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Abstract

Hidden Markov Models (HMMs) are probabilistic models that are widely used in various
fields, including machine learning, economics, information theory, neuroimaging, and more.
In particular, they are frequently employed in functional Magnetic Resonance Imaging (fMRI)
studies, which involve large datasets, to analyze the behavior of brain networks or states. For
example, HMMs can help determine whether a patient is healthy.

HMMs represent the probability of transitions between different states of a system, which
operates as a discrete Markov chain and is not directly observable. Additionally, they describe
the probability of observing specific measurements based on the current state of the model.
These probabilities are characterized by a state transition matrix (T), an emission matrix
(O), and an initial state distribution (π).

The current methods for fitting HMMs to data primarily utilize the Baum-Welch algorithm,
which is a specific type of Expectation Maximization (EM). One of the advantages of Baum-
Welch is its ability to be extended to continuous observations or multivariate data. However,
the algorithm involves a forward-backward pass during each iteration, which makes it increas-
ingly slow as the size of the dataset grows. Moreover, it can easily become trapped in local
minima.

An alternative approach is to use Canonical Polyadic Decomposition (CPD) to decompose
a Joint Probability Tensor (JPT). This decomposition allows for the extraction of factor
matrices that can be used to calculate the HMM matrices (T,O,π). Compared to the Baum-
Welch algorithm, CPD and other JPT decomposition methods tend to be faster. However,
they are often sensitive and may suffer from instability if the data does not fully capture the
statistical behavior of the underlying HMM. Additionally, methods for JPT decomposition in
HMM learning have not yet been extended to multivariate datasets or continuous settings.

To enhance stability and accommodate multivariate data, we propose a novel method that
extends JPT decomposition HMM learning to a multivariate setting. This involves using a
coupled CPD problem, where each observational sequence has a separate observation matrix
but shares a common state transition matrix. By transitioning from Baum-Welch to CPD,
the process of learning HMMs can be significantly accelerated. Coupled CPD makes HMM
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learning more robust than Uncoupled CPD by relating the multivariate data through a com-
mon transition matrix T and initial distribution π. This improvement should enhance the
iterability of HMM methods and make them more suitable for rapid prototyping in scientific
research and the aforementioned fields.

We show in the results that Coupled CPD indeed outperforms both Uncoupled CPD and the
industry-standard Baum-Welch, in most cases. It has improved stability over both methods,
as well as significantly improving the calculation time, and results in higher accuracy when
it comes to estimating the HMM matrices. Finally, more future improvements are suggested
concerning calculation time and extensions.
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Notation

This section introduces a general use of commonly used notation throughout the report. Here,
symbols, variable types, and index uses can be found. Note that this is a general description,
and locally throughout the report, this may vary.

Table 1: Notation used in this report.

Representation Definition
X Tensor
X Matrix
x Vector
x Scalar

X(n) n-th matrix in a sequence of matrices
({

X(1),X(2), . . . ,X(n)
})

X(n) mode- n matricization of a tensor X
Operations Definition

◦ Outer product
⊙ Khatri-Rao
⊛ Hadamard product
×n Mode-n tensor-matrix product

A−1 Matrix inverse
A† Matrix pseudo-inverse
AT Matrix transpose
∥ · ∥F Frobenius norm

Variables Definition
K Number of states of HMM1

D Number of possible emissions (data bins) of the HMM
N Number of data sequences of multivariate HMM
m Length of the data sequence for HMM fitting
W Window size of indicator function/dimension-size of JPT2.

k ∈ [1,K] Indexing variable for the number of states
d ∈ [1, D] Indexing variable for the number of emissions

1Hidden Markov Model (HMM)
2Joint Probability Tensor (JPT)
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viii Notation

n ∈ [1, N ] Indexing variable for the number of sequences

The notation for Joint Probability Tensors will be as follows: mPn
a,b,c, where m is the number

of samples used to create the tensor, where ∞P indicates a theoretically calculated tensor
instead of an empirical sampled one equating to infinite samples, n is the indexing variable for
which data sequence is used in the case of a multivariate HMM, and a, b, c are index variables
pointing to a specific element of the tensor, and the number of them can refer back to the
window size/dimension size of the tensor. P will be used if all are unspecified.

Sometimes the notation for multivariate emission matrices O(n) ∀n ∈ [1, N ] is shortened to
O(n).
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Chapter 1

Introduction

Hidden Markov Models (HMMs) are probabilistic models that are widely used in various fields,
including machine learning, economics, information theory, neuroimaging, and more. In par-
ticular, they are frequently employed in functional Magnetic Resonance Imaging (fMRI) and
Electroencephalography (EEG) studies, which involve large datasets, to analyze the behavior
of brain networks or states, and determine whether the patient is healthy or not [1, 2, 3].
HMMs represent observed sequences as emissions from a set of underlying hidden states and
are defined by three key parameters: the transition matrix T, the emission matrix O, and
the initial state distribution π.

Learning these parameters from data poses a significant challenge [4]. The most common
method found in the literature is named the Baum-Welch algorithm [4, 5, 6], a specific im-
plementation of the Expectation Maximization (EM) technique. This algorithm performs a
forward-backward pass through the data at each iteration. While it is effective, Baum-Welch
has limitations, as it tends to scale poorly with larger datasets and is susceptible to converging
on local minima. An alternative approach, tensor decomposition—particularly the Canonical
Polyadic Decomposition (CPD)—offers a promising but less thoroughly explored method for
estimating HMM parameters [6, 7, 8]. However, CPD-based methods face several limitations
[9]. They have undergone limited experimental validation, may experience sensitivity issues,
and crucially, have not yet been extended to multivariate cases. In these scenarios, multiple
observed sequences are assumed to share the same underlying hidden states over time, with
different observation models for each sequence. These issues naturally lead to the central
research question of this thesis:

Can CPD methods for HMM learning be improved to accommodate multivariate data sequences
while outperforming the industry-standard, Baum-Welch algorithm, in both computational
efficiency and estimation accuracy?
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2 Introduction

To address this gap, this thesis aims to extend univariate CPD-based HMM learning methods
(Uncoupled CPD) to the multivariate setting. In this context, several additional research
questions arise:

1. How can CPD methods for HMM learning decompose Joint Probability Tensors (JPTs)
to derive HMMs?

2. How can CPD methods for HMM learning be extended to a multivariate setting?

3. How can CPD methods for HMM learning be extended to increase stability and robust-
ness?

4. Can robustness and the multivariate setting be achieved by coupling data sequences
using a common transition matrix T and initial distribution π?

5. How does a Coupled CPD method compare in performance to Uncoupled CPD and the
Baum-Welch algorithm over various HMM parameters, such as the number of states K,
the number of emissions D, the number of data sequences N , and the length of the data
sequences m?

6. Can the Coupled CPD method be applied to the Sleep Physionet dataset [10] to uncover
underlying sleep stages?

These questions are addressed throughout this thesis in different chapters. Question 1 is
discussed in Chapter 2, while questions 1-4 are addressed in Chapter 3. Finally, questions 4-6
are explored in Chapter 4.

The proposed approach builds on the observation that all sequences in a multivariate HMM
share the same transition matrix T and initial distribution π, while allowing for distinct
emission matrices O(n) for each sequence. This extension aims to combine the computational
efficiency of CPD methods with the multivariate capabilities of the Baum-Welch algorithm
while simultaneously improving accuracy.

To test the proposed framework in a real-life setting, the Sleep Physionet dataset, including
polysomnography data and annotations for different sleep stages from [10], is used. The goal
is to use the EEG and EOG channels from this dataset to estimate the underlying sleep stages
during the night and compare these to the sleep stage annotations given by experts for the
same dataset.

The remainder of the thesis is structured as follows: Chapter 2 introduces relevant background
concepts and reviews existing literature. Chapter 3 provides a comprehensive description of
univariate HMM learning using CPD, based on existing methods, and introduces a novel
extension to the multivariate case by coupling multiple univariate models. This chapter also
discusses implementation considerations and defines auxiliary functions. Chapter 4 evaluates
the proposed method through experiments that explore a wide range of HMM parameters
and method-specific hyperparameters. Finally, Chapter 5 summarizes the findings, concludes
the thesis, and proposes directions for future work. Supplementary materials are provided
in Appendix A, which presents algorithmic details, Appendix B, which contains supporting
mathematical proofs, and Appendix C, which supplies extra supporting figures.
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Chapter 2

Preliminaries and Related Work

This chapter describes the basis for the proposed method of this thesis. The goal is to
learn Hidden Markov Models (HMMs) from data in a multivariate setting through coupled
Canonical Polyadic Decomposition (CPD). To do so, first, HMMs are defined in Section 2-1.
Then in Section 2-2, Joint Probability Tensors (JPTs) are shown to be an intermediate step
that can be obtained from data, and decomposed to obtain the HMM matrices. Finally,
in Section 2-3 the method of decomposition of this JPT into HMM matrices is described.
Throughout these sections, various related works are discussed, some of which are used as a
basis for this work.

2-1 Hidden Markov Models

A discrete univariate Hidden Markov Model (HMM) is a probabilistic model defined by a tran-
sition matrix T ∈ RK×K , and an emission matrix O ∈ RD×K . These describe the probabilistic
evolution of the hidden states, xt ∈ X = {s1, s2, . . . , sK}, and the probability of observing one
of the possible observational values yt ∈ Y from the alphabet Y = {o1, o2, . . . , oD}. Lastly, an
HMM also has an initial state distribution vector π ∈ RK , which describes the probability of
starting a measured sequence in a certain state.

Figure 2-1: An illustration of an HMM time sequence with observed data and the underlying
states.

An HMM describes a sequence of observations yt ∈ {y1, y2, . . . , ym}, for each timestep 1 ≤ t ≤ m,
where m is the length of the data sequence, which depends on a sequence of hidden states
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4 Preliminaries and Related Work

xt ∈ {x1, x2, . . . , xm}, as can be observed in Figure 2-1. Each observation at time t belongs
to a set of possible observational values yt ∈ Y, as does each of the hidden states xt ∈ X .

The probability of moving from state to state is described by the state transition probability
matrix T, and the probability of observing a specific value given a specific state is described
by the emission probability matrix O. Furthermore, π is the probability distribution of the
initial state, and its entries describe how likely it is to start in a certain state. The full model
of an HMM is a tuple referred to as λ = (T,O,π), with the following description for each
element:

• Transition Probability Matrix: T ∈ RK×K
+ with elements Tij = P (xt+1 = si|xt = sj).

Here, Tij is the probability of transitioning from the current state sj to the next state
si, with

∑K
i=1 Tij = 1, ∀j;

• Emission Probability Matrix: O ∈ RD×K
+ with elements Odk = P (yt = od|xt = sk).

Here, the probability of observing od given the current state sk is given by Odk, with∑D
d=1 Odk = 1, ∀k;

• Initial State Probability Distribution: π ∈ RK+ with elements πk = P (sk|t = t1),
where πk is the probability of starting in sk, with

∑K
k=1 πk = 1.

Figure 2-2 shows what an example of a HMM could represent, by having three weather states
and the emissions showing the probability of the air being humid.

Sunny

Cloudy

Rainy

High chance

Low chance

Medium chance

Figure 2-2: An example for a Hidden Markov Model with K = 3, D = 8. It shows the probability
of transitioning between states and the probability of the observation’s value associated with those
states. The example here is that the states are Sunny, Rainy, and Cloudy and that the observation
is the humidity in the air. When it is Sunny there is a low chance of the air being humid.
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2-1 Hidden Markov Models 5

Initial distribution and ergodicity of the transition matrix

If the transition matrix T is ergodic, all states can be reached. The initial distribution π
can be found by solving πTT = πT , as in Equation (2-1), when the transition matrix is
ergodic [11, 12].

πTT = πT → πT (T− I) = 0. (2-1)

With the assumption that the HMM is ergodic, π can be found purely based on T. This
assumption is made throughout this thesis. The transition matrix for synthetic data is gen-
erated with noise, meaning no value in it will be zero, making it ergodic.

2-1-1 Extending HMMs

Multivariate HMMs

A multivariate HMM allows multiple observational values to be emitted per time step from
the underlying active state. These different sequences are generally discretized with the same
resolution, meaning each time series has an emission matrix with D possible observational
values, where D is the resolution of the data. Multivariate HMMs require an extension
or redefinition of the emission probability matrix, as now there are N emission matrices
O(n), ∀n ∈ [1, N ]:

• Emission Probability Matrix: O(n) ∈ RD×K
+ with elements defined in the form

O(n)
dk = P (y(n)

t = o
(n)
d |xt = sk). Here, O(n)

dk is the probability of observation number
n at time t having the value of od given the current state sk, with

∑D
d=1 O(n)

dk = 1,
∀k ∈ [1,K], n ∈ [1, N ].

Figure 2-3: A sequence, over time, of multivariate HMM observations and the associated hidden
states.

For multivariate HMMs, there exists an emission matrix for each observational sequence. In
functional Magnetic Resonance Imaging (fMRI) data, for example, there are ∼ 100.000 voxels
per time frame or ∼ 100.000 observational sequences. As multivariate HMMs quickly become
more expensive to learn or fit as the number of observations n increases, it is generally hard
to find an HMM for such datasets without performing a preprocessing step such as clustering
multiple data sequences together.
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6 Preliminaries and Related Work

Continuous HMM

Discrete HMMs use probability mass functions along the columns of the emission matrix
for each state. Continuous HMMs(cHMM) offer a Probability Density Function (PDF) for
the emission from the state to the observation. This means that for a univariate HMM,
each state has a PDF to describe what the probability of emission is; for a multivariate
HMM, each state has n PDFs. In this thesis, unless described otherwise, PDFs are normal
distributions/Gaussian distributions. Hence, the following can be defined:

O(n) ∈ NK , with O(n)
k = f(sk, n) = P (y(n)

t |xt = sk) = N (µ(n)
k , σ

(n)
k ), ∀k ∈ [1,K], n ∈ [1, N ],

(2-2)
with

∫ ∞
−∞ f(sk, n) = 1, and where N is a Gaussian distribution.

