displacement. This 5-

dimensional data could also be represented by 4 variables, since displacement equals the 

product of the others. 

 

There are various techniques that automatically find these structures, and reduce the 

dimensionality of the data. Examples are principal component analysis (PCA), self-organizing 

maps (SOM) Kohononen (1990) and t-distributed stochastic neighbor embedding (t-SNE) 

Maaten (2008).  PCA creates new features that are linearly depending on the old features, 

whereas SOM and t-SNE project the data in a non-linear way. Dimensionality reduction 

serves two main purposes: 

 

1. It improves the quality of the clustering algorithm as is shown for PCA by Ding and 

He (2004). 

2. When the amount of features is reduced to two or three, the result can be used as an 

initial visualization of the problem. 

 

In this thesis PCA is used, and is therefore further elaborated below. 

 

3.3.1 Principal Component Analysis 

 

PCA is a valuable technique for exploratory analysis of high dimensional data. It rotates the 

original dataset in such a way that the first principal component (pc) corresponds to the 

direction with the highest variance, the second pc is orthogonal to the first pc and contains the 

second highest variance, and so on. A two-dimensional example is shown in Figure 21. This 

is useful for a number of reasons. Most important is that the amount of variance can be 

interpreted as being the amount of information Linsker (1989). This reveals how PCA can be 

used for dimensionality reduction: Selecting and examining only those first couple of pc’s 

that have the highest variance. 

 

Since it is only possible to plot up to three dimensional data
9
, a plot of the first three pc’s will 

show you as much information as possible in one plot. On the other hand interpreting the 

content of the plot gets harder due to the complex values on its axis, since each pc is a linear 

combination of all input features (for instance, pc1 could be equal to 0.5L+0.2B-0.85DWT) . 

But the focus in this thesis lies in identifying the multidimensional structure (clusters) in the 

data, which will still be visible in the plots. In fact, if there is a direction in space where 

clusters do show up, this direction has an increased probability of having a high variance, 

which makes it more likely to end up in the first three pc’s Ding and He (2004). This property 

is illustrated in Figure 22. 
 

 

 

                                                 
9
 Higher dimensional plotting is technically possible (i.e. using colour and/or time), but the same argument 

holds. 



       

39 

 

 

 

 
Figure 21: Illustration in 2D how PCA 

rotates the data. It makes it as “flat” as 

possible. 

 

Other valuable information resulting from PCA is examining the directions of the first couple 

of pc’s. This reveals both the importance of the various features and how the features are 

correlated. An effective way of visualizing this information is with a biplot, where the 

amplitude of every feature is plotted for the first two pc’s, which will be used in this thesis. 

 

 
Figure 22: PCA applied to the data used in 

Figure 5. The first pc lies in the direction 

that reveals the clusters. 

 

3.4. Clustering 

 

There are numerous clustering algorithms available, which can roughly be divided into two 

main groups Jain (2010): partitional and hierarchical methods. This division is illustrated in 

Figure 23. Hierarchical algorithms return a hierarchical tree structure (called a dendrogram) 

where every branch divides the set into smaller clusters. Partitional algorithms on the other 

hand return a partition of the dataset where every point is (partly) assigned to a certain cluster. 

Partitional algorithms can in turn be divided into hard and fuzzy methods, where fuzzy 

methods can assign points partly to multiple clusters at the same time. Since the goal in this 
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thesis is to find clear distinct families of ship designs, hard partitional methods are 

emphasized. Particularly the k-means algorithm is used, which is discussed in the next 

section. 

 

 

 
Figure 23: Hierarchical chart showing a coarse division of the different type of clustering 

algorithms. 

Note that in this thesis the goal of applying clustering algorithms is to identify structure in the 

data that is not identified yet. Therefore only if (after dimensionality reduction) the number of 

features exceeds three, applying a clustering algorithm is useful, otherwise the data can be 

plotted in order to visualize the structure. 

 

3.4.1 K-means 

 

The k-means algorithm, which exists over 50 years, is still one of the most popular clustering 

algorithm used these days. It is therefore selected in most machine learning courses as one of 

the basic algorithms Schutt and O’Neil (2013), Fox and Guestrin (2015), Leek et all. (2016). 

Main reasons for its popularity are its ease of implementation, simplicity, efficiency, and 

empirical success Jain (2010). Next to these arguments, the reason for picking k-means over 

the other well-established hard partitional clustering algorithm DBSCAN is twofold: 

 

1. DBSCAN discards noise, which is not present in the dataset at hand. Every design 

should be assigned to a certain cluster, which is the case with k-means. 

2. K-means is convenient for its standard implementation in MATLAB. 

 

The downside of k-means is that it requires the amount of clusters (k) as input. Therefore in 

practice the algorithm is applied to the dataset for various values of k, where the validation 

step reveals the most promising value. The algorithm works as follows: 

 

 Initialize by selecting k distinct center points 𝒄𝟏, ⋯ , 𝒄𝒌 in space.
10

 

 Repeat until convergence: 

o Assign every data point to cluster 𝑖 if it is closest to center point 𝒄𝒊 

o Shift every 𝒄𝒊 to the center of mass of the data belonging to cluster 𝑖 
 

                                                 
10

 Various initialization methods exist such as k-means++, which is used in this thesis. The easiest is randomly 

selecting distinct positions as is used in the example of figure 7. 
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This process is illustrated in Figure 24. In Figure 24a the data itself and the random 

initialization of the centers is displayed. The first and second iterations are shown in 

respectively Figure 24b-c, and finally convergence is reached in Figure 24d. 

 

 

 

 

 
Figure 24: Illustration of how k-means converges on a 2D artificial dataset for k=3 

The result of k-means is depending on the way it is initialized. Therefore it is common to let 

the algorithm run multiple times and pick the best result, where the best result is defined as 

the result with the lowest WCSS (see section 3.5.1). In this thesis all results are obtained by 

running k-means 50 times, which was empirically verified to give stable results. Furthermore 

there are various initialization methods. For example in Figure 24 the algorithm is initialized 

by simply placing the centers at random points in space. In the rest of the thesis, k-means++ is 

used as initialization method. K-means++ iteratively allocates positions of data points as 

initial centers, but with increased probability of acceptance if it is far from the other allocated 

centers. It improves the quality of the results while the runtime remains similar Arthur and 

Vassilvitskii (2007). 
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3.5. Validation 

 

Validating the clusters serves two purposes. First, it is not yet clear whether there is a 

clustering structure present in the data. Validating if this is the case is not trivial since there 

are more than three dimensions, which makes it hard to visualize. Second, since k-means is 

applied for various values of k, the number of clusters is still to be determined. 

 

Validation is performed by analyzing appropriate metrics that indicate the quality of clusters. 

The two metrics used in this thesis are discussed below. 

 

3.5.1 within cluster sum of squares (WCSS) 

 

The first metric used for validation is the within cluster sum of squares (WCSS), which, as the 

name suggests, sums the squared distance of every data point to its corresponding cluster 

center Jain (2010): 

𝑊𝐶𝑆𝑆 = ∑ ∑‖𝒙 − 𝒄𝒊‖
2

𝒙∈𝐶𝑖

𝑘

𝑖=1

 

Where 𝒙 denotes a data point, and 𝐶𝑖 denotes the set of data points belonging to cluster 𝑖. 
 

The reason why this metric is used, is because it is a direct result from k-means. In fact, k-

means is a heuristic optimization algorithm that minimizes the WCSS. For increasing k, the 

WCSS is in general decreasing with WCSS = 0 for k = #data points, since every data point 

then has its own center. Thus no conclusions can be drawn from a single WCSS value. On the 

other hand, looking at the curve when plotting the WCSS versus k does reveal information. 

When a knee appears, this is an indication that the data contains the number of cluster 

corresponding to the position of the knee, see Figure 25.  

