
A Watermark Recognition System
FINAL REPORT: AN APPROACH TO MATCHING SIMILAR

WATERMARKS

GROUP 18B

Diana Bant, ă, Sydney Kho, Anna Lantink,
Alexandru Marin, Vladimir Petkov

Client: Dr. Martin Skrodzki

Coach: Dr. Zhengjun Yue

Teaching Assistant: Ana Băltăreţu

Computer Science and Engineering

Technische Universiteit Delft

The Netherlands

June 25, 2023

Preface

This report is the product of the second year Software Project for Computer Science and Engineering
at the Technical University of Delft. To complete the Software Project, the group chose to create a
system that could match watermarks on similarity. The goal of this project was to make a prototype
system that could find similarities between watermarks. Ideally, this system will be expanded in the
future. This report details the process of producing this system. Specifically, the following report
covers the process of designing the product, outlining the requirements, as well as researching, im-
plementing, and evaluating the system. This report seeks to provide a general overview of all the
steps, so in-depth technical descriptions are not provided. The sources1 used are cited, so for further
information these can be referred to.

We would like to thank our client, Dr. Martin Skrodzki, our coach, Dr. Zhengjun Yue, and our teaching
assistant, Ana Băltăreţu, for their continual support throughout this project. They have provided us
with useful feedback that allowed us to keep this project organized and on track. We would also like
to thank Drs. Regina Hoffmann for her guidance in writing this report. Additionally, we would like
to acknowledge that ChatGPT2 was used occasionally in this project. For more information on the
usage of ChatGPT, please refer to Appendix 1. Finally, we would like to thank those at the German
Museum of Books and Writing and the Bernstein Project for their hard work in digitizing their large
archive of watermarks. Without these watermarks, we would not have been able to build our system
as effectively as we have. As a group, we are very grateful for the opportunity to work on such an
engaging project, and we feel that we have significantly benefited from this experience.

1The IEEE referencing style has been used.
2https://openai.com/blog/chatgpt

i

Summary

Watermarks are invaluable tools for historians and researchers. Based on a document’s watermark, it
can be determined where and when it was created [1]. However, to identify a watermark, a specialist
must be contacted who will manually search for matching watermarks in their archive. This can take
a significant amount of time, therefore this process would benefit greatly from automation.

This report aims to discuss the process of creating a system for finding similar watermarks. To do
so, the problem was first analyzed by researching the history and use of watermarks. Based on the
discoveries made, constraints are put on the problem to make it more feasible. For example, all
watermark images must contain a watermark, and be cropped around the watermark. Existing research
and technologies are also taken into account to further guide the problem definition. Based on this
clearer definition of the problem in addition to an interview with the client, concrete requirements
were created for the final product.

Based on the requirements, a design was put together for a system that can find similar watermarks,
consisting of harmonization, feature extraction, and similarity matching. Harmonization involved
isolating the watermark by using many different image processing techniques such as morphological
operations [2], wavelet denoising [3] [4], and Sauvola thresholding [5]. Feature extraction involved
extracting useful information from the isolated watermarks using SIFT [6], Hu moments [7], and
Zernike moments [8], and finally similarity matching would use this information to score how similar
any pair of watermarks is.

A graphical user interface was also designed to allow the user to interact with the system and to make
it easier to use. This gives the option of using the system either manually, or automatically through
the command line. The manual pipeline resulted in better results, as the user was able to compensate
for mistakes made by the system. To avoid recalculating the features of known watermarks with every
query, a database also has to be built. This can also be done automatically, but the user interface can
be used to manually build the database for better accuracy.

Ethical implications of the system were discussed, as well as ways to mitigate them. Specifically, the
ethics of the dataset of watermarks was discussed, as well as potential ways the system can be abused.
Overall, it was determined that these concerns were sufficiently mitigated for this project.

Next, the system was evaluated. This was done by running the pipeline and looking at the ranking
it produced, where a result is counted as correct if a corresponding image is in the top 10% of the
dataset. Accuracy for the automatic pipeline with the automatic database pipeline was 42%, and with
the manual database 41%. Accuracy for the manual pipeline with the automatic database was 45%,
and with the manual database 53%. As expected, incorporating user interaction with the manual
pipeline and database improved scores. It was also found that improving the quality of watermarks in
the dataset improve accuracy results to 82%.

Overall, the system works sufficiently, especially given the expected use case of building the database
manually and having the user interact with the pipeline. Nonetheless, it is also clear there is still
room for improvement. The existing process for similarity matching is somewhat arbitrary and could
be optimized by using a machine learning model. The harmonization for images of the original
watermark also rarely works perfectly without help. Finally, the system could be further extended
with optional goals that were not achieved, such as segmenting the watermarks into parts that can be
assigned semantic meaning.

ii

Contents

Preface i

Summary ii

1 Introduction 1

2 Analysis of Challenges in Matching Similar Watermarks 2
2.1 Context for Watermarks . 2
2.2 Challenges in Watermark Analysis . 2
2.3 A Solution for Finding Similar Watermarks . 3
2.4 Constraints on the Input Watermarks . 3
2.5 Existing Solutions and Research . 3
2.6 Stakeholders . 4

3 Requirements of the Watermark Similarity System 5
3.1 Functional Requirements . 5

3.1.1 Functional Must-Haves . 5
3.1.2 Functional Should-Haves . 5
3.1.3 Functional Could-Haves . 6
3.1.4 Functional Won’t-Haves . 6

3.2 Non-Functional Requirements . 6
3.2.1 Non-Functional Must-Haves . 6
3.2.2 Non-Functional Should-Haves . 6
3.2.3 Non-Functional Could-Haves . 7
3.2.4 Non-Functional Won’t-Haves . 7

4 Watermark System Design 8
4.1 Overview of the Design for Analyzing Watermarks 8
4.2 Harmonizing Watermarks Design . 9
4.3 Design for Extracting Features from Watermarks 9
4.4 Design for Matching Watermarks on Similarity . 9
4.5 Design for the User Interface . 10

5 Watermark Pipeline Implementation 12
5.1 Implementing Harmonization of Traced Watermarks 12

5.1.1 Pre-processing and Denoising Traced Watermarks 13
5.1.2 Thresholding Traced Watermarks . 14
5.1.3 Post-processing Traced Watermarks . 14

5.2 Implementing Harmonization of Untraced Watermarks 15
5.2.1 Pre-processing and Denoising of Untraced Watermarks 16
5.2.2 Thresholding and Post-Processing Untraced Watermarks 16

5.3 Implementing Feature Extraction . 18
5.3.1 Scale Invariant Feature Transform . 18
5.3.2 Hu Moments . 18
5.3.3 Zernike Moments . 18
5.3.4 Implementation of Feature Extraction . 19

iii

5.4 Implementing a Similarity Matcher . 19
5.4.1 Getting similarity scores from features . 19
5.4.2 Combining the similarity scores . 20

6 User Interface Implementation 21
6.1 Running the Pipeline Automatically . 21
6.2 Building the Database Automatically . 21
6.3 Finding Similar Watermarks with the Graphical User Interface 21
6.4 Building the Database Manually . 23

7 Ethical Implications 24
7.1 Ethics of the Watermark Data . 24
7.2 Potential for Abusing the System . 24

8 Discussion 26
8.1 Splitting and Labeling the Dataset . 26
8.2 Calculating Accuracy and Evaluation Data . 27
8.3 Evaluation of the Automatic Pipeline . 27
8.4 Evaluation of the Manual Pipeline . 27
8.5 Evaluation of a Dataset of Clearer Images . 28
8.6 Evaluation of the Graphical User Interface . 29
8.7 Testing the System . 30
8.8 Limitations of the System . 30

9 Conclusion 32

10 Recommendations for Future Work 33

References xxxiii

Appendix 1. Usage of ChatGPT xxxv

Appendix 2. Requirements Completion Overview xxxvi

Appendix 3. Work Distribution xxxvii

Appendix 4. Overview of Hyperparameters xxxviii

Appendix 5. Accessing Raw Data and Datasets xli

Appendix 6. GUI Evaluation Script xlii

Appendix 7 Python Test Coverage xliii

iv

1 Introduction

Sometimes the greatest secrets hide exactly where one never expects them to be. With a piece of
paper, one may focus on the words or pictures but may miss something nearly invisible: its watermark.
Watermarks are patterns, embedded in paper, that can only be seen when shining a light from a specific
angle. Historically, watermarks were used by manufacturers to identify their paper, a type of insignia
[1]. Analyzing a document’s watermark can provide details about the place and time that a document
was produced. For this reason, watermarks can provide invaluable information for historians and
researchers. To identify a watermark, a specialist must be contacted who will then manually comb
through archives searching for matching artifacts. This can take a significant amount of time, which
is the problem that this project seeks to solve.

The goal of this report is to discuss the design, implementation, and evaluation of a system that, when
given a watermark as input, can return similar watermarks. The overall design of the system is as
follows. The watermark image will be processed such that it can be isolated from its surroundings.
After the watermark outline is isolated, it will be compared to a database of other watermarks. The
most similar ones to the input will then be returned. Since the product may be used by researchers
with little technical knowledge, it is necessary that the product is simplistic and easy to use. After the
design and implementation of the system are covered, the system will be evaluated on its accuracy.

Several constraints are considered to ensure that this project can be completed in the given time. One
constraint is that input images are expected to fulfill certain properties. For example, the watermark
images should be cropped around the watermark, and watermarks should not be obscured by text.
Another constraint on the system is that the database is not expected to have security.

The structure of this report is as follows. In Chapter 2, the problem of finding similar watermarks
will be analyzed. Chapter 3 will outline the requirements for the system, which will be followed by
the design of the watermark similarity system in Chapter 4. Chapters 5 and 6 discuss how the system
has been implemented. Specifically, Chapter 5 explains how watermark similarity is calculated, and
Chapter 6 shows how the user can interface with the system. The ethical implications of this system
are analyzed in Chapter 7. Chapter 8 discusses the accuracy of finding similar watermarks with this
system, as well as its limitations. Finally, Chapters 9 and 10 conclude this report and recommend
improvements that can be made.

1

2 Analysis of Challenges in Matching Similar Watermarks

In this section, the problem of watermark similarity will be analyzed. In Section 2.1 the context
behind watermark similarity is explained, and in Section 2.2 the challenges of watermark analysis
are discussed. After defining the problem, a solution for finding similar watermarks is proposed in
Section 2.3. The constraints on the system are explicitly defined in Section 2.4. Additionally, existing
solutions for watermark similarity are reviewed in Section 2.5, and finally, in Section 2.6 this project’s
stakeholders are mentioned.

