
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Splitting a Large Software Archive for
Easing Future Software Evolution – An

Industrial Experience Report using Formal
Concept Analysis

Marco Glorie, Andy Zaidman, Lennart Hofland, Arie van
Deursen

Report TUD-SERG-2008-004

SERG

TUD-SERG-2008-004

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 12th International Conference on Software Main-
tenance and Reengineering (CSMR2008), 2008, IEEE Computer Society.

c© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Splitting a Large Software Archive for Easing Future Software Evolution
— An Industrial Experience Report using Formal Concept Analysis —

Marco Glorie1, Andy Zaidman2, Lennart Hofland1, and Arie van Deursen3

1Philips Medical Systems – {marco.glorie, lennart.hofland}@philips.com
2Delft University of Technology – a.e.zaidman@tudelft.nl

3Delft University of Technology & CWI – arie.vandeursen@tudelft.nl

Abstract
Philips Medical Systems produces medical diagnostic

imaging products, such as MR, X-ray and CT scanners. The
software of these devices is complex, has been evolving for
several decades and is currently a multi-MLOC monolithic
software archive. In this paper we report on splitting a sin-
gle software archive into multiple smaller archives so that
these can be developed independently, easing the software’s
evolution. To determine how to split such a single soft-
ware archive we use formal concept analysis. Because of
the sheer size of the monolithic software archive, we also
propose to use a ‘leveled approach’. This leveled approach
implies that the analysis technique is applied in several it-
erations, whereby in some iterations only part of the appli-
cation is subjected to the analysis technique. We conclude
this paper with an evaluation of the used analysis method
in this industrial context.

1 Introduction

Philips Medical Systems (PMS) develops and produces
complex systems to aid the medical world with monitor-
ing, diagnostic and other activities. Among these sys-
tems are the MR (magnetic resonance), the X-ray and the
CT (computed tomography) scanners. The software for
these products is very complex and has been evolving for
decades. The systems are a combination of hardware and
software and contains (real-time) embedded software mod-
ules. Many software technologies (C, C++, C#, Perl, ...) are
used and third party off-the-shelf modules are integrated in
the software. The software is developed at multiple sites
(Netherlands, USA and India), at which more than 100 de-
velopers are currently working on the software.

In this study we will focus on the software archive of one
of the aforementioned medical diagnostic imaging prod-

ucts1 has a multi-MLOC software archive consisting of ap-
proximately 30,000 source code files that is being devel-
oped (and maintained) using branching. Merging the multi-
ple development branches causes integration problems and
the many dependencies among the components make that
the feature that has the longest development time deter-
mines the release time of the entire project.

This way of developing is the result of many years of
software evolution and the software department of PMS re-
alizes that the current development process needs to be im-
proved in order to speed up and ease future evolution. The
software architecture team (SWAT) is currently investigat-
ing how to improve the development process by evolving
the current architecture into a new architecture that allows
for easier maintenance. The vision of this team is a new ar-
chitecture consisting of about seven2 software archives that
can be developed independently.

In order to obtain these independent archives the cur-
rent software archive is analyzed and subsequently mod-
ules can be extracted from the single software archive into
seven smaller software archives. Although out of scope for
this particular paper, in order to complete the migration pro-
cess, clear and stable interfaces should be defined for each
of these seven newly formed software archives.

To detect and subsequently map the dependencies that
exist in the monolithic archive we employed formal con-
cept analysis (FCA). This analysis method has previously
been used for purposes similar to ours, albeit on a smaller
scale [4, 16, 2, 13, 15]. As such, a major contribution of
this paper is the description of our experiences with apply-

1Due to a non-disclosure agreement, we are not at liberty to divulge on
which product we applied our analysis, nor can we state an exact amount
of LOC. In the remainder of this text we will refer to the case as the PMS
case.

2This number is based on the experiences of the members of SWAT
with (1) the current structuring of the software archive and (2) their own
development activities.

SERG Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution

TUD-SERG-2008-004 1

ing FCA in an industrial setting on a large-scale legacy ap-
plication. This leads us to our principle research question
for this study: does formal concept analysis allow for the
splitting of a large-scale monolithic software archive?

The structure of this paper is as follows: the next sec-
tion provides insight into the context at Philips Medical Sys-
tems. In Section 3 we provide a primer to formal concept
analysis and we discuss how we apply formal concept anal-
ysis to the software archive at hand. Section 4 introduces the
leveled approach, while Section 5 presents the results. Sec-
tion 6 discusses the approach and results. Section 7 points
to related work, while Section 8 concludes.

2 The application from Philips Medical Sys-
tems

The archive that we consider contains roughly 30,000
source code files totaling several million lines of code. In
turn, these source code files are grouped in nearly 600 build-
ing blocks; many dependencies exist between these building
blocks. Furthermore, the code archive is organized by struc-
turing the nearly 600 building blocks into a tree-structure.
At the highest level of this building block hierarchy we find
the subsystems, which in turn contain multiple lower-level
building blocks. The tree-structure of building blocks, how-
ever, does not map directly onto the high-level architecture
of the system, as a number of building blocks are part of
multiple high-level components.

