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A B S T R A C T

The crystallographic texture of a material has a direct impact on its mechanical and
functional properties. As a result, texture control is an imperative part of manu-
facturing processes, especially those involving plastic deformation, such as rolling,
which significantly impact crystallographic texture. The exact mechanisms and un-
derlying causes behind such texture evolution’s are not well understood.
This study investigates the effect of initial disorientation topology on plastically de-
formed texture, with the help of mean field crystal plasticity simulations performed
using the ALAMEL model. The simulated textures are compared to experimentally
measured textures of IF steel samples with symmetric rolling reductions of 55 % and
83 %. The results indicate a clear distinction between low disorientation topologies
and high disorientation topologies, most evident at high rolling reductions.
The study aims to incorporate the disorientation information into the ALAMEL sim-
ulations, by re-ordering textural input orientations. The Monte Carlo algorithm is
used in addition to the Hungarian Algorithm to re-order orientations on the basis
of preset disorientation angles.
A comparison between the two re-ordering algorithms is also performed, and the
Hungarian algorithm is found to have a disorientation distribution closer the ideal
result. A comparison between the two yields minimal differences, with the dif-
ference between the two results being the error index local minima for minimum
disorientation evolved textures and average disorientation (between 35◦ . Local
maxima for error index comparisons are observed for very high disorientation val-
ues of over 60◦.
In the present study, we also result spread for similar disorientation topologies
orders to discount the randomness associated with such a process. Thus, multiple
files are created with largely similar disorientation characteristics but different grain
orders. An overlap is observed for high disorientation simulations, at a higher fre-
quency for lower rolling reductions. The deviation of obtained results is also highest
for a disorientation angle average of 15◦.
The simulated texture comparisons between textures with modified and unmodi-
fied texture disorientation topology also indicate a higher disparity with minimum
disorientation modified texture. A convergence is observed at a disorientation value
between 35◦ and 40◦, close to the disorientation average of the unmodified texture,
and an overlap is observed at higher disorientation values.
The valorisation of such a technology is also considered in this study. The current
study precedes applied research and is assessed as a level 2 on the technology readi-
ness scale, in danger of facing the ‘valley of death’. This is owing to fading interest
and funding unless the private sector see’s value in the technology. The domain
most aligned for the application of such technology is electrical steels, which is set
to see a large increase in demand and will play a significant role in the energy tran-
sition and move towards electrical mobility.
The high cost of development and price sensitive market serve as barriers of entry,
and entry into the niche beachhead market of DC converters for next generation
‘more electrified aircraft’ is determined to be an appropriate valorisation strategy.
The study also proposes a ‘way to market’ strategy, drawing parallels with other
high tech and high value material industries, to determine ‘critical partnerships’
with high levels of integration in addition to leadership in materials and manufac-
turing development as key factors for a successful entry.
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1 C R Y S TA L LO G R A P H I C T E X T U R E

Most natural and technological materials derive their material properties from fun-
damental units and the structure of those fundamental units. The vast difference
between the different allotropes of Carbon highlight the role of atomic structure on
the material properties made from an otherwise homogenous group of atoms. In
the same manner, the structure and orientation of component units is an important
aspect of material properties of most natural and technological materials.

Many solid materials conform to a crystalline structure, including most metals, ce-
ramics, minerals and even semiconductors. The structure of these crystalline materi-
als is highly ordered, forming a crystal lattice that extends in all directions [AM+

76].
Additionally, most crystalline materials comprise many crystals or ‘grains’, and are
referred to as polycrystalline materials (in contrast to mono or bi-crystalline materi-
als).

The orientation of atomic planes within a monocrystal or a grain is largely ho-
mogenous. However, the distribution of grain orientations with respect to a com-
mon reference is seldom equal. The occurrence of randomly distributed grain ori-
entations in nature is also quite rare (the compression of a powder tends to yield
a poly-crystal with random orientation distribution), and most commonly, the dis-
tribution of orientations follows a preference for a specific orientation, or a set of
orientations. This distribution of these crystallographic orientations for a polycrys-
talline sample is also referred to as its crystallographic texture and is sometimes
also simply referred to as texture.

The cause for a specific crystallographic texture of a material tends to be ther-
mochemical, caused by processes such as deformation, recrystallisation and phase
transformation.

Material texture has been found to influence mechanical, thermal and electro-
magnetic properties of materials. The quantum of influence of texture on material
properties has been found to be, in many cases between 20 and 50 % of the property
values [Bun13].The exact mechanisms in which texture influences material proper-
ties is not always known, and empirical practices are utilized to establish production
processes and mechanisms in manufacturing [AM+

76].

1.0.1 Texture research

A better understanding of texture evolution is carried out based on two related
fronts, the control of material processing, and understanding of material science
processes. An example of the former is the use of texture control in the context of
deep drawing cups from heavily textured rolled sheets, which result in the presence
of undesirable ‘earings’ in specific directions (0◦ and 90◦ to the rolling direction),
and is illustrated in Figure 1.1.

In the aforementioned scenario, an anisotropic sheet is desired, and thus, the
modification of material processing would serve to reduce the undesirable effect.

1



2 crystallographic texture

Figure 1.1: Undesirable ’Earings’ formed during deep drawing processes
[Ran06]

1.0.2 Texture Orientation

When describing crystallographic orientation, two reference systems are required,
related to both the specimen and the grain in question [KTW98]. Both the refer-
ence systems are Cartesian in nature (and preferable right handed), while each of
them is known as a co-ordinate system. The axes of these co-ordinate system are
chosen according to the important directions or surfaces of the specimen in question

Figure 1.2: Relationship between specimen (given by RD,TD and ND or X,Y,Z) and crystal
co-ordinate sytem (given by crystal miller indices)

[Ran70]

The co-ordinate systems of rolled products, for example, are described in terms
of rolling direction (RD), normal direction (ND) and transverse direction (TD). Fig-
ure 1.2 illustrates the use of miller indices as reference axes for specimen reference
axes and the aforementioned rolling specimen axes. In a case where there are no
apparent specimen reference system, an arbitrary system can be used.
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The use of crystal axes to describe grain specimen systems is convenient (though
another system may be used if desired), as orthogonal structures form an orthog-
onal frame (and other crystal structures may be adopted to form such a frame by
using orthonormal transformations).

1.1 orientation matrix

The crystallographic orientation is described as the position of the crystal reference
system with the sample reference system. This can be described in a number of
ways, most simply as the rotation matrix, which describes the rotation of the speci-
men reference to the sample reference, and is given as CC = g.CS, where CC and CS
are the crystal/grain and sample reference axes and g is the orientation matrix.

The orientation matrix is closely related to the most common mathematical pa-
rameters (or descriptors) used to calculate texture properties. The relationship be-
tween the orientation matrix and the common mathematical parameters is given in
figure 1.3

Figure 1.3: Relationship between orientation matrix and common orientation descriptors
[Ran70]

1.1.1 Misorientation and Mesotexture

The individual orientation data can also be used to calculate the orientation differ-
ence between two different grains, which is also known as misorientation. This is
given by R12 = A−1

1 A2, where A1 and A2 are absolute orientations of two neighbor-
ing grains and expressed as an orientation matrix.

When this misorientation is calculated for a contiguous set of grains, a ‘meso-
texture’ is obtained. The misorientation distribution in a texture also follows a
non-random distribution [Ran70]. The mesostructured properties can be studied to
relate grain boundary characteristics to material property,

The characterization of mesotexture is carried out in the basis of angle misorien-
tation (into high angle or low angle misorientations), axis misorientation (a high
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density of low index or high index axes) or combined angle and axes mesotexture,
which is classified on the bases of Coincident Site Lattice (CSL) parameters.

1.1.2 Disorientation

The angle of disorientation is described as the minimum angle of rotation to rotate a
crystal into the same orientation as that of its neighbour. This function depends on
both the texture of a material, and crystal symmetry. The angle of rotation between
two orientations is often described using an axes, as an ‘axis angle pair’. Rotation
operations may be described using a multitude of axes, but only the smallest angle
of rotation is considered in this scenario.

1.1.3 Crystal Symmetry

Crystal symmetry is a property of a crystal, whereby the rotation of a crystal orien-
tation about an axis, or reflection about a mirror plane, or translation by an angle,
or even a combination of the above results in an atomic configuration similar to its
original configuration. [Ran06]. If a crystal is symmetric for every 90◦ of rotation
about a specific axis, it has a four-fold (360◦/90◦) symmetry about the axis.

Crystal symmetry is derived from the symmetry of its lattice. Crystal systems
are groupings of structures according to the axial systems used to describe crystal
lattices. Seven crystal systems are used to describe three dimensional lattices, which
satisfy the criteria of each lattice point having a symmetric environment. In com-
bination with various lattice centring’s, they make up the 14 ‘bravais’ lattices. The
crystal system with the lowest symmetry is the triclinic system, and the system with
the highest symmetry is the cubic system, which has four threefold rotation axes of
symmetry. Monoclinic crystal systems have one twofold mirror axes of symmetry.
Most metals follow cubic or hexagonal symmetry.

1.1.4 Disorientation and symmetry

For two neighbours, the angle of disorientation is calculated as the angle between
the two orientations, for each application of the aforementioned symmetry opera-
tions. Iron, and its alloys, have a body centred cubic crystal structure, for which
24 symmetric pairs are analysed for a set of grains.For a random cubic texture, the
frequency function of the minimum angle of disorientation is given by the Mckinzie
distribution, as illustrated in figure 1.4 [Mac58]. It is named so after J K Mackinzie,
who estimated the same using the Monte Carlo method [MT57]. The maximum
angle of disorientation for cubic crystals was first proposed by FC Frank, as a rota-
tion of 90◦ about any of the <110> axes, with an angle of rotation of 62.8◦, as is
observed in figure 1.4

1.1.5 Euler angles and Euler space

Another method to describe orientation is Euler angles, which describe orientation
as a series of three rotations. If these rotations are performed in the correct or-
der, transform the crystal reference to the sample reference. There are numerous
notations describing Euler transformation, but the most common notation, Bunge
notation, is used for this study [Bun13].

Figure 1.5 describes the Bunge rotations performed, which is a rotation by angle
φ1 about the normal axes (represented by Z in the image), followed by a rotation
by angle Φ about the new rolling direction (represented by X’) and rotation by an
angle φ2 about new normal axes (represented by Z’). Each transformation alters the
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Figure 1.4: Distribution of minimum disorientation of random orientations (Mackinzie dis-
tribution)

[Mac58]

subsequent axes of rotation.

Euler angles operate in Euler space, which operates within limits of 0◦ ≤ φ1, φ2 ≤
360◦. 0◦ ≤ Φ ≤ 180◦ though for crystal structures with a high degree of symmetry,
can be defined in the range −90◦ ≤ φ1, φ2, Φ ≤ 90◦

Angle Axis pair

The crystallographic orientation can also by described as a single rotation around a
specific axes, where the axis is referred to as the axis of rotation, and the angle is
known as the angle of rotation, with the notation being referred to as an angle axis
pair. The notation specifies a single direction, and is usually denoted in the format
< uvw > θ◦, where < uvw > denotes the axes and θ◦ the angle.

The angle axis pair may not be an important representation of orientation for
crystallographic orientation as does not convey the relationship between orientation
and important physical axes but is an invaluable tool in the study of misorientation
characteristics. The angle axis pair notation can be used to describe misorientation
relationships between two grains by simply substituting either reference to repre-
sent the pair of grains whose misorientation is to be calculated. The misorientation
angle axis pair is thus given by M12 = g−1

1 g2.

1.1.6 Texture Representation

The representation of crystallographic texture distribution is not only carried out in
a qualitative manner as indicated by preferred orientation(s) of the specimen, and
also in a quantitative manner (which describe the exact distribution of texture).

Orientation Distribution Function

The orientation distribution function (ODF) aims to describe the exact orientation
distribution within a specimen. Instead of representing orientation distribution as a
set of discrete homogenous crystals, this function analyses the orientation distribu-
tion at every point. A complete description is formed by specifying the orientation
of every point, and given as g = g(x, y, z) [Bun13].

The description of the same in terms of Euler angles results in three mathematical
functions spread in Cartesian and Euler space. For simpler mathematical treatment,
dV
V = f (g)dg used. Additionally, as this function requires a 3 dimensional function,

it is most commonly represented in constant section of PHI. Appendix H illustrates
a common representation of ODF figures.
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Figure 1.5: Visual representation of Euler Angles
[Bun13]

The orientation distribution function is not directly accessible from X-ray spec-
imen measurements but is rather processed from another texture representation
(pole figures) by using mathematical methods such as series expansion of spherical
harmonics. Modern laboratory software suites include such functionality within
their software systems, and third-party software suites also provide the same func-
tionalities [Ran70].

Pole Figures and Inverse Pole figures Pole figures and inverse pole figures are a
method of representation of orientation. A pole figure describes an orientation as a
point in the unit reference sphere, described as the intersection of normal to atomic
plane with the reference sphere. This is projected to a 2 dimensional plane using
stenographic projection (or Lambart projection) of the poles in the equatorial plane
as shown in figure 1.6.

Figure 1.6: Projection of a pole figure into two dimensions by (a) projeting the crystal poles
on a unit sphere, (b) projection of poles on equitorial planes and (c) representation
of pole figures and pole figure angles

[Ran70]
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Each pole figure describes the normal for a family of atomic planes, and thus,
multiple pole figures are required to adequately describe the texture of a specimen.
The number of poles required is dependent on the crystal symmetry, and can ex-
tend to 24 for certain cases.

Another way to represent this orientation data is in the form of an inverse pole
figure. An inverse pole figure projects orientation of specimen co-ordinate system
into the crystal co-ordinate system. The reference system of inverse pole figures are
thus the crystal co-ordinate system and the orientation, the specimen co-ordinate
system.

1.1.7 Texture measurement

The most common techniques to measure texture are X-ray diffraction and neutron
diffraction. Early evaluations of texture measurement relied on the intensity distri-
bution in Debye-Sherrrer rings to evaluate preferred orientation. The use of texture
goniometers began in the late 1940s, with instruments capable of directly measuring
the pole figure of a specimen.
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Electric machines are the backbone of modern civilisation, delegating much of the
manual labour required for the production of goods to machines. The conversion of
electrical energy into mechanical energy is dependant on magnetic materials. Iron,
and some of its oxides, make for excellent magnetic materials because of their inher-
ent magnetic properties, which are a result of their atomic electronic configuration.

Magnets are classified into hard magnets, which have their own magnetic field,
examples of which include common fridge magnets and bar magnets, and soft mag-
nets, which magnify a magnetic field acting on them, examples of which include
electromagnets. Soft magnetic materials do not retain a magnetic field but magnify
the magnetic flux, or magnetic force passing through them by a factor of up to 1

million [Bec02], and their effect on an applied magnetic field can be observed from
figure 2.1.

Figure 2.1: Comparative response of Ferromagnets and air to an external magnetic field
[Bec02]

Silicon rich steels are often used as such soft magnetic steel, owing to Silicons
high electrical resistivity and its effect on the magnetic properties of steel (the addi-
tion of silicon reduces magnetic anisotropy and magnetostriction of electrical steels)
[Che14]. Production of electric steel accounts for 1 % of the total world steel produc-
tion [Pet10], at over 12 million tonnes per year[Mos12] . Over 97% of soft magnetic
materials produced are electrical steels [Mos02]. Electrical steels are further clas-
sified into grain oriented and non-grain oriented electrical steels based on their
’texture’ orientation.

Electric steel producers have made only very small changes to the basic chem-
istry of electrical steel used for most commercial grades[Pet10]. Most research in
the past 70 years has focused on improving the crystallographic texture, develop-
ment of thinner grades, and magnetic domain refinement [XKW08].

There are two applications of electrical steels, use in transformers and use in ro-
tating machines. Electrical steels used in transformers derive their benefit from the
flux magnification properties of electrical steels, while those used in rotating ma-

9
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chines are designed for optimum force magnification properties around a complete
rotation.

2.1 history and evolution of electrical steels

The development of electrical steels began with its use to enhance the power of
a lifting magnets, with the use of solid iron cores. Cast irons were initially used
before the advent of higher permeability steels [Bec02]. The use of a solid iron
core is inefficient as it results in significant losses due to eddy currents, and its
assosiated thermal limitations (machines of this era tended to run hot). The use of
laminated sheets addressed this problem, as the assosiated eddy currents reduce
with the reduction of lamination sheet thickness, as demonstrated by figure 2.2.
Total core losses include eddy current losses and magnetic hysteresis losses and
may be described using Steinmetz’s equations [KS10] [531].

2.1.1 Early developments

Early refinements in this area focused on increasing resistivity and improving pu-
rity of silicon steels as a mode of reducing eddy currents and improving efficiency
[Pry59]. An increase in purity resulted in more efficient machines, and the develop-
ments of the time aimed to balance the increase in cost of higher purity steel with
the savings made by increased efficiency. Interestingly the mechanisms and specific
relationships linking purity to magnetic performance were not known well into the
1950s. The increase in concentration of silicon was traditionally limited to an upper
limit of 4.5% Silicon by weight, above which the brittleness of the resulting steels
prevented their use. Heat treatment processes such as annealing can allow for a
’critical limit’ of 5.487% by weight [YSB+

01] above which it becomes impossible to
supress the B2 ordered phase, responsible for the brittleness.

Figure 2.12 illustrates the early development of electrical steels.

