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ELLAS: Enhancing LiDAR Perception With
Location-Aware Scanning Profile Adaptation

Thymon Rhemrev, Emma de Jong, Gideon van Triest, Roger Kalkman, Jordy Pronk,
Ashish Pandharipande , Senior Member, IEEE, and Nitin Jonathan Myers , Member, IEEE

Abstract—Light detection and ranging (LiDAR) is used in
robots and in automotives to obtain the perception of the
surrounding environment. Traditional spinning LiDARs scan
the environment uniformly along all angular directions by
operating at a constant rotational speed, with fixed sensing
parameters throughout a rotation. Such a sensing approach,
however, is suboptimal when information about static obsta-
cles in the environment is available at the LiDAR. In this
work, we introduce ELLAS, a first-of-its-kind spinning LiDAR
system that dynamically adapts its range and resolution over
the field of view. This adaptation is achieved by optimizing
the ranging parameters at the LiDAR and the instantaneous
rotational speed of the spinning platform to the location of
static objects in scene topology maps. With the optimized
settings, ELLAS results in a longer range along directions
where static obstacles are farther away and achieves a higher
angular resolution around those directions.

Index Terms— Automotive, directional range adaptation, resolution adaptation, situation-aware sensing, spinning light
detection and ranging (LiDAR).

I. INTRODUCTION

THERE is a growing interest in deploying autonomous
vehicles for both indoor industrial applications and out-

door driving [1], [2], [3]. These vehicles must perceive
their surroundings to navigate through complex environments.
Light detection and ranging (LiDAR) is an important sensing
modality employed in autonomous vehicles to achieve this
perception. Current-generation commercial LiDARs have a
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higher angular resolution than radars [4], [5], which allows
them to distinguish between two closely spaced targets.

Spinning LiDAR systems are used in navigation robots
and automotives [3], [6], [7], [8] to scan the environment.
These systems mount a pencil beam LiDAR on a mechanically
rotating platform. At any given time instant, the LiDAR directs
its power along a specific direction by transmitting a light
signal. This signal reflects off a target, and the reflected
signal is captured by the LiDAR receiver. By analyzing the
reflected signal, the system calculates the range of the target
in the scanned direction. The spinning mechanism in these
systems enables a 360◦ perception of the environment, with the
spin rate varying by application. For instance, the automotive
spinning LiDAR in [8] rotates at about 600 r/min, equivalently
10 frames per second (fps).

Existing spinning LiDAR systems operate at a constant rota-
tional speed and use the same sensing parameters throughout
a rotation. As a result, the maximum range up to which the
LiDAR can detect is constant across all directions. Such a
constant scanning range profile is suboptimal under location
awareness in the form of scene topology maps [9], [10].
These maps can provide coordinates of several static obstacles,
such as guard rails, lamp-posts, and buildings, around the
automotive. In an indoor setup, such static scene topology
maps can be derived from floor plans with information on
furniture and walls. A LiDAR can make use of this information
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to adapt its scanning technique to the scene. For example, if a
static obstacle is known to be 1 m away in a specific direction,
the LiDAR need not allocate its resources to scan the occluded
region beyond that distance. Such direction-dependent range
adaptation conserves time and allows for more efficient detec-
tion in other directions. To the best of our knowledge, ELLAS
is the first system to use location-based static scene topology
maps, such as offline street maps, to adapt LiDAR sensing.

Previous research on adaptive LiDAR systems has mainly
focused on foveation, a process that enhances the density of
point cloud samples in regions of interest (RoIs). Missing
depth information in the field of view (FoV) is subsequently
estimated using inpainting techniques. For example, the RoI
in [11] included moving targets, with their boundaries deter-
mined from a co-located camera. In [12] and [13], the LiDAR
scan was adapted over multiple iterations to image the FoV,
with the sampling coordinates optimized in each iteration
to enhance the information inferred from previous iterations.
Finally, Tilmon et al. [14] proposed adaptive sampling as well
as optical power control over the FoV for depth estimation in
wearable devices, thereby enabling joint range and resolution
adaptation while considering eye safety aspects.

In contrast to past works, our paper focuses on maximizing
the scanned envelope of a spinning LiDAR under system-level
constraints and scene awareness. In ELLAS, the FoV is parti-
tioned into several sectors in the angle domain. The scanned
range and the angular resolution in the sectors are both opti-
mized to the static environment around the LiDAR, to enhance
detection within the unoccluded region. The contributions in
this article are listed below.

1) We design an adaptive spinning platform in ELLAS
that can seamlessly integrate with most programmable
off-the-shelf LiDARs. Our platform can simultaneously
adjust both the instantaneous spin rate and the ranging
parameters of the LiDAR over different sectors.

2) We formulate a convex optimization program to jointly
optimize the spin rate and the ranging parameters at
the LiDAR over a rotation. Our problem incorporates
static scene topology map information at the LiDAR’s
location. Furthermore, it also accounts for the mechani-
cal constraints on the spinning platform and the optical
characteristics of the LiDAR sensor.