2.1 Context for Watermarks

In order to analyze watermarks, it should first be understood what watermarks are and what their
purpose is. Watermarks are small images that are embedded in paper and are used to identify the
paper’s manufacturers [1]. They are primarily found in historical documents since modern paper is
no longer produced with watermarks. Watermarks can be seen by shining light through the paper
from a certain angle. For this project, watermark images have been provided by the German Museum
of Books and Writing, who have digitized and uploaded them for The Bernstein Project [9]. These
digitized watermarks can be categorized into two types. The first is “untraced” watermarks, which are
scans taken directly from the watermarked paper (Fig. 1). The second is “traced” watermarks, which
are scans of tracings of watermarks (Fig. 2). Evidently, the tracings of watermarks are often much
clearer than the direct scans.

Figure 1: An ’untraced’ watermark. Figure 2: A traced watermark.

2.2 Challenges in Watermark Analysis

Since watermarks can provide important information on the location or time that a piece of paper
was produced, they can be invaluable for researchers. When a researcher comes across a historical
document with a watermark, they can analyze a watermark to understand the document’s origins and
context. To get this information researchers must contact experts, who must manually go through an

2

archive of watermarks. This can take days if not weeks. Producing a system to automatically find sim-
ilar watermarks could bring this time down to mere minutes. With such a system, a researcher could
quickly find similar watermarks and thus be able to get more clarity and detail on their watermark.

2.3 A Solution for Finding Similar Watermarks

The aim of the project is to develop a tool that, given an image of a watermark, outputs similar
watermark images. This tool will focus on a novel approach to matching similar watermarks by
utilizing traditional image processing techniques instead of machine learning. The approach would
make it easier to expand the system’s watermark database.

Ideally, this tool will be expanded further into a more complex system. The end goal is to provide a
tool for the German Museum of Books and Writing that will allow a user to upload a watermark and
compare it with watermarks that are already in the database of the museum.

2.4 Constraints on the Input Watermarks

Applying constraints on the expected input will make this project more feasible. Many of the digitized
images appear surrounded by borders (Fig. 4), with non-watermark artifacts on the image (Fig. 3), or
with several watermarks appearing on one piece of paper (Fig. 4). In untraced watermarks, text can
heavily obscure watermarks (Fig. 5). All of these cases complicate the process of computationally an-
alyzing the image. To make this computation more reliable it is first assumed that all input watermarks
are cropped tightly around the watermark. This is done to eliminate borders and non-watermark text
from the images. Second, text or writing should not obstruct the watermark. Third, the watermark it-
self should not be blurred or too small and be relatively easy to identify from the background. Finally,
input images must contain exactly one watermark.

2.5 Existing Solutions and Research

Before designing the system, it is useful to analyze research and projects that address a similar prob-
lem. There has been much research on aspects of watermark analysis. However, previous research
relies heavily on machine learning, while this project utilizes a more classical image processing-based

Figure 3: An image with paper
artifacts.

Figure 4: An image with
rulers and with two water-
marks on the paper. Figure 5: A watermark cov-

ered by text.

3

approach. Thus, no research has been found that approaches the problem in the same way as this
project. For example, Shen et. al [10] propose a watermark recognition solution that matches water-
marks using a neural network. With this solution, it would be necessary to retrain the neural network
each time the database were to expand, taking a significant amount of time and processing power.
Since the database for this project will be expanded continually, retraining a neural network each time
is not feasible. Alternately, Hiary [11] has done significant research on vectorizing and denoising
watermarks, but has not extended his research to similarity matching. The aforementioned studies,
although not exactly like this project, are useful for providing ideas for approaching this project. In
particular, Hiary’s technique of first denoising an image and then extracting features [11] has been
useful in designing the system.

Research on general image processing techniques unrelated to watermarks can be useful as well.
Convolutional neural networks have been found effective in reducing noise [12], and may be effective
in clarifying watermark outlines. Combined wavelets can be used to remove unwanted lines [4].
Zernike moments can extract information about shapes [8], which can be used to describe watermarks.
Although none of these directly answer the problem of watermark similarity, they may be useful as
building blocks in finding a solution.

2.6 Stakeholders

The stakeholders of this project include the client, Dr. Martin Skrodzki, as well as the developers.
Potential future users of the tool are also stakeholders, such as the German Museum of Books and
Writings, watermark researchers, and historians. Another stakeholder is the TU Delft, since the client
is a member of the university, and the project may be further developed by the TU.

4

3 Requirements of the Watermark Similarity System

Outlining requirements ensures that key components of the product are agreed upon between the
developers and the client. They also ensure that the project stays on track. Requirements Engineering
was done in the first two weeks of the project with the client to clarify the project’s expectations.
Requirements have been split into functional, discussed in Section 3.1, and non-functional, discussed
in Section 3.2. They have been further formatted using the MoSCoW model [13], which categorizes
them as Must-haves, Should-haves, Could-haves, and Won’t-haves. To see the completion status of
the requirements, and the way the work was distributed, refer to Appendix 2 and 3 respectively.

3.1 Functional Requirements

In this section, the functional requirements will be outlined. Functional requirements involve the ac-
tions a product can execute. They have been categorized into must-haves (Section 3.1.1), should-haves
(Section 3.1.2), could-haves (Section 3.1.3), and won’t-haves (Section 3.1.4) based on the priority
level of the requirement.

3.1.1 Functional Must-Haves

1. As a user, I must be able to input an image of a watermark into the system.
2. As a user, I must be able to input the number of similar watermarks that I want to receive as a

ranked list from the existing database.
3. As a user, I must receive as output a ranking of the top n most similar watermarks to my input.
4. As a user, for each similar watermark that is output, I must see its similarity percentage as well,

where the similarity percentage is the measure of similarity between the input and the image.
5. As the client, I expect that the system must work for watermarks that are mirrored, rotated,

scaled, sheared, and clipped.
6. As the client, I expect that the database must be extended on a rolling basis (after a user provides

a watermark it gets stored in the database for future reference).

3.1.2 Functional Should-Haves

7. As a user, I should be able to input my watermark into the web-based GUI and run the system
on that input.

8. As a user, I should be able to see the output of similar watermarks and percentages through the
web-based GUI.

9. As a user, the web-based GUI I interact with should be simple, with clearly labeled buttons and
not too much text cluttering the screen.

10. As a user, I should be able to see the result after harmonization so that it can be cleaned up. I
should then be able to input this into the rest of the pipeline.

11. As a user, I should have the option to crop the input image before the pipeline is run through
the GUI.

12. As a user, I should have the option to augment the strategy used for harmonization by adjusting
hyperparameters and strategies through the GUI.

13. As a user, I should be able to state whether the watermark I put in is traced or untraced and have
the option to invert the colors.

5

3.1.3 Functional Could-Haves

14. As the user, I could choose that the system segments the input watermark into elements.
15. As the user, I could input several watermarks, and the system outputs common segmented

elements between the watermarks.
16. As a user, I could assign semantic meaning to the returned segmented watermark by inputting

a set of tags through the GUI and this would then be stored in the database.
17. As a user, I could have the option to edit the intermediary harmonized watermark output through

a tool in the GUI that allows me to add and remove lines in the image.
18. As a user, I could have the option to have my input image cropped automatically by the software.
19. As a user, if the system hasn’t given me back relevant results, I could mark the watermark as

unresolved and it would join a public section of all such unresolved watermarks.

3.1.4 Functional Won’t-Haves

20. As the client, I expect that the system won’t make use of or output contextual data for each
watermark, for example, the location of the press, or the date of the watermark.

21. As the client, I expect that the system won’t make use of or output any image’s (Exif3) metadata.
22. As the user, I expect that the system won’t accept images that are not in non-image formats (e.g.

.mp3, .mp4, .pdf, etc.).
23. As the user, I expect that the system won’t accept images that are not in grayscale.

3.2 Non-Functional Requirements

In this section, the non-functional requirements will be outlined. Non-functional requirements include
all elements related to what the product is or uses. These, too, have been categorized into must-haves
(Section 3.2.1), should-haves (Section 3.2.2), could-haves (Section 3.2.3), and won’t-haves (Section
3.2.4).

3.2.1 Non-Functional Must-Haves

1. The system must be accessible through the command line.
2. The system must be written in Python 3.
3. The system must use JavaScript for a web application.
4. The system must use pickle (.pkl) files to store the dataset.
5. The system must be able to run on MacOS, Windows, and Linux.
6. The system must be able to support only one user at a time.

3.2.2 Non-Functional Should-Haves

7. The system should be accessible through a web-based GUI.
8. The web-based GUI will run locally.
9. The system should be testable, maintainable, and well-documented.

10. The code should be portable and extendable.

3Exchangeable image file format - a standard that specifies formats for images, sound, and ancillary tags used by digital
cameras (including smartphones), scanners and other systems handling image and sound files recorded by digital cameras.

6

3.2.3 Non-Functional Could-Haves

11. The system could have a German/Italian/Dutch version.

3.2.4 Non-Functional Won’t-Haves

12. As the client, I expect that the system won’t implement security with regard to images uploaded
to the system or the dataset.

13. As the client, I expect that the system won’t be deployed on a public server.
14. As the client, I expect that the system won’t use a local database but will load the data from a

pre-stored pickle file.

The above points outline the goals that the watermark system seeks to accomplish. The design, im-
plementation, and evaluation are all created based on the requirements.

7

4 Watermark System Design

After outlining the problem the project seeks to solve, a design can now be created. First, an overview
of the watermark similarity system’s design is given in Section 4.1. Then a further explanation is pro-
vided on the design of the three main components of the watermark similarity pipeline: harmonization
in Section 4.2, feature extraction in Section 4.3, and similarity matching in Section 4.4. Finally, the
design for the user interface is shown in Section 4.5.

4.1 Overview of the Design for Analyzing Watermarks

There are two main components to this watermark similarity system. One is the similarity matching
pipeline, and the other is the user interface (UI). The pipeline takes the input image and tries to extract
useful information about the watermark. It is also responsible for similarity calculations between
the input watermark and the comparison watermarks. The user interface allows the user to interact
with the similarity matching pipeline, as well as build the database of comparison watermarks. When
interfacing with the pipeline, the user can input data to the pipeline, see similar images that are output,
and even customize parts of the pipeline. Refer to Section 4.5 for more detail on the user interface.