Higher order HMMs

As seen above, for an HMM we have Tij = P (xt+1 = sj |xt = si) and Odk = P (yt = od|xt = sk)
suggesting that both the next state and the current observation purely depend on the current
state. This is a quality of a first-order HMM and is generally described as Markovian behavior
or as a Markovian process, and is used in HMMs and Markov chains alike. HMMs can be
extended to a second-order HMM, which has states that are all dependent on the previous
two states: Ta,b,c = P (xt+1 = sa|xt = sb, xt−1 = sc) such that T ∈ RK×K×K . The idea is that
higher-order HMMs can describe more complex probabilistic behavior, at the cost of a more
complex fitting process.

Some literature uses the term order of an HMM to describe the number of states that an
HMM has; however, in this thesis, order refers to the number of dependencies an event (state
or observation) has. Also, in this thesis, only first-order HMMs are considered.

2-1-2 Learning HMMs through Empirical Methods

This section introduces two key algorithms used in the context of HMMs: the Viterbi al-
gorithm and the Baum-Welch algorithm. Although this thesis focuses on tensor-based ap-
proaches rather than these traditional methods, they serve as valuable reference points for
evaluating performance and correctness.

Viterbi Algorithm

The Viterbi algorithm is used to infer the most likely sequence of hidden states (known
as the Viterbi path) that could have generated a given sequence of observations. Rather
than estimating the distribution over all possible state sequences, it identifies the single most
probable one.

This is done through dynamic programming: at each time step, the algorithm computes the
highest probability of any path that ends in a given state, building up these probabilities
recursively. Alongside, it keeps track of backpointers to reconstruct the optimal state path
once the end of the observation sequence is reached.

Jep Brinkmann Master of Science Thesis



2-1 Hidden Markov Models 7

The computational complexity of the Viterbi algorithm is linear in the number of time steps
m, and quadratic in the number of hidden states K. It is particularly useful when a concrete
state sequence is needed, rather than marginal distributions over states.

Baum-Welch Algorithm

The Baum-Welch algorithm is the standard method for learning HMM parameters from data.
It is a special case of the Expectation-Maximization (EM) algorithm, and works by iteratively
refining estimates of the transition probabilities, emission probabilities, and initial state dis-
tribution [13].

Each iteration consists of two steps:

• Expectation step (E-step): Uses the forward-backward algorithm [13] to compute
the expected state transitions and state occupancies given the current model parameters.

• Maximization step (M-step): Updates the model parameters to maximize the ex-
pected complete data log-likelihood computed in the E-step.

The computational complexity of Baum-Welch per sequence is O(K2m), where K is the
number of hidden states and m is the sequence length. This quadratic dependence on K
and linear dependence on m means that the algorithm becomes increasingly slow for long
sequences or large models. When applied to a dataset with N sequences, the total complexity
scales linearly with N , making it computationally expensive for large-scale or high-resolution
time series data.

Although widely used and robust, Baum-Welch has limitations. It often converges to lo-
cal optima, particularly when the number of hidden states is large or the initialization is
poor. Nevertheless, its flexibility—including support for multivariate HMMs and continuous
emissions—makes it a strong benchmark for comparison.

In this thesis, Baum-Welch serves as a baseline for evaluating the effectiveness of tensor-based
methods in univariate and multivariate settings.

2-1-3 HMM summary

This section has shown what HMMs are, how they are defined in this thesis, and how they
are generally learned using empirical algorithms. The problem with empirical algorithms,
and Baum-Welch in particular, is that it uses a forward-backward pass every iteration, mean-
ing that, as the length of the data increases, the algorithm becomes exponentially slower.
Additionally, Baum-Welch tends to get stuck in local minima.

The next section looks at Joint Probability Tensors (JPTs), which aim to view data from a
probabilistic perspective and find a different route to the HMM matrices.

Master of Science Thesis Jep Brinkmann



8 Preliminaries and Related Work

2-2 Joint Probability Tensors

This section describes Joint Probability Tensors (JPTs), what they are, how they are found
from data, and what probability marginalization can be applied to eventually find the Hidden
Markov Model (HMM) matrices from data, as is done in this thesis. Lastly, a few state-of-
the-art variants of JPT schemes and their limitations are mentioned.

2-2-1 Description of JPTs

JPTs are collections of probabilities that describe how often combinations of data appear.
Say there is an observed data sequence y = [y1, . . . , ym], with length m, that is sampled from
the alphabet Y = [o1, . . . , oD], where D ≪ m. Then, for singletons, pairs, and triplets of data
of y, the following can be defined [5, 14, 15, 16]:

pd = P (yt = od),
Pd1d2 = P (yt = od1 , yt+1 = od2),

Pd1d2d3 = P (yt−1 = od1 , yt = od2 , yt+1 = od3),
(2-3)

where P ∈ RD+ with
∑D
d vec(P)d = 1, P ∈ RD×D

+ with
∑D2
d vec(P)d = 1, and P ∈ RD×D×D

+
with

∑D3
d vec(P)d = 1. This idea can be extended to any sub-collection with window length

w of the data Y :
Pd1,...,dW

= P (yt = od1 , . . . , yt+W−1 = odW
), (2-4)

where di ∈ [1, . . . , D] ∀i and P ∈ R[D]W
+ with

∑DW

d vec(P)d = 1, and [D]W = D × · · · ×D︸ ︷︷ ︸
W times

.

This ensures that the sum of all entries of the JPT adds up to 1.

2-2-2 Finding JPTs from data

These JPTs can be approximated from data through the indicator function [9]. The indicator
function returns 1 if the value inserted belongs to a set, and 0 if that value does not belong
to the set—see Equation (2-5). This set is the finite, discrete alphabet of the observations
used in HMMs (Section 2-1). Note that, when working with real data that does not come in
a discrete finite set or has a resolution that is deemed too large, the data needs to be binned
into D bins before being fed to the indicator function.

IA : X → 0, 1
defined as:

IA(x) :=
{

1 if x ∈ A
0 if x /∈ A

(2-5)

The indicator function can also be used for vectors, but it must be noted that then, each
element in said vector has its own set A (which is usually just a single value) or is associated
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2-2 Joint Probability Tensors 9

in order with a value from a common A. The indicator function is then used as follows to
obtain the JPT:

mPd1,...,dw
= α

m−W+1∑
t=1

IA(yt, . . . , yt+W−1), (2-6)

where A = Y is the finite discrete alphabet of observations, and α is a scaling coefficient
chosen such that

∑
d1,...,dw

Pd1,...,dw
= 1. As the total sum over all entries of P needs to equal

one, and every one of the m−W +1 triplets in the m length data sequence adds a ’one’ value
to the tensor [9], the scaling parameter α therefore takes the value of 1/(m−W + 1).

In this thesis, a window size and, therefore, tensor dimension size of 3 are used, leading to
the following specification of Equation (2-6):

Pda,db,dc
= 1
m− 2

m−1∑
t=2

IA(yt−1, yt, yt+1). (2-7)

In practice, this equation is much simpler to implement by simply looping over all m − 2
triplets, and since they can be pre-processed and discretized into indices, adding a one to
that entry, then finalizing by dividing every entry in the obtained tensor by m − 2. An
example of the result of this is given in Figure 2-4.

Figure 2-4: An example of a JPT sampled from a very short data sequence, for which D =
4,m = 12, having 10 consecutive triplets, making the red entry 12P2,3,1 = 1/10. This also
showcases the importance of having enough samples.

2-2-3 Underlying structure in JPTs through decomposition

This thesis will focus on three-way JPTs. The three-way tensor P = P (yt−1, yt, yt+1) repre-
sents the joint probability of three consecutive values of data. With regards to HMMs, it is
known that these three data samples are generated from three consecutive states {xt−1, xt, xt+1}.
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10 Preliminaries and Related Work

Using this knowledge, this JPT can be described by the following probability marginaliza-
tion [7, 17]:

Pda,db,dc
= P (yt−1 = oda , yt = odb

, yt+1 = odc)

=
K∑
k=1

P (yt−1 = oda |xt = sk)︸ ︷︷ ︸
Ada,k

P (yt = odb
|xt = sk)︸ ︷︷ ︸

Bdb,k=Odb,k

P (yt+1 = odc |xt = sk)︸ ︷︷ ︸
Cdc,k

P (xt = sk)︸ ︷︷ ︸
λk

.

(2-8)

These marginal probabilities concerning the three different states are conditioned into matrices
A = P (yt−1|xt) ∈ RD×K ,B = P (yt|xt) ∈ RD×K ,C = P (yt+1|xt) ∈ RD×K . These conditional
probabilities can be described using the HMM matrices [15, 14]:

A = Odiag(π)TTdiag(Tπ)−1, B = O, C = OT. (2-9)

To obtain the factor matrices A,B,C, a tensor decomposition has to be applied to the
JPT P. The next section, Section 2-3, will discuss a tensor decomposition method, i.e.,
Canonical Polyadic Decomposition (CPD), how it works, and how it can be used to obtain
the aforementioned factor matrices from a JPT.

Related work: alternative JPT decomposition structures

This subsection suggests alternative methods to decompose JPTs to obtain HMMs, which are
commonly used in the literature, but will not be further built upon in this thesis.

One way to extract information from a JPT is by decomposing it in relation to HMMs [9, 6,
8, 18] in the following tensor train format:

Pd1,...,dw
= πTAT (d1) . . .AT (dw)1K , (2-10)

where 1K is a column vector with lengthK filled with ones, and A(d) = Tdiag(Od,1, . . . ,Od,K),
with d = [1, . . . , D], K equal to the number of states, and D the number of observational
bins. This decomposition has the benefit that it can create tensors of any mode matching the
window size used in the indicator function. This makes it so that the information that can
be captured goes beyond triplets of data, such as quadruplets or quintuplets. This decompo-
sition structure lacks the convenience of obtaining meaningful matrices, as the A(d) matrices
require an extra decomposition step to obtain the HMM matrices, adding an extra layer of
error. Multiple decomposition steps of matrices/tensors also do not result in unique decompo-
sitions, as many combinations of different decomposed matrices can result in the same tensor.
This non-uniqueness is also a property of Tensor-Train decompositions. Because of a twofold
non-uniqueness, the space in which possible HMM matrices live increases significantly, whilst
a CPD of the JPT in the previous section can be unique.

Another type of JPT, L ∈ RK×K×D, can also be directly decomposed [6] into HMM matrices
L = [[T, IK ,O]]. The decomposed tensor is structured as follows:

Likd = P (xt+1 = i|xt = k) · P (yt = d|xt = k)
= P (xt+1 = i, yt = d|xt = k).
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2-2 Joint Probability Tensors 11

The problem with this method is that this tensor is not obtainable given a sequence of data.
The tensor is created using Tik = P (xt+1 = i|xt = k) and Odk = P (yt = d|xt = k), which are
the matrices that HMM learning aims to uncover.

A fourth method [18] constructs a third order tensor M of the shape M ∈ RDw×Dw×D, where
w is defined by the window-size W = 2w + 1, and D is the number of emissions. The tensor
is then defined as:

ML(lw1 ),L(l−w
−1 ),l0 = P (yw−w = lw−w]), ∀l

w
−w ∈ [D]W .

This uses a bijective mapping L : [D]w → [Dw] of the multi-index lw1 = (l1, . . . , lw) ∈ [D]w to
the scalar index L(lw1 ) = (l1 − 1)Dw−1 + (l2 − 1)Dw−2 + · · ·+ lw ∈ [Dw]. This tensor M can
then be decomposed into factor matrices M = A×1 B×2 C, where A,B ∈ RDw×K where K
is the number of states, and C ∈ RD×K . The HMM matrices can then be recovered through:

O:,k = C:,k/(1TC:,k), ∀k ∈ [1, . . . ,K]

T =
(
O⊙A(n−1)

)†
A, if A has full column rank K

T = O†A(1), if C has full column rank K

where A(1) ∈ RD×K and is the first D rows of A, and A(n−1) ∈ RDw−1×K is the rest of the
rows of A.

A notable problem with this method is the large dimension sizes of the tensor and its factor
matrices with an increase in the number of emissions D and especially in the variable w that
has an effect on the window size W . This quickly leads to memory issues for both the storage
of the tensor and a CPD to decompose it.

Finally, in [8], tensor decompositions are used to obtain higher-order HMMs. This causes the
transition matrix to become T ∈ RK×···×K .

Spectral methods for JPTs

Another method to find HMM matrices from JPTs without tensor decomposition is spectral
algorithms [5, 14], and will also not be further used in this thesis. Spectral algorithms look at
the singular values and vectors. A parallel state is used that is a linear transformation of the
actual HMM states [5], and is named the observable representation. It requires the definition
of a matrix U that consists of the left singular vectors of [P2,1]ij = P (yt = oi, yt−1 = oj)
which correspond to non-zero singular values. Also needed are [p1]i = P (yt = oi) and
[P3,x,1]ij = P (yt+1 = oi, yt = ox, yt−1 = oj), which then leads to the observable representation
∀x ∈ [d]:

b1 = UTp1,

b∞ = (P2,1U)†p1,

Bx = (UTP3,x,1)(UTP2,1)†.

These states are not probability distributions over hidden states, like in an HMM. The actual
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HMM matrices can then be recovered using:

O =


λ1,1 λ1,2 · · · λ1,k
λ2,1 λ2,2 · · · λ2,k

...
... . . . ...

