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1 Introduction

1.1 Background

In compliance with the Flood Defences Act of The Netherlands (“Wet op de Waterkering,
1996”), the primary coastal structures must be checked every five years (2001, 2006, 2011
etc.) for the required level of protection on the basis of the Hydraulic Boundary Conditions
(HBC) and the Safety Assessment Regulation (VTV: Voorschrift op Toetsen op Veiligheid).
These HBC must be derived anew every five years and established by the Minister of
Transport, Public Works and Water Management.

At this moment, there is a degree of uncertainty concerning the quality of the current HBC,
in particular those for the Waddenzee. This is because they were obtained from an
inconsistent set of measurements and design values (WL, 2002), while for the rest of the
Dutch coast (the closed Holland Coast and the Zeeland Delta) the SWAN wave
transformation model has been applied (Rijkswaterstaat, 2001).

For 2011 and later the Dutch government plans to define the HBC for the Wadden Sea in the
same way as for the rest of the Dutch Coast. In order to produce the best possible hydraulic
boundary conditions for that region, and to assess the uncertainty that must be associated
with such conditions, the Dutch Directorate for Public Works and Water Management
(Rijkswaterstaat)  is  financing  a  large  study  led  by  WL  |  Delft  Hydraulics.  Specifically,
Rijkswaterstaat requested WL | Delft Hydraulics to formulate, in the scope of the subproject
“Boundary Conditions”, which is part of the main project “Strength and Loading of Coastal
Structures (SBW: Sterkte en Belasting Waterkeringen)”, a Plan of Action (WL, 2006a). This
plan establishes a strategy to answer the principle question of “How do we arrive at reliable
Hydraulic Boundary Conditions for the Wadden Sea for 2011”, and lists a sequence of
associated activities, one of which is reported here.

1.2 Objectives of this study

One of the initial steps in defining HBC is the determination of offshore statistics (such as
return value estimates) on extreme values. These are used by the HYDRA-K program and
by the wave model SWAN (Booij et al., 1999).

In accordance with the principles of extreme value theory, statistics on extreme values can
be obtained for example by sampling annual maxima data and fitting a Generalized Extreme
Value (GEV) distribution to the data or by sampling Peaks Over Threshold (POT) data and
fitting the Generalized Pareto Distribution (GPD) to the data. In WL (2006b) we have
applied these methods to estimate return values of North Sea significant wave heights.

There are big uncertainties with estimates pertaining to extreme values. These arise because
estimation is based on a sample that covers a period much shorter than the return periods of
interest and depends on the method used to obtain the parameter estimates and associated
confidence intervals of the distributions generating the data. The purpose of this work is to
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assess and compare the performance of several methods of obtaining confidence intervals
for return values of the GPD and GEV distribution. A study on the effects of the uncertainty
of the return value estimates on the design values of the dykes is to be reported soon within
the same framework of this study.

Typically, a method of obtaining a confidence interval for a parameter (e.g. a return value) is
based on a method of obtaining parameter estimates of the distribution generating the data.
To each method of estimating a parameter one can usually associate several different
competing confidence intervals for that parameter; and although these are often equivalent
in  an  asymptotic  or  theoretical  sense  (as  the  sample  size  is  ‘very’  large),  they  can  behave
quite  differently  with  the  sample  sizes  one  has  to  deal  with  in  practice.  In  the  case  of  the
return values of the GEV distribution, the confidence intervals considered in the present
work are all based on parameter estimates obtained by the method of Probability Weighted
Moments  (PWM).  In  the  case  of  the  return  values  of  the  GPD,  we  consider  confidence
intervals based on parameter estimates obtained by the method of PWM as well as
confidence intervals based on Maximum Likelihood (ML) estimates.

We may say that a confidence interval for a parameter is ‘good’ if its coverage rate is close
to a specified level (95%, say). A coverage rate is the percentage of times that a confidence
interval really contains the true parameter in (hypothetical) repetitions of the same sampling
and estimation process. On the other hand, a good confidence interval is even better if it is
short, since to know that a parameter is very likely to lie between 5 and 10 (say) is certainly
better than to know that the same parameter is very likely to lie between 0 and 20. The
‘shortness’ of a confidence interval is best quantified by means of its relative amplitude
(length or width) i.e. its amplitude (length or width)—the difference between the upper and
lower limits of the interval—divided by the value of the parameter. In this work, our
assessment and comparison of confidence intervals will be based mainly on coverage rates
and partly on average relative amplitudes.
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2 Extreme value theory

2.1 Asymptotic distributions

According  to  extreme  value  theory,  the  extreme  values  in  a  large  sample  have  an
approximate distribution that is independent of the distribution of each variable in the
sample. More precisely, let us define 1max , ,n nM X X , where 1 , , nX X ,  is  a
sequence of independent random variables having a common distribution function F. If
there exist sequences 0n , n  of constants such that P ( )n n nM z G z

as n , where G is a non-degenerate distribution function, then G must be a generalized
extreme value (GEV) distribution. This distribution function is given by

1

( ) exp 1 zG z ,

where z take values in three different sets according to the sign of : z  if 0
(the domain of z has  a  lower  limit), z  if 0  (the domain of z has an upper
limit), and z  if 0 .  Here,  the  parameters  ,   and   are  called  the  location,
scale, and shape parameters and satisfy , 0  and . For 0  the
GEV is the Gumbel distribution, for 0  it is the Fréchet distribution, and for 0  it is
the Weibull distribution. For 0  the tail of the GEV is “heavier” (i.e., decreases more
slowly) than the tail of the Gumbel distribution, and for 0  it is “lighter” (decreases more
quickly and actually reaches 0) than that of the Gumbel distribution. The GEV distribution
is said to have a type II tail for 0  and a type III tail for 0 .  The tail of the Gumbel
distribution is called a type I tail. See the book of Coles (2001) for more information.

This result gives rise to the annual maxima (AM) method of modelling extremes, in which
the GEV distribution is fitted to a sample of block maxima (in this case annual maxima, but
the same could be done for e.g. biannual, monthly or even daily maxima).