3) We build an end-to-end indoor navigation system to
demonstrate ELLAS. In our setup, the navigating robot
wirelessly transmits its location to a local server. The
server, using a predetermined static map of the environ-
ment, solves the proposed optimization problem. Finally,
the optimized spin rates and ranging parameters are sent
back to the LiDAR, which acquires a point cloud and
relays it to the server for visualization.

To demonstrate ELLAS, we use the VL53L1X time-of-flight
(ToF) LiDAR sensor that has a maximum range of 4 m [15].
While our prototype can achieve a frame rate of up to 0.65 fps,
due to the mechanical constraints on the maximum spin rate,
the ELLAS design can, however, scale to automotive LiDAR
systems that feature a higher spin rate and a longer detection
range.

Fig. 1. In this work, the LiDAR’s 360◦ FoV is partitioned into N equal
sectors. In sector i, the dwell time Tdwell,i is the time spent by the
LiDAR and ri is its scanned range. ELLAS optimizes both ri and Tdwell,i
over all the N sectors using location-based static scene topology maps.
(a) Sectors in LiDAR’s FoV. (b) System in ELLAS.

ELLAS differs from our recent work on scene-aware auto-
motive radar sensing [16], [17], [18] in the following aspects.
First, [16], [17], [18] consider an automotive phased-array
radar in comparison to a spinning LiDAR in this work.
As such, in our past works, we optimized the scanned range
over different directions through adaptive beamforming, while
ELLAS optimizes the angular resolution in addition to the
range. Second, ELLAS allocates time resources over a rotation
based on scene awareness, whereas [16], [17], [18] focuses
on power resource allocation. Finally, ELLAS implements an
end-to-end system for scene-aware LiDAR sensing.

II. SYSTEM MODEL FOR ADAPTIVE SPINNING LIDARS

A spinning LiDAR system consists of a LiDAR unit
mounted on a rotating platform. By dynamically adapting the
spin rate and sensing parameters over a rotation, the LiDAR’s
scanning range and resolution over the FoV can be tuned
in real time. ELLAS leverages static scene topology maps
to perform this adaptation over different sectors in the FoV.
The sectors are illustrated in Fig. 1(a) and a schematic of
the proposed system is shown in Fig. 1(b). In this section,
we discuss constraints in a spinning LiDAR which will be
incorporated in our optimization problem. We also sketch the
feasible region corresponding to some constraints, for our
hardware implementation.

A. Dwell Time Constraint Due to the Spinning Platform
Consider an ego vehicle at the location (xe, ye) heading

at an angle of θe with respect to the x-axis. The 360◦ FoV
around the ego vehicle is partitioned into N distinct sectors
starting from the heading direction, as shown in Fig. 1. In this
article, we consider sectors of equal angular width of 2π/N .
We define Si as the set consisting of scanning directions,
measured with the positive x-axis, in sector i . Then

Si = {θ : θe − 2π(i − 1)/N ≤ θ < θe − 2π i/N } . (1)

We define T as the time period of the spinning LiDAR. As the
LiDAR spins on the rotating platform, it spends a fraction of
this total time period in scanning a sector. The frame rate
corresponding to T is defined as F = 1/T . We define the
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dwell time Tdwell,i as the time spent by the LiDAR in scanning
the i th sector. Therefore

N∑
i=1

Tdwell,i = T =
1
F

. (2)

The mechanical constraints on the rotor impose a maximum
rotational speed limit denoted by ωmax. Under this constraint,
the dwell time Tdwell,i is lower bounded by the following
equation:

Tdwell,i ≥
2π/N
ωmax

. (3)

By leveraging scene awareness, ELLAS optimizes the dwell
time in each sector under several constraints including those
in (2) and (3).

B. Ranging Duration Limits at the LiDAR Sensor
We now explain the signaling mechanism of our LiDAR

and introduce the ranging duration needed to reliably scan
a specified distance. A typical LiDAR transmits a time-
domain waveform, such as a pulse, over a narrow beam into
the environment. This waveform reflects off a target in the
illuminated direction and is received after a delay proportional
to the target’s range. In a ToF LiDAR, the time difference
between the transmitted and received pulses is calculated to
determine the range. The maximum scanning range in a ToF
system is governed by the time lapse between successive
pulses emitted as well as the received signal-to-noise ratio
(SNR).

We define the ranging duration δ(r) as the time spent by
the LiDAR to reliably scan up to a maximum range of r .
The minimum time needed to scan this distance is defined
as δmin(r), that is, δ(r) ≥ δmin(r). To unambiguously scan a
range up to r , a ToF LiDAR must space its pulse transmissions
by at least 2r/c [19], where c is the speed of light. Thus, the
scanning range desired in a sector places a lower bound on
the time between successive transmissions,1 that is, δmin(r) ≥

2r/c. To ensure sufficient SNR for reliable detection, a LiDAR
may transmit multiple pulses in a given interval. The number
of pulses needed depends on the ambient lighting level (noise
level), with stronger ambient light requiring an increased pulse
count to reliably measure distance. Under such conditions,
δ(r) must be substantially larger than 2r/c.