λd,1 λd,2 · · · λd,k


where λr,1, . . . , λr,k are the eigenvalues of (UTP3,r,1)(UTP3,1)†, ∀r ∈ [1, d]. Then, π = O†p1
and T = O†P2,1(O†)Tdiag(π)−1.

A very similar spectral method is used in [14], and both are implemented in [16], which shows
practical learning of HMMs with k = 2, 3 and d = 3, 6, 8, 10. However, this implementation
shows that for k = 3 the algorithm does not converge, and both spectral algorithms scale
badly with an increase in K and D.

2-2-4 JPT summary

JPTs are a collection of the probability of observing multiple consecutive values in data. In this
thesis, consecutive triplets are used to create a three-way JPT P, which is then decomposed
into factor matrices A,B,C. These, in turn, can be used to find the HMM matrices T and
O as observed in Equation (2-8) and Equation (2-9). The method for decomposing the JPT
into these factor matrices is discussed in Section 2-3.

2-3 Canonical Polyadic Decomposition

The Canonical Polyadic Decomposition (CPD) of a tensor X is its minimal decomposition
into a sum of rank-1 tensors [19]:

X = Λ×1 B(1) ×2 B(2) · · · ×N B(N) =
R∑
r=1

λrb(1)
r ◦ b(2)

r · · · ◦ b(N)
r . (2-11)

A CPD can be denoted as:

X = [[Λ; B(1),B(2), . . . ,B(N)]] or [[B(1),B(2), . . . ,B(N)]], (2-12)

where B(n) are called factor matrices, and b(n)
r are the signatures. CPD is also often referred

to as PARAFAC or CANDECOMP.

A CPD, X = [[A,B,C]], is unique if kA + kB + kC ≥ 2R+ 2, for R = rank(X), where kA is
the Kruskal-rank of A—the maximum value of k such that any k columns of A are linearly
independent.

An N-way tensor CPD, X = [[B(1),B(2), . . . ,B(N)]], is unique if the following holds:

N∑
n=1

kB(n) ≥ 2R+ (N − 1). (2-13)
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2-4 Summary 13

Figure 2-5: A graphical representation of a three-way CPD [20, 21, 22, 23].

If the factor matrices are not yet computed, it can estimate whether the CPD is expected to
be unique. The tensor X ∈ RI×J×K of rank R has a unique rank-R CPD if:

R ≤ K and R(R− 1) ≤ I(I − 1)J(J − 1)/2. (2-14)

In real cases, a CPD needs to be fit, as there is noise and other artifacts in the data. The
CPD model then looks as follows:

X = Λ×1 B(1) ×2 B(2) · · · ×N B(N) + E =
R∑
r=1

λrb(1)
r ◦ b(2)

r · · · ◦ b(N)
r + E. (2-15)

The fitting of this CPD is done my minimizing a suitable cost function that can be defined
as J = min ||X− [[B(1),B(2), . . . ,B(N)]]||2F . This can be achieved with many optimization
algorithms, but alternating least squares (ALS) is often used as it uses linear least squares at
each iteration, and is, therefore, fast.
Finally, one can note that the structure of Equation (2-11) for the tensor and the factor
matrices or vectors is identical to the structure of the probability of Equation (2-8). This
is precisely why CPD can be used to decompose the JPT into factor matrices that have a
probabilistic meaning—see Equation (2-16). Here, the rank of the JPT, R, is equal to the
order of the HMM, K.

P = Λ×1 A×2 B×3 C =
K∑
k=1

λkA:,k ◦B:,k ◦C:,k (2-16)

Note that the factor matrices have a probabilistic meaning A = P (yt−1|xt), B = P (yt|xt),
C = P (yt+1|xt), so their columns need to be stochastic (positive values and sum up to one),
resulting in the scaling vector λ being obsolete, which is why in this thesis it is often omitted.

2-4 Summary

This preliminary chapter discussed Hidden Markov Models (HMMs), including extensions to
multivariate and continuous settings. The chapter then discussed Joint Probability Tensors
(JPTs), which are generated through data sequences and describe the probability of observing
multiple consecutive values in data. The JPTs can then be decomposed into factor matrices
using Canonical Polyadic Decomposition (CPD), which is also explained in this chapter.
In Chapter 3, these preliminaries will be used to complete the multivariate HMM learning
method using CPD, which is the core of this thesis.
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Chapter 3

Methods for Learning Hidden Markov
Models

This chapter presents the methods used in this report for learning Hidden Markov Models
(HMMs). It starts by explaining how parts from the previous chapters are used together
to learn univariate HMMs through uncoupled Canonical Polyadic Decomposition (CPD), in
Section 3-1. Then, Section 3-2 speaks on how to couple many univariate problems together
to create a multivariate problem by using a common transition matrix T between all these
problems. Finally, Section 3-3 presents a few considerations to have with these methods,
measures that can be used to define performance, and functions that can be used to describe
the behavior of the methods.

3-1 Univariate HMM learning through uncoupled CPD

To obtain a Hidden Markov Model (HMM) from a univariate data sequence through Canonical
Polyadic Decomposition (CPD), as seen in Chapter 2, three steps (Figure 3-1) are taken:

1. The observational sequence y (time series) is turned into a Joint Probability Tensor
(JPT) P using the indicator function.

2. The JPT P is decomposed into factor matrices A,B,C.

3. The factor matrices A,B,C are turned into the HMM matrices T and O.

Here follows a small reiteration of these steps mathematically, as in the next section, these
ideas will be expanded upon. As explained in Section 2-2, the JPT P can be obtained from
a data sequence y using Equation (2-7) [9]:

mPda,db,dc
≈ α

m−2∑
t=1

IA(yt−1 = oda , yt = odb
, yt+1 = odc).

Master of Science Thesis Jep Brinkmann



16 Methods for Learning Hidden Markov Models

Figure 3-1: A diagram showing the pipeline for applying univariate HMM learning through CPD
to obtain HMM matrices.

Now that mP can be obtained from a data sequence with length m, the tensor can be decom-
posed using CPD. The tensor P represents P (yt−1, yt, yt+1). Hence, as seen in Section 2-3,
using Equation (2-8) and Equation (2-11), the decomposition in a probability setting can be
broken down as follows [7, 17]:

Pda,db,dc
= P (yt−1 = oda , yt = odb

, yt+1 = odc)

=
K∑
k=1

P (yt−1 = oda |xt = sk)︸ ︷︷ ︸
Ada,k

P (yt = odb
|xt = sk)︸ ︷︷ ︸

Bdb,k=Odb,k

P (yt+1 = odc |xt = sk)︸ ︷︷ ︸
Cdc,k

P (xt = sk)︸ ︷︷ ︸
λk

,

P =
K∑
k=1

λkA:,k ◦B:,k ◦C:,k.

It can be noted that when the individual probabilities become conditioned into matrices the
following representations emerge: A = P (yt−1|xt), B = P (yt|xt), C = P (yt+1|xt). According
to [15, 14], these can then be put into terms of the HMM matrices:

A = Odiag(π)TTdiag(Tπ)−1,

B = O,
C = OT.

Note that this means that the tensor P can also be put in terms of these A,B,C matrices
using the notation from Equation (2-12), which allows the following equation to arise:

P = [[A,B,C]] = [[Odiag(π)TTdiag(Tπ)−1,O,OT]]. (3-1)

This can then be used to obtain an estimate of the HMM matrices Ô = B and T̂ = B†C. As
noted in Section 2-1, π̂ can be obtained from T̂, given that the HMM is ergodic. To uncover
the factor matrices given only the JPT, the following minimization problem can be defined:

A,B,C = arg min
A,B,C

||P− [[A,B,C]]||2F

s.t.

A,B,C > 0 (element wise)∑
A:,k = 1,

∑
B:,k = 1,

∑
C:,k = 1, ∀i ∈ [1, ..,K]

(3-2)

Jep Brinkmann Master of Science Thesis



3-1 Univariate HMM learning through uncoupled CPD 17

3-1-1 Alternating Least Squares

A common workhorse for such a minimization scheme, and CPD in general, is Alternating
Least Squares (ALS). ALS generates separate minimization problems for all factor matrices
by fixing all other factor matrices. Meaning for the problem of finding the local optimum for
Â the factor matrices B and C get fixed, after which Â gets calculated using a least squares
approach [20, 21]. This gives rise to the following minimization subproblems:

Â← arg min
Â

||P(1) − Â(C⊙B)T ||2F ,

B̂← arg min
B̂

||P(2) − B̂(C⊙A)T ||2F ,

Ĉ← arg min
Ĉ

||P(3) − Ĉ(B⊙A)T ||2F ,

(3-3)

where P(i) is the i-th unfolding of the tensor P. By iteratively solving these minimization
subproblems and thus alternating between them, ALS aims to minimize the problem as a
whole. These subproblems can be written using a closed-form expression [20, 21]:

Â = P(1)(C⊙B)
(
CTC ⊛ BTB

)†
,

B̂ = P(2)(C⊙A)
(
CTC ⊛ ATA

)†
,

Ĉ = P(3)(B⊙A)
(
BTB ⊛ ATA

)†
,

(3-4)

where ⊙ is the Khatri-Rao product, and ⊛ is the Hadamard product (element-wise multipli-
cation). The full derivation of these update equations can be found in Appendix B-1. Note
that after each update step for the three factor matrices, they are made stochastic using
Equation (3-14), which is discussed later in this chapter. This also completes the constraints
defined in the minimization problem above Equation (3-2).

Through this optimization scheme, the factor matrices A,B,C are uncovered, which can
then be used to obtain the HMM matrices. As seen in Equation (2-9), B = Ô and C = ÔT̂.
This means the emission matrix is found in B, and the transition matrix can be found by
T̂ = B†C.

3-1-2 Sensitivity Issues

CPD aims to obtain factor matrices that give a good reconstruction of the original tensor.
CPD itself does not aim to find good HMM matrices. Because of this, errors or biases
in the JPT give bad estimates for the HMM matrices even when the reconstruction error
between the factor matrices and JPT is small. There are a couple of factors that influence
the ability of CPD to find good estimates of the HMM matrices. A limited number of
samples, causing an incomplete description of the underlying distribution in the JPT. Noise
in the measurements or observations that flattens out the distributions, making them less
characteristic, and effectively increasing the variance of the underlying distribution in the
estimate. High correlation of columns in the factor matrices or underlying emission matrix,
which makes it hard to distinguish between the different emissions, and thus different states.
All of these effects will be discussed separately in the following paragraphs.
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18 Methods for Learning Hidden Markov Models

Number of samples

As mentioned, the true JPT can be constructed through the factor matrices, and thus HMM
matrices as P = [[Odiag(π)TTdiag(Tπ)−1,O,OT]]. It can also be approximated using a data
sequence with length m. A question that then remains is how closely does the approximated
tensor need to be to the true tensor, the calculated one, to retrieve the HMM matrices? Or
what influence does the sample size used to construct the JPT have over the recovery of the
HMM matrices? To reiterate, the formula for sampling the JPT is defined as:

mPda,db,dc
= lim

m→∞
α
m−2∑
t=1

IA(yt−1 = oda , yt = odb
, yt+1 = odc).

As can be observed in the above equation, the accuracy of the JPT is dependent on the
number of samples m. One can imagine that if mP ∈ RD×D×D where D = 10 and m = 100,
there are not enough samples, as mP has 1000 entries but is approximated using only 100
samples. This also shows that as the number of samples increases, the approximated JPT
mP converges to the true JPT ∞P. One can also note that as D increases, the convergence
slows down, meaning that for a larger D, there is an increasing need for more samples. In
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Figure 3-2: A plot of the convergence of mP to ∞P over the number of samples. The plot also
shows different curves for a different number of possible observation values D.

Figure 3-2, one can observe that the error between the approximated JPT and the true JPT
converges to a constant value instead of exactly zero. This means that even though more
samples are introduced, at some point, the approximated JPT does not converge further to
the true underlying JPT.
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3-1 Univariate HMM learning through uncoupled CPD 19

Noise in measurements

Real data is noisy, which has effects on the ability to estimate the underlying distribution.
When estimating a distribution, noise causes the estimate to be flatter than the original
distribution. The distribution of the data becomes:

X ∈ NS(µS , σ2
S)︸ ︷︷ ︸

True distribution

, Y ∈ NN (0, σ2
N )︸ ︷︷ ︸

Noise

, then X + Y ∈ N (µS , σ2
S + σ2

N ).

An example in terms of distributions of the flattening effect that additive noise has on the
signal that results in data can be observed in Figure 3-3. This flattening effect also shows

Figure 3-3: A show of the effect of noise on the capability to estimate the underlying distribution.

up when working with the JPT. As this is also a distribution P (yt−1, yt, yt+1), the JPT gets
more uniform the higher the SNR. This in turn causes the distributions of the emission matrix
P (yt|xt) to be flatter also. Flatter distributions along the emission matrix columns mean fewer
distinct features, leading to more errors in the CPD process. The effect of this flattening on
the signal-to-noise ratio (SNR) is further discussed in Section 3-3-5.

Correlation between emission matrix columns

As mentioned before, both from a CPD and HMM perspective, it is imperative to have
characteristic features in the distributions associated with each state. That is to say, if there
is a large correlation between two columns of the emission matrix, meaning a large similarity
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20 Methods for Learning Hidden Markov Models

in distribution, it becomes hard to uncover. This will often result in more failures to find one
of the underlying distributions of the emission matrix. This means there is also a limitation as
to what HMM matrices can be learned, and thus what the ground truth can be initialized as
when working with synthetic data. The full extent of the effect of correlations in the emission
matrix will be further discussed in Section 3-3-2, and its effects will be shown in Section 4-1-1.

