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Abstract  

Sediments, particularly fine sediments, are of great importance to coastal engineering 
and environmental issues. However, sediment transport processes are usually not easy 
to simulate by models largely because of the limited knowledge of describing the nature 
behaviour in precise mathematical terms. Process-based models, such as Delft3D 
developed by Deltares, have been proved to be useful in solving this problem. However, 
due to the complex nature in the real word, simulation is often quite expensive (time 
consuming), which makes it inconvenient for some cases. Data-driven models (DDM) 
have been shown to be successful in solving sediment transport problems by many 
previous researches. However, model results are sometimes difficult to interpret due to 
the ‘black-box’ nature.  

A current trend in modelling is to use a hybrid approach, combining both advantages of 
process-based and DDM, where different components complement each other. In order 
to improve the prediction of fine sediment processes in the Dutch coastal zone, a 
surrogate modelling was built in this study. Surrogate model is essentially a ‘model of 
the model’ instead of a model of a nature system. The concept of surrogate modelling in 
this study is using data driven techniques to approximate the process-based model and 
further to be used as a complement of process-based models for future prediction of 
SPM concentration. Artificial neural network (ANN) is applied to build the surrogate 
modelling with output data from the Southern North Sea model. Model results showed a 
strong possibility of using surrogate modelling in prediction of SPM concentration. 

Parsimonious models are attractive for research purposes because they are transparent, 
requiring less computation time and their results are easy to interpret. The purpose of 
using parsimonious models in research is trying to seek the most essential character of 
nature processes, which is very useful for understanding the nature processes and for 
decision making. Linear regression method was applied to build a parsimonious model 
in this study. The main idea of parsimonious model is building a model with least 
variables. The possibility of applying parsimonious model for SPM prediction to the 
Southern North Sea area was explored. Model results showed the prediction of SPM for 
a single storm is quite well at IJmuiden but the model performance decreased at 
locations further offshore. The applicability of parsimonious model for predicting SPM 
in the Southern North Sea needs to be investigated further at more locations. 

Keywords: surrogate model, parsimonious model, fine sediment transport, hybrid 
approach, DDM, linear regression, ANN, Southern North Sea model, Dutch coastal 
zones, Delft3D. 
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Chapter 1        Introduction 

1.1 Background 

Coastal zones which are known as the interface between continents and oceans are vital 
and important to human beings because a majority of the world's population live in such 
zones (Nelson, 2007). Coastal systems are among the most dynamic and energetic 
environments on earth and they are continuously changing because of the dynamic 
interaction between the oceans and the land. Dronkers (2005) described coasts as 
multiform, infinitely complex, quasi-fractal, always changing and unpredictable. 
Sediment process, especially fine sediment transportation is a very complicated feature 
in many coastal zones as it is affected by physical dynamics, tide, wave, wind and their 
mutual interactions. Waves and winds along the coast are both eroding rocks and 
depositing sediments continuously, and the rates of erosion and deposition vary 
considerably from day to day.  Tidal currents also have great effects on sediment 
transportation.  
 
Sedimentation causes many problems in coastal systems. Fine suspended sediment 
affects local morphology in coastal rivers, estuaries and shelves environments. Fluid 
mud, a high concentration aqueous suspension of fine sediment, impedes navigation, 
reduces water quality and causes environmental damages (Sowed, 2008). So it is crucial 
and of great interests for coastal engineers and water managing authorities to improve 
understanding of the underlying sedimentation processes and then further to carry out 
plans for water management, coastal protection, channel maintenance, land reclamation 
and dredging of deepwater navigational channels, etc. 
 
Along the Dutch Coast, a lot of efforts have been made to improve the prediction and 
understanding of sediment transport processes. Process-based models such as SOBEK 
and Delft3D of Deltares have been proved to be useful in simulation of 2D/3D sediment 
processes in the Dutch coastal areas. Delft3D solves shallow water equations and 
transport equations for salinity and suspended particulate matter (SPM) numerically by 
using a finite-difference scheme. Delft3D was used to build both large-scale and small-
scale models to predict SPM concentrations and siltation rates in the Dutch coastal 
zones. For example, Van Kessel et al. (2007) built model of the Southern North Sea and 
Li (2007) built a local model focused on the mouth of River Rhine. The results from 
both models were satisfactory. However, simulating sediment transportations with 
process-based models is often quite time consuming, which restricts process-based 
model for widely applications. More detailed information will be introduced in Chapter 
1.3. 
 

 

Data-driven models (DDM) have also been used in simulation of sediment processes 
(Bhattacharya et al., 2006). They are based on limited knowledge of physical processes 
and rely on the data describing input and output characteristics. Data driven techniques 
are used in building models to solve mathematical equations from the analysis of 
concurrent input and output time series instead of the analysis of physical processes. 
Solomatine and Ostfeld (2008) described that the model works on the basis of 
connections between the system state variables (input, internal and output variables) 
without considering too much on assumptions about the natural processes of the system. 
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Artificial neural network (ANN) now has become a mainstream technology for DDM. 
ANN is a computing paradigm designed to imitate functioning of neurons in human’s 
brain. ANN has been successfully used in many water engineering problems including 
sediment transport. A European project, H-SENSE, used ANN to predict locations of 
accretion rates in a harbour basin (Rosenbaum, 2000). However, because of its “black-
box” nature, some limitations of DDM were reported by many researchers.  

1.2 General description of the physical system 

The Netherlands is situated in the deltas of the rivers Rhine, Meuse and Scheldt. 
Currents, waves, wind, sediment deposits from the rivers and human made structures 
have resulted in the present geomorphologic features of the Dutch coast. The location of 
the physical system is shown in Figure 1.1. 
 
Fine suspended sediments play an important role in the morphology in the channels and 
coastal zones. The fine suspended sediments in the North Sea are considered to be 
coming mainly from the coastal erosion along the French and British cliff coasts along 
the Strait of Dover and the inflow from the English Channel and the Atlantic Ocean. In 
addition, dumped sediments from dredging, riverine inputs (e.g. Rhine River) also 
contribute to sources of the sediments in the North Sea.  
 
The patterns and paths of the suspended sediment transport are largely depended on the 
water movement. Fine sediments are transported form south to north along French-
Belgian-Dutch coastlines into the German Bight by residual currents. On the way of its 
transportation northward, the complex coastal hydrodynamics, consisting of gyres, 
divergences or convergence’s of currents, mixing of the freshwater, or geological traps 
make the fine sediments very easy to get deposited in several areas along the Dutch 
coast, such as Haringvliet mouth, Maasmond, Wadden Sea, etc. Sistermans and 
Nieuwenhuis (2002) reported that approximately 12 million m3 of sands are transferred 
annually from the North Sea to the Wadden Sea.  
 
Sediment transportation and re-suspension of sediment in the Dutch coast are mainly 
governed by the dynamics of fresh water discharge and meteorological forcing such as 
waves, wind etc. The processes have strong stochastic characteristics due to the 
meteorological effects, but also deterministic components due to tides, etc. The tides, 
river discharge, wind and waves play a determinant role in fine sediment transportation. 
 
The tides in the North Sea are caused by the tidal wave from the North Atlantic Ocean. 
Ebb and flood alternate in a cycle of 12.5 hours, which is characterized as semidiurnal 
tide. The tidal wave flows around Scotland and then counter-clockwise along the 
English coast, reaching the German Bight 12 hours after arriving in Scotland. Depth-
averaged residual flow generated by the tide along the Dutch coast has a velocity 
ranging from 0 to 10 cm/s depending on wind and river outflow. 
 
River discharge also has a great influence on the sediment dynamics in the North Sea. 
Freshwater discharge generates salinity-induced density gradients. Combined with the 
effects of density-driven currents and Coriolis force, a relatively narrow band of fresh- 
brackish water is formed along the Dutch coast. For instance, the Rhine plume with a 
width of 20 to 30 km stretches along the Dutch coast. Fine sediments accumulate more 
near the coast than the further offshore area due to the density-driven currents. 
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Figure 1.1   Location of physical system in the North Sea  

(from http://www.worldatlas.com/aatlas/infopage/northsea.htm) 
 
Winds along the Dutch coast are mainly come from the North Sea. The prevailing wind 
direction is southwest (23%), followed by west (16%), east (13%) and northwest (12%) 
(Stolk, 1989). The wind from southwest has an annual mean speed of around 7-9 m/s. 
The storm winds causing the largest wind set-up along the coast are coming from 
northwest (Van Rijn et al., 2002). 
 
The waves within the North Sea can be classified as short waves (Ts < 10 s) and long 
waves or swell (Ts > 10 s) where Ts is wave period. The wave climate is dominated by 
sea waves with a mean annual significant offshore wave height of about 1.1m. 
 
The supply of fine-grained cohesive sediments also has seasonal effects. Fine sediments 
are buffered in the seabed during calm weather conditions, and are mobilized during 
storm conditions. During winter times, the suspended sediment concentration is much 
higher than that in the summer values, which is mainly because more coastal erosion 
and re-suspension from the sea bed happens in rough weather conditions in winter. This 
analysis shows that along the Dutch coast, sediments are transported in suspension by 
tidal and wind-induced currents in the northern direction towards the Dutch coastal zone. 

1.3 Problem description  

Process-based and DDM can both be used in simulation of sediment processes. 
However, both approaches have some limitations.  
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One of the limitations of process-based models is long computing time, which is usually 
owing to long residence time of fine sediments. Furthermore, a large domain size is 
often needed in large-scale simulation and fine grid resolution is required to interpret 
local morphological changes.  So it is a dilemma to compromise results accuracy with 
computation time. One solution is that the meteorological variability is often 
schematized in a very short time. It is assumed that the meteorological forcing is in the 
same pattern over the whole simulation period. This is done at the expense of realism 
and consequently it affects the accuracy of the results. In addition, although the model 
covers the major features of the natural processes, some processes such as water-bed 
exchange of sediments is still a challenge for process-based models (Ye, 2006). 
 
The performance of DDM is satisfactory when adequate data is available for calibration. 
However, due to the ‘black-box’ nature, See et al. (2007) argued that the results are 
sometimes difficult to interpret because it does not consider the physical principles and 
mathematical reasoning too much. Besides, when the system changes (e.g. structural 
and bathymetry changes), it is not easy to calibrate the model with old data. Re-training 
the model for changed system configurations is also difficult. 

1.4 General description of hybrid modelling 

A current trend in modelling is combining both advantages of process-based and DDM 
where different components complement each other. This is denoted as hybrid 
modelling. Sowed (2008) used hybrid modelling to simulate sediment transport in the 
Maasmond area and Lake Victoria, and the results were satisfactory. Process-based 
models are based on the understanding of underlying mechanisms of the physical 
processes in a system. DDM are built on the basis of collected data. However, this does 
not imply that the underlying processes are not always known, but in most cases they 
are built when such knowledge is absent or disjointed. Solomatine (1996) noted that in 
many cases, there is an understanding of the modelled processes, but not very detailed 
to facilitate development of accurate models. Combining the two modelling approaches 
serves to compliment each other to produce more accurate results. 
 