Figure 6: A high-level diagram of the watermark similarity pipeline.

The pipeline has been split up into three core steps: harmonization, feature extraction, and similarity
matching. Each of these categories has sub-steps, which are explained further in sections 4.2, 4.3,
and 4.4. In the harmonization step, the input image is processed in order to isolate the watermark as
best as possible. The feature extraction step involves representing this isolated watermark as a vector.
Finally, similarity matching compares a representation of the input watermark to a database of other
watermarks and ranks which are the most similar. A diagram of the watermark similarity pipeline can
be seen in Fig. 6.

8

4.2 Harmonizing Watermarks Design

The harmonization step takes the input image and extracts the watermark from it. As explained by
Shen et. al [10], this is a complex problem due to its cross-modal nature. Some watermark images are
untraced, whilst other watermark images are traced, making a single uniform approach difficult.

Harmonization has been split up into four parts: pre-processing, denoising, thresholding, and post-
processing. Pre-processing enhances the image and the watermark. For example, by sharpening
the image. Then the image is denoised, which removes blemishes and lines that don’t relate to the
watermark. Line removal in particular is necessary because of vertical or horizontal lines that often
obstruct the watermark, as can be seen in Fig. 2 and 1. Thresholding turns the image from grayscale
into black and white, a process called binarization. Binarization isolates the foreground, which is
the watermark, from the background. After binarization, thresholding also strengthens watermark
lines. Finally, post-processing tries to eliminate any leftover noise from the binarized image. This
four-step approach is inspired by the ”bottom-up” approach suggested by Hiary [11]. Their proposed
pipeline first enhances the watermark, then removes any noise caused by the paper. Each step in the
harmonization process seeks to make it easier to separate the watermark outline from its surroundings.
The ideal harmonized image has just the watermark outline and no noise.

4.3 Design for Extracting Features from Watermarks

The feature extraction step seeks to represent a processed watermark image as a vector so that two
images can be compared. Following Hiary’s bottom-up approach [11], the extraction comes after
image harmonization. Feature extraction has two steps. The first is feature detection, which detects
which points in an image are interesting, like for example corners. It is also possible to skip feature
detection and consider the whole image as interesting. The second step is feature description, which
seeks to represent these interest points as vectors. After extracting features it is possible to combine
features into an all-encompassing descriptor, which can describe a watermark more holistically.

For this system, feature extraction can allow watermarks to be described in a more useful and space-
efficient way than if they were just a regular image. Utilizing features that describe the shape of a
watermark makes it easier to narrow down which watermarks are generally similar. This project also
seeks to utilize features that are invariant to changes in scale, rotation, shearing, clipping, or transla-
tion. These invariant features allow the system to account for similar watermarks having variations in
their scans.

4.4 Design for Matching Watermarks on Similarity

Similarity matching is the process of taking two vectors and then calculating their similarity, typically
using a type of distance measure. In this system, the vectors represent the features of a watermark.
When matching similarity, the feature vector of a watermark will be compared to the database that
contains feature vectors of other watermarks. Then the most similar vectors, and thereby the most
similar watermarks, are output from the system.

When matching watermarks, it is important to consider how the watermarks appear. As described
by Müller [1], watermarks were produced by bent wires. These wires would be replaced as they
deteriorate over time, meaning that the same type of watermark would appear slightly different on
different papers. This is significant for similarity matching because near-identical watermarks, but not

9

completely identical, still must be considered the same. It is therefore necessary to choose a metric
for calculating similarity that accounts for this.

4.5 Design for the User Interface

There are two components of the system that require user interaction: the similarity matching pipeline,
and building the database. For the pipeline, the user inputs their watermarks and gets similar water-
marks. The database building allows the user to create a database of images that input watermarks are
compared against. For each of these components, there is an automatic and a manual option.

The automatic option exists for users that want to run the component quickly, with less user inter-
action, and with less accuracy. It is accessible through the console and has default values that are used
for processing the single or multiple input watermarks. There is some customization possible, like
indicating if a watermark is traced and what the path to the watermark is, but overall these options
have very minimal user input. For the automatic database building, the user can input the path to the
images, the name of the database, and if the images are traced. After some time the database file is
generated with no further input. For similarity matching, the user can specify the image path and if
the image is traced. Then after some time, the user sees in the console the image paths of the most
similar images, with the corresponding similarity scores.

The manual option exists for those users that have more time to work with the system and want
better accuracy. This option will be presented through a graphical user interface (GUI), which in-
volves more user interaction. First, there is the GUI for similarity matching which contains an input
page (Fig. 7), a processing page (Fig. 8), and an output page (Fig. 9). With the input screen, the user
can upload their image, indicate if the image is traced, and how many similar images should be output.
The processing screen appears whenever the images are loading. The output screen shows then the
input image, the result of the harmonization on the image, as well as all of the similar images. The
number of similar images that are output corresponds to the number the user has input. The names
and similarity scores of the output images can also be seen.

Figure 7: The input screen for
similarity matching.

Figure 8: The processing
screen.

Figure 9: The output screen
for similarity matching.

10

Figure 10: The screen for choosing the best
harmonization option.

Figure 11: The screen for editing watermark
images.

Additionally, the similarity-matching component has screens for pipeline customization. One type of
screen allows the user to choose the best image from a series of denoised and thresholded intermediate
results. An example of this can be seen in Fig. 10. The aim of this step is to improve the clarity of the
harmonized watermark in a customized manner. Another screen enables the user to observe the result
of the harmonization pipeline, and add lines or erase noise that appears in the image (Fig. 11). The
idea is that incorporating user interaction will produce a more clear outline of the watermark.

Second, there is a GUI for building the database to be used. This component iterates over each image
from a specified directory and gives the option to customize the harmonization, similar to the GUI
for similarity matching. Then after all the watermarks have had their features extracted, they are
appended to a database that is saved. This interface has an input page (Fig. 13), where the user can
input the path to the file containing the images to process. For each image, there is a screen (Fig. 12)
that allows the user to see the image, and specify if it is traced or not. Finally, the edit-image screens
seen in Fig. 10 and 11 are included additionally, so that each image in the database can be harmonized
manually as well as possible.

Figure 12: The input screen when building the
database.

Figure 13: The screen for seeing a database
image before it is processed.

11

5 Watermark Pipeline Implementation

This chapter will discuss how each aspect of the watermark similarity pipeline has been implemented.
Much of the basic structure of the watermark pipeline has already been described in Chapter 4. This
chapter will not reiterate the basic structure, but will instead elaborate on the specific algorithms and
techniques used to implement each step of the pipeline. Note that the implementation of the user
interface is excluded here, it can be found in section 6.

First, the harmonization of watermarks will be discussed. Harmonization has been split into two
parts, one for traced watermarks in Section 5.1, and one for untraced watermarks in Section 5.2.
The goal of each of these two parts is the same, to begin with an input image and output an image
with the watermark outline isolated. However, they were split into two because traced and untraced
watermarks are very different in how they are harmonized.

After harmonization, the implementation of feature extraction is discussed in Section 5.3. Finally,
in Section 5.4 the calculations for watermark similarity matching are explained. In these sections,
calculations are made with certain default hyperparameters. Specifications of the hyperparameters
used can be found in Appendix 4.

5.1 Implementing Harmonization of Traced Watermarks

Traced watermarks (Fig. 14) tend to have better-defined outlines, making them easier to distinguish
than their untraced counterparts. However, there are still challenges when harmonizing a traced water-
mark. When removing noise and, particularly, lines there is a risk of altering the quality of the image.
Moreover, images of tracings often contain annotations that must be removed but are often difficult to
distinguish from the watermark properly.

The harmonization process is divided into four phases: pre-processing and denoising are two phases
and are both discussed in Section 5.1.1. The third phase is thresholding (Section 5.1.2), and the fourth
is post-processing (Section 5.1.3). For an overview of the purpose of each phase, refer to Section 4.2.
After processing the image with these phases, the harmonized image consists of the watermark outline
in white, with a black background.

Figure 14: Traced watermark to process. Figure 15: Traced watermark after line removal.

12

5.1.1 Pre-processing and Denoising Traced Watermarks

The first phase of the harmonization procedure involves pre-processing the image. This involves
enhancing the contrast and removing the unnecessary lines that may appear. Below, an overview of
the pre-processing steps is given.

In the provided dataset, the images were taken by placing the watermark paper on a bright surface.
It is therefore common to have significant contrast between the image borders and center, which can
make it more difficult to process the image. To address this, the first pre-processing step involves
identifying and replacing these bright areas with the color of the paper. As a result, the borders of the
image will appear to be more uniform.

Next, any non-watermark lines are removed from the image. Although this step is typically part of
denoising, for traced watermarks it works optimally as a pre-processing step. Line removal can be
difficult because the watermarks also contain lines, and these should be preserved. To eliminate only
non-watermark lines, the combined wavelet - Fourier analysis approach presented by Münch [4] was
used, and it will be further detailed in Section 5.2.1. For the automatic pipeline only the vertical lines
are removed (Fig. 15), while for the GUI pipeline, the user can choose to remove either the vertical,
horizontal, both, or none of the lines present in the image.

After the lines have been removed, the next step is to apply contrast stretching to adjust the image
intensities. This process creates more contrast in the image by stretching the image intensities, which
results in the watermark standing out more from the background (Fig. 16) [14].

Figure 16: Traced watermark after contrast
stretching.

Figure 17: Traced watermark after shadow re-
moval.

Lastly, shadows are removed from the image. This is done because the contrast stretching amplifies
all color differences, including shadows, so these should be removed since they are not part of the
watermark. Shadow removal is done by isolating the background of the image, subtracting it from the
original image, and normalizing the result to restore the original range of values (Fig. 17).

The second phase of the harmonization procedure is denoising. For traced watermarks, this consists
of applying a Gaussian blur to blur any remaining noise. This phase helps enhance the quality of noisy
images, in order to optimize thresholding results.

13

5.1.2 Thresholding Traced Watermarks

Thresholding seeks to convert the image into black and white, with the watermark outline appearing
in white. For images with low noise levels, Sauvola thresholding is used. This is a local threshold-
ing method, meaning that the threshold value is chosen based on the surrounding region [5]. For
high-noise images, local thresholding cannot be used since neighboring regions are obstructed by
noise. Instead, a global threshold is used, which takes into account the whole image when choosing a
threshold value.

Following binarization, morphological closing and dilation are performed to connect lines that may
have been eroded in the process. Morphological closing works by repeatedly dilating first and then
eroding the image [2]. The result of thresholding a low-noise image can be seen in Fig. 18.

