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Abstract—In mixed traffic, one of the challenges for 
autonomous driving technology is how to safe and socially 
acceptable interaction with human-driven vehicles (HVs). 
Understanding human cognitive processes during decision-
making in interactions with other road users is crucial for 
enhancing the smooth execution of driving tasks by autonomous 
vehicles (AVs). This paper proposes a cognitive model of the 
driver's cumulative information processing based on drift-
diffusion model (DDM). By incorporating the initial decision 
biases, drift rate, and boundary (depending on the initial speed 
and gaps between ego vehicle and surrounding users) into the 
existing DDM, our model captures the integrated interaction 
between individual drivers and other road users. Classic 
emergency collision avoidance scenarios were constructed based 
on a driving simulation platform. Our cognitive model 
accurately described human decision-making in high-risk 
scenarios, identified key qualitative and quantitative input 
variables affecting the driver's cognitive processes, and 
quantified the safety thresholds of the driver's cumulative 
information processing. Results can support the personalized 
modeling of human drivers’ cognition and facilitate safe and 
effective interactions between HVs and AVs. 

Keywords— Autonomous vehicle decision-making; driver risk 
cognition; driving simulator study; high-risk environments. 

I. INTRODUCTION 
In real-world traffic, human drivers use non-verbal 

communication, such as gestures and motion cues, to negotiate 
effectively and make socially compatible decisions in complex 
and congested scenarios [1]. The characteristics of driver 
perception, decision-making, and control directly impact 
vehicle stability and safety. Driver risk cognition involves the 
subjective understanding of potential risks in traffic, guiding 
behavioral decisions [2]. Despite sensory noise, drivers 
prioritize critical information through cognitive filtering, 
leading to reasonable choices. Although significant progress 
has been made in autonomous driving in recent years, 
autonomous vehicles (AVs) still face challenges in decision-
making conflicts in high-risk interaction scenarios, such as 
left-turn problems and cut-in timing dilemmas [3]. To be 
accepted by human road users, AVs are expected to possess 
human-like decision-making and judgment capabilities, 
emphasizing operating safely and possessing human-like 
decision-making and judgment capabilities. This involves 
integrating human social preferences (altruism, egoism, 
cooperation, competition) and demonstrating proactive 
responsiveness and social intelligence. Understanding 
dynamic interactions among human drivers in complex traffic 

can help AVs emulate exemplary driving behaviors, enabling 
them to make reasonable and socially compatible decisions, 
crucial for success in interaction-intensive and safety-critical 
environments [4]. 

As illustrated in Fig. 1, when AVs lack human-like 
cognitive processes, their decisions can diverge from human 
driving logic, increasing the risk of errors and collisions. 
Therefore, incorporating human-like risk cognition in AVs is 
essential for enhancing safety, particularly in high-risk 
scenarios [5]. We expect to develop a risk cognition-based 
interactive decision-making model, which supports AVs in 
operating similarly to humans by characterizing and predicting 
acceptable safety thresholds and threshold-based reasonable 
decision-making behavior in high-risk scenarios. However, 
current driver risk cognition and behavior models, often 
provide qualitative descriptions but lack quantitative metrics 
to capture the dynamic complexity of drivers' responses to 
varying risk levels, resulting in incomplete or inaccurate 
predictions. Additionally, these models do not account for 
individual differences in drivers' risk cognition, leading to 
generalized assumptions that may not apply to diverse driver 
groups. These limitations hinder their effectiveness in 
capturing complex interactive behaviors [6]. To address this 
gap, this paper introduces human cognition-inspired modeling 
and decision-making for AVs, particually in high-risk 
scenarios. Our contributions are as follows: 

 
Fig. 1. Illustration of the vehicle decision dilemma in a critical scenario. 

(a) Without cognition, follower B only observes other vehicles’ 
actions, ignoring the judgment of situation risks, causing collisions. 
(b) With cognition, follower B actively decides based on situation 
risks in response to the other vehicles' actions. 
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Follower B

Conflict C

(a) Without Cognition: 
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This full-text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.
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• Based on extensive experimental data analysis, we 
developed a cognitive evidence accumulation model 
for drivers and calibrated its parameters. This model 
quantitatively characterizes human risk cognition and 
decision-making behaviors. 

• By mining data from driving simulator-based studies, 
we refine and analyze key variables influencing 
drivers' behaviors in high-risk scenarios and capture 
the comprehensive interactions between drivers and 
other road users. 

• By employing the drift-diffusion model (DDM) based 
on cumulative information processing, we can explain 
the decision-making principles of humans from a 
cognitive perspective in high-risk scenarios. 