Figure 2.2: Variation of Eddy current loss with lamination thickness and number of segments
[JLT+

16]
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2.1.2 GOSS and ’textured electrical steels’

The electrical steels used until the mid 1930s were manufactured using hand fed
mills largely using hot rolling methods, and processed by annealing electrical steels
prior to, or after punching operations [CT35]. This was performed to reduce ’surface
scale’ and warping, which affected magnetic and hysteresis properties adversely.
The result of these processes is anisotropic steel, whose properties are in dependant
on the direction of the axes of measurement. In the mid 1930s, the first method for
aligning the directions of grains was patented by Goss [Gos34], which marked the
beginning of the development of ’textured’ electrical steels.

Textured alloys have a higher magnetic permeability and lower electrical energy
loss than previous anisotropic electrical steels. The development of electrical steels
after the advent of ’texured electrical steels’ is illustrated in the image on the right
in figure 2.12.

There has been a significant decrease in core energy loss per unit mass (and thus,
increase in efficiency) following the implementation of texture control in electrical
steels. The core energy loss reduced by nearly half with the implementation of
texture control technologies in just over a decade between 1955 and 1965. The intro-
duction of high permeability grades of electrical steel had also helped in reducing
core loss by close to 25% in a span of just over 15 years. The core loss of electrical
steels has reduced to a seventh of its value in just 40 years of implementing man-
ufacturing technologies relating to texture control, and continues to reduce with
the induction of new technologies. Additional parameters responsible for the in-
creasing efficiency of electrical steels are ever decreasing gauge sizing and spacing
fractions.

Rolled alloys may display isotropic behaviour in off-axis magnetic properties. The
properties are dependant on rolling parameters. Thus, the tight control of assosi-
ated rolling processes and heat treatment processes may be used to ’control’ texture,
and by extension, isotropic magnetic properties.

Figure 2.3: Early (left) and later (right) historical development of electrical steel on the basis
of core loss per unit weight

[XKW08] [CT35]

Technology lifecycle

As discussed in section 2.1.2, the development of electrical steel material technolo-
gies have seen a continuous technology development lifecycle. The implementation
of new technologies at first yields only marginal benefits for early adopters, as illus-
trated in figure ??. A more widespread increase in efficiency is seen after adoption
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by the early majority, and subsequent investment by infrastructure buyers. The
technology lifecycle is illustrated in figure 2.4

Figure 2.4: Illustration of technology lifecycle stages
[MR04]

2.1.3 Magnetic Domain refinement and the present

The image on the right in figure 2.12 cites the progress of isotropic steels grades or
’grain oriented electrical steels’. These electric steels have very large grains, and as
a result, all sections within the grains may not align their magnetic domain. Ideally,
when the polarisation of an applied field is reversed, the magnetic domain walls
my be assumed to homogeneously move 180◦ during each cycle.

However, upon observation, this is not the case. The work of Nozawa et. al.
[NMMM94] demonstrates that the dynamic wall movement is not homogeneous.
When the process of magnetisation takes place, even if average magnetisation rates
are constant, there is a variation between magnetic domains. Some domain wall
move rapidly, while others move slowly. The cause of this heterogeneity are mag-
netic defect structures, consisting of surface closure domains perpendicular to the
axis of magnetisation and pinned wall movements parallel to the axis of magnetisa-
tion. This is illustrated in figure 2.5

This domain wall movement causes ’anomalous’ or unexpected eddy current
losses. These losses can be reduced by carrying out domain wall refinement, us-
ing techniques such as laser irradiation [IYI+

82], application of tensile stress or
even mechanical scratching.[UMF+

03]. Magnetic domain refinement has lead to
an increase in efficiency from the 1980s., as can be seen from figure 2.12, where a
reduction in loss can be observed between laser irradiated and standard samples.

2.2 crystallographic texture and electrical steels
The ’microstructure’ of electrical steel comprises of an aggregate of single phase
polycrystallines. The arrangement of these polycrystallines may represent a liken-
ing or increased probability of alignments to certain directions or orientations [KJ08].
Magnetic properties are also anisotropic, which are influenced by the alignment of
these polycrystalline aggregates.

A divergence in Electrical steel manufacturing and application also resulted af-
ter the advent of texture control in the mid 1930s. Anisotropic electrical steels had
excellent magnetic properties in specific directions, but poor magnetic properties
in non-aligned directions. Electrical Steels used for flux magnification in static ma-
chines such as transformers benefited from anisotropic magnetic properties, while
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Figure 2.5: Magnetic Domain structure of grain oriented silicon steel
[Hay17]

Figure 2.6: Goss texture visualisation (left), magneticrystalline anisotropy (Ease of magneti-
sation) for major axes, BCC crystal structure

[McH01][FZL+
08]
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Figure 2.7: Illustration of the concept of Aθ (left) and Aθ values for common textures (table
on the right)

[KJ08]

those used in rotating machines were not suited for these grades of steel. Thus, two
categories of electrical steels emerged, grain oriented steels, which are so named
because their macro-structural ’grains’ are aligned (these are the aforementioned
anisotropic electrical steels), and non-grain oriented steels [McH01]. The list of
desirable properties for non grain oriented electrical steels also include rotational
losses [AMHP15], and are closely linked to magnetic isotropy [Mos92]. Grain ori-
ented electrical steels make up 20 % of annual electrical steel production with non
grain oriented steels making up the remainder [Mos12].

Figure 2.6 depicts the ease of magnetisation along various axes for a BCC crystal
(signifying the properties of most forms of Iron at room temperature). The texture
with the easiest axis of crystallisation is the axis denoted by the miller indices (1 0

0) —— Rolling direction (Also known as a ’cubic texture’) [FZL+
08] for non grain

oriented steels, and miller indices (1 1 0) —— Rolling Direction for grain oriented
steels (also known as a cube on edge or GOSS orientation) [Gos34]. This can be also
seen in figure 2.6.

2.2.1 Texture control

Material properties are dependent on its structure. Electrical steels are comprised
of a polycrystalline aggregate, as all steels, and most metals and many other solids
comprise of. Single phase polycrystalline materials are made from a large num-
ber of microscopic (or in the case of grain oriented electrical steels, macroscopic)
crystals, which are known as ‘grains’. The structure of a polycrystalline material is
of inherent importance to the material properties of the polycrystalline aggregate
[ER09].

Kestens and Jacobs [KJ08] offer a fundamental insight into the relationship of
texture and magnetic properties. They characterise the texture in terms of a texture
parameter Aθ , which is the angle between the direction of the magnetisation vector
and the nearest direction of the crystal. Aθ lower texture parameter would indicate
a higher quality magnetic sample. Cubic textures were found to have the lowest
values, and are thus best suited for non grain oriented applications.

For non oriented electrical steels, this value is averaged over a complete spherical
range, as rotating machines have distributed magnetization axes. Thus, for every
value of crystal orientation, the output is integrated over the entire spherical range
values. The use of linear regression methods is made to account for the differences
in grain size. The study also estimates an average A value, taking into account the
effect of grain size on magnetic properties using linear regression methods. The
value of Aθ is also estimated from the results of the 0◦, 45◦ and 90◦ sample orienta-
tion values.

The conclusions of the aforementioned study are that wide variety of steel man-
ufacturing methods result in a wide range of electrical steel quality. The obtained
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results from hot rolling are more desirable when compared to cold rolling, but the
required thicknesses (0.65 mm and below) cannot be obtained in even state of the
art cold rolling mills.

2.3 disorientation and grain growth
As discussed in earlier sections, texture has roots in thermochemical processes,
whose knowledge and relationships are imperative in understanding texture con-
trol. Grain size control is also of importance, as grain size directly influences both
mechanical and magnetic properties. The relationship between texture evolution
and boundary energy and mobility are discussed in a study by Hore and Das
[HD19], which aims to investigate the effect of anisotropic grain boundary energy
and mobility on grain growth kinetics. The material used in this study is non ori-
ented silicon steel produced by strip cast method and having a cubic texture. The
initial entry in this model is the random/experimental results that include a grain
identifier and orientation angles, which is used to calculate the final result, using
the inputs and the read Shockley functions by the Monte Carlo method.

Figure 2.8: Average grain area as a function of time during grain growth from a random
initial texture for different disorientation angles

[HD19]

The results from this study indicate that the grain growth rates are independent
of disorientation angles, and is cited as similar to actual results. (the steady grain
growth rate is estimated to be 0.96 against an actual value of 1). Additionally, the
kinetics of grain growth with anisotropy is lower than that of grains with isotropy.
This is because the average mobility is less as a result of similar energy levels.

2.3.1 Macro-structure of electrical steel

The loss characteristics of electrical steel are closely related to its texture [LYS+
15].

The obtained macro-structure of grain oriented electrical steel is depicted in figure
2.9. The most striking feature of the macro-structure of electrical steel is that it is vis-
ible without using a microscope. For ordinary varieties of steel, the microstructure
of the steel is in the order of nanometers or micrometers [Hay17]. The figure 2.9 (ref
to fig) also depicts a ’pole diagram’ of the steel. A pole figure demonstrates the aver-
age orientation concentration. The pole figures depict a ’sharp’ texture, with grain
pole orientations being hundreds of times more concentrated along one direction
than the average. This pole figure is indicative of a low deviation angle. Figure 2.10
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Figure 2.9: Macrostructure and texture of grain oriented steel
[LYS+

15]

Figure 2.10: Distribution of deviation angle from ideal Goss orientation in grain Oriented
Steel

[Hay17]

illustrates the angle of misorientation within the grain. As can be observed from
the figure, a very small fraction has a misorientation of over 5◦, which contributes
to the high efficiency of electrical steel [UMF+

03].

2.3.2 Production of Electrical Steels

Grain oriented steels are produced by a complex manufacturing process, consisting
of more than 20 distinct heating steps. Grain oriented electrical steels are produced
by the phenomenon of secondary re-crystallisation, and is the only product manu-
factured in the steel industry that uses such a process [XKW08]. It is manufactured
through a complicated process, which is not fully understood, and is therefore of-
ten referred to as the ’artistic product of Iron’. Development of the aforementioned
sharp Goss texture is a result of preferential ’abnormal growth’ of the favourably
oriented grains in the primary recrystallised matrix, whose development is charac-
terised by the presence of fine precipitates (inhibitors)[HS90]. During the process of
secondary re-crystallisation, Goss grains are estimated to consume in the order of a
million grains [GAFL05]. The conventional production schedule for Grain oriented
silicon steel is illustrated in figure 4.1.

From the figure, the role of inhibitors may be highlighted as essential to the
production of such steel. They are responsible for grain size after primary crystalli-
sation being small, on average they vary between 100 to 200 nm, which allows for
abnormal growth of Goss grains. The production of electrical steel is also sensi-
tive to the concentration of elements such as Carbon and Nitrogen. The maximum
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Figure 2.11: Production Schedule for Grain Oriented Steel
[GAFL05]

concentration of Carbon in electrical steel is 0.1%, which is lower than most steels.
This also makes grain oriented electrical steel the low carbon steel with the highest
added value. Thus, decarburisation and denitriding processes are also carried out
prior to the primary crystallisation.

2.3.3 Electrical Steel Innovations

Newer methods of production such as low temperature slab reheating and thin strip
casting have gained popularity in recent years over their lower energy consumption
and simplified production process. There is a lack of quantitative models, as a re-
sult much of electrical steel research is carried out by industrial trials, which are
expensive trials. Thinner gauge steels have a lower core loss than thicker gauge
steels, and as a result, the thickness of electrical steel gauge has seen a sustained
decrease in recent years, as is observed in figure 2.12. Older electrical steels (steels
produced prior to the 1980s) are usually 0.35 mm or 0.30 mm thick, whereas newer
variants have a thickness of 0.23 or 0.21 mm, with newer flagship grades having a
thickness of 0.18 mm or less. A reduction of thickness is also accompanied by a
reduction of spacing factor, a deterioration of shape and appearance and an reduc-
tion of stability of the secondary re-crystallisation, which result in limitations on
the thickness [XKW08].



18 electrical steels

Figure 2.12: Core Loss v/s grade
[XKW08]



3 E L E C T R I C A L S T E E L M A R K E T S

3.1 electrical steel market
Electrical steel is one of the fastest growing steel commodities, with an annual
growth rate of over 7 %, driven by increasing demand in Western Europe and
emerging markets in Asia [Ele], with a majority of such electrical steel being grain
oriented or ’transformer steel’. A situation with oversupply is estimated to ex-
ist until the year 2025 [lm19]. The increasingly stringent regulations surrounding
transformer efficiency, and the energy transition is also predicted to push demand
for high-performance grades [Gro20].

Electrical Steels form a niche segment of the market and over the past decade
have seen renewed interest owing to the energy transition away from fossil fuels
[Ste18]. As electrical steels are a specialised niche, they command a high margin, in
contrast to conventional steel manufacturing. As a consequence, steel giants such
as Nippon are investing in the domain, especially as they face harsh competition
and protectionism [Nip20].

Over the past two years, the international steel market has seen challenges, driven
by international trade tensions and volatile oil prices, which have led to an increase
in finished prices [MM20]. There is thus, an incentive to expand domestic manufac-
turing in countries such as the United States and India [Dil20]. Vos [Vos] expands
on the area in detail, illustrating the probable effects on industry competitiveness,
production and the effect of political administrations. The conclusion of the study
predicts a reduction in steel production on the back of lower competitiveness.

The industry also faces challenges with technological development. [MECP19]
relates common production methodologies to output texture and performance. The
ever-improving standards and technologies require significant investment into re-
search and innovation. This has resulted in greater consolidation in recent years
[Had19]. Currently, only twelve companies across the globe produce 95% of all
grain oriented electrical steel [Mar]

The medium and long term projections of electrical steel demand predict the
largest gain to be in the domain of electrical mobility. The transition to electric
mobility has the potential to increase demand by as much as 8 Mt (Mega Tonnes)
per year [NF], which is 50% of the current market. An important point to note is that
the grades of steel used in the electric mobility space differ from more traditional
grades, as they operate at higher frequencies, and would require adaptation in the
magnetic domain refinement space [SUYO18].

3.1.1 Prospective applications and User gains

One of the most promising areas of applications for next generation grain oriented
electrical steels is in the domain of smart grids. Smart grids are an important chal-
lenge and key component of the energy transition away from fossil fuels [WD17].
Smart grids allow for intelligent decentralised distribution of power, resulting in

19
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lower distribution and transformation losses, in addition to better quality of sup-
port to renewable energy [ML16]. Electrical steels form the backbone of renewable
energy production methods such as Wind energy. Grain oriented electrical steels
act as an important agent of smart grids, with next generation Direct Current (DC)
grids being capable of smart DC grids paving the way for next generation power
decentralisation [Jan18] .

Another application of grain oriented steels is in the domain of charging infras-
tructure, where material benefits, including increased efficiency and reduced charg-
ing time [Jan18]. Effective charging time for electric vehicles is an important met-
ric, and plays an important role in the purchasing intention of electrical vehicles
[JM6]. The marginal utility of reduced charging time is found to be positive, and
a study analysing effective charging times and charging cost points to heterogene-
ity depending on transport schedules and delays, supporting the case for speed-
dependent electrical charging infrastructure [DSP17].

The sector most likely to benefit from the next generation of non-oriented electri-
cal steels is electric mobility. The use of next generation non-oriented steels would
allow for operations at higher frequencies, along with more efficient transform-
ers, resulting in smaller and lighter components [Jan18]. The effect of smaller and
lighter electrical components translates directly to benefits in initial costs, efficiency
improvements due to lower weights and increased range/economy [BWW13]. In
the context of electrical vehicles, this would result in a lighter cheaper vehicle, with
a longer range [Inc20].

Frequency based losses

The use of electrical steels in high frequency applications allows for a small and
light core to transmit the same power flows [Bec02]. This increased ‘capacity’ is ac-
companied by increased system reactance and raised losses. The loss characteristics
of such as motor is described in figure 3.1. The figure illustrates the breakdown
of electrical power and losses, with iron loss (which relates to material loss) being
further divided into component losses. As illustrated, for the same material, an
increased Iron loss is observed for a higher frequency (the frequency is given by f ).

This increased loss is justified for applications related to mobility, where system
weight directly impacts efficiency. Oftentimes specialised grades of electrical steels
are used , which have different structural properties, and are designed keeping in
mind stator assemble and operational environments (temperature, vibrations and
coatings) [Div14] [SUYO18].

3.2 commercialisation strategy
Interestingly, the commercialisation strategy best suited for such materials may re-
semble the strategy adopted by many of the disruptors of the domain where it sees
its largest potential, Electric Vehicles. The attacker’s advantage strategy popularised
by automaker Tesla. As Thomas [TM19] points out, Tesla took advantages of their
competitors limited architectural innovations to introduce a product with superior
capabilities. This strategy also revolved around the successful development of key
performance attributes such as acceleration and range, which traditionally limited
the use of such vehicles to micro-car segments. The strategy also requires strategic
tradeoffs to be made, in domains with a lower priority for the market, consciously
chosen to be domains that have a low priority for the lead users.
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Figure 3.1: Breakdown of Electrical Steel Losses
[NF]

The strategic selection of a lead user is necessary, as the development of technol-
ogy and processing methodology is a capital intensive process. There is a lack of
quantitative models describing processes and states, as a result of which much of
electrical steel research is carried out by industrial trials, which are expensive trials
[XKW08].Additionally, there is only a marginal increase in efficiency to be obtained
for standard use case scenarios [Jan18]. The effect of efficiency is most acutely felt
in mobility use case scenarios, where the impact of losses are amplified [NF].

3.2.1 Lead User

The most compelling lead user would be components used in aerospace transform-
ers/power converters. Air-plane transformers and power converters are subject to
heavy loads, for a diverse range of electrical systems D.S.Stephans. Aerospace com-
ponents carry with them a Significant penalty for additional weight, and thus have
some of the most extreme cost/weight ratios (and subsequently employ some of
the most cutting edge and expensive alloys) [KZW10]. As a result, common designs
involve the use of aforementioned compact high frequency (and high loss) electrical
systems [NBM+

17].