In this article we narrow the scope to the parts of the
code archive that are written in C and C++. This means that
the scope of the analysis for our experiment in this paper
is limited to around 15,000 files and 360 building blocks,
still totaling several MLOC. A commercial tool called ‘So-
tograph’ is available at PMS to extract static relations from
the archive [14]. These relations include the following ref-
erence kinds: call, read, write, throw, friend declaration,
inheritance, aggregation, type access, throws, polymorphic
call, component interface call, component call, component
inheritance and catch. The relations are analyzed at the
method / function level. Relations on higher abstraction
levels — such as the file or building block level — are ob-
tained by accumulating the relations to and from the lower
level abstraction levels.

Detailed documentation about the project is available,
e.g., in the form of UML class diagrams. Another form
of documentation is the so-called project-documentation,
which specifies on a per-project basis (1) the purpose of
the project and (2) which building blocks are expected to
be within the scope of this particular project. We used
the project-documentation of the last two years, which cur-
rently means that we have around 50 documents available;
as such, unfortunately, we do not have this type of docu-
mentation for all building blocks. A fictional example of
this project-documentation can be found in Table 1.

Affected building blocks Why and what
ExportImage Include new type printer for export
PrinterSelect Add new printer type for selection

PrinterConfiguration Add parameters for new printer

Table 1. The scope of fictive project ‘newIm-
agePrinter’

3 Formal concept analysis

Formal concept analysis (FCA) is a branch of lattice the-
ory that has been introduced by Wille [17]. It allows to
identify sensible groupings of objects that have common at-
tributes [7].

To illustrate FCA, let us consider a toy example about
musical preferences [3]. The objects are a group of people
Marco, Anne, Arthur, John, Thomas, and Michael; and the
properties are Rock, Pop, Jazz, Folk, and Tango. Table 2
shows which people prefer which kind of music, called the
incidence table.

prefers Rock Pop Jazz Folk Tango
Marco

√ √ √
Anne

√ √ √
Arthur

√ √
Catherine

√
Thomas

√
Arthur

√ √

Table 2. Incidence table of the music example

A concept is a pair of sets — a set of elements (the ex-
tent) and a set of properties (the intent) (X, Y) — such
that Y = σ(X) and X = τ(Y). In other words, a con-
cept is a maximal collection of elements sharing com-
mon properties. In Table 2, a concept is a maximal
rectangle we can obtain with relations between people
and musical preferences. For example, ({Marco, Anne},
{Rock, Pop}) is a concept, whereas ({Catherine}, {Jazz})
is not, since σ({Catherine}) = {Jazz}, but τ({Jazz}) =
{Arthur,Catherine,T homas,Michael}. The extent and in-
tent of each concept is shown in Table 3.

More formally, a triple (O,A,R) is called a formal con-
text when O and A are finite sets (the objects and the at-
tributes respectively) and R is a binary relation between O
and A that is:

top ({all objects}, /0)
c7 ({Arthur, Catherine, Thomas, Michael}, {Jazz})
c6 ({Marco, Arthur, Michael}, {Folk})
c5 ({Marco, Anne}, {Pop})
c4 ({Arthur, Michael}, {Jazz, Folk})
c3 ({Marco}, {Rock, Pop, Folk})
c2 ({Anne}, {Rock, Pop, Tango})

bottom (/0, {all attributes})

Table 3. The set of concepts of the example
of Table 2.

Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution SERG

2 TUD-SERG-2008-004

R⊆ O×A. (o,a) ∈ I is read: object o has attribute a.
In order to apply FCA to the PMS case we discuss the

work of Siff and Reps [12]. They used FCA in a process to
identify modules in legacy code. In their paper they present
these three steps in the process:

1. Build the context where objects are functions defined
in the input program and attributes are properties of
those functions.

2. Construct the concept lattice from the context with a
lattice construction algorithm.

3. Identify concept partitions-collections of concepts of
which the extents partition the set of objects. Each con-
cept partition corresponds to a possible modularization
of the input program.

A concept partition is a set of concepts of which the ex-
tents are non-empty and form a partition of the set of objects
O, given a context (O,A,R). More formally this means that
CP = {(X0,Y0) . . .(Xn,Yn)} is a concept partition iff the ex-
tents of the concepts blanket the object set and are pair wise
disjoint [16, 12]:

n⋃
i=1

Xi = O and ∀i 6= j, Xi
⋂

X j = /0

Tonella found concept partitions to introduce an overly
restrictive constraint on concept extents by requiring that
their union covers all the objects [16]. More generally,
when concepts are disregarded because they cannot be com-
bined with other concepts to cover all attributes, important
information that was identified by concept analysis is lost
without reason. As such, Tonella found that identifying
meaningful organizations should not be limited by the un-
necessary requirement that all attributes are covered. There-
fore, he proposes the idea of concept subpartitions. He de-
fines that CSP = {(X0,Y0) . . .(Xn,Yn)} is a concept subpar-
tition iff [16]:

∀i 6= j, Xi
⋂

X j = /0

Where CPs can be directly mapped to object partitions
— that is partitions of the object set — CSPs have to be
extended to the object set using the so-called partition sub-
traction.