There are a couple of alternatives for the application of hybrid models to improve model 
performance. Abebe (2003) used ANN to forecast errors of process-based model. 
Sowed (2008) focused on using a DDM to generate time varying boundary conditions 
for process-based model. In this study a so-called surrogate modelling was built to 
improve predictions of sediment processes. Surrogate model is “model of the model” 
instead of model of natural systems; such models are also denoted as emulation or meta-
models (Soon et al., 2004). The basic principle of this approach is to build a model by 
using data-driven techniques with the data generated from a process-based model. This 
surrogate model will be used as a complement of the process-based model for future 
predictions. Surrogate model reduces the number of simulation runs required in the 
process-based model considerably, thus making the computation time decreased 
dramatically. ANN could be applied to build a simple surrogate model and linear 
regression method could help build a simper parsimonious surrogate model. 
‘Parsimonious’ refers to simplicity in statistics. Therefore a parsimonious model refers 
to the simplest feasible model with the fewest possible number of variables. 
Parsimonious modelling aims at achieving maximally simple or compact models as a 
result of the data analysis process. Parsimonious model is usually used as a heuristic 
rule to guide scientists in the development of theoretical models. On the one hand, 
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parsimonious model decreases computation time further and parsimony makes results 
more understandable and interpretable on the other hand.  

1.5 Objective 

The main objective of this study is to improve the prediction and understanding of fine 
sediment processes in the Dutch coastal area by using surrogate modelling. The specific 
objectives are as follows: 
 
1. Test performance of the process-based model in simulating fine sediment processes 

and analyze the data generated from it. 
 
2. Examine the performance of surrogate modelling in simulating sediment processes in 

the Dutch coastal areas. Find out the major factor influencing sediments 
transportations. 

 
3. Examine the performance of parsimonious surrogate model at one location in the 

North Sea. Investigate the applicability of parsimonious surrogate model to other 
locations in  the Southern North Sea. 

 
4. Propose improvements for future studies based on the results analysis. 

1.6 Methodology 

1.6.1   Philosophy of research methodology 

The strength and shortcomings of both process-based models and DDM have been 
introduced previously. The necessity of combing the positive aspects of these two 
modelling approaches emerges. 
 
The principle of this study is combining process-based model with DDM using 
surrogate modelling. Process-based model solves mathematical equations from the 
analysis of physical processes of sediment transportation. Outputs form process-based 
model were used as inputs for building the surrogate model with data-driven techniques. 
The surrogate modelling was built simply by using ANN (Chapter 3). Appropriate 
inputs variables were chosen by analyzing the natural processes and outputs from 
process-based model. Data were manipulated to expose the maximum information to 
data driven modelling tool. A simpler model using linear regression method which is 
referred to parsimonious model was also built (Chapter 4).  

1.6.2 Research methodology 

The specific structure of this research is shown in Figure 1.2. 
 
1. Data collection and building process-based model 
Input data such as wind, wave, SPM concentration and tide were gathered from the 
North Sea. Physical domain data are size, area and bathymetry of the physical system. 
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Delft3D developed by Deltares was used to build a process-based model which focuses 
on the Southern North Sea. These tasks have been done by Deltares and outputs from 
Southern North Sea model were provided by Deltares also. 
 

 
 

Figure 1.2   Framework of the research methodology 
 

2. Building the surrogate model with ANN. 
The output data (total bed shear stress, wave data, SPM concentration) from the 
Southern North Sea model were used to build a surrogate model using ANN. 
 

3. Building the parsimonious surrogate model. 

A linear regression method was used to build the parsimonious model.  

 
4. Conclusions and recommendations. 
Based on the analysis of model results, conclusions and recommendations about the fine 
sediment process in the Dutch coast areas can be drawn. 
 
 
 
 

 

 
 

6   
 

 



 

Chapter 2      Process-based modelling 

2.1 Introduction 

 
The importance of understanding fine sediment transportation has been emphasized in 
the previous chapter. The approaches used to model the sediment dynamics have been 
introduced and their merits and limitations have also been highlighted. This chapter 
describes the sediment properties and briefly introduces the process-based model.  

2.2 Fine sediments properties 

Sediments are classified as cohesive and non-cohesive broadly. Cohesive sediment 
dynamics are controlled not only by physical forces (e.g. inertia, buoyancy, drag, lift, 
friction) but also by electrochemical forces. The interparticle bonding forces make small 
particles stick together and form larger aggregates. Resistance to erosion of cohesive 
sediment depends on the strength of the cohesive bond binding the particles. Cohesion 
may far outweigh the influence of the physical characteristics of the individual particles 
and its behaviour is primarily dependent on the particle size, water chemistry, and 
sediment mineralogy (Simons and Senturk, 1992). 

2.2.1 Sediment size 

Sediment size is the most significant property, not only because size is the most readily 
measured property, but also because other properties, such as shape and specific gravity 
tend to vary with particle size. 
 
Sediment size can be defined by particle diameter. Van Rijn (1993) listed several 
definitions of particle diameters:  
 

 Nominal diameter: The nominal diameter is the diameter of a sphere having the 
same volume as the particle.  

 
 Sieve diameter: The sieve diameter is the diameter of a sphere equal to the 

length of the side of a square sieve opening through which the given particle will 
just pass.  

 
 Standard fall diameter: The standard fall diameter is the diameter of a sphere 

that has a specific gravity of 2.65 and has the same terminal settling velocity as 
the given particle in quiescent distilled water at a temperature of 24 °C.   

 
According to particle size, sediment particles are classified into six general categories: 
Clay, Silt, Sand, Gravel, Cobbles and Boulders. Because such classifications are 
essentially arbitrary, many grading systems are to be found in the engineering and 
geologic literature. Table 2.1 shows a grade scale proposed by the subcommittee on 
Sediment Terminology of the American Geophysical Union (Lane, 1947). 
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Table 2.1   American Geophysical Union Sediment Classification System  
(adapted from Lane, 1947) 

 
 
The sediment with a size smaller than 62 micron is regarded as the main element of fine 
sediment (Ye, 2006). Because of the complicated feature of cohesive sediment, particles 
with a size between 4 and 62 micron, which is termed as silt will be focused in this 
study. Such classification is of great help to understand the sediment performance in 
microcosmic scales. 

2.2.2 Particle density  

The density of most sediment particles (< 4mm) varies between narrow limits. Since 
quartz is the predominant natural sediment, the average density can be assumed to be 
2650 kg/m3 (Tchouani, 2004). The specific gravity s is defined as the ratio of sediment 
density ρs and density of water ρw: 

                                                            s s 2.65
w

ρ
ρ

=  =                                                    (2.1) 

2.2.3 Particle Shape 

Particle shape is the second most significant sediment property of natural sediments and 
can be defined by the shape factor, SF (Schulz et al., 1954). 

                                                              cSF
ab

=                                                    (2.2) 

 
 where a, b, and c are the lengths of the longest axis, the intermediate axis, and the 
shortest axis, respectively. These axes are the mutually perpendicular axes of the 
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particle. The shape factor for a sphere would be 1.0. Natural sediment typically has a 
shape factor of about 0.7. Particle shape affects the fall velocity of particles.  

2.2.4 Fall velocity  

Fall velocity is the average terminal settling velocity of a particle falling alone in 
quiescent, distilled water of infinite extent. Fall velocity is the most fundamental 
property governing the motion of the sediment particle in a fluid. It has been shown that 
the bed configuration in a sand channel may change when the fall velocity of the bed 
material changes. Fall velocity is a function of the volume, shape and density of the 
particle and the viscosity and density of the fluid.  

2.3 Process-based model and model analysis 

Process-based modelling tool Delft3D by Deltares has been used to build both large-
scale and small-scale models to simulate sediment processes in the Southern North Sea. 
Delft3D is a well-known 2D/3D modelling system to investigate hydrodynamics, 
sediment transport, morphology and water quality for fluvial, estuarine and coastal 
environments. 
 
A large-scale model is focused on the whole area of the Southern North Sea, which is 
named as Southern North Sea model in this thesis. It is helpful to simulate the overall 
flow and wave pattern in macro-scale.  According to scale-based theory of Vriend 
(1991), large-scale model can provide the boundary conditions for small-scaled models. 
Li (2007) studied on the Massmond area by using Maasmond model, which is a finer 
grid model localized in the Dutch coast. Detailed information about the Southern North 
Sea model and Massmond model are discussed in the following sections. 

2.3.1 Southern North Sea Model  

Southern North Sea model is a curvilinear, boundary fitted grid which contains 8,710 
computational elements. It  covers about 1,000 km × 800 km area from the south 
Dover Strait to the north of Scotland and most northern parts of Denmark, each cell has 
a size about 8 km by 6 km. In order to compromise between the covering area and 
computation time, the model grid is relatively coarse. The bathymetry used for the 
model is provided by Deltares, which is shown in Figure 2.1. 
 
A so called “Sigma grid” is used in the vertical direction in the Southern North Sea 
model, which means the total water depth is separated into a certain number of layers, 
and each of which has a certain percentage of the water depth. Because of this definition, 
the same vertical resolution will be available in the entire model domain irrespective of 
the local water depth. Ten computational layers along the water depth are used in this 
study and the values used are shown in Table 2.2. 
 
Roelvink et al. (2001) pointed out that the logarithmic distribution can provide 
relatively high resolution of sediment transport. This makes sure that both effects of 
wind near the surface and computation of sediment transport near the bed could be 
taken into better consideration.  
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Table 2.2 Distribution of layers along the vertical direction in the Southern North Sea model 

(adapted fromYe, 2006) 

Layer number 1 2 3 4 5 6 7 8 9 10 

Relative thickness of 
total depth (%) 

4 5.9 8.7 12.7 18.7 18.7 12.7 8.7 5.9 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.1   Southern North Sea model grid and bathymetry (adapted from Ye, 2006) 

2.3.2 Maasmond model  

The Massmond model is a finer grid model localized for the Dutch coast. The model 
was originally developed by Deltares and Li (2007) modified the model to facilitate 
modelling of sediments in the Maasmond area. The model was set up in two phases. 
First is the FLOW model and then the WAVE model. 
 
The FLOW model is using finer grid (60km * 30 km) and is used to simulate the 
hydrodynamics of the system. The red area in Figure 2.2 represents the FLOW grids 
and the blue line is land boundary. The grid resolution is (M, N, K) = (137, 160, 13). 
The boundary conditions are generated from the Southern North Sea model. In order to 
improve accuracy of simulation of velocity and sediments, higher vertical resolution is 
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used near to the seabed. The local depth near the bottom was divided into more layers 
than in the water surface along the vertical direction. 

 
Figure 2.2   Maasmond model grid (adapted from Li, 2007) 

 
The WAVE grid covers larger area than the flow grid and is extended westward to Euro 
platform. The green area in Figure 2.2 shows the WAVE grid. The original bathymetry 
provided by Maasmond model is applied to the area covered by FLOW model, and for 
the extended area, the bathymetry from the Southern North Sea model is used. Observed 
wave (www.golfklimaat.nl/data) and wind data (www.knmi.nl) from Euro platform 
during the simulated period are used as the wave boundary. 

2.3.3 Flow module 

The Delft3D-FLOW which is a hydrodynamic module, simulates two-dimensional 
(depth-averaged) and three-dimensional unsteady flow and transport phenomena 
resulting from tidal and meteorological forcing, including the effect of density 
differences due to a non-uniform temperature and salinity distribution (density-driven 
flow).  The flow model can be used to predict the flow in shallow seas, coastal areas, 
estuaries, lagoons, rivers and lakes.   
 
The depth-averaged approach is appropriate for vertically homogeneous fluid. Delft3D 
FLOW is able to run in two-dimensional mode (one computational layer), which 
corresponds to solve the depth-averaged equations. Three-dimensional modelling is of 
particular interest in transport problems where the horizontal flow field shows 
significant variation in the vertical direction.  This variation may be generated by wind 
forcing, bed stress, Coriolis force, and bed topography or density differences.   
 