 

 
Figure 25: Example of a knee in plotting the WCSS versus k 

at k=5. This indicates that the data contains 5 valid clusters. 
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3.5.2 Dunn-index  

 

This thesis seeks clusters based on physical attributes, which means that certain combinations 

of features result in infeasible designs. Thus, opposed to density clusters, there should be real 

gaps in-between the clusters. Therefore the Dunn-index is an appropriate metric to validate 

the clusters, since it measures the size of the gap Theodoridis and Koutroumbas (2009). It is 

defined as: 

 

𝐷𝑢𝑛𝑛 𝑖𝑛𝑑𝑒𝑥 =  min
∀𝑖,∀𝑗≠𝑖

(
𝑑(𝐶𝑖, 𝐶𝑗)

max
∀𝑘

(𝑑𝑖𝑎𝑚(𝐶𝑘))
) 

 

Where 𝑑(𝐶𝑖, 𝐶𝑗) is the minimum distance between points from clusters 𝐶𝑖 and 𝐶𝑗, and 

𝑑𝑖𝑎𝑚(𝐶𝑘) is the maximum distance between points from cluster 𝐶𝑘. 

 

To be more precise the Dunn-index is a measure that gives a lower bound for the distance 

between the clusters relative to the size of the clusters. A Dunn index of 1 or higher would 

therefore mean that the minimum distance between the clusters is higher than the diameter of 

the biggest cluster. The Dunn index does not exhibit any trend with respect to k, and therefore 

the highest value would indicate the number of clusters present.   

 

3.6 Interpretation 
 

When the result is deemed to be valid, the most interesting part is to interpret the result. This 

is where the information (i.e. the structuring of the data in clusters) is interpreted to generate 

knowledge and wisdom. There is no roadmap telling how to do this, but an initial step is 

trying to correlate the clusters to discrete features in the dataset. In order to test whether the 

method in this section is able to elucidate families of designs from the data of the packing 

approach, it is applied to a test case in the next section. 
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4. Test Case: Mine-countermeasures vessel 

 

In this chapter it is tested whether the method is capable of finding families of ship designs 

that result in new knowledge of the relation between the design and performance space. 

Therefore the method is applied to the dataset of the MCMV as developed by Duchateau 

(2016).  

4.1. Survivability of machine systems 

 

In naval ship design, an increasing value is granted to the assessment of survivability in early 

stage ship design. In that mind, a current PhD position at the TU Delft is devoted to 

incorporate this assessment on the designs resulting from packing. A first emphasize lies 

specifically in investigating the survivability of machine systems. Since there is no automated 

metric for survivability yet, it is initially attempted, to find families of designs in the MCMV 

dataset regarding its machine systems. If these families are present, this could serve as a data 

reduction method, allowing an initial assessment of the survivability per family. 

 

In order to asses which systems are of main importance for assessing the survivability of 

machine systems, their logical architecture
11

 of the machine systems is composed in Figure 

26. The way in which the systems are related: 

- The generator room has to supply electrical energy to the propulsion room, radar and 

main gun 

- Information from the radar is needed to properly fire the main gun 

- The propulsion room is connected to the propulsor via the shaft 

 

This thus motivates that the positions of these five objects are used as the features of interest 

in this section. Since the designs are generated by 2.5D packing, y-positions do not vary for 

these objects, and thus only the x- and z-positions are selected van Oers and Hopman (2012). 

This results in a total of 10 features, which are standardized by taking their z-scores. 

                                                 
11

 Terminology as used by Brefort et all (2017) 
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Figure 26: MCMV objects related to the survivability of machine 

systems and their interrelations 

 

4.1.1. Iteration 1 

 

An initial application of the clustering method to the normalized 

machine systems dataset is shown in Figure 26. The clustering and 

validation steps are in this first iteration omitted since PCA is used to 

reduce the dimensionality of the data to only two dimensions. Figure 

28 shows that the first two pc’s, upon which the data will be 

projected, contain almost half of the total variance. How these two 

pc’s are constructed is displayed in the biplot of Figure 29. For 

instance pc1 is constructed as: 

 

𝑝𝑐1 = −.32𝑥𝑝𝑟𝑜𝑝.𝑟𝑜𝑜𝑚 − .37𝑥𝑔𝑒𝑛.𝑟𝑜𝑜𝑚 + .00𝑥𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑜𝑟 +. 50𝑥𝑔𝑢𝑛

− .37𝑥𝑟𝑎𝑑𝑎𝑟 + .12𝑧𝑝𝑟𝑜𝑝.𝑟𝑜𝑜𝑚 − .10𝑧𝑔𝑒𝑛.𝑟𝑜𝑜𝑚

+ .00𝑧𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑜𝑟 + .58𝑧𝑔𝑢𝑛 − .03𝑧𝑟𝑎𝑑𝑎𝑟 

 

 A variety of information can be extracted from the biplot: 

- Both x and z components of the propulsor are not apparent in both pc’s. This is due to 

the fact that the position of the propulsor is fixed, which also explains why in Figure 

28 the first 8 pc’s explain 100% of the total variance. 

- Both x and z positions of the gun are heavily positively correlated and greatly 

influence the first pc. The correlation is caused due to the fact that these values are 

both set equal to zero when there is no gun present on the vessel.
12

 

- The second pc mainly consists of z-positions, which explains the result of Figure 31. 

                                                 
12

 When only designs with a gun are considered, these two variables have a negative correlation coefficient equal 

to -0.48. 

Figure 27: Clustering 

method used in this section 
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Figure 28: PCA result: Explained variance 

vs. the number of pc’s 

 
Figure 29: Biplot showing the factors of the 

first two pc’s 

 

In Figure 30 and Figure 31, the data is projected on the first two pc’s. Colors are added 

regarding two discrete input variables which are respectively gun position and tank top height. 

The structure in the data seems to be dominated by these two input variables. The fact that the 

gun can be either on the bow or on the stern influences the survivability of machine systems, 

and are thus two families worth investigating. This result is not new however, since it was 

coded in upfront (see Table 4). Furthermore the results do not reveal much information about 

the survivability of machine systems, since: 

 

- Gun x- and z-positions are set equal to zero when there is no gun present, which is 

basically a definition issue regarding the data. This motivates in next iterations to only 

select data with either a gun or no gun present. 

- Tank top height shifts the global z-position of a number of systems, but the main 

interest is in their relative position. This motivates to define new z-features in next 

iterations where the tank top height is subtracted. 

 

First it is tested whether k-means finds other structure in the next iteration. After that, these 

two lessons learned are implemented in the third iteration. 
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Figure 30: Machine systems data projected on 

the first two pc’s, and colored regarding gun 

position 

 
Figure 31: Machine systems data projected 

on the first two pc’s, and colored regarding 

tank top height. 

4.1.2. Iteration 2 

 

The 8 pc’s explaining 100% of the total variance are fed into the k-

means algorithm. For validation the resulting WCSS values are 

plotted in Figure 32, which shows a knee at k=3 (thus indicating that 

the result for k=3 is valid). Looking at the result for k=3 projected 

on the first two pc’s in Figure 33, it shows that the green cluster 

corresponds to designs with a gun, and the blue and red clusters 

correspond to designs without a gun with respectively a tank top 

height of 1m and 1.5m. This indicates that the visibly identified 

structure from the first iteration corresponds to the structure k-

means finds.  

 

Furthermore this observation shows one of the downsides of k-

means: it focusses mainly on dense areas in the data. In Figure 33 

for k=4 the k-means algorithm divides the group of designs with no 

gun and a tank top height of 1m into two clusters, instead of finding 

the clusters regarding the gun position of the bow or stern, visible at 

the plot for k=5. The reason could be, that since there are a lot of 

designs in this cluster, the WCSS is reduced more by splitting this 

denser group. It could however also be the case that there is other structure present, which is 

investigated in the next iteration. 
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Figure 32: The WCSS for various values of k resulting from 

k-means, showing a knee at k=3. 