3-1-3 Solution

Up until now, only univariate HMMs and the accompanying decomposition have been dis-
cussed. Meaning, only a single data sequence is considered. As seen in the last couple of
sections, this process is sensitive to biases in the JPT, noise, and high correlations in the
emission matrix. This means that if multivariate HMMs are considered in the current frame-
work, some of the parallel processes will fail. These failures will result in different transition
matrices T(n) for all of the parallel univariate solutions to the multivariate problem. As these
have different permutations, since CPD suffers from permutation ambiguity and different
values due to sensitivities, there is no way to permutation match these parallel processes,
and the errors cannot be averaged out. In multivariate HMMs, the transition matrix T is
common among all N data sequences, but cannot be found by solving N univariate CPD
learning problems. To be able to extend this framework to a multivariate setting, a common
transition matrix T needs to be inferred from all N problems.

3-2 Multivariate HMM learning through Coupled CPD

This section brings the novel method of coupling all separate Hidden Markov Model (HMM)
learning problems together via a common transition matrix T and initial distribution π.
To extend Canonical Polyadic Decomposition (CPD) learning to a multivariate setting for
HMMs, Equation (3-1) needs to be extended for all N data sequences:

P(n) = [[A(n),B(n),C(n)]] = [[O(n)diag(π)TTdiag(Tπ)−1,O(n),O(n)T]], ∀n ∈ [1, . . . , N ].
(3-5)

Here it can be observed that both the transition matrix T and the initial distribution π
are the same for all N data sequences. This results in the following uncoupled optimization
subproblems:

J (n) = ||P(n) − [[A(n),B(n),C(n)]]||2F ∀n ∈ [1, . . . , N ]. (3-6)

To constrain this common transition matrix T and initial distribution π in all subproblems,
the Alternating Least Squares (ALS) update rules found in Equation (3-4) can be extended
using Equation (3-5), to obtain two update steps per factor matrix A(n),B(n),C(n) ∀n ∈
[1, . . . , N ], as follows:
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3-2 Multivariate HMM learning through Coupled CPD 21

A(n) ← P(1)(C(n) ⊙B(n))
[(

(C(n))TC(n))
)
⊛

(
(B(n))TB(n)

)]†

A(n) ← ψ
(
A(n) + α ·B(n)diag(π)TTdiag(Tπ)−1

)

B(n) ← P(2)(C(n) ⊙A(n))
[(

(C(n))TC(n)
)
⊛

(
(A(n))TA(n)

)]†

B(n) ← ψ
(
B(n)

)

C(n) ← P(3)(B(n) ⊙A(n))
[(

(B(n))TB(n)
)
⊛

(
(A(n))TA(n)

)]†

C(n) ← ψ
(
C(n) + α ·B(n)T

)

(3-7)

where α > 0 is a scaling factor that decides how much the update equations rely on the ALS
update rules or the HMM constraints. Also, note that the factor matrices B(n) do not depend
on T or π, causing them not to have a constraint part in the constraint part of the update
rules. Just like with the uncoupled CPD update rules, after each calculation, these A,B,C
matrices are made sure to be stochastic using ψ(·) from Equation (3-14). These coupled
update equations then becomes:

arg min
{A(n),B(n),C(n)}N

n=1

N∑
n=1
||P(n) − [[A(n),B(n),C(n)]]||2F (3-8)

s.t.

A(n),B(n),C(n) > 0 (elementwise)
K∑
k=1

A(n)(:, k) = 1,
K∑
k=1

B(n)(:, k) = 1,
K∑
k=1

C(n)(:, k) = 1

A(n) = B(n)diag(π)TTdiag(Tπ)−1

C(n) = B(n)T

T = 1
N

N∑
n=1

(B(n))†C(n)

πTT = πT

For the full derivation, of the minimization problem, as well as a show that the second update
steps enfore the HMM constraints for A and C, please refer to Appendix B-2. T is found
by alternating Equation (3-7) and an averaging of all transition matrices T(n) which are a
solution to T(n) = (B(n))†C(n), ∀n ∈ [1, . . . , N ]. These transition matrices also need to be
permutation matched (Section 3-3-4) before averaging:

T̂ = 1
N

N∑
n=1

(B(n))†C(n). (3-9)

By alternating between solving the extended ALS update rules and finding the common
transition matrix T̂, the algorithm finds the estimated HMM matrices along a stable path.
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22 Methods for Learning Hidden Markov Models

3-2-1 Algorithm

To get a more practical description of Coupled CPD, Algorithm 1 presents the Coupled CPD
algorithm in pseudo-code. It intakes N joint probability tensors (JPTs), and the variables
K,D,N . It returns the transition matrix T of the underlying HMM as well as its initial
distribution π and all emission matrices O(n).

Algorithm 1: Coupled CPD-ALS for Multivariate HMM learning
Input : P(n) ∈ RD×D×D

+ ∀n ∈ [1, ..., N ], K ∈ Z, D ∈ Z, N ∈ Z
Output : T ∈ RK×K

+ , O(n) = B(n) ∈ RD×K
+ , π ∈ RK+

Options: α > 0, ρ ∈ [0, 1], maxIter, tolerance, ϵ
1 Initialization
2 Init A(n),B(n),C(n) ∀n = [1, ..., N ] as ψ(1D×K + ϵ · U[0,1]);
3 Init T as ψ(IK + ϵ · U[0,1]), compute π using Equation (2-1);
4 Compute matricizations P(n)

(1) , P(n)
(2) , P(n)

(3) for each P(n) along modes 1, 2, 3;

5 Main Loop
6 for iter = 1 to maxIter do
7 Tprev ← T;
8 for n = 1 to N do
9 A(n),B(n),C(n) ← Equation (3-7);

10 T(1) ← (B(1))†C(1);
11 for n = 2 to N do
12 T(n) ← (B(n))†C(n);
13 Πbest ← findPermutation(T(1),T(n));
14 T(n) ← ΠbestT(n)ΠT

best;
15 A(n) ← A(n)ΠT

best, B(n) ← B(n)ΠT
best, C(n) ← C(n)ΠT

best;
16 T← ρ ·Tprev + 1−ρ

N

∑N
n=1 T(n);

17 Compute π using Equation (2-1);
18 if ||T−Tprev||F < tolerance then
19 Break loop;

3-3 Considerations, relevant measures and functions

3-3-1 Influence of sampling rate

When fitting a Hidden Markov Model (HMM) to real data, the transition matrix T depends
on the sampling rate fs. As the sampling rate decreases, the transition probability of staying
in the same state becomes smaller, and the probability of transitioning to a different state
becomes higher. This means the transition matrix becomes more uniformly distributed. As
the sampling rate increases, the probability of staying in the same state over time becomes
larger, and the probability of transitioning to a different state becomes smaller. This relates
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to the transition matrix approaching an identity matrix:

lim
fs→0

T(fs) = 1
K

1K1TK ,

lim
fs→∞

T(fs) = IK ,
(3-10)

where 1K is a column vector of length K filled with ones, and IK is an identity matrix of size
K×K. It could be argued that if the sampling rate is too low, the HMM does not capture the
probabilistic behavior. As can be seen in Figure 3-4, even though State 3 was active roughly
halfway through the state sequence, the low sampling rate caused this behavior to be missed.

Figure 3-4: A diagram showing the influence of the sampling rate on the probability of transi-
tioning to the same state.

3-3-2 Emission correlation measure

Canonical Polyadic Decomposition (CPD) needs the columns of the emission matrix to differ
from each other to obtain good results. Of course, this includes that the matrices need to
have a Krushkal rank of at least K, but there is also a need for distinct features in each of the
columns, making it a more general requirement. This is also true for an HMM; if two states
have the same emission columns and thus distributions, they might as well be the same state,
as the difference in distribution is the only distinctive feature that makes states differ from
each other. The question then becomes how similar the columns can be for the CPD to still
perform properly. To check how similar two column vectors are, a correlation measure can
be used:

corr(X,Y ) = cov(X,Y )
σXσY

= E[(X − µX)(Y − µY )]
σXσY

. (3-11)

For the emission matrix O ∈ RD×K the correlation between the columns or distributions can
be compactly expressed as corr(O)ij = corr(O:,i,O:,j), which results in a K ×K correlation
matrix corr(O). Two examples of emission matrices and their correlation matrix can be
found in Figure 3-5. Then, using this matrix, a single value can be extracted to show how
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(a) Emission matrix initialized without mean
offset and its correlation matrix.
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(b) Emission matrix initialized with mean offset
and its correlation matrix.

Figure 3-5: An example of a difference between induced offset in the emission distribution means
(in Section 4-1-1 named offset) and no such offset (in Section 4-1-1 named random), with an
effect on the respective correlation matrices and correlation numbers.

uncorrelated or independent the columns are from each other by summing up all elements of
the correlation matrix. To ensure independence of this number from the number of states, it
can be divided by K2:

ϕ(O) =
∑K
i,j corr(O)ij

K2 . (3-12)

Here corr(O) has a theoretical maximum of K2 if all columns of O are the same, giving ϕ(O)
a theoretical maximum of 1. Since all entries of O will be positive, no anticorrelation can
take place, making the theoretical minimum of both corr(O) and ϕ(O) equal to 0.

3-3-3 Error metric for HMMs

To measure how good an estimation the found HMM matrices are to the original/ground
truth, an error metric needs to be introduced. The error is measured between the transition
matrices and the emission matrix. For the multivariate case, it is a measure between all
emission matrices; however, as the score should not become larger for the number of time series
or emission matrices, which will make error comparisons between different N ’s impossible,
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the cost for the emission matrices is averaged over N :

C(T,O, T̂, Ô) = ||T− T̂||F
||T||F

+ 1
N

N∑
n=1

||O(n) − Ô(n)||F
||O(n)||F

. (3-13)

As the initial distribution π can be calculated through the transition matrix T, given that
the HMM is ergodic, it is not included in the error metric.

3-3-4 Scaling and Permutation Ambiguity

Scaling Ambiguity

CPD and other decomposition methods generally suffer from both scaling and permutation
ambiguity. Scaling ambiguity is easily solved, as all columns of the HMM matrices are known
to be stochastic, meaning all entries are positive and the elements of the columns sum up
to one, which can be enforced on the processed factor matrices after the fact. The column
stochasticity should hold for the CPD factor matrices A,B,C, the transition matrix T, the
emission matrices O(n), and the initial distribution π. To enforce column stochasticity, the
following can be used:

ψ(M:,k) = |M:,k|∑
|M:,k|

, ∀ k ∈ {1, . . . ,K}. (3-14)

Permutation Ambiguity

Permutation ambiguity, however, can only be solved concerning a ground truth or some
arbitrary permutation, and even then, it is a difficult problem. When working with real
data, the order of the states and thus permutation ambiguity is not important concerning
a ground truth, as there is none. It is important that the permutation of the transition
matrix and emission matrix match, as well as the permutations between emission matrices in
the multivariate case. When working with synthetic data, a permutation comparison can be
made between the ground-truth HMM matrices T,O and the estimated matrices T̂, Ô. If the
estimated matrices are a close match (still having permutation ambiguity) to the ground truth,
the permutation can be removed by a postprocessing algorithm. When the error between the
estimates and the ground truth matrices is large, it is hard to find a matching permutation
for the estimates. A flowchart of the permutation mismatch can be observed in Figure 3-6.
For multivariate HMMs with N time sequences, there will be N Joint Probability Tensors
(JPTs) and, thus, N emission matrices. When applying CPD to obtain the factor matrices
for each JPT, there is no guarantee that these factor matrices have the same permutation.
As each emission matrix for all N time sequences will differ, so will all three of the associated
factor matrices; they should, however, have a common underlying transition matrix T. When
all factor matrices suffer from permutation ambiguity between different N JPTs, the different
found T matrices also suffer from permutation ambiguity concerning each other. As all
transition matrices are supposed to be the same, however, the permutation ambiguity can be
removed by comparing these. This does mean that the transition matrices T(n) should be
similar enough (still suffering from permutation ambiguity).
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Figure 3-6: A diagram that shows using known HMM matrices (T,O) to create synthetic
data y. This synthetic data is then used to create a JPT, which is then used to estimate the
HMM matrices. The permutation ambiguity in these estimates needs to be removed to relate the
estimate to known matrices through an error metric.

To remove the permutation ambiguity between the transition matrices T(n), first, a reference
is needed. With synthetic data, this can be the ground truth, and with real data, this can be
the transition matrix of the first data sequence T(1). Then the most obvious algorithm is to
check all possible permutations of matrix TB through permutation matrix π and find the best
fit to matrix TA by checking the difference D = ||TA − πTBπT ||F . Then the permutation
that results in the smallest D is the best. This scheme requires lots of checks as the number
of possible permutations is K!, and thus is very expensive for large K. To combat this, one
could implement a heuristic algorithm. In this report, another approach is applied first.

This initial approach consists of comparing the diagonal entries of the two transition matrices
TA and TB. This is done by looping over all K diagonal entries of TB and finding the best
match in diagonal entries of TA. If no two best matches are the same, a unique permutation
is found, which can then be said to be the best match. This is possible because the transition
matrices are known to be close to identity, making the diagonal entries the most influential.
This initial approach is not guaranteed to find a solution, and if it fails, a brute force method
is still applied. This combination results in Algorithm 2.

3-3-5 Signal-to-Noise Ratio (SNR)

The Signal-to-Noise Ratio (SNR) is a commonly used descriptor for how noisy data is, and
is given by:

SNR = E(S2)
E(N2) ,

where S is the signal and N is the noise. Through the formula for variance, the second
uncentered moments above can be found through the formula for the second centered moment,
the variance:

V ar(X) = E(X2)− (E(X))2 → E(X2) = V ar(X) + (E(X))2.