One of the main applications of extreme value analysis is the estimation of the once per m
year (1/m yr) return value. The 1/m yr return value based on the AM method/GEV
distribution, mz , is given by

-
11 log 1 , for 0
m

1log log 1 , for 0.
m

mz (2.1)
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The  sample  sizes  of  annual  maxima  data  are  usually  small,  so  that  model  estimates,
especially return values, have large uncertainties. This has motivated the development of
more sophisticated methods that enable the modelling of more data than just block maxima.
These methods are based on two well-known characterizations of extreme value
distributions: one based on exceedances of a threshold, and the other based on the behaviour
of the r largest, for small values of r, observations within a block.

We will not consider the r-largest approach because it is not often used in practice. Briefly, it
consists of collecting the r-largest values per year (instead of merely the annual maxima)
and fitting the r-largest distribution to the data (see, for instance, p. 68 of the book of S.
Coles mentioned above). An example of the application of this method to estimate return
values of significant wave height is given by Guedes Soares and Scotto (2004).

The approach based on the exceedances of a high threshold, hereafter referred to as the POT
(Peaks Over Threshold) method, consists of fitting the generalized Pareto distribution
(GPD) to the peaks of clustered excesses over a threshold, the excesses being the
observations in a cluster minus the threshold, and calculating return values by taking into
account the rate of occurrence of clusters (see Pickands, 1971 and 1975, and Davidson and
Smith, 1990). Under very general conditions this procedure ensures that the data can have
only three possible, albeit asymptotic, distributions (the three forms of the GPD) and,
moreover, that observations belonging to different peak clusters are (approximately)
independent. In the POT method, the peak excesses over a high threshold u of a time series
are assumed to occur in time according to a Poisson process with rate u  and  to  be
independently distributed with a GPD, whose distribution function is given by

1

( ) 1 1u
yF y ,

where 0 y , 0  and . The two parameters of the GPD are called scale
( ) and shape ( ) parameters. For 0  the GPD is the exponential distribution with mean

, for 0  it is the Pareto distribution, and for 0  it  is  a  special  case  of  the  beta
distribution. As for the GEV, the GPD is said to have a type II tail for 0 and a type III
tail for 0 . The tail of the exponential distribution is a type I tail.

The 1/m yr return value based on a POT/GPD analysis, ym, is given by

u

u

{ ( m) 1}, for 0

log( m), for 0.
m

u
y

u
(2.2)

2.2 Parameter estimation

There are several methods available for the estimation of the parameters of extreme value
distributions. Some of them, for instance the methods of moments and of probability
weighted moments (PWM), give explicit expressions for the parameter estimates. The
maximum likelihood (ML) method tends to be the preferred estimation method because it is
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quite general and more flexible than other methods (especially when the number of
parameters is increased, as for instance when extending the extreme value analysis to
account for non-stationarity), and because it is usually optimal in an asymptotic sense.
However, in ordinary extreme value analyses like the ones we are concerned with in this
report, the flexibility provided by the ML method is not necessary, and for the range of tails
typically found with wave data (not too heavy-tailed distributions) and for small to moderate
sample sizes the method of PWM performs better (see Hosking and Wallis, 1987, and
Hosking et al., 1985). In this study we shall use the PWM and ML methods to estimate the
parameters  of  the  GPD,  and  the  PWM  method  to  estimate  the  parameters  of  the  GEV
distribution. Given the smaller sample sizes typically involved in the AM approach, it is
clear that in the context of our report the flexibility of the ML method cannot compensate
for its relatively poor performance referred to above.

2.3 Confidence intervals for the GEV and GPD parameters

Typically, approximate confidence intervals for the parameters of a given distribution are
obtained, using a normal approximation, as functions of (estimates of) standard errors of
parameter estimates, and therefore depend on the particular estimation method used. Such
confidence intervals have upper and lower limits of the form estimate ±  (constant ×
standard error of estimate), where the constant determines the degree of confidence; they
will be described in more detail in the next section.

In the case of ML estimation, the standard error of the estimate may be obtained either from
the expected information matrix or from the observed information matrix. Although
asymptotically equivalent, the confidence intervals tend to be more reliable if the observed
information is used (Hosking and Wallis, 1987). An alternative, and usually more accurate,
method is the profile likelihood method (Coles, 2001, p. 57), which is based on the deviance
function and, unlike the other two just mentioned, yields asymmetric confidence intervals. A
confidence interval is said to be asymmetric if the distance between the associated estimate
and the lower limit differs from the distance between the estimate and the upper limit;
otherwise it is called symmetric.

Generally speaking, realistic confidence intervals for return values should be asymmetric,
reflecting our intuition that the uncertainty in one direction (the true value of the parameter
being above its estimate, say) is not the same as the uncertainty in the other direction. This is
in contrast with the situation where one wants to find a confidence interval for the mean of a
symmetric distribution (e.g. the normal).

Approximate, symmetric confidence intervals based on the method of PWM can also be
obtained, via a normal approximation, in terms of standard errors of estimates (which are
different from those of the ML method).

Besides methods based on the normal approximation and on expressions of standard errors
of estimates, a promising class of methods for obtaining confidence intervals is afforded by
the bootstrap methodology (Efron and Tibshirani, 1993). Some of the available bootstrap-
based confidence intervals are also described in detail in the next section.
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3 Construction of confidence intervals

In this report we shall present the results of a study about the uncertainty in return value
estimates  obtained  using  the  ML  and  the  PWM  methods  in  terms  of  several  associated
confidence intervals. In our analysis we only consider the confidence intervals of 1/10000 yr
return value estimates. The various methods of obtaining confidence intervals are described
below and will  be assessed and compared in Sections 4 and 5,  via  simulation,  in  terms of
coverage rate and relative amplitude.

All computations were carried out in Matlab. The GPD and GEV parameter estimates were
obtained using the WAFO statistical toolbox (see http://www.maths.lth.se/matstat/wafo/).