Constraint in Our Setup: In this article, we use the
VL53L1X sensor [15] and find δ(r) as a function of r
experimentally, for an ambient lighting level of 295 lx (lumens
per square meter). In this experiment, we place a target at a
distance of r from the LiDAR. Then, the LiDAR’s ranging
duration, which determines the number of emitted pulses,
is progressively decreased until the measured distance has an
error of at least 1 cm. The resultant ranging duration is defined
as δmin(r) and depicted in Fig. 2.

1The minimum ranging duration is directly related to the maximum refresh
rate of a LiDAR. Specifically, the maximum refresh rate associated with
δmin(r) is 1/δmin(r).

Fig. 2. Minimum ranging duration δmin(r ) needed to reliably scan up to
a distance r with the VL-53L1X LiDAR. Here, the ambient lighting level
was 295 lx. We set short-, medium-, and long-distance modes at the
LiDAR when scanning the distance ranges [0, 1.5 m), [1.5, 3 m), and
[3,4 m).

Fig. 3. Angular resolution needed to achieve a spatial resolution of α
at ri is about α/ri. The resolution requirement imposes a bound on the
dwell time Tdwell,i, as derived in (6).

C. Dwell Time Constraint for a Desired
Spatial Resolution

We derive constraints on the dwell time to achieve a desired
spatial resolution of α. For the i th sector, we show that
this constraint also depends on the desired scanned range ri .
We consider the i th sector in which the LiDAR spends Tdwell,i
amount of time (see Fig. 3). To achieve a spatial resolution of
α at the desired scanned range ri , the LiDAR must scan the
sector with an angular resolution of

1θ,i = 2sin−1
(

α

2ri

)
≈ α/ri . (4)

The approximation in (4) is valid as α ≪ ri in typical LiDAR
applications. Note that 1θ,i in (4) achieves higher spatial
resolution than α at distances smaller than ri . We translate the
resolution requirement in (4) into a requirement on the point
cloud density. As the central angle of any sector is 2π/N , the
LiDAR should be capable of acquiring

Pi =

⌈
2π/N
1θ,i

⌉
(5)

point cloud measurements at the desired scanned range ri .
Here, ⌈·⌉ is the ceil operator. As the LiDAR must spend at
least δmin(ri ) time to acquire one measurement at ri , it follows
that the dwell time Tdwell,i must be no smaller than Piδmin(ri ).
Using (4) and (5), we can write this constraint as follows:

Tdwell,i ≥

⌈
2πri

Nα

⌉
δmin(ri ) ∀i ∈ [N ] (6)

Authorized licensed use limited to: TU Delft Library. Downloaded on March 26,2025 at 09:12:10 UTC from IEEE Xplore.  Restrictions apply. 



RHEMREV et al.: ELLAS: ENHANCING LiDAR PERCEPTION WITH LOCATION-AWARE SCANNING PROFILE ADAPTATION 8769

Fig. 4. To reliably scan up to a distance of r in a sector, the LiDAR’s
dwell time in that sector needs to be at least the lower bound in (6). The
lower bound for our setup is shown here for N = 8 and α = 20 cm. The
reduced feasible region comprises all range-dwell time combinations
over our quadratic approximation of (6).

where [N ] denotes the set {1, 2, 3, . . . , N }. We observe
from (6) that a longer dwell time is needed to scan farther
distances.

We now motivate the quadratic approximation to the bound
in (6). ELLAS optimizes the pair (ri , Tdwell,i ) over all the N
sectors, while ensuring that the constraint in (6) is satisfied for
all i ∈ [N ]. To this end, we find a quadratic upper bound on
⌈2πri/(Nα)⌉δmin(r) and construct a reduced feasible region,
which is a subset of the region associated with (6). A sketch of
this region is shown in Fig. 4 for our setup. A quadratic upper
bound, which forms the boundary of the reduced feasible
region, is chosen for two reasons. First, a quadratic constraint
represents a convex set, which is easier to encode in our solver
compared to (6). Second, the upper bound provides a safety
margin on the dwell time, ensuring that the optimized solution
remains feasible even at a slightly higher ambient lighting
level.

To derive the quadratic upper bound, we use the scanned
range and the minimum dwell time combinations obtained
from our experiment. A total of K combinations, each
represented as (rk, T k

dwell), are obtained, where k indicates the
index of each data point. We define the quadratic upper bound
on ⌈2πri/(Nα)⌉δmin(r) as β2r2

+β1r +β0, where β2, β1, and
β0 are parameters to be estimated. These parameters are found
by solving

(β⋆
2, β⋆

1, β⋆
0) = argmin β2

2 + β2
1 + β2

0

s.t. β2(rk)
2
+ β1rk

+ β0 ≥ T (k)
dwell ∀k ∈ [K ].