 

 
Figure 33: Projection of the data on the first two pc’s and colored by the 

groups resulting from k-means for k=1 to k=6 
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4.1.3. Iteration 3 

 
As is concluded in the previous iterations, it could be interesting to 

assess whether there is more structure in the set of designs without 

a gun. Furthermore the influence of the discrete tank top height is 

omitted by subtracting it from the z-components of the objects. 

 

Since the position of the propulsor is constant, and there is no gun 

present on these vessels, 6 features remain to be examined (x- and 

z-positions of the 3 objects). These features are analyzed using 

PCA, and the data is plotted regarding its first 2 pc’s in Figure 34. 

Since this figure shows no structure yet, k-means is applied to the 

data. In order to validate the clusters from k-means, the WCSS is 

plotted for various values of k in Figure 35. Since there is no knee 

present in this graph, there is insufficient reason to believe that 

higher dimensional structure is present. 

 

 

 
Figure 34: Projection of the data on its first 

two pc’s. 

 
Figure 35: The WCSS for various values of 

k, resulting from k-means. 

 
The goal of this section was to search for families of designs regarding the survivability of 

machine systems in order to reduce the data for a naval architect. In all iterations, no other 

structure appeared regarding the positions of machine systems, than the 3 families of designs 

that either had no gun, or had a gun with either the gun on the bow, or on the stern of the 

designs. Since this is a too coarse division to draw any unambiguous conclusions on the 

survivability of the designs within such a family, this division is not sufficient to serve as a 

data reduction method on itself. 
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4.2. Families based on layout 
 

Since naval ships are complex designs that have many interactions between their 

compartments Andrews (2011), it’s particularly interesting to assess families of the MCMV 

regarding its layout. It is namely expected that these interactions cause many layouts of bad 

quality, leaving only a finite number of sensible arrangements. An initial indication for the 

presence of families is illustrated in Figure 36. It shows a one dimensional envelope of 100m, 

where a generator set and an accommodation block should be placed. Assuming that these 

must be at least 15m separated due to noise restrictions, two families emerge when plotting xA 

versus xG, corresponding to the permutation of these two objects. Furthermore, the histograms 

on both axis show that the families can’t be identified when looking at them individually. This 

motivates searching for multidimensional family structures, when looking at a dataset 

subjective to ten such rules (instead of one), 2 dimensions (instead of one), and 43 different 

objects (instead of 2). 

 
Figure 36: Illustration of existence of families due to connections between the compartments. 

 

The problem is however, that since the packing approach mainly operates as a sizing tool, 

these interactions are omitted. This means that the compartments are more or less randomly 

stacked into the hull. Therefore, this section starts with selecting designs based on the quality 
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of their layout. Then the proposed method is applied for finding multidimensional structures 

in the layouts of these selected designs. And finally, the results will be discussed. 

 

4.2.1. Design selection based on designer rationale 

 

The goal in this section is to select the top 10% of designs with the best layouts based on 

designer rationale. The layouts of the resulting subset of designs are then assumed to contain 

more structure than the remaining 90%. This enables verification of the hypothesis that this 

set consists of distinct families of designs. Since at the time of writing this document the work 

of Roth et all (2017) was still in progress, a new metric was developed that quantifies the 

quality of a layout. How this works is described in this section.  

 

The metric is based on designer rationale captured by Denucci (2012). He developed a 

Rationale Capture Tool (RCT) where designers could comment on automatically generated 

ship designs. These comments were structured and saved so that a resulting list of designer 

rationale emerged.  

 

Although the captured rationale was obtained from naval architects discussing an offshore 

patrol vessel (OPV), many of the comments are also applicable for an MCMV. Therefore all 

rationale applicable to the MCMV was extracted from the total of 456 comments. Then all 

repeated comments were merged to just 10 comments. These, and their corresponding metrics 

are listed in Table 5.  

 

Table 5: Applicable designer rationale for the MCMV from Denucci (2012), including the 

metrics representing the rationale. Every metric should be minimized. 

# Designer Rationale Reason Metric 

1 
The length of fuel piping 

must be minimized 
Survivability/Cost 

Sum distances between all tanks and 

generators 

2 
Shaft length should be 

minimized 
Space/Weight/Cost 

Distance between propulsor and 

propulsion room 

3 
High ranked officer accom

13
 

should be close to the bridge 
Operability 

Max. distance between high ranked officer  

accoms and bridge 

4 
accom shouldn't be near the 

bow 
High accelerations 

Negative min. distance between accoms 

and bow 

5 
High ranked officer accom 

shouldn't be below dcd 
Survivability 

Count number of high ranked officer 

accom below dcd 

6 
Drystores should be close to 

the galley 
Logistics 

Max. distance between drystores and the 

galley 

7 
Bridge shouldn't be  

near the bow 
High accelerations Negative distance between bridge and bow 

8 
Davit shouldn't be too high 

above the waterline 
Operability Davit height minus the draft 

9 accom should be grouped Atmosphere 
Within cluster sum of squares (WCSS) for  

k-means with k=2 

10 
accom shouldn't be close to 

heavy machinery 
Noise 

Negative min. distance between accom and 

generators, propulsion room and gun 

 

                                                 
13

 For each design the 14 accom blocks are first sorted on whether they are above dcd and are then sorted on 

their distance to the bridge. The first 4 accom blocks are then assigned to high ranked officers. 
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In order to see how effective these metrics are, the best ships in the total set regarding rational 

number 3, 7, 9, and 10 in Table 5 are displayed respectively in Figure 37: 

- Design A shows that the pink accommodation blocks are grouped around the purple 

bridge. This ensures good access to the bridge for high ranked officers, enhancing 

operability of the ship. 

- Design B has the bridge far from the bow. Therefore the bridge is closer to the center 

of rotation, minimizing seasickness for the captains. 

- Design C has clusters of accommodation, which creates a nice atmosphere for the 

crew. 

- Design D minimizes noise issues for the crew by placing all machinery in the aft of 

the ship, while all accommodation is near the bow. Furthermore the design is 

relatively long, which creates even more distance. 

 

 
Figure 37: The best ships regarding the metrics defined in Table 5: High rank officers near the 

bridge (a), seasickness bridge (b), accom grouped (c), and noise (d). 

 

The following step is to combine the ten metrics from Table 5 into one metric for the quality 

of the layout of the designs. First, since every metric has different values (for instance the first 

metric is typically in the order of tens, while the third metric is in the order of thousands) they 

are first standardized by taking their z-scores. Then for the sake of simplicity it is assumed in 

this thesis that every design comment is equally important, thus the quality of a layout is 

defined by the plain sum of these ten metrics without using a weight factor: 

𝑡𝑜𝑡𝑎𝑙 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑙𝑎𝑦𝑜𝑢𝑡 𝑓𝑜𝑟 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑒𝑠𝑖𝑔𝑛 = ∑ 𝑧𝑠𝑐𝑜𝑟𝑒(𝑠𝑐𝑜𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑗)

10

𝑗=1

 

 

Finally the 10% designs with the lowest total objective value are the designs with the best 

layout, and are therefore combined into a subset. This subset of 1715 designs is assumed to 

include only sensible designs, while remaining big enough to maintain diversity. It is 

investigated for clusters in the next section. 

4.2.2 Apply method 

 

The method applied to the resulting dataset with included designer rationale is illustrated in 

Figure 38, where each step will be elaborated in the following subsections. 
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Figure 38: LEGO stack corresponding to the method applied 

in this section 

 

 

4.2.2.1 Feature selection/creation 
 

The dataset with included designer rationale is expected to consist of separated clusters 

regarding the layouts of the designs. Therefore the features regarding the positions of all 

objects in the layout are selected. In total the designs are packed with 43 objects. Since the 

designs are generated by 2.5D packing, x- and z-positions of all objects are selected, but y-

positions are only deviating from the centerline for workshops and stores and are therefore 

omitted van Oers and Hopman (2012). This results in a total of 86 selected features (or 

dimensions) which describe the designs. 

