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Abstract

As power systems increasingly rely on renewable energy, grid services traditionally sup-
plied by central plants must increasingly be sourced from distributed energy resources
(DERs). Virtual power plants (VPPs) aggregate DERs to act as a single entity, but co-
ordination is complicated by information asymmetry, possibly resulting in strategic be-
haviour. This thesis studies how we can design a mechanism for a commercial VPP,
having to satisfy a fixed commitment, while optimising the revenue from the VPP oper-
ator.

We first develop a tractable, multi-periodVPPmodelwith linear costs, local and temporal
constraints for DERs and soft system-wide commitments enforced via deviation penal-
ties. On top of this model we design and compare four mechanisms: first-price sealed
bid (FPSB), uniform pricing, Vickrey–Clarke–Groves (VCG) and Arrow–d’Aspremont–
Gerard-Varet (AGV). We evaluate them on revenue optimality, weak budget balance, in-
centive compatibility, individual rationality and scalability. Furthermore, we investigate
how the composition of a VPP’s portfolio could inform mechanism design choices.

FPSB realises payments equalling costs under truthful reports and remains competitive
for small strategic fractions, but overpayment grows with the share of strategic agents
and with cost dispersion. Uniform pricing is comparatively insensitive to the strategic
fraction but highly sensitive to cost dispersion, often leading to large overpayments. VCG
is strategy-proof and insensitive to strategic behaviour, yet externality payments increase
with cost dispersion and raise total payouts. AGV keeps the payment-to-cost ratio near or
below one by relying on expected externalities and scaling, improving operator viability
but potentially violating individual rationality in instances.

These results yielded the following guidelines regarding the suitability of mechanisms.
FPSB for low strategic participation, uniform pricing for homogeneous portfolios, VCG
when truthfulness is vital and external funding is possible, and AGV when operator via-
bility is the hard constraint with safeguards for individual rationality.
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Readers that are particularly interested in our approach to modelling a virtual power plant
are best off reading Chapter 2. Those specifically interested in mechanism design are invited
to read Chapter 3. Finally, those who wish to get a general understanding of this research
and its results are recommended to read Chapters 1 and 5.
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Nomenclature

Abbreviations

AGV Arrow–d’Aspremont–Gerard-Varet
BNIC Bayesian Nash Incentive Compatible
CVPP Commercial Virtual Power Plant
DER Distributed Energy Resource
DSIC Dominant Strategy Incentive Compatible
EMS Energy Management System
FPSB First-Price Sealed Bid
TSO Transmission System Operator
TVPP Technical Virtual Power Plant
VCG Vickrey–Clarke–Groves
VPP Virtual Power Plant

Sets and Indices

N Number of DERs aggregated by the VPP
N = t1, . . . , Nu Index set of all DERs
T Number of discrete timesteps
T = t1, . . . , T u Index set of timesteps
M The grid services being delivered
M = t1, . . . ,Mu Index set of grid services

Decision Variables

xi,t,m The amount of servicem PM delivered by DER i at time t
xi,t, xi and x are used to denote the vector, matrix and tensor re-
spectively.

Cost Parameters and Functions

ui,t,m Cost of DER i to deliver one unit of servicem PM at time t

v



NOMENCLATURE

ci,t(xi,t) Cost of DER i at time t given xi,t
ci(xi) Total operating cost of DER i under allocation xi
c(x) Total operating cost across all DERs
λ+t,m, λ

´
t,m Penalty rates (€ /unit) for surplus and deficit of servicem at time

t
f(ϵ) Total penalty cost
αi,t Cost inflation factor applied by agent i at time t
θ = (c,X, g) True private information containing cost functions and con-

straints
θ̂ Reported information set communicated to the VPP operator
X Allocation function

ui,t, ui, and u denote the cost vector, matrix, and tensor respec-
tively.
λ+t , λ

´
t and λ+, λ´ denote the vectors and matrices respectively.

αi and α denote the vector and matrix respectively.

Feasible Regions and Constraints

Xi Feasible region denoting local constraints for DER i
gi(¨) ď 0 Temporal coupling constraint for DER i
S = ti | }xi} ‰ 0u Set of DERs with non-zero allocation

Agreements and Slacks

bt,m Commitment for servicem PM at time t P T
Pt Active power commitment at time t (component of bt)
Qt Reserve commitment at time t
ϵ+t,m, ϵ

´
t,m Surplus/deficit slacks for servicem at time t

bt and b denote the vector and matrix respectively.

Metrics

ri Ratio between payment and true cost of DER i
r Payment-to-cost ratio at the VPP level (weighted average over par-

ticipating DERs)
s Proportion of DERs that behave strategically, s P [0, 1]
ϕ Coefficient of variation for unit costs used in experiments
γ Target profit margin in the viable VPP condition

Miscellaneous

pi The payment from the mechanism to DER i
vi Utility of DER i
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z Binary indicator used to enforce mutually exclusive slack direc-
tions

M Big-M constant used in linearisation constraints
φt Normalised solar irradiance profile used in case studies
ψt Normalised wind availability profile used in case studies
SoCi,t State of charge of storage unit i at time t
Emax Energy capacity of storage
Et Energy state variable in storage models
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Chapter 1

Introduction

This introduction focusses on providing important foundations for this research. Therefore,
first explaining why and how virtual power plants (VPPs) come into place (Section 1.1).
Consequently, we more explicitly describe the problem that we are considering in this the-
sis (Section 1.2). To introduce the reader to this research field, we provide a brief overview
of recent work in this field (Section 1.3). Furthermore, we provide general directions for
conducting this research by setting our research questions (Section 1.4). Finally, to provide
the reader with a solid understanding of how this thesis is structured, and why it is struc-
tured this way, we explain the outline of the thesis in Section 1.6. Note that, for introductory
purposes, Section 1.2 and Section 1.3 provide a condensed outline of these topics. A more
in-depth discussion takes place in Chapter 2 and 3.1 respectively.

1.1 Background and Motivation

With the transition to renewable energy, the electrical grid is accommodating an increasing
number of distributed energy resources (DERs), including solar panels, wind turbines and
home batteries. Unlike traditional power plants that offer predictable power generation, the
power generation of DERs — often reliant on renewable sources — is influenced by environ-
mental factors such as sunlight and wind. Furthermore, the variability and converter-based
nature of those resources present significant challenges for grid operators in balancing elec-
tricity supply and demand, respecting network capacity limits and ensuring grid stability
[1]. Additionally, DERs are usually small-scale energy resources that, on their own, do not
posses enough market capacity to participate in the various electricity markets. To address
this challenge, the concept of a virtual power plant (VPP) has been introduced. A VPP ag-
gregates multiple DERs to act as a single, controllable unit. This enables VPPs to offer coor-
dinated energy production and provision of ancillary services, supporting grid stability and
participating in electricity markets.

1.2 Problem Statement

In this thesis, we consider the scenario where a VPP must fulfil a fixed day-ahead commit-
ment with a profit maximisation objective. Although interaction with electricity markets is
not considered in this thesis, aforementioned commitments could, for example, arise from
participation in one of the various electricity markets.

Unifying the DERs to operate as a single entity requires a control mechanism. Moreover,
agents need to be incentivised to operate in alignment with the goals of the VPP operator. In
the case of a closed system, i.e. the DERs and VPP operator are part of the same company,

1



1. INTRODUCTION

this is a rather simple problem, since the DERs are under direct control of the VPP and the
VPP has perfect information regarding its DERs. However, in cases where the DERs are of
differentmanufacturers, theDERs hold private information. DERs could behave strategically
and report untruthful information to the VPP operator, in order tomaximise their own utility
[2]–[4]. This could compromise the efficient operation of a virtual power plant and hence
brings us to the field of mechanism design.

1.3 Research Gap

Despite its practical relevance, there is limited research addressingVPP operationwith strate-
gic agents and a VPP revenue maximisation objective. Many studies prioritise social wel-
fare under non-strategic assumptions or decentralised setups [5, Table 2]. Tsaousoglou et al.
have taken into account strategic behaviour of agents in energy systems [6]–[11], but their
research is mainly focussed on demand response programs. Amongst others, they proposed
a near-optimal system for strategic, price-anticipating consumers with private preferences in
a demand side management scenario [11]. Further research efforts address the presence of
strategic agents in trading frameworks for neighbourhood area networks with shared energy
storage [12].

No research addresses our problem formulation, in which the VPP must fulfil a predeter-
mined commitment, under the presence of strategic agents and a profit maximisation objec-
tive. Furthermore, to the best of our knowledge, no studies address how the composition of
a VPP’s portfolio should inform mechanism design choices.

1.4 Research Questions and Objectives

Although our problem formulation has been widely adopted [13]–[15], not enough work
has been done to address the presence of strategic agents in this problem formulation. This
study aims to explore how a mechanism can be designed to align the incentives of DERs
with the goals of the VPP operator. In support of this, this research aims to address three key
questions:

1. How can the operational dynamics of a virtual power plant be modelled?

2. How do several mechanisms compare in terms of revenue optimality, weak budget
balance, incentive compatibility, individual rationality and computational tractability?

3. Howdoes the composition of aVPP’s portfolio, particularly in terms of agent behaviour
and difference in cost functions, influence the effectiveness of different allocationmech-
anisms?

1.5 Contributions

The contributions of this research are twofold. We present a comparison in terms of perfor-
mance of several mechanisms and we provide new insights into how the composition of a
VPP’s portfolio affects the suitability and performance of those mechanisms. In particular,
we pay attention to how several fractions of strategic agents, as well as the spread of cost
parameters influence the results. These findings aim to inform the design of more resilient,
adaptive and efficient internal market mechanisms for VPPs.

2



1.6. Thesis Structure

1.6 Thesis Structure

This thesis is structured to consecutively address the research questions and build a coher-
ent understanding of mechanism design for VPPs with strategic agents, more graphically
depicted in figure 1.1. This chapter introduced the problem and motivation, defined the re-
search gap and questions. Furthermore, it previewed the approach and contributions. It
established the need to model VPP operations and to handle strategic behaviour under pri-
vate information, setting up Chapters 2 and 3.

Chapter 2 develops an operational model of a VPP with a fixed day-ahead commitment and
heterogeneous DERs. It clarifies objectives, constraints, costs and the information structure.
The remaining gap is that agents may not report truthfully. The model alone cannot guaran-
tee desired outcomes. This motivates mechanism design in Chapter 3.

Chapter 3 defines design criteria and presents four mechanisms. It analyses their theoretical
properties under strategic behaviour. Although the theoretical analysis indicates correla-
tions, it does not provide absolute magnitudes of the metrics related to the design criteria.
This motivates empirical validation in Chapter 4.

Chapter 4 applies the mechanisms in a simulated case study to quantify performance, as-
sess robustness to agent mix and cost heterogeneity. This turns theoretical correlations into
concrete numbers and practical insights. The remaining need is to further interpret results,
discuss implications and limitations for practical usage. This leads to Chapter 5.

Chapter 5 discusses results, limitations and implications for VPP operators. We answer the
research questions and distil recommendations for future work. Furthermore, we extrapo-
late the results to recommendations for VPP mechanism design. Further questions are rec-
ommended as directions for future work.

Chapter 6 concludes by summarising contributions, outlining key takeaways and future re-
search directions.

3



1. INTRODUCTION

Chapter 1: Motivate problem, define research gap, questions and
approach.
Questions: How do we model the operations of a VPP? How does
the VPP deal with strategic agents?

Chapter 2: Model VPP operations, objectives, constraints and infor-
mation structure.
Questions: This model does not ensure truthfulness, possibly in-
fluencing the profit maximisation objective. How do we deal with
potential misreporting of information?

Chapter 3: Define criteria (incentive compatibility, individual ratio-
nality, weak budget balance, computational tractability) and theoreti-
cally analyse four mechanisms.
Questions: Theory indicates correlations, but what are the absolute
magnitudes of the metrics related to design criteria?