3.1 Asymptotic ML- and PWM-based intervals

Confidence intervals for the return value estimates can be obtained using the delta method
(which is based on Cramér’s theorem; see Ferguson, 1996, p. 45). Specifically, the
asymptotic variance of the 1/m yr return value estimates can be estimated by

ˆvar( ) T
mx d d ,

where ˆmx  equals the mz  of Eq. (2.1) in the case of the GEV distribution and the my  of Eq.
(2.2) in the case of the GPD, with the parameters replaced by their estimates, d is the vector
of derivatives of ˆmz  with respect to the estimated parameters—  and  in the case of
POT/GPD estimates and ,  ,  and  in the case of AM/GEV estimates—and  is  the
asymptotic covariance matrix of the parameter estimates, both evaluated at the estimates of
the parameters.

The asymptotic covariance matrices of the GDP and GEV parameter estimates based on the
ML  or  the  PWM  are  available  (see  Hosking  and  Wallis,  1987,  for  the  expressions  and
derivation of these matrices). In the case of ML estimates we shall use the observed
information matrix in place of the expected information matrix since as mentioned earlier
the former provides more reliable confidence intervals.

Approximate 95% confidence intervals are obtained by using the fact that the estimates are
asymptotically normal centred at the parameter values with the appropriate covariance

matrix; their upper and lower limits are calculated as ˆ 1.96 T
mx d d , where 1.96 is the

quantile of probability 0.975 of the standard normal distribution.

We shall  refer  to  the (symmetric)  confidence intervals  obtained in such way as asymptotic
ML-based intervals and asymptotic PWM-based intervals.

http://www.maths.lth.se/matstat/wafo/).
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3.2 Intervals based on the profile likelihood

The profile likelihood method is usually more accurate for the computation of confidence
intervals based on maximum likelihood estimates (e.g. Coles, 2001), especially when the
distribution of estimates is skewed This method is based on the likelihood ratio and is valid
under certain regularity conditions (see Coles, 2001, and references therein for more
details).

Suppose we have a model depending on a vector of parameters ( , )  with  real, and
that we want to find an approximate confidence interval of level 1-  for . Denote the log-
likelihood function (the logarithm of the likelihood) by l and the maximum likelihood
estimate by ˆ ˆ ˆ( , ) , so that ˆ( ) max ( )l l  is the likelihood function at ˆ . (At this

stage, ˆ  is assumed to have been calculated.)

For each , *( ) max ( , )l l  is the maximum of the log-likelihood regarded as a function

of  alone and  kept fixed. Asymptotically, *ˆ2 ( ) ( )l l  has an approximately 2
1

distribution, so that *
1,

ˆ2( ( ) ( ))l l c  with probability approximately of 1- , where 1,c

is the quantile of probability 1 of the 2
1  distribution. (Note: The statistic

*ˆ2 ( ) ( )l l  is twice the likelihood ratio statistic, and the construction of this interval is

based on the well-known Wilks theorem; see Coles, 2001). From this follows that an
approximate confidence interval of level 1  for  is given by the set

1,* *
1,

ˆ ˆ: 2( ( ) ( )) : ( ) ( ) .
2

c
l l c l l

Such confidence intervals need to be determined numerically, for example through small

increments of the the value of  and checking whether the inequality 1,* ˆ( ) ( )
2

c
l l  is

satisfied.

We shall use this method in particular to obtain approximate confidence intervals for return
values, which are defined in terms of parameters (e.g.~ ,   and  in the case of  the GEV
model); the  above  is  then  regarded  as  the  return  value  and  as the vector with the
remaining (two, in the case of the GEV model) free parameters. The confidence intervals
obtained in this way are called profile likelihood intervals.

3.3 Bootstrap methods

Although in some cases the delta method can be used to find explicit expressions for the
variances of the estimators, it often appears that such a task is extremely complicated or
even impossible to carry out. In situations like this, resampling methods like the bootstrap
offer a simple and reliable alternative for estimating standard errors of estimators. If the
parameter estimates can be assumed approximately normal, such standard errors can be used
in essentially the same way as explained in Subsection 3.1 to compute approximate
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confidence intervals for the parameter. More generally, the bootstrap method allows one to
compute percentile confidence intervals which also work asymptotically but are generally
asymmetric.

We will now briefly explain how the bootstrap can be used to estimate confidence intervals.
The reader is referred to Efron and Tibshirani (1993) for an explanation of how and why the
method works in each case. For an extensive description of the use of resampling techniques
in frequency analysis see Hall et al. (2004).

3.3.1 Standard Bootstrap; percentile bootstrap intervals

In many situations, we have a random sample { , 1,..., }ix x i n of observations of some
random variable or population X, and we wish to estimate a population parameter by an
estimator 1

ˆ ˆ ˆ( ,..., ) ( )nx x x  based on x. For instance, might be the median of the
population (the quantile corresponding to the non-exceedence probability of 0.5) or the
population mean (the expectation of X). If ˆ  has a simple expression and the distribution of
X has simple mathematical properties, one can determine the variance of ˆ ,  or at least an
approximation to it. In those cases where this is not possible, one can estimate (rather than
determine exactly) ˆvar( )  (the variance of ˆ ) by the bootstrap method.

The bootstrap method consists of creating bootstrap samples x*, each obtained by randomly
sampling n times, with replacement, from the original sample x. Given B bootstrap samples,
which we denote by *

bx , 1, ,b B ,  we  can  calculate  a  set  of  estimates * *ˆ ˆ( )b bx , each

obtained in the same way ˆ was obtained, but based on *
bx in place of x. Then the bootstrap

estimate of the standard error of the estimate ˆ is given by

B
* * 2

B b
b 1

1ˆ ˆ ˆŝ ( ) ( )
B 1

, with
B

* *
b

b 1

1ˆ ˆ
B

The ideal bootstrap estimate would be ˆˆ ( )s , but of course this is not possible to achieve; a
limit on B must be stipulated. According to Efron and Tibshirani (1993, pp. 538 50–53),
B = 200 bootstrap replications are usually enough for obtaining reasonable estimates of the
standard error.