11  
 
 

 



 

The model provides two coordinate systems in the vertical direction: Cartesian Z co-
ordinated system and sigma σ  co-ordinate system. The number of vertical layers varies 
according to depth but the distance between the layers is fixed in Cartesian coordinated 
system. However, in σ  co-ordinate system, the number of vertical layers decided by 
user is constant throughout the model domain but the distance between the layers varies 
with depth. This feature makes it possible for higher resolution of sediment transport 
near the water surface and bottom. 
 
The governing equations are solved with the finite difference scheme in curvilinear grid 
system. Continuity equation, momentum equations, transport equation, together with 
boundary conditions are involved to solve the equations of the system. With the shallow 
water assumption, vertical acceleration due to buoyancy effects or sudden variations in 
the bottom topography is not taken into consideration. So the vertical momentum 
equation reduces to the hydrostatic pressure equation. 

2.3.3.1 Hydrostatic pressure assumption 

With the shallow water assumption, the vertical momentum equation reduces to the 
hydrostatic pressure equation.  The resulting expression is 
 

ghP ρ
σ
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∂
∂

                                                               (2.3) 

2.3.3.2 Continuity equation 

The depth averaged continuity equation is given by: 
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where: 

−−

VU , :  Depth averaged velocities in the X and Y directions (m/s). 
ζ : Water surface elevation above reference datum (m). 
h: Total water depth (m). 
S: a source or sink term per unit area (discharge, withdrawal of water, evaporation, 
precipitation, etc). 

2.3.3.3 Horizontal momentum equations 

The horizontal momentum equations in X and Y directions are: 
 

)(11
2

0 σ
ν

σρσ
ω

∂
∂

∂
∂

+++−=−
∂
∂

+
∂
∂

+
∂
∂

+
∂

∂ u
h

MFPfVU
hy

UV
x
UU

t
U

Vxxx

 
 

(2.5) 

 

)(11
2

0 σ
ν

σρσ
ω

∂
∂

∂
∂

+++−=−
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂ v

h
MFPfUV

hy
VV

x
VU

t
V

Vyyy

 
xP  and are horizontal pressure terms, which is given by Boussinesq approximations: yP

(2.6) 
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xF  and are horizontal Reynold’s stresses terms, which is determined by eddy 

viscosity concept.   
yF

 
xM and yM are the contributions due to external sources or sinks of momentum (by 

hydraulic structures, discharge or withdrawal of water, wave stress, etc). 
 

Hν  and Vν are horizontal and vertical kinematic viscosity coefficients (m2/s). 

2.3.3.4 Transport equation 

Dissolved substances, salinity and heat in rivers, estuaries, and coastal seas are able to 
be delivered by flows. These processes can be simulated by the advection-diffusion 
equation in three co-ordinate directions. Source and sink terms are used to simulate 
discharges and withdrawals. First-order decay processes are taken into account as well. 
The transport equation reads: 
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where:  
 
S : Source and sink terms per unit area  
DH , DV : Horizontal and vertical eddy diffusivities 
 
DH is defined as: 
  

DH = D2D + D3D + DH
back                                                                           (2.10) 

 
Where D2D is 2D turbulence associated with mixing due to horizontal motions and 
forcing, D3D is 3D turbulence related to the turbulent eddy viscosity and DH

back is the 
vertical background diffusion. 
 
The vertical eddy diffusivity is defined as: 

3max ( , )backmol
V V

mol

D D DDυ
σ

= +                                                   (2.11) 

 
Where νmol is  the kinematic viscosity of water and σmol is either the (molecular) 
Prandtlnumber for heat diffusion or the Schmidt number for diffusion of dissolved 
matter. 
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2.3.3.5 Boundary conditions 

In the σ  co-ordinate system, the bed and the free surface correspond with σ -planes. 
Therefore, the vertical velocities at these boundaries are simplified as: 

1
0

=-σ
ω =  and 

0
0

=σ
ω =                                            (2.12) 

Where σ = -1 is near the bottom and σ = 0 is near the surface. 

Friction is applied at bed as follows: 
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where bxτ  and byτ  are bed stress components that include the effect of wave-current 
interaction. 

2.3.4 Wave module 

Wind induced waves have big influence on flow and consequently sediment dynamics 
in large open water bodies (Winterwerp, 2006). In order to simulate the evolution of 
wind generated wave in coastal zones, the Delft3D-WAVE module is used in which the 
SWAN (Simulating Waves Nearshore) third generation numerical wave model is 
implemented (Deltares, 2006). 
 
The purpose of using wave model is two-fold.  First of all, the wave model provides 
wave force for the flow model, which enables the flow model to simulate the wave-
driven currents. Secondly, the wave parameters will be provided to the sediment 
transport model to account for the stirring effect of wave motion on the sediments.  
 
SWAN model simulates the evolution of random, short-crested wind-generated waves 
in lakes, estuaries, tidal inlets, etc (Deltares, 2006). The numerical scheme for wave 
propagation is implicit and therefore unconditionally stable at all water depths. To 
model the energy dissipation in random waves due to depth-induced breaking, a spectral 
version of the bore-based model of Battjes and Jansen (1978) is used, and to model 
bottom-induced dissipation, the JONSWAP formulation (Hasselmann et al., 1973) is 
applied to compute bottom friction.  The formulation for wave-induced bottom stress is 
modelled according to Fredsøe (1984).   
 
In SWAN, the evolution of the wave spectrum is described by the spectral action 
balance equation given as: 

x y
SN c N c N c N c N

t x y σ θσ θ σ
∂ ∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂ ∂

                           (2.14) 

N represents the density spectrum with parameters σ and θ. The first term in the 
equation represents the local rate of change of action density in time. The second and 
third term represent propagation of action in geographical space (with propagation 
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velocities cx and cy in x - and y -space, respectively). The fourth term represents shifting 
of the relative frequency due to variations in depths and currents (with propagation 
velocity cσ in σ -space). The fifth term represents depth-induced and current-induced 
refraction (with propagation velocity cθ in θ -space). The term S ( = S (σ, θ) ) at the 
right-hand side of the action balance equation is the source term in terms of energy 
density representing the effects of generation, dissipation and non-linear wave-wave 
interactions. In addition, wave propagation through obstacles and wave-induced set-up 
of the mean sea surface can be computed in SWAN as well. 

2.4 Conclusions  

In this chapter, the basic concepts of cohesive sediments have been reviewed. Some key 
features of flow module and wave module applied in Delft3D are listed as well. It 
shows that Delft3D can be a generic tool, which covered quite a part, but not all the 
known processes, to study the cohesive sediments, of which the thorough understanding 
of the underlying physical processes is not so clear yet. 
 
Moreover, the main disadvantage of this approach is the requirement of long computing 
time, which restricts its application more widely. FLOW module and SWAN module 
are both used in modelling SPM concentration by Delft3D. FLOW module simulated 
unsteady flow and transport phenomena in an aquatic environment while SWAN 
module simulates wave propagation. Running both modules concurrently takes a lot of 
time. 
 
In the following studies, a surrogate modelling which combines Southern North Sea 
model and ANN is built in Chapter 3. A simpler parsimonious model is built as well in 
Chapter 4. 
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Chapter 3       Surrogate modelling of fine sediment dynamics 

3.1 Introduction 

It is shown in previous chapters that both process-based models and DDM can be used 
in simulating sedimentation processes. Limitations of both approaches are highlighted 
also. It calls for a hybrid approach to combine both process-based model and data 
driven techniques. In this chapter, a so-called surrogate modelling is built to predict 
SPM concentration. Concepts of surrogate models and ANN as data driven techniques 
are introduced. Input data are processed to expose maximum information for surrogate 
model as well. 

3.2 Concepts of surrogate modelling 

Surrogate model which is also denoted as emulation or meta-model, is “model of the 
model” instead of model of natural systems. Process-based models usually require long 
computing time for many real world problems because of the natural processes are 
normally quit complicated. In order to overcome this drawback, surrogate models are 
introduced to model process-based models instead of the nature systems directly.  
 
Surrogate models have been used for a quite long time (Kleijen, 1975) and are widely 
used by the engineering design community to reduce the time require for full simulation. 
Bhattaharya et al. (2003) pointed out that surrogate models are of great use in reducing 
the computation time. Surrogate models have been successfully applied to model a 
variety of water and environmental problems. For instance, Riddle et al. (2004) used 
surrogate models to model reconstruction and interpolation of effluent plume in estuary 
area. Liong et al. (1995) did calibration of urban drainage model with surrogate models. 
Surrogate models were also applied to predict numerical geophysical models (Tatang et 
al., 1997). Abebe and Price (2003) built a surrogate model with ANN to predict errors 
of a numerical flood routing model and subsequently predictions were updated. 
 
The basic principle of surrogate modelling described by Soon et al. (2004) is shown as 
follows: 
 

 Choose the relevant process-based model according to the research objective. 
Southern North Sea model is selected as the process-based model for SPM 
predictions in this study. Run the Southern North Sea model for a small number 
of runs; generate outputs and analysis the data. 

 
 Select a surrogate model which can be used to approximate the process-based 

model. Surrogate model usually refers to a multivariate mathematical function. 
Variables are chosen based on the analysis of natural processes and outputs from 
process-based model. ANN is applied to build this surrogate model in this study. 

 
 Run surrogate model, analyze the results and adjust the variables within the 

surrogate model to improve surrogate model performance. 
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 Once the adjustments are complete, the surrogate model is used to be a 
complement of the process-based model for future predictions.  

 

Building surrogate 
model with ANN 

Output data 
SPM from 

Southern North 
Sea model 

Error-
Selecting relevant 

variables 

Predicted 
SPM 

Process-based 
model 

 (Southern North 
Sea Model) 

 
 
 
 
 
 
 
 
 
 
 
 Reselect variables
 
 
 
 
 
 
 
 
 
 Future predictions 
 

Figure 3.1   Framework of surrogate modelling. 
 
The structure of surrogate modelling in this study is shown in Figure 3.1. Run the 
Southern North Sea model for a small number of runs and generate output data. 
Variables for building surrogate model are selected on the basis of analyzing the nature 
processes and output data from the Southern North Sea model. ANN is applied as data 
driven technique to build the surrogate model to predict SPM concentration. Compare 
predicted SPM from surrogate model and the Southern North Sea model. Error signals 
are sent back to reselect variables to improve the performance of surrogate model. The 
updated surrogate model will be applied as a complement of the Southern North Sea 
model for future predictions of SPM concentration. 

3.3 Data driven models  

DDM is an approach describing physical system on the basis of analyzing data 
characteristics. DDM works on the basis of connections between the system state 
variables (input, internal and output variables) without considering too much on nature 
processes of a system. Techniques used in DDM are borrowed from various fields such 
as data mining, ANN, fuzzy logic, and machine learning (ML), etc. DDM can thus be 
considered as an approach that focuses on using the computational intelligence (CI) 
methods in building models that would complement or replace the process-based 
models to describe physical systems. 
 
Followed by general principles implemented in modelling, the process of building a 
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DDM is: study the problem– collect data – select model structure – build the model – 
test the model and (possibly) iterate (Solomatine, 2008). In DDM, both model 
parameters and model structure are often subject to optimisation.  
 