Chapter 4: Quantify performance and robustness to agent behaviour
and cost heterogeneity; measure effect sizes and trade-offs.
Questions: How can we interpret the results and extrapolate them
to a wider context for VPP mechanism design.

Chapter 5: Interpret results and limitations; answer research ques-
tions and extrapolate results to recommendations for VPP mecha-
nism design.
Questions: Further questions are recommended as future research.

Chapter 6: Summarise the research and contributions. Outline take-
aways and future directions.

Figure 1.1: Flow of chapters: topic of each chapter and the remaining questions motivating
the subsequent chapter(s).
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Chapter 2

Modelling a Virtual Power Plant

In order to investigate mechanism design for virtual power plants, we first need to model the
operations of a virtual power plant, especially since there is no single adopted definition in
academic literature. In order to provide such a model, we first describe DERs, since a VPP
comprises of multiple DERs. In Section 2.1, we define key characteristics and behaviour, im-
portant to understand how they contribute to VPPs as a whole. Building on this foundation,
Section 2.2 formalises the VPP model. We discuss factors such as the VPP’s market position,
objectives and the communication model, needed to integrate these DERs into a cohesive
model. This leads to formalising the optimisation problem that the VPP aims to solve: find-
ing an allocation of grid services to a predetermined commitment, thatmaximises its revenue.
Finally, Section 2.3 reflects on the model’s limitations, offering a realistic perspective on its
scope.

2.1 Formulation of a Distributed Energy Resource

A DER is generally a small-scale energy resource. Typically it is situated at or near the load
site. Therefore, it is usually connected to the local distribution grid rather than the high-
voltage transmission network [16]. DERs can include, but are not limited to, renewable en-
ergy sources such as photovoltaic systems and wind turbines. They can also include energy
storage systems such as batteries (in electric vehicles), fuel cells, engine generators and mi-
croturbines [17].

It is important to make a distinction between passive and active generation. Passive genera-
tion is considered to be a generation technology that has no control over the fuel input or the
power output of the system. These usually include renewable resources that are dependent
on the weather such as solar and wind energy. Active generation is a technology that does
have control over the power output of the system, such as a gas or diesel generator [17].

Distributed energy resources are characterised by variables, parameters, a cost function, local
and temporal constraints that define their operation and performance. Variables capture
the dynamic aspects of a DER, such as the units of a certain grid service being provided.
Those decision variables can be influenced by a virtual power plant through an incentive-
based system. Parameters, on the other hand, represent fixed properties of a DER, such as its
technical specifications or operational limits. Constraints impose boundaries on the decision
variables, based on the DER’s parameters. This ensures that operations stay within safe and
feasible ranges determined by these parameters.

In this section we cover the most important concepts to understand how DERs function as
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2. MODELLING A VIRTUAL POWER PLANT

part of a VPP. We first introduce decision variables and feasible regions (Section 2.1.1), then
capture temporal dependencies (Section 2.1.2). We define the operating cost function (Sec-
tion 2.1.3) and the resulting utility (Section 2.1.4). Finally, we discuss DER control (Section
2.1.5) and summarise the DER in a formal definition (Section 2.1.6).

We introduce some general notation to facilitate the understanding of the subscripts used in
this section. A VPP aggregatesN distributed energy resources, the DERs are indexed by the
set N = t1, 2, . . . , Nu. Furthermore, we consider T discrete time steps, indexed by the set
T = t1, 2, . . . , T u. Additionally, we consider the provision ofM grid services, indexed by the
set M = t1, 2, . . . ,Mu.

2.1.1 Local Constraints and Decision Variables

An important modelling decision relates to describing the DER’s constraints, denoted by fea-
sible region X. Moghaddam et al. [18], Wille-Hausmann et al. [19] and Mashhour et al.
[20] include constraints related to the decision variables x of the DERs (x P X) in the con-
straint formulation. Moghaddam et al. [18] consider a VPP that aggregates a hydro system
and a wind farm. They incorporate various constraints that relate to the specific functioning
of hydro and wind generators. Wille-Hausmann et al. [19] consider aggregating cogener-
ation plants into a VPP. Again, the characteristic behaviour of cogeneration plants is used
for the specific formulation of constraints in the problem formulation. Mashhour et al. [20]
specifically emphasise how the VPP operator should take into account the feasibility of the
schedule concerning the operational characteristics of the DERs and therefore incorporate
those in their constraint programming formulation.

In this thesis, we abstract from the specific technical characteristics of individual DER types.
A modelling choice is our more general constraint formulation, rather than restricting our-
selves to a specific set of DERs andmodelling those constraints (as in aforementionedworks),
we adopt a more flexible approach in which it is assumed that the constraints for all DERs
can be captured in the notation xi P Xi. This leads to the following definition:

Definition 2.1 (Local Constraints and Decision Variables) xi,t,m is the decision variable ofDER
i P N at time t P T for grid servicem PM. This decision variable indicates how much of grid service
m the DER provides to the grid. To facilitate writing, xi,t denotes the vector containing all decision
variables of DER i per time step and xi = txi,t | t P T u is used to note the T ˆM matrix, denoting
the decision variables across all timesteps for DER i. Consequently, x denotes theN ˆ T ˆM tensor,
containing the decision variables for all DERs in the VPP.

Similarly, Xi,t is the feasible region, constraining the decision variables based on the parameters of
the DER such that xi,t P Xi,t. The usage of subscripts follows the same structure as for the decision
variables described above.

We recognise that DERs encompass a diverse array of technologies and configurations, each
with unique operational characteristics and constraints. Real-world DER deployments may
involve more complex control systems, site-specific limitations or regulatory considerations
that are not fully captured by x P X. We would like to stress that the primary objective of
this thesis is to evaluate the strategic behaviour and decision-making mechanisms of VPPs.
In this context, exhaustively representing every possible DER configuration or operational
nuance is not necessary [7].
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2.1. Formulation of a Distributed Energy Resource

2.1.2 Temporal Constraints

Temporal constraints define how the decision variables are constrained across time intervals.
This is easy to understandwhenwe talk about batteries. The state of charge can never surpass
themaximum storage capacity, neither can it fall below 0, or some otherminimum. Temporal
constraints between the decision variables are denoted by the function g.

gi(¨) ď 0 (2.1)

Example 2.1 (Temporal Constraints for Battery) Suppose we have a battery that holds a certain
state of charge (SoC) in kWh. The battery engages in delivering active power as a grid service, noted
by its decision variable xi,t. Note that, since we consider a battery, it can also take electricity from
the grid, to charge itself. The decision variable can vary per one hour time interval t. Its capacity is
20kWh and at its initial state of charge is 100% of the capacity. We want to impose constraints such
that it can never be discharged below 2kWh and can never exceed its maximum capacity. Therefore:

SoCi,t =

#

20 if t = 0

SoCi,t´1 + xi,t otherwise
(2.2)

gi(SoCi,t) =

[
SoCi,t ´ 20
2´ SoCi,t

]
ď 0 (2.3)

2.1.3 Cost Function

ADER also has a cost function c, describing the cost at which it operates. If we take an active
generation technology (e.g. a diesel generator) as an example, when it generates more elec-
tricity it consumes more diesel. For a passive generation technology (e.g. wind turbine), we
can say that the cost is related to maintenance, induced by wear and tear of blades and gear-
boxes when it is dispatched. In other words, we can say that the cost function is dependent
on the decision variables of the DER. Each grid servicem has a certain cost parameter ui,t,m,
denoting the cost for der i of delivering one unit of grid service m at time step t. Therefore,
we can write down the cost function for DER i at time interval t as:

ci,t(xi,t) =
M
ÿ

m=1

xi,t,mui,t,m (2.4)

For ease of notation in subsequent writing, we also define the total cost for a DER i across all
time intervals as ci and the total cost for a VPP as c.

ci(xi) =
T

ÿ

t=1

ci,t(xi,t) (2.5)

c(x) =
N
ÿ

i=1

ci(xi) (2.6)
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2. MODELLING A VIRTUAL POWER PLANT

The cost function plays an important role in the tractability of the problem that needs to be
solved by the VPP. In order to keep the problem tractable a monotonicity assumption on the
cost function is common in related literature [4], [10], [11] and also adopted in this study.

Assumption 2.1 (Monotonicity of Cost Function) The cost function ci,t(xi,t) is monotonically
non-decreasing over its domain. That is, for any two feasible decision vectors xi,t,m, x1

i,t,m P Xi,t,m

such that xi,t,m ď x1
i,t,m, it holds that

ci,t,m(xi,t,m) ď ci,t,m(x1
i,t,m). (2.7)

2.1.4 Utility

Now that we have defined the cost function, we can define the utility of a DER. The utility is
defined as the difference between the payment pi(xi) an agent receives, for setting its decision
variables as xi, and its true cost ci(xi). We can denote the utility v as

vi(xi) = pi(xi)´ c(xi). (2.8)

2.1.5 DER Control

EachDER is controlled by an agent. This agent takes care of the communicationwith the VPP
operator and physically controls the decision variables of the DER. In practice this agent will
typically be the software/firmware of the DER that engages in the communication with the
VPP operator. It always follows the suggestion from the VPP operator for setting the decision
variables. This is for the simple reason that, if the DER fails to do so, it will be considered
as unreliable by the VPP operator and will be no longer considered in the allocation of grid
services.

Assumption 2.2 A DER agent will always set its decision variables as the VPP requests. Failing to
do so will lead to removal from the VPP, resulting in vi(xi) = 0 for the respective DER.

2.1.6 DER Model

Having said that, we can formulate a DER as follows.

Definition 2.2 (Distributed Energy Resource) A Distributed Energy Resource is defined as a
quadruple:

DER := (g, x,X, c)

where:

xi denote the decision variables of DER i constrained by Xi such that xi P Xi (definition 2.1).

ci,t : xi,t Ñ R is a cost function representing the operational cost given the decision variables (Section
2.1.3).

gi denotes the temporal constraints (Section 2.1.2)
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2.1. Formulation of a Distributed Energy Resource

Now, using some examples, we will show that a variety of DER configurations can be fitted
to our formulation. Suppose that we have a diesel generator and a wind turbine. For these
examples, we consider the provision of a single grid service, active power.

For the diesel generator, the current power output, denoted as p is a variable because it can
change. The generator has parameters that define its operational limits, including the mini-
mum generation capacity Pmin, below which it cannot function without shutting down, and
the maximum generation capacity Pmax, which marks its upper limit. These parameters im-
pose constraints on decision variable p, requiring it to satisfy Pmin ď p ď Pmax. The diesel
generator also has a cost function, which typically rises with increased power output due to
higher fuel consumption, satisfying assumption 2.1.

Example 2.2 A diesel generator can be characterised by its decision variables and corresponding fea-
sible region, cost function and temporal dependencies.

x = [p] P X = [Pmin, Pmax] (2.9)

The cost is described by the monotonically non-decreasing function ci,t

ci,t(xi,t) = xi,tui,t (2.10)

The diesel generator cannot change its capacity by more than 3 kW across time intervals, therefore:

gi(xi) = |xi,t´1 ´ xi,t| ´ 3 ď 0 (2.11)

In contrast, a wind turbine represents a passive generation technology, where power output
depends on uncontrollable (but predictable) factors like wind speed. Its key parameters
include the rated capacity Prated, the power generated at the rated wind speed Vrated, the
cut-in wind speed Vmin, below which no power is produced, and the cut-out wind speed
Vmax, above which generation stops for safety reasons [17]. A weather-prediction module
estimates the current power output Pcurrent and its variability Pvar due to fluctuating wind
conditions. It is assumed that the power of the wind turbine can be curtailed by changing
the positions of the blade, to match the current need for energy.