Estimates of the standard error of the estimate are useful for establishing confidence
intervals or regions for the unknown parameters. The 95% confidence intervals can be
obtained for a parameter  assuming that the bootstrap distribution of the statistics is normal
and calculating the upper and lower limits as B

ˆ ˆˆ1.96 s ( ) .

Instead of these intervals, however, we shall use 95% percentile bootstrap intervals (see Van
den Boogaard and Diermanse, 2005), which are obtained by taking the quantile of
probability 0.025 of the empirical distribution of the sample of bootstrap estimates

*
b̂ , 1, ,b B , as the lower limit and the quantile of probability 0.975 as the upper limit.

Because such confidence intervals are typically asymmetric, they tend to be more realistic
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than the ones just mentioned, and that is why we are going to use them here; see the
motivation given by Hall et al. (2004), and Van den Boogaard and Diermanse (2005). More
generally, a percentile bootstrap interval with (nominal) confidence level 1 2  has  its
lower and upper limits given by the  and 1-  percentiles of the empirical distribution of the
sample of bootstrap estimates; it may be denoted by *( ) *(1 )ˆ ˆ[ , ] .

3.3.2 Parametric bootstrap intervals

In the parametric bootstrap one assumes that the data follow a given distribution function
( ; )F  which depends on the unknown parameter . Having estimated  by ˆ , one then

obtains B ‘parametric’ bootstrap samples, each of size n (like  the  original  sample),  by
simulating from the estimated model ˆ( ; )F  rather  than  from  the  original  data  set

{ , 1,..., }ix x i n . For each parametric bootstrap sample an estimate *
b̂  of  is obtained,

and  as  before  one  can  use  the  sample * *
1̂

ˆ, , B  of  bootstrap  estimates  to  compute  a
percentile confidence interval for . We shall refer to the confidence intervals obtained in
this way as parametric bootstrap intervals (for simplicity, we omit ‘percentile’).

3.3.3 Some problems with bootstrap confidence intervals

Tajvidi (2003) investigated the performance of several bootstrap methods for constructing
confidence intervals for the parameters and quantiles of the GPD and concluded that none of
the bootstrap methods gives satisfactory intervals for small sample sizes. In his study he also
considered bias-corrected and accelerated intervals which will not be considered here, but
which are discussed in detail in Efron and Tibshrirani (1993, Chapter 14).

Coles and Simiu (2003) state that “it is well known that bootstrap procedures are not
consistent for extreme value problems—there is a tendency for the bootstrap sample to
generate shorter tails than the true sample distribution”. They propose an ad-hoc method to
correct/adjust the bootstrap estimates which consists of applying a bias correction to the
bootstrap parameter estimates. In their article, maximum likelihood estimates of the GPD
are considered and a correction is applied to the bootstrap samples to ensure that the
bootstrap means coincide with the ML estimates of the GPD parameters. That is, having
estimated the parameters  of a given distribution and obtained the bootstrap set of
estimates *

b̂ , adjusted bootstrap estimates *ˆ a
b , are obtained from

B
*a * * * *
b b b b

b 1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆmean( )
B

. (3.1)

In addition to the percentile bootstrap and parametric bootstrap intervals introduced above,
we shall also study in this work their adjusted versions, which are obtained in the same way
except that the sample of bootstrap estimates is replaced by the sample of adjusted bootstrap
estimates of Eq. (3.1); these will be referred to as adjusted percentile bootstrap and adjusted
parametric bootstrap intervals.
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4 Assessing and comparing confidence intervals
for return values: the GPD case

4.1 Introduction

In this study we aim at assessing and comparing the performance of the methods described
above for obtaining confidence intervals for return values of the GPD. Because the problem
we have in mind is that of estimating offshore return values for the Wadden Sea area, we
shall consider only choices of the GPD that are compatible with the characteristics of the
offshore data from the Wadden Sea region. These characteristics have been determined by
means of significant wave height measurements at Schiermonnikoog Noord (SON).

Figure 4.1 – Return value plot of the GPD fitted to the SON data obtained with the ML method (solid black line)
with the various associated 95% confidence intervals. The GPD parameter estimates are

0.16 and 1.11 . The magenta lines represent the profile likelihood intervals. The solid blue
lines represent the bootstrap intervals. The dashed blue lines represent the adjusted bootstrap
intervals. The solid green lines represent the parametric bootstrap intervals. The dashed green lines
were obtained using the adjusted parametric bootstrap intervals. The red lines represent the
asymptotic (symmetric) ML-based intervals. The data are represented by the asterisks.

Figure 4.1 and Figure 4.2 present the return value estimates and the various associated
confidence bands obtained by fitting the GPD with the ML and PWD methods, respectively,
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to SON POT data consisting of 157 peaks collected above a threshold of 3.69 m; for choice
of this threshold and other details see WL (2006b). The 95% confidence intervals computed
using the different methods enumerated above are also represented in the figures.

Figure 4.2 – Return value plot of the GPD fitted to the SON data obtained with the PWM method (solid black
line) with the various associated 95% confidence intervals. The GPD parameter estimates are

0.13 and 1.08 . The solid blue lines represent the bootstrap intervals. The dashed blue lines
represent the adjusted bootstrap intervals. The solid green lines represent the parametric bootstrap
intervals. The dashed green lines were obtained using the adjusted parametric bootstrap intervals. The
red lines represent the asymptotic PWM-based intervals. The data are represented by the asterisks.

The ML parameter estimates are 0.16 and 1.11  and the PWM parameter estimates
0.13 and 1.08 . The difference between the estimates provided by the two methods

appears to be small, but from visual inspection of the fits (Figure 4.1 and Figure 4.2) it looks
like the PWM fit is slightly better.

The confidence bands associated with the ML estimates (Figure 4.1) suggest the following
observations:

The various bootstrap confidence bands are rather close to each other, the adjusted being
slightly higher, which is consistent with the statement of Coles and Simu (2003) that
“there is a tendency for bootstrap samples to generate shorter tails than the true sample
distribution”.
Both the bootstrap and the profile likelihood are skewed (the lower bands are closer to
the return value line than the upper bands), but the skewness of the profile likelihood
intervals is greater.
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The asymptotic ML-based confidence bands are the only ones that are symmetrically
placed around the estimate. Compared to the other confidence bands, the lower band
seems to be too low.