One important part of DDM is learning. ML estimates a hitherto unknown mapping 
between a system’s inputs and outputs from the available data (Mitchell, 1997). After 
the dependency of inputs and outputs is discovered, it can then be used for prediction of 
future system’s outputs from the new input values. 

 
Figure 3.2   Machine learning (adapted from Solomatine, 2006). 

 
Figure 3.2 shows the process of learning in ML. An ML model, on the basis of data 
samples, tries to identify (“learn”) the target function Y = f (X) describing the real 
system behaviors. Learning (or training) here is the process of minimizing the 
difference between measured data and model output. The data used for training is called 
training data set. 
 
When new instances, preciously unseen by the model, are fed into the model, the error 
may be high. This implies that it is necessary to have a separate data set (called cross-
validation set), which does not contain instances from the training set and is used to 
investigate the model error. During the process of training an ML model, the error on 
the training data will decrease, but error on cross-validation data will first decreases and 
then start increase, which is under the effect of over-fitting.  Over-fitting is resulted 
from being trained too long that the model tries to follow all data points and actually 
miss the underlying trend of the data. So the training should be stopped when the error 
on cross-validation data set starts to increase. 
 
ML model needs to be test before it is put into operation. For this purpose, another data 
set which is called testing set is used. It allows to see how the model would perform if 
new data is fed into it. 
 
At the stage of operation, the model, being fed with the new input instances, can 
perform prediction that is for new input Xi generate an output Yi which value is 
hopefully close to what the real system would generate. 
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3.4 Artificial neural networks 

3.4.1 Introduction 

ANN is the most widely used method in ML due to its ability to emulate complex 
processes expressed through sets of input and output observations. ANN imitates 
functioning of neurons in a human’s brain. It consists of an interconnected group of 
processing elements (artificial neurons) working in unison to solve specific problems. 

 

 
Figure 3.3 An artificial neuron.  

 
As a simplified description of operation of a biological neuron an artificial neuron was 
proposed by McCulloch and Pitts (1943). Figure 3.3 shows an artificial neuron that 
receives a series of inputs x = {x1, x2…, xk,…, xK,} with associated weights, w = {w1, 
w2,…,wk,… wK }. The weighted sum of inputs (u) to the neuron is: 

 

 

                                                      u w                                                   (3.1) 0

1
k k
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k
w x

=
= +∑

where  is a bias term. The neuron uses a function g(.) to compute the output z as 0w
 
                                                             z = g (u)                                                            (3.2) 
 
The function g(.) in Eq. 3.2 is usually known as a transfer function. Several commonly 
used transfer functions are tangent hyperbolic function, sigmoid function, Gaussian 
function, linear function, etc. These functions restrict the input signal between certain 
limits.  The choice of a transfer function depends on the task to be learned by the neural 
network. 
 
Studying from such a simplified artificial neuron, various ANN with complex 
architectures has appeared over time. ANN is a broad term covering a large variety of 
network architectures, the most common of which is a multilayer perceptron. The 
parameters to be found by training are the weight vectors connecting the different nodes 
of the input, hidden, and output layers of the network by the so-called error-back-
propagation method (a specialized version of the gradient-based optimization algorithm) 
(Haykin, 1999). 
 
During training the values of the parameters (weights) are varied so that the ANN 
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output becomes similar to the measured output on the training data set. ANN has been 
successfully used in many water engineering problems. However, its use in sediment 
transport is limited. Nagy et al. (2002) used ANN to estimate the natural sediment 
discharge in rivers in terms of sediment concentration. Lin and Namin (2005) used 
ANN to estimate reference concentrations. The possibility of using ANN in building 
sediment transport models was reported by Bhattacharya et al (2004, 2005). 

3.4.2 Supervised learning of ANN 

Supervised learning incorporates an external ‘teacher’, so that each output unit is told 
what its desired response to input signals ought to be. Paradigms of supervised learning 
include pattern recognition, classification and regression or function approximation. An 
important issue concerning supervised learning is the problem of error convergence, i.e. 
the minimisation of error between the desired and computed unit values. The aim is to 
determine a set of weights which minimises the error. This is achieved by implementing 
an algorithm known as the back propagation. 
 
The learning process of ANN used in this study is based on the schematisation of multi-
layer perceptron (MLP), which is shown in Figure 3.4. MLP is made up of a number of 
interconnected nodes, arranged into three layers: input, hidden (could be more than one) 
and output. The lines represent weighted connections between nodes. The input layer 
does not perform any operation upon the input signal but simply sends xk to the nodes in 
the hidden layer. A node simply multiplies input by a set of weights, and transforms the 
result into an output value linearly or nonlinearly. By adapting its weights, the neural 
network works toward an optimal solution based on a measurement of its performance. 
At the beginning of the learning process, the weights on the connections are assigned 
values randomly. 
 
The back propagation algorithm is used in two modes: mapping and leaning. In the 
mapping mode, each instance is analysed and the network estimates the output vectors 
based on the values of the input vectors. For each instance, input node passes a value of 
an independent variable xk to all hidden notes. Each node of the hidden layer computes a 
weighted sum of the input values based on its weights akj where j = 1, 2,…, J and J is 
the number of hidden nodes. The weights are determined during the learning mode. 
From the value of the weighted sum, hidden notes compute an output yi using a transfer 
function. Each of the output nodes receives the outputs of hidden nodes yi, computes a 
weighted sum of these inputs based on the weights bjm where m=1, 2, … ,M and M is the 
number of output nodes, and finally determines the output zm of the mth output node 
using a transfer function. The output of the mth output node, zm is the estimated value of 
the mth dependent variable. The output from the output node is compared with the 
measured data and the error is used to adjust the connecting weights a and b, and this 
procedure is called back propagation. The weights a and b together form the parameter 
vector w. 
 
For multi-layer perceptron, given the input vector x = (x1,x2,…,xk,…xK), the output from 
the dinned nodes will be as follows: 
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Figure 3.4   Multi-layer perceptron with one hidden layer. 
 
where akj are the weights of the links from input node k to hidden node j and a0j is bias 
weight of the hidden node j. The outputs from the hidden nodes would be the inputs to 
the output nodes. The outputs of the output nodes are calculated as follows: 

                                                 0
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( )m m jm j
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j
z bg b

=
= +∑  y                                         (3.4)        

 
where bjm are the weights on the links from hidden node j to output node m and b0m is 
the bias weight of the output node m. The mean square error is used as a measure of the 
prediction accuracy and is calculated as: 
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where N is the number of instances in the dataset; zmi is the mth output for the ith 
instance and zmeas, mi is the mth measured output for the ith instance. 
 
In the learning mode, an optimization problem is solved to decrease the mean square 
error and to find values of a and b that give minimum E. By solving the optimization 
problem and knowing the slope of the error surface, the weights are adjusted after each 
iteration. One way of adjusting the weights following the gradient descent rule is as 
follows: 

                                                 ( ) ( 1)Ew t w t
w

η μ∂Δ = − + Δ −
∂

                                    (3.6) 

 
where is the incremental change in weight w at iteration t; is the 
incremental change in weight w at iteration t-1; 

( )w tΔ ( 1)w tΔ −
η  is the leaning rate and μ  is the 

momentum value used to give importance to previous weight updates. 
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3.5 Understanding the process to be modelled 

It is of great importance to understand the inter-relationship between the physical 
processes being modelled. It helps in selecting the best input and output variables. This 
section therefore reviews the interaction of variables involved in the sediment dynamics. 
 
Suspended particulate matter (SPM) consists of sediment particles suspended in water 
and SPM concentration is governed by the availability of sediment and transport 
processes. The availability of sediment is influenced by wind, waves, tides, river 
discharge, etc. The sediment transport process is mainly affected by local hydro-
meteorological conditions. 
 
In large shallow water bodies, the processes of sediment dynamics usually start with 
wind energy being delivered to the water surface and generate waves (Jin and Ji, 2004). 
When the wind energy is dissipated into wave motion in the vertical direction, the 
energy is also transmitted from the surface to the bottom. This process will create wave 
orbital velocities at the sediment-water interface, which combined with current 
velocities together to generate bed shear stress. Before sediments are transported, 
sediment particles need to be firstly picked up and leave from their initial position on 
the bottom. This could happen only when the bed shear stress is strong enough to lift or 
drag sediment particles. In other words, total bed shear stress (Tbss) due to waves and 
currents should exceed a critical value of bed shear stress. Thus, Tbss is a significant 
variable which should be taken into account in modelling SPM concentration. 
 
During storms in rough weather conditions, large wave energy due to huge waves is 
transmitted to the water column and produces high Tbss, and subsequently, causes high 
SPM concentration. However, SPM concentration is also influenced by previous storms. 
For example, when a storm occurred and lasted for a long time, the concentration of 
SPM is very high in the water column. So although the wave energy is low in the 
following calm days, still a high SPM concentration may be observed in the water. 
Figure 3.5 gives an example of SPM and corresponding significant wave height (Hs) at 
IJmuiden in December of 2000. The circled area in the left shows two storms happened 
with high Hs and SPM concentration and the storms lasted for about five days. After 
storms, as indicated by the area circled on the right hand, still high SPM concentration 
appeared although Hs decreased a lot.  
 

 
Figure 3.5   SPM and Hs at IJmuiden in December of 2000. 
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Thus, in order to give a better simulation of SPM concentration, the previous wave 
energy should be taken into account as well. In this study, it is named as wave energy 
past (Wep). 

3.6 Building the surrogate model with ANN 

3.6.1 Introduction 

This study focused on the area of IJmudien, the sea port of Amsterdam. Figure 3.6 gives 
the exact position of IJmudien as an observation point in the Southern North Sea model 
grid. Water depth in this area is around 7 to 8 meters. Figure 3.7 shows the location of 
IJmuiden in the Dutch coastal zone. Data used for building the surrogate model are the 
outputs from Southern North Sea model ran for the year of 2000. 
 

 
Figure 3.6 IJmuiden in the Southern North Sea model grid. 

 
 
The tool used to build the ANN model is NeuroSolutions which is well-known in neural 
network simulation technology. The software is widely used to design, train and deploy 
neural network (supervised learning and unsupervised learning) models to perform a 
wide variety of tasks such as, classification, function approximation, multivariate 
regression and time-series prediction.  
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Figure 3.7   Location of IJmuiden (adapted from Google Earth). 

3.6.2 Selecting of input variables 

With the discussion and understanding of the major processes influencing SPM 
concentration in Chapter 3.5, there are many parameters could influence SPM such as 
wind, wave, bed shear stress, previous waves, etc. Some of them may affect SPM 
largely while some of them may less important. So the most relevant variables need to 
be selected for building the surrogate models. 
 
Total bed shear stress is selected as the first input variable in this study. Because 
sediment particles can be picked up and transported only when Tbss exceeds a critical 
value of bed shear stress. In other words, Tbss is the major driving force for influencing 
sediment transport processes and changing SPM concentrations. Secondly, from the 
discussion of sediment processes, wind generates wave and wave energy is transmitted 
from water surface to the bottom and consequently generate bed shear stress. Bed shear 
stress can also be generated by currents. Therefore, Tbss actually contains partly 
information of wind, wave and currents. Moreover, Sowed (2008) used Tbss alone to 
predict SPM in Maasmond area and results showed the possibility of predicting SPM 
with Tbss. Tbss can be extracted from the Southern North Sea model directly. 
 
In order to take the effects of previous storms to the SPM concentration, Wep is 
selected as the second variable for building the ANN model and Wep should be 
calculated according to Hs. 
 