Example 2.3 A wind turbine provides power based on available wind, but can be curtailed. Its deci-
sion variable is the active power p, with feasible region:

x = [p] P X = [0, Pcurrent ´ Pvar] (2.12)

The cost function captures wear-related expenses, and increases with output:

ci,t(xi,t) = xi,tui,t (2.13)

There are no temporal constraints.
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2. MODELLING A VIRTUAL POWER PLANT

2.2 Formulation of a Virtual Power Plant

Now that DERs have been described, we can use this definition to aggregate them in one
coherent VPP model. This section focusses on describing this VPP model. Since there is no
uniform definition in the academic literature [21], we first adopt one in Section 2.2.1. Con-
sequently, we discuss several modelling choices using related work in Sections 2.2.2 - 2.2.7.
After we have made those choices, we present the mathematical formulation of the optimi-
sation problem that the VPP operator needs to address in Section 2.2.8.

2.2.1 Definition of a Virtual Power Plant

In order to construct amodel and to provide coherency throughout this thesis, it is important
to adopt a single definition of a VPP. We will adopt the definition as in [22], more visually
depicted in Figure 2.1.

Definition 2.3 (Virtual Power Plant) A virtual power plant is a cluster of dispersed generator
units, controllable loads and storage systems, aggregated in order to operate as a unique power plant.
The generators can use both fossil and renewable energy sources. The heart of a VPP is an energy man-
agement system (EMS) which coordinates the power flows coming from the generators, controllable
loads and storages. The communication is bidirectional, so that the VPP can not only receive informa-
tion about the current status of each unit, but it can also send the signals to control the objects.

A distinction is made between a commercial virtual power plant (CVPP) and a technical
virtual power plant (TVPP). A technical VPP takes into account the operating characteristics
and corresponding constraints of the underlying distribution network. A commercial VPP
does not consider those characteristics andmerely serves as an aggregator and its purpose is
simply to manage the portfolio of the DERs to optimally participate in the electricity market
[23] [24]. Since the main focus of this thesis is designing and evaluating amechanism taking
into account strategic agents, operational characteristics of the grid are of lesser relevance.
Therefore, a CVPP will be considered throughout this thesis.

Assumption 2.3 (Commercial Virtual Power Plant Model) The VPP acts as an aggregator of
distributed energy resources and does not account for the physical or operational constraints of the
underlying distribution network.

2.2.2 VPP Market Position

An important decision relates to the market position of the VPP that we will assume. In
this thesis, the market position of the VPP is defined as a fixed day-ahead commitment. In
other words, the VPP has committed to delivering a certain amount of services to the grid
in some day-ahead markets and will seek an allocation among its DERs. This approach con-
trasts with some existing literature, where the VPP’s market position is often more flexible.
For instance, in Zamani et al. [25], the VPP participates in both energy and spinning reserve
markets with a day-ahead scheduling framework that optimises profit through stochastic
bids, allowing dynamic adjustments via storage, demand response and market trades rather
than adhering to a rigid commitment. Similarly, Nosratabadi et al. [26] propose a stochastic
profit-based scheduling for industrial VPPs, where the day-ahead plan is a flexible strategy
adjusted by demand response programs and spot market purchases to maximise profit, not
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2.2. Formulation of a Virtual Power Plant

Figure 2.1: A virtual power plant clusters several distributed energy resources. They are
aggregated to operate as a unique power plant towards the power system operator.

a fixed obligation. Khorosany et al. [27] propose a two-stage model - day-ahead planning
and intraday adjustments - that first allows agents to participate in the day-ahead market
and later allows them to adjust their bids using the real-time market. In contrast, Sakr et
al. [28] present a closer alignment to this thesis’ approach, optimising a day-ahead sched-
ule to maximise profit while using demand response and DER allocation to ensure the VPP
meets its market participation goals, though the commitment itself emerges from the optimi-
sation rather than being pre-fixed. While these papers leverage DER allocation and demand
response to support market interactions, this thesis assumes a predetermined commitment,
shifting the focus to post-commitment resource coordination, as is also followed in [13]–[15].

Within this thesis we do not consider the VPP’s interactionwith amarket, nor dowe consider
any market specifically. We take it as given that the VPP has participated in some market(s)
resulting in a certain commitment, consequently it needs to find an allocation among itsDERs
to provide the grid services that it has committed to in any of these markets.

Assumption 2.4 (Market Position) The VPP needs to find an allocation of grid services among
its DERs to satisfy a predetermined commitment.

2.2.3 VPP Objective

AVPP typically aims tomaximise its profits [29], often formulated as the difference between
system income and total cost [23]. This can be reframed as minimising costs across DERs
while meeting market commitments [5], as expressed in Equation 2.14.

min
N
ÿ

i=1

ci(xi)

s.t.
N
ÿ

i=1

xi = b

xi P Xi

(2.14)

Here, N DERs have decision variables xi bounded by operational limits Xi and costs ci(xi).
Additionally, we have a coupling constraint

řN
i=1 xi = b to describe that the VPP needs to
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2. MODELLING A VIRTUAL POWER PLANT

adhere to commitment b. This cost-minimisation approach is common in VPP optimisation
[18]–[20] as well as in microgrid literature [30]–[32]. Despite its differences, both VPPs
and microgrids aim to optimise resource allocation and deviations from expected demand,
justifying the approach to also have a minimisation of the objective function for VPPs. In
addition, [33]–[35] employ this approach of minimising the total cost specific to VPPs as
well.

2.2.4 System-wide Constraints

The VPP operator should also take into account the system-wide supply-demand balancing
constraint [20]. In addition to aforementioned papers [18]–[20], Xinfa et al. [33] also incor-
porate these balancing constraints in their VPPmodel. Additionally, in [34, Eq. 20] they also
introduce slack in the supply-demand balancing constraint by making sure that the VPP’s
total capacity amounts to between 90% and 110% of the contracted amount. This will also
be adopted in this research, further elaborated on in Section 2.2.8.

2.2.5 Time Horizon

Liu et al. [36], Zdrilić et al. [37] and Kong et al. [38] model VPPs over multiple time steps,
capturing inter-temporal dependencies such as battery charging/discharging. In general,
singe-time-step models lack flexibility [4], [7], wherefore we adopt a multi-time-step ap-
proach to reflect realistic VPP operations over T = 24 hours.

2.2.6 Uncertainty

Uncertainty handling varies across the literature. Deterministic models (e.g. Zdrilić et al.
[37]) assume perfect predictions of demand and renewable output, simplifying optimisa-
tion. Conversely, Shi et al. [39], incorporate stochastic methods for uncertainty inherent to
renewable resources. For feasibility and focus on mechanism evaluation, this thesis adopts
perfect predictions, though future work could explore stochastic extensions.

2.2.7 Communication Model

In the communication model, each DER communicates exclusively with the VPP operator.
In a graph structure where the DERs and VPP are represented as nodes, this would be a
star-like topology (Figure 2.2). Every DER is connected to the central node, representing the
VPP operator. This communication model also renders coalition forming beyond the scope
of this thesis.

Assumption 2.5 (No Coalition Forming) The DERs do not form coalitions. They exclusively
communicate with the VPP operator.

To determine the allocation of grid services for each time interval, the DERs share their local
information θ = (c,X, g) with the VPP operator. Consequently, the VPP operator computes
the decision variables by solving its optimisation problem and communicates those decision
variables back to the DERs. This is depicted in Figure 2.2.
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VPP Operator

θ̂
?
= θ

DER 1

θ1 = (c1,X1, g1)

DER 2

θ2 = (c2,X2, g2)

DER 3

θ3 = (c3,X3, g3)

DER 4

θ4 = (c4,X4, g4)

θ̂1 θ̂2

θ̂3 θ̂4

x1 x2

x3 x4

Figure 2.2: Schematic representation of the communication model.

2.2.8 VPP Optimisation Problem

In this section, we present the mathematical formulation of the optimisation problem a VPP
aims to solve. I will start of from an example and later generalise this to a general model that
will optimise over a horizon of T = [1, 2, . . . T ] time steps.

In this example, the VPP considers itself with the delivery of two grid services, active power
and reserve capacity. For every time step t P T , the VPP has committed to delivering P kW
to the grid. Additionally, for each time step t, the VPP has agreed to maintain a minimum
reserve capacity of Qt kW. The grid service provision of each DER i is represented by its
decision variables xi,t :=

[
pi,t qi,t

]T and the system wide constraints bt are denoted bt =[
Pt Qt

]T .
In practice, various factors may prevent a power plant from adhering to its commitment b. To
account for such uncertainties, these agreements aremodelled as soft constraints, incorporat-
ing penalty terms for deviations, whether as shortfalls or surpluses. This approach provides
operational flexibility but also maintains an economic incentive to adhere as closely as pos-
sible to the commitment.

We introduce slack variable ϵP,t :=
řn

i=1 pi,t´Pt to denote the difference between the required
amount of power and the total amount generated across all DERs. Similarly, we introduce
slack variable ϵQ,t :=

řn
i=1 qi,t ´Qt to denote the difference between the required amount of

reserve capacity and the provided reserve capacity across all DERs. We also introducemone-
tary penalties related to surplus and shortfall denoted by λ+t and λ´

t . To that end, we use the
notation ϵ+ to represent the surplus when ϵ ą 0 and ϵ´ to represent the shortfall magnitude
when ϵ ď 0. Note that ϵ´ is a positive number representing the absolute magnitude of the
shortfall when ϵ is negative. The total deviation is then defined as ϵ = ϵ+ ´ ϵ´. Because we
cannot have shortfall and surplus simultaneouslywe enforce ϵ+ϵ´ = 0 to indicate that ϵ+ = 0
_ ϵ´ = 0.

This notation is used to formulate a monetary penalty (equation 2.15) incurred by the VPP
when it does not adhere to its predetermined grid service commitment.
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2. MODELLING A VIRTUAL POWER PLANT

ft(ϵ
+
P,t, ϵ

´
P,t, ϵ

+
Q,t, ϵ

´
Q,t) := λ+P,tϵ

+
P,t + λ´

P,tϵ
´
P,t + λ+Q,tϵ

+
Q,t + λ´

Q,tϵ
´
Q,t (2.15)

To eliminate non-linearity, the term ϵ+ϵ´ is reformulated using a big-M parameter. Con-
sequently, incorporating cost minimisation alongside system-wide constraints and penalty
terms, the generalised VPP optimisation problem is expressed as shown in equation 2.16.

min
T

ÿ

t=1

[
N
ÿ

i=1

ci,t(xi,t) + ft(ϵt)

]
s.t.
N
ÿ

i=1

xi,t = bt + ϵt @t P T

xi,t P Xi,t @i P N @t P T
gi(¨) ď 0 @i P N
ϵ+m,t, ϵ

´
m,t ě 0 @m PM @t P T

ϵ+t ďMz @t P T
ϵ´
t ďM(z ´ 1) @t P T
z P t0, 1u

(2.16)

We will denote the solution to this optimisation problem (2.16) as x˚. Of course, x˚ differs
as the reported information θ varies. Therefore, more precisely, for a set of agent reports θ
we denote the optimal allocation x˚ using these reports as

x˚ = X (θ), (2.17)

where X is the so-called allocation function.

2.3 Model Limitations

In this section, we briefly reflect on several model limitations in order to provide a realistic
perspective on the scope.