While the aforementioned arguments paint a compelling argument for the ne-
cessitation of deployment in the domain of aerospace transformers and power con-
verters, the pièce de résistance of the argument lies in the medium to long term
development of the aerospace sector, which is predicted to see increased electrifica-
tion (such as the adoption of electric de-icing systems), and nascent developments
of all-electric aircraft [WT18]. Figure 3.2 illustrates the increasing trend of electrifi-
cation of modern aircraft systems.

Lastly, the adoption of the aforementioned technology, would benefit the most
important ancillary of aerospace, safety. This would be due to a combination of
smaller battery capacities required, and reduced insulation requirements. Both of
the aforementioned properties reduce the risk of electrical fires, which are some of
the most dangerous failures, and have even plagued modern platforms such as the
787 dreamliner [GS91] [WHHP13].

3.2.2 Opportunities and strategies

The electrical steel industry is characterised by a high barrier to entry, but in recent
years, the market has seen fragmentation and closure of many players, such as AK
steel, Essar Steel and ORB [MZ19] [Had19]. The global oversupply and uncertainty
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Figure 3.2: Trends of More Electrified Aircraft (MEA) throughout the ages
[NBM+

17]

caused by trade disputes and the coronavirus have delayed consolidation. The cost
of entry into these markets would thus only include the discounted price of the
assets and a retrofitting cost. For the ORB electrical steel plant in Wales, the cost of
retrofit for production of automotive grade electrical steels has been calculated to
be close to 50 million Pounds.

The ‘green recovery plan’ brought proposed by the Organisation for Economic
Co-operation and Development (OECD) and European Union (EU) also serves as an
opportunity for development of technology and overcoming entry barriers [OEC].
The biggest threat facing this technology is the ‘valley of death’ described in section
3.2.2. Development of the current technology with government funding, or in gov-
ernment labs would counter the threat of they valley of death, and also help fulfil
the green energy targets of the aforementioned groups.

Technological Feasibility and technology transfer

From the point of view of technological readiness, the current technology is assessed
to be at the cusp of applied research. The goal of the current study is closely linked
to proving domain feasibility. This phase of development is often succeeded by the
‘valley of death’, characterised by a gap between academic research and industrial
commercialisation [Gul09]. Figure 3.3 illustrate the funding and actors associated
with Technology readiness levels, with the curve in the figure illustrating resources
invested and minima of the curve indicating the region associated with the ‘Valley
of death’

3.2.3 Planar Magnetic Component systems

DC-DC converter systems are power distribution electronics first introduced in the
domain of avionics to efficiently and effectively supply diverse critical electrical
systems with power. The past three decades has seen the development of more
electrified aircraft, driven by concerns of sustainability and increasing fuel prices
[Hea91].This increasing electrification has driven developments in durability and
compactness in the domain of power distribution electronics [Kel01].

The integration of power converters into increasingly electrified airplanes is lim-
ited by magnetic components, transformers and inducers [BAE15]. The conse-
quence of increased electrification is linked to many positive outcomes for air-
craft, such as reduced fuel consumption, reduced emissions and reduced noise
[NBM+

17]. Additionally, these systems offer greater energy rationalization and
reduced maintenance costs [RSA12].
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Figure 3.3: Illustration of technological readiness level with assosiated actors and funding
[HLAK15]

The adoption of planar magnetic components is a result of increasing demand for
high efficiency, high frequency and high energy density power supplies, where it
outperforms traditional wire-wound magnetic components. Recent developments
in the domain of Printed Circuit Board (PCB) technology have contributed to the
reduction of size, weight and cost for such systems [OA14]. Ouyang [OA14] in
his work details the recent developments, advantages and tradeoffs of such Planar
Magnetic Component (PMC) systems. The use of PMC systems brings with it many
fundamental advantages, especially in the domain of magnetic design, but also
some tradeoffs, which the author is hopeful that the development and maturing of
the domain will iron out.

The highly specialized Planar Magnetic Components (PMC) includes in addi-
tion to magnetic components, specialized electronic components such as transistors,
capacitors and inductors. Additional requirements on operating conditions, and
optimizations based on power density and efficiency result in a highly integrated
design. The magnetic core designs are limited to specialized geometries, limited by
winding requirements [McL88]. The dimensions of some magnetic cores designed
by Magambo [BAE15] fall within the criteria of newer and more experimental elec-
trical steel manufacturing methods [GAFL05].

3.2.4 DC-DC converter system market

The application domains of such converter systems include Aerospace, avionics,
communicaitons, server storage and networking, automotive applications and In-
dustrial Electronic systems. The largest markets for such systems is in the domain
of communication systems, though emerging domains such as automotive vehicles
and industrial robotics offer higher growth potentials. The size of the market is
estimated to be close to 10 billion dollars, and estimated to grow at close to 15

The product lineup of such system is specialized by its vertical, and classified on
the basis of power, voltage and channel specific properties. The largest players in
the market include electronics giants such as general electric, Ericcson and Texas
Instruments. In the near term, the largest proporting of growth is expected to take
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place in the Asia Pacific region, driven by the installation of 5G infrastructure. The
market share of newer systems such as those making use of PMC systems is un-
known [MM18b].

The PMCs also find applications in the domain of Electric Vehicles (EVs), the
largest sector for such materials. This sunrise sector is estimated to be responsible
for the largest increase in electrical steel demand over the next decade. The sector
has traditionally been dominated by high frequency transformers, though disrup-
tive innovations such as PMCs are increasing their market share [BAE15] [RSA12].

A classification on the basis of PMC transformers cannot be made as data on
the same is not publically available. PMC’s are integrated into larger distribution
systems, and the concentration of such systems is highly dependant on the specific
model and manufacturers.

3.2.5 Way to market

The way to market for such materials is undoubtedly through partnerships with
larger DC-DC converter manufacturers, as component manufacturers within their
supply chains. The route to market strategy would thus be dependent on the ability
to construct strategic alliances, in the face of expensive research and development
of proprietary materials and manufacturing methods for both partners.

On examining the work of Yasuda [YI05], the aforementioned market environ-
ment closely resembles that of the semiconductor industry. Both the industries
manufacture highly specialized materials for a diverse range of proprietary elec-
tronic components spread across different industries, and require large capital in-
vestments to upgrade manufacturing architecture and research, limited to short
lifecycles.

The aforementioned study makes use of resource-based theory and social-exchange
theory to draw attention to the importance of value chain integration. This is also
reflected in the strategy of the market leader Taiwan Semiconductor Manufacturing
Company (TSMC), which highlight Materials development, manufacturing technol-
ogy and customer partnership as their largest strengths [Ind11].

A further analysis of the industry also highlights potential areas and require-
ments for establishing manufacturing plants. The establishment of semiconductor
fabrication plants has a net positive effect on the entire industries innovation capa-
bility and performance due to Research and Development clustering [SY05]. Thus,
in addition to generous incentives, some local city governments have also infused
capital into such projects [Sho20] [Li16][MM18a]. However, the ‘clustering’ effect of
the semiconductor industry is a topic of debate as it may be partially a result of its
‘non-globalised’ and ‘learn by action’ characteristics, though a weaker co-relation is
still seen in low added-value steel products [HM98] [SVGW10].

The go-to market strategy is concentrated on high efficiency and power den-
sity PMC components for DC DC converter systems, developed and manufactured
with specialized giants, with research and development conducted along traditional
hotspots, which for electrical steel are concentrated along the Rhine region and
Japan. The core strengths of this strategy are leadership in material development,
manufacture and customer partnerships. This market leadership in development
and specialized nature of product is part of a long-term trickle down innovation
strategy.



4 M A N U FA C T U R E A N D P R O C E S S I N G O F
E L E C T R I C A L S T E E L S

Material properties, such as magnetic properties are largely influenced by metallur-
gical properties such as material chemistry and texture[GCVK14][CKV+

07][Mos90].
Some material properties have a clear and independent relationship to specific met-
allurgical properties, but for most material properties, the relationship between ma-
terial and metallurgical properties are not simple and independent, but complex
and dependant on a host of metallurgical properties. It is hard to isolate the exact
relationship between specific material properties, such as magnetic properties, and
metallurgical properties. So much so that isolating the individual relationships has
proven a challenging endeavour [KJ08].

As a result, the production of modern grades of electrical steel is a complex
and challenging endeavour. The manufacturing of grain oriented electrical steels
is a complex affair, comprising of more than 20 distinct heating steps, and is the
only low carbon steel product that incorporates the ‘secondary recrystallisation pro-
cess’ in its manufacturing methodology. As a result of this complex manufacturing
method, grain oriented electrical steels are often called ‘the artistic product of Iron’,
and only produced by a dozen major manufacturers (even though its one the high-
est value added steel product made from low carbon steel). [LRB86]

Figure 4.1 details the steps involved in the manufacture of grain oriented silicon
steel. The desired crystallographic texture for grain oriented steel includes large
grains aligned in the GOSS orientation. The size of grain oriented silicon steels
is controlled by adding an exact concentration of inhibitor elements, which inhibit
grain growth during primary recrystallisation, but allow for the selective anomalous
growth of GOSS grains during secondary recrystallisation [GAFL05].

Figure 4.1: Production Schedule for Grain Oriented Steel
[GAFL05]
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4.1 rolling of electrical steels

The texture most suitable to applications making use of non oriented electrical steels
is the cubic texture, or the < 100 > || to Normal Direction fibre texture. This texture
is challanging to develop, as the natural end texture after cold rolling and annealing
for BCC materials like electrical steels are the gamma fibre or < 111 > || Normal
Direction fibre textures [Che13] (Incidentally, the < 100 > || to Normal Direction
fibre texture is obtained with relative ease for FCC polycrystalline materials with
the application of plane strain deformation and recrystallisation) [PPD+

10].

4.1.1 Cold Rolling

During recrystallisation, a cold rolled sheet transforms into a completely new tex-
ture [CBM14]. Various processes such as cold rolling, two stage rolling, or surface
annealing are commonly used to enhance the < 100 > (cube or theta texture), in
addition to processes such as severe plastic deformation.

4.1.2 Hot Rolling

As discussed in earlier sections, the finish rolling temperature (FRT) has a con-
sequential effect on the final texture. Hot rolled products have a high FRT, and
although this may result in predictable deviations in final texture, the final texture
of hot rolled steels is also dependent on the gradients of temperature, in addition to
the shear stress gradients. For low carbon steels such as silicon steel and chromium
steels, Raab and Lucke [RL92] showed that gradients of shear and temperature lead
to inhomogenities of texture and microstructure of hot rolled bands through the
sample thickness.

Water was sprayed on the surface of the sample to enable high temperature gra-
dients, which in turn reduced the dynamic recovery, and resulted in a higher com-
parative stored deformation energy in the centre. The observed differences were
retained even after phase transformations took place [RL92].

4.1.3 Asymmetric Rolling

Asymmetric rolling is a rolling technique which aims to introduce a larger shear
uniformly throughout when compared to conventional rolling [VSV+

08]. This is
realised by maintaining a high degree of friction between the rolls of the rolling
apparatus, and the rolled sheet. Asymmetrical rolling introduces a shear stress dis-
tribution that doesn’t only act on the surface, but also deep in the samples [FKK17].

This effect is achieved by changing the diameter of rolling or changing the veloc-
ity of rolling of one of the rolls [SVG+

12]. The use of asymmetric rolling is noted
by both surfaces of rolling undergo different shear stress characteristics. The use
of techniques such as singe roll drive (wherein only a single roll is driven and the
other roll is disconnected to the driveshaft) are also modes of performing asymmet-
rical rolling.

The works of Lee and Nyung [LL01a] also look at the deformation texture of
asymmetrically rolled steel sheets in BCC and FCC materials [HT97][Ric97]. The
aforementioned work utilizes FEM methods and the Full constraint Taylor model
to calculate the crystal rotation and predict its deformation texture.
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4.1.4 Shear stress characteristics of asymmetric rolling

Asymmetrical rolling decreases the normal pressure on rolled steel, and increases
the cross shear region (which refers to the region between the neutral point of
the upper layer and lower layer). The area of cross shear region is deformed in a
unidirectional manner. Thus, while symmetric rolling provides ideal texture near
the surface, asymmetrical rolling provides ideal texture through the thickness of the
sample. The work of Nyung and Lee [LL01a] observed a normal pressure reduction
from 700 MPa to 300 MPa [Gho89].

Dhinwal and Toth [SDT+
19] studies the behavior of single pass rolls of symmet-

ric and asymmetric rolling for various rolling percentages. The image at the top
of figure 4.2 details the obtained inclination profiles for symmetric and asymmetric
rolling (which were parallel to the normal direction before rolling), while the image
at the bottom of figure 4.2 detail the evolution of texture for symmetric and asym-
metrical rolling.

As can be observed from Figure 4.2, an increase in rolling percent is linked to and
increase in the sharpness of alpha and gamma fibres for symmetric rolling, while
the texture for asymmetrical rolling goes towards a shear texture, which indicates
a loss of symmetry. This has led some studies to indicate that the mid-section
texture would be the same for symmetrical and asymmetrical rolling, and that a
simple rigid body rotation would change the symmetric texture to an asymmetric
texture [LL01b]. This indicates that the phenomenon behind this transition may be
caused because orientations that are the stable end orientations become unstable
under asymmetrical rolling, leading to additional rotation beyond these stable end
orientation [HRL91].

Additional studies also indicate that the magnitude of shear strain and uniformity
are higher for asymmetrical rolls. An increase in shear strain also results in grain
size refinement, tensile strength improvement and tilt/rotation of texture.

Asymmetric Cold rolling

Cold rolling textures for asymmetrically rolled non oriented silicon steels were stud-
ied by Pei and Shah [PSY+

09], which investigated the through texture evolution of
2.1 % non oriented hot band silicon steel. Hot bands were normalised at 1000◦C for
5 minutes, after which 80% cold rolled reduction is performed. The velocity ratio
for this study is 1.125, while that of most other asymmetric rolling studies listed in
this chapter is 1.5 (The velocity ratio refers to the ratio between the velocity of the
upper and lower roll).

Figure 4.3 depicts the obtained results. The ODF functions are obtained using
series expansion method, and are depicted in the Roe notation. Asymmetric rolling
has a distinct effect on through thickness textures, with a weakened alpha fibre,
most prominent at 112 < 110 >,weakened 111 < 110 > and enhanced 111 < 112 >,
with the only exception being the topmost layer, where both alpha and gamma fi-
bre are weakened. Cold rolling of silicon steel leads to a maxima of 001 < 110 > at
70 % reduction, with further rolling leading to the formation of 112 < 110 > and
111 < 110 > texture [BTN07].

Asymmetric rolling with a velocity ratio of 1.125 can produce uniform shear strain
throughout the thickness. Thus, for this situation, the effects of asymmetric rolling
at 80% reduction cold rolling are qualitatively similar to S = -1 (which denotes
the bottom layer). Additionally, the final texture depends on the initial texture (in
addition to the shear stress distribution) [SHL89]
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Figure 4.2: Change in inclination profiles for pins parallel to the normal direction at different
asymmetric rolling ratios for 65 and 75 % reduction, and Sections of Phi2 = 45

ODF for rolling reductions between 20 and 75 %
[SDT+

19]

Asymmetric Hot rolling

The work of Chen and Butler [CBM14] investigates the effects of asymmetrical hot
rolling, as compared to conventional hot rolling. The study aims to investigate
its effect on non grain oriented steel, and describes a favourable Non grain ori-
entated electrical steel texture for asymmetrical hot rolling samples, compared to
conventional hot rolling samples. A higher concentration of theta fibre and lower
concentration of gamma fibre is obtained for steels produced using hot band strip
techniques, although much of this texture is eliminated after cold rolling processes
are performed. An increase in the undesirable gamma fibre texture is also observed
after cold rolling and annealing are performed.

On observing the texture of the samples at different section depths, a better un-
derstanding of the underlying causes for the results can be determined. Figure
4.4 depicts the obtained texture at different section thicknesses. The difference in
obtained texture at the surface and mid-thickness sections point to the role of recov-
ery and recrystallisation at the sections. For low carbon steels such as those used in
electrical steel applications (and the ones used in this research), recrystallisation is
possible in the ferritic region when hot rolling is performed, as long as the reduction
or stain imposed is larger than a critical value. Thus, as fig. 4.4 illustrates, a Strong
alpha fibre is observed in the mid-thickness section of the sample. This critical strain
is temperature dependant. For higher temperatures a higher dynamic recovery rate
and a smaller driving force is required. Thus, as the surface temperature of hot
rolled steel is lower than the temperature at the centre of the sheet, recrystallisation
is promoted at the surface, while recovery is promoted at the centre.
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Figure 4.3: Obtained orientation densities along the alpha and gamma fibres for different
layers in the cold rolled non oriented silicon steel sheets a) S = 1, b) S = -1, c)
D = 0.5, d) S= -0.5, e) S = 0 . Sqaure datapoints indicate symmetric rolling and
triangular datapoints indicate asymmetrical rolling

[PSY+
09]

4.2 severe plastic deformation

[PPD+
10] looks at Severe Plastic deformation as a method to reduce the concentra-

tion of the undesirable Gamma fibre texture (the gamma fibre texture is the fibre
texture that denotes the < 111 > || ND orientation). Five passes of 50 % reduction
are made (for a cumulative reduction of 96.9 %), after which surface annealing is
carried out, with an expectation to obtain the < h11 > {1/h12} texture, which was
first carried out by Homma et al [HNY04].