(7)

The problem in (7) minimizes the ℓ2 norm of the parameter
vector (β2, β1, β0) subject to linear constraints. The reduced
feasible region, defined by the quadratic bound, can then be
expressed as follows:

Tdwell,i ≥ β⋆
2r2

i + β⋆
1ri + β⋆

0 ∀i ∈ [N ]. (8)

Constraint in Our Setup: To find the reduced feasible region,
we first compute the lower bound in (6) using K = 6 scanned
range and minimum dwell time combinations obtained from
our experiment. These six combinations, marked as blue

Fig. 5. Miniature driving scenario and the top view of its corresponding
static scene topology map. Here, the map comprises two buildings (B1,
B2) and four walls. ELLAS leverages this map to optimize the LiDAR’s
scanning profile. (a) Real-word scene. (b) Static scene topology (top).

circles in Fig. 4, are found by using (6) over the datapoints in
Fig. 2. For our setup, the lower bound is sketched in Fig. 4
for N = 8 sectors and α = 20 cm. Next, the six scanned
range and minimum dwell time combinations are encoded as
six linear constraints in (7). For the measured data points
in our experiment, the solution to (7) was (β⋆

2, β⋆
1, β⋆

0) =

(0.26, 0.08, 0.03). The corresponding dwell time constraint
for sector i is then Tdwell,i ≥ 0.26 r2

i + 0.08 ri + 0.03.
This constraint, which represents the reduced feasible region,
is shown in Fig. 4.

III. SCENE-AWARE LIDAR SENSING IN ELLAS
In this section, we explain how to derive scene awareness

of the ego vehicle from static scene topology maps. We then
incorporate scene awareness as a constraint in our optimization
problem to adapt the LiDAR scan. To aid our explanation,
we use the setup shown in Fig. 5(a). While we use Fig. 5(a)
as an illustrative example, our procedure to derive scene
awareness and our optimization formulation generalizes to any
arbitrary scenario.

Our setup in Fig. 5(a) is a miniature driving scenario in a
2 × 2 m floor space. It features two small buildings centered
at (55, 33 cm) and (55, 78 cm). The buildings are next to
each other and they have the same dimensions (x × y × z) of
17 × 45 × 60 cm. Fig. 5(b) shows the static scene topology
map corresponding to our setup in Fig. 5(a). The static scene
topology map at the ego vehicle comprises a digital model
of all known static obstacles, such as buildings (B1 and B2)
and the four walls within the environment. In this article,
we use a binary occupancy grid map as a static scene topology
map. This map is 1 at the static obstacle locations and is
0 otherwise. Our ego vehicle is a robot equipped with a
spinning LiDAR and is represented as a blue dot in Fig. 5(b).
The robot navigates along the paths marked in Fig. 5(b).

ELLAS exploits scene awareness at the ego vehicle in the
form of a digital representation of the static environment,
an example of which is shown in Fig. 5(b). In real-world
automotive driving applications, vehicles can access similar
maps using services like Google Street Maps. The digital
static map information can be leveraged to adapt how the
ego vehicle’s LiDAR scans the scene. Specifically, the LiDAR
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Fig. 6. Here, dstat(θ) is the distance between the ego vehicle and the
first known static obstacle along direction θ. The function dstat(θ) is used
to find dstat,i in sector i using (9). Fig. 5(b) shows dstat,is for N = 8
sectors. Here, (xe, ye) = (0.24,0.45 m) and θe = 90◦. The colors in
the bar graph correspond to those of the sectors marked in Fig. 5(b).
(a) dstat(θ). (b) Distance to static obstacles.

need not scan beyond the closest known static obstacle in any
direction, as this obstacle occludes all targets that are farther
away along that direction. Furthermore, the LiDAR can spin
faster and reduce its angular resolution around directions with
closer static obstacles. This allows the LiDAR more time to
scan critical sectors such as those focusing along the lane.

Using the static scene topology map and the ego vehicle’s
pose (location and orientation), the distance to the first known
static obstacle along any direction can be computed from
geometry. We define dstat(θ) as this distance along direction
θ . An example illustrating dstat(θ) is shown in Fig. 6(a) for
the topology in Fig. 5(b). As ELLAS optimizes the LiDAR’s
parameters at the sector level, the maximum of all the dstat(θ)s
in a sector is used for optimization. To this end, we construct

dstat,i = max
θ∈Si

dstat(θ) (9)

for each sector i . Note that dstat,i changes with the ego
vehicle’s pose. For (xe, ye) = (0.24, 0.45 m) and θe = 90◦,
we show dstat,i in Fig. 6(b) for the topology in Fig. 5(b).
We observe that this distance is smaller in sectors 2-7 that face
the buildings (B1 and B2) or wall 4. The directionally invariant
range profile with standard LiDARs is often suboptimal in
environments with a nonuniform static distance profile, such
as the one in Fig. 6(b).

A. Optimization Problem in ELLAS
ELLAS tailors the LiDAR’s scanning profile to {dstat,i }

N
i=1,

by jointly optimizing the scanned range ri and the dwell
time Tdwell,i over all the N sectors. The key idea in ELLAS
is to enhance the scanned envelope under scene awareness
and hardware constraints at the LiDAR. To this end, the
sum of scanned ranges over all the sectors, that is,

∑N
i=1 ri ,

is maximized as done in [17]. The maximization is performed
under scene awareness and the dwell time constraints in (2),
(3), and (8). In this article, we model scene awareness as a
constraint that enforces that the LiDAR’s scanned range ri
does not exceed dstat,i , that is,

ri ≤ dstat,i ∀i ∈ [N ]. (10)

We put these observations together to formulate our optimiza-
tion problem

max
{ri }

N
1 ,{Tdwell,i }

N
1

N∑
i=1

ri

s.t. ri ≤ dstat,i ∀i ∈ [N ]

Tdwell,i ≥
2π/N
ωmax

∀i ∈ [N ]

N∑
i=1

Tdwell,i =
1
F

Tdwell,i ≥ β⋆
2r2

i + β⋆
1ri + β⋆

0 ∀i ∈ [N ]. (11)

The problem in (11) jointly optimizes the range and the
resolution of the LiDAR over different sectors, unlike the
method in [17] which only adapts the range of radar over
the sectors and ignores resolution optimization.