 

Regarding normalization of the variables, all variables have the same unit of scale, and 

roughly operate on the same scale. Therefore it is not evident to use normalization. 

Additionally, chapter 4.1 showed that the discrete the tank top height had a big influence, 

while it only varied 0.5m. This was caused due to several systems which were always on the 

lowest deck, and thus their z-position only varied due to the tank top height. Normalizing 

these z-positions then makes the influence of the tank top height variation big. Therefore 

normalizing is omitted in this iteration. 

 

4.2.2.2 Proximity measure 
 

From the optional proximity measures in section 3.2:  

- Mahalanobis distance is not used, since normalization is intentionally omitted.  

- Cosine similarity is not used, since absolute differences matter (increasing the size of a 

design with a factor two does result in a different ship) 

- Hamming distance is not used, since these features are real valued. 

 

Therefore Euclidean distance is used. 
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4.2.2.3 Dimensionality reduction 
 

The next step in the process is dimensionality reduction with PCA. An initial result is 

displayed in Figure 39, where the explained variance is plotted versus how many pc’s are 

used (note that the pc’s are sorted regarding the amount of variance they explain). The first pc 

does thus contain over 20% of the total variance. Furthermore it is interesting to see that 99% 

of the total variance is explained by using the first 33 pc’s. This means that 86 – 33 = 53 

dimensions can be discarded with very limited information loss. Figure 40 shows the data 

projected on the first 2 pc’s. From Figure 39 it is clear that this plot contains about 29% of the 

total variance. Although there are no clear separate clusters visible, there is some structure 

present with regions that have a higher density. The presence of distinct clusters is further 

investigated in the next sections. 

 

 
Figure 39: Explained variance vs. the number 

of pc’s used for the MCMV dataset including 

designer rationale. 

 
Figure 40: MCMV dataset including 

designer rationale plotted regarding its first 2 

pc’s. 

4.2.2.4 Clustering 
 

Next the k-means algorithm is applied to the reduced 33-dimensional dataset for various 

values of k. Since the 33-dimensional clusters are still hard to visualize in a figure they are 

validated in the next section. A projection of the clusters for k = 3 onto the first two pc’s is 

shown in Figure 41. 
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Figure 41: Data plotted in first two pc’s clustered by the 

result of k-means for k=3 

 

 

4.2.2.5 Validation 
 

The Dunn indices calculated for the various cluster compositions from k-means are plotted in 

Figure 42. Instead of one value for k that corresponds to a high Dunn index, the Dunn index is 

approximately constant at a rather low value of about 0.18. This might indicate that there are 

no gaps in between the clusters. For further investigation, the Dunn index is calculated for 

1000 random cluster compositions, Figure 43. The median of the resulting set equal 0.184, 

showing that there is roughly a 50% probability of a random cluster composition exceeding 

the cluster compositions from k-means. This means that there is no significant gap in between 

the clusters from k-means. 

 

 
Figure 42: Validation of the results from k-

means using the Dunn index 

 
Figure 43: Histogram of Dunn index values 

for 1000 samples when the dataset is split 

into two groups by a random hyperplane
14

. 

 

                                                 
14

 Hyperplane equidistant to two randomly selected data points.  
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4.2.2.6 Interpretation 
 

Although the clusters are not separated by a significant gap, Figure 41 does show that the 

clusters correlate to certain regions with higher densities.  

 

 
Figure 44: Data plotted in first two pc’s clustered by 

the run number in which the data was generated. 

 

The explanation for the visible structure lies in how the data was generated. For this specific 

case, the packing algorithm was run ten distinct times in order to compare it with another 

dataset. The results of these ten runs were combined to form the complete dataset Duchateau 

(2016). Coloring the data based off this run number, as shown in Figure 44, and comparing 

this with the clusters found by k-means shows that the result is very similar:  

 

Cluster 1 corresponds to run number 3 

Cluster 2 corresponds to run number 5 (and 4, 6, 8 and 10 which are smaller) 

Cluster 3 corresponds to run number 9 

 

This means that although it was expected to find structure in this dataset due to physical 

reason as motivated in Figure 36, the structure now seems to be fully dominated by the way 

the data was generated. On the other hand, some convergent behavior could be expected, 

since a genetic algorithm is used. The question is thus if the convergent behavior of the model 

is so apparent, that it dominates the physical structure. Or maybe there is no physical 

structure, and therefore the modelling aspects appear. Although the difference between the 

two might be delicate, the consequences are big, since this indicates whether the diversity in 

the dataset is sufficient to elucidate the expected physical clusters. Therefore further research 

is conducted in the next section, investigating how distinct the different run numbers really 

are regarding their chromosomal descriptions. 
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4.3 Chromosome analysis 

 

It is expected that if there is a bias present due to the generation of the designs, that this bias 

will in particular be identified when looking at the chromosomes, since these are the values 

directly generated by the genetic algorithm. Therefore the set of chromosome features is 

further investigated for families in this chapter. 

 

4.3.1. Iteration 1 

 

In the first iteration PCA is applied to the chromosome data in 

order to get an initial idea which structure is present. The gene 

values are not normalized, since all genes already run between 0 

and 1. In Figure 45, the data is projected on its first three pc’s, and 

plotted for various rotations. The colors in the plots correspond to 

the ten distinct runs from the packing approach that were 

combined. 

 

 

 
Figure 45: Chromosome data projected on its first three pc’s, where colors correspond to 

the various run numbers of the packing approach. 
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Figure 45 clearly shows that every run explores its own part of the space. In fact, it looks like 

there is hardly any overlap between sets resulting from these various runs. These results thus 

seem to support the suspicion that the diversity for designs resulting from a single packing run 

is limited. However, these results only look at differences in a 3 dimensional subspace of the 

total “chromosome-space”, so adding the other dimensions might set them apart even further. 

In order to test this, k-means is applied to the data in the following iteration. 

 

4.3.2 Iteration 2 

 

Given the results from the previous iteration, where the distinct 

runs were already clearly separated in 3D space, combined with 

the fact that k-means takes into account all dimensions, it is 

expected that it might be possible to reverse-engineer which 

designs were generated in the same run. This would then add 

meat to the suspicion of a lacking diversity from the packing 

approach. The chromosome data is therefore fed into the k-means 

algorithm for k=10, and a comparison of the resulting clusters 

with the various runs is depicted in Table 6. 

 

 

 

 

  

Table 6: Comparison of the clusters resulting from k-means with the various runs. 

  

Run number 

  

1 2 3 4 5 6 7 8 9 10 

k-
m

ea
n

s 
cl

u
st

er
s 

10 1163 0 0 0 0 0 0 0 1 0 

1 0 1148 0 0 0 0 0 0 0 0 

9 0 0 1664 0 1 0 1 0 0 0 

7 0 0 0 1806 0 0 0 0 0 0 

3 0 0 0 0 857 0 0 0 0 0 

8 143 140 318 285 142 1073 247 170 375 176 

5 0 0 0 0 0 0 1139 0 0 0 

6 0 0 0 0 0 0 0 2057 0 0 

4 0 0 0 0 0 0 1 0 2955 0 

2 0 0 0 0 0 0 0 0 0 1292 

 

Table 6 does show that the clusters resulting from k-means do align with the designs resulting 

from single runs. 88% of the designs are correctly classified to be generated in the same run, 

which is calculated by summing the diagonal values in Table 6 and dividing it by the total 

number of designs
15

. It is remarkable however, that almost all misclassifications are appearing 

in k-means cluster 8, and that this cluster contains a part of all ten runs. Plotting this cluster 

regarding the pc’s shows that this cluster is in the middle of all data. This suggests that either 

all runs started somewhere and then converged to the region of cluster 8. Or when the data 

was generated, every run started at the same region, and then converged a different part of the 

design space. The ID numbers of the designs in cluster 8 then show that the latter is true. All 

                                                 
15

 The k-means clusters in Table 6 are rearranged such that this percentage is optimized. 