 The rest of this paper is organized as follows. Section 2 
introduces the literature review, and Section 3 describes the 
data collection method of driver behavior experiments based 
on the driving simulator. In Section 4, we illustrate the 
modeling of human behavioral decision-making. The 
performance of the proposed method and the conclusion of 
this study are summarized in Sections 5 and 6. 

II. LITERATURE REVIEW 
Assessing driving scenarios from an expert driver's 

perspective can better enable AVs to adapt their interactive 
behaviors to complex dynamic traffic. Methods for 
understanding and predicting human behavior in complex 
systems can be categorized into three types [5]: game theory-
based reasoning models, learning-driven models, social field 
and force models, and cognitive models. 

Game theory-based reasoning models offer a robust 
framework for analyzing strategic interactions among rational 
agents, where each participant's actions impact the outcomes 
of others [7]. In modeling driver cognition based on game 
theory, it is essential to dynamically consider the safety and 
comfort of the vehicle while also accounting for the intentions 
and behaviors of surrounding road users. Hence, driver 
decisions result from multi-vehicle game interactions, leading 
to optimal strategy outputs. Bayesian dynamic models are also 
commonly used in behavior reasoning [8]. Darius et al. [9] 
proposed a probabilistic prediction framework based on 
dynamic Bayesian networks (DBN), considering multi-
vehicle interactions in traffic environments and using context-
aware motion models at intersections to define driver 
interaction behaviors. By combining prior knowledge with 
observed data, game theory-based models provide a 
probabilistic framework for predicting and deciding driver 
behavior [10]. However, their reliance on rational behavior 
assumptions limits their real-world applicability. Moreover, 
these models often neglect descriptions of drivers’ risk 
perceptions, and decision-making complexity increases with 
more agents and strategies. 

Learning-driven models leverage data mining and 
knowledge acquisition from large volumes of driving data 
through deep neural networks (DNN) and convolutional 
neural networks (CNN) [11]. These methods can identify 
complex patterns from extensive datasets. Sharifzadeh et al. 
[12] used deep Q-networks for deep reinforcement learning to 
study lane-changing and overtaking patterns on highways but 
did not address vehicle safety and used simple simulation 
scenarios. While these models effectively manage complex 
high-dimensional data, they typically function as “black 

boxes,” limiting interpretability and providing no insights into 
the underlying mechanisms of drivers' risk cognition and 
decision-making behaviors. 

Potential field and social force models explore the 
influence of social context and the presence of others on 
individual behavior. Commonly used to describe pedestrian 
dynamics and crowd behavior, these models assume 
individuals experience attraction and repulsion forces from 
others and environmental factors, guiding their movement and 
interactions. Recent research integrates human-social 
interaction concepts into autonomous vehicle-human vehicle 
(AV-HV) interactions. Algorithms for behavior prediction and 
multi-agent reinforcement learning (MARL) frameworks 
incorporating social value orientation (SVO) have been 
developed [13]. These models capture the impact of social 
interactions on behavior but may oversimplify complex 
personal decision-making processes by reducing them to 
force-based models. 

Cognitive models aim to explain human cognitive 
processes, drawing from cognitive psychology and 
neuroscience to simulate how humans perceive, think, and 
decide [14]. By modeling cognitive functions such as attention, 
memory, and learning, they help understand and predict 
human behavior. The DDM, a classic information 
accumulation model with diffusion signals [15], elucidates 
driver decision-making mechanisms. This model has been 
recently utilized for describing driver decision-making in left-
turn and overtaking scenarios [16], addressing gaps between 
cognitive decision models and naturalistic driving studies [17]. 
This method, based on the classic DDM, considers drivers’ 
gap acceptance decisions and simulates the underlying 
cognitive processes, offering a real-time prediction approach 
and revealing the cognitive mechanisms. By simulating 
human cognitive processes, these models can predict and 
explain human behavior in ways closely aligned with actual 
behavior. This capability is crucial in designing automated 
systems such as AVs. 

III. HIGH-RISK SCENARIO DRIVER COGNITION DATABASE 
We conducted extensive driving simulator experiments, 

focusing on high-risk scenarios to capture human cognitive 
and decision-making behaviors. The experiments involved 
participants navigating simulated environments with various 
risk factors, such as sudden obstacles, unpredictable traffic 
patterns, and high-density traffic conditions. 

A. Participants 
A total of 58 drivers participated in the experiment, all 

holding valid driving licenses and having normal or corrected-
to-normal vision. They completed a basic information 
questionnaire and a subjective-style questionnaire. 
Specifically, as shown in Table 1, the content includes name, 
age, driving experience, and annual average driving mileage, 
while the subjective style questionnaire covered driving 
accidents and driving style (cautious, normal, radical). Data 
from 54 (mean age = 36.5 years; standard deviation [SD] 
=8.37; range=22-55; 8 females and 50 males) were analyzed. 