Wave energy is calculated firstly from the formula: 

                                                 
2

8
w sgHWe ρ=                                                      (3.7) 

where We is wave energy, ρw is the density of sea water, Hs is significant wave height. 
Wep is an integration of wave energy over time. In order to calculate Wep, the first step 
is to explore how far of the previous wave energy has influence to the SPM 
concentration now. In this study, we assumed that wave energy within the last two 
weeks (336 hours) give effects to the current SPM concentration and no influence any 
more of the wave energy before two weeks ago.  
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Secondly, we need to find out in which way the Wep affects the SPM concentration. 
Wep is a weighted sum of wave energy which is shown as:                                                            

                                                                                                             (3.8) 
336

1
i i

i
Wep Wew

=

= ∑
where Wei  is wave energy i hours ago. wi is the weight of Wei. Weight is higher if the 
wave is closer to now which means that recent waves have more influence to current 
SPM. Wave generated longer time ago gives lower effect of current SPM and thus has 
lower weight. In this study, a linear function is applied to determine the weights. And 
the plot of this linear function is shown in Figure 3.8. 

                                                   1
336

i
iw = − +                                                            (3.9) 

where wi is the ith weight and i is time from 0 to 336. 
 

 
Figure 3.8   A linear function used to determine weights  

 
Therefore, SPM can be expressed as a function of Tbss and Wep: 

 
                                                SPM = f (Tbss, Wep)                                             (3.10) 

 
After selecting the input variables for the surrogate models, we are caring about the 
interdependence between Tbss and Wep and how does this influence the model 
performance. Figure 3.9 shows the plot of Wep and Tbss at IJmuiden in 2000. Their 
patterns are similar and the correlation between them is 0.73, which implies that Wep is 
sharing some information with Tbss. That reason is that Wep is calculated based on 
wave data and Tbss can also be generated from wave. So sensitivity analysis on the 
input variables should be done and this is introduced in detail in Chapter 3.6.9.  
 
It needs to be mentioned that, sensitivity analysis on multiple parameters influencing 
SPM in addition to Tbss and Wep could be carried out. This could help to explore the 
most significant parameters for building the surrogate models. In this study, only Tbss 
and Wep are used as the input variables. More input variables could be introduced 
according to the model performance. 
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Figure 3.9 Plots of Wep and Tbss at IJmuiden in 2000. 

3.6.3 Visual inspection of raw data 

After defining the input variables, the next task is to process input data for building the 
ANN model. Inspection of raw data helps to explore the possibility of adjusting or 
transforming data. Further more, it establishes reasonable expectation of achieving a 
solution and reveals the relevance of the data to the task. This was achieved by plotting 
the identified input variables together with the output variables. 
 

 
Figure 3.10 Plots of SPM and Tbss with raw data at IJmuiden in 2000. 

 
Figure 3.10 shows the relationship between SPM and Tbss at IJmuiden while Figure 
3.11 shows SPM versus Wep. The calculated correlation of SPM and Tbss is 0.43 and 
0.49 for SPM and Wep. The plots show that the general pattern of SPM is related to 
Tbss and Wep. However, still there are many discrepancies in some instances. Tbss and 
Wep do not change in the same way as SPM does. Furthermore, the SPM does not rise 
or drop in the same proportion as Tbss and Wep do. These discrepancies could be 
caused by other processes in predicting SPM in addition to Tbss and Wep. SPM could 
be diffused along the vertical direction in the water column as well. 
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As shown in the plots of Figure 3.10 and Figure 3.11, values change quite frequently 
due to the effect of diurnal tidal movement. The frequent changes of data appear as 
‘noise’ which is often associated with irregular, chaotic changes in the variable. Thus, 
data need to be smoothed to avoid these ‘noise’ before are fed into the model. 
 

 
Figure 3.11 Plots of SPM and Wep with raw data at IJmuiden in 2000. 

3.6.4 Data filtering 

High variance in data will reduce the learning capability of DDM and consequently give 
unsatisfactory performance. For better performance of the DDM, smoothing data to 
reduce variance along the data range is necessary (Schalkoff, 1997). The purpose is to 
reduce the variability and/or remove the noise. By smoothing out short-term 
fluctuations, longer-term trends could be highlighted. Several smoothing tools can be 
used such as moving average, peak-valley mean, Gaussian filter etc. 
 
Moving average was used as a smoothing tool in this study. In order to remove the 
effect of diurnal tidal movement, 24 hours moving average was applied. Figure 3.12 and 
3.13 show the plots of SPM with Tbss and Wep after using 24 hours moving average to 
smooth data and high variances are removed. 
 

 
Figure 3.12 Plots of SPM and Tbss with 24 hours moving average at IJmuiden in 2000. 
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Figure 3.13 Plots of SPM and Wep with 24 hours moving average at IJmuiden in 2000. 

3.6.5 Correlation and average mutual information (AMI) analysis 

Analysis of correlation plays an important role in data analysis. The measure of how 
values of one variable changes as values of another variable change is known as 
correlation. Correlation measures the linear dependences between two variables.  
 
Average mutual information (AMI) provides an elegant way of investigating 
dependencies and lag effects (Abarbanel, 1996). AMI is a measure of dependencies 
inside the time series. Formally, the mutual information of two discrete random 
variables X and Y can be defined as: 
 

 
(3.11) 

 
where p(x, y) is the joint probability distribution function of X and Y, and p1(x) and p2(y) 
are the marginal probability distribution functions of X and Y respectively. Intuitively, 
mutual information measures the information that X and Y share: it measures how much 
knowing one of these variables reduces our uncertainty about the other. For instance, if 
X and Y are independent, then p(x,y) = p(x) p(y), and therefore the value of AMI is 0: 

 

 

(3.12) 

 
Utility toolpack (provided by Durga Lal Shrestha) is a very convenient tool to do 
correlation and AMI analysis. In this study, Utility toolpak was used to analyze the 
correlation and AMI between SPM and Tbss with different time lags. As shown in 
Figure 3.14, Tbss with nine hours lag (Tbss-9) gives the highest AMI (0.347) with SPM. 
Tbss with eleven hours lag (Tbss-11) gives the highest correlation (0.508) with SPM. 
By considering both correlation and AMI analysis, Tbss with lag 9, 10 and 11 hours are 
selected as the input variables for the ANN model in this study. 
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Figure 3.14 AMI and correlation of SPM and Tbss with time lags. 

 
Figure 3.15 shows that Wep without any time lag gives the highest AMI and correlation 
with SPM. Thus, SPM can be expressed as Eq. 3.13: 
 
                                    SPM = f (Tbss-9, Tbss-10, Tbss-11, Wep)                             (3.13) 
 
where Tbss-9, Tbss-10 and Tbss-11 represents Tbss with 9, 10 and 11 hours lag 
respectively. 
 

 
Figure 3.15 AMI and correlation of SPM and Wep with time lags. 

3.6.6 Data transformation 

Most ML methods perform well when data has a distribution close to normal (Pyle, 
1999). However, this is often not the case in practice. It calls for data transformation to 
adjust the distribution of data closer to normal. Data transformation method can be done 
in both linear and non-linear way. Non-linear data transformation may distort the 
natural relationship between the nature variables because the high and low ranges of the 
variable are squashed during non-linear data transformation. Zero mean and unit 
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variance is a popular and effective linear transformation method: 

                                                             ' =X X X
σ
−                                                  (3.14) 

where X is original data, 'X  is the transformed data, X  is mean value of X and σ is the 
standard deviation of X. Input variables are transformed to zero mean and unit variance 
in this study. 

3.6.7 Data partitioning and stormy, non-stormy period definition 

Data need to be partitioned into training, cross-validation and testing datasets 
maintaining a statistical homogeneity (Bhattacharya 2005b). In other words, the mean 
and standard deviation of each dataset should be closed to each other. The choosing of 
percentage of training, cross-validation and testing datasets is somewhat arbitrary, and 
data are partitioned to 60%, 15% and 25% for training, cross-validation and testing data 
respectively in this study. Table 3.1 gives the statistics of training, cross validation and 
testing data of SPM. The mean value of testing data is quite far away from mean vaule 
of training and cross-validation data. Standard deviation of each dataset is also quite 
different.  
 
As shown in Figure 3.16, SPM value is much higher during winter than in summer. So 
the mean value of SPM in testing set is higher than the mean of training and cross-
validation sets. This phenomenon is due to the seasonal effect. Fine sediments are 
buffered in the seabed during calm weather conditions in summer, and are mobilized 
during storm conditions in winter.  
 

Table 3.1 Statistics of training, cross validation and testing datasets 
SPM Training Cross-validation Testing 

Mean  15.4 14.3 25.0 

Std*  11.6 3.9 5.3 
                                                                                            * Standard deviation 
In order to capture the seasonal effect in the ANN model, it calls for a cut-off of stormy 
and non-stormy period. Then simulations will be given to stormy and non-stormy period 
separately. This approach will avoid high variances of mean and standard deviation in 
training, cross-validation and testing dataset. 
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Figure 3.16 SPM for training, cross validation and testing at IJmuiden in 2000. 
However, there are no clear rules to define stormy and non-stormy period. Wave height 
is always large when a storm happens. So the definition of stormy and non-stormy 
periods is based on the classification of Hs. 
 

 
Figure 3.17 Definition of stormy and non-stormy periods 

 
In this study, it is assumed that a storm period is a time period with a starting and 
ending Hs equal to 1m and peak Hs is at least 2.5m (Figure 3.17) and the remainders 
belong to non-stormy period. Figure 3.18 shows Hs with corresponding SPM along the 
original time series. We can find that in most of the instances, the SPM value is high 
when a defined storm happens. It needs to be pointed out that such kind of definition of 
storm and non-storm is arbitrary and the values of Hs used to define storm in this study 
(1m and 2.5m) are flexible. Sensitivity analysis of choosing storms should be 
investigated as well. Definitions of storms and values of Hs to be used may be different 
if the results differ from the reality. However, in this study, this definition of stormy and 
non-stormy periods help to build a more reasonable ANN models and the model 
performances are improved. 
 

 
Figure 3.18 Hs and corresponding SPM along the original time series at IJmuiden in 2000. 

 
SPM in both stormy and non-stormy periods are shown in Figure 3.19 and Figure 3.20. 
In order to remove the influence of pervious storms, the first storm is discarded in this 
study. After cutting off the storms and non-storms, the SPM value is limited into a 
narrower range for each model. The variance is not that high which is helpful to choose 
training, cross-validation and testing datasets and the model accuracy is improved as 
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expected. 

 
Figure 3.19 SPM in stormy periods at IJmuiden in 2000. 

 

 
Figure 3.20 SPM in non-stormy periods at IJmuiden in 2000. 

3.6.8 Building ANN models and analyzing the results  

As mentioned above, input data for building ANN model are smoothed and transformed; 
stormy and non-stormy periods are defined. In this section, ANN models are built under 
different scenarios; model performances are presented and results are discussed as well. 
 
ANN model are firstly built using data without any transformation and this model is 
named as M1 in this study. Then ANN model is built with data transformed to zero 
mean and unit variance and this model is denoted as M2 in this study. Table 3.2 shows 
the performance of M1 and M2. By comparing predicted SPM from both models, it 
shows that M2 gives better performance than M1. 
 

Table 3.2 Comparison of model performance between M1 (ANN model without using data 
transformation) and M2 (ANN model with data transformed to zero mean and unit variance). 

