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Abstract  

This paper focuses on the challenge of estimating the 2D instantaneous ego-motion of vehicles equipped with an auto-

motive radar. To further improve our previous study based on the weighted least squares (wLSQ) method and purpose-

designed neural networks (NNs), this work proposes a new network architecture that supports local and global feature 

extraction as well as point-wise dynamic feature channel mixing. Compared with our previous work, the proposed method 

provides better estimation accuracy, lighter network size, and faster runtime performance. 

 

 

1 Introduction 

Ego-motion estimation for vehicles stands out as a crucial 

stage for contemporary autonomous vehicles[1]. This pro-

vides the current speed of the vehicle, which directly in-

forms motion control strategies. Furthermore, it signifi-

cantly impacts the effectiveness of various subsequent ap-

plications, e.g., mapping, object tracking, and path plan-

ning. Traditionally, vehicle ego-motion can be monitored 

via odometry sensors such as wheel encoders, inertial 

measurement units (IMU), and global positioning systems 

(GPS). However, they are not always reliable [2] and more 

data redundancy is needed from other sensing modalities. 

Many different sensors can be used for ego-motion estima-

tion, such as stereo camera, LiDAR, and sonar. Compared 

with them, automotive radar has incomparable advantages: 

it can operate in extreme weather conditions, is less sensi-

tive to lighting conditions unlike cameras, and can illumi-

nate targets not in the direct line of sight. 

Owing to these benefits, numerous approaches have been 

proposed to leverage automotive radars for ego-motion es-

timation. In general, these previous approaches can be di-

vided into two groups. The first category is known as the 

scan-matching methods [3], originally designed to solve 

the ego-motion estimation problem with LiDAR data [4], 

some of which have then been adapted for processing radar 

data [5]. One of the advantages of these methods is that 

they can use a single radar to estimate the complete two-

dimensional (2D) motion of the vehicle, including lateral, 

longitudinal, and rotational velocities [6]. However, since 

scan-matching is based on data association, these methods 

often require sensors with high angular resolution and sta-

ble object detection capabilities. 

The second type of ego-motion estimation methods are 

called instantaneous approaches [7]. They exploit the rela-

tionship between the vehicle ego-motion, Doppler fre-

quency, and angle-of-arrival (AoA) [8]. Thus, they esti-

mate ego-motion with a single radar frame, without the 

need for data association. However, these methods cannot 

exploit other object features captured by automotive radar 

and have poor runtime performance due to the internal it-

erative process. To address these gaps, our recent work [9] 

proposes to use neural networks (NNs)-based weighted 

least squares (wLSQ) for instantaneous ego-motion esti-

mation. This uses NNs to process multidimensional radar 

point clouds to directly estimate the vehicle motion without 

iterations. Nevertheless, limited by its network architec-

ture, this method is constrained to extracting only global 

spatial features and offers limited support for information 

sharing among points. However, these functionalities are 

crucial, as the task handled by the NN-based wLSQ is close 

to a segmentation problem. Therefore, to go a step further, 

this work proposes a new network architecture for hierar-

chical feature extraction and dynamic channel mixing. 

Specifically, it allows progressive feature extraction at 

multiple scales and supports mixing point feature channels 

dynamically. Compared with the previous work [9], the 

proposed method improves both estimation accuracy and 

runtime performance. 

The rest of the paper is structured as follows. Section 2 

delves into a detailed explanation of the problem statement 

and the proposed solution. Section 3 presents the evalua-

tion results for the proposed method. Ultimately, Section 4 

concludes the paper. 

2 Methodology 

2.1 Problem Description 

This paper focuses on solving the problem of estimating 

the vehicle ego-motion in a 2D plane based only on meas-

urements from an automotive radar. Compared to our pre-

vious study [9], this work investigates the same problem 

and uses a similar methodology (i.e., the NN-based wLSQ 

approach), but with a special focus on the architecture de-

sign of the NN.  

For the  radar on a vehicle, its measurement after detec-

tion is a matrix of size , where  is the number of de-

tection points and  is the number of features. Two im-

portant object features are the radial velocity and AoA; for 

the  detection, they are denoted as  and . 

ICMIM 2024  16. – 17.04.2024  Boppard

ISBN: 978-3-8007-6363-4 © VDE VERLAG GMBH  Berlin  Offenbach

Authorized licensed use limited to: TU Delft Library. Downloaded on February 11,2025 at 12:18:19 UTC from IEEE Xplore.  Restrictions apply. 