Our problem in (11) maximizes a linear objective over
a convex set. In this work, we used Gurobi optimization
toolbox [20] to solve (11). We observe from (11) that the
dwell time constraints due to (2), (3), and (8) only depend
on the LiDAR hardware. These constraints do not change
with the location of the ego vehicle. The scene awareness
constraint due to (10), however, changes with the ego vehicle’s
location and orientation. Therefore, (11) needs to be solved
at each location of the ego vehicle. As our formulation
depends only on the LiDAR hardware and the static scene
topology maps, this problem can be solved offline for a
predetermined navigation path. An optimized codebook of
LiDAR settings can be generated for this path, allowing the
ego vehicle to load the appropriate scan profile based on
its location. The codebook-based approach reduces real-time
computational complexity compared to the case where the ego
vehicle solves (11) at each location.

We now summarize how the solution of (11), defined as
{(r⋆

i , T ⋆
dwell,i )}

N
1 , is realized with our custom hardware. To per-

ceive sector i , the scanning range is set to r⋆
i by configuring

the LiDAR’s ranging duration to δmin(r⋆
i ). Furthermore, the

instantaneous spin rate of the rotating platform is set to

ω⋆
i =

2π/N
T ⋆

dwell,i
(12)

when scanning sector i . ELLAS configures the ranging
duration and the spin rate simultaneously for each sector.
We provide details of our hardware setup to enable this
simultaneous configuration in Section IV-A.

B. Interpretation of the Optimized Solution
We discuss the solution of (11) for the scene in Fig. 5(a),

by considering N = 8 sectors and ωmax = 4.32 rad/s. The ego
vehicle in this scene has access to dstat,i s in Fig. 6(b) from the
static scene topology map. For frame rates of F = 0.25 fps
and F = 0.5 fps, we find the optimized scanned ranges (r⋆

i s)
and the optimized spin rates (ω⋆

i s). We compare these profiles
against those of a standard spinning LiDAR in Figs. 7 and 8.
As a standard LiDAR does not leverage any scene awareness,
its profile denoted by (r std

i , ωstd
i ) remains the same over all
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Fig. 7. For the scene in Fig. 5, the plots show the scanned range
profiles with ELLAS and a standard LiDAR for 0.25 and 0.5 fps. Unlike a
standard LiDAR that employs a uniform scan profile, ELLAS uses static
scene topology maps to adapt the LiDAR’s range over different sectors.
(a) F = 0.25 fps. (b) F = 0.5 fps.

i . To compute them, we first observe that a standard LiDAR
spends an equal amount of time in any sector, that is, T std

dwell,i =

T/N = 1/(N F), which corresponds to an instantaneous spin
rate ωstd

i = 2π F for any i . Next, we find the maximum range
of this LiDAR by solving the feasibility constraint in (8) under
equality, that is, T std

dwell,i = β⋆
2(r std

i )2
+ β⋆

1r std
i + β⋆

0 . We use
T std

dwell,i = 1/(N F) to write the quadratic equation

β⋆
2
(
r std

i
)2

+ β⋆
1r std

i + β⋆
0 =

1
N F

. (13)

The largest positive root of (13) yields the maximum range of
a standard LiDAR under the same constraints as in ELLAS.
In our setup, this evaluates to r std

i = 1.2 m at F = 0.25 fps
and r std

i = 0.78 m at F = 0.5 fps.
We now examine the scanning profiles in Figs. 7 and 8 for

frame rates of 0.25 and 0.5 fps. On the one hand, ELLAS
meets the scene awareness constraint in (10) and achieves a
scanned range profile (r⋆

i s) that aligns well with the distance to
known static obstacles (dstat,i s). On the other hand, a standard
LiDAR results in a uniform range profile over the sectors
which is inefficient. For instance, a standard LiDAR employs
a longer range than what is needed for sectors 2–7. As these
sectors have closer known static obstacles (see Fig. 5), ELLAS
reduces the range of its LiDAR while scanning them. Fur-
thermore, ELLAS achieves a longer range than a standard
LiDAR in sectors 1 and 8, which focus on the main lane.
We also observe from Fig. 7(a) and (b) that increasing the
frame rate reduces the scanned range of a standard LiDAR.
This is because of the shorter dwell time at a higher frame rate,
for which the LiDAR cannot scan farther distances (see Fig. 4
for reference). Finally, we notice from Fig. 8 that ELLAS
spins faster in sectors 2–7 with closer known static obstacles.
This allows ELLAS to save time in a rotation, which is used
to scan sectors 1 and 8 at a low spin rate. A low spin rate
corresponds to a longer dwell time, which enables ELLAS to
enhance the range and resolution in these sectors.