The findings of the aforementioned research include a higher than expected con-
centration of gamma fibre, along with a strong rotated cube texture. Additionally,
other textures were observed during the reduction steps, with a rotation only being
observed in the last pass. Other variables playing a role in the final texture include
the size of the grain prior to recrystallisation, with larger grain sizes being associ-
ated with identified texture, and smaller initial grains sizes being associated with
gamma fibre textures.
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Figure 4.4: distribution of texture concentration of A-¿ Asymmetric rolling B-¿ Conventional
rolling at different cross sections

[CBM14]

4.3 cross rolling
Cross rolling is a method of rolling in which the orientation of the rolling mill rolls
with respect to the sample sheet are rotated. The aim of cross rolling is to change the
orientation flow during plastic deformation [WWBW13]. Under laboratory condi-
tions, cross rolling may lead to strong rotated cube component texture, with texture
concentrations as high as 150x random intensity. Additionally, alpha and gamma
fibres are not produced during cold reduction, although the strong rotated cube
texture is much weaker then [KJ08].

The aforementioned study by Kestens and Jacobs [KJ08] also finds that when the
material is cold rolled to a reduction of between 4 and 8 %, and is submitted to
additional annealing treatment (comparable to what is applied on semi processed
products), the rotated cube component re-appears. Other components, including
components of the undesirable gamma fibre texture are formed as well [KJ08]. The
main drawback of this technique is that it may nit be implemented on a traditional
continuous line manufacturing process.
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Physically based computational modelling is an integral tool in not only better un-
derstanding the relationship between microstructures and properties, but also serve
as contributors to design of materials and processing. Computational modelling has
long been restricted by the complexity associated with deformation mechanisms
and limited computational power, to serve as indicators of qualitative trends and
complement existing phenomenological designs by accounting for minor variations.

In recent years, there has been an exponential increase in computational power
and has seen the development of increasingly sophisticated algorithms to describe
the aforementioned physical relationships, which serve to broaden the scope, accu-
racy and adoption of computational modelling. Computational modelling for the
development and optimisation of materials offer significant advantages in both the
developmental timeline and economic costs associated.

5.1 crystal plasticity modelling
The importance of texture and its applications have been discussed in earlier sec-
tions. Obtaining a desirable texture would favourably influence material perfor-
mance. The processes involved in imparting texture are influenced by the thermo-
mechanical processes, such as the forming processes. Forming processes involve
the application of complex stresses and strain, and are modelled using techniques
such as Finite Element (FE) analysis.

Crystal plasticity models aim to describe the behaviour of individual crystals
within a polycrystalline aggregate, under plastic deformation. There are innumer-
able models describing this behaviour, and the use of a specific model determines
the assumptions on which relationships between microstructural (including proper-
ties such as stresses on individual grains) and macro-structural parameters (which
include properties such as average flow stress and average plastic strain) are deter-
mined. These models make use of a representative sample set as an input. The
aggregate mechanical behaviour of input texture crystals is taken to be representa-
tive of texture evolution.

There are two types of crystal plasticity models, ‘Taylor’ type models, and finite
element crystal plasticity models. In ‘Taylor’ type modelling, properties such as slip
systems, slip rates, rotation of lattice and deviatoric stress are calculated for individ-
ual grains independent of the behaviour of other grains, while for crystal plasticity
finite element modelling (CPFEM) a finite element mesh takes into account the be-
haviour of other grains, considering it to be a matrix with averaged out properties
of the whole polycrystalline. Thus, ‘Taylor’ models have much shorter calculation
times and require less intensive computational loads to complete [VLSD05].

5.1.1 Multi-level Scaling

One of the primary differences between ‘Taylor’ type models and CPFEM models
is the multiscale modelling criteria. Crystal plasticity models differ in their behav-
ior for mesoscopic and macroscopic scales. Selection of a representative volume
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element (RVE) differs for the two crystal plasticity models [VH88]. Mesoscopic rep-
resentative volume elements are supposed to have homogenous properties, with
uniform stress and strain distributions. For Taylor type models, a single grain is
selected as the RVE, while CPFEM models, they are chosen to be smaller than a
single crystallite [VKV+

06].

CPFEM models are also statistical, and rely on the creation of a macro RVE, with a
few thousand grains which suitable represent of the macroscopic RVE, large enough
to have the average properties of the polycrystalline materials. CPFEM models also
make use of mechanic properties (stress equilibrium and geometrical compatibility)
to relate mesoscopic scale properties to macroscopic scale properties. Taylor type
models may make use of local constitutive laws based on crystal plasticity theory,
to relate local properties to internal processes (as the mesoscopic scale RVE is con-
sidered to be a single crystal inside which uniformity of properties is assumed)
[BH51].

Local Constitutive laws

A local constitutive law establishes relationships between local mechanical parame-
ters such as stress and strain within mesoscopic RVEs. Thus, local constitutive laws
aim to model internal processes such as determination of slip systems and crystal ro-
tation. In the case of Taylor type models, they usually include kinematic equations,
and may include additional/adverse energetic assumptions (the Taylor Hill model
stands as an example of the same) [BH51]. These models generally exclude elas-
tic parameters from their purview. The kinematic tensorial equation to determine
velocity gradient with slip rates is given below. The frame of the aforementioned
equation is any frame which does not rotate with respect to the polycrystalline ref-
erence system.

I = WL + ΣN
s=1b̂×msγ̇s

Additionally, Taylor type models treat the above equation as an equation in which
the velocity gradient tensor is a known quantity and the slip rate is unknown. Im-
plementing the rotation criteria, WL = 0, and equations given below are obtained.

dij = ΣN
s=1Ms

ijγ̇s

Where, Ms
ij = 1

2 (b̂×ms + ms × b̂)

As volume is assumed to remain constant and the orthogonality constraint be-
tween ms and bs, there are an insufficient number of equations, and would result
in a non unique solution (as the number of free variable slip variables exceed the
number of independent equations).

The mathematical solution of the same is carried out on the basis of inclusion of
the aforementioned ‘Energetic assumption’, which increases the number of equa-
tions to ensure an ideal solution can be found. The most commonly implemented
assumptions include those proposed by Taylor [Tay38] which states that the inter-
nal dissipated work is minimum, and that proposed by Bishop and Hill [BH51],
wherein the maximum work principle is used to determine deviatoric stress corre-
sponding to prescribed strain rate. Bishop and Hill have shown that their method
is equivalent to Taylors method and is often referred to as the Taylor Bishop Hill
theory.

5.1.2 Taylor model

The earliest crystal plasticity model was proposed by Taylor [Tay38], which aimed
to describe the plastic deformation of a single aluminium crystal during a tensile
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test, wherein the deformation of the Aluminium crystal is described as a result of
shear deformation along 12 slip systems. Deformation begins when the shear stress
resolved in the direction of a slip system exceeds a critical value, referred to as the
critically resolved shear stress.

The analysis of polycrystalline materials using this model was first proposed by
Taylor [Tay38], in which a polycrystalline was approximated to an aggregate of
grains, and adapted to a continuum mechanics framework by hill [BH51] (for the
case of small strains only). The assumption made for the adaptation to polycrys-
talline materials is a simple one, the microscopic strain rate is equal to the macro-
scopic strain rate.

This satisfies one of the two boundary conditions imposed on a polycrystalline
aggregate, and is commonly referred to as the ‘full constraint’ Taylor model. A vari-
ation to full constraint Taylor theory is classical relaxed constraints Taylor theory,
for which one or two of the components of the local velocity gradient tensor need
not be the same for all grains [VLSD05].

It satisfies the criteria of strain compatibility between neighbouring grains. It does
not however, satisfy the stress equilibrium criteria, and thus, does not completely
describe material behaviour. Studies such as Lucke [RL92] illustrate how the results
obtained using Taylors model deviate from experimentally observed results.

5.1.3 Relaxed Constraint Taylor Model

The quality of predictions for full constraint models has not been universally accu-
rate. Texture evolution during the rolling results in elongated and flattened grains,
which are not represented accurately in the full constraint Taylor model. Models im-
plementing a lax enforcement of the strain equilibrium criteria have been proposed
by Van Houtte and Kocks and Chandra [Van82][KC82].

This ’lax enforcement’ translates to not enforcing all the 9 constraint equations
of the Taylors model, and allowing some conditions to remain unfulfilled. This is
not based on concrete physical reasonings, and models derived are limited in their
scope to certain applications. Figure 5.2 below illustrates an example of the Lath
model, which can be used to simulate elongated grains. In this image, the shear l13
is shown to be relaxed, which would result in sheared grains in this context. The
pancake model is another example of the relaxed constraint theory, in which both
shear l13 and l23 are relaxed [KC82]. In the lath model, the local velocity gradient l13
is independent of the strain equilibrium criteria, and the value of l13 being derived
on the basis of minimum work required for plastic deformation.

Figure 5.1: Representation of an elongated grain, with x1 indicating rolling direction and x3
normal direction. For lath relaxed constraint models, l13 is relaxed

[VH88]

Van Houtte [Van82][KC82] also showed that the solutions obtained in this theory
are also obtained using the ‘mixed boundary criteria’ of the aforementioned Bishop
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Hill theory. The reasoning for this relationship centers around the principle that
for flat elongated grains, interactions with neighbours are incapable of building the
necessary stress level for enforcement of strain criteria.

5.1.4 Multigrain Relaxed Constraint models

The textures predicted by simply applying relaxed constraint equations were not
found to be better than Full constraint models. Not taking into account the local
interactions between grains is a suspected reason for the same. Multigrain relaxed
constraint models take into account the interaction between neighbouring crystal-
lites, though the number of neighbors that are taken into consideration depends
on the specific model used. The LAMEL model takes into account the interaction
between two crystallites, and the GIA model eight crystallites.

Multi grain models such as the LAMEL and ALAMEL models incorporate dual
structure equations, which serve to not only relate strain and slip rates, but also
stress and resolved stress in the direction of slip systems. Both LAMEL and ALAMEL
models take into account interactions between neighboring grains. They also do
not strictly follow the uniform field theory, but implement global average criteria,
wherein global average of parameters such as average strain tensors are equal to the
mean prescribed rate.

The LAMEL model was developed by Van Houtte and Delannay as a software to
determine texture evolution quantitatively. It was initially developed to study cold
rolled low carbon steels, which underwent rolling in room temperatures [VH88].
This model is most suitable for analysis of flat elongated grains. The limited scope
of the former were adopted in the Advanced LAMEL or ALAMEL model, which
overcame the limitations of scope the former has, such as the limited application of
the former to only rolled samples. [VKV+

06]

Taylor Ambiguity

The Taylor Bishop Hill model leads to multiple solutions when no degeneracy of
Taylor equation occurs or when the same values are used for the critical resolved
shear stresses on many slip systems. For non cubic materials, different critical shear
stress values are assigned to different slip systems. Relaxed Constrained (RC) mod-
els also enforce degeneracy as a rule.

The models to differentiate between the potential slip systems are often not avail-
able, though, various physical phenomenon cause differentiation, such as strain rate
sensitivity (Taylor type models such as the Taylor Bishop Hill model are strain insen-
sitive), though these are dependent on the material and environmental parameters.
Peeters et al [MH14] found that in the case of IF steels beyond 1 % plastic strain, the
effect of dislocation networks overshadowed the effect of strain rate sensitivity.

5.2 lamel
The LAMEL model is a multigrain model that treats two grains simultaneously, and
assumes they form a stack, as illustrated in figure 5.2, and are selected from the dis-
cretized input in a random manner, which are assigned to both the positions in the
stack (top and bottom). Figure 5.2

The relationship criteria for deformation of grain boundary is limited to sliding
along the interface, and do not allow for a distorting in the interface. Thus, in most
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scenarios, only type I and type II deformation are allowed to take place, as illus-
trated in figure 5.2 , as a result of which stress equilibrium is assured at the surface,
without requiring shear stresses be equal to 0. Deformations of type III are only per-
mitted when the shear stresses of both grains are equal, resulting in an undistorted
interface. Another condition implemented relates to the strain rate, wherein the vol-
ume average of relaxation is 0, as a result of which, the average strain rate tensor is
equal to the macroscopic strain rate. Thus, there is no change in macroscopic strain
rate as a result of relaxation.

The LAMEL model has proven to be successful in predicting rolling textures
quantitatively for steel [VH88], which is however, limited in its area of application
to those involving rolling operations of materials with flat elongated grains.

Figure 5.2: Modes of relaxation considered for the LAMEL model
[VLSD05]

5.2.1 ALAMEL

The results obtained by using CPFEM models have been found to deviate suffi-
ciently from those obtained by using the Taylor’s model, with the texture predic-
tions made using the CPFEM models being significantly better [VKV+

06]. Van
Houtte found that the partial implementation of the stress equilibrium criteria,
along with a relaxation in Taylor’s assumption of homogeneous deformation re-
sults in a desired result [VLSD05].

The ALAMEL model also most notably deviates from the LAMEL model and
other classical relaxed constraint model in its scope of application. The ALAMEL
model does not require the geometry of relaxations to be related to that of the
geometry, which allows it to be used for any mode of deformation.[VKV+

06]

Assumptions of the ALAMEL model

The ALAMEL model assumes the local strain rate is not constant throughout a
crystallite, and as a result, slip rates within a crystallite are also not uniform. Figure
5.3 illustrates how interactions near grain boundaries affect their bordering regions.
As a result, the deformation texture of the polycrystal can thus be represented by
the orientations that are developed in this region. The equations and laws used to
derive texture evolution in this model is similar to that of the LAMEL model.

The second major assumption of the ALAMEL model relates to the selection of
orientations used to illustrate the material texture. While performing simulations,
only a few thousand orientations are used, which are determined by taking into
account the probabilities of occurrence of the grain boundary segment and orienta-
tions of bordering grains.
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Figure 5.3: Illustration of polycrystal and grain boundary structure for ALAMEL model
[VKV+

06]

5.2.2 Implementation of the ALAMEL model

The selection of orientations is implemented by using a statistical method described
by Toth and Van Houtte [TH92]. A microstructural file is used for an input, which
describes the initial microstructure as an agglomeration of interface and frame ori-
entation angles with respect to the macroscopic frame. The ALAMEL model is not
restricted to elongated grains, and the microstructural file assumes equiaxed grains
(unless specified by the user). The selection of pairs are created randomly from the
aforementioned microstructural file.

The ALAMEL simulation is carried out as a series of consecutive reductions, with
the output properties of the previous iteration serving as the input properties of the
current iteration. In addition to initial texture and microstructural files, there are
several parameters that determine the deformation texture, most importantly the
total number of iterations, rolling reduction per iteration, rolling reduction direc-
tion and symmetry. As mentioned in previous sections, these parameters serve as
global limits, valid for only infinitesimal reductions.

In addition to LAMEL variables, lattice spin is also obtained for ALAMEL simu-
lations, which is used to calculate the orientation at the end of an iteration, while
interfaces are calculated in the basis of deformation tensor. The final deformation
texture is calculated by weighting of crystallite orientations using volume fraction
weighting.

A crucial point to note is that ODF sample symmetry for the initial texture should
not take into account sample symmetries, which would reduce the unit zone in ori-
entation space. The ODF’s specified must thus be specified in the tricilic sample
symmetry.The ALAMEL model is implemented with the help of the ALTAY soft-
ware suite.

5.2.3 ALTAY software system

The ‘ALTAY’ software system is used in the current study, and is a software system
that can be used to carry out ALAMEL, Taylor and GBD simulations for plastic
strains on polycrystalline materials. The model is based on literature from van
houtte [VKV+

06]. The software is written and compiled in Fortran (version 6.5),
and can be run as an executable. It is run as a set of subroutines, which are called
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from the main program.

The file uses as an input descriptions of possible slip systems (and twinning
systems), crystallographic texture details and strain instructions. The slip system
information is entered as a .PRE file, which is dependent on the crystal structure of
the sample (for the current study, the BCC.PRE file is used).

The crystallographic data is entered as a set of discrete orientations, and two
formats may be used, a .smt format input, which is arrived at by application of
a discretization program from the MTMTAY/MTM-FHM software system, or as a
.cur file, which is the format generated as an output in this software system. The
strain increments are encoded within an .io1 format file, (maina1.io1) which also
allows the selection of parameters such as output name, input crystallographic tex-
ture name, number of steps and reduction per step.

The outputs from the software system include .Res output files, which record the
stresses, taylors factors and plastic work associated after the first strain increment,
in addition to the aforementioned .CUR files that record output texture data and
.LST files that record log information and average values of variables such as stress.
.RAT files are also included in the output, and they detail the slip rate for each slip
system.





6 D I S O R I E N TAT I O N R E O R D E R I N G

6.1 problem definition

As discussed in earlier sections, the ALAMEL model uses as an input a textural
file, in addition to a microstructural file. The textural file lists the grain orienta-
tions of ALAMEL pairs, while the microstructural file contains information about
interface segments between two grains, denoting information about segment nor-
mal orientations, represented as Euler angles. The data from microstructural files
are considered to allow relaxation of grains as described in earlier sections (defor-
mation is allowed in the direction of these segment normal orientation).

Figure 6.1: Procedure of ALAMEL pair assignment modification, illustrating the original un-
modified pair assignment (left), and disorientation sorted modified pair assign-
ment (right) —Need to include credit—

The ALAMEL model randomly assigns a microstructural file vector to texture file
pairs. Each texture file pair is indicative of a pair of grains whose boundary param-
eters are given by the randomly assigned microstructural file vector. The grain pairs
are formed from sequential texture file input entries.

The aim of this study is to determine the effect of disorientation between pairs
for the textural file grain orientations. Figure 6.1 illustrates the process of ALAMEL
modification used for this study. The texture file input is modified to rearrange pair
disorientation values (given as ∆gigj) so as to obtain specific disorientation values
between each pair. The textural file pairs are simply rearranged, and the microstruc-
tural input is not modified in any manner in this process, resulting in no change
in input texture. Furthermore, the assignment of microstructural vectors is random
for the ALAMEL model

39
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The rearrangement of texture file input results in a change in disorientation angle
between ALAMEL pairs (its disorientation ’topology’) while not impacting input
texture. The behaviour and impact of the disorientation topology under plastic
deformation is observed in this study.