Table 1. Demographic variables for collected drivers. 

 Age 
/Year 

Driving 
years/Year 

Average 
driving 
time/Hour 

Mileage/ 
Kilometer 

Mean 36.50 12.10 39.29 23731.43 
SD 8.37 7.10 38.24 19213.04 
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B. Experimental Platform 
A driving simulation platform is regularly used to study 

the influence of driving performance on conflict risk. As 
displayed in Fig. 2, the simulator hardware includes the 
Logitech G29 steering wheel and accelerator, brake pedal kit, 
driving simulation environment display device, and a linear 
motion base with one degree of freedom (pitch). The full-size 
cabin features a realistic operation interface, environmental 
noise, motion simulation, a digital video playback system, and 
a vehicle dynamics simulation system. The environment is 
projected with a 300-degree field of view at 1400 × 1050 
resolution, including rearview mirrors. Simultaneously, 
supporting software for driving scenario design, virtual traffic 
environment simulation, and virtual road modeling is provided, 
which can realize the functions of complex road construction, 
traffic flow generation, and traffic control. 

 
Fig. 2. Driving simulator platform. 

C. Experimental Design and Analysis 
Considering vehicle conflicts with the environment and 

road users, our designs were based on accident types reported 
by the NHTSA and GES. The most common hazardous 
scenarios include rear-end collisions (29%), intersection 
crossings (24%), road departures (19%), and lane changes 
(12%) [18]. Therefore, in this study, we designed comparative 
experiments considering rear-end collisions with leading 
vehicle’s emergency braking, as shown in Fig. 3. The multi-
stage driver behavior experiment adheres to a risk cognition 
paradigm, encompassing pre-experiment calibration, in-
experiment recording, and post-experiment processing. 
Specifically, in this experiment, we consider three vehicles, 
leader A, follower B, and conflict C. Specifically, leader A and 
conflict C are environmental vehicles with a constant velocity 
of 80 km/h defined by the driving simulator, and follower B is 
the follower B driven by a driver, performs normal commute 
driving in highway. The experimental scenario setting details 
are shown in Table 2. When leader A suddenly activates the 
emergency brake with a deceleration of -8 m/s², conflict C is 
still driving in the left lane ahead at a constant speed of 80km/h, 
while driver participants of follower B need to decide whether 
to change lanes by steering left or apply emergency brakes and 
stop in response to the emergency brake of the leader A. 
Notably, throughout the experiment, the driver of follower B 
was unaware of the behavior settings of leader A and conflict 
vehicle C, allowing for a more authentic capture of reaction 

time, deceleration, and other behavior characteristics under 
unexpected conditions. 

Table 2. Experimental scenario setting. 

Parameters 
Initial 
speed/ 
km/h 

Initial 
headwa
y (d)/m 

Process 
speed/ 
km/h 

Trigger 
conditions 

End 
states 

Leader A 80 100 80(CV) d=40m, A=-
8m/s2 (EB) 

Stop 
Follower B 0 0 80-120 Stop/ LC 
Conflict C 8 -1 80(CV) - 80 km/h 

Note: CV means constant velocity, EB is the emergency brake, and LC represents lane 
changing. 

D. Data Processing and Key Variable Extraction 
In the cognitive response process, the appearance of a 

stimulus is defined as the reference zero moment for reaction 
time. Key variables include cognitive reaction time (CRT), 
braking reaction time (BRT), speed adjustment time (SAT), 
etc. CRT is the interval from the first appearance of a risk 
source (or traffic disturbance) in a scenario to when the driver 
first notices it. BRT is defined as the time from the occurrence 
of a traffic disturbance to when the driver initiates an active 
response, measuring deceleration response capability in high-
risk scenarios. SAT is the duration from the start of braking to 
the vehicle reaching maximum deceleration. Specifically, 
CRT reflects the driver's risk recognition ability based on 
experience and habits, while BRT shows the driver's control 
ability during emergency avoidance. Using CRT as a basis, the 
final decision-making phase determines the timing for 
obstacle avoidance measures.  

 
Fig. 3. The rear-end collision scenario with leading vehicle braking. 

The decision involves two main options: steer or brake. 
These maneuvers respond to external stimuli and address 
current traffic conditions. Decision-phase variables include 
the maximum deceleration during braking, minimum time-to-
collision (TTC), collision avoidance measures (steer/brake), 
maximum steering angle, average braking depth, etc. In the 
driver risk cognition experiment, as illustrated in Fig. 4, data 
processing of drivers' behavior in the critical scenario reveals 
significant differences in decision-making among drivers 
under the same traffic conditions. Drivers accumulate 
information first, using cognitive reaction time as a reference 
to determine the timing of decision-making behaviors, 
influencing outcomes of collisions or safety. Therefore, 
studying the differences in key variables during decision-
making can reflect their varying risk cognition abilities. 
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Fig. 4. Spatiotemporal distribution of decision-making behaviors in critical 

scenarios. 