IV. PROOF-OF-CONCEPT ELLAS SYSTEM

We use the miniature driving setup in Fig. 5(a) to evaluate
ELLAS using an experiment and simulations. The experiment
is done at a frame rate of F = 0.25 fps, for a randomly
chosen ego vehicle’s location and a test target. To evaluate the

Fig. 8. For the scene in Fig. 5, the plots here show the instantaneous
spin rate profiles with ELLAS and a standard LiDAR for frame rates of
0.25 and 0.5 fps. With the optimized profile in ELLAS, the LiDAR spins
faster in sectors with closer static obstacles, for example, sectors 2–7,
and vice versa. (a) F = 0.25 fps. (b) F = 0.5 fps.

Fig. 9. In our experiment, a miniature pedestrian is introduced on the
lane as a target in the scene. We study if ELLAS detects this target
shown in (a). Our custom-made hardware in ELLAS, which achieves
simultaneous range and resolution adaptation over different sectors,
is shown in (b). This hardware is mounted on the ego vehicle as seen
in (a).

statistical performance of the system, we consider simulations
with an ensemble of ego vehicle locations within the digital
map in Fig. 5(b).

A. Experiment
In our experiment, we study how ELLAS detects a miniature

pedestrian shown in Fig. 9(a). The pedestrian is placed at
(0.24, 1.65 m) and it is unknown to our system before the
LiDAR scans the scene. Most importantly, the pedestrian is
not part of the static scene topology map used by ELLAS.
In this section, we discuss our procedure to estimate the ego
vehicle’s pose, solve (11) using the estimated pose and the
static map in Fig. 5(b), and apply the optimized settings in
our system for target detection.

1) Pose Estimation: We use a Bluetooth-enabled playstation
controller to drive our ego vehicle, the robot, along the
lane in Fig. 5(a). To identify the robot’s location, we use a
sequence of QR codes along the left side of the lane, each
encoding a distinct position. These QR codes are linearly
spaced at 3 cm, thereby providing a localization accuracy of
1.5 cm along the lane. The QR-based approach was previously
introduced in [21] and [22] as a low-cost solution for indoor
localization. In practice, ultrawideband (UWB) [23], [24] or
Wi-Fi-based systems [25], [26] can be employed for indoor
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positioning, while GPS or cellular networks can be used for
outdoor localization [27], [28]. Additionally, inertial sensors
on vehicles can be leveraged to estimate the orientation [29].

The robot is stopped at an arbitrary location on the path
and its pose is estimated by scanning the QR code next
to it. The QR code, captured by a downward-facing phone
camera on the robot, is relayed to a local server using an IP
Webcam application [30]. The local server, a laptop, decodes
the scanned QR code using OpenCV [31] and then identifies
the pose. In our experiment, the robot’s location was identified
as (xe, ye) = (0.24, 0.45 m) and its orientation is decoded as
θe = 90◦ based on the path on which it is traveling.

2) LiDAR Parameter Optimization: To optimize the LiDAR
parameters, ELLAS uses the predetermined static scene topol-
ogy map in Fig. 5(b) and the real-time pose received from
the robot. This information is used to first compute the
distance to the closest static obstacles in each sector, that is,
dstat,i s. These values are shown in Fig. 6(b) for (xe, ye, θe) =

(0.24 m, 0.45 m, 90◦) and the topology in Fig. 5(b). Then,
the optimization problem in (11) is solved at the server for
the desired frame rate. We use N = 8 sectors and ωmax =

4.32 rad/s for the rotor speed limit. The optimized spin rate
and scanned range profiles over the N sectors are transferred
back to the robot by Wi-Fi.

3) Implementation of Optimized LiDAR Parameters: The
robot applies the optimized parameters to our custom-made
hardware that allows both range and resolution control.
Our hardware comprises an Arduino Uno R4 Wi-Fi board,
a stepper motor and its driver, a spinning platform, and the
VL53L1X LiDAR. The LiDAR is mounted on top of the
spinning platform as shown in Fig. 9(b). The rotational power
is transferred from the stepper motor that drives gear 1 to the
platform mounted on gear 2. Here, we use a gear ratio of 1:8
between the two gears. This gear ratio ensures that the LiDAR
system spins at low rotational speeds without vibrations.

The Arduino keeps track of the LiDAR’s scanning direction,
which is used to determine the sector i according to (1).
In sector i , the Arduino configures the LiDAR’s ranging
duration, called the timing budget in [15], corresponding to r⋆

i
using Fig. 2. In our work, r⋆

i is ceiled to the nearest multiple
of 0.5 m and the ranging duration associated with the ceiled
r⋆

i is applied to the LiDAR. The ceiling operation allows
our Arduino to directly use the datapoints acquired in Fig. 2,
without requiring any sophisticated interpolation. In addition
to controlling the LiDAR, the Arduino also sets the rotational
speed of the spinning platform to ω⋆

i . This is achieved by
setting the speed of the stepper motor to 8ω⋆

i , accounting for
a gear ratio of 8 in our setup. The LiDAR point cloud acquired
with the optimized settings in ELLAS is stored on the Arduino.
As a benchmark, the point cloud with a standard LiDAR is
also acquired and stored on the Arduino. The standard LiDAR
function is achieved by employing uniform settings, that is,
the constant spin rate of ωstd

i = 2π F∀i and a uniform ranging
duration corresponding to the ceiled r std

i . The ceiling operation
is the same as the one used in ELLAS, to ensure a fair
comparison.