6.2 model validity

Prior to the adoption of a specific model, its efficacy needs to be determined. The
process of verification and validation aims to understand the same. The processes
of verification and validation are distinct processes, although they are both used
to analyse the efficacy of the models used. Barry Boehm described the differences
between them as two simple questions, which are given below. [Boe84] Thus, the
verification of the model aims to answer the question of the implementation of the
model for the specified task, while validation of the model refers to the efficacy of
the system as a whole with respect to the broader aims and tasks. • Verification:
Are we building the product right? • Validation: Are we building the right product?

In the current context, the verification process aims to analyse the implementation
of the given mathematical model in the computational domain. This relates to
its architectural, database and model specification implementation, which would
include the histogram and pairwise variation of disorientation angles, in addition
to model specific parameters, which for the Monte Carlo method would include
the dependence of results on the number of iterations, and variation of results in
different runs.

The validation process for the current context would analyses the variation pa-
rameters for different orientations compared. The output parameters are expected
to vary with disorientation paramters, as the distribution of disorientation angles is
not even, with random orientations producing the Mckinzie distribution [? ], which
displays low frequencies of orientations at low and very high disorientation angles.

6.3 monte carlo method

Monte Carlo algorithms are a broad class of computational algorithms that rely on
repeated random numerical sampling to obtain results [Les13]. This method is a
probabilistic method to obtain results for deterministic problems. The use of Monte
Carlo methods may be used for optimisation problem, and is the nature of its use
in the current study.

The Monte Carlo method was developed in Los Alamos in the 1940s to solve
multidimensional integrals and intractable numerical problems [MU49]. The name
‘Monte Carlo’ is also derived from the famous casinos of the area (though they are
not named so because of the association of gambling with probability theory, but
rather in honour of an uncle of one of its founders, who shared the ability of solving
intractable problems with the method) [Les13].

The use of Monte Carlo simulations is proffered when the problem or data be-
ing optimised has many degrees of freedom. In the case of the current study, each
orientation is independent of each other, and reclassification into similarly spaced
results can be done using innumerable pairings. There may be more than one ‘ideal’
representation, and results may be based on initial ordering of data or the algorithm
used. The use of Monte Carlo simulates a vast range of outcomes, including some
of the more extreme possibilities. The accuracy of the use of this method is pro-
portional to the number of Monte Carlo runs, and is described by the law of large
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numbers. According to the aforementioned law, the result of a large number of
random substitutions is stable [Caf98].

The current study also looks into the stability of the usage of Monte Carlo meth-
ods, by performing multiple Monte Carlo runs using the same number of steps.
Five runs were performed for the optimisation of disorientation, with fixed vari-
ance in disorientation of 5◦ beginning with a minimum disorientation criterion, 10◦

of disorientation to 60◦ disorientation and maximum disorientation. The standard
deviation for each iteration is given in figure 6.5 along with obtained results for
variation of mean vs number of trials.

As illustrated in the figure 6.5, a large variation of average disorientation in the
initial set of tranche of Monte Carlo runs is observed, after which there is only
a minor change in average values, and average values are close to ideal values.
But on observing the standard deviation of the same dataset, it becomes clear that
an increasing number of Monte Carlo iterations are linked to reducing standard
deviation.

6.3.1 Implementation of the Monte Carlo Model

As discussed in earlier sections, the Monte Carlo method is used to evaluate com-
plex multi-dimensional functions. The implementation of the Monte Carlo method
is performed in three steps, the definition of the problem space or function region,
the definition of function variables or ‘random input’ and measurement and con-
vergence of results.

The definition of function region aims to define the region within which includes
the function and is a ‘boundary’ definition. Within this region, the second step of
random input generation is performed. The generation of random inputs must take
into account characteristics such as the curvature of the domain defined in the first
step into account. Euler space is ‘distorted’ in volume, and requires an invariant
transformation to accurately generate random inputs. This is illustrated in figure
6.2, which illustrates the ‘random distribution’ of orientations in Euler space with
and without accounting for the distortion using invariant measures.

Figure 6.2: Random orientation distribution in Euler space without in-variance (left) and
after invariant transformation (right) which takes into account the distortion of
Euler space

[Bun13]
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The last step involved measurement of output functions and convergence. The
measurement of output variables is the measure of inputs that fall within the de-
fined domains to the total number of iterations. The process of convergence indi-
cates the arrival of a solution, and is indicated when additional iterations produce
negligible changes in output.

Figure 6.3 illustrates an application of the Monte Carlo method to solve the ‘’hang-
ing chain” problem, where subplot 2 indicates a flexible hanging chain suspended
from 2 points, with the red dotted line being the initial trial solution. The remaining
subplots measure the output variables, measured against the number of iterations.
Convergence can be observed, as the energy values measured do not vary signifi-
cantly with number of iterations when the number of iterations closes to 200.

Figure 6.3: Monte Carlo convergence of the Hanging chain problem, indicting the variation
in sum of potential and kinetic energy (subplot 1), bending energy (subplot 3)
and fraction of bending energy (subplot 4) with number of iterations and steady
state chain shape (subplot 2)

Within the context of the current study, the Monte Carlo algorithm is used to
reorder pairs on the basis of pair disorientation. The function region is limited to
initial disorientation pairs, bound to the aforementioned Euler Angle region. The
function variables in this study are the individual vectors, whose ’pair partners’ are
used as variable for swap calculations. The criteria for swapping is simply a closer
output to the ideal disorientation (given as the modulus of difference between ob-
tained and desired disorientation’s). The convergence criteria is defined by either a
(orientation volume dependant) predefined maximum number of iterations or (ori-
entation volume dependant) trials without success.The output file is also rewritten
at the end of every iterations performed.

6.3.2 Drawbacks of the current methodology

The use of Monte Carlo method for this study also poses many challenges, the fore-
most of which is the probabilistic nature of the method. The solution obtained by
the use of this method is not ideal, as it is dependant on the number of iterations
performed. The conversion criteria is also specified as a static standard deviation
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value, and not perfect convergence. There is also a possibility of a ’false minima’, es-
pecially as fractions of negative results are not accepted in the program used. Only
4 orientations are analysed in each iteration, which is a small number in comparison
to the total number of iterations [Caf98].

The probabilistic nature of the solution also makes the result analytically untrace-
able, and non-repeatable. As a result, multiple trials are also conducted to observe
the variation of results with a variation in Monte Carlo results. Lastly, the com-
putational time and resources required for this method are immense. A single
run involves hundreds of thousands to millions of iterations for a sample with a
few thousand orientations. Each iteration involves a measurement of the desirable
property, imposition of change, re-measurement, comparison of both initial and
modified parameters and substitution (or lack thereof). The number of entries anal-
ysed is typically very low, and there is an ever decreasing probability of being a
successful trial, in addition to ever-shrinking gains. Obtaining accurate results is ac-
companied by an exponential increase in computational resources [MU49](however,
the degree of complexity of this algorithm is still O(n) swaps).

6.3.3 Verification of Monte Carlo model

The verification process of this model involves plotting the histogram and the pair-
wise variation of the output disorientation texture data. This is in addition to limits
on tolerances related to the mean and standard deviation of the results. Figure 6.4
illustrates the obtained histogram and pairwise variation of disorientation for target
angles of 50◦ and 30◦ respectively.

Figure 6.4: Histogram for obtained disorientation distribution and pairwise variation of dis-
orientation
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The primary model assumption in this Monte Carlo simulation results is a ’depen-
dency’ on the number of iterations performed. A large number of iterations results
in a more accurate result, while being taxing computationally. The validation of
this model is conducted by measuring the response of the system with respect to
the number of iterations conducted. A texture file with 5000 orientations is used as
an input, and after each iteration, the average disorientation of the dataset, and its
standard deviation is recorded, for a large number of iterations ( 500000 iterations).
The average disorientation data is utilised to measure the evolution of results for
disorientation angles which are very different to initial averaged values (and illus-
trates how the average values change with number of iterations).

Figure 6.5 illustrates the obtained results, in which the variation of standard de-
viation for a 30◦ and 60◦ target and average disorientation for 60◦ and 35◦ are
measured against the number of iterations.

The standard deviation curve displays an inverse exponential relationship for
both angles measured. The convergence criteria and standard deviation properties
vary with the target disorientation angle, with extreme target angles such as 60◦

disorientation and minimum disorientation having the highest standard deviation
value and requiring the largest number of iterations to achieve convergence. This
is both a result of initial disorientation pairing values (as illustrated by the aver-
age disorientation subplot for a desired disorientation of 35◦, where the average
obtained disorientation values at the start of the shuffling process is close to 35◦),
and the nature of disorientation distribution for cubic crystal geometries, where, as
the Mackinzie distribution indicates, the aforementioned disorientation angles have
a sparse distribution.

6.4 hungarian algorithm

The Hungarian method is an assignment method first described by two Hungarian
mathematicians Dénes Kőnig and Jenő Egerváry, which described the Hungarian
problem in a literature paper on bipartite graph theory [Kön31]. One of the most
consequential theorems from this paper illustrated the duality of this linear pro-
gramming problem. For a binary input, the minimum number of lines that contain
all of an input type also equals the largest number of rows and columns with that
input, such that no other two inputs occupy the same row or column. Egevary de-
scribed a computationally trivial method to reduce more general cases into binary
problems, which together can be used to solve for a general case.

The Hungarian algorithm can be used as a deterministic method to re-order tex-
tural file pairs. Linear programming solvers present a powerful optimised method
of solving the aforementioned ’textural file sorting’ on the basis of disoreintation
problem [Bal65].

6.4.1 Definition of problem

The Hungarian problem is defined as illustrated in figure 6.6 by Kuhn [Kuh55]
who first developed the Hungarian algorithm to solve the same by combining the
methods of both Hungarian scientists. The problem relates to the best assignment
of personnel and cost, where ranked or absolute values for each of the same is
available. It aims to minimizes cost or maximize ratings for a given assignment
matrix (The duality of the method allow it to be used for both maximization and
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Figure 6.5: Obtained results for variation of average disorientation for target angle values
of 60◦ disorientation (top left), 35◦ disorientation (top right) and standard devia-
tion for target angles of 60◦ (bottom left) and 30◦ (bottom right) v/s number of
iterations

minimization criteria). Modern algorithms can be used to solve for an m by n
matrix.

6.4.2 Modes for solution

Specialised algorithms and methods have been developed to solve the aforemen-
tioned problem efficiently, in comparison to general linear programming methods.
The earliest solution developed was the Hungarian method, which makes use of
the theorems described by Konigs graph theory, and involves tedious steps, as the
selection of minimum number of lines to cover all the zeros present, which are chal-
lenging to implement [Lot89].

There exist three general categories of solutions

• Maximum flow

• Shortest path

• Linear programming

Most algorithms are based on maximum flow, as the algorithms by Kuhn [Kuh55],
Lawler [Law01] and Jonker [JV87]. The shortest path algorithms are solved by find-
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Figure 6.6: Hungarian problem definition according to Kuhn
[Kuh55]

ing the shortest paths on an auxiliary graphs, akin to the minimization of cost crite-
ria. Linear programming methods are specialized versions of the simplex method,
and include algorithms such as those presented by Balinski [Bal86]. Linear pro-
gramming algorithms are complex to implement and are outperformed by their
peers [JV87].

Working of the Hungarian algorithm

The basis of the Hungarian algorithm is laid out in Konig graph theory [Kuh55].
The input for the algorithm is bipartite in nature, most commonly enunciated as a
cost or qualification matrix. The output, as previously mentioned, is the minimum
cost for assignment. The first step performed for this algorithm involves aggrega-
tion of the relevant data into a cost or qualification matrix, horizontal / row sections
stand for individuals and column / section stand for jobs. The next step involves
normalisation of the given entries by ensuring they have positive values. In the con-
text of disorientation ordering, the matrix represents a disorientation matrix, with
each element Rij representing the disorientation between the disorientation pair
made from the ith and jth orientation entries. Additionally, the rows and columns
are made to represent odd and even values respectively, so as to generate a ’pair-
wise’ solution. If this action is not performed, the output solution would include
each orientation being paired with two other orientations, thus not corresponding
to the modified scenario.

The third step requires calculation of a set of row and column integers for which
Uij (row equivalent entry) and Vij (column equivalent entry) are always lower than
or equal to any Rij (graph values). This is akin to picking the minima of each row
and column, following which Marking (or qualifying) each Rij position if its corre-
sponding row or column values correspond to its Rij (graph values) is performed.
This corresponds to marking the minima points as specific ‘qualified locations’. A
set of ‘marked’ or ‘qualified points’ is noted as an ‘independent’, if its row and
column are not home to any other ‘marks’

If in the first iteration, there are ‘n’ independent marks, where n corresponds to
the number of rows and columns, then the desired assignment is already reached.
If the above is not the case, the graph theorem derived refining is carried out, using
the graph theory. Refinement is carried out by drawing a set of less than n lines
to improve the cover. This refinement is carried out by two routines, as shown in
figure 6.7 Each iteration of Routine 1 increases the number of assignments by 1 and
each iteration of Routine 2 decreases the covering sum by at least 1.

The steps followed in Routine 1 are given below, 6.8

• Row scanning for ‘eligible’ assignments, followed by classification of rows and
columns by whether they are essential (they yield an assignment) or not. The
optimality of selection is carried out by the steps detailed in the preceding
figure. Optimisation is carried out in a row-wise order.
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Figure 6.7: Hungarian routine for solution optimisation
[Kuh55]

• Routine 2 is carried out to increase the number of essential entries, and to com-
plete the assignment of essential entries. The implementation of routine 2 is
simple, the minima of the entire matrix is subtracted from all inessential rows
and added to all essential columns (an alternative case may also be adopted
when for some inessential rows i. Ui = 0, in which case the minimum value is
added to all essential rows and subtracted from all inessential columns).This
routine serves to increase eligible assignments.

There also exist various specialised methods and techniques within the Hungar-
ian model framework, such as the generalised interval arithmetic method [PR19],
which might be used to solve more specialised problems such as the fully interval
assignment problem. Additional methods of solution of this problem are simplex
method based solutions and zero one integer models [JLL97].

Selection of model and algorithm used based on efficiency, complexity of associ-
ated mode and available literature and software packages. The efficiency of terms
of computational load is expressed as a function of computational time complexity.
The time complexity of the original Kuhn Munkres algorithm is classified as O(n4),
which is defined in terms of polynomial order of initial matrix (the Hungarian al-
gorithm is polynomial in nature) [Bal86]. The most efficient models are an order of
polynomial more efficient, having a complexity factor of On3 was first developed
by Lawler [Law01] with later additions including models such as the Edmond Karp
model [EK72], the dual simplex method, and [Bal86] and the Jonker-Volgenant Al-
gorithm [JV87]

6.4.3 Implementation of Hungarian Algorithm

The simplest and fastest algorithms to implement are the maximum flow class of
algorithms, further classified on the basis of computational efficiency, with On4 al-
gorithms such as the Kuhn-Munkres algorithm [Kuh55] and On3 implementations
such as those developed by Lawler [Law01] and Jonker-Volgenant [JV87]. The selec-
tion of the Jonker algorithm is performed on the basis of robust support and soft-
ware availability [Cao13] [Tra06]. The LAPJV MATLAB code, based on the work of
Jonker [JV87] and developed by Yi Cao of Cranfield University [Cao13] is used for
the implementation of the solution.

The implementation of the algorithm uses as three basic inputs, which are illus-
trated in figure 6.9. The first is disorientation between every pair, in the format of a
text file is illustrated in the top of the figure, and is a large table. As mentioned in
earlier sections, in order to enforce the bipartite pairwise nature of the output, the
input disorientation file pairs odd and even inputs to each other. Thus, the table is
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Figure 6.8: Routine 1 or the Kuhn algorithm
[Kuh55]
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Figure 6.9: Hungarian Method Implementation visualisation with input and output files

’reformatted’ (as indicated by the blue arrow) to a table which only contains disor-
eintation angles between odd and even vector pairs. The second input (illustrated
by the code entry to the right of the first processed input) is the ideal disorientation
values (which indicates the target disorientation value desired). The second line
of code intends to transform the first input to a ’max-min’ format. The last input,
textural file, includes the orientation of each grain in Euler space and its volume
fraction. This input is not reshuffled, and thus, the difference between oreintation
vector numbers for this input are indicated in the unprocessed input number 1.

The ‘cost matrix’ input is then derived by taking the absolute value of the differ-
ence between the matrix element values and the ideal disorientation values. This
operation results in positive ‘elements’ which identify the deviation from the ideal
disorientation. The minimization of this ‘cost matrix’ thus represents the minimum
deviation from ideal disorientation. For the minimum and maximum angle criteria,
an ideal angle of 0 and 63 are used (as a value close to 62.9◦ is derived by Mackenzie
[Mac58] to be the highest)

Thus, three outputs are once again derived. The first output is the aforemen-
tioned cost matrix, illustrated in figure 6.9, with highlighted entries signifying ideal
solution selections. The second result, ’Row Solution’ provides row-wise output
assignment, and is used to ‘reshuffle’ the input texture file. It additionally details
the deviation from Ideal values for each entry. The final output is the reshuffled
textural file, generated by rewriting the rows in the order prescribed by the row
solution output.
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Figure 6.10: Histogram for obtained disorientation, using the LAPJV algorithm with a 35◦

disorientation goal

Figure 6.11: Pairwise disorientation obtained, using the LAPJV algorithm with a 35◦ disori-
entation goal

6.4.4 Verification of Hungarian Algorithm

The verification of the Hungarian method implementation is carried out by analysing
the disorientation distribution of output orientation pairs. The efficacy of the model
and its step-wise evolution is not tested, as no modifications have been made to the
Jonker algorithm steps.