As the noise is zero-mean white noise, this results in the following SNR:

SNR = σ2
S + µ2

S

σ2
N

.

Note that for the creation of synthetic data, the SNR can be controlled by controlling the
variance of the noise σ2

N . Note also that the mean of the signal has an effect on the SNR,
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but the values associated with the bins of the emission matrix are arbitrary. Therefore, when
working with continuous data, which is binned for discrete HMMs (dHMMS), the data needs
to be normalized first between −1 and 1, keeping the signal mean at 0. This normalization
also needs to be taken into account when calculating the SNR. As the mean of the signal
becomes zero, the SNR becomes purely a measure between the variance of the signal to the
variance of the noise.

3-3-6 Initialization of T, A(n), B(n), C(n)

For the coupled CPD for multivariate HMM learning, the following matrices have to be ini-
tialized: T,A(n),B(n),C(n), ∀n ∈ [1, . . . , N ]. It is known that the transition matrix usually
shows a similar structure to an identity matrix with some noise added. This means the tran-
sition matrix can be initialized as such at the start of the algorithm. The factor matrices,
however, have a structure that depends on the distributions of the emissions, which are not
known and therefore cannot be given prior information. An assumption could be made about
the distributions being Gaussian, but even then, it is not known what the mean and standard
deviation are associated with what state. Therefore, the factor matrices are initialized uni-
formly, with noise added. The noise added to both the transition matrix and factor matrices
is important, as fully uniform and identity matrices will result in no convergence at all:

Tinit = ψ(IK + ϵ · U[0,1]), {A(n),B(n),C(n)}Nn=1 = ψ(1D×K + ϵ · U[0,1]).

3-3-7 Computational complexity

In this section, the largest consumers of computational cost with regard to this method are
discussed. Some other parts of the process are ignored as their computational cost is negligible
in comparison to the rest of the process, such as:

• The extended part of the Alternating Least Squares (ALS) update equations;

• Making the factor matrices stochastic every iteration;

• Calculating the HMM matrices T(n),O(n),π(n) given the factor matrices A(n),B(n),C(n);

• Permuting the factor matrices and transition matrix, given that the optimal permutation
has already been found;

• Averaging the transition matrices T̂(n) to obtain T̂;

• Updating the transition matrix each iteration.

JPT creation

The creation of JPTs depends on the number of samples M and the number of data sequences
N . Both of which have a linear effect on the computational cost. Meaning that JPT creation
has a computational complexity of O(NM).
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Removal of Permutation Ambiguity

Permutation ambiguity occurs in the columns of the factor matrices A,B,C (so also in
the emission matrix), and in the rows and columns of the transition matrix T. As the
initial distribution is calculated from the transition matrix T, by assuming ergodicity, its
permutation ambiguity can be ignored. All matrices A,B,C and T suffer from the same
permutation ambiguity, so a single permutation needs to be found. As the factor matrices of
different data sequences/JPTs cannot be compared with each other, as they can be completely
different, the permutation removal needs to be applied to the transition matrices. This means
that they need to be sufficiently similar.
The permutation cost can be checked by checking the Frobenius norm of the difference between
the transition matrix A and the permuted transition matrix B. If the solution is brute forced,
the computational complexity is O(K!). One can apply a trick where the diagonal entries
(dominant entries in a transition matrix) of one transition matrix A, find a best match in
the diagonal entries of transition matrix B. This has a computational complexity of O(K),
but has a way lower computational cost per entry concerning brute forcing, as that requires
expensive matrix calculations. The extra time cost of brute forcing is described here with
c ≫ 1. This trick is not always guaranteed to find a solution; however, in which case, the
calculation is still brute forced. This results in a minimal computational complexity of O(K)
and a maximum of O(K + (c ·K)!). The full algorithm of removing permutation ambiguity
is found in Appendix A.

Coupled CPD

When decomposing a JPT, which is D×D×D with rank K, it has a computational complexity
of O(D3K). When running this for all sequences, the complexity increases linearly with N ,
resulting in O(ND3K). The question then is, does the coupling induce extra computational
cost? For the extended ALS update rules, the HMM soft constraint part introduces negligible
extra computation time. However, before calculating the average of the transition matrices,
the permutation needs to be removed for N − 1 transition matrices, and as discussed before,
this is quite expensive, also given that this is done each iteration. This finally results in
O(ND3K+K(N − 1)) as a minimum and O(ND3K+ (K+ (c ·K)!)(N − 1)) as a maximum.

3-4 Summary

This chapter outlines a method for learning Hidden Markov Models (HMMs) using Canonical
Polyadic Decomposition (CPD), focusing on transitioning from univariate to multivariate set-
tings. Initially, univariate HMMs are learned through CPD, and then these are extended to
multivariate problems by coupling them with a common transition matrix. The Alternating
Least Squares (ALS) method is used for minimization, with enhancements to address permu-
tation and scaling ambiguities. Performance metrics are discussed as well as computational
complexities, highlighting permutation ambiguity as a significant computational cost.
Chapter 4 presents the simulation results of the proposed method along with a discussion
based on the performance metrics introduced in this chapter. The algorithm is compared to
both Baum-Welch and Uncoupled CPD.
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Chapter 4

Simulation Results and Discussion

This chapter explores the behavior of the proposed method, multivariate Hidden Markov
Model (HMM) learning through Coupled Canonical Polyadic Decomposition (CPD). The
method is tested with various performance variables and compared to the current standard,
the Baum-Welch algorithm.

Tests on discrete synthetic data can be found in Section 4-1, where data is generated from
a discrete HMM (dHMM). Different options for ground truth HMMs are compared based
on different distributions of the transition matrix and correlations in the distributions of the
mission matrices, and the response of the proposed method over these is analyzed. The per-
formance of the algorithm is also evaluated based on a varying number of states K, emissions
D, data sequences N , and samples m. The goal is to determine the optimal operating ranges
for the HMM parameters with respect to this algorithm and to identify situations where it
might be more advantageous to revert to the Baum-Welch algorithm. Additionally, the al-
gorithm’s performance is assessed concerning the parameters α and ρ. This analysis aims to
reveal the effects of these variables on linking the separate data sequences through a common
transition matrix T. Lastly, all parameters are chosen favorably, and the performance of
Baum-Welch, Uncoupled CPD, and Coupled CPD are compared with respect to HMM cost
and computation time.

Simulations are also performed in continuous synthetic data generated from a continuous
HMM (cHMM), which enables the addition of noise to the generated sequence data. This
allows the observation of the effect of noise on the performance of the proposed method, as
discussed in Section 4-2.

Finally, the method is applied to real data, namely sleep stage data, which can be found
in Section 4-3. Here the goal is to learn HMM matrices from the data and use the Viterbi
algorithm to find the most likely path of states that lie underneath the observed data. This
path is then compared with the annotations of sleep stages that come with the data and is
done by experts to verify the accuracy of the proposed method.
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4-1 Discrete synthetic data

Discrete synthetic data refers to data generated by sampling from a discrete Hidden Markov
Model (dHMM). Initially, a state is chosen based on the initial distribution π. For each time
step, a new state K is selected using the transition matrix T. An emission ot ∈ [1, . . . , D] is
then determined for each data sequence n ∈ [1, . . . , N ], based on a column from the emission
matrix O(n)

:,k that corresponds to the previously mentioned state K and data sequence n.
This process results in N strings of pre-binned data, which consist of integers ranging from
[1, . . . , D], as illustrated in Figure 4-1.

20 40 60 80 100 120 140 160 180 200

10

20

30
Sequence 1

20 40 60 80 100 120 140 160 180 200

10

20

30
Sequence 2

20 40 60 80 100 120 140 160 180 200

10

20

30
Sequence 3

20 40 60 80 100 120 140 160 180 200

State 1 State 2 State 3 State 4

Figure 4-1: An example of discrete data from a dHMM for K = 4, D = 30, N = 3, and
m = 200. The underlying active states and the data sequences that are a result of the emissions
of those states can be observed.

This section aims to analyze the behavior of the proposed method in relation to discrete data.
To achieve this, the methods are tested with varying numbers of states K, emissions D, and
observed sequences N . Additionally, changes in the underlying ground truth HMM matrices
T and O(n) are examined, as well as the hyperparameters α and ρ. Finally, the impact of
similarity or correlation in the distributions of states O:,k for all k ∈ [1, . . . ,K] is discussed.

4-1-1 Variation in ground truth HMM matrices

To assess the performance of Coupled Canonical Polyadic Decomposition (CPD), variations
in the ground truth matrices are analyzed. This indicates the types of HMMs for which
Coupled CPD is effective in uncovering, as well as those for which it is not.
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Transition matrix

For simulation purposes and synthetic data, a transition matrix is used that is based on an
identity matrix in combination with noise. Hence, T will be initialized as follows:

T = ψ
(
IK + ϵ U[0,1]

)
, (4-1)

where IK is an identity matrix of size K × K, ϵ is a small number, and U[0,1] is a uniform
distribution with bounds 0 and 1.
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10-3
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101

Transition matrix Contrast

Uncoupled CPD

Coupled CPD

Figure 4-2: A plot showing the performance of HMM estimation over the variable ϵ, which
controls the contrast in the ground truth transition matrix. In this plot, the following variables
are fixed: K = 4, D = 30, N = 5, α = 0.1, ρ = 0.85,m = 105. Each data point is the mean of
10 runs, and shows the standard deviation over those runs through the bars on each data point.

In Figure 4-2, the error metric of learning HMMs can be observed over ϵ, a variable that
controls the contrast of probabilities in the ground truth transition matrix. Each data point
in the plot is an average of 5 different runs, and all runs have different initializations for
the ground truth matrices. It can be observed that the HMM learning operates best when
ϵ ≈ [0.1, . . . , 0.2]. This can be explained, from a CPD perspective, by the fact that if ϵ is
very small, the identity part becomes dominant, leaving little to no difference in the diagonal
entries of T. This creates difficulty for the algorithm to remove permutation ambiguity,
especially during convergence. From an HMM perspective, if the diagonals of the transition
matrix T become more dominant, there is a smaller chance of transferring to a different state.
When ϵ < 10−5 with m = 105, it might even occur that a particular state is never entered in
the whole data sequence, making it hard to learn the transition matrix T.
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When ϵ is relatively large, ϵ ≈ 1, the transition matrix becomes close to being uniformly dis-
tributed, meaning a clear distinct structure disappears. This also results in the A ∼ P (yt−1|xt)
and C ∼ P (yt+1|xt) factor matrices, which are based on the transition matrix T and emission
matrix O, to have flatter distributions along the columns. This removes distinct features
in the distribution of the previous and next observation, given the current state, making it
harder for the algorithm to capture a clear relationship with the probability of the current
observation given the current state.

Emission matrix - distribution correlation influence

The emission matrices used as ground truth have Gaussian distributions along the columns, as
an example. In reality, any Probability Mass Function (PMF) could be used as a distribution,
which can be learned as long as its features are distinct enough from PMFs of different states
within the same data sequence. To show the performance of Coupled CPD for variations in
the emission matrices, in this section, the correlation between these emissions will be taken
into account, like in Section 3-3-2.

When two emissions from two states in an HMM are identical, there is no way to distinguish
those two states, because the emission probability distribution is the only characterizing factor
for HMM states. Similarly, CPD has the Krushkal-rank condition for uniqueness, stating that
two columns of the factor matrices cannot be the same; they need to be linearly independent
to find a unique solution. Linear independence is a strict constraint, as any small perturbation
of one of the two similar vectors can cause them to be independent of each other. In CPD
HMM learning, however, it becomes apparent that small differences between columns can still
return bad results/runs. This means there is a need for a more general or loose constraint.
Because of this, this section looks at the correlation between the different columns in emission
matrices, and thus at similarities between distributions of different states. The main goal is
to observe how this correlation in the emission distribution of ground truth HMM matrices
affects the algorithm’s ability to accurately estimate these matrices.

In Figure 4-3, the HMM cost defined in Equation (3-13), over the average correlation between
columns of emission matrices of all N sequences, or Joint Probability Tensors (JPTs), can
be observed. There are four data clouds plotted. Coupled CPD and Uncoupled CPD, and
ground truth emission matrices initialized with random means for the normal distributions
(random), and initialized with an offset (offset) for the mean of each distribution.

Note that both the Uncoupled method and the Coupled method respond better to an offset
in the mean of the distributions. This is because it makes the distributions of each state
more easily distinguishable. The Coupled method, however, outperforms the Uncoupled
method. The error of Coupled CPD is generally lower for the same average correlation
between distributions.

4-1-2 Performance over K, D, N and m

This section tests the performance of a multivariate Baum-Welch algorithm [24, 25, 26] as a
reference and literature standard, of an Uncoupled CPD method as described in Section 3-1,
and the Coupled CPD method, which is the novel approach of this report. The performance
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Figure 4-3: A scatterplot of the HMM cost plotted over the correlation between columns of
O averaged over all N = 5 sequences. Each scatter point is a separate run of which there are
150 per cluster. Four clusters can be observed for Uncoupled and Coupled CPD learning, with
induced offsets in the mean of the distributions (offset) and no such induced offset (random).
Other parameters for this plot include: K = 4, D = 30,m = 105, α = 0.1, ρ = 0.85.

of these algorithms is tested along four important variables for HMMs: the number of states
of the ground truth K; the number of emissions D used by Uncoupled CPD and Coupled
CPD; the number of sequences N used in the multivariate dataset; and the number of samples
m in each data sequence.