Figure 18: Traced watermark
with low noise levels after
thresholding.

Figure 19: Traced watermark
before grouping together the
overlapped regions.

Figure 20: Traced watermark
after grouping together the
overlapping regions.

5.1.3 Post-processing Traced Watermarks

After thresholding, non-watermark artifacts may still remain in the image, as can be seen in Fig. 18.
The post-processing phase seeks to remove these regions so that only the watermark remains. First,
connected pixels in the thresholded image are grouped into regions [15]. These regions are filtered
on area, length, width, position within the image, and overlap with other regions. An overview of
filtering criteria is discussed below.

The first filtering stage removes regions with very small areas, as well as regions that are too high or
too wide. These are removed since it is assumed that they are not part of the watermark. Moreover,
regions with centroids that are outliers are filtered, since these will be far from the watermark. After
filtering the image is cropped to be bounded around the watermark.

The next stage finds which regions overlap each other (Fig. 19), and these overlapping regions are
grouped together (Fig. 20). These overlapping regions are also filtered, removing any that are too
small, or far away from other overlapping regions. The result after the post-processing phase can be
seen in Fig. 21.

14

Figure 21: Traced watermark after post-
processing.

5.2 Implementing Harmonization of Untraced Watermarks

Like with harmonizing traced watermarks, harmonizing untraced watermarks seeks to isolate the wa-
termark outline. Untraced watermarks (Fig. 22) appear most frequently in the dataset. However, they
also vary highly in quality, clarity, size, and occlusion. Denoising them thus becomes much harder.
This pipeline harmonizes untraced watermarks most effectively when they are sharp, large, and clearly
visible to the human eye. Note also that harmonizing untraced watermarks typically performs worse
than traced.

As with traced watermarks, the harmonization of untraced watermarks is split into 4 phases. Pre-
processing and denoising are discussed in Section 5.2.1. Section 5.2.2 covers thresholding and post-
processing. For an overview of the meaning of each phase refer to Section 4.2.

Figure 22: Untraced water-
mark to process.

Figure 23: Watermark after
sharpening.

Figure 24: Watermark after
wavelet denoising.

15

5.2.1 Pre-processing and Denoising of Untraced Watermarks

The first phase consists of pre-processing. For untraced watermarks, this phase simply inverts the
watermark image, so that the watermark outline appears in black, and the background in white. Note
that the images shown in this section are not inverted, to make them easier to compare to the original
visually.

The second phase, denoising, aims to produce a clear distinction between the watermark and the
background making non-watermark artifacts less distinct. This process involves 5 steps.

The first step seeks to increase the contrast and level of detail in the image. After receiving the input
watermark, it is sharpened, which emphasizes the lines in the image. Specifically, a Gaussian unsharp
mask is used, which blurs the image using a Gaussian kernel, and subtracts from the input image the
blurred image [16]. The results can be seen in Fig. 23.

The second step is to remove horizontal and vertical lines in the image. In the watermark creation
process, lines were produced in the paper by the wires used for the hanging of the paper when drying
[1]. To remove them without affecting the watermark, wavelet denoising is used. This technique
works by decomposing the image into different frequency bands [3]. High-frequency bands tend to
represent more repetitive patterns, like non-watermark lines. Low-frequency bands tend to contain
more unique parts of the image, such as the watermark’s lines. Therefore, removing higher frequency
bands also removes unwanted lines. This technique was used in combination with discrete Fourier
transforms to construct an image without non-watermark lines (Fig. 24) [17].

The third step is to enhance the contrast, through contrast stretching. As described in Section 5.1.1,
contrast enhancement creates a greater difference between the foreground and the background by
stretching image intensities [14].

The fourth step is to remove or blur non-watermark details. To accomplish this Block-matching
and 3D Filtering (BM3D) is used4. BM3D, in essence, attempts to identify where the edges of an
image are, and where the background of an image is. Then, it blurs the background but preserves
the watermark (Fig. 25). This is accomplished by grouping similar image fragments, and applying a
three-dimensional linear transformation [18].

The final step is applying another edge-preserving filter. Specifically, the Kuwahara filter5 is used to
further blur the background, while maintaining the outline of the watermark (Fig. 26). To accomplish
this, each pixel is assigned a new intensity value, being the mean of the most homogenous part of the
pixel’s neighborhood [19]. However, this filter occasionally mistakes textured backgrounds as edges,
so watermarks with a clear background work best. For example, cropping the image to the watermark
often leads to better results.

5.2.2 Thresholding and Post-Processing Untraced Watermarks

Afterdenoising the image, it is necessary to binarize it. This isolates the watermark from the back-
ground by converting the image into black and white. This is described further in Section 4.2. The
thresholding phase involves 2 steps. Following the thresholding phase, the image is post-processed.

The first step in thresholding is to binarize the image. The denoised image may still exhibit in-
consistencies in illumination and contrast across the image, which binarization should account for.

4https://pypi.org/project/bm3d/
5https://pypi.org/project/pykuwahara/

16

Figure 25: Watermark after BM3D. Figure 26: Watermark after Kuwahara filtering.

Therefore, a local thresholding method like Sauvola thresholding is used 6. As described in Section
4.2, this technique calculates threshold values based on the neighborhood of a pixel [5].

The second step in thresholding is cleaning up the watermark outline by closing gaps in the watermark
outline and removing small pieces of leftover noise. As in Section 5.1.2, morphological closing is used
to accomplish this [2]. For this operation, a morphological cross of size 3x3 is used for 3 iterations.

Finally, after thresholding, the image is post-processed. This is done by doing a connected component
analysis. Doing so groups connected pixels into regions and then filters out regions that have a size
below a certain threshold value. Post-processing of untraced watermarks is a slightly simpler ver-
sion of the post-processing of traced watermarks, seen in Section 5.1.3. The watermark image after
thresholding and post-processing can be seen in Fig. 27.

Figure 27: Watermark after thresholding and
post-processing.

6https://scikit-image.org/docs/stable/auto examples/segmentation/plot niblack sauvola.html

17

5.3 Implementing Feature Extraction

Encoding the harmonized image into a series of numbers, a process called feature extraction makes
it easier to calculate their similarity. For this project, techniques were researched that enabled the
features to be invariant to scale, translation, and rotation. These are important, since the similar
watermarks may be different sizes on the paper, they may be in different parts of the image, or they
may be rotated in the image. The system should also match mirrored and clipped images. Mirrored
watermarks are common, as the mirrored version of a watermark is found on the other side of the
paper. Clipped watermarks are watermarks where part of the watermark is missing. They can be
difficult to match due to the information loss but it is still possible.

This need for flexibility led to the decision to use 3 different feature extraction methods that will
be combined: SIFT (Section 5.3.1), Hu moments (Section 5.3.2), and Zernike moments (Section
5.3.3). Section 5.3.4 elaborates on how these different methods were implemented in the code. For
information on how these moments are combined refer to Section 5.4.2.

5.3.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) finds and describes interesting points in an image. It
detects interest points using the difference-of-Gaussian, determining the scale and orientation, and
finally describing the region surrounding it [6]. This process makes the resulting interest points scale-
and rotation-invariant. Because the points are localized, it does not matter if the original image is
mirrored or clipped, as SIFT will still find the same interest points. SIFT matches similar images by
comparing each interest point in an image to every interest point in another image. Unfortunately, with
clipped images there is less of the watermark to work with, so fewer interest points can be matched.
SIFT is ideal for matching images with many details, such as text.

5.3.2 Hu Moments

Hu moments describe how pixels in an image are spread out by deriving scale-, translation-, and
rotation-invariant moments from central moments. This results in seven numbers that fully describe
the shape of the watermark. The seventh number even allows for detecting mirroring based on the
sign, as an image and its mirrored version will have opposite signs [7]. The only requirement this
feature misses is accounting for clipping. Clipped images may result in completely different values
because of differing shapes. Still, for matching watermarks that are not clipped, the Hu moments are
very useful.

5.3.3 Zernike Moments

Zernike moments offer a different way to derive moments that is more relevant for matching images
on their shape. Similar to Hu moments, they describe the way pixels in an image are spread out.
However, rather than being derived from the central moments, Zernike moments calculate moments
based on different Zernike polynomials [20] [21]. This feature is rotation-invariant, but not scale- or
translation-invariant. Despite this, it is by far the best at describing the shape of a watermark. The
relatively small variations in scale and translation are therefore considered acceptable.

18

5.3.4 Implementation of Feature Extraction

To make experimentation with different feature extraction methods easier, the strategy design pattern
was used. The strategy design pattern allows for a strategy to be provided when running the feature
extraction, rather than hard-coding only a single option. An overview of the strategies that are avail-
able can be seen in Fig. 28. Many different feature extraction methods were experimented with, which
means some are unused in the final product, and therefore not discussed in this report. For the sake of
future extensions, they are left in the code.

Figure 28: Overview of implemented strategies.

5.4 Implementing a Similarity Matcher

The set of features from feature extraction need to be compared to determine which features, and
therefore which watermarks, are similar. To do so, a similarity measure needs to be chosen for each
of them (Section 5.4.1) and they need to be combined into a single “score” (Section 5.4.2). The geo-
metric mean of the resulting similarity measures is used for this score, but to improve results, further
fine-tuning could be achieved using machine learning, which is discussed in the Recommendations,
Chapter 10.

5.4.1 Getting similarity scores from features

The first feature is SIFT descriptors. As mentioned before, interest points in one image need to be
matched to points in another. OpenCV7 provides multiple functions for doing so, and the one that
was chosen here is knnMatch()8. This method returns the k best matches where distance is defined
by the Euclidean distance. The two best matches are found and Lowe’s ratio test is applied, where
it is checked whether the best match is sufficiently different from the second best. This finds good
matches by making the assumption that a good match will stand out from the other matches [6]. The
final score is an integer number of good matches.

7https://pypi.org/project/opencv-python/
8https://docs.opencv.org/4.x/db/d39/classcv 1 1DescriptorMatcher.html

19

https://pypi.org/project/opencv-python/
https://docs.opencv.org/4.x/db/d39/classcv_1_1DescriptorMatcher.html

The second feature is Hu moments. Each of the Hu moments varies massively in magnitude. Some
are typically in the range of 10 to 30, while others never get larger than 10−18. To account for this, the
base 10 logarithm is applied to the absolute value of each Hu moment, while preserving the sign. This
preserves the relative magnitude while bringing all Hu moments into the same range of values. Now
the distance between them is the Manhattan distance between the vectors. The Manhattan distance
was chosen based on OpenCV’s implementation of matchShapes()9 which also uses Hu moments
to compare shapes.