2.3.1 No Start-up/Shutdown Costs

A limitation of this model is the assumption that DERs can be dispatched instantaneously
without accounting for start-up or shutdown costs. Unlike large-scale power plants such
as nuclear, coal or gas facilities, which require extensive start-up and shutdown procedures
with significant associated costs, DERs are generally small-scale resources with minimal op-
erational delays. This justifies the assumption that immediate dispatch is feasible without
incurring substantial costs. However, exceptions to this generalisation may exist, depending
on the specific characteristics of certain DER technologies.
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2.3.2 Linearity Assumptions

Furthermore, the cost functions and temporal constraints are expressed in a linear fashion.
While this assumption simplifies the optimisationproblemand facilitates tractable analysis, it
may not fully capture the operational realities of certainDERs. In practice, cost structures can
exhibit non-linearities due to factors such as battery degradation, efficiency losses at partial
loads or dynamic pricing schemes. Similarly, temporal constraints may involve non-linear
dependencies, that are not adequately represented through linear formulations. The current
model provides an approximation for high-level analysis which is suitable for this study,
since its inherent focus is on mechanism design rather than capturing the full complexity of
DER operations.

2.3.3 Physical Grid Limitations

The current formulation does not consider limitations related to the underlying distribution
network. All DERs are treated as if they are connected to a single bus. In practice grid ser-
vices are location-sensitive and the feasibility of the allocation depends on network topology.
Again, since the focus on mechanism design these complexities are abstracted away for now.

2.3.4 Heterogeneity in Quality of Grid Services

The model implicitly assumes that all units of a given grid service are substitutable across
DERs and time, ignoring possible heterogeneity in the quality or type of service provision.
For example, two DERs providing frequency support might do so with different response
times or reliability characteristics. These quality differences are not captured in the current
formulation, which could lead to suboptimal allocations in practice.

2.3.5 Communication Delays

The model assumes a perfect and instantaneous communication infrastructure between the
VPP operator and the DERs. In practice, latency, data loss, or control delays could affect
the ability of DERs to respond in real time, particularly when coordination occurs over wide
areas or via third-party platforms [40].
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Chapter 3

Mechanism Design for VPPs

Although Chapter 2 provided a model describing the operation of a VPP, it did not address
howwe can achieve revenuemaximisation under the presence of strategic agents. This brings
us to the area of mechanism design, a field in economics and game theory that focuses on
designing systems and incentives to achieve desired outcomes, even when participants act
in their own self-interest.

In this chapter, our main focus is investigating how we can design mechanisms that align
the incentives of the agents with the goals from the VPP operator. In order to accomplish
this, we first discuss background information about mechanism design and identify gaps in
recent work (Section 3.1). Consequently, we introduce various design criteria (Section 3.2)
to guide us during the design and evaluation process. Based on this, we propose various
mechanisms for our problem definition and already provide a theoretical analysis in terms
of the design criteria (Section 3.3).

3.1 Background

This section provides background information on market mechanisms for energy markets to
facilitate a better understanding of the remainder of this chapter. It covers important aspects
of market design, including modelling assumptions, market scope and objectives, allocation
and payment rules, communication models and methods for market mechanisms (Sections
3.1.1 - 3.1.6). Tsaousoglou et al. [5] provide an excellent framework for characterisingmarket
mechanisms. Even though they focus on local electricity markets, many of themarket design
principles they outline - such as distributed resource participation and incentive-compatible
mechanisms - are very relevant in the context of VPPs, as both local electricity markets and
VPPs aim at optimally managing distributed energy resources within a market-based frame-
work. We will adopt this framework throughout this background section. Finally, we pro-
vide an overview of recent work regarding mechanism design in local electricity markets in
Section 3.1.7.

3.1.1 Modelling Assumptions

Modelling assumptions in DERs cover topics such as cost/utility functions, local constraints,
market behaviour and uncertainty. Choices related to those topics affect a mechanism’s per-
formance andmust therefore be clearly defined. This has been explored in Chapter 2 and we
adopt those assumptions when reviewing mechanisms.
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3.1.2 Market Scope and Objectives

The literature on market mechanisms shows a range of market scopes and objectives. The
market scope includes the set of participants and traded products. The literature on electric-
ity markets exhibits diverse market objectives. Tsaousoglou et al. [5] identify three primary
goals: social welfaremaximisation [41]–[44], profitmaximisation [8], [45]–[47] and fairness
[7], [48]–[50]. Social welfare maximisation aims to maximise total utility, profit maximisa-
tion targets the monetary surplus of a specific entity (e.g., the VPP operator) and fairness
seeks equitable outcomes (e.g., proportionality, envy-freeness, max–min).

3.1.3 Allocation Rule

The allocation rule X determines how resources or dispatch decisions are assigned to par-
ticipants in a market mechanism. In the literature, allocation often depends on the mecha-
nism type. For example, Lagrangian methods typically allocate based on optimising a cen-
tralised objective like social welfare, using bids or cost functions. Game-theoretic approaches
might allocate resources via auctions or equilibrium outcomes, taking into account strategic
bidding. Heuristic methods use simpler, rule-based allocations for practicality, while data-
driven methods may rely on learned patterns from historical data.

3.1.4 Payment Rule

The payment rule p sets how participants are compensated or charged for their market ac-
tions. In the literature, payment rules vary widely. Lagrangian methods often use shadow
prices or marginal costs. Game-theoretic mechanisms might employ auction-based pay-
ments, like VCG, to encourage truthful bidding. Heuristic methods favour straightforward
payments, such as fixed rates, for simplicity, while data-driven approaches might tie pay-
ments to predicted outcomes. Payment rules are closely tied to budget balance properties
of the mechanism. In a strict budget balanced mechanism, all payments and expenses com-
bined equal zero, whereas in a weakly budget balanced system, the payments may exceed
the costs, i.e. the VPP operator canmake some profit but should never run a deficit operating
the system.

3.1.5 Communication Model

The communicationmodel describes the structure andnature of information exchange among
market participants. It consists of two fundamental components: the communication graph
and the information format [5].

The communication graph determines the topology of interactions between agents. In a
centralised market, all participants communicate directly with a central operator, who col-
lects relevant information and makes allocation or pricing decisions. Conversely, in a de-
centralised market, agents interact peer-to-peer or within a distributed network without a
central coordinator. Such architectures allow for greater autonomy, privacy and potentially
enhanced robustness, but require more sophisticated protocols to reach consensus or equi-
librium.

The information format refers to the type and extent of data shared. In direct revelationmech-
anisms, each agent is required to report detailed private information such as cost functions,
feasible regions and operational constraints. This full disclosure enables the VPP operator to
perform global optimisation based on complete information. While efficient in theory, this
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approach raises concerns regarding privacy, strategic manipulation and scalability. In con-
trast, indirect communication mechanisms rely on iterative, limited exchanges, i.e. price sig-
nals, bids or marginal costs, without requiring agents to reveal their internal models. These
mechanisms, often inspired by auction or game-theoretic principles, preserve privacy and
can better align with real-world communication limitations, but may converge slower or fail
to reach globally optimal outcomes.

3.1.6 Methods for Market Mechanisms

Tsaousoglou et al. [5] highlight four types ofmarketmechanisms: Lagrangian, game-theoretic,
heuristic and data-driven. Lagrangian methods relax coupling constraints and iterate on
dual variables (prices) to solve a centralised objective via decomposition (e.g., [51]–[54]).
Game-theoretic methods elicit strategic bids or actions and clear the market through auc-
tions or equilibrium concepts (e.g., [11], [55]–[57]). Heuristic methods apply rule-based
or greedy dispatch and pricing tailored to practical constraints (e.g., [8], [58]–[60]). Data-
driven methods learn dispatch or pricing policies from historical or simulated data using
supervised or reinforcement learning (e.g., [61]–[64]).

Each family has trade-offs. Lagrangian methods optimise social welfare for price-taking
agents and support privacy-preserving designs but fail in non-convex cases and lack incen-
tive compatibility. Game-theoretic methods excel at social welfare under strategic behaviour
and support varied objectives, though payment rules can be complex. Heuristic methods
are scalable and practical, ensuring privacy and budget balance, but they are sub-optimal
and lack standard feasibility guarantees. Data-driven methods handle uncertainty well and
make fast decisions, but they offer no promises on optimality or budget balance.

3.1.7 Related Work

The design of incentive-compatible mechanisms for distributed energy resources in VPPs in-
tersects research areas in mechanism design and energymarkets. The literature on incentive-
compatible mechanism design for our problem formulation is limited. Therefore, we mainly
review literature on the coordination of strategic agents in related problem formulations.
The need for mechanisms resilient to strategic behaviour was already motivated in Chapter
1. Consequently, in this section, we particularly focus on studies addressing the challenges
of strategic behaviour in aggregators. This section identifies gaps in current approaches and
clarifies how our approach builds upon and diverges from prior work.

Tsaousoglou et al. [3] designed a max-min fair flexibility market mechanism for distribu-
tion system operators to incentivise strategic aggregators to truthfully report flexibility costs.
However, this mechanism is heavily dependent on a proof of payment from the aggregator,
used to show how much the aggregator paid to its flexible assets for providing the flexibility.

In another study from the same author [11], a billing rule for a demand sidemanagement sce-
nario with strategic users and coupling constraints is designed, preserving budget-balance
and individual rationality. Nevertheless, the specifics of this billing rule revolve around re-
warding/penalising (in)flexibility which is not applicable to our problem formulation.

Amore closely related problem formulation is adopted in [7], wherein the authors propose a
personalised-real time pricing scheme for demand response in energy cooperatives and flexi-
bility markets, that incentives selfishly behaving agents to modify their energy consumption
pattern towards system-level goals. However, they do not take into account temporal depen-
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dencies. Furthermore, the study revolves around demand response, not applicable to our
case.

In [10] they propose an auction-theoretic scheme for a community energymanagement prob-
lemwith resource constraints. In [6] they present a novel iterative auctionmechanism imple-
menting the truthful efficient VCG outcome with a different payment rule. Chen et al. [65]
present a novel combinatorial reverse auction framework for aggregating residential users in
regulation reserve provision. In order to clear the energy and reserve market in multi-area
power systems, an incentive mechanism is designed in [66] to encourage honest bids from
generators.

Despite the relevance of our problem formulation [13]–[15] – where the VPP is targeting
to satisfy a predetermined commitment, with strategic agents and a revenue maximisation
objective – there is no research addressing it with the presence of strategic agents. Because
commercial VPPs act as central aggregators, DERs are often independently owned and there-
fore have both the incentive and the opportunity to act strategically by misreporting private
information such as costs or constraints. Failing to account for this reality can lead to inef-
ficient allocations, increased system costs or even the inability of the VPP to meet its con-
tractual obligations. As VPPs become increasingly prominent in grid operations, designing
mechanisms that are robust to strategic manipulation is not just a theoretical concern, but an
operational requirement.

Furthermore, none of the reviewed papers provide insights into how the composition of the
aggregators’ portfolio, in terms of the fraction of strategic agents and cost parameter spread,
influences mechanism design choices.

3.2 Design Criteria

To design an effective mechanism for virtual power plants, several criteria must be consid-
ered. The VPP operator aims to maximise its revenue, yielding revenue optimality as the
first design criterium (Section 3.2.2). This implicitly means that the system must be weakly
budget balanced in expectation, since running a deficit will negatively impact its revenue
maximisation (Section 3.2.3). Furthermore, the mechanism must make sure it is beneficial
for DERs to participate, therefore yielding individual rationality as third design criterium
(Section 3.2.4). Additionally, incentive compatibility supports revenue optimisation by en-
couraging truthful reporting, this allows the VPP operator to make the most cost-effective
decisions (Section 3.2.5). Finally, an important property is scalability, to handle large-scale
VPPs (Section 3.2.6). To facilitate assessing the aforementioned criteria, we first introduce
the payment-to-cost ratio in Section 3.2.1.