IV. DRIFT-DIFFUSION MODELING 
The DDM quantitatively describes the information 

accumulation-decision process, where the brain accumulates 
noisy, uncertain information until a threshold is reached, 
prompting a decision. This model, based on stochastic drift-
diffusion theory and integrating cognitive psychology and 
neuroscience, explains how drivers make decisions in 
complex scenarios [15]. Analyzing our dataset with this 
framework can help interpret participants' behaviors and 
response times. 

A. Drift Diffusion Model 
In Fig. 5, the baseline outputs for decision strategies 1 and 

2 correspond to the threshold values C and -C, representing 
the driver's decision criteria. If there is a pre-decision bias 
influenced by prior knowledge, the starting point shifts 
upward or downward; without prior influence, it starts at zero. 
The drift rate determines the speed of the driver's risk response 
and braking decision, while the reaction time describes the 
duration of the decision-making process. 

The drift-diffusion process mathematically represents the 
underlying psychological dynamics and multifactorial 
influences involved in the driver's decision-making strategies 
(risk response behaviors). It explains how choices are made 
during the output of multiple decision strategies. Compared to 
other models, the DDM comprehensively describes the entire 
sequence of driver behavior, from attention search and 
cognitive response to decision and control. Therefore, DDM 
is applied to mathematically express the information 
accumulation process in the driver's risk cognition and 
reactive decision-making. 

 
Fig. 5. The illustration of the drift-diffusion model. 

In the drift-diffusion process, each strategy has a threshold 
indicating the required information accumulation before 
responding. Driver uncertainty introduces noise, meaning the 
accumulation direction may vary at any moment. This model 
elucidates how different decisions arise from accumulated 
information over time. As shown in Fig. 5, using information 
accumulation and evolution in the search phase as input and 
cognitive reaction time as the reference for information 
accumulation, DDM determines the timing for implementing 
avoidance measures in the decision-making process. 

In this study, we construct the DDM to investigate the 
decision-making process of human drivers in the rear-end 
collision scenario. Specifically, we will focus on the process 
that starts when leader A brakes (𝑡𝑡 = 0 ), and ends when 
follower B decides to either steer or brake. The main 
components of the DDM established in this study, drift rate, 
boundary, initial bias, and non-decision time, are as follows. 

1) Drift Rate 
The drift rate 𝑔𝑔(𝑡𝑡) represents the average rate of evidence 

accumulation over time. It reflects the speed and direction of 
the decision-making process. In this study, 𝑔𝑔(𝑡𝑡) is considered 
as a function of the initial speed of the follower B: 𝑣𝑣0, the time 
headway between follower B and leader A: ℎ𝑓𝑓(𝑡𝑡), the distance 
between follower B and leader A: 𝑠𝑠𝑓𝑓(𝑡𝑡), the time headway 
between follower B and conflict C: ℎ𝑙𝑙(𝑡𝑡), and the distance 
between follower B and conflict C: 𝑠𝑠𝑙𝑙(𝑡𝑡) . The distances, 
𝑠𝑠𝑓𝑓(𝑡𝑡)  and 𝑠𝑠𝑙𝑙(𝑡𝑡)  are measured as the bumper-to-bumper 
distance between the two vehicles. As shown in Equations (1) 
and (2), the time headways, ℎ𝑓𝑓(𝑡𝑡) and ℎ𝑙𝑙(𝑡𝑡), are obtained by 
dividing the distances 𝑠𝑠𝑓𝑓(𝑡𝑡)  and 𝑠𝑠𝑙𝑙(𝑡𝑡)  by the speed of 
follower B: 𝑣𝑣(𝑡𝑡). 

ℎ𝑓𝑓(𝑡𝑡) =
𝑠𝑠𝑓𝑓(𝑡𝑡)
𝑣𝑣(𝑡𝑡)

 (1) 

ℎ𝑙𝑙(𝑡𝑡) =
𝑠𝑠𝑙𝑙(𝑡𝑡)
𝑣𝑣(𝑡𝑡)

 (2) 

We propose three drift rate formats (shown in Equations 
(3)-(5). 𝛼𝛼 > 0, 𝛽𝛽 > 0, 𝛿𝛿 > 0, 𝜅𝜅 > 0, 𝛾𝛾 > 0 , and 𝜃𝜃 > 0 are 
free parameters. 