Number of states K

The number of states in HMMs affects not only the computation time required for learning
algorithms but also the accuracy of the model in relation to the ground truth. From the
perspective of Coupled CPD, an increase in the number of states leads to a rise in the number
of columns in the factor matrices as well as the rank of the decomposed tensor. A higher rank
in the tensor increases the likelihood of overfitting to noise and can result in computational
instability, as noted in [27].

When the number of emissions remains constant while the number of states increases, from an
HMM perspective, it becomes more challenging to differentiate between the emissions associ-
ated with those states. Although the emission matrix gains additional columns, the number of
rows remains unchanged. Since all values in the matrix are positive, this condition heightens
the correlation between the columns, as they are more likely to overlap. Consequently, this
leads to a higher reconstruction error due to the lack of distinctiveness.

The impact of this issue is reduced if the emissions for different states are sufficiently dis-
tinguishable. For Gaussian distributions, this implies having a low variance (σ2), indicating
distinct peaks, and sufficiently different means (µ) for the emissions of different states. Addi-
tionally, increasing the number of emissions can help accommodate a higher number of states,
thereby enhancing the discretization resolution of the data sequences.
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In summary, as the number of states increases, the error associated with HMMs is expected
to rise as well. Furthermore, the computation time is anticipated to increase significantly
for Coupled CPD as the number of states grows, primarily due to the complexity of the
permutation ambiguity removal algorithm, which scales with K!.
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Figure 4-4: A plot that shows the HMM error (left) and time cost (right) when the numbers of
states increase. Note that each point on this plot uses a different HMM, and the runs are averaged
over 20 runs. Also, the standard deviation can be observed through the bars at each point, such
that 66% of occurrences fall within the bars, without regard for skewness (see Figure C-2 for a
boxplot of the same data for more exact statistical details). The following parameters are used:
D = 30, N = 5,m = 105, α = 0.05, ρ = 0.85.

Cost plot - Figure 4-4 - The HMM error can be observed for the Baum-Welch algorithm,
Uncoupled CPD, and Coupled CPD. It can be seen that the Baum-Welch increases in error
from K = 2 to K = 5 after which it decreases. From the box plot, Figure C-2, the variance
can be observed to take a jump at 4 states, after which it slowly decreases.

Uncoupled CPD can be seen to increase in HMM error as the number of states grows, which
is due to an increase in distributions without increasing the discretization resolution (number
of emissions D). When looking at the box plot, Figure C-2, One can observe something
common, Uncoupled CPD can occasionally outperform the other methods, but is not stable
enough to do so consistently.

Coupled CPD seems to vary significantly in standard deviation and average cost; however,
due to the plot being log scale, it is on par with variations in the other two methods. The
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error can, however, be observed to be smaller than for the other two methods, which is due to
a coupling of all data sequences through a common transition matrix. This constraint keeps
the relationship between the factor matrices A = P (yt−1|xt),B = P (yt|xt),C = P (yt+1|xt)
as they should be, whilst, in Baum-Welch and Uncoupled CPD, these are allowed to vary or
be influenced by the underlying cost function manifold. From the box plot, also quite a few
outliers can be noted, which (when compared to the other box plots) is more than usual, and
can be attributed to only having 20 runs to average on.

Time plot - Figure 4-4 - With the number of emissions D and the sequence length m
staying constant, so can the calculation time of the JPTs be observed to stay constant. For
the calculation of a JPT, the number of states in the underlying distribution has no influence.

For Baum-Welch, on the other hand, the calculation time can be observed to increase as
the number of states does; this increase can be seen to be very predictable, as the standard
deviation of this time cost is very small.

For Uncoupled CPD, the same can be observed as for Baum-Welch, with the exception that
the method is nearly an order of magnitude faster.

The Coupled CPD method, however, increases enormously in calculation time. This was
already mentioned in Section 3-3-7 and is due to the permutation matching algorithm, which
has a O(K!) influence on the calculation time. It will be advised to use a different method to
solve the permutation ambiguity problem, as by all other measures, Coupled CPD generally
outperforms the other two methods in calculation time due to its fast convergence.

Due to low standard deviations for all methods regarding calculation time, the box plot in
Figure C-2 tells the same story.

Summary - Coupled CPD can be observed to generally outperform both other methods
concerning the HMM cost. For the time cost, Coupled CPD is costly for a large number of
states due to the permutation ambiguity removal algorithm, and it is advised to use another
algorithm (heuristic) instead.

Number of possible emissions D

An increase in the number of possible emissions, and thus the (value) discretization resolution
of the data, can be associated with more accurately describing the data. One would expect
the reconstruction cost to go down, and of course calculation time to go up. However, when
considering a JPT, the number of samples m must also increase as the number of possible
emissions D does. The number of samples has an important influence on how accurately the
data can describe the true underlying distribution. Therefore, just increasing D is meaning-
less. In this subsection, m = 20 · D3, such that it scales with the dimensions of the JPTs.
The calculation time is expected to increase with the number of emissions as it has a O(D3)
influence on computational complexity. Note that Baum-Welch is not included as it is a
multivariate continuous method, and will therefore not be influenced by D.

Cost plot - Figure 4-5 - The cost of Uncoupled CPD can be observed to remain relatively
constant in mean with a large standard deviation, suggesting large variations in the cost.
This is also confirmed by the box plot Figure C-3, where the median can be observed to be
rather stationary, but the variations are significant.
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Figure 4-5: A plot that shows the HMM error (circles) and time cost (triangles) when the number
of possible emissions increases. Each data point is the mean of 20 runs and shows the standard
deviation of this average through the bars attached to each point. The following parameters
K = 4, N = 5, α = 0.05, ρ = 0.85 are used in this plot. As the number of emissions D increases,
so does m need to increase to avoid numerical instability, as such m = 20 ·D3.

Coupled CPD also seems to vary a lot in both mean and standard deviation. However, when
looking at the box plot, Figure C-3, it can be observed that this behavior is due to a few large
outliers. The non-outliers show a convergence of the HMM error as D increases. Also, note
again that, as this plot is on a log scale, the mean and standard deviation for Coupled CPD
intuitively appear more extreme than those of Uncoupled CPD, which is not the case.

Time plot - Figure 4-5 - The time duration for both Uncoupled and Coupled CPD
increases as D increases, as expected. The fact that Coupled CPD has a smaller calculation
time than Uncoupled CPD can be attributed to fewer iterations until convergence, not to less
time per iteration.

Summary - Coupled CPD can be observed to respond better to an increase in D than
Uncoupled CPD when it comes to HMM cost (except for a few outliers) and calculation time.
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Number of data sequences N

An increase in the number of data sequences, and thus the number of JPTs, has a linear
effect on both the time it takes to create the JPT and the time it takes to run the Coupled
CPD scheme. For the creation of the JPT, the computational complexity was expected to
be O(Nm), which showcases the linear dependence. For both the update rules of Uncoupled
CPD and Coupled CPD, N is expected to have a linearly increasing effect. However, on
Coupled CPD, N also affects the permutation matching algorithm, which is computationally
expensive, because of this, it is expected to scale worse on calculation time.
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Figure 4-6: A plot that shows the HMM error (circles) and time cost (triangles) when the number
of data sequences, and thus the number of JPTs, increases. Each data point is an average of
20 runs, with the standard deviation being represented by the bars.The following parameters are
used K = 4, D = 30,m = 105, α = 0.05, ρ = 0.85.

Cost plot - Figure 4-6 - Baum-Welch, Uncoupled CPD, and Coupled CPD can all be
observed to remain nearly unaffected by an increase of N . Their means fluctuate, and Baum-
Welch and Uncoupled CPD have large standard deviations. When observing the box plot,
Figure C-4, the same story can be seen: N has minimal to no effect on the HMM cost. It
would be preferable to observe the performance of larger N , in the 102 − 104 range, but due
to time constraints in this work, that is not available.

Time plot - Figure 4-6 - The time complexity of Baum-Welch looks to be constant, but
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when zoomed in it can be observed that there is a slight increase in calculation time as N
increases. This is because m is relatively large for Baum-Welch, causing the forward-backward
to have a large influence on the time cost making the influence of N very small in comparison.
Note that the mean of Baum-Welch for N = 2 and N = 50 differ about 50[s] nonetheless.
Uncoupled CPD and the creation of the JPTs increase with N , but not as fast as Coupled
CPD. This again can be attributed to the slow permutation matching algorithm, which grows
with O(N − 1) with regard to N . From Figure C-4, one can note that for the N = 35, 50,
the non-outlier time cost varies significantly, and that Coupled CPD is expected to surpass
Baum-Welch and Uncoupled CPD in calculation time at round N = 100 to N = 150 when
looking at the median.

Summary - Whilst Coupled CPD still outperforms the other methods, it can be observed
to increase in calculation time faster than the other methods when N increases. Therefore,
it is expected to be less time efficient than Baum-Welch and Uncoupled CPD for N > 130.

Number of samples m

An increase in samples makes the JPT a more accurate description of the underlying dis-
tribution. Noise cannot completely be filtered out by sampling more, but biases introduced
by chance from noise or the underlying distribution will diminish as the number of samples
grows. The more the underlying distribution is accurately described, the better the algorithms
are capable of estimating the original HMM matrices. An increase in samples also means an
increase in calculation time for the creation of the JPT. If all other variables remain the same,
number of states and emissions, etc, the Uncoupled CPD or Coupled CPD should not have a
calculation time increase, as it is the values of the JPT that change, but not the dimensions
or rank of the tensor.

Cost plot - The cost of the Baum-Welch algorithm remains near-constant, with some
variations in the cost. Baum-Welch has the benefit over CPD methods in that it performs
rather well for a low number of samples. The HMM error can be seen to outperform Uncoupled
CPD up to around m = 105, and Coupled CPD until m = 104.

Uncoupled CPD’s HMM error converges and flattens out around m = 105, suggesting that
without HMM constraints the underlying distribution in the factor matrices A,B,C cannot
be approximated more accurately after that. Note that with an increase in D, this is expected
to improve. Figure C-5 also interestingly shows that Uncoupled CPD can occasionally out-
perform Coupled CPD when m is large, the median however can been seen to be significantly
higher than that of Coupled CPD, again hinting at the instability of Uncoupled CPD, and
the need for HMM constraints.

Coupled CPD can be seen to outperform both other methods in terms of cost for m > 104.
The error converges faster and becomes nearly an order of magnitude smaller than Baum-
Welch’s error as m increases. The standard deviation of the error also diminishes as m
increases. This may not appear to be the case as the error bars are visually large around
m = 105; however, this is due to the plot being in log scale. The standard deviation becomes
smaller closer to m = 107 since more samples create a more accurate description of the true
underlying distribution, removing ambiguity due to small samples. Figure C-5 supports these
statements but also shows the flattening of the HMM error convergence for large m. This
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Figure 4-7: A plot of the HMM recovery error and the associated time cost, over the number
of samples m for HMM learning and JPT creation. Each data-point in the plot along m is the
mean of 20 runs, and the error bars on each data-point show the standard deviation of those runs.
Note that each run has a random true underlying multivariate HMM and is randomly initialized;
if a prior were given, the standard deviation for these methods would be smaller. The plot uses
the following parameters K = 4, D = 30, N = 5, α = 0.1, ρ = 0.85.

is consistent with the tensor convergence plot in Figure 3-2. This suggests that with more
accurate approximations of the true underlying JPT, Coupled CPD could perform better.

Time plot - The number of samples has a large influence on the calculation time for creating
JPTs, and for Baum-Welch. The JPT creation through an indicator function can be reasoned
to be linearly dependent on the number of samples in terms of calculation time. Baum-Welch
employs a forward-backward pass for each iteration, which increases calculation time as the
number of samples increases. Note that for Baum-Welch, the increased calculation time, but
constant error, suggests that increasing the number of samples for this method is obsolete or
even has a negative effect.

Uncoupled CPD and Coupled CPD remain nearly constant in calculation time as the number
of samples increases. This is because the number of samples only influences the accuracy of
the values inside the JPT, it does not change anything about the dimensions of the tensor
RD×D×D, the number of tensors to consider N , or the underlying rank K. Coupled CPD can
be observed to slightly outperform Uncoupled CPD in terms of calculation time. This is due
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to the faster convergence. The iterations of Coupled CPD individually take longer than the
ones from Uncoupled CPD due to extra overhead from the removal of permutation ambiguity.

4-1-3 Performance over α and ρ

The variables α and ρ are hyperparameters of the Coupled CPD algorithm. α > 0 dictates
how much the update equations rely on the ALS part or the HMM common T part. ρ ∈ [0, 1]
dictates how much the updated transition matrix T relies on the previous transition matrix
Tprev or on the average of the found transition matrices from all N coupled subproblems. ρ
is introduces as the transition matrix T had a tendency to oscillate in convergence.

(a) Surface plot (b) Heatmap

Figure 4-8: Performance of the Coupled algorithm over α, ρ for K = 4, D = 30, N = 5,m = 105.
This cost manifold is sampled from 21× 13 points, which are all averaged over 10 runs.

In Figure 4-8, the HMM cost over different values of α and ρ can be observed. The surface
plot on the left and the heatmap on the right contain the same values. One can observe
that α plays an important role in the HMM error value of the Coupled CPD algorithm. ρ
plays less of a dramatic role, but can still be observed to influence the cost. When looking at
the bottom row of the heatmap or the far side of the surface plot, one can notice that that
area has a bad HMM error. This is because ρ = 1 means T = Tprev in the update rules,
which keeps T equal to its initialization. The local minima of this HMM error manifold lies
at α = 0.1, ρ = 0.35 and equal 0.0287.