Finally, the Zernike moments are compared in a similar way to the Hu moments. Zernike moments
do not have the same issue as Hu moments, as the values are generally in the same range. Because of
this, they can be compared directly using the Manhattan distance.

5.4.2 Combining the similarity scores

To combine the similarity measures into one score, each one is converted into a percentage, and their
geometric mean is taken. The geometric mean is used because it emphasizes small numbers, so if
one score is low, the overall score is also low. The percentages are based on the maximum values
that were found for the number of SIFT matches, the Hu moment distance, and the Zernike moment
distance respectively. The geometric mean was chosen over the arithmetic mean because it gave better
results. This already gave decent results, however, it quickly became clear that combining the features
optimally would be very time-consuming by hand, which is the reason a machine learning approach
was attempted as well (Section 10).

These three steps, harmonization, feature extraction, and similarity matching, make up the core of this
project. They are the logic of the system, making it possible to determine what is similar and what is
not.

9https://docs.opencv.org/3.4/d3/dc0/group imgproc shape.html

20

https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html

6 User Interface Implementation

With a functioning pipeline in place, it was decided there should be a user interface to make interaction
with the system easier. This section will explain how the system can run automatically by building
the database and running the pipeline without interaction, as well as how results can be improved by
using the system in the browser and building the database manually.

First, Section 6.1 discusses how the pipeline can be run automatically. Then the method for building
the database automatically will be given in Section 6.2. In Section 6.3 there is an overview of how the
browser can be used to run the pipeline manually. Finally, Section 6.4 explains of how the database
can be created manually.

6.1 Running the Pipeline Automatically

Using the command line, the pipeline can be run automatically. This means there is no user interaction,
which typically makes the results worse. Running it automatically may be useful if a large set of data
needs to be processed quickly. To do so, default values were manually experimented with and decided
on to achieve the best results. More details on the system’s accuracy are discussed later in Section
8.3. The input image is harmonized and features are extracted, then the features are compared to the
images in the database to return a ranked list.

Specifications on how the system can be run can be found in the README of this project’s associated
GitLab repository10. The automatic pipeline takes three main arguments. The first argument is the
input path, which is the path of the input watermark to be matched to. The second argument is the
path to the database containing the comparison watermarks. The third argument is a flag that, when
input, tells the system that the watermark is traced.

6.2 Building the Database Automatically

Before the system can be used, the database has to be built. When the database is built automatically,
each image in a provided folder is harmonized and has its features extracted. Building the database
automatically uses default values instead of user interaction. This leads to lower accuracy but faster
runtime. In the database, the features and the path to the original image are saved for future use.
Because the path to the original image is used, it is important that they are available to the system, for
example by being placed in the system’s working directory.

Running the system is specified in the README of this project’s associated repository. The automatic
database builder takes two arguments. The first is the path of the folder containing the images that are
to be processed. The second is the name of the database that will have the processed images appended
to it.

6.3 Finding Similar Watermarks with the Graphical User Interface

If the user wants to find similar watermarks manually, through the graphical user interface, they must
run the application. How this is done is specified in the README, found in this project’s GitLab
repository. Once run, the start screen of the application can be accessed from http://localhost:5000/.

10https://gitlab.ewi.tudelft.nl/cse2000-software-project/2022-2023-q4/ta-cluster/cluster-18/sp-18b/cs-for-the-
humanities-watermarks-18b/

21

For a detailed explanation of each scene’s design, refer to Section 4.5. To give an overview, in the
start scene (Fig. 29) users upload their watermark image and input if it is traced, which database they
want to use for comparison, and the number of similar images they want to get as output.

Figure 29: The input screen. Figure 30: The denoise screen.

After pressing the submit button, the user is presented with a series of denoised images (Fig. 30),
and they must choose the best option. Once their choice is clicked, they proceed to the threshold
page (Fig. 31). Here, six thresholded images are presented, and the user must choose the best. After
the thresholded image is chosen, the user can edit the image (Fig. 32). On this screen, an image
is displayed of the raw input image overlayed with the harmonized image in green, to aid users that
may have forgotten what the original watermark looks like. To edit the image, the user can paint in
lines, erase noise, undo their changes, or restart from the base harmonized image. Once this process
is complete, the user waits for similar images to load (Fig. 33).

Figure 31: The threshold screen. Figure 32: The edit screen.

Once done, the output page is shown (Fig. 34), with the input picture, the harmonized picture, as
well as the output watermarks. Each output watermark has its image name, its rank, and its similarity
percentage displayed. To see how the similarity percentage is calculated refer to Section 5.4. The
number of watermarks output corresponds to the number input by the user. It is also possible for a
user to generate ten more similar watermarks by choosing a button at the bottom of the page.

22

Figure 33: The loading screen Figure 34: The output screen

6.4 Building the Database Manually

To achieve the most accurate possible results, users are encouraged to build the database manually.
Building the database manually ensures that the watermark outline is more distinct. Users must first
run the GUI, which is described in the README of this project’s repository. The start screen for
building the database can be accessed with http://localhost:5000/build_database.

Figure 35: The start screen for building the
database through the GUI.

Figure 36: The intermediary screen that
shows a database image before processing.

In the first scene, the user must upload the directory of images to be processed for the database. The
path to the database file to append to must also be specified. Then the user is taken through each
image in the directory. For each image, an intermediary screen is displayed that shows the image
and allows the user to specify if it is traced. After this screen, the user goes through the denoising,
thresholding, and editing screens outlined in Section 6.3. After one image is finished editing, the
intermediary screen shows a new image in the directory. Once the user has gone through all images,
the data is appended to the specified path. If the process is interrupted, the data is not stored.

23

7 Ethical Implications

Considering the ethics of a project allows the project to accomplish its goal in a safe and responsible
manner. There are two main ethical concerns that must be considered when designing our watermark
recognition system. The first regards the dataset of images this project uses. Specifically, concerns
regarding the origins of the dataset will be discussed in Section 7.1, as well as how these concerns can
be mitigated. The second ethical concern is potential ways that the watermark similarity system can be
abused, which is examined in Section 7.2. Ways that abuse can be mitigated will also be considered.

7.1 Ethics of the Watermark Data

First, the data being used in this project will be reviewed in an ethical light. The data consists of
images of watermarks, from documents that are hundreds of years old. All data has been provided
in its digitized form by the German Museum of Books and Writing for this project. Due to their
age, the documents can also no longer be copyrighted. However, it is still possible that using legally
acquired data can pose ethical challenges. For example, these dataset images may be images of
personal documents or private correspondences. It is known that the data used for this project was
part of a private collection of documents that was acquired by the German National Museum of Books
and Writing. However, it is not known where precisely each document came from. It is therefore also
not known if the owner of each document gave their consent for it to be published or used. It would
be an ethical problem to use data that its owner did not agree to distribute. Therefore, the assumption
is made that the museum has acquired these documents in an ethically responsible manner. Since the
museum is a trusted and reliable organization, this is a relatively safe assumption to make.

To mitigate concerns regarding the ethics of the dataset of images used, the most straightforward
solution would be to find a new dataset. Ideally, this dataset would be one wherein each document
has received consent to be used for the purpose of this project. However, this would not necessarily
be a realistic solution given the sheer quantity of watermarks required to have an extensive and useful
database. Furthermore, authentic watermarked documents are historical in nature, so finding an owner
of a document, or their descendant, may prove challenging. It must therefore be accepted that there
will inevitably be a trade-off between the reliability of this dataset, and the size of the dataset. As
mentioned above, this project’s data comes from a reliable organization and is assumed to have been
acquired ethically.

7.2 Potential for Abusing the System

Now potential methods of abusing this system will be analyzed. This watermark similarity system
allows any user to add any image to the dataset of watermarks without any restrictions. This is an
ethical concern, because it could result in sensitive or private data can be stored and circulated by
the system. This could result in users getting access to data not intended for them. However, since
this system has not been deployed, the lack of security is not a major concern. If a user were to
upload a problematic document, the database would only be accessible locally and the issue would
not spread to other users. In other words, it would be contained. However, if this system were ever
to be deployed, then sensitive data could be circulated to other users, which would be a significant
ethical problem.

There are several things that could be done to mitigate unwanted data being added to the database.
One step that has already been taken, is designing the system to only run locally. In this case, if any

24

malicious or sensitive data could not leave the confines of the machine running the system. However,
this would not be an acceptable solution if the product were to be deployed. Another, more robust,
step to mitigate this concern would be to require permission to upload images to the system’s dataset.
By adding permissions, it would be ensured that only trusted individuals could add to the system,
significantly mitigating the risk of utilizing unethical data. A similar solution would be to have a
trusted party, such as a member of the museum, go through all uploaded data to ensure that it is
appropriate.

25

8 Discussion

After implementing the watermark similarity pipeline, its effectiveness in solving the problem must be
evaluated. To evaluate the pipeline, the dataset was split and labeled which is explained in Section 8.1.
Each form of the pipeline, automatic and manual, is evaluated in sections 8.3 and 8.4, respectively.
Since there are two ways of generating databases, automatically and manually, each pipeline evaluates
each database. After the pipeline evaluations are discussed, Section 8.5 gives a brief evaluation of
running the system on a clearer dataset. The usability of the GUI is evaluated in Section 8.6. An
overview of the testing of the system is given in Section 8.7. Finally, the limitations of the system are
discussed in Section 8.8.

8.1 Splitting and Labeling the Dataset

From the provided dataset, 500 images have been taken and used for developing and evaluating the
watermark recognition system. The selection of images was done randomly, by arbitrarily choosing
a watermark and including two to five images of that watermark in the dataset. Then each picture
was labeled with a distinct tag, following the format X_Y.jpg or X_Y.png. In this structure, X
represents the watermark id within the dataset, while Y corresponds to the id of the instance of that
watermark. So two images of the same watermark may be called 12_2.jpg and 12_3.jpg, as
seen in Figs. 37 and 38. In the end, 500 images with 151 distinct watermarks were acquired.

The dataset was randomly divided into 85% for training and 15% for evaluation. The training set
was used in implementing the pipeline and creating the database of comparison watermarks. The
evaluation set was used for assessing the performance of the system in identifying and returning
similar watermarks to a given image.