𝑔𝑔(𝑡𝑡) = 𝛼𝛼(ℎ𝑙𝑙(𝑡𝑡) + 𝛽𝛽𝑠𝑠𝑙𝑙(𝑡𝑡) + 𝛿𝛿ℎ𝑓𝑓(𝑡𝑡) + 𝜅𝜅𝑠𝑠𝑓𝑓(𝑡𝑡)
+ 𝛾𝛾𝑣𝑣0 − 𝜃𝜃) (3) 

𝑔𝑔(𝑡𝑡) = 𝛼𝛼(ℎ𝑓𝑓(𝑡𝑡) + 𝜅𝜅𝑠𝑠𝑓𝑓(𝑡𝑡) + 𝛾𝛾𝑣𝑣0 − 𝜃𝜃) (4) 
𝑔𝑔(𝑡𝑡) = 𝛼𝛼(ℎ𝑙𝑙(𝑡𝑡) + 𝛽𝛽𝑠𝑠𝑙𝑙(𝑡𝑡) + 𝛾𝛾𝑣𝑣0 − 𝜃𝜃) (5) 

2) Boundary 
The boundary 𝑏𝑏(𝑡𝑡)  represents the level of evidence 

required to make the decision. When the accumulated 
evidence reaches either the upper or lower boundary, a 
decision is made in favor of the corresponding option. Like 
formats of drift rate, the boundary is also defined as a function 
of 𝑣𝑣0 , ℎ𝑓𝑓(𝑡𝑡) , 𝑠𝑠𝑓𝑓(𝑡𝑡) , ℎ𝑙𝑙(𝑡𝑡) , 𝑠𝑠𝑙𝑙(𝑡𝑡) , but utilizes the SoftMax 
function. As shown in Equations (6)- (8), we propose three 
boundary formats. 𝑏𝑏0 > 0, 𝑘𝑘 > 0, 𝛽𝛽 > 0, 𝛿𝛿 > 0, 𝜅𝜅 > 0, 𝛾𝛾 >
0, 𝜏𝜏 > 0 are free parameters to be calibrated. 

𝑏𝑏(𝑡𝑡) = ±
𝑏𝑏0

1 + 𝑒𝑒−𝑘𝑘(ℎ𝑙𝑙(𝑡𝑡)+𝛽𝛽𝑠𝑠𝑙𝑙(𝑡𝑡)+𝛿𝛿ℎ𝑓𝑓(𝑡𝑡)+𝜅𝜅𝑠𝑠𝑓𝑓(𝑡𝑡)+𝛾𝛾𝑣𝑣0−𝜏𝜏)
 (6) 

𝑏𝑏(𝑡𝑡) = ±
𝑏𝑏0

1 + 𝑒𝑒−𝑘𝑘(ℎ𝑓𝑓(𝑡𝑡)+𝜅𝜅𝑠𝑠𝑓𝑓(𝑡𝑡)+𝛾𝛾𝑣𝑣0−𝜏𝜏)
 (7) 
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𝑏𝑏(𝑡𝑡) = ±
𝑏𝑏0

1 + 𝑒𝑒−𝑘𝑘(ℎ𝑙𝑙(𝑡𝑡)+𝛽𝛽𝑠𝑠𝑙𝑙(𝑡𝑡)+𝛾𝛾𝑣𝑣0−𝜏𝜏)
 (8) 

3) Initial Bias 
The initial bias, denoted as 𝑍𝑍, represents the starting point 

of the evidence accumulation process. A negative value of 𝑍𝑍 
indicates an initial bias towards the "Brake" decision, while a 
positive value suggests a bias towards the "Steer" decision. In 
this study, we consider two formats for the initial bias: a 
constant value 𝐶𝐶𝑍𝑍 (Equation (9)) and a SoftMax function of 
the initial speed of follower B, 𝑣𝑣0  (Equation (10)). 𝐶𝐶𝑍𝑍 > 0, 
𝑏𝑏0 > 0, 𝑏𝑏𝑧𝑧 > 0, 𝜈𝜈 > 0 are free parameters. We acknowledge 
that other factors also influence a driver's initial bias when 
making decisions, such as vehicle characteristics and the 
driver's experience. However, to simplify our modeling 
approach, we have only considered the driver's initial speed as 
a single indicator. In future research, we plan to incorporate 
more complex factors into our model. 