4-1-4 Tensor convergence

As noted, the reconstruction error between the tensor P(n) and a tensor created with the
factor matrices [[A(n),B(n),C(n)]], is not telling of the HMM reconstruction error. That is
to say, the reconstruction error between tensor and estimate can be really small, but could
lack the probabilistic representation in the factor matrices, needed to construct the HMM
matrices.
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Figure 4-9: A plot of the convergence of the relative error of the JPTs that were input into
Uncoupled CPD and Coupled CPD. Here K = 4, D = 30, N = 5,m = 106. The HMM cost for
this particular run in the plot is 0.3940 for Uncoupled CPD and 0.0099 for Coupled CPD. The
maximum iterations of both algorithms are set to 1000, and both methods are initialized with the
same factor matrices.

This can be observed in Figure 4-9. Even though for Uncoupled CPD the reconstruction error
of the tensors over time is clearly smaller than that of Coupled CPD, because Uncoupled CPD
does not make use of HMM constraints, the HMM error (Equation (3-13)) is larger than that
of Coupled CPD. In this case, where both methods have had 1000 iterations and are initialized
using the same factor matrices A(n),B(n),C(n) ∀n ∈ [1, N ], the HMM error for Uncoupled
CPD is 0.3940, and that of Coupled CPD is 0.0099.

4-1-5 Total performance

For the total performance, 100 runs are completed using parameters that generally work well
for all methods and are computationally friendly, namely K = 4, D = 30, N = 5,m = 105

and for Coupled CPD α = 0.05, ρ = 0.85. The mean and standard deviation of these runs
are given in Table 4-1 for the error in the transition matrix T, the emission matrices O(n),
the combined cost C(T,O(n), T̂, Ô(n)), and the computation time.
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Table 4-1: Performance over 100 runs. The following parameters are used K = 4, D = 30, N =
5,m = 105, α = 0.05, ρ = 0.85. The values are given as mean ± std.

Method ||T−T̂||F

||T||F

1
N

∑N
n=1

||O(n)−Ô(n)||F

||O(n)||F
C(T,O(n), T̂, Ô(n)) Time [s]

Baum-Welch 0.2260± 0.1743 0.2793± 0.2675 0.5052± 0.4332 138.15± 3.66
Uncoupled CPD 0.0425± 0.0838 0.1260± 0.1451 0.1685± 0.2265 12.21± 0.1781
Coupled CPD 0.0205± 0.0334 0.1070± 0.1193 0.1275± 0.1418 2.67± 2.89

From Table 4-1 it can be observed that generally Uncoupled CPD outperforms Baum-Welch
and that Coupled CPD outperforms Uncoupled CPD. It can be noted that Uncoupled CPD
and Coupled CPD for the HMM cost (individually for the Transition and Emission matrices,
but also combined) have a higher standard deviation than the mean. Of course, when the
standard deviation is negative, the cost cannot be negative. This suggests a skewness in the
distribution of the cost for both methods that is not fully captured using just the values in
the table. As such, the cost values are also plotted in a swarm chart in Figure 4-10. The
computational time in Table 4-1 improves from Baum-Welch to Uncoupled CPD to Coupled
CPD.
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Figure 4-10: A swarm plot of Baum-Welch, Uncoupled CPD, and Coupled CPD, over 100 runs
for the following parameters K = 4, D = 30, N = 5,m = 105, α = 0.05, ρ = 0.85.

In Figure 4-10 for both Uncoupled CPD and Coupled CPD several outliers can be observed,
particularly in the cost. These significantly pull the value of the mean seen in Table 4-1
upward, explaining the relatively high standard deviation. It can be noted that these outliers
are generally still on par with the cost of Baum-Welch.
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4-2 Continuous Synthetic Data

Previously, data was generated to fit in pre-defined bins using a discrete Hidden Markov
Model (dHMM) as a ground truth. In this section, a continuous HMM (cHMM) is used as
the underlying ground truth and is then estimated using a dHMM. This means that in each
timestep, a probability density function (PDF - continuous distribution) is used to generate
an emission from the state. This has a benefit over using dHMMs as ground truth, as now
noise can be added to the data sequence, as can be observed in Figure 4-11.
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Figure 4-11: An example of continuous data from a cHMM for K = 4, N = 3, and m = 100.
The true signal, sampled from the cHMM, can be observed, and that signal with added noise.
Also, the underlying state evolution can be seen.

In this section, dHMMs are still used to estimate the ground truth cHMMs, which means
there will always be some extra error. However, real data is generally continuous (digital
but with a very high resolution), and dHMMs are generally used to fit this data. To be
able to speak on the performance of the dHMM estimate obtained through this method, the
ground truth cHMM needs to be discretized, as it is impossible to compare a PDF with a
probability mass function (PMF). Because of this, the PDF of the cHMM will be evaluated
at the bin centers from the estimated PMF from Coupled Canonical Polyadic Decomposition
(CPD). This means the ground truth PDF (cHMM) will be sampled at the same position as
the PMF (dHMM) of the estimated HMM, creating a ground truth dHMM which can then
be compared to the estimated dHMM to quantify performance. An example of this can be
observed in Figure 4-12, where the true PDF per state per data sequence can be observed,
as well as where that PDF is evaluated (circles), which is at the bin centers of the estimated
PMF, whose peaks are shown with crosses. For this example, the following parameters are
used: K = 4, D = 30, N = 3,m = 106.

As mentioned in Section 3-1-2 and Section 3-3-5, the impact of noise on the Coupled CPD
algorithm’s ability to learn HMMs can be controlled by the ratio between the variance of the
signal σS and the variance of the noise σN . In the examples used in cHMMs in this section,
σS = 1. Figure 4-13 shows the effect of the variance of the noise on the HMM recovery error.
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Figure 4-12: This plot shows the true underlying PDF, and a PMF which estimates this PDF
through Coupled CPD. To be able to compare the two, the PDF (true PDF) is discretized into a
PMF (true PMF) at the bin centers of the estimated PMF.
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Figure 4-13: A plot of the effect of noise in the data sequences on the performance of approxi-
mating a cHMM with a dHMM. Here σS = 1 and σN varies over the x-axis. Note that this plot
is averaged over 10 runs, each dot attached to a line is the mean of all the non-outliers, and the
bars show the standard deviation for those non-outliers. The outliers are scattered and are not
attached to a line. Note that the Uncoupled method has a lot of outliers due to the failure of
the runs, and the Coupled method has fewer outliers. The plot uses the following parameters:
K = 4, D = 30, N = 5,m = 106.
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4-3 Real Data - Sleep stages from polysomnography 45

Figure 4-13 shows that when the noise variance σN is small compared to the signal’s noise
variance σS , the error stays generally low. It can also be observed that when σN > 1

3σS , the
error starts to grow significantly.

4-3 Real Data - Sleep stages from polysomnography

To test the Coupled Canonical Polyadic Decomposition (CPD) method in a real-life applica-
tion, the Sleep Physionet dataset is used [10], which is a polysomnography dataset. An image
of the sensors used in a polysomnography can be seen in Figure 4-14. This dataset is expected
to operate similarly to a Hidden Markov Model (HMM) in the sense that one sleep stage is
active, which equates to the states. The states are expected to be the different sleep stages,
which are stage W (wakefulness), sleep stages N1 (light sleep), N2, N3 (deep sleep), and stage
R (Rapid Eye Movement (REM) sleep) [28]. The effect of these states can be observed in the
measurements, of which three are used in this experiment, namely two Electroencephalog-
raphy (EEG) channels (EEGFpz_Cz and EEGPz_Oz) and one Electrooculography (EOG)
channel (EOGHorizontal). These equate in HMM terms to the observations, emissions, or
data sequences. The EEG channels record electrical activity along the scalp above the cere-
bral cortex. The EOG channel monitors horizontal eye movements, and REM sleep is known
to have rapid eye movement [28].

Figure 4-14: An image of all sensors in a polysomnography [28]. For this report, only the EEG
and EOG channels are used as they have higher sampling rates than the other channels.

The Sleep Physionet dataset provides a range of measurements such as EEG, EOG,
chin Electromyography (EMG), event markers, and some also contain respiration and body
temperature. The EEG and EOG channels are sampled at 100 Hz and the others at 10 Hz.
HMMs do not allow for mixed sampling rates, so only the EEG and EOG channels will be
used in this experiment, see Figure 4-15. The dataset also comes with the sleep stages, which
are manually annotated by well-trained technicians according to the 1968 Rechtschaffen and
Kales manual [29].
Data pre-processing - This experiment closely follows [30], and as such, the EEG and
EOG channels will be separated into the following power-bands: Delta δ (0.5−4.5 Hz), Theta
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Figure 4-15: Two channels of EEG data and one channel of EOG data from a single patient 001
for a single night from the Sleep Physionet dataset [10].

θ (4.5 − 8.5 Hz), Alpha α (8.5 − 11.5 Hz), Sigma σ (11.5 − 15.5 Hz), and Beta β (15.5 − 30
Hz). These now 15 obtained signals display the local power (dB) that each of the bands
contains per signal locally. These power-band signals are obtained by applying a 4th-order
bandpass filter on each of the EEG and EOG channels using the aforementioned power-band
frequencies. Then these filtered signals are fed into a spectrogram using a window size of
2[s], and an overlap of 1[s], and the log is taken to remove large spikes and get the data in
dB range. Finally, a moving average filter is applied with a window size of 2 samples, just
to filter out the most radical of noise. This results in 5 power-band signals for each of the
original 3 channels, and can be seen in Figure 4-16.

Applying Coupled CPD using these 15 powerband data sequences requires the selection of
a few parameters. The number of sleep stages, which represent the HMM states, is known to
be W, N1, N2, N3, and REM, resulting in K = 5. The power bands serve as data sequences,
making N = 5. D = 30 has previously been observed to work well with regard to HMM
cost and computation time, and is set as such. The same is true for the hyperparameters
α = 0.05 and ρ = 0.85. Lastly, after the spectrogram, the number of samples is m = 74900,
which, according to Figure 4-7, is not preferable; however, Coupled CPD should still be able
to perform decently. This results in the estimates T̂ and Ô(n), which can be observed in
Figure C-6b and Figure C-6d respectively.

Applying a multivariate Viterbi algorithm results in an estimation of the Viterbi path,
an estimate of the underlying states or active sleep stages at each timestep. It does so
by taking in the estimates T̂ and Ô(n), and the binned powerband data sequences. From
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Figure 4-16: A plot of all the power bands from the original channels.

Figure 4-17, one can notice that large parts of the state sequences match. However, during
sleep, the estimated sleep stages can be observed to be incorrect. Often in the estimate, N3
gets confused with N4. Also, some ’noise’ can be observed all around, but is particularly
visible in the wakeful stage. The estimate has a 91.2% match/accuracy with the annotated
sleep stages, but this is largely due to the wakeful stage. These facts combined make it so this
method can be used to estimate the difference between wakefulness and sleep, but it cannot
accurately distinguish the sleep stages themselves.

Post process analysis - As the annotated sleep stages are known (in this case), as well
as the discretized power-band data sequences, one can obtain the HMM matrices that most
accurately fit the data and states (Figure C-6a and Figure C-6c). Here, it can be noted
that in the emission matrix, in the Beta band of the EOG channel, for example, many of
the distributions overlap. This is precisely what Coupled CPD struggles with, as noted in
Section 3-3-2 and Section 4-1-1. Because many of these distributions are nearly identical, they
cannot be learned properly by this method, and also lose meaning from an HMM perspective
as independent states. In the estimates of the emission matrices through Coupled CPD
(Figure C-6d), it can be noted that the same values are covered, but that Coupled CPD
tries to separate them into 5 distributions for all of the states. Coupled CPD is still capable
estimating the sleep data somewhat accurately, but the emissions found that data represent
P (yt|xt), and the emissions found through Coupled CPD do not. Figure C-6c shows that
Coupled CPD is not fit for this particular dataset. Perhaps, through some other pre-processing
steps, this could be improved.
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True sleep stages
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Viterbi estimated sleep stages
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State 1 State 2 State 3 State 4 State 5

Figure 4-17: A show of the annotated sleep stages by experts, and the estimate of the sleep
stages through Coupled CPD and a multivariate Viterbi algorithm. Here State 1 = W, State 2
= N1, State 3 = N2, State 4 = N3, and State 5 = REM.

4-4 Summary

This chapter has shown how the novel Coupled CPD method performs over a range of cir-
cumstances. Variations in the underlying HMMs were explored, as well as varying HMM
parameters such as the number of states K, the number of emissions D, the number of data
sequences N , and the number of samples per sequence m. Also, the hyperparameters used
in Coupled CPD were varied to observe its response. Continuous data was explored with
the addition of noise, to observe the impact of noise on the learning capabilities of Coupled
CPD. Finally, real polysomnography data was used to explore a real-world application. Here
Coupled CPD was used in combination with a multivariate Viterbi algorithm and some pre-
processing steps to uncover the underlying sleep stages from EEG and EOG data, which were
then compared to sleep stages annotated by experts.
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Chapter 5

Conclusion and Future Work

In Chapter 2 theoretical background as well as related literature was discussed. It explained
the description of Hidden Markov Models (HMMs) that are used in this report, as well as the
concept of Joint Probability Tensors (JPTs) and Canonical Polyadic decomposition (CPD)
for their deconstruction.

Then Chapter 3 explained the full pipeline of univariate HMM learning through CPD from
data, and showed the instabilities it suffers from. It also offered a solution for the instabilities
by coupling all problems together by realizing multivariate HMMs use the same underlying
states at each timestep, and thus share a single transition matrix T and initial distribution
π. The chapter also discusses some considerations, metrics, and relevant functions.