The partition subtraction of an object subpartition SP
from an object partition P gives the subpartition comple-
mentary to SP with respect to P. It can be obtained by sub-
tracting the union of the sets in SP from each set in P.

P sub SP = {Mk = Mi−
⋃

M j∈SP

M j|Mi ∈ P}

P sub SP is itself a subpartition because sets in P are
disjoint and remain such after the subtraction. The partition
subtraction is used in the subpartition extension to obtain
the object set partitioning [16].

An object subpartition SP can be extended to an object
partition Q, with reference to an original partition P, by the
union of SP and the subtraction of SP from P. The empty
set is not considered an element of Q.

Q = SP
⋃

(P sub SP)− /0

We should remark however, that in the case that there
is no overlap between the object sets of a set of concepts,
the number of CSPs resulting from this set of concepts
will grow enormously. The number of CSPs then equals
the number of ways to partition a set of n elements into k
nonempty subsets. (This number is given by the Stirling
numbers of the second kind.)

We apply FCA by using the process presented by Siff
and Reps, but instead of using the concept partition we use
the concept subpartition as proposed by Tonella [12, 16].

3.1 Application of FCA to the PMS archive

Now that we have defined the process to use, we now
define the objects and attributes to use in our specific con-
text. As objects we choose the set of building blocks in the
PMS archive, a set of size 360. The reason for this choice
is twofold: (1) the building block level of abstraction is in-
stigated by the domain experts from PMS, as they indicated
that building blocks are designed to encapsulate particular
functionality and (2) we expect to be able to cope with the
size of the building block set for our analysis.

To complete the context, the set of attributes has to be de-
fined. The set of attributes has to be chosen in such way that
building blocks that are highly related to each other appear
in concepts of the context. In order to make sure that highly
related building blocks appear in the same concept, we ex-
plicitly choose a combination of attributes, that indicate that
a building block:

1. is highly dependent on another building block;
2. has particular features associated with it.
We now discuss these attributes in some more detail.

High dependency attribute. The first type of attribute
is extracted from the source code. We consider a building
block A to be dependent on a building block B if A uses
a function or data structure in B. The term ‘highly depen-
dent’ is used to discriminate between the heavy use and
occasional of a building block. As this first kind of at-
tribute is collected from the code-archive, we can say that
it is representative for the ‘as-is’ architecture. We used the
commercial tool Sotograph to extract the interdependencies
of the building blocks in the architecture and subsequently
determine the degree of dependency between the building
blocks [14]. Sotograph determines the degree of depen-
dency by summing up static dependencies up to the desired
abstraction level. A (lower-bound) threshold is used to filter
relations on the degree of dependency.

SERG Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution

TUD-SERG-2008-004 3

attributes
PMS context from code archive from project documentation

co
up

le
dB

B
(1

)

... co
up

le
dB

B
(n

)

m
ur

c

ec
ap

gv
sa

ob
je

ct
s

BB(1)
√ √

BB(2)
√ √

BB(3)
√ √

...
BB(n-1)

√ √
BB(n)

√ √ √

Table 4. Example context using project docu-
mentation

Feature attribute. The second type of attribute is
extracted from: (1) existing architecture overviews and
project documentation at PMS and (2) domain experts. As
such, these attributes pertain to the ‘as-built’ architecture.
The particular properties that we use for this type of
attribute are: (1) specificity to the PMS application, (2)
layering and (3) historical information about what building
blocks were affected during prior software (maintenance)
tasks. The features associated with the building blocks are
discussed in more detail in Section 3.2.

The reasons as to why we combine two sets of attributes
are:

1. The first set of attributes assumes that building blocks
which are highly dependent on each other should re-
side in the same archive.

2. The second set of attributes assumes that building
blocks that share the same features, such as building
blocks that are all very specific to the PMS applica-
tion, should be grouped in the same archive.

As such, the two sets of attributes that form the attributes
of the context are a combination of the ‘as-is’ architecture
extracted from the code archive and features extracted from
the ‘as-built’ architecture, according to the documentation
and the domain experts. Table 4 shows an example of this
combination in the context, using existing project documen-
tation.

3.2 Feature attributes

As mentioned in the previous section we use two types
of attributes. The first type of attribute indicates whether
building blocks are highly dependent on other building
blocks and is extracted from source code. The second type
of attribute takes into account several features of building
blocks, more specifically:
• Information about which building blocks are affected

during specific software maintenance operations.
• To which architectural layer a building block belongs

and how application-specific the building block is3.
In Sections 3.2.1 and 3.2.2 we take a closer look at how

exactly the information on which building blocks are af-
fected during specific maintenance operations and the in-
formation on the architectural layering come into play. Fur-
thermore, because we expect that applying FCA using the
two attribute-variants will provide different results, we will
evaluate them individually in cooperation with the system
architects.

3.2.1 Information extracted from project documenta-
tion

The first approach relies on the software’s documenta-
tion. The specific type of documentation describes for each
(sub)project which building blocks are in its scope, imply-
ing that the buildings blocks mentioned in the documenta-
tion are expected to change when a maintenance operations
is carried out on that particular (sub)project. This scope is
determined by the system architects prior to the start of the
project. The scope can consist of building blocks that are
scattered through the entire archive, but because projects
are often used to implement certain functionality, there typ-
ically is an established relation between the building blocks
in the scope. An example of a scope of a fictional project
can be found in Table 1.