       

59 

 

runs were apparently initiated in the same way, and then converged to different parts of the 

design space. 

 

 

 

 
Figure 46: Chromosome data projected on its first three pc’s, 

where cluster 8 resulting from the k-means algorithm is 

highlighted in blue. 

The quest for families of ship designs resulting from the layout of the designs, resulted in a 

clue for lacking diversity in the packing approach. In this section the clue was first further 

investigated using PCA, leading to clearly visible distinct families that were caused by the run 

in which the designs were generated. This result was then strengthened by applying k-means, 

pointing out which designs were generated in the same run by just looking at the values of the 

chromosome. 
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5. Discussion & Future work 

5.1 Continue the assessment of survivability of machine systems 

 

The result that no multi-dimensional structure is present regarding the positions of machine 

systems, paves the way to define families regarding division of the individual features. For 

assessing survivability it is namely important in which compartments (between decks and 

bulkheads) these machine systems are located, and how these compartments relate to each 

other. A family could therefore be defined as all designs that have all machine systems within 

the same compartments. The exact location of a system within such a compartment is thus 

neglected. 

 

In order to make an initial assessment of the feasibility of defining families this way, the 

number of families resulting from such a definition is estimated. Looking at the number of 

options for the z-positions of the various systems, the generator and propulsion rooms both 

remain on the lowest deck for all designs, thus having no variation. On the other hand, the z-

positions of the main gun and the radar are distributed respectively over 4 and 3 decks. 

Regarding the x-positions, the average distance between two bulkheads for the MCMV is 

calculated to be 8.3m, while the spread of the x-position of the generator and propulsion room 

are respectively 65.5m and 10.3m. This means that they are approximately spread over 

respectively 8 and 2 longitudinal compartments. On the other hand, the radar and gun are not 

placed inside longitudinal compartments. Therefore the gun has 2 placing options (either on 

the bow or on the stern), and for the sake of simplicity, the x-position of the radar is assumed 

not to add variety. Calculating the total number of variations then results in roughly over 400 

families.  

 

Table 7: Calculation of the number of possible families 

 
 

This initial estimation shows that it is feasible to divide the set into about 400 families in 

order to assess the survivability of machine systems. However, the quantity is still rather 

larger, causing a fairly time consuming exercise to manually assess 400 representative 

designs. In fact, when the model is changed, and the packing algorithm is re-run, it could be 

that the process must be repeated.  

 

5.2 Lacking diversity in Packing 
 

The results showing the convergence of each packing run to its own part of the chromosome 

space is partly an inherent aspect of using a genetic algorithm as a search algorithm. But it is 

suspected that it is amplified by the following effect: The objective of the NSGA II algorithm 

x z x z

Propulsor 1 1 1 1

Prop. Room 2 1 2 1

Gen. Room 8 1 8 1

Radar N/A 3 N/A 3

Main gun 2 4 N/A N/A

Total options = 432

With gun Without gun

384 48
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is to create compact designs (i.e. maximize packing density). When a design has a high 

packing density, it will therefore be higher graded than other designs. This causes the 

algorithm to keep trying to propagate this design. But in contrary this design is less likely to 

get a feasible child, since it is more difficult to pack the compartments in a denser design. The 

probability of having feasible children is then only higher if there are only minor changes 

applied, which causes convergence. Furthermore if the design does happen to get a feasible 

child, this is most probably the case due to increasing the size of the ship, which makes it of 

less quality then the original design.  

 

This suspicion can be tested by investigating the family tree of a run, including the designs 

that have failed to meet the constraints. Since this information is not included in the data yet, 

this is up for future work. 

 

If this suspicion is true, eliminating the relation between the probability of generating a 

feasible design, and the size of the envelope should then improve the diversity of the designs. 

This could for instance be obtained by making sure that if a design could be packed to a 

feasible solution based on its global parameters/envelope, ensuring a high probability that this 

solution will be found.  

 

5.3 Reduced layout space 

 

Applying PCA to the layout space showed that the layout space could be represented by only 

33 pc’s that contain 99% of the total information. At the moment, the chromosome feeding 

into packing uses 86 genes to represent the 86 variables of the 43 objects (x and z position for 

each object). The result from PCA suggests though, that this number of genes corresponding 

to the layout of the design could be reduced drastically (ideally to 33 components), while still 

containing almost all information. The advantage would be, that the chromosome for the 

MCMV would reduce to 53 genes (instead of 106), making it much more suitable to do a 

systematic variation of all genes to map the design space (instead/additive to variations with 

the genetic algorithm). Furthermore it could improve the packing approach to focus on 

feasible variations. 
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6. Conclusion 

 

In this thesis the research objective was to:  

 

Elucidate families of ship designs within the design set resulting from the packing 

approach, leading to new knowledge of the data at hand. 

 

The application of a clustering method using techniques as PCA and k-means to the datasets 

resulting from the packing approach was proposed in order to achieve this objective. Before 

applying this method to datasets at hand, high peaks in the histograms from the cruise ship 

were identified, opposing the dataset of a MCMV. This motivated to use the MCMV dataset 

for the test cases. Then the method was applied to several test cases in order to evaluate its 

applicability: 

 

- In a first test case, families are sought regarding the positions of the machine systems 

of an MCMV. The goal was to use these families in order to reduce the data by 

selecting representatives for assessing their survivability. Although no applicable 

division of the set was found, the method did reveal the present structure in the data. 

Even more important, the analysis made it plausible that no other structure is present 

in this data, thus generating new knowledge on the design space. Furthermore it paves 

the way for more straightforward definitions of families as discussed in section 5.1.  

 

- In a next test case, the total layout from the MCMV was analyzed. The result seems to 

be dominated by the fact that the dataset was built by combining data from ten distinct 

runs of the packing approach. This result was amplified by analyzing the structure of 

the chromosome space. Although the new information did not reveal knowledge on 

the physical aspect of the designs, it did reveal knowledge on how modelling aspects 

cause structure in the data. It shows that despite the effort of using the NSGA II 

algorithm as a search algorithm by setting its mutation rate rather high Duchateau 

(2016), the diversity for a single packing run is still limited. The lesson learned is 

twofold. It first shows that the resulting datasets from the packing approach should be 

treated with care, bearing in mind that the set is not as diverse as it might seem. 

Second it motivates to improve the packing approach, so that more diverse datasets 

will be created in the future. 

 

The method revealed the underlying structure of the data in all test cases, which led to new 

knowledge. The research goal has thus been reached. Although no new knowledge is obtained 

on the physical aspects of the designs, the new knowledge that the results from the packing 

approach lack diversity is especially very helpful. Furthermore, it would have been difficult to 

gain these insights using other techniques. The clustering method allows to look at the data 

from a different point of view than ordinary plotting variables, and therefore creates new 

insights and hypotheses. The author is therefore convinced that its application will remain 

useful, revealing information about both the model as the relation between design and 

performance space. 
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7. Contributions 

 

In this section is summarized what is contributed to research at the TU Delft: 

 

 Comparing designs stemming from the packing approach by calculating distance 

metrics. In chapter 2, the calculation of distance metrics are proposed for comparing 

designs. The benefit of this method is that is both objective and fast, opposing other 

methods such as visual comparison. 

 

 Clustering methods are proposed, and applied to data resulting from the packing 

approach. The quest to search for families of designs resulted in the proposition of 

applying clustering methods in chapter 3. In chapter 4 the techniques as PCA and k-

means were applied to a test case of an MCMV, showing that new information was 

generated from this existing dataset. 