Essentially the same comments apply to the confidence bands based on the PWM estimates
of Figure 4.2, except that no profile likelihood intervals are available in this case, and the
confidence bands of the PWM are wider, which is to be expected given the slightly higher
estimate of the shape parameter .

In the remainder of this section we shall assess the adequacy of the various confidence
intervals by means of some simulation experiments and in terms of coverage rates. We take
the  parameter  estimates  obtained  from  the  PWM  GPD  fit  to  the  SON  data,

0.13 , 1.08 , as true, known parameters of our GPD model; the 1/10000 yr return
value determined by this choice of parameters corresponds to our point estimate of the
return  value  and  is  the  parameter  of  interest  for  which  the  confidence  intervals  are  to  be
assessed and compared. We shall restrict ourselves to 95% confidence intervals and consider
sample sizes of n=50, 75, 100, 150, 200 and 250. In the case of bootstrap-based confidence
intervals, we shall also consider different numbers of bootstrap samples, namely B=200,
1000 and 5000.

In each case we carry out 1000 simulations of a sample of size n from  the  GPD  with
0.13 , 1.08 , estimate its 1/10000 yr return value and compute the relevant 95%

confidence interval. The adequacy of each type of confidence interval will be quantified in
terms of

Coverage rate (CR) - the percentage of times that the confidence interval includes the
1/10000 yr return value. The nominal coverage rate (i.e., the coverage rate one ideally
wants to achieve) will be 95%.
Coverage rate of the lower limit (CRLL) - the percentage of times the lower limit of the
confidence interval is lower than or equal to the 1/10000 yr return value. The nominal
CRLL will be 97.5%.
Coverage rate of the upper limit (CRUL) - the percentage of times the upper limit of the
confidence interval is greater than or equal to the 1/10000 yr return value. The nominal
CRUL will be 97.5%.
The relative amplitude of the confidence interval (RA)  –  the  average  ratio  of  the
confidence interval’s amplitude divided by the 1/10000 yr return value.

For a detailed description of coverage rates see Van den Boogaard and Hall (2004), who also
give  results  on  coverage  rates  of  resampling-based  confidence  intervals  in  the  case  of  the
Weibull distribution.

4.2 Asymptotic ML- and PWM-based confidence intervals

We  begin  by  analysing  the  characteristics  of  the  asymptotic  ML-  and  PWM-based  95%
confidence intervals. Table 4.1 presents the coverage properties of the asymptotic ML-based
intervals and Table 4.2 presents the same information for the asymptotic PWM-based
intervals. The results suggest the following remarks:
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The coverage rate of the asymptotic ML-based intervals is below 95% for sample sizes
up  to  100,  and  this  is  due  to  the  lower  value  of  CRUL.  The  values  of  CRLL  are  for
sample sizes higher than 50 conservative. For sample sizes above 150 the coverage rates
are conservative.
The coverage rate of the asymptotic PWM-based intervals is conservative, especially for
the lower bounds.
The relative amplitude of the asymptotic PWM-based intervals is higher than that of the
asymptotic ML-based intervals.

n CR (%) CRLL(%) CRUL(%) RA
50 87 96 87 3.11
75 89 99 89 2.22

100 92 100 92 1.88
150 94 100 94 1.51
200 97 100 97 1.35
250 97 100 97 1.16

Table 4.1 – Coverage properties of the asymptotic ML-based 95% confidence intervals in the case of the GPD
with parameters 0.13 and 1.08 .

n CR (%) CRLL(%) CRUL(%) RA
50 97 100 97 5.06
75 98 100 98 3.54

100 97 100 97 2.93
150 98 100 98 2.28
200 99 100 99 1.97
250 99 100 99 1.65

Table 4.2 – Coverage properties of the asymptotic PWM-based 95% confidence intervals in the case of the GPD
with parameters 0.13 and 1.08 .

In general terms (symmetric) asymptotic confidence intervals have an unnecessarily high
amplitude; they are conservative, especially in terms of the lower limit.

4.3 Profile likelihood intervals

Table 4.3 presents the coverage properties  of the confidence intervals based on the profile
likelihood coverage rate. Both CRLL and CRUL vary around 95%, and, especially for small
sample sizes, the coverage rates are low.

n CR (%) CRLL(%) CRUL(%) RA
50 87 94 94 13.84
75 89 96 93 4.11

100 89 95 94 2.58
150 93 97 96 1.52
200 92 97 96 1.09
250 91 95 96 0.93

Table 4.3 – Coverage properties of the profile likelihood 95% confidence intervals in the case of the GPD with
parameters 0.13 and 1.08 .
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4.4 Bootstrap intervals

We shall now analyse the performance of the bootstrap-based confidence intervals. We
begin  by  presenting  the  results  on  the  intervals  based  on  the  ML estimates.  Table  4.4  and
Table 4.5 present the Coverage properties  of the percentile bootstrap and adjusted percentile
bootstrap confidence intervals based on the ML method, respectively. Table 4.6 and Table
4.7 give the statistics of the parametric bootstrap and adjusted parametric bootstrap
confidence intervals based on the ML method, respectively.

The results presented in the tables suggest the following remarks:

The  coverage  rate  of  the  percentile  bootstrap  intervals  is  in  all  cases  below 89%,  and
this is due to the lower value of CRUL. The values of CRLL are in almost all cases of
100%.
The adjustment of the percentile bootstrap intervals produces an increase in RA and in
the  coverage  rate  of  up  to  6%,  but  the  coverage  rate  remains  in  all  cases  below 91%.
The improvements from the adjustment are mainly in the CRUL, with the values of
CRLL remaining close to 100%.
The coverage rate of the parametric bootstrap intervals is in all cases less than that of the
percentile bootstrap intervals, but the coverage of the adjusted parametric bootstrap
intervals is similar to that of the adjusted standard bootstrap intervals.
For all the bootstrap-based methods and sample sizes considered, the quality of the
coverage rate hardly depends on the size of the bootstrap sample size B. A bootstrap
sample size of 1000 seems to be quite adequate.
The profile likelihood confidence intervals are those with coverage rates, CRLL and
CRUL closer to the nominal 97.5%.