Figures 6.10 and 6.11 illustrate the distribution of obtained disorientation for the
Hungarian derived output for a disorientation target of 35◦. In contrast to the Monte
carlo results, which show a normal distribution around ideal values, the Hungarian
results more closely resemble ‘digital inputs’, with sharp peaks and distinct fre-
quencies present throughout nearly the entire spectrum of possible disorientation
values.

6.4.5 Validation of Hungarian Algorithm

The validation process of the Hungarian algorithm is carried out by analyzing the
variation of the mean, standard deviation and variance of disorientation outputs for
different disorientation values, as illustrated by figures 6.12 6.13 6.14

(which illustrate obtained values only and exclude the original experimental re-
sults). As illustrated in the aforementioned diagrams, the disorientation angle ob-
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Figure 6.12: Variation of obtained mean disorientation value with input disorientation spec-
ification

Figure 6.13: Variation of obtained disorientation standard deviation values with input dis-
orientation specification

Figure 6.14: Variation of obtained disorientation variance with input disorientation specifi-
cation
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tained follows a linear trajectory (though a deviation is seen for the maximum dis-
orientation scenario, whence a disorientation value higher than 63◦ is not possible).
The standard deviation and variance figures display an apogee at minimum disori-
entation, for which a possible explanation is the nature of disorientation distribu-
tion for cubic symmetries. Additionally, the standard deviation results follow a U
shaped curve, with the lowest values being reported at 45◦.

The mean values obtained are within a margin of 0.05◦ of target angles (this ex-
cludes the minimum and maximum data files) with multiple results being accurate
to the 4th decimal, and a standard deviation value of less than 0.5◦ for all but the
minimum disorientation results, with a similar trend being seen in the case of vari-
ance as well. The lowest standard deviation is recorded for the 45◦ disorientation
file, for which the standard deviation is 0.0234



7 R E S U LT S

The qualitative and quantitative comparison of the large set of output results re-
quires characterisation parameters to highlight important results and trends. Out-
put results are compared to experimental results, in addition to results obtained us-
ing different runs (in the case of Monte Carlo inputs) or methodologies and require
the use of a comparative parameter. Additionally, the texture evolution properties
also need to be highlighted using texture characterisation parameters.

7.1 texture index
The characterisation of texture properties can be captured by the coefficients of its
series expansion in generalised spherical harmonics. The complete characterisation
of these coefficients is needed for a complete characterisation of texture. The value
of each coefficient describes the sharpness characterisation, while the distribution of
coefficients describes the distribution characteristics. The C coefficients of a texture
file can be obtained by using the MTMTAY software suite, using a host of input
options.

While C – coefficients are useful in carrying out limited qualitative analysis, it
becomes a cumbersome and complex tool for carrying out a large scale quantitative
analysis. The use of a more general texture index parameter (which is an indicator
of texture severity without considering its distribution details) would better serve
this need. The texture index parameter is thus a single parameter that describes the
sharpness of a texture

The texture parameter is obtained by integrating the square of the texture param-
eter function, which is given by

t =
∫

f (g)2dg

. On expanding the equation, we get the following

J = Σl,µ,v
1

2l + 1
|Cµv

l |
2

.
For random textures, all C coefficient values except for C11

0 are 0, which results in
Jr = 1, while for ideal crystals

Cµ,v
i = (2l + 1)T∗µv

l g0

For which Jideal → ∞ [Bun13].

7.2 error index
The texture index results cannot be used to effectively compare textures with close
sharpness values, or to other ODF results. Many of the outputs derived vary only
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marginally or display significant differences in sharpness. The approximation error
function calculates the difference between sharpness concentration in Euler space.

δ = |vA − vE
vE

| × 100%

where vA represents actual value/obtained value and vE represents expected value
or standard value. δ represents obtained percent difference. This is performed by
using a Fourier based algorithm, which analyses the difference in Fourier coefficient
concentration in predefined quadrature nodes [Too].

7.3 monte carlo and experimental result vari-
ance

The Monte Carlo method is a probabilistic method, which yields a distinct order
each time it is run, though the difference in input texture characteristics for each
run is small. This study makes use of 5 Monte Carlo runs to definitively draw a
better idea about the relevance of disorientation angle in output texture properties.
Thus, within this section an analysis of the Monte Carlo results is carried out using
the aforementioned Error Index Value (EIV) and Texture index (TI) parameters. For
the case of EIV, the comparison of Monte Carlo results is performed against the
experimentally obtained 55 and 83 % rolling samples.

7.3.1 Error Index values and Rolling reduction curve variations of Monte Carlo
results

The first two results, Figures 7.1 and 7.2 compare output Monte Carlo results to
obtained experimental results using the Error Index parameters.Figure 7.3 displays
the texture index values for all Monte Carlo runs. All results are presented by their
mean values, with error bars indicating the span of the curves across all the runs
(the maximum and minimum values over five separate Monte Carlo runs is used to
define the error bars). The run-wise data is included in the Appendix.

Figure 7.1: Rolling Reduction v/s Error Index, comparison between 55 % rolled experimental
samples and Monte Carlo evolved texture, with Error bars
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The shape of the obtained results for the Error Index Value (EIV) curves (Figures
7.1 and 7.2) is upward sloping with increase in rolling reduction. The obtained
error graphs list the minimum disorientation value curves to have the highest Error
Index values (EIV) for every specified rolling reduction percent. Every consequent
increase in disorientation angle results in a curve with lower Error Index Values.
Additionally, the distinction of curves (and thus non-overlap of obtained Monte
Carlo results) for disorientation angle values of 45◦ and below. This separation is
most apparent for high rolling reduction values, but persists even for low rolling
percent values.

For the most part, both Figures 7.1 and 7.2 follow the same general trajectory
across rolling reduction. A slight reduction of EIV is observed, following which
a steady increase is recorded. The steady increase after the minima appears to be
characterised as parabolic growth.

The rolling reduction characteristic with minimum EIV values is different for both
figures, and for each figure, this value is different for each disorientation curve.
The rolling reduction assosiated with minimum EIV values for a curve is lower
for smaller disorientation angle curves and higher for larger disorientation angle
curves. In the case of figure 7.1, for the largest disorientation curves, this is found
to be at 40 % rolling reduction, corresponding to an EIV of just over 0.14.In the case
of figure 7.2, for the largest disorientation curves, this is found to be at 50 % rolling
reduction, corresponding to an EIV of just under 0.2.

Figure 7.2: Rolling Reduction v/s Error Index, comparison between 83 % rolled experimental
samples and Monte Carlo evolved texture, with Error bars

The overlap angle for the two Error index v/s disorientation graphs can also be
accurately determined to be 20◦ disorientation between 30 % and 35 % adjacent
curved when the 83 % rolled reduction sample is observed, and 35◦ disorientation
for the 83 % rolling reduction sample. Interestingly, in the instance of the latter, the
highest adjacent pair overlapping is the 30 % and 35 % rolling reduction pair, while
in the instance of the former is 50 % and 55 % rolling reduction (55 % and 60 % if
the results are rounded to three decimals).
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7.3.2 Texture Index values and Rolling reduction curve variations of Monte Carlo
results

The texture index variation with rolling reduction is represented in figure 7.3, and
follows the same illustration methodology as the EIV results of the previous sec-
tion, with mean values displayed alongside error bars indicative of the span of
results obtained over 5 runs. The run-wise data for this set of results is available in
the appendix.

The shape of the Texture Index variation with rolling reduction, figure 7.3 ap-
pears to indicate that the relationship between texture index and rolling reduction
closely resembles a linear function. The arrangement of each disorientation curve
comprising the result is also very simple, with the curves being ordered on the
basis of their disorientation angle, with the minimum disorientation curve having
the highest and maximum disorientation curve having one of the lowest values
across all rolling reductions. Each disorientation curve making up this result ap-
pears to follow a marginal difference in slope values (following the same ordering
as arrangement, with minimum disorientation curves having the highest slope and
maximum disorientation curve having one of the lowest slope), resulting in a mild
divergence for the aggregate set of curves.

Figure 7.3: Rolling Reduction v/s Texture Index, Monte Carlo evolved texture, with Error
bars

The aforementioned results (given by figure 7.3) indicate that a smaller disori-
entation results in a stronger texture than a larger disorientation value. Another
observation that can be made is that the results for all disorientation curves with
disorientation above 45◦ strongly overlap. Thus, an increase in disorientation be-
yond 45◦ does not change the obtained results significantly, and texture sharpness.

A large variance in ALAMEL texture results for the same input texture disori-
entation suggests that factors unrelated to the disorientation values play a role in
texture evolution in the ALAMEL model. Consequently, a distinct set of curves
with a large separation between sequential is indicative of the strong role played by
disorientation ordering in the evolved texture.
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Non Overlap ODF behaviour

As described in this section, there is scarce overlap in the Error Index and Texture
Index for low disorientation high rolling reduction simulations. Figure 7.4 depicts
the ODF plot of the 5th set of Monte Carlo input simulations, with an input disori-
entation of 10◦, and a rolling reduction of 70 %. Figure 7.5 looks at another run from
the same set of simulations, the only difference between the two being the disori-
entation angle. While figure 7.4 has an input disorientation angle of 10◦, figure 7.5
is obtained using a minimum input disorientation criteria. While the ODF figures
resemble each other closely, the texture sharpness of figure 7.5 is clearly observed
to be greater. A higher sharpness in ODF figures translates to an increased Texture
Index value.

Figure 7.4: ODF plot for Run Number 5, Monte Carlo simulation, with an input disorienta-
tion of 10◦ and rolling reduction of 70 %

Figure 7.5: ODF plot for Run Number 5, Monte Carlo simulation, with a minimum input
disorientation and rolling reduction of 70 %

Interestingly, the effect of this increased texture sharpness is minimal while com-
paring Error Index values.Figure 7.6 and figure 7.7 highlight the ODF difference
between the aforementioned ODF graphs and the experimentally obtained results.
This ODF difference chart is obtained by subracting the ODF concentrations of its
component units, and is thus similar in methodology to Error Index Value calcula-
tions (which is performed by quadrature concentration difference between its com-
ponent units). The aforementioned ODF difference charts do not show a large
deviation in terms of shape or concentration, with the maximum concentration be-
tween the two being 5.4 × Random intensity and 4.7 × Random intensity. Even so,
a clear distinction can be made between the two ODF difference figures in terms of
sharpness.
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Figure 7.6: ODF difference plot between obtained experimental 55 % rolling reduction and
Run Number 5, Monte Carlo simulation, with an input disorientation of 10◦ and
rolling reduction of 70 %

Figure 7.7: ODF difference plot between obtained experimental 55 % rolling reduction and
Run Number 5, Monte Carlo simulation, with minimum input disorientation and
rolling reduction of 70 %

7.3.3 Error Index values and Rolling reduction curve variations of Monte Carlo
results

The Error Index curves results can also be illustrated in comparison to disorienta-
tion angle values. Figures 7.8, 7.10 and 7.9 The second set of images. These results
compare the same data-set as the earlier section, but differ in the sorting and se-
lection of outputs to be measured. The results in this section are measured against
disorientation angle in the X-axis, and are meant to highlight the observations of
the earlier sections.

The curves illustrating error index variations with rolling reduction include Fig-
ures 7.8 and 7.9. While the shape of the aggregate set of curves is not similar for the
two sets of results, they follow the same trend. The maximum error of both these
curves is close to each other (at close to 0.32). The minimum disorientation values
have the highest errors, which show a near linear reduction in Error Index Values
(EIV) in response to increases in disorientation angles unto disorientation values be-
tween 45◦ and 50◦. Above these disorientation values, the Error Index Value shows
little variation and levels off.

The rolling reduction curves are also prominently ranked on the order of decreas-
ing rolling reductions (high EIVs assosiated with high rolling reductions). Each
rolling reduction curve also has a different slope, resulting in overlap with curves
of a sequentially higher rolling reduction values. This probability of overlap is in-
creasingly prevalent at higher disorientation angles, and for the EIVs compared to
83 % rolling reduction experimental samples (given in figure 7.9). Lastly, this over-
lap is significantly more common for low rolling reduction curves than for high
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Figure 7.8: Rolling Reduction v/s Error Index, comparison between 55 % rolled experimental
samples and Monte Carlo evolved texture, with Error bars

Figure 7.9: Rolling Reduction v/s Error Index, comparison between 83 % rolled experimental
samples and Monte Carlo evolved texture, with Error bars

rolling reduction curves.

There is also a slight deviation observed between the Error Index Value curves
for the two experimentally obtained comparisons, where the error index compared
with the 83 % reduction displays a narrower spread of 0.12 for the lowest disori-
entation (highest spread section) and 0.04 for the highest disorientation (narrowest
spread section). In comparison, the 55 % rolling reduction Error index spreads
of 0.14 and 0.06 respectively. This is interesting as the mean convergence values,
minima and maxima values of the Error Index are lower for the 55 % rolling reduc-
tion experimental comparison. Thus, the overlap disorientation for adjacent rolling
reduction curves takes place at smaller disorientation values for the 83 % rolling
reduction experimental curves, when compared to the 55 % rolling reduction exper-
imental curves.
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Figure 7.10: Rolling Reduction v/s Texture Index, Monte Carlo evolved texture, with Error
bars

The texture Index results, given by figure 7.10 illustrates the effect of rolling. It
is marked by distinct close to evenly spaced out parallel rolling reduction curves,
whose error bars do not overlap with one another. Instead, the slopes of the curves
flatten out with increasing disorientation values.

As expected, the texture index of smaller rolling reductions is the least, progress-
ing to the highest values for the largest reduction. An interesting feature concerns
the space between adjacent curves, which can be seen to reduce with increasing
rolling reduction, i.e. the distance between the aforementioned parallel rolling re-
duction texture index curves is largest for the smallest rolling reduction pairs, with
the gap reducing with an increase in rolling reduction of the pairs.

The variation of texture index curves is interesting as it illustrates the magnitude
of impact of disorientation value. The texture index of an 83 % rolling reduction
texture reordered for maximum disorientation is similar to that of a 55 % rolling
reduction minimum disorientation sample

Overlap ODF behaviour

The preceding sections describe an ’overlap’ between certain high disorientation
curves, even at high rolling reduction values. Figure 7.11 and figure 7.12 below dis-
play a pair of results that represent such an ’overlapping’ pair. These ODF figures
are obtained from the third Monte Carlo simulation set, and describe simulations
with rolling reductions of 70 % (similar to the results from the 7.3.2 section). Figure
7.11 illustrates a simulation with an input disorientation angle of 55◦, while figure
7.12 illustrates a simulation with a maximum input disorientation angle. Interest-
ingly, the difference in input angle for the set of ODFs described in section 7.3.2 and
the current set are similar, at about 7◦, but they occupy polar opposite sequential
spaces.

Both the aforementioned ODF figures have a very similar shape, with a near ex-
act minima and maxima. This is in sharp contrast to the results of section 7.3.2,
which display a much sharper texture (both results describe simulations performed
with the same rolling reductions). This trend carries on while comparing ODF dif-
ferences to experimentally obtained results, given in figure 7.13 and 7.14, which
describe the 55◦ disorientation and maximum disorientation respectively. Interest-
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Figure 7.11: ODF plot for Run Number 3, Monte Carlo simulation, with an input disorienta-
tion of 55◦ and rolling reduction of 70 %

Figure 7.12: ODF plot for Run Number 3, Monte Carlo simulation, with a maximum input
disorientation and rolling reduction of 70 %

ingly, the difference is ever so slightly sharper for figure 7.14, which describes a
higher disorientation angle (and runs contrary to the established trend at lower
rolling reductions).

Figure 7.13: ODF difference plot between obtained experimental 55 % rolling reduction and
Run Number 3, Monte Carlo simulation, with an input disorientation of 55◦

and rolling reduction of 70 %

7.4 standard deviation properties of monte carlo
results

As discussed in earlier chapters, the Monte Carlo method of obtaining disorien-
tation ordered shuffling is a probabilistic method, and returns a slightly different
result for each instance it is run. This sections aims to compare the standard de-
viation properties of results, for Error Index Values and Texture Index results. As
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Figure 7.14: ODF difference plot between obtained experimental 55 % rolling reduction and
Run Number 3, Monte Carlo simulation, with maximum input disorientation
and rolling reduction of 70 %

with earlier sections, these results are also measured against rolling reduction and
disorientation angle.

7.4.1 Standard deviation properties of Monte Carlo Error Index Value results,
plotted against disorientation angle

The spread within the various Monte Carlo input runs is characterised in this sec-
tion as a variation of the Error index value standard deviation for the family. The
standard deviation variation for the standard deviation graphs plotted against dis-
orientation angle include Figures 7.15 and 7.16.

Figure 7.15: Disorientation Angle v/s Error Index Standard deviation, comparison between
55 % rolled experimental samples and Monte Carlo evolved texture

The standard deviation curves are influenced by both selection and simulation
parameters. The disorientation angle is associated with a standard deviation value,
as illustrated in figure 6.13 from the validation of the Hungarian model section. The
minimum and maximum disorientation scenarios result in higher standard devia-
tion than the median values. The low volatility band suggests corresponds with the
sections with lower disorientation standard deviation.