3.2.1 Payment-to-Cost Ratio

To facilitate assessing the design criteria, we define the payment-to-cost ratio ri for DER i as:

ri =
pi(xi)

ci(xi)
(3.1)

Here, pi(xi) is the payment to DER i for setting its decision variables as xi. The true cost
incurred is noted as ci(xi). To assess the payment-to-cost ratio of the entire VPPwe introduce
S = ti | }xi} ‰ 0u, denoting the set of DERs included in the allocationmade by the VPP. Now
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we can define the payment-to-cost ratio of the entire VPP allocation by taking a weighted
average.

r =
ÿ

iPS

ci(xi)

c(x)
ri, (3.2)

Note that c(x) denotes the total cost of the VPP (equation 2.6). The attentive readermay have
noticed that ci(xi) may be equal to zero. To ensure mathematical validity, we redefine ri as
follows:

ri =

$

’

&

’

%

pi(xi)
ci(xi)

if ci(xi) ‰ 0,

1 if ci(xi) = 0 and pi(xi) = 0,

undefined if ci(xi) = 0 and pi(xi) ‰ 0.

(3.3)

In practice, for the system’s revenue optimality metric r, we exclude DERs with undefined
ri from the sum. Alternatively, if pi(xi) = 0 whenever ci(xi) = 0, ri = 1 is well-defined.

3.2.2 Revenue Optimality

The primary objective of the VPP is to maximise revenue. This involves two goals: design-
ing an allocation rule that minimises the total cost of grid service provision by optimally
assigning tasks to DERs and designing a payment rule such that payments approximate true
costs. If we express this using our r metric, we can say that ri = 1.0 ensures the VPP pays
DERs their exact costs, maximising revenue whilst also covering expenses (see paragraph
on individual rationality).

3.2.3 Weak Budget Balance

In mechanism design, a mechanism is weakly budget balanced when the market mechanism
operator does not need to inject money in the system [5]. In other words, a condition stating
the total payments made by the mechanism do not exceed the total payments received—
ensuring no deficit, but not necessarily any surplus. This definition typically applies when
considering only the VPP and the DERs, and does not account for the payouts from the grid
operator.

In our context, however, we are interested in the financial sustainability of the VPP operator,
who participates in external markets and may therefore earn a profit for providing services
to the TSO. To reflect this, we introduce an alternative definition of weak budget balance,
which we term the viable VPP condition. This condition allows the VPP to cover its costs
and earn a small surplus γ ě 0. In this case, 0 ď γ ď 1 is the profit margin the VPP makes.

Definition 3.1 (Viable VPP condition) A VPP is viable if the following holds in expectation.

r ď 1.0 + γ with γ ě 0

Here, r denotes the ratio of the total payments made to DERs relative to their true costs and γ captures
the VPP’s profit margin above aggregated true cost.
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Importantly, this condition should hold in expectation over an infinite time horizon. This
is assuming the VPP rationally bids in the market to remain financially viable. It does not
guarantee a surplus in every time instance and may not prevent short-term losses.

Note that this paper does not address the architecture of anymarket that the VPP participates
in. Therefore, we assume profit margin γ in our model, leaving open any discussion on the
wholesale market architecture. A similar approach is followed by Tsaousoglou et al. [11].

3.2.4 Individual Rationality

Individual rationality ensures that DERs are not worse off by participating in the VPP, requir-
ing payments to cover their incurred costs. We can say the system is individually rational if
E[vi(xi)] ě 0 @i P N .

We can also express the individual rationality using r.

Proposition 3.1 The system is individually rational if ri ě 1.0 @i P N .

Proof 3.1
vi(xi) = pi(xi)´ ci(xi) ě 0 (def. of IR)

pi(xi) ě ci(xi)

pi(xi)

ci(xi)
ě 1.0

ri ě 1.0

This criterion is closely linked to budget balance, as individual rationality can theoretically
be achieved with an infinite budget. The challenge lies in designing a mechanism where
payments are just sufficient to ensure individual rationality, minimising excess to support
revenue maximisation.

3.2.5 Incentive Compatibility

Incentive compatibility is important to prevent strategic manipulation by DERs, who may
misreport costs or constraints to maximise payoffs. A mechanism is dominant-strategy in-
centive compatible (DSIC) if truthful reporting is optimal for each DER regardless of others’
actions [67]. More formally, a system is DSIC if there exists no report θ̂i that increases an
agents utility over the utility under truthful reporting θi.

␣Dθ̂i s.t. vi(X (θ̂i)) ą vi(X (θi)) @i P N (3.4)

By its definition, ri increases as a result of overpayment, whichmay be a result from strategic
reporting. We can say that no strategic report θ̂i should exist that increases ri. More formally:

␣Dθ̂i s.t. [ri]θ̂i ą [ri]θ̂i @i P N (3.5)
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3.2.6 Tractability and Scalability

Themechanismmust be computationally tractable tomanage the complexity of VPPs, which
involve numerous DERs and time steps. Mechanisms requiring excessive computational re-
sources may be impractical.

3.3 Mechanisms

While the reviewed literature provides valuable insights, it does not resolve the challenges
posed by strategic agents in our setting. To address this knowledge gap, we investigate a se-
lection of four market mechanisms that we adapt to our problem formulation. Those include
the first-price sealed bid (FPSB) auction, a uniform pricingmechanism, the VCGmechanism
and an AGV mechanism (Sections 3.3.1 - 3.3.4). The FPSB mechanism mainly serves as a
baseline. Uniform price auctions are common in local electricity markets wherefore it is also
included in our analysis. Additionally, we study a VCG mechanism since a significant part
of related literature is based on VCG systems. Finally, we include an AGV mechanism to
address the prior known shortcoming of VCG mechanisms [5].

3.3.1 First-Price Sealed-Bid

The first-price sealed-bid auction is a fundamental mechanism in which distributed energy
resources submit their cost functions, reflecting the expenses associatedwith providing their
services. Based on this reported information θ̂, the VPP operator determines the optimal al-
location x˚ by solving the optimisation problem presented in equation 2.16. Payments to the
participating agents are then made according to their submitted cost information, as defined
by the payout rule in equation 3.6.

pi(xi) = ĉi(xi) (3.6)

Algorithm 1 First-Price Sealed-Bid Mechanism
Require: DERs N = t1, 2, . . . , Nu, θ̂ = tθ̂i | @i P N u
Ensure: Allocation x˚, p = tpi | @i P N u
1: x˚ Ð solution of (2.16)
2: for i P N do
3: pi Ð ĉi(x

˚
i ).

4: end for
5: return x˚, p = tpi | @i P N u.

For this mechanism it is quite trivial, when looking at the payout function, that this mech-
anism is not incentive compatible. This means that revenue optimality and the viable VPP
criterium are dependent on the fraction of strategic DERs s in the portfolio.

Proposition 3.2 As the fraction of strategic agents s increases, this decreases revenue optimality.

Proof 3.2
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1. Consider two scenarios, one with strategic fraction s and the second with strategic fraction s1 ą

s.

2. From equation 3.6 it is trivial that strategic agents cannot benefit from under reporting their
cost function, meaning that a strategic agent will increase its reported cost and hence receive
higher payout. Therefore, when the portion of strategic agents is higher: [

ř

iPS pi(x
˚
i )]s ď

[
ř

iPS pi(x
˚
i )]s1

3. When we consider the formula for r (equation 3.2) , because the true cost ci remains the same
and the payout increases (2), rs1 ě rs; indicating higher payouts to the DERs than strictly
necessary, therefore degrading revenue optimality.

When this r becomes significantly large due to strategic reporting, this will eventually also
violate the viable VPP property.

The mechanism is individually rational. When looking at the payout function, we can see
that an agent will never be paid less than its reported cost. Furthermore, any rational agent
will not under-report its cost function since that cannot improve its utility. Regarding compu-
tational efficiency, the mechanism is expected to perform well, since it only requires solving
one linear programming problem which can be solved in polynomial time.

The mechanism’s prevalence in various markets and its computational simplicity make it
a valuable baseline for comparison in the VPP setting. By including the first-price auction,
we aim to evaluate under which conditions its practical advantages outweigh its theoretical
limitations.

3.3.2 Uniform Price Mechanism

The uniform-price mechanism is prevalent in electricity markets. The operator makes an al-
location by solving the optimisation problem using the reported information (equation 2.16).
All DERs included in the allocation are paid according to the same cost function. This cost
function is determined by combining the cost functions of all DERs included in the allocation
S. For each grid service the highest cost parameter is chosen to form the new cost function
for determining the payouts (equation 3.7 - 3.9).

ūt,m = max
iPS

ui,t,m @t P T ,@m PM (3.7)

c̄t(xi,t) =
ÿ

mPM
xi,t,mūt,m (3.8)

pi(xi) =
ÿ

tPT
c̄t(xi,t) (3.9)

Regarding our evaluation criteria, this mechanism does not necessarily result in optimal rev-
enue, even under non-strategic assumptions. This is because the mechanism pays DERs
equal or more than their actual cost. This can also impact the viable VPP property. Neverthe-
less, because the payment is never lower than the reported cost function, the mechanism is
individually rational. Themechanism is not fully incentive compatible. We can easily see that
if an agent i overbids just enough such that it still remains in the allocation i P S, it can drive
up prices. While not fully incentive-compatible, the uniform-price auction often performs
well in practice, especially with many bidders, as strategic bidding is partially mitigated by
competition [68].
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Algorithm 2 Uniform-Price Mechanism
Require: DERs N = t1, 2, . . . , Nu, θ̂ = tθ̂i | @i P N u
Ensure: Allocation x˚, p = tpi | @i P N u
1: x˚ Ð solution of (2.16)
2: form PM do
3: ūt,m Ð maxiPS ui,t,m, @t P T ,@m PM
4: end for
5: for i P N do
6: pi Ð c̄(x˚

i )
7: end for
8: return x˚, p = tpi | @i P N u.

3.3.3 VCG Mechanism

The VCG mechanism is a strategy-proof mechanism that incentivises participants to report
truthfully by aligning their payments with the externalities they impose on the system [69]–
[71]. First, the DERs communicate their private information θ̂i to the VPP operator. The
VPP computes an optimal allocation over the total horizon using equation 2.16. Secondly,
each DER receives a payment based on the payment rule 3.10 [67, Def. 7.7]. This payment
rule determines the payment pi for DER i as the externality it imposes [70]. Formally, the
payment is:

pi(xi) =

(
ÿ

j‰i

cj((x
˚
´i)j) + f(ϵ)

)
´

(
ÿ

j‰i

cj(x
˚
j ) + f(ϵ˚)

)
(3.10)

x˚
´i = X (θ̂´i) (3.11)

Here the first term is the total cost of others when agent i is excluded. X (θ´i) denotes the
optimal allocation given all reports except from agent i. The second term is the total cost
induced by others under the optimal allocation including i. Their difference equals the neg-
ative externality imposed by agent i.

Algorithm 3 VCG mechanism
Require: DERs N = t1, 2, . . . , Nu, θ̂ = tθ̂i | @i P N u
Ensure: Allocation x˚, p = tpi | @i P N u
1: x˚ Ð solution of (2.16)
2: for i P N do
3: pi Ð solution of (3.10)
4: end for
5: return x˚, p = tpi | @i P N u.

Thewell-knownDSIC property of the VCGmechanism provides zero room to inflate the cost
function. However, the spread of cost parameters does influence the VPP in another way.

Proposition 3.3 Suppose per-unit costs are linear, ci(xi) = xiui, and i.i.d. ui „ U(d, e)with d ă e.
Assume the VPP’s commitment b is feasible without using all DERs and is met in both the baseline
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and the ´i counterfactual allocations (no penalty, i.e. f(ϵ) = f(ϵ˚) = 0). Then the expected total
VCG payout is strictly increasing in the spread e´ d.