 

 Development of a new metric for the quality of layouts. In order to make a selection of 

the best designs in the MCMV dataset in chapter 4, a new metric for the quality of the 

layouts was developed based on DeNucci (2012).  

 

 Visualizing convergent behavior of the packing approach. The final results from 

chapter 4 show that each run of the packing approach converges to a certain region in 

the design space. This motivates new research aiming towards expanding the diversity 

of the designs resulting from the packing approach, where the techniques from this 

thesis remain applicable for visualizing the results. 
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Abstract 

 

This paper proposes a method to elucidate families of ship designs generated by the TU Delft packing 

approach using data clustering algorithms. The authors explore whether commonly used data science 

techniques can extract new information from the existing data. To test this hypothesis this paper 

applies data clustering algorithms to a test case of layouts of a Mine Counter Measures Vessel 

(MCMV) generated by the packing approach. Results look to improve the understanding of the 

multidimensional structure of the data, as well as to improve the comprehension and visualization of 

the complex interactions between the design and performance space.  

 

1. Background 

 

Early stage design is the initial phase in ship design where the balance between the different desired 

performances of the ship is explored. In ship design this process is often initiated by performing 

concept exploration, where various design solutions are explored in order to acquire knowledge about 

the interactions between design and performance space. Especially during concept exploration of 

complex ships, new requirements and/or new relationships between requirements can be elucidated. 

This results in an iterative process called requirement elucidation Andrews (2013). On top of that, the 

traditional method of manually iterating through the design spiral is very time consuming. These 

aspects cause that in general only a small part of the design space is explored, which leads to an 

increased probability of converging to a suboptimal design, Vasudevan (2008), Duchateau (2016). In 

order to explore the design space more extensively, the ‘packing approach’ was developed at the Delft 

University of Technology, which automatically generates tens of thousands of coarse feasible ship 

designs. By dividing this design space into ship design families, which share common design features 

and performance characteristics, the designer may then be able to better understand interactions 

between design and performance space. Think for instance of a ship where you can choose for either a 

long and narrow design corresponding to low resistance and low initial stability or short and beamy 

corresponding to high resistance and high initial stability. This paper explores the use of clustering 

algorithms to study the presence of ship design families stemming from the packing approach. 

 
1.1 The packing approach 

 

The packing approach is a tool that assists in enhancing the concept exploration process. The idea is 

to automatically generate a vast number of low level of detail feasible ship designs that cover a 

significant part of the design space. This is obtained by using a genetic algorithm on a parametric 

model of the desired ship, where all compartments in the ship are represented by building blocks. The 

designs are thus coarse, but detailed enough to calculate some performance measures (such as cost, 

speed, displacement, etc). Details on this approach can be found in van Oers (2011), van Oers (2012). 

The resulting data set may consist of tens of thousands of designs, where each design has hundreds of 

design and performance attributes. This data is then structured and visualized so that information 

about the relation between design and performance space can be extracted Rowley (2007). One 

visualization method applied to the packing approach is described in Duchateau (2016). He proposed 

a method of displaying the data in matrix scatter plots, where numerical and architectural constraints 

could interactively be added. In Fig.1, L, B, GM and packing density are plotted, and the constraint 

added is that designs have deck 4 as damage control deck (dcd) instead of deck 5. Several results can 

be deducted from this figure. It shows for instance that the length and packing density are negatively 

correlated. The reason is that since a longer design has more space available, it has therefore more 

empty space to fit the same number of objects. Furthermore a higher dcd results in a lower GM, since 

objects (such as the main gun) should be above dcd, which raises the center of gravity.  

mailto:T.J.M.Jaspers@student.tudelft.nl
mailto:A.A.Kana@tudelft.nl
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Fig.1: Visualization method of packing data as described by Duchateau (2016). Various features 

are selected for plotting in matrix plots and constraints can interactively be applied.  
 
Although the plots in Fig.1 contain a lot of information, they also raise new questions. Looking for 

instance at the clusters present in the middle plot, they are not separated in the plot in the lower left 

corner. So looking at the data from different directions determines whether the clusters are visible. It 

is therefore questioned whether there are other ways of looking at the data that reveal more structure.  

 

1.2 Families of ship designs 

 

In this paper families of ship designs are defined as being subsets of designs that share a clear 

similarity within design and performance attributes. These families should be clearly different when 

comparing designs between different subsets. An example is the middle plot in Fig.1, where two 

families are present. Another example is in Droste (2016), where he defined different luxury levels for 

a cruise ship design. Examining the impact of these families in a performance space is shown in Fig.2. 

High luxury level causes a jump in both building costs and earning potential, creating two distinct 

families, clearly showing a tradeoff to be made. Identifying families of ship designs is thus very 

useful, especially when they correspond to certain regions of the performance space.  

 

In contrast to these obvious families, which are defined by single discrete variables, families can be 

more complex. These complex families account for the inherent interaction between multiple design 

and performance features. These multi-dimensional families may be hard to identify and study using 

2D plots. Looking for instance at the layout of a naval ship, there are numerous interactions between 

the compartments. Examples are: no machinery near accommodation due to noise and no 

accommodation near the bow due to seasickness. Thus, although the positions of objects are 

continuous variables, there might be discrete valid combinations of these variables, which results in 

clusters. A certain cluster might then for instance require a larger beam, corresponding to the part of 

the performance space with high resistance and high stability. But since the layout is depending on 

many features (such as x, y and z position of all compartments) these families are only detectable 
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using the combination of the features. An example of how this would look like from a data point of 

view is illustrated by the artificial dataset displayed in Fig.3. If we look at the data from the 2D plots 

(3a-c), there is no special structure present. But if we look at it in 3D space (3d), the data actually 

consists of two distinct families. These are exactly the type of structures that are sought in this paper, 

where it is hypothesized that they exist in higher than three dimensions. 

 

 
Fig.2: Various designs plotted in performance space, divided into families based on luxury level,  

           Droste (2016) 
 

 
Fig.3: In this artificial dataset no clusters are detected by looking at 2d plots of (a), (b) and (c), 

whereas looking in 3d does reveal two clusters (d).  
 
1.3. Clustering 

 

In order to find these multidimensional families of ship designs, clustering algorithms from machine 

learning are proposed. These algorithms, as their name suggests, are devoted to find clustering struc-

tures in data. An example of their application is in companies as Facebook and Google where people 

are divided into clusters to achieve better assessment of which advertisement suits which person best 

Schutt and O’Neil (2013). The analogy is that in this case the designs are divided into clusters to 

achieve better assessment of which design decisions suits which performance requirement best. The 

assumption is that the more distinct the clusters are, the more information they reveal about the 

relation between design and performance space.  

 

A problem is however, that there is no clear notion of what ‘being distinct’ means. Studying for 

example the designs in Fig.4, there are various ways of comparing them. Looking at main dimensions 

designs A, B and C are similar, while design D is a bit longer. Whereas looking at the position of the 

working deck designs A and C have a working deck amidships, while at designs B and D it’s 

positioned at the stern. Finally if assessing the main gun, only design A has one, while it is absent in 

the rest of the designs. These examples show that clustering is inherently a subjective science, as there 

is no single right or wrong way to cluster any given data Theodoridis and Koutroumbas (2009). It is 

therefore important to investigate various sensible ways of clustering the set of designs. 
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Fig.4: Four MCMV-designs resulting from the packing approach, where various differences and 

similarities are pointed out. 
 

In this paper first the method for clustering is pointed out, including a more detailed description of the 

used techniques. Then this method is applied to find families of designs regarding the layouts of the 

MCMV.  