7.4 standard deviation properties of monte carlo results 63

Figure 7.16: Disorientation Angle v/s Error Index Standard deviation, comparison between
83 % rolled experimental samples and Monte Carlo evolved texture

7.4.2 Standard deviation properties of Monte Carlo Texture Index Value results,
plotted against disorientation angle

Figure 7.17: Disorientation Angle v/s Texture Index Standard deviation, Monte Carlo
evolved texture

The texture index standard deviation results, illustrated in figure Figure 7.20, also
display a sharp increase in texture index values at the 20◦ disorientation mark. The
standard deviation at a disorientation value of 20◦ varies from 1.5 times its preced-
ing value to over 4 times as high. This is preceded by a largely sustained reduction
that culminates in a local minima. This higher than normal texture index varia-
tion may be a result of the changing nature of grain boundary interaction, with
the associated disorientation being slightly above the low angle to high angle grain
boundary transition.

Additional observations made on this set of results include the range of distri-
bution of standard deviation values, which is slight, and the nature of distribution
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of the same with respect to rolling reduction values. The range of distribution of
error index standard deviations are narrow, between 0.005 and 0.025. On the other
hand, the nature of distribution for lower rolling reduction seems to be proportional
to rolling reductions, with distinct parallel curves being the norm, but for higher
rolling reductions, this relationship seems doesn’t seem to hold.

7.4.3 Standard deviation properties of Monte Carlo Error Index Value results,
plotted against rolling reduction

The results illustrating the standard deviation properties of the Monte Carlo Error
Index value are given in figures 7.18 and 7.18. These are collated from the same
dataset as the previous section in this section.

On observing the standard deviation variation with rolling reduction, the most
striking feature of the standard deviation curve is its seemingly periodic, almost si-
nusoidal nature. The mean value shows a significant proportional relationship with
increasing rolling reduction, and earlier graphs illustrating overlap at higher rolling
reductions. The same trend is not reflective in the standard deviation graphs, indi-
cating overlap relates not to increased statistical divergence with increasing rolling
reduction, but rather the converging nature of simulations. This fact can be further
confirmed upon observing the corresponding mean value graphs.

There is also much variation in the ‘amplitude’ and ‘mean’ and ‘period’ of the
periodic variations. In the set of results illustrated by figure 7.18. The disorien-
tation values of 20◦ and 50◦ have a higher standard deviation when compared to
the remaining dataset, with a ‘period’ difference in maxima being observed. The
20◦ disorientation curve reaches this value at 45% rolling reduction while the 50◦

disorientation curve reaches this value at a rolling reduction of 55%. At very high
rolling reduction values, the 60◦ disorientation curve seems to have the highest
standard deviation, but seems to have lower mean but higher ‘amplitude’ than the
aforementioned curves.

Figure 7.18: Rolling Reduction v/s Error Index Standard deviation, comparison between 55

% rolled experimental samples and Monte Carlo evolved texture

The curves represented by figures 7.19 also return similar results. The standard
deviation scale observed is also similar to the aforementioned experimental com-
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parison, the 55 % rolling reduction results.

7.4.4 Standard deviation properties of Monte Carlo texture index results, plotted
against rolling reduction

Figure 7.19: Rolling Reduction v/s Error Index Standard deviation, comparison between 83

% rolled experimental samples and Monte Carlo evolved texture

The texture index standard deviation curve, given by figure 7.20 shows a stronger
standard deviation, while also following a more general growth trend with increas-
ing rolling reductions. Interestingly, the 20◦ disorientation curve is also the maxima
for lower rolling reductions, though for higher rolling reductions the curve with
the highest standard deviation values is the minimum disorientation curve, and the
50◦ disorientation curve is a low mean curve. For higher disorientations, the curves
resemble a ‘periodic’ ‘sinusoidal’ nature.

Figure 7.20: Rolling Reduction v/s Texture Index Standard deviation, Monte Carlo evolved
texture
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ODF behaviour for multiple runs

The standard deviation properties described in this section are a reflection of the
variations between multiple Monte Carlo simulation runs. Each set of Monte Carlo
runs has very similar disorientation distribution, but vastly different input order. A
small standard deviation value and low overlap between sequential simulations is
indicative of a strong relationship between input characteristics and evolved texture,
and vice versa.

Figures 7.21, 7.22, 7.23, 7.24 and 7.25 illustrate the obtained simulation results for
each of the 5 Monte Carlo runs with an input disorientation angle of 20◦ and rolling
reduction of 45 %. As expected, the simulations are very similar to each other, but
they do display very minor differences (the sharpest texture has a sharpness of 5.5
× Random Intensity, while the least sharp texture has an intensity of 5.4 × Random
Intensity), which in turn, influence outputs. The appendix of this study includes
the obtained ODF figures for a range of standard deiviation scenarios

Figure 7.21: ODF plot for Run Number 1, Monte Carlo simulation, with a 20◦ input disori-
entation and rolling reduction of 45 %

Figure 7.22: ODF plot for Run Number 2, Monte Carlo simulation, with a 20◦ input disori-
entation and rolling reduction of 45 %

7.5 monte carlo results compared to default evolved
texture

While comparing simulated textures and experimental outputs is helpful in de-
termining the practical implications of disorientation, it may not describe the be-
haviour of the ALAMEL model accurately.This section aims to compare two simu-
lated textures, those simulated by performing rolling reduction operations on the
experimental input texture, and Monte Carlo reshuffled inputs. This comparison
will illustrate the impact of disorientation angle on the ALAMEL software suite
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Figure 7.23: ODF plot for Run Number 3, Monte Carlo simulation, with a 20◦ input disori-
entation and rolling reduction of 45 %

Figure 7.24: ODF plot for Run Number 4, Monte Carlo simulation, with a 20◦ input disori-
entation and rolling reduction of 45 %

Figure 7.25: ODF plot for Run Number 5, Monte Carlo simulation, with a 20◦ input disori-
entation and rolling reduction of 45 %

and model.

The obtained results are given in Figures 7.26, 7.27 , 7.28 and 7.29. The graphs
plotted include mean error graphs and their standard deviation with respect to dis-
orientation angle variation and rolling percent variation.

Figure 7.26 represents the Error Index Value and disorientation angle results. The
curves comprising the result display a distinct and evenly spread out error index
values for the lowest disorientation, arranged in a descending order of rolling re-
duction. An increase in disorientation angle sees a consistent convergence at the
minima, taking place at a disorientation of 40◦, where the spread across all the
curves is reduced to lower than 0.005 EIV. This results in not just a sequential over-
lap, but a convergence of all component curves to a near point. This convergence is
followed by a divergence, where higher rolling reduction curves see an increase in
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Figure 7.26: Disorientation Angle v/s Error Index, comparison between Original evolved
texture and Monte Carlo evolved texture, with Error bars

EIV, while the lowest rolling reduction curves see little change.

The observed error value is far lower than the aforementioned error compared to
experimental results, with the highest error obtained for the present set of graphs
being just shy of the global minima of the former. The minimum error of the present
set of results meanwhile, is less than a fifth that of the former set of results. This
result is in line with expectations, as the ALAMEL model is not a perfect represen-
tation of experimental processes, and the former set of results include the errors.
The average disorientation value for the original texture is a tad higher than 36◦,
and the obtained results reflect the same.

Figure 7.27: Disorientation Angle v/s Error Index Standard deviation, comparison between
Original evolved texture and Monte Carlo evolved texture

The sequential overlap during convergence process is observed to take place at
values closer to the minima than observed during the divergence process. This
tepid ’rebound’ after the minimum disorientation value illustrates that disorienta-
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tion values higher than that assosiated with the minima see little impact compara-
tively. This is also confirmed by the standard deviation results during the process,
given by figure 7.27 as a low standard deviation (with less volatility) is found at
disorientation values higher than the minima. Interestingly, the standard deviation
value rises to its maxima for a disorientation value of 60◦, and sees a high value for
maximum disorientation as well.This results in an overlap of curves at high disori-
entation values. Thus, the relatively tepid rebound and high standard deviation at
very high disorientation values sees the general trend of distinct curves not being
held for disorientation angles higher than the minima.

Figure 7.28: Rolling Reduction v/s Error Index, comparison between Original evolved tex-
ture and Monte Carlo evolved texture, with Error Index

Figure 7.28 illustrates results representing the relationship between error and
rolling reduction percent, comparing Monte Carlo results and default texture simu-
lations.

The resulting curves are roughly ranked in order of increasing disorientation val-
ues, with a visible distinction between two tranches of results, those curves with a
disorientation angle lower than 25◦, and those over. The disorientation curve group-
ing lower than 25◦ show no sequential overlap between curves, and they display a
resemblance to the Sigmoid function shape. The higher disorientation curves over-
lap at lower rolling reductions, though they separate at higher rolling reductions.
The error curves record lower error values and limited to a small error band, with
increasing rolling reductions resulting in a relatively marginal increase in error in-
dex.

The standard deviation results, given by figure 7.29 also does not follow any
clearly discernible pattern. The standard deviation of the results is interestingly
higher than the standard deviation values for the error index comparison with ex-
perimental results, even as the error index values obtained for these set of results is
lower than the minima of the previous set.

7.5.1 Monte Carlo and Default texture ODFs, variation with rolling reduction

The aforementioned section describes an interesting scenario, for which at ◦ disori-
entation, the difference between Monte Carlo evolved textures, and textures evolved
from non-shuffled inputs are at the minimum. There is also scant difference in error
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Figure 7.29: Rolling Reduction v/s Error Index Standard Deviation, comparison between
Original evolved texture and Monte Carlo evolved texture

for all the rolling reduction curves. Figure 7.30 and 7.31 illustrate the ODFs of 30

% rolling reduction and 80 % rolling reduction for the fourth simulation set, with a
disorientation value of 40 degrees. A sharp contrast can be observed between the
two images, as their rolling reductions are vastly different.

Figure 7.30: ODF plot for Run Number 4, Monte Carlo simulation, with a 40◦ input disori-
entation and rolling reduction of 30 %

Figure 7.31: ODF plot for Run Number 4, Monte Carlo simulation, with a 40◦ input disori-
entation and rolling reduction of 80 %

The difference in ODf figures for the 30 % rolled reduction and 80 % rolled re-
duction textures are illustrated in figures 7.32 and 7.33 respectively. Both figures
have a maximum texture difference intensity of close to 0.3× Random Intensity. In-
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terestingly, the difference in ODF images is not similar for both rolling reduction
values.

Figure 7.32: ODF difference plot between obtained experimental 83 % rolling reduction and
Run Number 4, Monte Carlo simulation, with an input disorientation of 40◦

and rolling reduction of 30 %

Figure 7.33: ODF difference plot between obtained experimental 83 % rolling reduction and
Run Number 4, Monte Carlo simulation, with an input disorientation of 40◦

and rolling reduction of 80 %

7.6 hungarian results and experimental texture
comparison

Hungarian outputs are deterministic in nature, and not probabilistic. Thus, only
a single input texture is generated for every disorientation entry, and the result
values obtained do not have any standard deviation output or error bars. The
obtained results in this section include error index results, for comparison with
experimentally obtained values which are illustrated in Figures 7.34 , 7.35 , 7.36 and
7.37.

7.6.1 Hungarian Output rolling reduction results

The Hungarian output comparison to experimental textures are further illustrated
as variations with rolling reduction, and variation with disorientation angle. The
illustration of the results illustrating the relationship between Error Index Value
(EIV) and rolling reduction is given in figures 7.34 and 7.35, which illustrate the
relationship with experimentally obtained specimen with rolling reductions of 55 %
and 83 % respectively.

The illustration of the results illustrating the relationship between Error Index
Value (EIV) and disorientation angle is given in figures 7.36 and 7.37, which illus-
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Figure 7.34: Rolling Reduction v/s Error Index, comparison between 55 % rolled experimen-
tal samples and Hungarian evolved texture

Figure 7.35: Rolling Reduction v/s Error Index, comparison between 83 % rolled experimen-
tal samples and Hungarian evolved texture

trate the relationship with experimentally obtained specimen with rolling reduc-
tions of 55 % and 83 % respectively

The Hungarian error index comparison with experimental results closely resem-
ble the results obtained from the comparison between Monte Carlo and experimen-
tally obtained inputs, with two key differences. The first difference being minima
values, and second, the degree of convergence of Error Index curves. The overall
minima of the error index curves are found to be higher for the Hungarian result
set, when compared to the Monte Carlo results, even though the difference between
is marginal. The trend of convergence of these curves meanwhile, is stronger for
the Hungarian results, with a marginally narrower range and overlaps between ad-
jacent curves being observed for one pair of curves more than for the Monte Carlo
results.
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Figure 7.36: Disorientation Angle v/s Error Index, comparison between 55 % rolled experi-
mental samples and Hungarian evolved texture

Figure 7.37: Disorientation Angle v/s Error Index, comparison between 83 % rolled experi-
mental samples and Hungarian evolved texture

7.6.2 Hungarian Texture index Result

The variation of texture index with disorientation angle and rolling reduction are
given in figures 7.38 and 7.39 respectively. There is a clear and distinctive trend
following the variation of texture index with rolling reduction, where an increase
in rolling reduction results in a higher texture index, characterized by evenly space
out curves. The rate of increase in texture index also reduced marginally with in-
creasing rolling reduction. In comparison with the Monte Carlo results, the current
results exhibit a marginally stronger texture index, supported by more adjacent
curves overlapping (curves with disorientation of 40◦ and greater overlap in this
case, as compared to 50◦ and greater for the Monte Carlo results).

This difference, however, is marginal, and falls within the error bars of the for-
mer. Another slight difference between the two is the texture index comparison
results for the maximum and minimum disorientation values. For the maximum
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Figure 7.38: Disorientation Angle v/s Texture Index, Hungarian evolved texture

disorientation values, on a comparison between maximum disorientation and 60◦

disorientation values, the Hungarian results show a decline for the maximum dis-
orientation values vis a vis the 60◦ disorientation, while the opposite is true for the
Monte Carlo results. The minimum disorientation results also show a higher tex-
ture index value for minimum disorientation values (interestingly, this is the cause
of the marginal difference in maxima between the two).

Figure 7.39: Rolling Reduction v/s Texture Index, Hungarian evolved texture

7.7 comparison between hungarian results and
original texture evolution

The comparison of the obtained Hungarian evolved texture and evolved texture
from original input are given in Figures 7.41 and 7.41. The lowest disorientation
values exhibit even stratification based on rolling reductions, with convergence be-
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ing observed with increasing disorientation data. In comparison with the Monte
Carlo results, the current results exhibit a stronger convergence, with overlaps be-
ing observed at 30◦ disorientation (the figure is 35 for the Monte Carlo results). Ad-
ditionally, with increased disorientation angles, stratification is once more observed
for the Monte Carlo results, and is not observed in the case of the current results,
with overlap for the highest rolling reductions being observed for all disorientation
values above the minima.

Figure 7.40: Rolling Reduction v/s Error Index, comparison between original evolved tex-
ture and Hungarian evolved texture

Additionally, the minimum disorientation error is also higher. These results may
help in the arguments of original texture results being similar to higher angle dis-
orientation values, and the influence of minutae differences in pair shuffling. The
current set of results has a low error index value, and thus, reflects the minute
variations in ordering properties. The Hungarian algorithm results have a lower
disorientation mean for minimum disorientation solutions, which may be the cause
for the slightly higher error index value.

Figure 7.41: Disorientation Angle v/s Error Index, comparison between original evolved tex-
ture and Hungarian evolved texture
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7.8 comparison of ordering methodology
The two ordering algorithms used in this study are based on different mathemat-
ical principles, and the resulting texture as a result is different. The Monte Carlo
results are probabilistic, and multiple runs of the same are conducted to obtain
a mean value. On the other hand, the Hungarian method relies on a deterministic
model, and thus, only a single ideal solution is obtained. The result of a comparison
between the two is illustrated in figures 7.42 and 7.43.

The most striking details of the result relates to the low error observed, which is
close to 0.01 (a negligible error) for minimum disorientation values. This error in-
creases manifold with an increase in disorientation angle, though the increase does
not follow a proportional pattern. The maxima is observed at a disorientation of
60◦, which also holds the highest standard deviation. Interestingly, the difference
between error observed for a disorientation of 60◦ and maximum disorientation is
significant (with error index values and standard deviation decreasing), as the dif-
ference in disorientation between 60◦ and maximum disorientation is less than 3◦,
the least amongst the measured range.

The disorientation variation is striking, as the sharpest textures are observed
for minimum disorientation values. Additionally, the largest differences between
Monte Carlo and Hungarian results also take place at minimum dis orientations.
Additionally the error index for higher disorientation values closely resembles er-
ror index curves of Hungarian error index comparisons to original texture evolution.
These suggest that the methodology of texture evolution for low angle pairs follows
a different relationship with disorientation angles when compared to that of high
angle pairs.

The error index variation between the 55◦ and 60◦ disorientation and that of the
minimum and 10◦ disorientation are also remarkable as they are the only two pairs
that do not overlap in this series. The variation of results with rolling reduction is
slight, with a marginal increase in error index and error index standard deviation
being observed with increasing rolling reduction. These coincide with the largest
differences in reshuffled texture mean and standard deviation values.

Figure 7.42: Disorientation Angle v/s Error Index, comparison between Hungarian evolved
texture and Monte Carlo evolved texture, with Error bars
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Figure 7.43: Rolling Reduction v/s Error Index, comparison between Hungarian evolved
texture and Monte Carlo evolved texture, with Error bars





8 C O N C L U S I O N S

This study aimed to investigate the effect of initial orientation on plastically de-
formed texture. To that effect, the following conclusions can be drawn.

• There is a clear and non-negligible effect of disorientation angle on obtained
ALAMEL texture.

• The behaviour of high disorientation angles is close to that obtained by origi-
nal texture evolution.

• The texture evolution of low disorientation values is more likely to be ‘disori-
entation dependent’ with slight or no overlap of texture and error index val-
ues for reshuffled disorientation values separated by 5◦ , while that of higher
disorientation angle is more likely to be independent of disorientation angle,
with a higher likelihood of overlap between disorientation angles of 5◦.