Chapter 4 showed the performance of the proposed method, Coupled CPD, and compared it
with the performance of the industry standard Baum-Welch and its predecessor Uncoupled
CPD. It did so over a wide range of variables and parameters, such as the HMM variables
K,D,N,m, for different variations in the ’to-be-learned’ HMM matrices, and over the hyper-
parameter of Coupled CPD itself. Also, continuous data (non-binned) with added noise is dis-
cussed, as well as a practical experiment, where Coupled CPD is applied to real polysomnog-
raphy data, from the Sleep Physionet dataset [10]. This experiment showed that sleep stages
can be reasonably accurately described (91.2% accuracy), but that the practical meaning of
the emission probabilities is questionable, and requires extra research to be accurate.

Overall Coupled CPD is an improvement over Baum-Welch and Uncoupled CPD, with a few
exceptions such as a very low number of samples m or a high number of states K. In general,
all methods performed as expected concerning computation time. Going back to the main
research question of this thesis:

CPD methods for HMM learning can, indeed, be improved to accommodate multivariate data
sequences while outperforming the industry-standard, Baum-Welch algorithm, in both compu-
tational efficiency and estimation accuracy.

Also throughout the chapters, all sub-questions have been answered. Despite the initial
success of this method and the ideas behind it, it is still in its early stages of infancy and has
many areas of improvement still ahead, as discussed in the section below.
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5-1 Future work

Some general suggestions that directly extend from this work are to average the performance
test of K,D,N,m over more runs. Currently, they are averaged over 20 runs, but to get
a more accurate description the number of runs should increase to 100-1000, although this
requires significant run times. Also, the behavior of Coupled CPD with respect to the number
of emissions D should be explored beyond the current D = 100 and the number of sequences
beyond N = 50.

Even though Coupled CPD improved in stability compared to Uncoupled CPD, some outliers
can still be present. To improve stability even further several gaps or ideas could be explored,
such as uncovering why the sampled JPT does not keep converging to the calculated JPT
even though the number of samples increases; or one could apply a smoothing function, or
the opposite thereof, to the tensor to see if that would improve general stability.

Also, Coupled CPD could be made selective with respect to the different data sequences N .
That is to say, currently, the transition matrix T is averaged over all data sequences, but
this averaging could be weighted, based on either the correlation in the respective emission
matrices or the error between the JPT of the data sequence and the reconstruction thereof
through the factor matrices. By having the data sequences and thus JPTs that result in less
correlation or a smaller reconstruction error have more effect on the convergence of T and
therefore indirectly the factor matrices, the stability of Coupled CPD might improve even
further.

Improving calculation time can mainly be done by swapping out the algorithm for finding
matching permutations for the transition matrix, as this is by far the slowest part of Coupled
CPD. A suggestion might be heuristic algorithms which are generally fast.

Finally, some literature suggests a continuous extension of tensor decompositions, that either
approximate the tensor using a series of continuous functions or linearly interpolates the
possible values in between existing entries in the tensor. If, for example, Gaussians would be
used as basis functions, this method could perhaps be used to find continuous HMMs through
a very similar method as is presented in this report.
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Appendix A

Algorithms

A-1 Transition Matrix Permutation Fitting

Algorithm 2 provides pseudo-code for a transition matrix permutation fit algorithm. It intakes
two transition matrices and tries to match their permutation such that matrix B is matched
to matrix A. It returns a permutation matrix that provides this permutation to the transition
matrix. Note that a very similar algorithm can be constructed for the emission matrices, in
which case a consensus must be reached as to what permutation is taken.
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Algorithm 2: Find Best Permutation to Align Two Matrices
Input : Matrix A ∈ RK×K , Matrix B ∈ RK×K

Output: Permutation matrix Πbest ∈ RK×K

1 Initialization
2 dA ← diag(A), dB ← diag(B);
3 perm← empty list of length K;
4 Fast Diagonal Matching
5 for n = 1 to K do
6 Index j ← min(dA − dB(n)) ;
7 perm(n) = j ;
8 if all entries of perm are unique then
9 Πbest ← permute(Ik, perm) ;

10 return Πbest ;

11 Full Permutation Search
12 P ← all K! permutations of {1, . . . ,K};
13 errmin ←∞, Πbest ← Ik;
14 foreach p ∈ P do
15 Construct permutation matrix Πp from p;
16 Bp ← ΠpBΠT

p ;
17 err← ||A−Bp||F ;
18 if err < errmin then
19 errmin ← err;
20 Πbest ← Πp;

21 return Πbest

Jep Brinkmann Master of Science Thesis



Appendix B

Mathematical Derivations

This appendix provides some math to support the minimization problems found within this
report. Here follow some matrix rules from [31] which are commonly used:

∂(X + Y ) = ∂X + ∂Y

∂(Tr(X)) = Tr(∂X)
∂

∂X
Tr(XA) = AT

∂

∂X
Tr(XTA) = A

∂

∂X
Tr(AXT ) = A

(B-1)

B-1 ALS update equation derivation

In this report, we want to learn a 3-way tensor with Canonical Polyadic Decomposition using
Alternating Least Squares. This tensor is factored into 3 learnable matrices P = [[A,B,C]].
This results in the following minimization problem, with some additional constraints which
are implemented due to the matrices having a probabilistic meaning:

arg min
A,B,C

||P− [[A,B,C]]||2F (B-2)

s.t.

A,B,C > 0 (element-wise)
K∑
k=1

A(:, k) = 1,
K∑
k=1

B(:, k) = 1,
K∑
k=1

C(:, k) = 1

This problem can be unfolded to:
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||P(1) −A(C⊙B)T ||2F = ||P(2) −B(C⊙A)T ||2F = ||P(3) −C(B⊙A)T ||2F (B-3)

This leads to the following minimization problems that are solved iteratively:

Â← arg min
Â

JA, JA = ||P(1) − Â(C⊙B)T ||2F

B̂← arg min
B̂

JB, JB = ||P(2) − B̂(C⊙A)T ||2F

Ĉ← arg min
Ĉ

JC , JC = ||P(3) − Ĉ(B⊙A)T ||2F

(B-4)

Then for ALS the gradient of the sub-cost functions is set to zero, which represents a cost
function minimum. Note that ||X||2F = Tr(XTX) and ∇XTr

(
(A−XW )T (A−XW )

)
=

−2(A−XW )W T , see [31]. And from [32], we see (A⊙B)T (A⊙B) = ATA⊛BTB, leading
to:

JA = ||P(1) − Â(C⊙B)T ||2F = Tr
(
(P(1) − Â(C⊙B)T )T (P(1) − Â(C⊙B)T )

)
∇AJA = −2(P(1) − Â(C⊙B)T )(C⊙B) = 0

∇AJA = P(1)(C⊙B)− Â
(
(CTC) ⊛ (BTB)

)
= 0

Â = P(1)(C⊙B)
[
(CTC) ⊛ (BTB)

]†

(B-5)

We do something similar for B and C, after which we obtain the full update equations. After
each update, which are multi-linear due to the other two factor matrices being fixed, the
factor matrices are sure to be made stochastic using Equation (3-14):

A← P(1)(C⊙B)
[
(CTC) ⊛ (BTB)

]†

A← ψ(A)

B← P(2)(C⊙A)
[
(CTC) ⊛ (ATA)

]†

B← ψ(B)

C← P(3)(B⊙A)
[
(BTB) ⊛ (ATA)

]†

C← ψ(C)

(B-6)

Note that
[
(CTC) ⊛ (BTB)

]
∈ RK×K making the calculation time of its inverse faster then

the pseudo-inverse for (C⊙B)T ∈ RK×D2 .
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B-2 Extended update equations proof

For Coupled CPD we have the same cost function as Uncoupled CPD, but tie the problems
together using constraints for the factor matrix A and C, which enforce a common transition
matrix T and initial distribution π:

arg min
{A(n),B(n),C(n)}N

n=1

N∑
n=1
||P(n) − [[A(n),B(n),C(n)]]||2F (B-7)

s.t.

A(n),B(n),C(n) > 0 (element-wise)
K∑
k=1

A(n)(:, k) = 1,
K∑
k=1

B(n)(:, k) = 1,
K∑
k=1

C(n)(:, k) = 1

A(n) = B(n)diag(π)TTdiag(Tπ)−1

C(n) = B(n)T

T = 1
N

N∑
n=1

(B(n))†C(n)

πTT = πT

To enforce the constraints, and avoid oscillation in the factor matrices, a soft scaling factor
λ is introduced. Each factor matrix now has three update steps; Multi-linear update using
the other fixed factor matrices; soft scaling using λ which takes a part of the factor matrix
and a part of the constraints; A projection using ψ(·) to make sure the columns of the factor
matrices are stochastic.

A(n) ← P(1)(C(n) ⊙B(n))
[(

(C(n))TC(n))
)
⊛

(
(B(n))TB(n)

)]†

A(n) ← λA(n) + (1− λ) ·B(n)diag(π)TTdiag(Tπ)−1,

A(n) ← ψ(A(n))

B(n) ← P(2)(C(n) ⊙A(n))
[(

(C(n))TC(n)
)
⊛

(
(A(n))TA(n)

)]†

B(n) ← λB(n) + (1− λ)B(n) (redundant)
B(n) ← ψ(B(n))

C(n) ← P(3)(B(n) ⊙A(n))
[(

(B(n))TB(n)
)
⊛

(
(A(n))TA(n)

)]†

C(n) ← λC(n) + (1− λ) ·B(n)T,
C(n) ← ψ(C(n))

(B-8)

Here it can also be proved that the soft scaling is in fact the same as enforcing the hard
constraint. Lets take C’s soft scaling as it is the easier example:
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C(n) = λC(n) + (1− λ) ·B(n)T
(1− λ)C(n) = (1− λ)B(n)T

C(n) = (1− λ)
(1− λ)B(n)T

C(n) = B(n)T

Finally, because of the normalization through ψ, the total scaling is irrelevant between steps 2
and 3 of the update steps in Equation (B-8) factor matrix resulting in the following equation,
that uses α = 1−λ

λ as the soft-scaling variable instead, which is used in Section 3-2:

C(n)

λ
= C(n) + 1− λ

λ
·B(n)T

= C(n) + α ·B(n)T
=⇒

ψ(C(n))
C(n) = C(n) + α ·B(n)T
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Appendix C

Extra Figures

This appendix provides some supplementary plots.

C-1 Performance box-plots

The performance box-plots give some extra insight into the shape of the distributions of the
behavior over the HMM parameters. That is to say, they show where the median, minimum,
maximum, and outliers are.

Figure C-1: A plot showing how to read box plots.
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Figure C-2: A box plot of the performance of Baum-Welch, Uncoupled CPD, and Coupled CPD
over the number of states. Also, the time performance is present. Each has a different marker
style, Baum-Welch has circles, Uncoupled CPD has squares, Coupled CPD has triangles, and
creating the JPT has crosses.
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Figure C-3: A box plot of the performance of Baum-Welch, Uncoupled CPD, and Coupled CPD
over the number of emissions. Also, the time performance is present. Each has a different marker
style, Uncoupled CPD has squares, Coupled CPD has triangles, and creating the JPT has crosses.
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Figure C-4: A box plot of the performance of Baum-Welch, Uncoupled CPD, and Coupled CPD
over the number of sequences. Also, the time performance is present. Each has a different
marker style, Baum-Welch has circles, Uncoupled CPD has squares, Coupled CPD has triangles,
and creating the JPT has crosses.

1
0

0
0

1
6

2
4

2
6

3
7

4
2

8
2

6
9

5
2

1
1

2
8

9
1

8
3

3
0

2
9

7
6

4
4

8
3

3
0

7
8

4
7

6
1

2
7

4
2

8
2

0
6

9
1

4
3

3
5

9
8

2
5

4
5

5
6

0
8

8
5

8
6

7
1

.4
3

8
4

5
e

+
0

6
2

.3
3

5
7

2
e

+
0

6
3

.7
9

2
6

9
e

+
0

6
6

.1
5

8
4

8
e

+
0

6
1

e
+

0
710-3

10-2

10-1

100

101

1
0

0
0

1
6

2
4

2
6

3
7

4
2

8
2

6
9

5
2

1
1

2
8

9
1

8
3

3
0

2
9

7
6

4
4

8
3

3
0

7
8

4
7

6
1

2
7

4
2

8
2

0
6

9
1

4
3

3
5

9
8

2
5

4
5

5
6

0
8

8
5

8
6

7
1

.4
3

8
4

5
e

+
0

6
2

.3
3

5
7

2
e

+
0

6
3

.7
9

2
6

9
e

+
0

6
6

.1
5

8
4

8
e

+
0

6
1

e
+

0
710-3

10-2

10-1

100

101

102

103

Baum-Welch

Uncoupled CPD

Coupled CPD

Creating JPT

Figure C-5: A box plot of the performance of Baum-Welch, Uncoupled CPD, and Coupled CPD
over the number of samples. Also, the time performance is present. Each has a different marker
style, Baum-Welch has circles, Uncoupled CPD has squares, Coupled CPD has triangles, and
creating the JPT has crosses.
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C-2 Sleep data HMM matrices

(a) Transition matrix for the sleep stages.
(b) Coupled CPD estimate of the tran-
sition matrix for sleep stages.
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(c) Emission matrices for the power-band
data sequences.
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(d) Coupled CPD estimate of the emis-
sion matrices for each of the power-band
data sequences.

Figure C-6: The transition matrix and emission matrices found through sleep stage annotations
and power-band data (left), and an estimate of them through Coupled CPD (right).
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C-2 Sleep data HMM matrices 61

The sleep data HMM matrices show the distribution of the underlying HMM to the data as
obtained from the annotated states in combination with the data, and those obtained purely
from data through Coupled CPD.
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