Proof 3.3

1. If d = e, all DERs i, j P N i ‰ j have identical costs (ci(x) = cj(x)). Excluding any DER
i does not alter the optimal allocation or cost, as another DER can substitute at the same cost,
yielding pi = 0 in equation (3.10)

2. As e´ d increases, so does cj(x)´ ci(x), as the cost parameters are drawn from U(d, e).

3. Now, excluding i requires including a higher cost DER, increasing the first term of equation
3.10.

4. In spite of the allocation remaining the same, the payouts increase as the externality is affected
by the spread of the costs.

Whereas VCG mechanisms that use valuations (as in equation 2.8), are known to be individ-
ually rational under common restrictions [72, Sec. 10.4.3]. VCG mechanisms that are used
in a procurement setting, using costs rather than valuations, are not always individually ra-
tional. From this proof we can conclude that for certain cost spreads the mechanism violates
individual rationality. Additional rules, such as reserve prices, could be imposed to make
the mechanisms also individually rational. However, this could sacrifice other mechanism
properties.

3.3.4 AGV Mechanism

The Arrow–d’Aspremont–Gérard-Varet (AGV) mechanism is also called the expected exter-
nality mechanism. It is a Groves-type mechanism that achieves budget balance by basing
payments on expected, rather than realised, externalities [68, Sec. 5.3.2]. First, the allocation
is made using equation 2.16. Following [72] we define

ESW´i(θ̂i) = Eθ´i

[
ÿ

j‰i

cj(X (θ̂i, θ´i)j) + f(ϵ)

]
, (3.12)

denoting the expected social welfare (ESW).We use this as an intermediate term tomake the
payment rule more concise. In this equation, we fix the reported information θ̂i from agent i
and draw the reports from other agents θ´i according to the assumed distribution. X (θ̂i, θ´i)
denotes the optimal allocation given these reports. We take the expectation over θ´i to get
the expected total cost of everyone except i, given the fact that i announced θ̂i and with the
cost functions from others according to the prior.

The AGV payment to DER i is then expressed as

pi = ESW´i(θ̂i)´
1

N ´ 1

ÿ

j‰i

ESW´j(θ̂j). (3.13)

This is the cost-minimisation counterpart of the expected-externality formula in [72, Def.
(10.4.13)].
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Algorithm 4 AGV mechanism
Require: DERs N = t1, 2, . . . , Nu, θ̂ = tθ̂i | @i P N u
Ensure: Allocation x˚, p = tpi | @i P N u
1: x˚ Ð solution of (2.16)
2: for i P N do
3: pi Ð solution of (3.13)
4: end for
5: return x˚, p = tpi | @i P N u.

In general, the AGV mechanism exchanges ex interim individual rationality for ex ante indi-
vidual rationality and DSIC for Bayesian-Nash Incentive Compatibility (BNIC) to achieve
budget balance [72]. In other words, the mechanism would be IR in expectation but may
violate IR for individual instances.
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Chapter 4

Case Study

Although the theoretical analysis of the mechanisms in the previous chapter has provided
us with a general understanding of correlations between mechanism performance and the
experimental dimensions, an understanding of absolute differences in performance across
mechanisms is still missing. In order to gain this understanding, we subject the mechanisms
to a case study.

First we clarify how we instantiate the model parameters needed for the case study (Section
4.1). Consequently, we discuss the simulation set-up in Section 4.2 and corresponding hy-
potheses in Section 4.3. Furthermore, we showcase the results of the experiments in Section
4.4 and provide an analysis of those results in Section 4.5.

4.1 Model Instantiation

The model that we use for the case study contains four types of DERs, generators, photo-
voltaic (PV) systems, electrical storage systems (ESS) and wind turbines. We adopt the
model presented in Chapter 2, characterising all DERs through their cost functions, local
constraints and temporal constraints. To instantiate the model, we use a hybrid approach
combining synthetic data generation based on realistic distributions and real-world-inspired
parameters. We discuss the specifics of implementations in their respective subsections 4.1.1
- 4.1.5.

Note: While the data ranges used for model instantiation are informed by real-world imple-
mentations [17], the specific numerical values are not essential to the core findings. With
this model we aim to illustrate structural patterns rather than reproducing exact outcomes.
Consequently, the specific instantiations do not materially affect the qualitative conclusions.

4.1.1 VPP instantiation

For this instantiation we assume that the VPP is providing two grid services, active power p
and reserve capacity q, i.e. |M| = 2. Similarly, this approach is followed in [73]. Both grid
services are measured in kW over 1 hour time intervals. In this experiment we consider a
time horizon of T = 24 hours and N = 100 DERs. We define the commitment vector per
time interval as bt := [Pt, Qt]

T . The active power commitment is set to a fixed fraction of the
aggregate available capacity,

Pt = 0.5 ¨
N
ÿ

i=1

Pmax,i,t, (4.1)
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reflecting a moderately challenging dispatch. Reserve capacity is set proportionally, based
on planning reserve guidelines. 1

Qt = 0.15 ¨ Pt (4.2)

Penalty coefficients for surplus and shortfall enter the soft-constraint term ft(¨) as in equation
(2.15). We set λ´

P ą λ+P and λ´
R ą λ+R and keep them time-invariant within a scenario. Those

values are derived from historical European market data (EPEX real-time results).

We use common, normalised exogenous profiles: a solar irradiance profile φt P [0, 1] and a
wind availability profile ψt P [0, 1] shared across agents.

4.1.2 Generators

For generators we need to instantiate its minimum operational capacity Pmin, its maximum
operational capacity Pmax, its ramping capability, i.e. the amount it can ramp up or down
within time frames, and of course its cost function. To establish those parameterswe use com-
mon ranges as in [17]. We draw the parameters from distributions to introduce variability
within theDERs. Pmin andPmax are drawn fromuniformdistributionsU(1, 5) andU(Pmin, 7)
respectively to create variation within the DERs. We assume that its ramping capacity P∆ is
15% of Pmax, constraining the decision variables across time intervals.

The cost function for generators is linear, reflecting the fuel consumption required for power
generation. Cost parameters for active power provision are drawn as

ui,t,1 „ N (µgenP = 0.5, ϕµgenP ; [0,8)), (4.3)

where ϕ is the coefficient of variation. Reserve-capacity unit costs are set proportionally to
active-power costs, ui,t,2 = 0.15ui,t,1.

The instantiated local and temporal constraints are

Pmin ď pi,t ď Pmax, 0 ď qi,t ď Pmax ´ pi,t, |pi,t ´ pi,t´1| ď P∆ (4.4)

4.1.3 Photovoltaic Systems

Since photovoltaic systems are passive generation technologies, their power output is depen-
dent on weather conditions. However, in this study we adopt perfect predictions and allow
curtailment. For each PV system we draw a capacity P̄i „ U(0.5, 2) kW. A common irradi-
ance profile φt P [0, 1] captures the expected relative solar intensity at time step t P T . The
time-varying maximum available power is then

Pmax,i,t = P̄i ¨ φt. (4.5)

Active-power unit costs are drawn as ui,t,1 „ N (µpvP = 0.3, ϕµpvP ; [0,8)). In this simulation
we assume that PV systems cannot provide controllable reserve capacity due to theirweather-
dependent nature. Therefore, we constrain the decision variables to

0 ď pi,t ď Pmax,i,t, qi,t = 0. (4.6)
1https://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/IVGTF1-2.pdf
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There are no temporal constraints, as the output depends only on the current solar availability
and not on previous operational states.

4.1.4 Electrical Storage Systems

For electrical storage systems, we instantiatemultiple parameters to capture their operational
characteristics. The maximum charging power Pcharge,max and maximum discharging power
Pdischarge,max are drawn from uniform distributions U(1, 10) kW. The energy capacity Emax is
drawn from U(1, 10) kWh and the initial state of charge is set asE0 = 0.5¨Emax. Active-power
unit costs are drawn as ui,t,1 „ N (µpvP = 0.2, ϕµpvP ; [0,8)). The costs for reserve power are
15% of the active power costs.

Thedecision variables for ESS include the active power provision´Pcharge,max ď p ď Pdischarge,max
and the reserve capacity q it can provide, qt ă Pdischarge,max ´ pt.

Therefore the local constraints at each time t are:

• ´Pcharge,max ď pt ď Pdischarge,max

• qt ă Pdischarge,max ´ pt

• 0 ď Et ď Emax

The temporal constraints use the evolution of the state of charge as follows (with ∆t = 1 h):
Et = Et´1 + pt ¨∆t

Furthermore, the temporal constraints can be expressed as in example 2.1.

4.1.5 Wind Turbines

Forwind turbines, we instantiate the rated capacityPrated,i „ U(10, 50) kW to reflect variation
among the DERs. A common wind availability profile ψt P [0, 1] is used to model time
variation and the maximum operational capacity at each time step is Pmax,i,t = Prated,i ¨ ψt.

Wind turbines are passive generation technologies with output dependent on wind condi-
tions. We assume perfect forecasts and allow curtailment, so the decision variables satisfy
0 ď pi,t ď Pmax,i,t and qi,t = 0. The cost parameters for active power provision are drawn
from a truncated normal distribution N (µwind

P = 0.1, ϕµwind
P ; [0,8)).

Thus, the local constraints are 0 ď pi,t ď Pmax,i,t and qi,t = 0. There are no temporal con-
straints, as their output depends only on the current wind availability and not on previous
operational states.

4.1.6 Strategic Behaviour

In this section we specify how strategic behaviour is modelled in our case study. We first dis-
cuss among which dimensions agents can exhibit strategic behaviour. Consequently, we in-
troduce a parameter to describe the magnitude of overreporting cost functions. Additionally,
we discuss bounded rationality assumptions due to limited information and show how cost
spread, in relationwith bounded rationality influences the possibilities for DERs to strategise
the cost function.
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Strategic Dimensions

We focus the strategic dimension on cost reporting. Each agent communicates θi = (ci,Xi, gi)
to the VPP, but in the experiments we only allow misreporting of costs, i.e. θ̂i = (ĉi,Xi, gi).
Misreporting Xi or gi is excluded: overstating feasibility would be revealed operationally
when requested allocations are infeasible and understating feasibility offers no advantage
under our allocation objective.

Misreporting the Cost Function

To describe misreporting the cost function, we introduce a multiplicative factor αi,t. Truthful
reporting corresponds to αi,t = 1. Reported costs are

ĉi,t(xi,t) = αi,txi,tui,t. (4.7)

Influence of Cost Spread

The leeway for a single DER to engage in over reporting its cost function is dependent on
the competition within the DER portfolio. We can say that the competition within a VPP
portfolio is dependent on the spread of the costs. It is only useful for a DER to over report its
cost if this results in the allocation of grid services to that DER, i.e. xi ‰ 0. This means that
the bounds of αi are related to the spread of cost parameters within the VPP portfolio.

Proposition 4.1 (Leeway to overreport increases with cost spread) Consider a single time step
(|T | = 1) and a single service (|M| = 1). Let unit costs ui be i.i.d. U(d, e) with 0 ă d ă e. Let the
VPP select a subset S of sizeK ă N that minimises total reported cost subject to the commitment, as
in (2.16). Consider a unilateral deviation by some i P S that scales its reported unit cost by αi ě 1
while other agents’ reports are held fixed. Then the maximal factor that keeps i in S, ᾱi, satisfies

BE[ᾱi]

B(e´ d)
ą 0.

Proof 4.1 Order DERs by reported unit cost. Under truthful reports, i P S implies ui ď uK and the
(K+1)-th order statistic uK+1 is the exclusion threshold. After scaling, i remains selected if and only
if

αiui ă uK+1 ñ ᾱi =
uK+1

ui
.

For i.i.d. U(d, e) draws, ui and uK+1 are order statistics whose ratio’s expectation increases with the
support width (e ´ d). A larger spread increases the typical gap between adjacent order statistics,
raising E[uK+1/ui]. Therefore, B E[ᾱi]/B(e´ d) ą 0.