 

2. Method 

 

Due to the subjectivity of clustering, attention should be payed how to use the algorithms. The way 

you set up the problem partly determines which results you are going to find, and whether these 

results contain useful information. Clustering is a six step process (See Theodoridis and Koutroumbas 

(2009)): 

 

1. Feature selection/creation: Select a set of features that are of interest. This may include all 

features, a subset of features, or new features. An example of a new feature is adding 

displacement, when L, B, T and 𝑐𝐵 are available. 

2. Proximity measure: Define how similarity between data points is measured by selecting a 

distance metric (such as Euclidean and Hamming distance). 

3. Dimensionality reduction: Try to reduce the dimensionality of the data by using techniques 

such as Principal Component Analysis or Self-Organizing Maps. This improves the quality of 

the clustering algorithm as is shown by Ding and He (2004). Furthermore the result can be 

used as initial investigation/visualization of the problem. 

4. Clustering: If the remaining number of dimensions is more than three, apply a clustering 

algorithm, otherwise plotting data is possible. There are numerous clustering algorithms 

available. 

5. Validation: Validate the clusters. This is not trivial since there are more than three 

dimensions, which makes it hard to visualize. Several metrics exist that indicate the quality of 

clusters. 

6. Interpretation: When the result is valid, interpret it. 

 

The specific algorithms used in this paper in steps 3, 4, and 5 are discussed in-depth more below. 

 

2.1. Dimensionality reduction: Principal Component Analysis 

 

This paper uses Principal Component Analysis (PCA) for reducing the dimensionality of the selected 

features. PCA is a valuable technique for exploratory analysis of high dimensional data. It rotates the 

original dataset in such a way that the first principal component (pc) corresponds to the direction with 

the highest variance, the second pc is orthogonal to the first pc and contains the second highest 

variance, and so on. A two-dimensional example is shown in Fig.5. This is useful for a number of 

reasons. Most important is that the amount of variance can be interpreted as being the amount of 

information Linsker (1989). This reveals how PCA can be used for dimensionality reduction: 

Selecting and examining only those first couple of pc’s that have the highest variance. 
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Since it is only possible to plot up to three dimensional data (higher dimensional plotting is 

technically possible (i.e. using colour and/or time), but the same argument holds.), a plot of the first 

three pc’s will show you as much information as possible in one plot. On the other hand interpreting 

the content of the plot gets harder due to the complex values on its axis, since each pc is a linear 

combination of all input features. But the focus in this paper lies in identifying the multidimensional 

structure (clusters) in the data, which will still be visible in the plots. In fact, if there is a direction in 

space where clusters do show up, this direction has an increased probability of having a high variance, 

which makes it more likely to end up in the first three pc’s Ding and He (2004). This property is 

illustrated in Fig.6. 

 

 

 
Fig.5: Illustration in 2D how PCA rotates the 

data. It makes it as “flat” as possible. 

 
Fig.6: PCA applied to the data used in Fig.3. 

The first pc lies in the direction that 

reveals the clusters. 
2.2. Clustering: k-means 

 

K-means is a very popular clustering algorithm, mainly because of its elegancy and performance, Jain 

(2010). The algorithm requires the amount of clusters, k, as input and uses the following steps: 

 

 Initialize by selecting k distinct points 𝑐1, ⋯ , 𝑐𝑘 in space (Various initialization methods exist 

such as k-means++, which is used in this paper. The easiest is randomly selecting distinct 

positions as is used in the example of Fig.7.) 

 Repeat until convergence: 

 Assign every data point to cluster 𝑖 if it is closest to point 𝑐𝑖 

 Shift every 𝑐𝑖 to the center of mass of the data belonging to cluster 𝑖 
 

This process is illustrated in Fig.7. In Fig.7a the data itself and the random initialization of the centres 

is displayed. The first and second iterations are shown in respectively figures 7b and 7c, and finally 

convergence is reached in Fig.7d. 

 

2.3. Validation: Dunn-index  

 

There are a number of different metrics that give an indication of the quality of clusters. This paper 

seeks clusters based on physical attributes, which means that certain combinations of features result in 

infeasible designs. Thus, opposed to density clusters, there should be real gaps in-between the 

clusters. Therefore the Dunn-index is used, since it measures the size of the gap Theodoridis and 

Koutroumbas (2009). It is defined as: 

 

𝐷𝑢𝑛𝑛 𝑖𝑛𝑑𝑒𝑥 =  min
∀𝑖,∀𝑗≠𝑖

(
𝑑(𝐶𝑖, 𝐶𝑗)

max
∀𝑘

(𝑑𝑖𝑎𝑚(𝐶𝑘))
) 
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Where 𝑑(𝐶𝑖, 𝐶𝑗) is the minimum distance between points from clusters 𝐶𝑖 and 𝐶𝑗, and 𝑑𝑖𝑎𝑚(𝐶𝑘) is the 

maximum distance between points from cluster 𝐶𝑘. 

 

 
Fig.7: Illustration of how k-means converges on a 2D artificial dataset for k=3 

 
To be more precise the Dunn-index is a measure that gives a lower bound for the distance between the 

clusters relative to the size of the clusters. A Dunn index of 1 or higher would therefore mean that the 

minimum distance between the clusters is higher than the diameter of the biggest cluster. In order to 

test whether the method in this section is able to elucidate families of designs from the data of the 

packing approach, it is applied to a test case in the next section. 

 
3. Test Case: Mine-countermeasures vessel 

 

The dataset of a MCMV as used in Duchateau et al. (2015) is used as test case. The set consists of 

over 17000 designs, with variations in global parameters (such as length, speed and range), optional 

objects (gun and Unmanned Surface Vessels (USV’s)) and layout (position of the compartments and 

bulkheads). An example is displayed in Fig.8 including an explanation of its objects. 
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Fig.8: Example of a MCMV design from Duchateau (2016) 

Since naval ships are complex designs that have many interactions between their compartments, the 

MCMV dataset is particularly interesting. The problem with this set is however that many of these 

interactions were omitted when initially developing the data set. This means that the compartments 

are more or less randomly stacked into the hull. Therefore, this section starts with selecting designs 

based on the quality of their layout. Then the proposed method is applied for finding 

multidimensional structures in the layouts of these selected designs. And finally, the results will be 

discussed. 

 

3.1. Design selection based on designer rationale 

 

The goal in this section is to select the 10% designs with the best layouts based on designer rationale. 

The layouts of the resulting subset of designs should then contain more structure than the remaining 

90%. This enables verification of the hypothesis that this set consists of distinct families of designs. 

 

In order to achieve this, first a metric is defined that quantifies if a design has a good layout. This is 

based on designer rationale captured by Denucci (2012). He developed a Rationale Capture Tool 

(RCT) where designers could comment on automatically generated ship designs. These comments 

were structured and saved so that a resulting list of designer rationale emerged. All rationale 

applicable to the MCMV was extracted from that list and then quantified into a metric. The resulting 

ten comments and their corresponding metrics are listed in Table I.  

 

Table I: Applicable designer rationale for the MCMV from Denucci (2012), including the metrics 

representing the rationale. Every metric should be minimized. 