Additionally, a comparison between the Hungarian and Monte Carlo algorithms
is performed, for which the conclusions are listed below.

• The deterministic Hungarian algorithm provides results that are closer to
ideal, in comparison to probabilistic methods such as the Monte Carlo method
(though the latter has a higher span for outlier values).

• The difference between the texture evolution of Monte Carlo and Hungarian
results is close to negligible, and most noticeable at large disorientations and
high rolling reductions.

Lastly, the process of commercialisation of the technology discussed in this study,
for which the conclusions drawn are listed below

• Low disorientations are observed to have a sharper texture evolution, which
may be helpful in the manufacturing processes of specialized low carbon
steels such as electrical steels, whose performance strongly correlates to tex-
ture sharpness.

• The domain is analysed to fall under level 2 on the technology readiness level,
requiring joint development programs to avoid the ’valley of death’ for future
technologies

• Critical partnerships and integration, along with leadership in materials devel-
opment and manufacturing technology development are the important factors
in the ’way to market’ strategy to enter the beachhead market of DC converters
for ’more electrical aircraft’.
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A E R R O R I N D E X VA R I AT I O N W I T H
E X P E R I M E N TA L R E S U LT S

a.1 series 1: monte carlo rolling reduction vs
error index for 55 percent sample

Figure A.1: Disoreintation Angle v/s Error Index : 55 percent reduction sample, Monte Carlo,
5 trials

Figure A.2: Disoreintation Angle v/s Error Index mean : 55 percent reduction sample, Monte
Carlo

89



90 error index variation with experimental results

Figure A.3: Disoreintation Angle v/s Error Index Standard Deviation : 55 percent reduction
sample, Monte Carlo

a.2 series 2. monte carlo disorientation angle
vs error index for 55 percent experimental
sample

Figure A.4: Disoreintation Angle v/s Error Index : 83 percent reduction sample, Monte Carlo,
5 trials



a.3 series 3. monte carlo rolling reduction vs error index for 83 percent experimental sample 91

Figure A.5: Disoreintation Angle v/s Error Index mean : 83 percent reduction sample, Monte
Carlo

a.3 series 3. monte carlo rolling reduction vs
error index for 83 percent experimental sam-
ple

a.4 series 4. monte carlo disorientation angle
vs error index for 83 percent experimental
sample



92 error index variation with experimental results

Figure A.6: Disoreintation Angle v/s Error Index Standard Deviation : 83 percent reduction
sample, Monte Carlo

Figure A.7: Rolling Reduction v/s Error Index : 83 percent reduction sample, Monte Carlo,
5 trials



a.4 series 4. monte carlo disorientation angle vs error index for 83 percent experimental sample 93

Figure A.8: Rolling Reduction v/s Error Index mean : 83 percent reduction sample, Monte
Carlo

Figure A.9: Rolling Reduction v/s Error Index Standard Deviation : 83 percent reduction
sample, Monte Carlo



94 error index variation with experimental results

Figure A.10: Rolling Reduction v/s Error Index : 55 percent reduction sample, Monte Carlo,
5 trials

Figure A.11: Rolling Reduction v/s Error Index mean : 55 percent reduction sample, Monte
Carlo



a.4 series 4. monte carlo disorientation angle vs error index for 83 percent experimental sample 95

Figure A.12: Rolling Reduction v/s Error Index Standard Deviation : 55 percent reduction
sample, Monte Carlo





B T E X T U R E I N D E X VA L U E S O F M O N T E
C A R LO S A M P L E S

b.1 series 1. monte carlo disorientation vs tex-
ture index

Figure B.1: Disorientation Angle v/s Texture Index : Monte Carlo All runs

Figure B.2: Disorientation Angle v/s Texture Index : Monte Carlo, mean value
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98 texture index values of monte carlo samples

Figure B.3: Disorientation Angle v/s Texture Index : Monte Carlo, standard deviation value

b.2 series 2. monte carlo rolling reduction vs
texture index

Figure B.4: Rolling Reduction v/s Texture Index : Monte Carlo All runs



b.2 series 2. monte carlo rolling reduction vs texture index 99

Figure B.5: Rolling Reduction v/s Texture Index : Monte Carlo, mean value

Figure B.6: Rolling Reduction v/s Texture Index : Monte Carlo, standard deviation value





C
M O N T E C A R LO E R R O R I N D E X
VA R I AT I O N W I T H S I M U L AT E D
O R I G I N A L T E X T U R E R E S U LT S

c.1 series 1. monte carlo rolling reduction vs
error index

Figure C.1: Rolling Reduction v/s Error Index between Monte Carlo and orginal simulated
results, All trials

Figure C.2: Rolling Reduction v/s Error Index between Monte Carlo and orginal simulated
results, mean values
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102 monte carlo error index variation with simulated original texture results

Figure C.3: Rolling Reduction v/s Error Index between Monte Carlo and orginal simulated
results, Standard deviation values

c.2 series 2. monte carlo disorientation angle
vs error index

Figure C.4: Disorientation Angle v/s Error Index between Monte Carlo and orginal simu-
lated results, All trials



c.2 series 2. monte carlo disorientation angle vs error index 103

Figure C.5: Disorienatataion Angle v/s Error Index between Monte Carlo and orginal simu-
lated results, mean values

Figure C.6: Disorientation Angle v/s Error Index between Monte Carlo and orginal simu-
lated results, Standard deviation values





D
H U N G A R I A N E R R O R I N D E X VA R I AT I O N
W I T H E X P E R I M E N TA L LY O B TA I N E D 5 5
P E R C E N T R E D U C T I O N R E S U LT S

d.1 series 1. error index variation for 55 per-
cent sample

Figure D.1: Disorientation Angle v/s Error Index between 55 Percent Experimental Texture
and Hungarian Result

Figure D.2: Rolling Reduction v/s Error Index between 55 Percent Experimental Texture and
Hungarian Result
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106 hungarian error index variation with experimentally obtained 55 percent reduction results

d.2 series 2. error index variation for 83 per-
cent sample

Figure D.3: Disorientation Angle v/s Error Index between 83 Percent Experimental Texture
and Hungarian Result

Figure D.4: Rolling Reduction v/s Error Index between 83 Percent Experimental Texture and
Hungarian Result



E H U N G A R I A N A LG O R I T H M T E X T U R E
I N D E X VA R I AT I O N

e.1 series 1. error index variation for 55 per-
cent sample

Figure E.1: Disorientation Angle v/s Texture Index, Hungarian Algorithm

Figure E.2: Rolling Reduction v/s Texture Index, Hungarian Algorithm
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F
H U N G A R I A N E R R O R I N D E X VA R I AT I O N
W I T H S I M U L AT E D O R I G I N A L T E X T U R E
S O L U T I O N

Figure F.1: Rolling Reduction v/s Error Index for difference between original texture evolu-
tion and Hungarian Evolution

Figure F.2: Disorientation Angle v/s Error Index for difference between original texture evo-
lution and Hungarian Evolution
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G
E R R O R I N D E X C O M PA R I S O N
B E T W E E N H U N G A R I A N A N D M O N T E
C A R LO S O L U T I O N S

g.1 series 1. rolling reduction vs error index
comparison

Figure G.1: Rolling Reduction v/s Error Index comparison between Hungarian and Monte
Carlo results, All runs

Figure G.2: Rolling Reduction v/s Error Index comparison between Hungarian and Monte
Carlo results, Mean value
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112 error index comparison between hungarian and monte carlo solutions

Figure G.3: Rolling Reduction v/s Error Index comparison between Hungarian and Monte
Carlo results, Standard Devation

g.2 series 2. disorientation angle vs error in-
dex comparison

Figure G.4: Disoreintation Angle v/s Error Index comparison between Hungarian and
Monte Carlo results, All runs



g.2 series 2. disorientation angle vs error index comparison 113

Figure G.5: Disoreintation Angle v/s Error Index comparison between Hungarian and
Monte Carlo results, mean value

Figure G.6: Disoreintation Angle v/s Error Index comparison between Hungarian and
Monte Carlo results, Standard Deviation





H
M O N T E C A R LO O D F F I G U R E S F O R
M A X I M U M S TA N DA R D D E V I AT I O N , 5 0
D E G R E E D I S O R I E N TAT I O N A N D 5 0
P E R C E N T R O L L I N G R E D U C T I O N

Figure H.1: ODF 50 degree disorientation and 50 percent rolling reduction Run 1

Figure H.2: ODF 50 degree disorientation and 50 percent rolling reduction Run 2

Figure H.3: ODF 50 degree disorientation and 50 percent rolling reduction Run 3
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116 monte carlo odf figures for maximum standard deviation, 50 degree disorientation and 50 percent rolling reduction

Figure H.4: ODF 50 degree disorientation and 50 percent rolling reduction Run 4

Figure H.5: ODF 50 degree disorientation and 50 percent rolling reduction Run 5



I
VA R I AT I O N O F O D F W I T H R O L L I N G
R E D U C T I O N W I T H D I S O R I E N TAT I O N
A N G L E

i.1 series 1. 30 percent rolling

Figure I.1: ODF Plot, Monte Carlo Run 1 30 percent rolling, min disorientation

Figure I.2: ODF Plot, Monte Carlo Run 1 30 percent rolling, 10 degree disorientation

Figure I.3: ODF Plot, Monte Carlo Run 1 30 percent rolling, 15 degree disorientation
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118 variation of odf with rolling reduction with disorientation angle

Figure I.4: ODF Plot, Monte Carlo Run 1 30 percent rolling, 20 degree disorientation

Figure I.5: ODF Plot, Monte Carlo Run 1 30 percent rolling, 25 degree disorientation

Figure I.6: ODF Plot, Monte Carlo Run 1 30 percent rolling, 30 degree disorientation

Figure I.7: ODF Plot, Monte Carlo Run 1 30 percent rolling, 35 degree disorientation

i.2 series 2. 50 percent rolling



i.3 series 3. 80 percent rolling 119

Figure I.8: ODF Plot, Monte Carlo Run 1 30 percent rolling, 40 degree disorientation

Figure I.9: ODF Plot, Monte Carlo Run 1 30 percent rolling, 45 degree disorientation

Figure I.10: ODF Plot, Monte Carlo Run 1 30 percent rolling, 50 degree disorientation

Figure I.11: ODF Plot, Monte Carlo Run 1 30 percent rolling, 55 degree disorientation

i.3 series 3. 80 percent rolling



120 variation of odf with rolling reduction with disorientation angle

Figure I.12: ODF Plot, Monte Carlo Run 1 30 percent rolling, 60 degree disorientation

Figure I.13: ODF Plot, Monte Carlo Run 1 30 percent rolling, max disorientation

Figure I.14: ODF Plot, Monte Carlo Run 1 50 percent rolling, min disorientation

Figure I.15: ODF Plot, Monte Carlo Run 1 50 percent rolling, 10 degree disorientation



i.3 series 3. 80 percent rolling 121

Figure I.16: ODF Plot, Monte Carlo Run 1 50 percent rolling, 15 degree disorientation

Figure I.17: ODF Plot, Monte Carlo Run 1 50 percent rolling, 20 degree disorientation

Figure I.18: ODF Plot, Monte Carlo Run 1 50 percent rolling, 25 degree disorientation

Figure I.19: ODF Plot, Monte Carlo Run 1 50 percent rolling, 30 degree disorientation



122 variation of odf with rolling reduction with disorientation angle

Figure I.20: ODF Plot, Monte Carlo Run 1 50 percent rolling, 35 degree disorientation

Figure I.21: ODF Plot, Monte Carlo Run 1 50 percent rolling, 40 degree disorientation

Figure I.22: ODF Plot, Monte Carlo Run 1 50 percent rolling, 45 degree disorientation

Figure I.23: ODF Plot, Monte Carlo Run 1 50 percent rolling, 50 degree disorientation



i.3 series 3. 80 percent rolling 123

Figure I.24: ODF Plot, Monte Carlo Run 1 50 percent rolling, 55 degree disorientation

Figure I.25: ODF Plot, Monte Carlo Run 1 50 percent rolling, 60 degree disorientation

Figure I.26: ODF Plot, Monte Carlo Run 1 50 percent rolling, max disorientation

Figure I.27: ODF Plot, Monte Carlo Run 1 80 percent rolling, min disorientation



124 variation of odf with rolling reduction with disorientation angle

Figure I.28: ODF Plot, Monte Carlo Run 1 80 percent rolling, 10 degree disorientation

Figure I.29: ODF Plot, Monte Carlo Run 1 80 percent rolling, 15 degree disorientation

Figure I.30: ODF Plot, Monte Carlo Run 1 80 percent rolling, 20 degree disorientation

Figure I.31: ODF Plot, Monte Carlo Run 1 80 percent rolling, 25 degree disorientation



i.3 series 3. 80 percent rolling 125

Figure I.32: ODF Plot, Monte Carlo Run 1 80 percent rolling, 30 degree disorientation

Figure I.33: ODF Plot, Monte Carlo Run 1 80 percent rolling, 35 degree disorientation

Figure I.34: ODF Plot, Monte Carlo Run 1 80 percent rolling, 40 degree disorientation

Figure I.35: ODF Plot, Monte Carlo Run 1 80 percent rolling, 45 degree disorientation



126 variation of odf with rolling reduction with disorientation angle

Figure I.36: ODF Plot, Monte Carlo Run 1 80 percent rolling, 50 degree disorientation

Figure I.37: ODF Plot, Monte Carlo Run 1 80 percent rolling, 55 degree disorientation

Figure I.38: ODF Plot, Monte Carlo Run 1 80 percent rolling, 60 degree disorientation

Figure I.39: ODF Plot, Monte Carlo Run 1 80 percent rolling, max disorientation



J VA R I AT I O N O F O D F W I T H
D I S O R I E N TAT I O N A N G L E

j.1 series 1: minimum disorientation angle

Figure J.1: ODF Plot, Monte Carlo Run 1 30 percent rolling, min disorientation

Figure J.2: ODF Plot, Monte Carlo Run 1 35 percent rolling, min disorientation

Figure J.3: ODF Plot, Monte Carlo Run 1 40 percent rolling, min disorientation
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128 variation of odf with disorientation angle

Figure J.4: ODF Plot, Monte Carlo Run 1 45 percent rolling, min disorientation

Figure J.5: ODF Plot, Monte Carlo Run 1 50 percent rolling, min disorientation

Figure J.6: ODF Plot, Monte Carlo Run 1 55 percent rolling, min disorientation

Figure J.7: ODF Plot, Monte Carlo Run 1 60 percent rolling, min disorientation

j.2 series 1: 20 degree disorientation angle

j.3 section 3 : 55 degree disorientation
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Figure J.8: ODF Plot, Monte Carlo Run 1 65 percent rolling, min disorientation

Figure J.9: ODF Plot, Monte Carlo Run 1 70 percent rolling, min disorientation

Figure J.10: ODF Plot, Monte Carlo Run 1 75 percent rolling, min disorientation

Figure J.11: ODF Plot, Monte Carlo Run 1 80 percent rolling, min disorientation



130 variation of odf with disorientation angle

Figure J.12: ODF Plot, Monte Carlo Run 1 30 percent rolling, 20 degree disorientation

Figure J.13: ODF Plot, Monte Carlo Run 1 35 percent rolling, 20 degree disorientation

Figure J.14: ODF Plot, Monte Carlo Run 1 40 percent rolling, 20 degree disorientation

Figure J.15: ODF Plot, Monte Carlo Run 1 45 percent rolling, 20 degree disorientation



j.3 section 3 : 55 degree disorientation 131

Figure J.16: ODF Plot, Monte Carlo Run 1 50 percent rolling, 20 degree disorientation

Figure J.17: ODF Plot, Monte Carlo Run 1 55 percent rolling, 20 degree disorientation

Figure J.18: ODF Plot, Monte Carlo Run 1 60 percent rolling, 20 degree disorientation

Figure J.19: ODF Plot, Monte Carlo Run 1 65 percent rolling, 20 degree disorientation



132 variation of odf with disorientation angle

Figure J.20: ODF Plot, Monte Carlo Run 1 70 percent rolling, 20 degree disorientation

Figure J.21: ODF Plot, Monte Carlo Run 1 75 percent rolling, 20 degree disorientation

Figure J.22: ODF Plot, Monte Carlo Run 1 80 percent rolling, 20 degree disorientation

Figure J.23: ODF Plot, Monte Carlo Run 1 30 percent rolling, 55 degree disorientation



j.3 section 3 : 55 degree disorientation 133

Figure J.24: ODF Plot, Monte Carlo Run 1 35 percent rolling, 55 degree disorientation

Figure J.25: ODF Plot, Monte Carlo Run 1 40 percent rolling, 55 degree disorientation

Figure J.26: ODF Plot, Monte Carlo Run 1 45 percent rolling, 55 degree disorientation

Figure J.27: ODF Plot, Monte Carlo Run 1 50 percent rolling, 55 degree disorientation



134 variation of odf with disorientation angle

Figure J.28: ODF Plot, Monte Carlo Run 1 55 percent rolling, 55 degree disorientation

Figure J.29: ODF Plot, Monte Carlo Run 1 60 percent rolling, 55 degree disorientation

Figure J.30: ODF Plot, Monte Carlo Run 1 65 percent rolling, 55 degree disorientation

Figure J.31: ODF Plot, Monte Carlo Run 1 70 percent rolling, 55 degree disorientation
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Figure J.32: ODF Plot, Monte Carlo Run 1 75 percent rolling, 55 degree disorientation

Figure J.33: ODF Plot, Monte Carlo Run 1 80 percent rolling, 55 degree disorientation
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