Model Performance M1 M2 
MSE [-] 62.70 46.98 
NMSE [-] 2.20 1.65 
MAE [mg/L] 6.71 5.50 
Min Abs Error [mg/L] 0.00 0.00 
Max Abs Error [mg/L] 23.30 20.80 
r [-] 0.66 0.67 
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where MSE represents mean square error; NMSE is normalized mean square error 
which is expressed as MSE divided by variance of desired output; MAE is mean 
absolute error; Min Abs Error and Max Abs Error are the minimum and maximum of 
the absolute error respectively; r is the correlation coefficient between predicted SPM 
and desired SPM. 
 
Figure 3.21 plots the predicted SPM from both models. Generally speaking, M2 gives 
better prediction of SPM than M1. However, still several discrepancies appear in the 
peaks. The reason could be that training, cross-validation and testing sets do not 
maintain statistical homogeneity well due to the seasonal effects.  
 

 
Figure 3.21 Comparison of predicted SPM from M1 (ANN model without using data 

transformation), M2 (ANN model with data transformed to zero mean and unit variance) and 
the Southern North Sea model. 

 
ANN models are then built for stormy and non-stormy periods separately. And these 
two models are named as M3 and M4 respectively in this study.  
 
Table 3.3 Model performance of M3 (ANN model for stormy periods) and M4 (ANN model for 

non-stormy periods). 
 Model Performance M3 M4 

MSE [-] 5.61 1.59 
NMSE [-] 0.43 0.39 
MAE [mg/L] 1.80 0.94 
Min Abs Error [mg/L] 0.00 0.00 
Max Abs Error [mg/L] 7.25 3.63 
r [-] 0.80 0.86 

  
Table 3.3 shows the performances of M3 and M4. MSE of both models are decreased 
dramatically comparing with MSE in M1 and M2. And also the correlation between 
SPM from the Southern North Sea model and SPM from M3 and M4 rise up to more 
than 0.8. 
 
Figure 3.22 and Figure 3.23 plot the predicted SPM from the Southern North Sea model, 
M3 and M4. The prediction of SPM is improved after cutting off stormy and non-
stormy periods. Discrepancies of SPM in M3 and M4 could be interpreted by other 
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processes influencing SPM concentration in addition to Tbss and Wep. For example, 
SPM could be diffused along the vertical direction in the water column, so local water 
depth could affect SPM concentration as well. However, water depth in one location is 
almost unchanged value so it can not be taken as a variable for the ANN model. Model 
performance of M4 could be improved further if non-stormy periods are separated into 
calm periods and intermediate periods. However, this would increase the complexity of 
the model structure so is not taken into account in this thesis. 
 

 
Figure 3.22 Comparison of predicted SPM from M3 (ANN model for stormy periods) and the 

Southern North Sea model. 
 

 
Figure 3.23 Comparison of predicted SPM from M4 (ANN model for non-stormy periods) and 

the Southern North Sea model. 

3.6.9 Sensitivity analysis 

Sensitivity analysis (SA) is the study of how the variation in the output can be 
apportioned, qualitatively or quantitatively, to different sources of variation in the input 
of a model. Sensitivity analysis is important in model results analysis. It investigates the 
robustness of the model and gives us confidence that the input variables used in the 
model are appropriate. 
 
In this study, each input variable used in the model are examined. And this research was 
broken down into three blocks. 
 
The first block explores how Wep influenced the model results. The ANN model is 
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rebuilt without choosing Wep as input for stormy period. And this model is named as 
M5 in this study. 
 
                                SPM(stormy) = f (Tbss-9, Tbss-10, Tbss-11)                               (3.15) 
 
The second block explores how Tbss influenced the model results. The ANN model was 
rebuilt by removing Tbss-11 from input sets for stormy period and this model is denoted 
as M6.  
 
                                SPM(stormy) = f (Tbss-9, Tbss-10, Wep)                                  (3.16) 
 
In the third block, ANN model is rebuilt for stormy period using Tbss-9, ΔTbss, Wep as 
inputs. This model is defined as M7 in this thesis.  
 
                                SPM(stormy) = f (Tbss-9, ΔTbss, Wep)                                       (3.17) 

 
where ΔTbss = (Tbss-9) – (Tbss-10), which is the change of Tbss. 

 
 

Table 3.4 Comparison of model performances under different scenarios for stormy periods. 
Model Performance M3 M5 M6 M7 

MSE [-] 5.61 9.38 6.63 7.32 
NMSE [-] 0.43 0.71 0.50 0.56 
MAE [mg/L] 1.80 2.36 1.94 2.08 
Min Abs Error [mg/L] 0.00 0.00 0.00 0.00 
Max Abs Error [mg/L] 7.25 9.57 7.23 7.19 
r [-] 0.80 0.54 0.73 0.69 

 
Table 3.4 shows the model performances under different scenarios in the stage of 
sensitivity analysis. For better outlook of predicted SPM from M3, M5, M6 and M7, the 
plots of predicted SPM from each model is split into three parts and are shown in Figure 
3.24, Figure 3.25 and Figure 3.26 respectively. 
 

 
Figure 3.24 Predicted SPM from each model for stormy periods in the stage of sensitivity 

analysis (Part I). 
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Figure 3.25 Predicted SPM from each model for stormy periods in the stage of sensitivity 

analysis (Part II). 
 

 
Figure 3.26 Predicted SPM from each model for stormy periods in the stage of sensitivity 

analysis (Part III). 
 

M5 gives highest mean square error (9.38) and the worst prediction of SPM from the 
plots. This implies that Wep is a significant variable for building ANN model. Taking 
Wep into consideration gives better prediction of SPM in the ANN model for that Wep 
captures the influences of the previous waves to SPM concentration. M6 and M7 do not 
improve the model results. M3 gives the best performance of the ANN model which 
implies the input variables used in M3 is a good choice. Selecting Tbss with more time 
lags may increase the model accuracy further but it is at the cost of a more complex 
model structure so that it is not taken in this study. 
 
Sensitivity analysis is also done for non-stormy periods. The way in investigating input 
variables for non-stormy periods is the same with that in stormy periods. Three models 
are built as below: 
 
                              SPM(non-stormy) = f (Tbss-9, Tbss-10, Tbss-11)                          (3.18) 

                                      
                              SPM(non-stormy) = f (Tbss-9, Tbss-10, Wep)                               (3.19) 
                     

 
                              SPM(non-stormy) = f (Tbss-9, ΔTbss, Wep)                                  (3.20)                  
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These three models are named as M8, M9 and M10 respectively in this thesis. 
 
Table 3.5 Comparison of model performances under different scenarios for non-stormy periods. 

Model Performance M4 M8 M9 M10 
MSE [-] 1.59 6.12 2.93 3.18 
NMSE [-] 0.39 1.51 0.72 0.78 
MAE [mg/L] 0.94 2.06 1.36 1.52 
Min Abs Error [mg/L] 0.00 0.01 0.00 0.00 
Max Abs Error [mg/L] 3.63 6.71 4.94 4.63 
r [-] 0.86 0.64 0.83 0.73 

 
Table 3.5 shows the model performances under different scenarios in the stage of 
sensitivity analysis. For better outlook of predicted SPM from M8, M9 and M10, the 
plots is split into two parts and are shown in Figure 3.27 and Figure 3.28. M8 gives 
highest mean square error (6.12) and the worst prediction of SPM. M4 gives the best 
performance similar to that in stormy periods; results show the importance of Wep for 
predicting SPM in non-stormy periods.  
 

 
Figure 3.27 Predicted SPM from each model for non-stormy periods in the stage of sensitivity 

analysis (Part I). 
 

 
Figure 3.28 Predicted SPM from each model for non-stormy periods in the stage of sensitivity  

analysis (Part II). 
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3.7 Conclusions and Discussions  

In this chapter, ANN models are built for predicting SPM concentration at IJmuiden. By 
analyzing the physical processes of sediment transport and analyzing outputs from the 
Southern North Sea model, Tbss was taken as an important input variable because it is 
the main driving force for influencing SPM concentration. In order to capture the 
influence of previous waves to SPM concentration, Wep was used as another variable 
and sensitivity analysis showed the importance of Wep in predicting SPM.  
 
Data used for building the ANN model are smoothed out by 24 hours moving average to 
reduce variance along the data range due to diurnal tidal movement. Tbss and Wep are 
transformed to zero mean and unit variance to adjust the distribution of data closer to 
normal and transformation of data improved the model performance. In order to capture 
the seasonal effect, stormy and non-stormy periods were defined according to Hs and 
models were built separately for stormy and non-stormy periods. Consequently the 
predictions of SPM are improved. Sensitivity analysis was done to investigate the 
performance of input variables.  
 
Model results analysis shows a strong possibility of predicting SPM by surrogate 
models. However, several limitations in the study should be pointed out as follow: 
 

 
 When defining Wep, we assumed that waves within the last two weeks (336 hours) 

give effects to the current SPM concentration and no influence any more of the 
wave energy before two weeks ago. Furthermore, Wep is a weighted sum of wave 
energy. The weights used in this study are determined by a linear function. These 
two assumptions could be examined more carefully. Optimization approaches 
could be applied in defining Wep. 

 
 The stormy and non-stormy periods were defined in an arbitrary way in this study. 

It needs to be mentioned that this definition may show failure at other locations or 
using data of other years. The critical values of Hs for defining stormy and non-
stormy periods (1m and 2.5m in this study) are flexible; values could be changed if 
the definition is quite different from the reality.  

 
 Surrogate model performance could be enhanced by selecting more parameters in 

addition to Tbss and Wep. 
 
In the following chapter, the concept of parsimonious model is introduced and a simpler 
parsimonious model for predicting SPM is presented.  
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Chapter 4  Parsimonious modelling of fine sediment dynamics 

4.1 Introduction 

In statistics, ‘parsimonious’ refers to simplicity. Therefore a parsimonious model refers 
to the simplest feasible model with the fewest possible number of variables (From 
Wikipedia). Parsimonious modelling aims at achieving maximally simple or compact 
models. Parsimonious models are helpful for judging hypotheses and are attractive for 
research purposes because they are transparent, requiring less computation time and 
easy to interpret the results. The purpose of using parsimonious models in research is 
trying to seek the most essential character of physical processes, which is very useful 
for understanding the nature processes and for decision making.  
 
In this chapter, a linear regression method is applied to build parsimonious models for 
predicting SPM concentration. The parsimonious model is firstly built at IJmuiden with 
Tbss and Wep as input variables. Then a series of parsimonious models with same 
model structure are built at other locations in the Southern North Sea area. 

4.2 Building parsimonious model at IJmuiden 

The concept of parsimonious model is building the feasible models with as less input 
variables as possible. So in this study, only Tbss-9 and Wep are selected as the inputs.  
Data for building the parsimonious model are smoothed out with 24 hours moving 
average and then transformed to zero mean and unit variance. In order to capture 
seasonal effects, stormy and non-stormy periods are defined according to the definition 
of storms in Chapter 3.6.7. Linear regression method is applied to build the 
parsimonious models in this study. MS-Excel provides linear regression method to 
analyze data, so the parsimonious models are built by Regression function of the Data 
Analysis toolpack in this study. The structure of the parsimonious model can be 
expressed as: 
 
                                 SPM = a*Tbss-9 + b*Wep + c                                                   (4.1) 

 
where Tbss-9 is total bed shear stress with 9 hours lag, Wep is wave energy past for 
capturing the effect on SPM by pervious waves, a and b are the coefficients of Tbss-9 
and Wep, c is constant. 
 