This particular relation is used to group the building
blocks together in the form of concepts after the construc-
tion of the context. The fact that this grouping possibly
crosscuts the archive makes this feature interesting to use
for FCA in combination with the high dependency relations
between building blocks.

Example: given a project that implements a cer-
tain feature, named ‘projectA-feature1’, there
is documentation at PMS that describes that
‘buildingblockA’, ‘buildingblockB’ and ‘build-
ingblockC’ are within the scope of this project,
which crosscuts the code archive with respect
to the building block hierarchy. Now the fea-
ture ‘projectA-feature1’ is assigned to each of the
three building blocks in the scope.

When carrying out the experiment however, it became
clear that not all building blocks were documented with the
features they are implementing. As such, the features do
not cover the complete object set of building blocks in the
context. This has consequences for deducing concepts from
a context with these features. The building block that has
no features assigned to it, will be grouped based on the
attributes that indicate high dependency on other building
blocks. This high-dependency attribute however could also

3Building blocks may be application-specific or can be shared with
other medical equipment, such as echo-equipment.

Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution SERG

4 TUD-SERG-2008-004

be missing, either because there are no dependencies from
this building block to other building blocks or because the
number of dependencies to another building block is below
a chosen threshold. This should be kept in mind when ana-
lyzing the results.

While extracting information from the documentation
we noticed differences in the level of detail of the doc-
umentation, that is, some project-scopes were defined in
great detail with respect to the building blocks in the hi-
erarchy, while others were only defined at a very high level
of abstraction. For example, we encountered a scope in the
documentation that was defined as a complete subsystem,
without specifying specific building blocks. If we encoun-
tered such an instance, we substituted the subsystem with
all the building blocks that are underlying to that subsys-
tem. For example, when the project documentation states
that the scope of ‘projectA-feature1’ is ‘platform’, all un-
derlying building blocks in the building block structure of
‘platform’ are given the feature ‘projectA-feature1’, includ-
ing ‘platform’ itself.

The basic idea of this approach is that building blocks
will be grouped together based on whether they are related
through certain features of the software that they imple-
ment. This grouping can be different from a grouping based
on high dependencies between the building blocks and as
such, we think it is interesting to use both types of features
in the context for analysis, as a combination of the ‘as-is’
architecture and the ‘as-built’ architecture.

3.2.2 PMS-specificity and layering

The other approach is taking into account the PMS-
specificity and layering of the entities in the archive. PMS-
specificity can be explained as: some building blocks are
only to be found in PMS software, while others are com-
mon in all medical scanner applications or even in other ap-
plications, such as database management entities or logging
functionality.

With regard to the layering attribute, we use a designated
scale for the building blocks that states whether a building
block is at the ‘service level’ or at the ‘application/UI level’.
For example, a ‘process dispatcher’ is most likely to belong
to the service level, while ‘scan-define UI’ is likely to be
found at the application/UI level.

By assigning these features to each building block, build-
ing blocks that share the same characteristics of PMS-
specificity and layering are grouped by deducing concepts
from a context which include these features as attributes.
We have chosen these specific features — PMS-specificity
and layering — because of the wish of Philips Medical
Systems to evolve to a more homogeneous organization in
terms of software applications. As such, an interesting op-
portunity arises to consider reusing building blocks that are

common in medical scanner software in other departments
or develop maybe start developing building blocks together
with other departments and use them as reusable building
blocks.

Domain experts at PMS assigned the features to the
building blocks. This was done using a rough scale for
the PMS-specificity: {very specific, specific, neutral, non-
specific, very non-specific}. For the layering a similar scale
holds starting from application/UI level to the service level.
Of importance to note is that the complete object set of
building blocks is covered, that is, each entity has a fea-
ture indicating the PMS-specificity and a feature indicating
the layering. As such, for each building block there are 25
possible combinations with respect to the PMS-specificity
and layering.

Building blocks that have certain common features —
such as a group of building blocks that are ‘very PMS-
specific’ and are on the ‘application/UI level’ — are
grouped based on these features. We expect the resulting
grouping to be different from the grouping based on the
high dependencies between building blocks, and, as such,
it is to contrast the obtained solution as we are looking at
the results of the groupings obtained from the ‘as-built’ ar-
chitecture versus the ‘as-is’ architecture.

4 The leveled approach

The process that we propose to obtain a splitting of the
archive generates CSP-collections from the specified con-
text. Considering the size of the application at hand, we ex-
pect that scalability issues come into play, because we use
the set of building blocks in the archive as the set of objects
in the context. The archive consists of around 360 build-
ing blocks, which results in a big context with the attributes
defined, resulting in a large corresponding concept lattice.
Because we expect that identifying CSPs from the concept
lattice will result in enormous amounts of CSP-collections,
which have to be manually evaluated, we are undertaking
steps to cope with this volume of CSP-collections.