4) Results: The point cloud acquired by our robot comprises
polar coordinates of the form (r (p), θ (p)), where p is the index

Fig. 10. LiDAR point clouds acquired with a standard LiDAR and ELLAS
at a frame rate of 0.25 fps. ELLAS employs an optimized scanning
profile which results in a high-density point cloud representation of the
target. Here, the standard LiDAR fails to detect the target. (a) Standard.
(b) ELLAS.

of the point cloud measurement. The measurement (r (p), θ (p))

indicates that there is a target at a range of r (p) from the
robot along direction θ (p). Transferring the point cloud data
wirelessly to our server was challenging, due to limited
SRAM on the Arduino. To address this problem, we perform
8-bit uniform quantization of the point cloud data, that is,
(r (p), θ (p))s, by assuming a maximum range of 3.5 m and a
maximum angle of 360◦. As a result of this quantization, the
range and angular resolutions of our system are, respectively,
limited to 1.3 cm and 1.41◦. The Arduino sends the quantized
point cloud measurements to the server, for ELLAS as well as
the standard LiDAR. Finally, the server displays these point
clouds over the static scene topology map. The point cloud
results from our experiment are shown in Fig. 10 for the scene
in Fig. 9(a), which includes a target.

Fig. 10(a) and (b) shows that ELLAS acquires multiple
point cloud measurements of the pedestrian located on the
main lane, whereas the standard LiDAR does not. This is
expected, as ELLAS achieves a longer scanned range along
the main lane (sectors 1 and 8) compared to the standard
LiDAR. Furthermore, the angular resolution with ELLAS is
higher in sectors 1 and 8 as the spin rate is lower. Thus,
ELLAS acquires a high-density point cloud representation of
the target by enhancing the LiDAR’s range and resolution in
critical sectors. Such high-density point cloud representations
are key to the high performance of object detection algorithms.

B. Simulation Results
We benchmark ELLAS against a standard LiDAR by con-

sidering an ensemble of ego vehicle locations in the static
scene topology in Fig. 5(b). We adopt a simulation-based
approach as obtaining real-time point clouds with our experi-
ment can take significant time. This is due to the time needed
to drive the robot, solve (11), and communicate with the server.

In our simulations, the robot is placed at all coordinates
on a 2 × 2 m rectangular grid, except for those in the
buildings B1 and B2. The rectangular grid has a resolution
of 1 × 1 cm. Without loss of generality, we assume that the
robot is oriented along the y-axis at any location. For each of
the ∼40 000 locations on the rectangular grid, the distance to
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Fig. 11. We consider a frame rate of F = 0.25 fps in (a)–(c). The heatmaps in (a) and (b) show the fraction of drivable range scanned with ELLAS
and a standard LiDAR at different ego vehicle locations. Enhancement in the drivable range scanned with ELLAS, that is, ηELLAS/ηstd is shown
in (c). We observe that this enhancement is large when the ego vehicle drives close to the boundary. Average enhancement with the frame rate is
shown in (d).

static obstacles, that is, dstat,i s, is computed for N = 8 sectors
using the digital map in Fig. 5(b). Our simulations use the
same settings as our experiment, that is, ωmax = 4.32 rad/s
and (8). Finally, (11) is solved for 14 different frame rates,
at each location of the robot. The frame rates are varied from
0.05 to 0.65 fps in steps of 0.05 fps.

We evaluate ELLAS in terms of the fraction of drivable
space that is reliably scanned by the LiDAR, denoted by η.
This metric was proposed in [17] for scene-aware automotive
radars and is defined as follows:

η =

∑N
i=1 min(ri , dstat,i )∑N

i=1 dstat,i
(14)

where 0 ≤ η ≤ 1. A higher η ensures that the LiDAR scans
a larger fraction of the drivable space, which is desirable
in automotive driving and navigation applications. This is
because sensing solutions with a higher η allow early detection
of targets than those with a lower η.

We show the fraction of the drivable range scanned with
ELLAS and a standard LiDAR in Fig. 11(a) and (b), respec-
tively. These fractions, denoted by ηELLAS and ηstd, are
computed for the same frame rate of 0.25 fps. We observe
from (14) that η does not improve if the LiDAR employs
a scanned range that exceeds dstat,i in sector i . While a
standard LiDAR’s scanned range may exceed this bound in
some sectors, ELLAS never exceeds the bound as it optimizes
under the scene awareness constraint in (10). By limiting the
range in sectors with closer static obstacles, ELLAS saves on
the dwell time to enhance scanned range in sectors with farther
static obstacles. Therefore, we expect the scanned fraction
with ELLAS to be at least that of a standard LiDAR, that
is, ηELLAS ≥ ηstd. This observation that ηELLAS/ηstd ≥ 1 can
also be made from Fig. 11(c) which shows the ratio over all
locations.