𝑍𝑍 = 𝐶𝐶𝑍𝑍 (9) 

𝑍𝑍 =
2𝑏𝑏0

1 + 𝑒𝑒−𝑏𝑏𝑧𝑧(𝑣𝑣0−𝜈𝜈) − 𝑏𝑏0 (10) 

4) Non-Decision Time 
The non-decision time 𝑡𝑡𝑁𝑁𝑁𝑁  represents the time taken by 

processes that are not directly related to the decision-making 
process itself. These processes include stimulus encoding, 
motor response execution, and any other processes that occur 
before or after the actual evidence accumulation. In this study, 
we assume a Gaussian distributed non-decision time shown in 
Equation (11). 𝜇𝜇𝑁𝑁𝑁𝑁 > 0 and 𝜎𝜎𝑁𝑁𝑁𝑁 > 0 are free parameters to 
be estimated. 

𝑡𝑡𝑁𝑁𝑁𝑁~𝑁𝑁(𝜇𝜇𝑁𝑁𝑁𝑁 ,𝜎𝜎𝑁𝑁𝑁𝑁) (11) 

5) Drift Diffusion Model Formulation 
The formulation of the DDM is shown in Equation (12) 

[19], where 𝑥𝑥(𝑡𝑡) represents the evidence at time 𝑡𝑡, Positive 
values of 𝑥𝑥(𝑡𝑡) support the decision to "Steer," while negative 
values favor the decision to "Brake". 𝑔𝑔(𝑡𝑡) is the drift rate for 
the evidence accumulation defined in Equations (3)-(5). 𝜀𝜀(𝑡𝑡) 
is the random noise added to the evidence. Through the 
combination of various formats of drift rate, boundary, initial 
bais, and non-decision time, we explore 14 different formats 
of the DDM to comprehensively analyze the decision-making 
process in the rear-end collision scenario. 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑡𝑡) + 𝜀𝜀(𝑡𝑡) (12) 

B. Model Identification and Comparison 
By combining various forms of the drift rate, boundary, 

and initial bias mentioned above, we obtained a total of 14 
different DDMs. Among them, the parameter estimation failed 
for the combinations of Equations (5), (7), (9), (11) and 
Equations (4), (6), (10), (11). Therefore, only the remaining 
12 DDM forms are compared and analyzed in this study (as 
shown in Table 3). Table 4 summarizes the free parameters in 
the DDMs established in this study. All 12 DDMs were 
programmed and calibrated using the PyDDM framework [20]. 

V. RESULTS 
In this section, we will analyze the modeling results. First, 

the accuracy of the 12 models will be examined. The models 
that best fit the dataset will then be selected. Next, using the 
well-fitting models, the drivers' decision-making process in 
the rear-end collision scenario will be interpreted from the 
cognitive perspective. 

Table 3. Summary of drift-diffusion model. 

Model 
index 

Drift 
rate Boundary Initial 

bias 
Non-decision 

time 
M1 (3) (6) (9) 

(11) 

M2 (3) (8) (9) 
M3 (3) (7) (9) 
M4 (5) (6) (9) 
M5 (4) (6) (9) 
M6 (5) (8) (9) 
M7 (4) (8) (9) 
M8 (4) (7) (9) 
M9 (3) (6) (10) 
M10 (3) (8) (10) 
M11 (3) (7) (10) 
M12 (4) (6) (10) 

Table 4. Free parameters in the DDMs. 

Model 
index Parameters Number of 

parameters 
M1 𝛼𝛼,𝛽𝛽,𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0,𝑘𝑘, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 12 
M2 𝛼𝛼,𝛽𝛽,𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0,𝑘𝑘, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 12 
M3 𝛼𝛼,𝛽𝛽,𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0,𝑘𝑘, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 12 
M4 𝛼𝛼,𝛽𝛽, 𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 11 
M5 𝛼𝛼,𝛽𝛽, 𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 11 
M6 𝛼𝛼,𝛽𝛽, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 9 
M7 𝛼𝛼,𝛽𝛽, 𝜅𝜅,𝛾𝛾,𝜃𝜃, 𝑏𝑏0, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 10 
M8 𝛼𝛼, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0, 𝜏𝜏,𝐶𝐶𝑍𝑍, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁 9 
M9 𝛼𝛼,𝛽𝛽, 𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0,𝑘𝑘, 𝜏𝜏, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁,𝑏𝑏𝑧𝑧, 𝜈𝜈 13 
M10 𝛼𝛼,𝛽𝛽, 𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0,𝑘𝑘, 𝜏𝜏, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁,𝑏𝑏𝑧𝑧, 𝜈𝜈 13 
M11 𝛼𝛼,𝛽𝛽, 𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0,𝑘𝑘, 𝜏𝜏, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁,𝑏𝑏𝑧𝑧, 𝜈𝜈 13 
M12 𝛼𝛼,𝛽𝛽, 𝛿𝛿, 𝜅𝜅, 𝛾𝛾,𝜃𝜃, 𝑏𝑏0,𝑘𝑘, 𝜏𝜏, 𝜇𝜇𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁,𝑏𝑏𝑧𝑧, 𝜈𝜈 13 

A. Model Formats Determining 
The accuracy of the 12 DDMs will be analyzed by 

comparing the model's predicted response times and decision-
making probabilities with the actual data in the dataset. 