To cope with the large amount of results we propose to
use a leveled approach. The approach makes use of the
hierarchical structuring of the PMS archive: the archives
are modularized in high level ‘subsystems’, which consist
of multiple ‘building blocks’, which again are structured in
a hierarchy.

By analyzing parts of the hierarchy in detail, resulting
concepts from that analysis are merged for the next anal-
ysis. This will make the context and concept lattice of
the next analysis round smaller and we expect the result-
ing number of CSPs to also decrease. Through the use of
the leveled approach some parts of the archive can be ana-
lyzed in detail, while keeping the other parts at a high level.
The results from such analysis, such as groupings of ‘lower
level’ building blocks, can be accumulated to a next anal-

SERG Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution

TUD-SERG-2008-004 5

subsystem building block attributes
platform PMS-neutral

basicsw PMS-neutral, acqcontrol
computeros PMS-non-specific

configuration PMS-specific
acquisition PMS-specific

acqcontrol PMS-specific, patientsupport
...

Table 5. Example context, shown in the build-
ing block hierarchy

subsystem building block attributes
platform PMS-neutral, PMS-non-specific,

PMS-specific, acqcontrol
acquisition PMS-specific

acqcontrol PMS-specific, patientsupport
...

Table 6. Accumulated features for the plat-
form subsystem from Table 5

ysis round where another part is analyzed in detail. These
groupings are accumulated by merging the building blocks
into a single fictive building block to make the context and
resulting concept lattice smaller. This is repeated until all
building blocks are analyzed in detail and the results are ac-
cumulated.

We will now give a short example to explain how this
accumulation works. When a part of the hierarchy of the
archive is not examined in detail the attributes are accumu-
lated to the entity that is examined globally. Table 5 shows
part of an example hierarchy and the assigned attributes. We
now decide that the ‘platform-subsystem’ in the hierarchy
of the archive is analyzed globally and the others in detail.
Table 6 shows that all the features in the lower levels in the
top Table 5 of the ‘platform-subsystem’ are accumulated to
‘platform’.

The analysis itself was performed using a newly devel-
oped tool - named ‘Analysis Selector’ - that uses the output
of the analysis performed by Sotograph, which recognizes
the hierarchy of the archive and relations between building
blocks. Further, separate input files are given to the tool for
the features, either extracted from the project planning or
from PMS-specificity and layering documentation.

The tool enables the selection of parts of the hierarchy to
analyze in detail and enables viewing the resulting concept
subpartitions and merging resulting groupings in the con-
cept subpartitions for further analysis. After selecting what
part should be analyzed in detail and what parts should not
be analyzed in detail the context is created using the accu-
mulated attributes of the context.

This context can be exported to a format that an existing
tool can use as input. For this study, we used ‘ConExp’ [5].
ConExp creates given a context the corresponding concept
lattice. This concept lattice can be exported again to serve

as input for our Analysis Selector tool, which can deduce
concept subpartitions from the concept lattice.

Merging concepts. Considering the number of CSPs re-
sulting from the number of concepts, the amount of con-
cepts taken into consideration should be kept small when
calculating the concept subpartitions. This can be accom-
plished by merging the extents of the concepts (the object
sets of the concepts) resulting from the context of an analy-
sis. We will call this merging a concept from now on.

When a concept is merged, the objects of that concept
will be grouped into a so-called ‘merge’ which is a fictive
object with the same attributes as the original concept. Ex-
pected is that the context is now reduced in size for a suc-
cessive analysis round and a smaller amount of concepts
will result from the next analysis round. This process of
merging and recalculating the context and concepts can be
continued until a small number of concepts result from the
defined context. From these concepts then the CSPs can be
calculated.

Merging ‘some’ concepts raises the question which con-
cepts to choose when merging. Picking concepts from a
set of, for example, 300 concepts resulting from an analysis
step is difficult. To aid in the choosing of the concepts a
quality function of a concept is developed, which we will
call the concept quality.

This quality function is developed to ease the choice of
concepts to group and is not part of FCA. The quality func-
tion takes in account how ‘strong’ a concept is, that is, based
on how many attributes. Also relatively small groups of ob-
jects in a concept with relatively large groups of attributes
could be ranked as a ‘strong’ concept. The following sec-
tion elaborates the notion of ‘concept quality’ for this pur-
pose.

4.1 Concept quality

The concept quality is developed as an extension for
FCA to ease choosing concepts that should be merged for
a next analysis round as described in Section 4. In order to
give each concept a value indicating the quality of the con-
cept a quality function is needed. This function indicates
how strong the grouping of the concept is.

Basically the concept quality is based on two measures:
• The relative number of attributes of a concept
• The relative number of objects of a concept
A grouping of a concept is based on the maximal set of

attributes that a group of objects share. Intuitively when a
small number of objects is grouped by a large number of at-
tributes, this indicates a strong grouping of this objects and
therefore is assigned a high concept quality value. Con-
versely, when a small number of objects share a single at-
tribute, this intuitively can be seen as a less strong grouping

Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution SERG

6 TUD-SERG-2008-004

than with a large number of attributes, and therefore is as-
signed a lower quality value.