We now analyse the coverage rate of the bootstrap confidence intervals based on the PWM
estimates. Table 4.8 and Table 4.9 present the results for the percentile bootstrap and
adjusted percentile bootstrap confidence intervals, respectively. Table 4.10 and Table 4.11
present the results for the parametric bootstrap and adjusted parametric bootstrap confidence
intervals, respectively. The results suggest the following remarks:

The performance of all the bootstrap intervals based on the PWM estimates is superior
to that of the bootstrap intervals based on the ML estimates.
The coverage rate of the percentile bootstrap intervals based on the PWM method varies
between 92 and 95%. The corresponding values of CRLL are 98% and 99%, and those
of CRUL are between 93% and 96%. The adjustment of the percentile bootstrap
intervals results only in a small improvement of the coverage rate statistics.
The coverage rate statistics of the parametric and of the adjusted parametric bootstrap
intervals are very similar, although the latter have a higher relative amplitude.
As was the case with the intervals based on the ML estimates, the deviation from the
nominal 95% coverage rate hardly depends on the size B of the bootstrap samples.

The adjusted percentile bootstrap confidence intervals are those with coverage rates closer
to the nominal 95%.
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b n CR (%) CRLL(%) CRUL(%) RA
200 81 100 81 4.75

1000 50 80 100 80 4.60
5000 80 100 80 4.51
200 84 100 84 2.21

1000 75 82 100 82 2.03
5000 81 100 81 1.97
200 85 100 85 1.47

1000 100 84 100 84 1.58
5000 83 100 84 1.39
200 85 100 85 1.05

1000 150 87 100 87 1.06
5000 87 100 87 1.05
200 87 100 88 0.85

1000 200 88 100 89 0.88
5000 87 99 88 0.87
200 89 100 89 0.75

1000 250 89 99 89 0.75
5000 89 99 90 0.74

Table 4.4 –  Coverage properties of the percentile bootstrap 95% confidence intervals based on the ML method
in the case of the. GPD with parameters 0.13 and 1.08 .

b n CR (%) CRLL(%) CRUL(%) RA
200 85 100 85 5.62

1000 50 86 100 86 5.60
5000 84 100 85 5.51
200 88 99 88 2.58

1000 75 86 100 87 2.40
5000 86 100 86 2.34
200 88 100 89 1.67

1000 100 88 100 88 1.78
5000 87 100 87 1.58
200 89 100 89 1.15

1000 150 90 100 90 1.16
5000 90 99 91 1.14
200 90 100 90 0.91

1000 200 91 100 91 0.95
5000 89 99 90 0.93
200 90 99 91 0.80

1000 250 90 99 91 0.80
5000 91 99 92 0.78

Table 4.5 – Coverage properties of the adjusted percentile bootstrap 95% confidence interval based on the ML
method in the case of the GPD with parameters 0.13 and 1.08 .
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b n CR (%) CRLL(%) CRUL(%) RA
200 76 100 76 3.38

1000 50 75 100 75 3.81
5000 75 100 75 3.03
200 81 100 81 2.06

1000 75 80 100 80 1.85
5000 78 100 78 1.79
200 82 100 82 1.43

1000 100 82 100 82 1.46
5000 81 100 81 1.32
200 84 100 84 1.04

1000 150 84 100 84 1.05
5000 85 100 85 1.04
200 87 100 87 0.86

1000 200 87 100 87 0.89
5000 87 100 88 0.88
200 88 100 88 0.76

1000 250 88 100 88 0.76
5000 88 100 88 0.75

Table 4.6 – Coverage properties of the parametric bootstrap 95% confidence intervals based on the ML method
in the case of the GPD with parameters 0.13 and 1.08 .

b n CR (%) CRLL(%) CRUL(%) RA
200 85 100 85 5.14

1000 50 85 100 85 5.75
5000 85 100 85 4.57
200 88 100 88 2.68

1000 75 86 100 86 2.42
5000 86 100 86 2.33
200 90 100 90 1.74

1000 100 87 100 87 1.77
5000 88 100 88 1.61
200 89 100 90 1.19

1000 150 90 100 90 1.20
5000 91 100 91 1.19
200 90 100 90 0.95

1000 200 92 100 92 0.98
5000 91 100 91 0.97
200 91 100 91 0.82

1000 250 91 100 91 0.82
5000 92 100 92 0.81

Table 4.7 – Coverage properties of the adjusted parametric bootstrap 95% confidence intervals in the case of the
GPD with parameters 0.13 and 1.08 .
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b n CR (%) CRLL(%) CRUL(%) RA
200 92 99 93 3.26

1000 50 92 99 94 3.16
5000 92 99 93 3.10
200 93 99 94 2.33

1000 75 93 99 94 2.35
5000 93 99 94 2.48
200 92 98 94 1.96

1000 100 94 99 95 1.97
5000 93 98 95 1.97
200 94 98 95 1.46

1000 150 94 98 96 1.53
5000 94 98 96 1.49
200 93 98 96 1.24

1000 200 94 99 95 1.22
5000 93 98 96 1.24
200 94 98 95 1.10

1000 250 95 99 96 1.09
5000 95 98 96 1.09

Table 4.8 – Coverage properties of the percentile bootstrap 95% confidence intervals based on the PWM method
in the case of the GPD with parameters 0.13 and 1.08 .