To assess evaluation, two databases are used, one generated automatically and one - manually. To gen-
erate the automatic database, the training set was run through a database-building script, as described
in Section 6.2. To generate the manual database, all training data was run through the database-
building GUI, as described in Section 6.4. Using the GUI, each training image was harmonized with
optimal values, and edited, so that watermarks would be isolated as well as possible.

Figure 37: An image of a watermark of a
queen, with label 12 2.png

Figure 38: An image of a watermark of a
queen, with label 12 3.png

26

Table 1: Results for the Evaluation

8.2 Calculating Accuracy and Evaluation Data

To calculate the accuracy of the system, the number of evaluation images with a match found is
divided by the total number of images. Accuracy is calculated for traced evaluation images, untraced
evaluation images, and all evaluation images. A match is found if at least one similar watermark is
found in the top 10% of returned similar watermarks. So for a dataset of 500 images, this would be
the top 50 images.

To access the raw data, including all dataset images and full evaluation data, refer to Appendix 5.

8.3 Evaluation of the Automatic Pipeline

First, the automatic pipeline will be evaluated. The evaluation is performed by programmatically
running the automatic pipeline on each image from the evaluation set, one at a time. The accuracy is
calculated as stated in Section 8.2.

The results for running the automatic pipeline’s evaluation can be seen in Table 1. Evaluating the
automatic pipeline with the automatically generated database led to some of the lowest results. This
was expected since all of the images were processed with default values. This results in no user
interaction in the pipeline, which means that very few images will have the watermark successfully
isolated.

To compare, when the manual database was used with the automatic pipeline, the accuracy of traced
watermarks improved while untraced watermarks’ accuracy worsened. The worsening of untraced
watermarks is interesting in particular because the manual database contains better harmonized wa-
termarks than the automatic one. The reasoning for these results could be that the automatic pipeline
tends to not remove enough noise in untraced watermarks. When matching to the dataset, the noise
leads to incorrect matches. On the other hand, traced watermarks have most noise removed, so the
accuracy of the matches would be improved.

Another representation of the evaluation data can be seen in Figures 39 and 40. These histograms
show the rank at which correct similar watermark images are found for the evaluation image. As
can be seen, the automatic database and the manual database perform similarly. Most of the similar
images are found after the top 50 images.

8.4 Evaluation of the Manual Pipeline

The manual pipeline is what users are expected to interact with most often, so evaluating it gives
a realistic idea of how the pipeline will perform. The GUI made a programmatic evaluation of the
pipeline excessively difficult. Instead, each evaluation image was manually uploaded to the GUI and

27

Figure 39: A histogram representing the rank
at which similar watermarks are found for
evaluation images for the automatically gen-
erated database.

Figure 40: A histogram representing the rank
at which similar watermarks are found for
evaluation images for the manually generated
database.

edited using the GUI to clarify the watermark outline. Then the 50 most similar watermarks were
output and searched through to see if an actual similar image was found. Note that this data does not
have histograms due to the difficulty in manually collecting that data.

The results can be found in Table 1. As can be seen, the manual pipeline performed better than the
automatic pipeline. The combination of the manual pipeline with the manual database performed the
best out of all evaluations. It was observed that whenever similar images were found with this combi-
nation, they typically were found within the top 20. It was expected that the manual pipeline with the
manual database would perform the best because the manual options incorporate user interaction and
customization. User interaction typically makes the watermark outlines clearer and thus improves the
results of finding similar features.

8.5 Evaluation of a Dataset of Clearer Images

It’s clear from the evaluations in sections 8.3 and 8.4 that the accuracy scores for the system could
be better. To see where the problem may be, the dataset was analyzed further. Upon reviewing the
dataset, it became clear that several images contained watermarks that appear indistinguishable, such
as Figure 41.

Unclear watermarks were present in the dataset due to the random nature of its generation. To test the

Figure 41: An image in the initial evaluation set with an unclear watermark

28

system further, a new dataset was created of 200 images. Images in this dataset were chosen on the
criteria that the watermarks must be visible to the human eye. It is important to mention that because
these images were not randomly selected, it cannot be claimed that they are truly representative of
the dataset. Half of the dataset contained traced watermarks, and the other half contained untraced
watermarks, with a total of 50 unique watermarks present. This dataset was then divided into a training
and an evaluation set, following a 75-25 split.

The database was automatically generated with the training set, and the evaluation was performed by
running the automatic pipeline for the evaluation images. The results depicted an overall accuracy of
82%, with 96% accuracy for traced watermarks, and 68% accuracy for untraced watermarks. Another
way of representing these numbers can be seen in Figure 42. As can be seen, about half of the correct
similar images are found within the top 50 images. This is a significant improvement compared to
Figures 39 and 40.

These results show a significant increase compared to the scores in Table 1. Clearly, using a dataset
of images that have better defined outlines improves the accuracy of the system greatly.

8.6 Evaluation of the Graphical User Interface

To evaluate the potential user experience with the GUI, several interviews were conducted. In the
beginning, the same introduction prompt was read to all participants to provide context (refer to Ap-
pendix 6). All gave consent to having their audio recorded and uploaded for the purpose of this project.
Their names and personal information are not disclosed. Participants were chosen from varying back-
grounds. Some users were inexperienced with both history and technology, some had backgrounds
in history or engineering, and some had technological expertise. To access the full audio recordings
refer to Appendix 5.

Regarding the style, the pages’ simplistic and clean design was appreciated. The instructions were
considered clear for everyone, including those with non-technical expertise. Some improvements

Figure 42: A histogram representing the rank at which similar watermarks are found for evaluation
images for the automatically generated database of clearer images.

29

were suggested like text boxes being too large and too empty, or the spacing between elements being
too small. It was also pointed out that the overall color scheme and design of the page didn’t seem
to match the context of the assignment, as they did not seem historically themed. Lastly, it was
mentioned that the text may be too small to comfortably read for users with sight issues.

In terms of interaction, participants believed that the goal of the website was clear and that the results
were satisfactory. The participants appreciated the small loading time and the incorporation of user in-
teraction, particularly the drawing tool. Some critiques were made that the slider on the editing screen
was unclearly labeled and that a tutorial on how to edit the image could be helpful. Additionally, when
choosing an image for denoising or thresholding, it was unclear that the image needed to be clicked.
Another critique was made that when uploading a folder for building the database manually, it was
unclear which folder needed to be uploaded and whether the selected folder had been successfully
uploaded.

A bug was encountered by participants which occurred on the edit image screen. When the user paints
outside of the image their drawing does not stop. This bug was known to the developers and was not
considered a significant problem, but would still be a point of improvement.

To conclude, participants were overall satisfied with the functionality of the system. Regardless,
several improvements can be made, primarily regarding aesthetics and ease of use.

8.7 Testing the System

To ensure that the system behaved as expected, the pipeline as well as the GUI was tested. Testing
the pipeline involved inputting values and images to individual methods, and asserting that the output
fulfilled certain expectations. Testing the methods provides confidence that the whole pipeline works
as expected. Currently, the test coverage, specifically the statement coverage, of the pipeline is at
87%. To see a more detailed coverage report, refer to Appendix 7.

Additionally, the GUI interface for the pipeline has been tested. The input, denoising, threshold-
ing, editing, and output screens were tested to ensure that the functionality of each screen works as
expected.

8.8 Limitations of the System

As the evaluation has shown, the system works well but there is room for improvement. Untraced
images typically have lower accuracy. This is likely because many untraced images have watermarks
that are almost indistinguishable from the paper itself. These images, therefore, rely more on user
interaction to find the watermark outline.

Another challenge for the pipeline is recognizing clipped images. Even if the harmonization works
perfectly, the feature extraction cannot reliably match clipped images to an original, particularly if
a significant amount of detail is missing. SIFT can accommodate clipping, but neither the Hu nor
Zernike moments are able to account for this. This results in a lower likelihood for finding clipped
images.

Finally, in order to get the best possible results the database should be built manually. This process
involves manually harmonizing and potentially editing the images through the GUI, which can take
over a minute per image. Doing this for larger datasets of several thousand images would take a

30

significant amount of work. Fortunately, once the database has been built it does not need to be built
again.

31

9 Conclusion

The purpose of this report was to present a system for watermark identification and similarity match-
ing. This report sought to show the system’s effectiveness in tackling the need for a digital watermark
analysis system. The implemented watermark similarity tool is intended as a prototype to be further
developed in the future.

The goal of the watermark similarity tool would be that, given an input watermark, similar water-
marks to it would be output. The approach for calculating watermark similarity was focused on
traditional image processing techniques and involved three main steps: harmonization, feature extrac-
tion, and similarity matching. In harmonization, a watermark outline is isolated. In feature extraction,
the watermark is encoded as a list of numbers. In similarity matching, the similarity between two
watermarks is calculated. For running the similarity system, one interface is through the command
line, and the other is a more user-interactive graphical user interface. Additionally, a console and a
GUI interface have been provided for building the database of comparison watermarks.

The developed system was evaluated and tested additionally to verify its effectiveness. The evalu-
ation showed that the system worked most effectively with the GUI. This is probably due to the user
interaction enabled by the GUI, which allows a clearer watermark outline to be found. The system
was less effective when automatically analyzing the watermarks, due to the variety of the dataset. It
was also found that the system’s accuracy significantly increased when using a dataset of images with
clearly visible watermarks. A recommendation for future improvement would be to incorporate some
type of machine learning algorithm to aid with matching watermarks. Another improvement could be
to enable segmenting watermarks into different pieces and allow the user to assign semantics to each
segment. This could provide more data for the watermark analysis.

To conclude, the automatic watermark similarity system shows promising results. As a prototype,
it can be greatly improved in the future to improve usability and accuracy. Ideally, this approach may
serve as the basis for a complete watermark analysis product, accessible to historians and researchers
around the world.

32

10 Recommendations for Future Work

Although this project was successful in completing the most important requirements, there are still
ways in which the system can be improved. These include adding segmentation and semantic anal-
ysis of the watermarks, incorporating artificial intelligence in the system, and including watermark
metadata.

There are two “could have” functional requirements that were not implemented. The first is segment-
ing the watermark into different parts. The second is enabling the user to label these segments of a
watermark. By identifying the components of a watermark, it is possible to compare watermarks on
similar elements, not just on whole watermarks. Labeling the watermark could provide more data for
categorizing watermarks, which may also aid the similarity-matching process.