A similar degree of quality is devised for the number of
objects. Given a set of attributes, when a small number of
objects share this set of attributes, this can intuitively be
seen as a strong grouping, on the other hand a large number
of objects sharing this set as less strong grouping. So the
quality function is also based on the degree of objects in a
concept sharing a set of attributes. The smaller the number
of objects, sharing a set of attributes, the lower the resulting
quality function value is of the specific concept.

Because a degree of attributes in a concept and a degree
of objects in a concept is measured for each concept, a ceil-
ing value is defined. As ceiling value the maximum num-
ber of objects and attributes respectively are taken given a
set of concepts. The maximum number of objects in a set
of concepts is called the ‘MaxObjects’ and the maximum
number of attributes in a set of attributes is called the ‘Max-
Attributes’.

Now we define the concept quality for a concept is as
follows, the values are in the range [0,100]:

Quality(c) =
MaxOb jects−#Ob jects

MaxOb jects
× #Attributes

MaxAttributes
×100

Given this quality function all resulting concepts from
a context are evaluated and based on the values, concepts
are merged into single entities. These merges of building
blocks are taken as one entity for the next round of analysis,
with the purpose of decreasing the number of concepts.

5 Results

The analysis has been performed for each of the two ap-
proaches: the approach with the project documentation fea-
tures and the approach with the PMS specificity and layer-
ing features. Both approaches make use of the hierarchy of
the archive. Because the two approaches give two different
results, we discuss them separately.

5.1 Project documentation features

Our analysis has been performed on the complete build-
ing block structure, with no threshold imposed on the rela-
tions. This means that every static relation between build-
ing blocks is considered to be a high dependency attribute
in the context. This is combined with the information ex-
tracted from the project documentation. Figure 1 shows the
number of concepts plotted against the number of analysis
rounds.

The full context results in 3,031 concepts. This number
is too large for us to derive CSPs from it. Figure 1 shows
that the number of concepts decreases over the successive
analysis rounds.

Figure 1. Results of analysis with features ex-
tracted from project documentation

After 25 rounds the number of concepts has decreased to
379. However, calculating CSPs from this set of concepts
resulted in more than 10 million CSPs.

When discussing the resulting (intermediate) concepts
with the domain experts, we noticed that the objects of the
concepts were mainly grouped on the high dependency at-
tributes in the context. This can be explained by the fact
that the features extracted from existing project documenta-
tion covered around 30% of the complete set of around 360
building blocks.

Thus, when grouping objects in the defined context by
concepts the main factor of grouping is determined by the
dependencies. The degree of influence of the high depen-
dency attributes can be decreased by using a threshold on
the strength of the static relations. This also means that
there will be more objects in the context that have no at-
tributes assigned to them. This in turn implies that no infor-
mation is available on how to group these objects, resulting
in objects that will not be grouped into concepts.

For this reason we have chosen not to continue the anal-
ysis with features extracted from project documentation and
an imposed threshold. We also decided not to analyze the
same setup using our leveled approach.

5.2 PMS-specificity and layering features

This section presents the results from analysis on the
context with the PMS-specificity and layering features.

Full building block structure. The first results of the
analysis with the PMS-specificity and layering features are
the results of the analysis of the complete hierarchy of build-
ing blocks, with no threshold imposed on the static depen-
dencies, and used in the context (Figure 2).

The full context results in 3,011 concepts. Similar to the
analysis on the project documentation features, this number
of concepts is too large to derive CSPs from.

SERG Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution

TUD-SERG-2008-004 7

Figure 2. Results of the analysis with PMS-
specificity and layering features

Figure 3. Results of the analysis with PMS-
specificity and layering features, with im-
posed threshold of 25

Thus, concepts were chosen to be merged each round.
Figure 2 shows that the number of concepts decreases over
the analysis rounds. After 27 rounds the number of concepts
has decreased to 351. Calculating CSPs from this set of
concepts resulted in more than 10 million CSPs.

As a next step we imposed a threshold of 25 on the static
dependencies and proceeded with analyzing the complete
hierarchy of building blocks with the PMS-specificity and
layering features. This resulted in a full context contain-
ing 719 concepts, which is still too large a number to create
CSPs from. Therefore, concepts were chosen to be merged
each round. Figure 3 shows a decrease of the number of
concepts over the successive analysis rounds. After 6 anal-
ysis rounds the number of concepts has decreased to 378.
Calculating CSPs from this set of concepts still resulted in
more than 10 million CSPs, making it difficult to define a
splitting.

One subsystem in detail. Because of the inherent scala-
bility issues that we encountered when analyzing the com-

Figure 4. Results of the analysis with PMS-
specificity and layering features on one sub-
system

Round Concepts CSPs (×1000)
26 114 600
27 106 500
28 101 555
29 96 500
30 95 490

Table 7. Resulting concept subpartitions from
the set of concepts of the analysis on one
subsystem with no threshold

plete application, we decided to focus on a single subsys-
tem. Figure 4 shows the results of this analysis on one sub-
system, for which we used the PMS-specificity and layering
features; the analysis has no threshold imposed on the static
dependencies.

The aforementioned analysis results in 458 concepts in
the context. By applying our leveled approach that merges
concepts using the concept quality measure, we obtain 95
concepts after 30 analysis, which in turn yields 490,000
CSPs. Table 7 shows the number of resulting CSPs from
the last five analysis rounds.