# Designer Rationale Reason Metric 

1 
The length of fuel piping 

must be minimized 
Survivability/Cost 

Sum distances between all tanks and 

generators 

2 
Shaft length should be 

minimized 
Space/Weight/Cost 

Distance between propulsor and 

propulsion room 

3 
High ranked officer accom

16
 

should be close to the bridge 
Operability 

Max. distance between high ranked 

officer  

accoms and bridge 

4 
accom shouldn't be near the 

bow 
High accelerations 

Negative min. distance between accoms 

and bow 

5 
High ranked officer accom 

shouldn't be below dcd 
Survivability 

Count number of high ranked officer 

accom below dcd 

6 
Drystores should be close to 

the galley 
Logistics 

Max. distance between drystores and the 

galley 

7 Bridge shouldn't be near the High accelerations Negative distance between bridge and 

                                                 
16

 For each design the 14 accom blocks are first sorted on whether they are above dcd and are then sorted on 

their distance to the bridge. The first 4 accom blocks are then assigned to high ranked officers. 
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bow bow 

8 
Davit shouldn't be too high 

above the waterline 
Operability Davit height minus the draft 

9 accom should be grouped Atmosphere 

Within cluster sum of squares (WCSS)
17

 

for  

k-means with k=2 

10 
accom shouldn't be close to 

heavy machinery 
Noise 

Negative min. distance between accom 

and generators, propulsion room and gun 

 

The following step is to combine the ten metrics from Table I into one metric for the quality of the 

layout of the designs. First, since every metric has different values (the first metric is typically in the 

order of tens, while the third metric is in the order of thousands) they are first standardized by taking 

their z-scores
18

. Then for the sake of simplicity it is assumed in this paper that every design comment 

is equally important, thus the quality of a layout is defined by the plain sum of these ten metrics 

without using a weigh factor. Finally the 10% designs with the lowest total objective value are the 

designs with the best layout, and are therefore combined into a subset which is investigated for 

clusters in the next section. 

 
3.2 Apply method 

 

3.2.1 Feature selection/creation 

 

The dataset with included designer rationale is expected to consist of separated clusters regarding the 

layouts of the designs. Therefore the features regarding the positions of all objects in the layout are 

selected. In total the designs are packed with 43 objects. Since the designs are generated by 2.5D 

packing, x- and z-positions of all objects are selected, but y-positions are only deviating from the 

centreline for workshops and stores and are therefore omitted van Oers and Hopman (2012). This 

results in a total of 86 selected features (or dimensions) which describe the designs. 

 
3.2.2 Proximity measure 

 

There are multiple criteria for down selecting a proximity measure. Since in this case the data is in 

Cartesian coordinates, and consist of continuous variables, Euclidean distance has been chosen as an 

appropriate metric. 
 
3.2.3 Dimensionality reduction 

 

The next step in the process is dimensionality reduction with PCA. An initial result is displayed in 

Fig.9, where the explained variance is plotted versus how many pc’s are used (note that the pc’s are 

sorted regarding the amount of variance they explain). The first pc does thus contain over 20% of the 

total variance. Furthermore it is interesting to see that 99% of the total variance is explained by using 

the first 33 pc’s. This means that 86 – 33 = 53 dimensions can be discarded with very limited 

information loss. Fig.10 shows the data plotted regarding the first 2 pc’s. From Fig.9 it is clear that 

this plot contains about 29% of the total variance. As discussed in section 2.1.1, clusters are likely to 

show up in this plot. Although there are no clear separate clusters visible, there is some structure 

present with regions that have a higher density. The presence of distinct clusters is further investigated 

in the next sections. 

 

                                                 
17

 WCSS is equivalent to the sum of the Euclidean distances between every data point (accommodation) and its 

respective cluster center resulting from k-means. 
18

 Taking the z-score of a data array sets its mean to zero and its standard deviation to 1 with the following 

transformation: 𝑧𝑖 =
𝑥𝑖−𝜇𝑥

𝜎𝑥
  for all data points 𝑥𝑖. 
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Fig.9: Explained variance vs. the number of pc’s 

used for the MCMV dataset including 

designer rationale.  

 
Fig.10: MCMV dataset including designer       

rationale plotted regarding its first 2 

pc’s. 

3.2.4 Clustering 

 

Next the k-means algorithm is applied to the reduced 33-dimensional dataset for various values of k. 

Since the 33-dimensional clusters are still hard to visualize in a figure they are validated in the next 

section. A projection of the clusters for k = 3 into the first two pc’s is shown in Fig.13a. 

 

3.2.5 Validation 

 

The Dunn indices calculated for the various cluster compositions from k-means are plotted in Fig.11. 

Instead of one value for k that corresponds to a high Dunn index, the Dunn index is approximately 

constant at a rather low value of about 0.18. This might indicate that there are no gaps in between the 

clusters. For further investigation, the Dunn index is calculated for 1000 random cluster compositions, 

Fig.12. The median of the resulting set equal 0.184, showing that there is roughly a 50% probability 

of a random cluster composition exceeding the cluster compositions from k-means. This means that 

there is no significant gap in between the clusters from k-means. 

 

 
Fig.11: Validation of the results from k-means 

using the Dunn index 

 
Fig.12: Histogram of Dunn index values for 

1000 samples when the dataset is split 

into two groups by a random 

hyperplane
19

. 
 
3.2.6 Interpretation 

 

                                                 
19

 Hyperplane equidistant to two randomly selected data points.  
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Although the clusters are not separated by a significant gap, Fig.13a does show that the clusters 

correlate to certain regions with higher densities.  

 

 
Fig.13:  Data plotted in first two pc’s clustered by: (a) the result of k-means for k=3 and (b) the run 

number in which the data was generated. 
The explanation for the visible structure lies in how the data was generated. The packing algorithm 

was run ten distinct times in order to compare it with another dataset. The results of these ten runs 

were combined to form the complete dataset. Colouring the data based off this run number, as shown 

in Fig.13b, and comparing this with the clusters found by k-means shows that the result is very 

similar: 

 

- Cluster 1 corresponds to run number 3 

- Cluster 2 corresponds to run number 5 (and 4,6,8 and 10 which are smaller) 

- Cluster 3 corresponds to run number 9 

 

This result suggests that every run searches a particular part of the design space, since every run forms 

its own cluster based on layout. This notion is further investigated in the next section. 

 

3.3. Design space 

 

In the packing approach every design is parametrized by a chromosome which can then be adjusted 

by the genetic algorithm. The genes in the chromosome do thus form the design space. In order to 

further investigate the influence of run number in the dataset at hand, PCA is applied to this design 

space of the full design set, and the result is plotted in Fig.14. This static figure shows clearly that 

every run converges to a different part of the space, which is even better visible when the figure is 

rotated.  
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4. Discussion & Future work 

 

Although part of the problem for the lacking diversity lies in using a genetic algorithm as a search 

algorithm, it is suspected that it is amplified by the following effect: The objective of the NSGA II 

algorithm is to create compact designs (i.e. maximize packing density). When a design has a high 

packing density, it will therefore be higher graded than other designs. This causes the algorithm to 

keep trying to propagate this design. But in contrary this design is less likely to get a feasible child, 

since it is more difficult to pack the compartments in a denser design. The probability of having 

feasible children is then only higher if there are only minor changes applied, which causes 

convergence. Furthermore if the design does happen to get a feasible child, this is most probably the 

case due to increasing the size of the ship, which makes it of less quality then the original design. This 

suspicion can be tested by investigating the family tree of a run, including the designs that have failed 

to meet the constraints. Since this information is not included in the data yet, this is up for future 

work. 

5. Conclusion 

 

In this paper clustering algorithms were used to search for families of ship designs generated by the 

TU Delft packing approach. Therefore a clustering method was applied to a test case of layouts from a 

MCMV. Unfortunately the results seem to be dominated by the fact that the dataset was built by 

combining data from ten distinct runs of the packing approach.  

 

Although families of ship designs based on physical aspects of the designs were not clearly visible, 

the techniques used in this paper did reveal information on how the model generated the data. It 

shows that despite the effort of using the NSGA II algorithm as a search algorithm by setting its 

mutation rate rather high Duchateau (2016), the diversity for a single packing run is still limited.  

 

It would have been difficult to ascertain this behaviour using other techniques. The clustering method 

allows to look at the data from a different point of view than ordinary plotting variables, and therefore 

creates new insights and hypotheses. The authors are therefore convinced that its application will 

remain useful, revealing information about both the model as the relation between design and 

performance space. 

 

Acknowledgements 

 

 
Fig.14:  Input data plotted versus the first three pc’s obtained from the design space. For 

visualization purposes only the first 7 out of 10 run numbers are included. 
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