Another way of improving results is by utilizing machine-learning techniques for matching similar
features. The code already contains a Convolutional Neural Network (CNN) used for matching im-
ages. However, it is never used in the pipeline because it needs to be retrained after changing the
database, since this would take a significant amount of time. A goal of this project was to avoid
retraining machine learning models, so currently the project does not actively use machine learning.

The CNN is a deep learning algorithm, which is trained on labeled data that consists of the Zernike
and Hu moments, associated with different images. During training, the model iteratively adjusts its
internal weights to minimize the defined loss function. The goal is to improve accuracy in predicting
the correct class labels for the given input features.

For evaluation purposes, the CNN was implemented in the pipeline to see if the accuracy improved.
Note that the CNN is not integrated into the proper pipeline. Using the manual database with the
automatic pipeline and the 500 image dataset, the CNN was evaluated. The results improved overall,
increasing the untraced accuracy from 35% to 43%, the traced accuracy from 61% to 64%, and overall
accuracy from 41% to 48%. CNN parameters could be refined further for even better accuracy.

Finally, another improvement that could be made would be to include metadata about the watermark
in the system. The user would then be able to see similar watermarks, and also see when and where
they came from.

Overall, our system works well as a prototype, but there are many future improvements and additions
that could be included to make it more accurate and useful for the user.

33

References

[1] L. Müller, “Understanding Paper: Structures, Watermarks, and a Con-
servator’s Passion,” Harvard Art Museums, May 07, 2021. Available:
https://harvardartmuseums.org/article/understanding-paper-structures-watermarks-and-a-
conservator-s-passion

[2] L. Vincent, “Morphological Area Openings and Closings for Grey-scale Images,” Shape in Pic-
ture. NATO ASI Series, 1994, vol. 126, no. 1, pp. 197–208. Accessed: Jun. 14, 2023. [Online].
Available: https://doi.org/10.1007/978-3-662-03039-4 13

[3] S. Khedkar, K. Akant, and M. Khanapurkar, “Image Denoising Using Wavelet
Transform,” International Journal of Research in Engineering and Technol-
ogy, vol. 5, no. 4, pp. 206-212. Accessed: Jun.14, 2023. [Online]. Available:
https://ijret.org/volumes/2016v05/i04/IJRET20160504040.pdf

[4] B. Münch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and ring artifact removal with com-
bined wavelet — Fourier filtering,” Optics Express, vol. 17, no. 10, pp. 8567–8591, May 2009,
doi https://doi.org/10.1364/OE.17.008567.

[5] J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern Recognition,
vol. 33, no. 2, pp. 225–236, Feb. 2000, doi: https://doi.org/10.1016/s0031-3203(99)00055-2.

[6] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004, doi:
https://doi.org/10.1023/b:visi.0000029664.99615.94.

[7] M. Hu, “Visual pattern recognition by moment invariants,” IEEE Transactions on Information
Theory, vol. 8, no. 2, pp. 179–187, Feb. 1962, doi: https://doi.org/10.1109/tit.1962.1057692.

[8] Z. Chen and S.-K. Sun, “A Zernike Moment Phase-Based Descriptor for Local Image Represen-
tation and Matching,” IEEE Transactions on Image Processing, vol. 19, no. 1, pp. 205–219, Jan.
2010, doi: 10.1109/tip.2009.2032890.

[9] “Bernstein,” Bernstein – The Memory of Paper, Mar. 08, 2023. Available:
https://www.memoryofpaper.eu/BernsteinPortal/appl start.disp

[10] X. Shen et al., “Large-Scale Historical Watermark Recognition: dataset and a new consistency-
based approach,” PDF, arXiv Cornell University, 2019. Accessed: Apr. 29, 2023. [Online].
Available: https://arxiv.org/pdf/1908.10254.pdf

[11] H. Hiary, “Paper-based Watermark Extraction with Image Processing,” PDF,
The University of Leeds, 2008. Accessed: Apr. 29, 2023. [Online]. Available:
https://etheses.whiterose.ac.uk/1355/

[12] R. Zhao, D. P. K. Lun, and K.-M. Lam, “NTGAN: Learning Blind Image Denoising without
Clean Reference,” PDF, The Hong Kong Polytechnic University, 2018. Accessed: Apr. 29, 2023.
[Online]. Available: https://www.bmvc2020-conference.com/assets/papers/0046.pdf

[13] D. Clegg and R. Barker, Fast-track : A RAD approach. Wokingham, England: Addison-Wesley
Publishing Company, 1994. Available: https://dl.acm.org/citation.cfm?id=561543

xxxiii

https://harvardartmuseums.org/article/understanding-paper-structures-watermarks-and-a-conservator-s-passion#:~:text=Sometimes%20the%20pattern%20is%20more
https://harvardartmuseums.org/article/understanding-paper-structures-watermarks-and-a-conservator-s-passion#:~:text=Sometimes%20the%20pattern%20is%20more
https://harvardartmuseums.org/article/understanding-paper-structures-watermarks-and-a-conservator-s-passion#:~:text=Sometimes%20the%20pattern%20is%20more
https://harvardartmuseums.org/article/understanding-paper-structures-watermarks-and-a-conservator-s-passion#:~:text=Sometimes%20the%20pattern%20is%20more
https://link.springer.com/chapter/10.1007/978-3-662-03039-4_13
https://link.springer.com/chapter/10.1007/978-3-662-03039-4_13
https://link.springer.com/chapter/10.1007/978-3-662-03039-4_13
https://ijret.org/volumes/2016v05/i04/IJRET20160504040.pdf
https://ijret.org/volumes/2016v05/i04/IJRET20160504040.pdf
https://ijret.org/volumes/2016v05/i04/IJRET20160504040.pdf
https://ijret.org/volumes/2016v05/i04/IJRET20160504040.pdf
https://opg-optica-org.tudelft.idm.oclc.org/oe/fulltext.cfm?uri=oe-17-10-8567&id=179485
https://opg-optica-org.tudelft.idm.oclc.org/oe/fulltext.cfm?uri=oe-17-10-8567&id=179485
https://opg-optica-org.tudelft.idm.oclc.org/oe/fulltext.cfm?uri=oe-17-10-8567&id=179485
https://www.sciencedirect.com/science/article/pii/S0031320399000552?via=ihub
https://www.sciencedirect.com/science/article/pii/S0031320399000552?via=ihub
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/1057692
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/1057692
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=5256258
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=5256258
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=5256258
https://www.memoryofpaper.eu/BernsteinPortal/appl_start.disp
https://www.memoryofpaper.eu/BernsteinPortal/appl_start.disp
https://arxiv.org/pdf/1908.10254.pdf
https://arxiv.org/pdf/1908.10254.pdf
https://arxiv.org/pdf/1908.10254.pdf
https://etheses.whiterose.ac.uk/1355/1/hazem.pdf
https://etheses.whiterose.ac.uk/1355/1/hazem.pdf
https://etheses.whiterose.ac.uk/1355/1/hazem.pdf
https://www.bmvc2020-conference.com/assets/papers/0046.pdf
https://www.bmvc2020-conference.com/assets/papers/0046.pdf
https://www.bmvc2020-conference.com/assets/papers/0046.pdf
https://www.google.nl/books/edition/CASE_Method_Fast_track/86ZfQgAACAAJ?hl=en
https://www.google.nl/books/edition/CASE_Method_Fast_track/86ZfQgAACAAJ?hl=en

[14] Fisher, R, et al. “Point Operations - Contrast Stretching,” Hypermedia Image Processing
Reference, The University of Edinburgh, Accessed: Jun. 14, 2023. [Online]. Available:
https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm

[15] “Measure region properties — skimage 0.21.0 documentation,” scikit-image.org. https://scikit-
image.org/docs/stable/auto examples/segmentation/plot regionprops.html Accessed: Jun. 14,
2023.

[16] A. Polesel, G. Ramponi and V. J. Mathews, ”Image enhancement via adaptive unsharp mask-
ing,” IEEE Transactions on Image Processing, vol. 9, no. 3, pp. 505-510, March 2000, doi:
10.1109/83.826787.

[17] J. Torres et al., “Cone Beam Volume CT Image Artifacts Caused by Defective Cells in X-
Ray Flat Panel Imagers and the Artifact Removal Using a Wavelet-Analysis-Based Algorithm,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 40, no. 11, pp. 216–228, 2001, doi:
10.1364/OE.17.008567

[18] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with block-matching and
3D filtering,” SPIE-IS&T Electronic Imaging, San Jose, 2006, vol. 6064, no. 606414. Accessed:
Jun. 14, 2023. [Online]. Available: https://webpages.tuni.fi/foi/3D-DFT/BM3DDEN article.pdf

[19] M. Kuwahara, K. Hachimura, S. Eiho, and M. Kinoshita, “Processing of RI-Angiocardiographic
Images,” Digital Processing of Biomedical Images, pp. 187–202, Jan. 1976, doi:
https://doi.org/10.1007/978-1-4684-0769-3 13.

[20] M. Teague, “Image analysis via the general theory of moments*,” Journal of the Optical Society
of America, vol. 70, no. 8, p. 920, Aug. 1980, doi: 10.1364/josa.70.000920.

[21] H. Shu, L. Luo, and J.-L. Coatrieux, “Moment-Based Approaches in Imaging. 1. Basic Features
[A Look At ...],” IEEE Engineering in Medicine and Biology Magazine, vol. 26, no. 5, pp. 70–74,
Sep. 2007, doi: 10.1109/emb.2007.906026.

xxxiv

https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm
https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_regionprops.html
https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_regionprops.html
https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_regionprops.html
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/826787
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/826787
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/826787
https://opg.optica.org/directpdfaccess/2f0a3d62-9007-484f-9a095bd5d69aa96b_179485/oe-17-10-8567.pdf?da=1&id=179485&seq=0&mobile=no
https://opg.optica.org/directpdfaccess/2f0a3d62-9007-484f-9a095bd5d69aa96b_179485/oe-17-10-8567.pdf?da=1&id=179485&seq=0&mobile=no
https://opg.optica.org/directpdfaccess/2f0a3d62-9007-484f-9a095bd5d69aa96b_179485/oe-17-10-8567.pdf?da=1&id=179485&seq=0&mobile=no
https://opg.optica.org/directpdfaccess/2f0a3d62-9007-484f-9a095bd5d69aa96b_179485/oe-17-10-8567.pdf?da=1&id=179485&seq=0&mobile=no
https://webpages.tuni.fi/foi/3D-DFT/BM3DDEN_article.pdf
https://webpages.tuni.fi/foi/3D-DFT/BM3DDEN_article.pdf
https://webpages.tuni.fi/foi/3D-DFT/BM3DDEN_article.pdf
https://link.springer.com/chapter/10.1007/978-1-4684-0769-3_13
https://link.springer.com/chapter/10.1007/978-1-4684-0769-3_13
https://link.springer.com/chapter/10.1007/978-1-4684-0769-3_13
https://opg.optica.org/josa/abstract.cfm?uri=josa-70-8-920
https://opg.optica.org/josa/abstract.cfm?uri=josa-70-8-920
https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/pmc/articles/PMC2230630/
https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/pmc/articles/PMC2230630/
https://www-ncbi-nlm-nih-gov.tudelft.idm.oclc.org/pmc/articles/PMC2230630/

Appendix 1. Usage of ChatGPT

Artificial Intelligence, specifically ChatGPT11, was occasionally used in the writing of this report.
ChatGPT was never used to write things from scratch, it was rather used as a way of rephrasing certain
sections. For example, queries such as “Can you rephrase X” or “Can you make this sound better/more
formal/less formal/shorter/make sense” were used. Of course, accompanying these queries would be
the sentences that we wanted to rephrase. The output of these queries would then be edited further
to make them more appropriate for the context of the report. It’s important to note that in finalizing
the report, several editing stages changed large parts of text for the purpose of brevity, grammar, and
clarity. These final edits were all made without any AI assistance. So, it is unlikely that any sentences
generated by AI exist in their unedited form in this paper.