b n CR (%) CRLL(%) CRUL(%) RA
200 94 98 96 4.53

1000 50 95 98 97 4.38
5000 95 99 96 4.30
200 95 98 97 2.90

1000 75 94 98 96 2.91
5000 95 98 97 3.08
200 93 98 96 2.29

1000 100 95 98 97 2.31
5000 95 97 97 2.30
200 94 98 97 1.62

1000 150 94 97 97 1.70
5000 95 98 97 1.66
200 95 97 97 1.34

1000 200 95 98 96 1.31
5000 94 97 97 1.34
200 95 98 97 1.17

1000 250 95 98 97 1.16
5000 95 98 97 1.16

Table 4.9 – Coverage properties of the adjusted percentile bootstrap 95% confidence intervals based on the
PWM method in the case of the GPD with parameters 0.13 and 1.08 .
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b n CR (%) CRLL(%) CRUL(%) RA
200 94 100 94 4.88

1000 50 95 100 95 4.56
5000 94 100 94 4.41
200 95 100 95 2.96

1000 75 94 100 94 3.00
5000 95 100 95 3.17
200 94 99 94 2.38

1000 100 95 100 95 2.39
5000 95 100 96 2.38
200 95 100 95 1.64

1000 150 95 99 96 1.72
5000 95 100 95 1.66
200 95 99 95 1.36

1000 200 95 100 95 1.32
5000 95 99 95 1.35
200 95 99 95 1.17

1000 250 95 100 96 1.16
5000 95 99 96 1.16

Table 4.10 – Coverage properties of the parametric bootstrap 95% confidence intervals based on the PWM
method in the case of the GPD with 0.13 and 1.08

b n CR (%) CRLL(%) CRUL(%) RA
200 94 100 95 6.26

1000 50 95 100 95 5.71
5000 94 100 94 5.48
200 95 100 96 3.34

1000 75 96 100 96 3.43
5000 95 100 96 3.64
200 94 99 95 2.61

1000 100 95 100 96 2.62
5000 96 100 96 2.61
200 96 100 96 1.73

1000 150 96 99 96 1.82
5000 95 99 96 1.76
200 95 99 96 1.41

1000 200 94 99 96 1.37
5000 95 99 96 1.41
200 94 99 95 1.21

1000 250 95 100 96 1.20
5000 95 99 96 1.20

Table 4.11 – Coverage properties of the adjusted parametric bootstrap 95% confidence intervals based on the
PWM method in the case of the GPD with 0.13 and 1.08
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5 Assessing and comparing confidence intervals
for return values: the GEV case

5.1 Introduction

In Section 4 we have compared the performance of the methods described in Section 3 for
obtaining confidence intervals for return values of the GPD. In this section we shall
determine the characteristics of the considered different methods for determining the PWM
–based confidence intervals for return values of the GEV distribution. We shall again only
consider the choices of the GEV that are compatible with the characteristics of the offshore
data from the Wadden Sea region, determined by means of measurements at the SON
location.

Figure 5.1 – Return value plot of the GEV distribution fitted to the SON data obtained with the PWM method
(solid black line) with the various associated 95% confidence intervals. The GEV parameter estimates
are 0.16 , 0.89  and 5.53 . The solid blue lines represent the bootstrap intervals. The
dashed blue lines represent the adjusted bootstrap intervals. The solid green lines represent the
parametric bootstrap intervals. The dashed green lines were obtained using the adjusted parametric
bootstrap intervals. The red lines represent the asymptotic PWM-based intervals. The data are
represented by the asterisks.

Figure 5.1 present the return value estimates and the various associated 95% confidence
bands obtained by fitting the GEV with the PWD method to SON AM data.
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The PWM parameter estimates are 0.16 , 0.89  and 5.53 . Analysing the ML
associated confidence bands we see that:

The different (adjusted) parametric bootstrap confidence bands are wider than the
(adjusted) standard bootstrap confidence bands.
The adjusted confidence bands are wider than the corresponding parametric or standard
bootstrap confidence bands.
The asymptotic PWM-based bands look rather conservative.

Again, we shall assess the adequacy of the various confidence intervals through simulation
experiments as describer for the GPD case in Section 4 and again carrying out 1000
simulations in each case. We take the parameter estimates obtained from the PWM GEV fit
to the SON AM data, 0.16 , 0.89  and 5.53 , as true, known parameters of our
GEV model; the 1/10000 yr return value determined by this choice of parameters
corresponds to our point estimate of the return value and is the parameter of interest for
which the confidence intervals are to be assessed and compared. We shall restrict ourselves
to 95% confidence intervals and consider sample sizes of n=10, 25, 50, and 100. In the case
of bootstrap-based confidence intervals, we shall again consider various choices of bootstrap
sample sizes, namely B=200, 1000 and 5000.

5.2 Asymptotic PWM-based intervals

We start by analysing the characteristics of the asymptotic PWM-based 95% confidence
intervals which are presented in Table 5.1. The results show that for sample sizes of 10 the
values of CR and CRLL are quite poor. In all cases the values of CRUL are 100%, while for
sample sizes above 25 all coverage rates are conservative.

n CR (%) CRLL(%) CRUL(%) RA
10 84 84 100 9.18
25 95 95 100 8.18
50 99 99 100 5.52

100 100 100 100 3.47

Table 5.1 – Coverage properties of the asymptotic PWM-based 95% confidence intervals in the case of the GEV
distribution with parameters 0.16 , 0.89  and 5.53 .

5.3 Bootstrap intervals

We shall now analyse the coverage rate of the bootstrap confidence intervals. Table 5.2 and
Table 5.3 present the results for the percentile bootstrap and adjusted percentile bootstrap
confidence intervals, respectively. Table 5.4 and Table 5.5 provide the results for the
parametric bootstrap and adjusted parametric bootstrap confidence intervals, respectively.
The results suggest the following remarks:

In all cases the values of CRLL are greater than or equal to 98%. The highest values are
found in the parametric bootstrap intervals.
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The standard bootstrap CR values vary between 93 and 99%. The most conservative
values are found in the smaller sample sizes. The adjustment of the standard bootstrap
intervals produces an increase of the RA and a slight improvement of the coverage rates.
The parametric bootstrap CR values vary between 94 and 95%. The adjustment of the
parametric bootstrap intervals produces an increase of the RA and only a very slight
improvement of the coverage rates.
The deviation from the nominal 95% coverage rate hardly depends on the size B of the
bootstrap samples.