Fig. 6 shows the comparison results between the model-
predicted response times and the actual data. Due to the wide 
distribution range of initial speeds of follower B, from 
17.82m/s to 26.82m/s, the actual data was divided into four 
groups based on the initial follower B speed, with the median 
initial follower B speeds for each group being 19.56 m/s, 22.10 
m/s, 23.32 m/s, and 25.80 m/s, respectively. The black dots 
and error bars represent the mean and standard deviation of the 
response times for the steer and brake decisions in the real data, 
while the colored lines represent the predicted response times 
for the two decisions by the DDMs. We expect the model 
predictions to pass through or be as close as possible to the 
mean response times in the real data and capture the trend of 
response times as the initial speed changes. From Fig. 6, for 
the steer decision, seven models, namely M1, M2, M3, M6, 
M8, M9, M10, and M11, can fit well. These models all pass 
through the distribution range of the response times in the real 
data and capture the decreasing trend of the steer decision 
response time with the initial speed. For the brake decision, 
only three models, M9, M10, and M11, can fit well. The 
models pass through the distribution range of response times 
in real data and reproduce their variation, with a sharp 
decrease in the initial speed range of 22 m/s to 24 m/s. 
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Fig. 6. Comparison of predicted response times from 12 DDMs with the 

actual response times in the dataset. 

Fig. 7 shows the comparison results between the model-
predicted cumulative response time probability and the actual 

data for both steer and brake decisions at various initial 
follower B speeds. In the real data, for both steer and brake 
decisions, the response times generally decrease with 
increasing initial speed. The response times for follower B’s 
initial speeds of 19.56 m/s and 22.10 m/s are similar, and the 
response times for initial speeds of 23.32 m/s and 25.80 m/s 
are also similar. When the initial speed is lower, there is no 
significant difference in response times between steer and 
brake decisions. However, when the initial speed is higher, the 
response time for brake decisions is notably shorter than for 
steer decisions. Comparing the remaining small graphs, it can 
be observed that the trends in the cumulative probability 
shown by the three models, M9, M10, and M11, are similar to 
the trends in the original data shown in the large graph. The 
cumulative probabilities for steer and brake decisions at 
different initial speeds predicted by the other models are 
mostly clustered together and do not exhibit the trends seen in 
the actual data. 

By comparing Fig. 6 and Fig. 7, it can be concluded that 
the three models, M9, M10, and M11, fit the actual data 
relatively well. The parameters for the three models are as 
follows: 

M9: 𝛼𝛼 = 1.09, 𝛽𝛽 = 0.57, 𝛿𝛿 = 0.00, 𝜅𝜅 = 1.00, 𝛾𝛾 = 1.59, 
𝜃𝜃 = 79.75 , 𝑏𝑏0 = 0.60 , 𝑘𝑘 = 0.95 , 𝜏𝜏 = 5.43 , 𝜇𝜇𝑁𝑁𝑁𝑁 = 0.61 , 
𝜎𝜎𝑁𝑁𝑁𝑁 = 0.17, 𝑏𝑏𝑧𝑧 = 0.09, 𝜈𝜈 = 14.71. 

M10: 𝛼𝛼 = 1.22, 𝛽𝛽 = 0.50, 𝛿𝛿 = 0.00, 𝜅𝜅 = 0.92, 𝛾𝛾 = 1.43, 
𝜃𝜃 = 72.12 , 𝑏𝑏0 = 0.60 , 𝑘𝑘 = 1.30 , 𝜏𝜏 = 0.23 , 𝜇𝜇𝑁𝑁𝑁𝑁 = 0.61 , 
𝜎𝜎𝑁𝑁𝑁𝑁 = 0.17, 𝑏𝑏𝑧𝑧 = 0.08, 𝜈𝜈 = 14.32. 

M11: 𝛼𝛼 = 1.21, 𝛽𝛽 = 0.49, 𝛿𝛿 = 0.00, 𝜅𝜅 = 0.84, 𝛾𝛾 = 1.40, 
𝜃𝜃 = 68.75 , 𝑏𝑏0 = 0.61 , 𝑘𝑘 = 0.90 , 𝜏𝜏 = 2.26 , 𝜇𝜇𝑁𝑁𝑁𝑁 = 0.60 , 
𝜎𝜎𝑁𝑁𝑁𝑁 = 0.16, 𝑏𝑏𝑧𝑧 = 0.09, 𝜈𝜈 = 15.50.  