Bounded Rationality Constraints

Agents attempting to compute the report thatmaximises their utility is a commonphenomenon.
However, with incomplete information about others’ costs, exactly computing the reported
cost function to maximise utility (equation 4.8) is unlikely.
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Of course, depending on the context, a DER may have information about other DERs’ cost.
For some technologies (e.g., PV or gas-firedCHP), costsmay be similar across agents because
they share common sources (i.e. sunlight, gas), allowing DERs to estimate θ̂˚

i .

θ̂˚
i = argmax

θ̂i

[
pi(X (θ̂i, θ´i))´ ci(X (θ̂i, θ´i))

]
(4.8)

It is important to note that the optimal report an agent can make is dependent on the type of
mechanism. This is because the payment p is part of equation 4.8 and recall that the payment
pi to an agent is dependent on the mechanism. The influence that other agents have on the
optimal report is reflected throughX , which changes as the reports from other agents change.

To study the effect of bounded rationality on outcomes, we adopt a simple experimental model
for bounded rationality. Since we instantiate all cost parameters, we can actually calculate θ̂˚

i

and therefore c˚
i according to equation 4.8. Consequently, we can find α˚

i that is associated
with c˚

i . In reality, as was pointed out earlier, a DER cannot exactly find c˚
i , due to limited

information. Therefore, to propagate this uncertainty into our experiment, for strategicDERs,
we draw αi,t „ N (α˚

i,t,
α˚
i,t

5 ). To obtain the standard deviation, we divide the mean by 5, such
that the deviation scales with the mean. Following proposition 4.1, this approach allows αi,t

to change as we vary the cost spread throughout experiments.

Note that this experimental model is not a behavioural claim about the real world, it is a way
to model the uncertainty introduced by the limited information. Indicating that a DER is not
expected to be able to optimally set its αi,t.

4.2 Simulation Set-up

During the simulations we vary two primary factors across scenarios. The first of those is
the strategic fraction s, being the proportion of DERs that misreport.

s P t0.00, 0.05, 0.10, 0.20, 0.40, 0.50, 0.70, 1.00u

The second one is the coefficient of variation ϕ for unit costs.

ϕ =
σ

µ
(4.9)

ϕ P t0.0, 0.1, 0.5, 1.0, 2.0, 3.0u

For each (s, ϕ) scenario:

1. Instantiate DER parameters and feasible sets as in Section 4.1 with dispersion ϕ; gener-
ate shared profiles φt, ψt.

2. Set commitments bt and penalties λ as in Section 4.1.1.
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3. Select a random subset of DERs of size tsN u as strategic. For those, draw αi,t; for non-
strategic DERs set αi,t = 1.

4. For each mechanism: form reported costs ĉi,t using αi,t, solve the allocation via (2.16),
compute payments by the mechanism’s rule and record the overpayment ratio r.

Each scenario is repeated for 10 iterations with a fixed global seed per batch to ensure repro-
ducibility. For each scenario we record the payment-to-cost ratio r (Section 3.2.1) to assess
the design criteria (Section 3.2). Furthermore, we record the runtime of the mechanisms for
N P t1, 5, 20, 50, 100, 200, 300u in seconds.

The experimental setup is implemented in Python 3.10, using Pyomo for optimisation with
the cplex solver to solve the LP problem. The data generation function uses NumPy for
random sampling, with a fixed seed to ensure reproducibility. Experiments are run on a
Lenovo Ideapad 5 with 16GB of RAM and an AMD Ryzen 5 5500U.

4.3 Hypotheses

By reviewing the theoretical analyses of the mechanisms made in Section 3.3, the bounded
rationality model and proposition 4.1, we can form the following hypotheses.

• H1 (Overbidding raises payments). For first-price and uniform mechanisms, higher
ᾱ and/or larger s increase the average payout-to-cost ratio r.

• H2 (Cost spread amplifies effects). Larger ϕ (greater dispersion of u) amplifies the
impact of misreporting on payments, with uniform pricing most sensitive (prices tied
to maxima).

• H3 (Variance to α). Under VCG and AGV, outcomes are invariant to α, but total pay-
outs still increase with cost spread ϕ via externality payments.

4.4 Results

This section reports observations from the simulations using the payment-to-cost ratio r as
primary metric. We vary the strategic fraction s and the coefficient of variation ϕ of unit
costs. We provide 2D plots illustrating the impact of the strategic fraction s on the payment-
to-cost ratio r for several fixed values of the coefficient of variation ϕ. Similarly, we plot
the payment-to-cost ratio versus the coefficient of variation ϕ for several fixed values of the
strategic fraction s.

4.4.1 First-Price Sealed-Bid

From Figure 4.1 we can observe the following results. For the FPSB mechanism we can both
observe an increase in the payment-to-cost ratio r when the strategic fraction s increases
(top), as well as when the coefficient of variation ϕ increases (bottom). Whereas payment-
to-cost ratios are modest for a low cost dispersion and strategic fraction they increase for
larger strategic fraction s and coefficient of variation ϕ, leading to overpayments of up to 25%
in extreme cases.
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4.4. Results

Figure 4.1: FPSB: The payment-to-cost ratio r versus the strategic fraction s for fixed coeffi-
cient of variation ϕ (top) and payment-to-cost ratio r versus the coefficient of variation ϕ for
a fixed strategic fraction s (bottom).

4.4.2 Uniform Pricing

From Figure 4.2 we can observe that the payment-to-cost ratio r increases significantly when
increasing the coefficient of variation ϕ (bottom). Increasing the strategic fraction s also
raises the payment-to-cost ratio r but the effect is significantly less. We observe a minimal
payment-to-cost ratio of 2, for a coefficient of variation ϕ = 0 or a strategic fraction s = 0.
The payment-to-cost ratio attains values that are quite large, ranging from 2 up till 14.
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Figure 4.2: Uniform: The payment-to-cost ratio r versus the strategic fraction s for fixed co-
efficient of variation ϕ (top) and payment-to-cost ratio r versus the coefficient of variation ϕ
for a fixed strategic fraction s (bottom).

4.4.3 VCG Mechanism

For VCG, r varies primarilywith the coefficient of variation ϕwhile variation along the strate-
gic fraction s is negligible (DSIC). Absolute r exceeds 1.0 due to externality payments and
rises with the coefficient of variation.
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4.4. Results

Figure 4.3: VCG: Thepayment-to-cost ratio r versus the strategic fraction s for fixed coefficient
of variation ϕ (top) and payment-to-cost ratio r versus the coefficient of variation ϕ for a fixed
strategic fraction s (bottom).

4.4.4 AGV Mechanism

For AGV, r is generally below one, with hardly any sensitivity to the strategic fraction s.
Across the coefficient of variation ϕ, moderate differences are to be seen. Absolute variation
is limited compared to uniform and VCG.
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Figure 4.4: AGV: The payment-to-cost ratio r versus the strategic fraction s for fixed coefficient
of variation ϕ (top) and payment-to-cost ratio r versus the coefficient of variation ϕ for a fixed
strategic fraction s (bottom).

4.4.5 Runtime

Whereas runtimes for VCG increase rapidly, for other mechanisms they remain low as the
portfolio size increases.
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Figure 4.5: Comparison of the runtime (in seconds) for various portfolio sizes.

4.5 Discussion

This section reflects on the results of the case study. A subsection is dedicated to each indi-
vidual mechanism.

4.5.1 First-Price Sealed-Bid

Figures 4.1 show that the payment-to-cost ratio r increases as the strategic fraction s in-
creases. Similarly, there is a positive correlation between the coefficient of variation ϕ and
the payment-to-cost ratio r. The positive correlation between the strategic fraction and the
payment-to-cost ratio is consistent with the mechanism’s payment rule (equation 3.6) and
with proposition 3.2, stating that a larger share ofmisreporting agents inflates total payments.
Increasing the coefficient of variation ϕ changes the leeway for over reporting (proposition
4.1), hence resulting in a higher payment-to-cost ratio.

In terms of design criteria, FPSB is not strategy-proof. Agents have incentives to overreport
(Section 3.3.1), so outcomes depend on s and on how aggressively agentsmisreport. Individ-
ual rationality is satisfied in our experiments because agents are paid their reported costs and
thus r ě 1. Regarding weak budget balance and the viable VPP condition; if all agents are
truthful (s=0), FPSB attains r=1 and satisfies the viable VPP condition. As s rises, however,
overpayment can push r above 1+γ, threatening both viability and revenue optimality.

4.5.2 Uniform Pricing

For the uniform-price mechanism (figure 4.2), the payment-to-cost ratio r varies strongly
with the coefficient of variation ϕ and little with the strategic fraction s. This follows directly
from the payment construction (equations 3.7–3.9). The highest unit cost among selected
DERs sets the uniform price. As the coefficient of variation ϕ grows, the maximum of the
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selected costs increases relative to the average, raising the payment-to-cost ratio r. Limited
sensitivity to the strategic fraction s is expected because even if some agents overreport, com-
petition among selected DERs constrains the clearing price to the within-allocation maxi-
mum, providing some natural robustness as explained in Section 3.3.2.

With respect to the design criteria, uniform pricing is not strategy-proof, DERs can profit
from shading upward. Nevertheless, competition provides partial resilience, which aligns
with the weak empirical dependence on s. Individual rationality holds by construction be-
cause no DER is paid below its reported cost, which is reflected in r ě 1. Budget balance and
viability are the main concerns: large ϕ produces significant overpayment (r " 1), which is
likely to violate the viable VPP condition and undermines revenue optimality. Interesting to
observe is that empirical results never yield a payment-to-cost ratio lower than 2, even when
ϕ = 0. While remarkable at first glance, this is most likely due to the heterogeneity of the
portfolio, automatically introducing a spread of costs because different technologies bring
different costs.

4.5.3 VCG

The VCG mechanism exhibits almost no variation in the payment-to-cost ratio r with chang-
ing strategic fraction s (Figure 4.3), as expected from DSIC. Strategic misreporting does not
improve utility, so agents effectively truth-tell (Section 3.3.3). However, r increases with the
coefficient of variation ϕ. This alignswith the externality-based payment rule (equation 3.10)
and proposition 3.3 in Section 3.3.3, saying that with greater dispersion, replacing a low-cost
DER by the next-best alternative becomes more expensive on average, increasing payments.

Considering the design criteria, VCG is DSIC and thus robust to strategic behaviour. Ad-
ditionally, since r ą 1 individual rationality is satisfied. Nevertheless, due to this r ą 1,
weak budget balance is not guaranteed. Payments can exceed total costs by a significant mar-
gin, jeopardising the viable VPP condition and revenue optimality despite being incentive-
compatible. Tractability is lower than for the other mechanisms because naively computing
payments requires N+1 solves per instance, which is consistent with higher runtimes in
practice (Figure 4.5).

4.5.4 AGV

For AGV (Figure 4.4), r hardly shows sensitivity to s and increases with ϕ, but overall levels
are kept near or below one due to the scaling step explained in Section 3.3.4.

Regarding the design criteria, AGV achieves Bayesian-Nash incentive compatibility, but it is
not DSIC. Our implementation appears comparatively insensitive to s. Although, theoret-
ically IR should hold in expectation, we frequently observe r ă 1, indicating that certain
DERs may be compensated below true costs. However, theoretically, the mechanism should
be individually rational over an infinite time horizon. Weak budget balance and thus opera-
tor viability can be enforced by design through the scaling step, which makes AGV attractive
from a revenue management standpoint. Tractability is favourable relative to VCG because
actual optimisation problems are replaced by expectations.

4.5.5 Non-Rational Behaviour

Because we have imposed a bounded rationality assumption on the agents, agents will not
always show rational behaviour. Under bounded rationality, agents may not compute α˚

i ex-
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actly. We use non-rational behaviour to refer to deviations from the utility-maximising report
(equation 4.8). We are interested in how this influences individual utility and how simulta-
neous deviations from α˚

i across multiple agents affect the utility from other agents.