ChatGPT was also used to aid certain aspects of the programming. Several techniques were used in
the watermark pipeline, and ChatGPT was used to get ideas on which techniques may be effective for
the problem, or what certain techniques meant. So examples of queries would be “What is a dyadic
decimated wavelet analysis?”, “What are examples of edge-preserving denoising techniques?”, or “If
we have horizontal lines in an image, spaced at every 20 pixels how would I use X technique to
remove them?”. Additionally, ChatGPT was used to gain insight into the web development process.
Queries were used such as “How do I save the images’ paths in a global variable for the application?”
or “How to iterate over all files in a folder python os?”. It is important to note that all queries used
for programming were to get an idea of how to approach a problem. Any code that was provided by
ChatGPT was heavily altered to fit the context of this project. No code that was generated by ChatGPT
was used in an unaltered form.

11https://openai.com/blog/chatgpt

xxxv

Appendix 2. Requirements Completion Overview

Figure 43: Functional requirements

Figure 44: Nonfunctional requirements

xxxvi

Appendix 3. Work Distribution

Figure 45: Work distribution

xxxvii

Appendix 4. Overview of Hyperparameters

Below is an overview of the hyperparameters available for the harmonization. There are no hyperpa-
rameters to adjust for feature extraction or similarity matching. The hyperparameters are organized
by whether they are traced or untraced, and then further categorized based on the parts of the har-
monization: pre-processing, denoising, thresholding and finally post-processing. Note that for the
traced images, there are different thresholding techniques for lighter and heavier noise. There are no
parameters for denoising traced images with light noise, and also none for pre-processing untraced
images.

Traced

Pre-processing

wavelet_denoising.
wavelet_traced(image, levels=8, wavelet=’dmey’, sigma=2.5,

option=1)

• levels: Number of levels of decomposition.

• wavelet: The type of wavelet to use.

• sigma: Damping coefficient.

• option: Option to use one of four options of line removal. 1: vertical, 2: horizontal, 3: both,
4: neither.

wavelet_denoising.
wavelet_fourier_vertical(image, levels=4, wavelet=’sym4’,

sigma=3)

• levels: Number of levels of decomposition.

• wavelet: The type of wavelet to use.

• sigma: Damping coefficient.

wavelet_denoising.
wavelet_fourier_horizontal(image, levels=4, wavelet=’db2’,

sigma=3)

• levels: Number of levels of decomposition.

• wavelet: The type of wavelet to use.

• sigma: Damping coefficient.

Denoising

denoise_traced_heavy_noise(denoise_sigma=0.05, gaussian_sigma=2)

xxxviii

• denoise_sigma: Sigma value passed on to skimage.restoration.denoise_wavelet()

• gaussian_sigma: Sigma value for the gaussian used to blur the image at the end

skimage.
restoration.denoise_wavelet(image, sigma=denoise_sigma)

• sigma: Sigma value to change the extent of the denoising.

Thresholding

threshold_traced_light_noise(dilation_shape=(3,3), window_size=25,
k=0.2)

• dilation_shape: Shape of the kernel to dilate the thresholded watermark with.

• window_size: Window size passed on to binarize.sauvola_thresholding.

• k: K value passed on to binarize.sauvola_thresholding.

binarize.
sauvola_thresholding(image, window_size=25, k=0.2, r=None)

• window_size: Window size for the sliding window that is used for thresholding.

• k: A scaling factor.

• r: A normalization factor for the standard deviation.

threshold_traced_heavy_noise(threshold_value=190, closing_shape=(6,6),
dilation_shape(3,3))

• threshold_value: Global threshold value, ranging from 0 to 255. Any value lower will be
set to 0, and any value above will be set to 255.

• closing_shape: Shape of the kernel used for the closing operation.

• dilation_shape: Shape of the kernel used for the dilation operation at the end. The shape
will be filled in with an ellipse using

cv2.getStructuringElement(cv2.MORPH_ELLIPSE, dilation_shape).

Post-processing

post_process_traced(iteration)

• iteration: Either 1 or 2. If 1, will remove noisy regions. If 2, will remove noisy regions,
then crop the image based on this result and will redo the harmonization with this new cropped
image, without ameliorating the borders. This should improve results for images that are af-
fected negatively by ameliorating the borders.

xxxix

Untraced

Denoising

utils_untraced_harmonization.
denoise_untraced(image, sigma_psd=25)

• sigma_psd: The expected amount of noise for bm3d.

pykuwahara.
kuwahara(image, method=’gaussian’, radius=3)

• method: The method to use for filtering.

• radius: The window radius for filtering.

Thresholding

utils_untraced_harmonization.
threshold_untraced(image, window_size=25, k=0.1,

morph_kernel=(3,3), iterations=3)

• window_size: Window size for Sauvola thresholding.

• k: Scaling factor for Sauvola thresholding.

• morph_kernel: Kernel dimensions for the closing operation.

• iterations: The number of times to repeat the closing operation.

Post-processing

utils_untraced_harmonization.
connected_component_analysis(image, min_size=200):

• min_size: Minimum size, in number of pixels, to keep a component.

xl

Appendix 5. Accessing Raw Data and Datasets

All raw data used, including full evaluation files, recordings for evaluating the GUI, and the dataset,
can be found in Group 18B’s Software Project GitLab repository12. The repository also contains all
the .pkl files that were used for the databases. If the repository is inaccessible for whatever reason,
access to these files can be requested by emailing m.skrodzki@tudelft.nl. Additionally, to
access the full watermark dataset that this project had access to, a request can be sent to the German
Museum of Books and Writing.

12https://gitlab.ewi.tudelft.nl/cse2000-software-project/2022-2023-q4/ta-cluster/cluster-18/sp-18b/cs-for-the-
humanities-watermarks-18b/

xli

Appendix 6. GUI Evaluation Script

For the GUI evaluation, discussed in section 8.6, a script was read to each participant before their
interaction with the website. This script was intended to provide context for the project and the
website. Below is the script read to participants.

Today we are going to give you a website that is used for watermark similarity matching. This system
deals with watermarks, which has two types: traced [show example of traced watermark] and untraced
[show example of untraced watermark]. The purpose of the website is to upload a watermark, find the
outline of the watermark itself, and then see the output of similar watermarks.

Today, you will use this webpage. You as a user want to upload a watermark, go through the process of
outlining where the watermark is, and then you will see similar watermarks. Throughout the process,
please state what you like about the website, what you find confusing, what you dislike, and any other
thoughts you may have about it.

Before starting, please note that we will ask you to input a path to a database. Don’t worry about
filling this out, the default value will work for you.

xlii

Appendix 7. Python Test Coverage

Figure 46: Python test coverage report

xliii

	Preface
	Summary
	Introduction
	Analysis of Challenges in Matching Similar Watermarks
	Context for Watermarks
	Challenges in Watermark Analysis
	A Solution for Finding Similar Watermarks
	Constraints on the Input Watermarks
	Existing Solutions and Research
	Stakeholders

	Requirements of the Watermark Similarity System
	Functional Requirements
	Functional Must-Haves
	Functional Should-Haves
	Functional Could-Haves
	Functional Won't-Haves

	Non-Functional Requirements
	Non-Functional Must-Haves
	Non-Functional Should-Haves
	Non-Functional Could-Haves
	Non-Functional Won't-Haves

	Watermark System Design
	Overview of the Design for Analyzing Watermarks
	Harmonizing Watermarks Design
	Design for Extracting Features from Watermarks
	Design for Matching Watermarks on Similarity
	Design for the User Interface

	Watermark Pipeline Implementation
	Implementing Harmonization of Traced Watermarks
	Pre-processing and Denoising Traced Watermarks
	Thresholding Traced Watermarks
	Post-processing Traced Watermarks

	Implementing Harmonization of Untraced Watermarks
	Pre-processing and Denoising of Untraced Watermarks
	Thresholding and Post-Processing Untraced Watermarks

	Implementing Feature Extraction
	Scale Invariant Feature Transform
	Hu Moments
	Zernike Moments
	Implementation of Feature Extraction

	Implementing a Similarity Matcher
	Getting similarity scores from features
	Combining the similarity scores

	User Interface Implementation
	Running the Pipeline Automatically
	Building the Database Automatically
	Finding Similar Watermarks with the Graphical User Interface
	Building the Database Manually

	Ethical Implications
	Ethics of the Watermark Data
	Potential for Abusing the System

	Discussion
	Splitting and Labeling the Dataset
	Calculating Accuracy and Evaluation Data
	Evaluation of the Automatic Pipeline
	Evaluation of the Manual Pipeline
	Evaluation of a Dataset of Clearer Images
	Evaluation of the Graphical User Interface
	Testing the System
	Limitations of the System

	Conclusion
	Recommendations for Future Work
	References
	Appendix 1. Usage of ChatGPT
	Appendix 2. Requirements Completion Overview
	Appendix 3. Work Distribution
	Appendix 4. Overview of Hyperparameters
	Appendix 5. Accessing Raw Data and Datasets
	Appendix 6. GUI Evaluation Script
	Appendix 7 Python Test Coverage