 

    

 
 

Fig. 7. Comparison of predicted cumulative response time probability between the data and the 12 DDMs.
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Fig. 8. Drivers' decision-making analysis at different initial speeds from a cognitive perspective predicted by M9. The left column shows the ratio of brake 
and steer decisions comparison between actual data and M9 predicted results. The right column illustrates the information accumulation process for 

both brake and steer decisions. 

 

The most appropriate form of the DDM model for the 
front-emergency-braking scenario can be summarized as 
follows. For the drift rate, it is necessary to incorporate the 
initial speed of follower B and the distances to both the front 
and conflict Cs in the model. For the boundary, whether to 
include the distances to both the front and conflict Cs is not 
crucial. Regarding the initial bias, models that consider the 
initial speed of follower B are superior to those that do not. 

B. Decision-Making Process Interpreting 
In this section, we will interpret the driver's decision-

making process from a cognitive perspective. We use M9, one 
of the models with better accuracy, to simulate decision-
making in the front-emergency-braking scenario. We set up 
four groups of follower B speeds defined in the previous 
section: 19.56 m/s, 22.10 m/s, 23.32 m/s, and 25.80 m/s. Since 
the DDM model includes random factors, such as 𝜀𝜀(𝑡𝑡) and 
𝑡𝑡𝑁𝑁𝑁𝑁 , we conducted 1000 simulations for each initial speed 
group to eliminate the influence of random factors. 
Specifically, Fig. 8 shows the simulation results using M9. 
The left column represents the percentage, i.e. probability, of 
choosing steer and brake decisions at different initial speeds. 
The decision-making probability from actual data and 

simulation results are both presented. The right column 
visualizes the evidence accumulation process over time at 
different initial speeds of follower B. The blue and green lines 
represent the accumulation process of evidence 𝑥𝑥(𝑡𝑡) for steer 
and brake, respectively. The gray dashed lines represent the 
boundaries that trigger steer and brake decisions. When the 
evidence 𝑥𝑥(𝑡𝑡)  accumulates to either the steer or brake 
boundary, the driver will make the corresponding decision. 

From the left column of Fig. 8, when the initial speed is 
relatively low, drivers tend to choose to make a brake decision 
when faced with an emergency brake by leader A. As the 
initial speed increases, the probability of choosing the brake 
decision gradually decreases, while the probability of 
choosing the steer decision increases. When the initial speed 
is relatively high, facing an emergency brake by leader A, the 
time required to reduce the speed of follower B through 
braking is longer. Therefore, drivers will not choose to brake 
but instead make an immediate steer decision to respond. It 
could also be found that the M9 has a promising fit for the 
actual data. The decision-making probabilities predicted by 
the M9 are close to probabilities from the actual data. 
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From the right column of Fig. 8, the accumulation of 
evidence goes through two stages when making decisions. (i) 
Non-decision period: Receiving information about the 
emergency brake of leader A, during which the evidence does 
not change over time. From the fitting results of 𝑡𝑡𝑁𝑁𝑁𝑁 , it is 
known that this process takes about 0.6s. (ii) Evidence 
accumulation period: The driver begins to think about the 
information of leader A's emergency brake and determines 
whether to take steer or brake measures to respond. When the 
initial speed is relatively low, the response time required for 
drivers to make steer and brake decisions is similar. As the 
speed increases, the response times for both steer and brake 
decisions decrease, but the decrease in brake response time is 
more drastic. At this time, the driver will first judge whether 
there is a suitable opportunity to reduce the speed of the 
follower B by braking. If so, they will immediately make a 
brake decision. If not, the driver will choose an opportunity to 
make a steer decision. 

VI. CONCLUSION 
This paper introduces a cognitive model based on the 

driver's cumulative information processing and drift-diffusion 
decision-making, to capture driver behavior in high-risk 
scenarios. Key variables influencing driver cognition and 
decision-making are extracted from the driving simulator 
study. By integrating initial decision biases dependent on 
speed, the model effectively replicates human cognitive and 
decision-making behaviors in high-risk scenarios. Extensive 
simulation data analyses confirm the model's ability to identify 
key variables influencing driver risk cognition and quantify 
safety thresholds. The findings enable accurate modeling and 
prediction of individualized driver risk cognition and decision-
making, enhancing driving safety and efficiency. The 
application of this model in autonomous driving technology 
promises to simulate human social intelligence, enhancing the 
adaptability of AVs to real driving conditions. Future work 
will focus on applying the model to AVs to achieve their safe 
and efficient interactive decision-making. 
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