 

Therefore, the ego-motion  of the  radar can be ex-
pressed as: 

 

Or in the matrix form: 

 
Although one can use regression methods such as ordinary 

least squares (OLS) to estimate , the performance will 
be severely influenced by outliers such as moving objects, 
false alarms, and multi-path reflections. To solve this issue, 

this work uses point weights  estimated by NNs to-
gether with the wLSQ method, as: 

 

 is the ego-motion of the radar, and the 

vehicle self-motion can be computed easily by using the 
relative position between the radar and vehicle. 
Finally, it is important to acknowledge that this work as-

sumes zero lateral velocity ( ). However, this 

is a common assumption in the literature [7], [10], [11] and 
can be lifted when multiple radars are used [12]. 

2.2 Proposed Solution 

Overview. Figure 1 shows the architecture of the proposed 

method. The key idea behind the proposed approach is to 

first use a neural network to extract point features from the 

input radar point cloud. Then, these extracted features are 

used to estimate the weights for each point. However, un-

like in our previous work [9], this new approach proposes 

a different hierarchical architecture and a feature mixing 

scheme, which allows the network to progressively aggre-

gate critical features at local and global scales. The pro-

posed model consists of three basic components, namely 

sampling layer (S-Layer), channel mixing layer (CM 

Layer), and feature dropout layer (FD-Layer). 

S-Layer. The main goal of the S-Layer is to upsample and 

downsample the input point cloud to build a hierarchical 

path for feature extraction. As shown in Figure 1, the pro-

posed method first downsamples the number of points in 

the input point cloud, and then upsamples it back to the in-

put size. As studied in [13], [14], the sampling mechanism 

provides an efficient way to achieve a large receptive field 

for each point in the point cloud, which is important for 

identifying outliers and assigning them appropriate 

weights. Moreover, unlike [9], which uses a simple pooling 

layer to aggregate the entire point cloud, the hierarchical 

sampling architecture can help the feature extraction pro-

cess capture local structures (e.g., slow-moving objects). 

Finally, S-Layer uses the Farthest Point Sampling (FPS) 

algorithm for point sampling and skip-connections to prop-

agate fine-grained features learned in earlier layers [15]. 

CM-Layer. There are two operations performed by the 

CM-Layer. First, CM-Layer implements point-wise feature 

encoding and decoding during the down-sampling and up-

sampling stages, respectively. As shown in Figure 1, the 

number of point features increases during downsampling 

(from 64 to 256) and decreases during upsampling (from 

256 to 64). Feature encoding and decoding are achieved 

using multi-layer perceptron (MLP) [16]. Second, the CM-

Layer updates the features of each point in the next layer 

(i.e., anchor point) by using their adjacent points in the pre-

vious layer. By doing this, each point can aggregate fea-

tures from its neighbours. Additionally, the idea of dy-

namic graph attention [17] is used so that anchor points can 

learn to aggregate features from their most relevant neigh-

bours. In summary, the CM-Layer changes the feature di-

mension of point clouds (point by point) and mixes point 

features (channel by channel). 

FD-Layer. The main objective of the FD-Layer is to pre-

vent the network from over-relying on a few point features 

for point weight prediction. Unlike traditional dropout 

[18], FD-Layer randomly selects a set of features and 

mutes them throughout the point cloud. Therefore, the net-

work is forced to spread its focus over a larger set of point 

features than without using the FD-Layer. 

2.3 Implementation Details 

As mentioned earlier, the input radar point cloud is as-

sumed to be a  matrix. First, a MLP projects the input 

Figure 1  The architecture of the proposed method. The input radar point cloud is a  matrix. The network consists 
of 4 S-Layer, 4 CM-Layer, 1 FD-Layer, and 1 MLP layer. Based on the extracted features, it predicts point-wise weights 

( ) and offsets ( ) for computing wLSQ. The network outputs the ego-motion of the radar platform ( ) which 

can be easily converted into the self-motion of the vehicle. 
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point features to a higher feature space (from  to 64). 

Then, the S-Layer gradually down-samples the input point 

cloud to different subsets, from  to 16 using the FPS algo-

rithm. For up-sampling, instead of resampling, the same 

subsets generated during downsampling are used, from 16 

back to . A CM-Layer is always located after the S-Layer 

and it uses FPS and K-nearest neighbors (KNN) to find 3 

nearest neighbor points and 2 far points. Lastly, FD-Layer 

randomly sets point features to 0 with a frequency of 0.3. 

Finally, it is important to note that the point-wise weight 

and offset predictions, the wLSQ implementation, and loss 

functions are the same as in the previous work [9], and 

readers are referred to this for more details. 