We also carried out the same basic analysis, but this time
with an imposed threshold on the static relations. More
specifically, we performed the analysis twice, once with a
threshold of 25 and once with a threshold of 50. The results
of this analysis are shown in Figure 5, with the left figure
showing the results with a threshold of 25 and the right fig-
ure showing the results with a threshold of 50.

The analysis with an imposed threshold of 25 starts with
a context that results in 338 concepts, whereas the analysis
with a threshold of 50 starts with a context that results in
287 concepts. When performing the leveled approach, we
see that in the case of the threshold of 25, we obtain 311
concepts after 7 analysis rounds. Similarly, for the threshold
of 50, we obtain 269 concepts after 7 analysis rounds.

Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution SERG

8 TUD-SERG-2008-004

Figure 5. Results of analysis with PMS-
specificity and layering features on one sub-
system, with imposed threshold of 25 (left)
and 50 (right)

6 Discussion

In this experiment we used FCA as an analysis method to
obtain a splitting of the archive for the PMS case. The pro-
cess of analysis works with a leveled approach, i.e., some
parts of the building block hierarchy in the archive are an-
alyzed in detail, while other parts are analyzed at a higher
level. Results from a previous analysis are used for a next
analysis where more parts are analyzed in detail. Select-
ing which parts are used for successive analysis rounds is
steered by the newly defined concept quality.

Indeed, when we look at the results of both analyses
(with the two types of features) on the complete building
block structure, we can indeed see that the number of con-
cepts decreases by applying the leveled approach and the
concept quality function. However, we expected that by de-
creasing the number of concepts over the several analysis
rounds, the number of concept subpartitions (CSPs) would
also decrease.

The number of resulting CSPs actually decreases, e.g.
when we consider both the analyses on the complete build-
ing block hierarchy. However, as each CSP represents a
possible partitioning of the set of building blocks, the num-
ber of CSPs has to remain under control as each CSP has
to be evaluated by domain experts. During our experiment,
we have not been able to keep the number of CSPs at such
a level that it would have been manageable for domain ex-
perts to evaluate each of the CSPs.

The huge number of CSPs can be explained by the de-
gree of overlap of the objects in a resulting concept set. For
example, when each combination of two concepts in this
set of concepts has an intersection of their objects set that
is empty, the resulting number of CSPs from this set grows
quickly.

Furthermore, we observed a lot of concepts in the sets
with a small number of objects. Concepts with a small num-
ber of building blocks as the object set are likely to be com-
bined with other concepts, as the chance of an overlap with
building blocks in the other concepts is small. More combi-

nations of concepts result in more CSPs.
If we consider an amount of around 100 concepts and a

resulting number of around 500,000 CSPs, we do not expect
to get a significantly smaller amount of concept subparti-
tions if we choose to use different attributes in the starting
context, for example other features, or a more detailed scale
for the PMS-specificity and layering features. This is inher-
ent to the mathematical definition of the CSP, which enables
small sets of concepts to result in an enormous amount of
CSPs.

In essence, we found that the leveled approach works, as
evidenced by the decreasing number of concepts. However,
when deducing CSPs from a set of concepts — in order to
obtain partitionings of the set of building blocks — we are
faced with scalability issues, which have become evident
through the size of the PMS case.

7 Related work

When considering related work, we found that many
papers report on restructuring software system. However,
most of the experiments described in literature report on
smaller scale software systems, whereas this paper de-
scribes our experiences with FCA on a large scale software
system. We now provide an overview of related research.

In this context, Snelting provides a comprehen-
sive overview of applications of FCA to software
(re)engineering problems [13], while Siff and Reps present
a method to use FCA to identify modules in legacy
code [12].

Hutchens and Basili identify potential modules by clus-
tering on data-bindings between procedures [8]. Schwanke
also identifies potential modules but clusters call dependen-
cies between procedures and shared features of procedures
to come to this abstraction [11].

Another level of abstraction with respect to the entities
to be clustered is presented by van Deursen and Kuipers.
They identify potential objects by clustering highly depen-
dent data records fields in Cobol. They choose to apply
cluster analysis to the usage of record fields, because they
assume that record fields that are related in the implementa-
tion are also related in the application domain and therefore
should reside in a object [6].

‘High-level system organizations’ are identified by Man-
coridis et al. by clustering modules and the dependen-
cies between the modules using a clustering tool called
Bunch [10, 9]. Anquetil and Lethbridge also identify ab-
stractions of the architecture but cluster modules based on
file names [1].

8 Conclusion

In this paper we have presented our experiences with us-
ing formal concept analysis to come to a reclustering of a

SERG Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution

TUD-SERG-2008-004 9

large software archive from a medical diagnostic imaging
product from Philips Medical Systems. In that context, we
have made the following contributions:
• We discussed how FCA can be applied to a large-scale,

non-trivial industrial software archive. In literature we
could not find cases with comparable goals and scale.
• We presented the leveled approach, which makes use

of the existing hierarchy in the software archive, in or-
der to cope with scalability issues that arise when ap-
plying FCA on a large-scale software archive.
• We presented the concept quality, a measure that aids

in choosing the optimal concepts of a set of concepts
to consider in a next analysis round.