b n CR (%) CRLL(%) CRUL(%) RA
200 98 100 98 3.48

1000 10 99 100 99 3.56
5000 98 100 98 3.57
200 94 99 95 1.04

1000 25 94 100 94 1.03
5000 94 99 95 1.01
200 95 99 96 0.60

1000 50 94 99 95 0.62
5000 94 98 95 0.62
200 94 99 95 0.40

1000 100 93 98 95 0.40
5000 94 99 95 0.40

Table 5.2 – Coverage properties  of the percentile bootstrap 95% confidence intervals based on the PWM
method in the case of the GEV distribution with parameters 0.16 , 0.89  and 5.53 .

b n CR (%) CRLL(%) CRUL(%) RA
200 98 100 98 8.33

1000 10 98 100 98 8.44
5000 97 100 97 8.36
200 94 98 96 1.29

1000 25 94 99 95 1.27
5000 94 98 96 1.25
200 95 99 96 0.65

1000 50 94 98 96 0.68
5000 94 98 96 0.68
200 94 98 96 0.41

1000 100 93 98 95 0.41
5000 94 98 95 0.41

Table 5.3 – Coverage properties  of the adjusted percentile bootstrap 95% confidence intervals based on the
PWM method in the case of the GEV distribution with parameters 0.16 , 0.89  and

5.53 .
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b n CR (%) CRLL(%) CRUL(%) RA
200 94 100 94 6.98

1000 10 95 100 95 7.22
5000 95 100 95 7.31
200 95 100 95 1.58

1000 25 94 100 94 1.52
5000 94 100 94 1.51
200 94 100 94 0.71

1000 50 95 100 95 0.76
5000 95 100 95 0.74
200 95 100 95 0.43

1000 100 94 100 94 0.43
5000 94 99 95 0.43

Table 5.4 – Coverage properties  of the parametric bootstrap 95% confidence intervals based on the PWM
method in the case of the GEV distribution with parameters 0.16 , 0.89  and 5.53 .

b n CR (%) CRLL(%) CRUL(%) RA
200 95 100 95 13.58

1000 10 95 100 95 14.27
5000 95 100 95 14.85
200 94 100 94 1.82

1000 25 94 100 94 1.73
5000 94 100 94 1.72
200 95 100 95 0.74

1000 50 95 100 95 0.79
5000 95 100 95 0.78
200 95 99 95 0.44

1000 100 94 100 94 0.44
5000 94 99 95 0.44

Table 5.5 – Coverage properties  of the adjusted parametric bootstrap 95% confidence intervals based on the
PWM method in the case of the GEV distribution with parameters 0.16 , 0.89  and

5.53 .
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6 Final remarks

6.1 Summary

In this report several methods of constructing confidence intervals for the return values of an
extreme value analysis were considered. The properties and quality of these confidence
intervals  were  assessed  and  compared  in  terms  of  coverage  rates  and,  partly,  of  relative
amplitudes by means of a simulation study.

The construction of a confidence interval for a return value of an extreme event involves a
number of choices. The main steps involved are as follows:

1. The selection of a sample of observed extreme values. Given a time series of some
physical quantity (here significant wave height) the Peaks over Threshold (POT) and
Annual Maxima (AM) are the most commonly applied data selection methods, and were
here considered as well.

2. The selection of an extreme value distribution as a statistical model for the data
produced in the first step. According to theory the generalized Pareto distribution (GPD)
should be selected when the sample is collected by means of the POT method, while in
the case of the AM method a generalized extreme value (GEV) distribution should be
chosen.

3. The selection of a method to estimate the unknown parameters of the distribution
chosen in Step 2. On the basis of the estimated parameters (and thus the estimated
distribution) the extreme values corresponding to one or more prescribed return
period(s) can be estimated.

4. The selection of a method to quantify the uncertainty in the estimates of the
distributions’s parameters and in the associated return values. The uncertainty in the
parameters and return values is usually quantified by a confidence interval of some
significance level (here 95%).

In this study, the estimation methods mentioned in Step 3 were the maximum likelihood
(ML) and the probability weighted moments (PWM) methods. In the case of the return
values of the GEV distribution, the confidence intervals studied were all based on parameter
estimates obtained by the method of PWM. In the case of the return values of the GPD, both
confidence intervals based on parameter estimates obtained by the method of PWM and
confidence intervals based on ML estimates were considered.

The methods of quantifying the uncertainty mentioned in Step 4 were based on asymptotic
ML- and PWM-based, profile likelihood, percentile bootstrap, adjusted percentile bootstrap,
parametric bootstrap and adjusted parametric bootstrap confidence intervals.

Only 95% confidence intervals of 1/10000 yr return values were considered. Because the
type of application contemplated in this report is that of estimating offshore return values for
the Wadden Sea area, only choices of the GPD and GEV distribution that are representative
of the characteristics of the offshore data from the Wadden Sea region (as determined by
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means of measurements of significant wave height at Schiermonnikoog Noord, SON) were
considered.

6.2 Conclusions

The main conclusions of the present study are as follows:

In the case of the GPD, for return values based on parameter estimates obtained by the
method of ML the profile likelihood method produces confidence intervals with
coverage rates closer to the nominal 95%.
When  the  PWM-method  is  applied  to  estimate  the  parameters,  the  adjusted  percentile
bootstrap method turns out to produce the best 95% confidence intervals from of the
point of view of coverage rates. This holds with both the GPD and the GEV distribution.
Moreover, such intervals have relatively low amplitudes or widths.
For all the bootstrap-based methods and sample sizes considered, the quality of the
coverage rate does not depend much on the bootstrap sample size B. A bootstrap sample
size of 1000 seems to be quite adequate for most practical purposes.

6.3 Recommendations

In view of the sample sizes and tail type typically found in the applications targeted in this
report, it is recommended that the computation of estimates and confidence intervals be
made with the PWM method and the adjusted percentile bootstrap method, respectively.

A study on the effects of the uncertainty of the return value estimates on the design values of
dykes will be reported soon within the same framework of this study.
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