Parsimonious models are built for stormy and non-stormy periods separately in the 
following sections. 

4.2.1 Parsimonious model for stormy periods at IJmuiden 

The premise behind building parsimonious model with linear regression methods is that 
SPM has a similar linear relationship with Tbss and Wep. In order to examine the 
feasibility of predicting SPM with Tbss and Wep in a linear way, parsimonious models 
are firstly built for each storm and then the possibility of building the parsimonious 
model for the whole stormy periods is explored. 

41  
 
 

 



 

There are totally fifteen storms in stormy periods. Figure 4.1 shows SPM, Tbss and 
Wep value in each storm. Parsimonious model is built for each storm and the results are 
shown in Table 4.1.  

 

 

 

1         2            3           4       5       6         7     8    9     10       11        12     13   14        15 

SPM
 (m

g/L)

Figure 4.1 Plot of SPM between Tbss and Wep for all fifteen storms at IJmuiden 
 
Table 4.1 Performance of parsimonious model for each storm; a, b, c are coefficients in Eq. 4.1. 

Storm 
No. a [-] b [-] c [-] 

Correlation between predicted SPM 
from Parsimonious model and the 

Southern North Sea model [-] 
1 0.34 3.02 22.67 0.80 
2 1.69 1.02 24.43 0.90 
3 3.92 0.15 24.73 0.87 
4 5.07 -3.55 19.25 0.86 
5 2.58 17.90 39.57 0.97 
6 1.65 3.56 27.84 0.84 
7 8.56 1.68 24.95 0.73 
8 2.63 5.21 19.44 0.98 
9 2.14 5.73 13.24 0.98 

10 0.07 2.18 12.13 0.76 
11 2.79 1.86 18.89 0.57 
12 1.14 6.21 34.23 0.26 
13 4.55 -3.68 35.63 0.68 
14 1.10 2.92 31.83 0.98 
15 8.45 -6.59 31.79 0.87 

All storms 2.69 0.22 24.67 0.34 
 

The parsimonious model for all storms does not perform well and correlation between 
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SPM from the Southern North Sea model and parsimonious model is only 0.34. 
However, the performance is improved for most of the single storms. Parsimonious 
model for storm 8, 9, 14 give the best performance and correlation between SPM from 
the Southern North Sea model and parsimonious model is 0.98. Simulation of storm 12 
gives the worst performance. Figure 4.2 and Figure 4.3 show the performance of 
parsimonious model for storm 14 and 12 respectively. Most parsimonious models give 
acceptable performances except for storm 11, 12 and 13, which means that the linear 
relationship between SPM and Tbss, Wep for storm 11, 12 and 13 is not clear.  From 
Figure 4.1, we can see that SPM is not related too much with Tbss and Wep for storm 
11, 12 and 13. 
 

 
Figure 4.2 Predicted SPM from the parsimonious model compared with SPM predicted by the 

Southern North Sea model for storm 14 at IJmuiden. 
 

 
Figure 4.3 Predicted SPM from the parsimonious model compared with SPM predicted by the 

Southern North Sea model for storm 12 at IJmuiden. 
 

In order to improve the prediction of SPM by parsimonious model, storm 11, 12 and 13 
are removed from the dataset. Storm 1 to storm 7 are selected to build the parsimonious 
model and storm 8, 9, 10, 14 and 15 are choose as testing data to examine the model 
performance. Based on the training data, the parsimonious model for stormy periods at 
IJmuiden is shown as: 
 
                               SPM = 2.62*Tbss-9 + 1.89*Wep + 19.8                                       (4.2) 
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This model is tested by storm 8, 9, 10, 14 and 15 respectively and the results are shown 
in Table 4.2. Figure 4.4 shows the testing results. 
 

Table 4.2 Testing result of parsimonious model for each storm 

Storm  
No. 

Correlation between predicted SPM from 
Parsimonious model and the Southern 

North Sea model [-] 

8 0.95 
9 0.94 
10 0.68 
14 0.96 
15 0.74 

 

 
Figure 4.4 Testing results of parsimonious model for stormy periods at IJmuiden. 

 
The parsimonious model performs well for storm8, 9 and 14 while a model result for 
storm 10 is not satisfactory. The reason is that in parsimonious model, SPM is predicted 
by Tbss and Wep in a linear way. Model performance is largely depended on the linear 
relationship of SPM and input variables (Tbss and Wep) and consequently depended on 
the values of coefficients a, b and c. Predictions of SPM could be satisfactory for a 
single storm, however, it is not easy to fix values of a, b and c to fulfil good predictions 
of SPM for all storms. This can also be interpreted by Table 4.1 also. Parsimonious 
models for most storms give good performance but the values of a, b, c for each storm is 
quite different. For example, both storm5 and storm8 give high correlations between 
predicted SPM and desired SPM. But a, b, c for storm5 is 2.58, 17.90, 39.57 while for 
storm8 is 2.63, 5.21 19.44. These differences are mainly due to the large variation of 
SPM values in the stormy periods. 

4.2.2 Parsimonious model for non-stormy periods at IJmuiden 

Parsimonious model is built for non-stormy periods in this section. 75% of the data are 
used to build the model and 25% is used for testing. Eq. 4.3 gives parsimonious model 
for non-stormy periods. 
 
                           SPM = 0.79 * Tbss-9 + 2.23 * Wep + 6.41                                    (4.3) 
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Figure 4.5 Testing results of parsimonious model for non-stormy periods at IJmuiden. 

 
Figure 4.5 shows the model performance with testing data. The correlation between 
predicted SPM from parsimonious model and the Southern North Sea model is 0.86.  

4.2.3 Comparison of parsimonious model with surrogate model 

Both parsimonious model and surrogate model are applied to predict SPM concentration 
at IJmuiden. In this section, we made a comparison of these two models and explore the 
main differences between them. 
 

Table 4.3 Comparison of surrogate model and parsimonious model 

  Parameters for building 
model Input variables Method 

Surrogate model Tbss, Wep Tbss-9, Tbss-10, Tbss-11, Wep ANN 

Parsimonious model Tbss, Wep Tbss-9, Wep Linear regression

 
Table 4.3 shows the parameters, input variables and methods used for building 
surrogate models and parsimonious models. There are only two parameters and four 
input variables were used to build surrogate model, which make the surrogate model 
seem to be ‘parsimonious’ compared with process-based model. However, 
parsimonious model was built with only two inputs and simple linear regression method, 
for which the model is simpler. 
 
For stormy periods, surrogate model gave an acceptable simulation of SPM and the 
correlation between predicted SPM and target SPM is 0.80. However, parsimonious 
model could predict SPM for one single storm but becoming difficult to capture the 
whole stormy periods.  
 
For non-stormy periods, parsimonious model gave a similar simulation of SPM 
compared with surrogate model. Figure 4.6 shows the predicted SPM by parsimonious 
model and surrogate model.  
 
The main advantage of parsimonious model is that SPM can be calculated very easily 
after knowing Tbss and Wep, which is convenient and transparent. But the premise 
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behind the parsimonious model is linear relationship between SPM and input variables. 
Model may show failures if this is not the case. Besides, parsimonious model may 
perform poor when data has large variations. 

 
Figure 4.6 Testing results of both parsimonious model and surrogate model 

 for non-stormy periods at IJmuiden. 

4.2.4 Conclusions 

In this section, the possibility of building parsimonious model to prediction SPM 
concentration at IJmuiden is explored. Parsimonious models are built for stormy periods 
and non-stormy periods separately. 
 
In stormy periods, parsimonious model perform well for single storm but the model 
performance decreased after adding all storms together. By analyzing parsimonious 
model performance for each storm, those storms give poor predictions of SPM are 
removed from the stormy datasets. Then 7 storms are selected to build the parsimonious 
model for stormy periods and 5 storms are used as testing data. Results show erroneous 
of parsimonious model to predict SPM for storm 10. The reason it that the parameters of 
parsimonious model a, b and c are quite different for each storm, it is not easy to fix 
values of a, b and c to meet good predictions of SPM for all storms together. This is 
mainly due to the SPM value in stormy periods has a larger range from about 10 to 44 
mg/L, SPM is changing dramatically from one storm to another, so that linear 
regression method is not robust enough to capture the trend of SPM changing for all 
storms. In non-stormy periods, SPM ranges from about 5 to 20mg/L, belonging to a 
narrower range. The results show the possibility to build parsimonious model in a linear 
way to predict SPM for non-stormy periods. 
 
It seems surprising for parsimonious models of both stormy and non-stormy periods that 
SPM is non-zero value when Tbss and Wep equal to zero in Eq. 4.2 and Eq. 4.3. The 
reason could be that there are other potential processes (such as fresh water discharge, 
wind effect, etc) contributing to SPM concentration in addition to total bed shear stress. 
Furthermore, the process of sediment dynamics is quite complex in the physical systems. 
SPM concentration in one location could be affected by local water depth and also by 
SPM at other locations nearby, which are not taken into account in this study. In the 
following sections, parsimonious models are built at many other locations in the 
Southern North Sea area. 
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4.3 Building parsimonious models at other locations. 

In order to examine the applicability of parsimonious model for perdiction SPM 
concentration at other locations in the Southern North Sea, parsimonious model is firstly 
built at a location close to IJmudien. Noordwijk 1.5 km is selected for investigating the 
performance of parsimonious model firstly. In order to explore influence on SPM 
concentration by local water depth, a series of parsimonious models are built further at 
Noordwijk with different distances to the coast. As it is shown in Figure 4.7, grids with 
a cross are observation stations in the Southern North Sea model.  
 

 
 

Figure 4.7 Distribution of observation stations in the Southern North Sea. 
 

    Table 4.4 shows the local water depth at IJmuiden and Noordwijk. Noordwijk 1.5 km 
means this location is 1.5 km far away from the coast and Nooedwijk 3/5 km mean this 
location is about 3 to 5 km away from the coast. It is obvious that water depth increases if 
the location is further offshore. Parsimonious models are built at each location in the 
following sections. 

 
Table 4.4 Local water depth at IJmudien and Noordwijk 

Locations Local water depth (m) 
IJmuiden  7~8 
Noordwijk 1.5 km 8.5~9.5 
Noordwijk 3/5 km 15.5~16.5 

Noordwijk 10 km 19~19.5 

Noordwijk 30 km 23~23.5 

Noordwijk 60 km 27.4~27.8 
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4.3.1 Parsimonious model at Noordwijk 1.5km (water depth = 8.5-9.5m) 

The procedure of processing data in this part is exactly the same with that at IJmuiden. 
Tbss-9 and Wep are selected as the inputs for building parsimonious model. The model 
structure is the same as shown in Eq. 4.1. Figure 4.8 shows SPM with corresponding 
Tbss-9 and Wep at Noordwijk 1.5 km. Parsimonious models are built for stormy and 
non-stormy periods separately. 
 

 
Figure 4.8 Plot of SPM between Tbss-9, and Wep at Noordwijk 1.5 km. 

 
For stormy periods, there are totally 7 storms and parsimonious model is built for each 
of them. The results are shown in Table 4.5. Parsimonious model for most storms give 
very good simulation of SPM. Figure 4.9 gives an example of the simulation for storm 1.  
 

Table 4.5 Performance of parsimonious model for each storm at Noordwijk 1.5 km; 
a, b, c are coefficients in Eq. 4.1. 