FCA provides ways to identify sensible groupings of ob-
jects that have common attributes. For the context of FCA
we defined building blocks as objects and for the attributes
two sets are combined: a set of attributes indicating that
building blocks are highly dependent on each other — using
a threshold — and a set of attributes that represent certain
features of the building blocks. These features are derived
from existing project documentation and domain experts.

From this context we derived concepts, which are used
to generate concept subpartitions (CSPs). Each CSP rep-
resents a possible partitioning of the object set of building
blocks, which can serve as a basis for splitting the archive.

The process of analysis works with a leveled approach,
i.e., some parts of the building block hierarchy in the archive
are analyzed in detail, while other parts are analyzed at a
higher level. Results from previous analyses are used for
successive analysis rounds, where more parts are analyzed
in detail. The leveled approach is supported by the concept
quality measure, which selects what parts should ideally be
analyzed in detail in a successive analysis round.

When looking at the results with the domain experts at
PMS, the idea of applying the leveled approach in com-
bination with the concept quality works well: the number
of concepts decreases significantly. However, the resulting
number of CSPs is still enormous. Therefore, we think that
within our industrial setting applying FCA — i.e., obtaining
CSPs from the set of concepts, given a context of reasonable
size — is not feasible in practice.

Based on our findings, it is our our opinion that FCA
is very appropriate for recognizing certain patterns in or
groupings of objects based on attributes, but not so much
suited for an analysis that should result in a precise non-
overlapping partitioning of the object set.

Acknowledgements. This work could not have been carried
out without the support of many colleagues at Philips Medical
Systems. Our thanks also go to Bas Cornelissen, for proofread-
ing this document. This work is sponsored by the NWO Jacquard
Reconstructor research project.

References

[1] N. Anquetil and T. C. Lethbridge. Recovering software ar-
chitecture from the names of source files. Journal of Soft-
ware Maintenance, 11(3):201–221, 1999.

[2] G. Antoniol, M. Di Penta, G. Casazza, and E. Merlo. A
method to re-organize legacy systems via concept analysis.
In Proc. of the Int’l Workshop on Program Comprehension
(IWPC), pages 281–292. IEEE, 2001.

[3] G. Arévalo, S. Ducasse, and O. Nierstrasz. Discovering
unanticipated dependency schemas in class hierarchies. In
Proc. of the Conf. on Software Maintenance and Reengi-
neering (CSMR), pages 62–71. IEEE, 2005.

[4] G. Arévalo, S. Ducasse, and O. Nierstrasz. Lessons learned
in applying formal concept analysis to reverse engineering.
volume 3403 of LNCS, pages 95–112. Springer, 2005.

[5] ConExp. http://sourceforge.net/projects/conexp, 2007.
[6] A. van Deursen and T. Kuipers. Identifying objects using

cluster and concept analysis. In Proc. of the Int’l Conference
on Soft. Engineering (ICSE), pages 246–255. IEEE, 1999.

[7] B. Ganter and R. Wille. Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, 1997.

[8] D. H. Hutchens and V. R. Basili. System structure analysis:
clustering with data bindings. IEEE Transactions on Soft-
ware Engineering, 11(8):749–757, 1985.

[9] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner. Bunch:
A clustering tool for the recovery and maintenance of soft-
ware system structures. In Proc. of the Int’l Conference on
Software Maintenance (ICSM), pages 50–59. IEEE, 1999.

[10] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and
E. Gansner. Using automatic clustering to produce high-
level system organizations of source code. In Proc. of the
Int’l Workshop on Program Comprehension (IWPC), pages
45–52. IEEE, 1998.

[11] R. W. Schwanke. An intelligent tool for re-engineering soft-
ware modularity. In Proc. of the International Conference
on Software engineering (ICSE), pages 83–92. IEEE, 1991.

[12] M. Siff and T. Reps. Identifying modules via concept anal-
ysis. In Proc. of the International Conference on Software
Maintenance (ICSM), pages 170–179. IEEE, 1997.

[13] G. Snelting. Software reengineering based on concept lat-
tices. In Proc. of the Conf. Software Maintenance and
Reengineering, pages 3–10. IEEE, 2000.

[14] Sotograph. http://www.software-
tomography.com/html/sotograph.html, 2007.

[15] T. Tilley, R. Cole, P. Becker, and P. Eklund. A survey of for-
mal concept analysis support for software engineering activ-
ities. In B. Ganter, G. Stumme, and R. Wille, editors, Formal
Concept Analysis, volume 3626 of LNCS. Springer, 2005.

[16] P. Tonella. Concept analysis for module restructuring. IEEE
Trans. on Software Engineering, 27(4):351–363, 2001.

[17] R. Wille. Restructuring lattice theory: an approach based
on hierarchies of concepts, pages 445–470. Reidel, 1982.

Gloria, Zaidman, Hofland & van Deursen – Splitting a Large Software Archive for Easing Future Software Evolution SERG

10 TUD-SERG-2008-004

TUD-SERG-2008-004
ISSN 1872-5392 SERG