Fig. 11(c) indicates that ηELLAS/ηstd varies spatially over
the rectangular grid. This is because dstat,i s as well as the
optimized configuration in ELLAS vary with the ego vehicle’s
location. Finally, we observe from Fig. 11(c) that the enhance-
ment in scanned range with ELLAS, that is, ηELLAS/ηstd,
is large when the ego vehicle is close to the wall boundaries.
This is because dstat,i s are small in sectors facing the walls,
which allows ELLAS to significantly extend its scanned range
in other sectors. Finally, we study the average ηELLAS/ηstd

with the frame rate using Fig. 11(d). For each frame rate, the
average is taken over all possible locations of the ego vehicle.
Fig. 11(d) shows that the standard LiDAR achieves similar
performance as ELLAS at low or high frame rates. At low
frame rates, the dwell time with a standard LiDAR, that is,
1/N F , is sufficient to scan up to its maximum range (3.5 m)
in all sectors. At high frame rates, however, the LiDAR has
limited dwell time and its scanned range is shorter than dstat,i s.
In both cases, the scene-aware constraint in (10) does not
determine the solution of (11) and ηELLAS/ηstd approaches 1.

V. SCALING UP ELLAS TO AUTOMOTIVE DRIVING:
CHALLENGES AND POTENTIAL SOLUTIONS

ELLAS assumes that the ego vehicle’s pose is perfectly
known, to determine the optimal LiDAR configuration under
scene awareness. In an automotive application, however, GPS
inaccuracies and orientation estimation errors can lead to
ELLAS optimizing the LiDAR configuration for a mismatched
pose. This mismatch may result in the ego vehicle employing
suboptimal LiDAR parameters for its pose. To address this
issue, one approach is to model localization uncertainty and
extend our formulation in (11) using a stochastic optimization
(SO) approach. For automotive radars, it was shown in [17]
that SO-based beamformers were still able to leverage scene
awareness while being robust to practical localization errors.

In our implementation, the optimization problem was solved
at a local server, as the Arduino on the robot has lim-
ited memory and processing power compared to the server.
As a result, our setup currently requires about a minute to
acquire a point cloud due to communication latency with the
server. To meet real-time application requirements, navigation
applications could precompute optimal LiDAR settings as
a function of location. These settings can be calculated in
advance using ELLAS, by leveraging LiDAR characteristics
and offline street maps. A codebook of the optimized config-
urations can then be constructed, allowing the LiDAR system
to load the optimized configuration on the fly with minimal
on-board computing. While ELLAS facilitates the design of
location-based codebooks, deriving a codebook of optimized
configurations is challenging with the methods in [11], [12],
and [13]. This is because the techniques in [11], [12], and
[13] require real-time computation of the region of interest
for LiDAR scan optimization.
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TABLE I
COMPARISON OF ELLAS AND VELODYNE VLP-16 SPECIFICATIONS.

While our current system is suitable for certain indoor
applications, scaling it for automotive use would require
significant upgrades to the laser and rotor. This includes
increasing the number of vertical scanning channels from 1 in
our 2-D LiDAR to a higher number to enable 3-D scanning.
Table I summarizes the specification differences between our
prototype and a commercial LiDAR like Velodyne’s VLP-16
sensor [8].

Although our paper focused on developing a proof-of-
concept prototype, ELLAS can also be implemented on
industry-grade spinning LiDARs through sector-specific pro-
gramming of existing hardware. The scanned range can be
adjusted across sectors by modifying the laser’s ranging
duration or intensity. Similarly, resolution adaptation can be
achieved by varying the spin rate with the sector. For example,
Velodyne’s VLP-16 LiDAR allows spin rates between 300 and
1200 r/min. While the spin rate is typically fixed over an entire
rotation, ELLAS proposes varying the rate by sector within the
specified limits. Our formulation in (11) assumes that the spin
rate can be abruptly changed at sector boundaries, ignoring the
angular acceleration limits of the rotor. Optimizing continuous
spin profiles that adhere to acceleration limits is beyond the
scope of this article. Incorporating these additional constraints
of an industry-grade automotive LiDAR into (11) would allow
ELLAS to significantly enhance road safety with situation-
aware scanning.

VI. CONCLUSION

In this article, we showed how spinning LiDARs can
leverage static scene topology maps to adaptively scan the
environment. To this end, we developed an end-to-end system
called ELLAS that jointly optimizes the LiDAR’s range and
resolution over different sectors in its field of view. ELLAS
reduces the scanned range of the LiDAR in sectors with closer
known static obstacles and vice versa. Furthermore, ELLAS
enhances the angular resolution of the LiDAR in sectors where
static obstacles are far away. We constructed a miniature
proof-of-concept driving setup and showed that ELLAS can
successfully detect a pedestrian in the setup, while detection
with a standard LiDAR fails. We also showed by simulations
that ELLAS scans a larger fraction of the drivable region than
a standard LiDAR.
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