For the non-strategy proofmechanisms, we distinguish betweenαi ą α˚
i andαi ă α˚

i . By the
definition of optimal α˚

i (equation 4.8), if an agent uses αi ą α˚
i this results in their exclusion

from the allocation S, resulting in vi(xi) = 0 for that agent. Furthermore, when αi ă α˚
i , it

is trivial that for FPSB this decreases the agents utility. For the uniform pricing mechanism,
this is not necessarily the case. If the agent is included in the allocation, using αi ă α˚

i does
not influence its own utility, except when it is the agent with the highest cost function. This
can be easily inferred when looking at equation 3.9.

Furthermore, we discuss influences on the utility of individual agents when simultaneous
deviations from α˚

i occur, i.e. when a significant portion of agents deviates such that αi ą α˚
i

or αi ă α˚
i . For the FPSB and the uniform pricing mechanism we can see that the first case

decreases the competition as in that case those agents are excluded from the allocation, as
was discussed in the previous paragraph. This relaxes the inclusion threshold and therefore
provides remaining agentswithmore leeway to inflate alpha. In the latter case, quite trivially,
the inclusion threshold is tightened, resulting in a smaller margin for increasing αi.

For the strategy proof mechanisms this is a different discussion, as those mechanisms are
designed in such a way that α = 1 results in optimal utility for the agents. However, this
means that non-rational agentsmay still chooseα ‰ 1. From theDSIC or BSIC properties that
hold for VCG andAGV respectively, this means that this will decrease their individual utility.
Since for AGV the payments are based on expectations it does not influence the mechanism’s
revenue optimality. Additionally, for the VCGmechanism it neithermakes a difference, since
collective over, or under-reporting does not influence the difference between the two terms
of equation 3.10, i.e. it does not influence the externality.

4.5.6 Runtime

In Figure 4.5we can observe that the FPSB, uniform andAGVmechanism exhibit low linearly
scaling runtimes. On the contrary, VCG runtimes scale much quicker as the portfolio size
increases.
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Chapter 5

Discussion

The combination of the theoretical analyses of mechanisms in Chapter 3 and the empirical
results of the case study (Chapter 4), allow us to discuss the research questions (Section 5.1).
Consequently, we combine the results from the three research questions and extrapolate the
findings to a broader context (Section 5.2). Finally, we investigate what knowledge is still
missing and provide those as directions for future work (Section 5.3).

5.1 Research Questions

RQ1: How can the operational dynamics of a VPP be modelled? The first research ques-
tion has been an essential question for this research, to cover important preliminaries. Chap-
ter 2 provided a formal description of a tractablemulti-periodmodel with local and temporal
constraints, soft system-wide commitments and linear costs, sufficient to study internal coor-
dination and mechanism design in a CVPP setting. This laid the groundwork for describing
mechanisms and providing subsequent analyses. This chapter concluded with the question
how to maximise profit for the VPP operator when agents may engage in misreporting their
local information. This brought us to the area of mechanism design, eventually leading us
to research question 2.

RQ2: How do mechanisms compare across revenue optimality, weak budget balance,
incentive compatibility, individual rationality and tractability? FPSB is simple, IR and
tractable. It achieves revenue optimality and viability under truth-telling but is vulnerable
as the strategic fraction increases. Uniform pricing is tractable and IR exhibiting fewer de-
pendence on the strategic fraction, but highly sensitive to the spread of costs. This leads
to concerns regarding the viable VPP property and revenue optimality. VCG is DSIC and
yields efficient allocations, but externality payments threaten viability and revenue optimal-
ity. Also, it is often computationally heavier. AGV can be tuned to satisfy budget balance and
keep the payment-to-cost ratio near one, offering a middle ground. It did violate individual
rationality in various instances in our case study.

RQ3: How does portfolio composition (agent behaviour and cost dispersion) influence
mechanism effectiveness? Composition matters. Our results show that FPSB is most sen-
sitive to the fraction of strategic agents. When there are no strategic agents, the payment-
to-cost equals one. This indicates the presence of all desired properties, revenue optimality,
incentive compatibility, individual rationality and viability. Unfortunately, as the strategic
fraction increases these properties quickly fade. Uniform pricing provides more resilience
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to the presence of strategic agents as the price is reliant on the most expensive agents in the
allocation, rendering strategic behaviour for agents with lower cost functions largely unprof-
itable. On the contrary, it is most sensitive to the dispersion of costs, quickly increases the
payment-to-cost ratio as the spread increases. VCG is invariant to s but becomes increasingly
expensive as the cost spread grows. AGV is comparatively insensitive to s under our imple-
mentation and preserves operator viability across ϕ, albeit with the occasional individual-
rationality violations.

5.2 Synthesis

Taken together, these findings imply different mechanism choices for different scenarios.
When the strategic fraction is low, FPSB can be particularly useful. Beyond its simplicity,
it tends to exhibit relatively low overpayment compared to uniform or VCG. This makes
this mechanism especially desirable in cases where only a minor fraction of the portfolio is
likely to engage in untruthful reporting. Uniform pricing can fit homogeneous VPP portfo-
lios. In homogeneous portfolios, cost functions are correlated through common drivers (e.g.
shared dependencies on solar irradiance, wind availability or gas prices). Therefore, there
is a much smaller spread of costs compared to heterogeneous portfolios. Since the impact of
the strategic fraction is relatively small, in combination with a low-variance VPP portfolio in
terms of cost spread, the uniform pricing strategy is expected to performwell. An important
take-away here is that, though both these mechanisms are not strategy proof, under the right
circumstances they could outperform mechanisms that are strategy-proof.

In cases where DSIC is important and external subsidisation is feasible, VCG is theoretically
ideal. When operator viability is the hard constraint, AGV-stylemechanismswith safeguards
for individual rationality offer a promising outcome.

5.3 Future Research

From our findings, we propose three directions for future research. First, future work should
enhance modelling strategic behaviour by replacing draws of the inflation factor with in-
formed, state-dependent strategies that respond to observables such as fuel prices, solar irra-
diance and wind availability and possibly by allowing agents to learn over time. This would
better capture how the cost spread could amplify strategic behaviour and/or influence the
payment-to-cost ratio. Second, the modelling environment can be broadened by relaxing
perfect-forecast assumptions, adding additional grid services and richer temporal couplings.
Third, evaluating alternative mechanisms, such as iterative schemes, hybrid uniform–pay-as-
bid rules or reserve-price Groves variants, could further enhance performance.
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Chapter 6

Conclusions and Recommendations

This chapter provides a condensed representation of the work done in this thesis. Starting
with an explanation of the context and motivation (Section 6.1), we follow with indicating
the research gap (Section 6.2). Consequently, we briefly discuss the mechanisms that were
considered in this thesis (Section 6.3) and summarise the contributions resulting from the
theoretical analysis and case study in Section 6.4. Finally, we summarise what understanding
is still missing and recommend this as future work in Section 6.5.

6.1 Context and Motivation

As power systems increasingly rely on renewable energy, maintaining grid stability becomes
more complex. Grid services — such as power balance, ramping, frequency regulation —
are essential to ensure secure and reliable system operation. Traditionally provided by large,
centralised generators, these services must now be sourced from a growing number of dis-
tributed energy resources (DERs), including solar panels, wind turbines and residential bat-
teries. To effectively integrate these small-scale, decentralised resources, the concept of a
virtual power plant (VPP) has been introduced. A VPP aggregates the capabilities of multi-
ple DERs and coordinates their operation to collectively provide grid services, allowing grid
operators to interact with the VPP as if it were a conventional power plant.

Unlike conventional generation units, DERs are typically owned by independent agents with
self-interested objectives. These agents may behave strategically, for example by misreport-
ing costs or constraints, in order to maximise individual benefits. Such behaviour can un-
dermine the collective performance of the VPP and jeopardise service reliability. A key chal-
lenge lies in designing coordination mechanisms that align the self-interested objectives (e.g.
profit maximisation) of individual DERs with the operational goals of the VPP, ensuring
both truthful participation and reliable service provision.

6.2 Research Gap

Whereas strategic behaviour has been studied in related contexts such as demand response
programs and community or neighbourhood energy settings, these works rarely address
the commercial VPP context in which a central operator must satisfy a fixed commitment
while coordinating heterogeneous, independently owned DERs. Many VPP studies treat
the day-ahead plan as flexible or do not model strategic reporting at all, which limits their
applicability to commercial operations.

This thesis targets a specific and practically relevant formulation that has not been system-
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atically explored: a commercial VPP that must satisfy a predetermined commitment, with
a revenue maximisation objective. In this scenario, DERs hold private information and may
engage in misreporting those. The operator solves a central allocation with soft penalties
for deviation from the predetermined commitment and seeks profit maximisation. What is
missing in the literature is an assessment of internal coordinationmechanisms tailored to this
formulation, including how they trade off revenue optimality, weak budget balance, incen-
tive compatibility, individual rationality and scalability. Equally lacking is an understanding
of how portfolio composition, in particular the fraction of strategic agents and the dispersion
of unit costs, shapes mechanism performance in this fixed-commitment setting.

6.3 Mechanisms Considered

We evaluated four internal coordination mechanisms. The first-price sealed bid mechanism
pays each selected DER its reported cost. The uniform-pricing mechanism pays all selected
DERs a commonprice derived from the highest unit cost among the selected set. TheVickrey–
Clarke–Groves mechanism uses the efficient allocation and pays agents according to the ex-
ternality they impose on others, which induces truthful reports. The Arrow–d’Aspremont–
Gerard-Varet mechanism replaces realised externalities by expected externalities and applies
a scaling step to target budget balance. Together these mechanisms span the design space
from simple and tractable rules to strategy-proof schemes.

6.4 Contributions

The experiments demonstrate clear patterns across the design criteria. FPSB is simple, fast
and individually rational. It achieves near-cost payments when agents report truthfully. Pay-
ments increase as the fraction of strategic agents grows because DERs can profit from inflat-
ing costs. Uniform pricing is comparatively insensitive to the fraction of strategic agents,
since the clearing price is anchored to the highest cost within the selected set. It is, how-
ever, very sensitive to cost dispersion and can overpay significantly in heterogeneous port-
folios with high cost spread. VCG is strategy-proof and invariant to the fraction of strategic
agents. It tends to overpay as dispersion grows because externality payments rise when low-
cost units are replaced by costlier alternatives in counterfactuals. Runtime is higher because
payments require additional optimisation solves. AGV maintains near budget balance and
shows limited sensitivity to both strategic participation and dispersion under the chosen
scaling. It may violate individual rationality for some agents unless surplus is available for
redistribution or minimum-compensation safeguards are added.

These trade-offs imply practical guidance for mechanism selection. FPSB is attractive when
the fraction of strategic agents is expected to be small and when operational simplicity is
desired. Uniform pricing suits homogeneous portfolios due to tight cost dispersion. It can
be robust in practice when competition is strong and technologies are similar. VCG is the
preferred choice when dominant-strategy truthfulness is a strict requirement and when the
VPP can rely on sufficient margins or external subsidy to absorb overpayment. AGV is well
suited when operator viability is the hard constraint. It should be paired with safeguards
that protect individual rationality, for example through minimum-compensation floors.

6.5 Future Work

Future research shouldmodel strategic behaviourwith richer, state-dependent strategies and
learning over time, so that misreporting responds to observables such as fuel prices, solar ir-
radiance and wind availability. Furthermore, the modelling environment can be broadened
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by relaxing perfect-forecast assumptions, adding additional grid services and richer tempo-
ral couplings. Additionally, alternative or hybridmechanisms such as iterative schemes, pay-
as-bid with reserves, capped uniform pricing and reserve-price Groves variants under uncer-
tainty could be considered.
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