3 Results 

3.1 Dataset and Evaluation 

For performance evaluation, the RadarScenes dataset [19] 

is used. The evaluation data are five radar recordings cap-

tured by a forward-looking radar, containing different road 

types such as collector roads, local streets, and arterial 

roads. The same evaluation data are used as in [9]; it is 

worth mentioning that no evaluation data was used during 

model training. For more details on the dataset and evalu-

ation setup, please refer to [19] and [9]. 

3.2 Performance Comparison 

Estimation Accuracy. As shown in Table 1, the proposed 

method outperforms the original DeepEgo [9] in terms of 

translational and rotational velocity estimation. Further-

more, since the proposed method uses a smaller maximum 

feature length (256) than DeepEgo (512), the performance 

of DeepEgo with the same feature length is also measured. 

It can be seen that as the feature length is shortened, the 

performance of DeepEgo decreases. However, thanks to 

the hierarchical architecture, the proposed method can have 

a lower network complexity and better estimation accu-

racy. Additionally, an FD-Layer is added to DeepEgo, but 

the measured performance improvement is not significant. 

 

Methods RMSE Vx 

(m/s) 

RMSE Rot. 

(deg/s) 

DeepEgo [9] 0.0876 0.911 

DeepEgo* 0.0896 0.959 

DeepEgo + FD-Layer 0.0852 0.879 

Proposed 0.0864 0.829 

Improvement +1.4% +9.0% 

Table 1 Root-mean-square-error in translational (Vx) and 
rotational (Rot.) velocity estimation. The proposed method 
is compared to the original DeepEgo [9], and two of its var-

iants. DeepEgo* uses a maximum feature length of 256 in-
stead of 512, to match the same network complexity of the 
proposed method. Another variant adds FD-Layer to 
DeepEgo (i.e., DeepEgo + FD-Layer). Results are aver-

aged over 5 radar recordings from the evaluation data. 

Network Complexity. One of the main challenges when 

considering deploying NNs in real-world scenarios is the 

limited memory size. Not to mention that complex net-

works are data-hungry, and radar data is not easily availa-

ble. Therefore, even with (somewhat) reduced perfor-

mance, a lighter network is often desired. As shown in Ta-

ble 2, the proposed method has a smaller number of train-

able parameters compared with DeepEgo (  lighter). 

Yet, the proposed method still performs better in ego-mo-

tion estimation as shown in Table 1. Due to the lightweight 

network, the running time of the proposed method is ap-

proximately  faster than the previous work. 

 

Methods Trainable 

Parameters 

Runtime 

(FPS) 

DeepEgo [9] ~800K ~243.8 

Proposed ~170K ~547.4 

Improvement 4.7x lighter 2.2x faster 

Table 2 Network complexity comparison. Trainable pa-
rameters are the trainable biases and weights in a neural 

network. The runtime performance is measured by frames 
per second (FPS) using the Delft High Performance Com-

puting Center (DHPC). 

3.3 Visualization of Attention Weights 

Figure 2 shows the down-sampling (first row) and up-sam-

pling (second row) processes and the learned attention 

weights for each anchor point. It is easy to see from the 

figure that, regardless of whether the anchor point is an in-

lier or an outlier, it will try to assign high weights to neigh-

bouring points that are inliers. This is reasonable because 

not only the relative vehicle motion is encoded in these in-

liers (detected stationary objects), but the information of 

inliers can help better distinguish outliers. 

4 Conclusion and Future Work 

This work proposed a novel neural network with a hierar-

chical architecture and channel mixing mechanism for ra-

dar-based vehicle ego-motion estimation. Unlike previous 

works, the proposed method can capture local and spatial 

features gradually and form a large receptive field on the 

top layer. Moreover, it can automatically learn attention 

weighs and aggregate point features from informative 

neighbours. Furthermore, tested on a challenging real-

world dataset, the proposed method shows higher estima-

tion accuracy compared with previous work despite lower 

network complexity. For future learning directions, it is im-

portant to consider a more general case where a moving 

vehicle is equipped with an unsynchronized radar sensor 

network and how to fuse information from different per-

spectives to achieve better estimation accuracy. 
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Figure 2 A sketch of the learned attention weights in each layer. The figures in the 1st row show the down-sampling path 

while the 2nd row shows the up-sampling path. Examples of anchor points are represented by green stars and pointed by 
purple arrows. Neighbouring points of the anchor point in the previous layer are pointed by red arrows (inliers) or orange 

arrows (outliers). The colour of neighbouring points indicates their attentional weights relative to their anchor points.  
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