Storm 
No. a [-] b [-] c [-] 

Correlation between predicted SPM 
from Parsimonious model and the 

Southern North Sea model [-] 
1 0.53 1.57 23.78 0.99 
2 -0.43 1.43       11.83 0.94 
3 -0.94 1.68 6.60 0.72 
4 0.12 1.37 8.70 0.99 
5 -0.68 2.55 6.02 0.88 
6 0.67 8.60 15.13 0.98 
7 -0.32 4.34 31.38 0.99 

 
Storm 3 is then removed out form the stormy periods. Storm 1, 2 and 4 are used to build 
the parsimonious model and storm 5, 6 and 7 are used to test the model performance. 
Finally, the parsimonious model for stormy periods at Noordwijk 1.5 km is shown as: 
  
                       SPM = -1.09 * Tbss9 + 2.66 * Wep+16.6                                            (4.4) 
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Figure 4.9 Parsimonious model performance for storm 1 at Noordwijk 1.5 km. 

 
Table 4.6 Testing result of parsimonious model for each storm 

Storm  
No. 

Correlation between predicted SPM from 
Parsimonious model and the Southern 

North Sea model [-] 

5 0.87 
6 0.89 
7 0.92 

 
As it is shown in Table 4.6, the correlation between predicted SPM from parsimonious 
model and the Southern North Sea model is acceptable for each single storm. Figure 
4.10 plots the predicted SPM from the parsimonious model for all storms. 
 

 
Figure 4.10 Testing results of parsimonious model for stormy periods at Noordwijk 1.5 km. 

 
Parsimonious model for non-stormy periods at Noordwijk 1.5 km is shown as follows: 
 
                             SPM = -0.15 * Tbss9 + 3.27 * Wep + 4.50                                      (4.5) 

 
Figure 4.11 shows the predicted SPM from parsimonious model compared with SPM 
from Southern North Sea model for non-stormy periods at Noordwijk 1.5 km. The 
correlation between them is 0.72. 
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Figure 4.11 Testing results of parsimonious model for non-stormy periods at Noordwijk 1.5 km. 

4.3.2 Parsimonious model at Noordwijk 3/5 km (water depth = 15.5-16.5m) 

Parsimonious model is built at Noordwijk which is further offshore and parsimonious 
models are built for stormy and non-stormy periods separately. 
 
There are totally 10 storms in stormy periods and parsimonious model is built for each 
of them. The results are shown in Table 4.7. Most of the parsimonious model performs 
unsatisfactory. Therefore the parsimonious model can not be applied at Noordwijk 3/5 
km to predict SPM for storm periods. The reason is that the linear relationship between 
SPM and Tbss, Wep is quite poor so that it is impossible to predict SPM by Tbss and 
Wep in a linear way. This could be interpreted better from Figure 4.12. 
 

Table 4.7 Performance of parsimonious model for each storm at Noordwijk 3/5 km; 
a, b, c are coefficients in Eq. 4.1. 

Storm 
No. a [-] b [-] c [-] 

Correlation between predicted SPM from 
Parsimonious model and the Southern 

North Sea model [-] 

1 -4.26 -1.9 21.97 0.22 
2 0.28 -5.01 39.26 0.64 
3 1.65 1.65 18.05 0.68 
4 -1.1 1.58 12.49 0.73 
5 -1.23 1.46 8.08 0.57 
6 0 1.31 7.3 0.99 
7 -0.06 1.56 3.85 0.99 
8 -1.54 2.49 7.92 0.66 
9 -1.59 5.06 28.01 0.26 

10 -1.33 5.87 11.13 0.98 
 

There is almost no relationship between SPM and Tbss, neither for SPM and Wep from 
the plot. The results imply that the correlation between SPM and Tbss decreased quite a 
lot for stormy periods in the area with deeper water depth. 
 

50  
 
 

 



 

 
Figure 4.12 Plot of SPM between Tbss and Wep for stormy periods at Noordwijk 3/5 km. 

 
The main reason is that wave energy generated near the water surface will be dissipated 
on its way transmitting to the bottom in areas with deep water depth. So the generated 
bed shear stress is not high enough to pick up sediment particles and consequently SPM 
value is low and almost unchanged. Furthermore, with the increase of water depth, 
horizontal exchange of sediments by advection becomes dominant compared with 
sediment diffusion along the vertical direction. Sediment picked up at the bottom will 
be both diffused vertically and advected in the horizontal direction so that the SPM 
value is low. The relationship between Tbss and SPM concentration thus is not that 
dramatic in the area with deep water depth.  
 
Parsimonious model for non-stormy periods at Noordwijk 3/5 km is shown as follows: 
 
                                 SPM = -1.06 * Tbss9 + 5.4 * Wep + 6.9                                      (4.6) 

 
Figure 4.13 shows the predicted SPM from parsimonious model and compared with 
SPM from Southern North Sea model for non-stormy periods at Noordwijk 3/5 km. The 
correlation between them is 0.68. 
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Figure 4.13 Testing results of parsimonious model for non-stormy periods at Noordwijk 3/5 km. 

4.3.3 Parsimonious model at Noordwijk 10 km (water depth = 19-19.5m) 

Parsimonious models are built at Noordwijk 10km for stormy and non-stormy periods 
separately in this section. 
 
There are 9 storms in stormy periods and parsimonious model is built for each of them. 
The results are shown in Table 4.8. Similar to the results at Noordwijk 3/5km, most of 
the parsimonious model performs unsatisfactory. Figure 4.14 shows the plot of SPM 
between Tbss and Wep. The relationship of SPM between Tbss is vague and 
parsimonious model is not feasible for stormy period at Noordwijk 10km. 
 

Table 4.8 Performance of parsimonious model for each storm at Noordwijk 10 km; 
a, b, c are coefficients in Eq. 4.1. 

Storm 
No. a [-] b [-] c [-] 

Correlation between predicted SPM from 
Parsimonious model and the Southern 

North Sea model [-] 

1 -4.26 -1.9 21.97 0.86 
2 0.28 -5.01 39.26 0.76 
3 1.65 1.65 18.05 0.61 
4 -1.1 1.58 12.49 0.55 
5 -1.23 1.46 8.08 0.99 
6 0 1.31 7.3 0.98 
7 -0.06 1.56 3.85 0.75 
8 -1.54 2.49 7.92 0.55 
9 -1.59 5.06 28.01 0.78 

 

 
Figure 4.14 Plot of SPM between Tbss and Wep for stormy periods at Noordwijk 10 km. 

 
 

Parsimonious model for non-stormy periods at Noordwijk 10 km is shown as follows: 
 

 
                              SPM = 0.79 * Tbss9 + 3.15 * Wep + 3.73                                      (4.7) 
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Figure 4.15 shows the predicted SPM from parsimonious model and compared with 
SPM from Southern North Sea model for non-stormy periods at Noordwijk 3/5 km. The 
correlation between them is 0.58. 
 

 
Figure 4.15 Testing results of parsimonious model for non-stormy periods at Noordwijk 10 km. 

4.3.4 Parsimonious model at Noordwijk 30 km (water depth =23-23.5m) 

Parsimonious models are then built at Noordwijk 30km. Figure 4.16 shows SPM, Tbss 
and Wep at Noordwijk 30km for all data. SPM is very low in this location mainly 
because of the horizontal advection of SPM. 
 

 
Figure 4.16 Plot of SPM between Tbss and Wep at Noordwijk 30km. 

 
Figure 4.17 shows the plot of SPM with corresponding Wep and Tbss for stormy period. 
Visual inspection show that SPM is not connected well with Tbss and Wep for most of 
the instances. So parsimonious model is only built for non-stormy period. 
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Figure 4.17 Plot of SPM between Tbss and Wep for stormy periods at Noordwijk 30 km. 
 
Parsimonious model for non-stormy periods at Noordwijk 30 km is shown as follows: 
 
                             SPM = -0.27 * Tbss9 + 0.82 * Wep + 1.91                                      (4.8) 
 
Figure 4.18 shows the predicted SPM from parsimonious model and compared with 
SPM from Southern North Sea model for non-stormy periods at Noordwijk 30 km. The 
correlation between them is 0.55. 
 

 
Figure 4.18 Testing results of parsimonious model for non-stormy periods at Noordwijk 30 km. 
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4.3.5 Parsimonious model at Noordwijk 60 km (water depth = 27.4-27.8m) 

 
Figure 4.19 Plot of SPM between Tbss and Wep at Noordwijk 60km. 

 
Figure 4.19 shows the plot of SPM between Tbss and Wep at Noordwijk for all data. 
SPM has a decreasing trend along time while Tbss and Wep have frequent changes. 
SPM and Tbss are unconnected for most of the instances. So it is meaningless to cut 
stormy and non stormy periods. It is difficult to build a parsimonious model at 
Noordwijk 60km. 

4.4 Conclusions 

In this chapter, a parsimonious model is firstly built at IJmuiden. In order to explore the 
influence on SPM due to local water depth, a series of parsimonious models are then 
built at Noordwijk 1.5km, 3/5km, 10km, 30km and 60km respectively. 
 
For stormy periods, parsimonious models perform very well for most of the single 
storms at IJmuiden, which implies that SPM has a strong relationship with Tbss and 
Wep for a single storm. However, parsimonious model for all storms shows failure to 
predict SPM. The main reason is that SPM covers a large range, varying from about 10 
to 44 mg/L in stormy periods. Therefore, the variation of SPM is respectively large. It is 
difficult for parsimonious model to capture the changing of SPM in a linear way. This is 
also supported by quite different values of coefficient a, b and c for each storm. In order 
to build a parsimonious model to predict SPM in stormy periods, storms with poor 
model performance are discarded. Then 7 storms are used to build the model and 5 
storms are used as testing data. Testing results show that this parsimonious model can 
be applied for 4 of the testing storms to predict SPM. The unsatisfactory of 
parsimonious model performance for a single storm may due to other processes 
influencing SPM concentration or errors of process-based model output. 
 
Parsimonious model is also viable at Noordwijk 1.5 km where a similar water depth 
with IJmuiden has. At other locations further offshore, performance of parsimonious 
model is decreasing, even for most of the single storm. The critical reason is that at 
locations with deeper water depth, SPM generated by Tbss will be advected by 
horizontal exchange, together with the diffusion along the vertical direction, the SPM 
near the bottom is lower and the changing of SPM is not very dramatic while the Tbss is 
still large and changing frequently. The relationship of SPM and Tbss is distorted, 
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which leads to the failure of building parsimonious model for stormy periods at these 
locations.  
 
For non-stormy periods, SPM ranges from about 5 to 20mg/L at IJmuiden, belonging to 
a narrower range. The results show the possibility to build parsimonious model in a 
linear way to predict SPM for non-stormy periods at IJmuiden. With increasing the 
water depth, model performance has a decreasing trend. The correlation between SPM 
predicted by parsimonious model and the Southern North Sea model for non-stormy 
periods is 0.86 at IJmuiden and drops to 0.72, 0.68, 0.58 and 0.55 at Noordwijk 1.5km, 
3/5km, 10km and 30km respectively. 
 
At Noordwijk 60km, the relationship of SPM and Tbss is quite unclear. It shows 
impossibility to build parsimonious model in such locations with deep water depth. 
 
The applicability of parsimonious model for SPM prediction in the Southern North Sea 
area could be investigated further at more locations.



 

Chapter 5    Conclusions and recommendations 

The main objective of this study is to improve the prediction and understanding of fine 
sediment processes in the Dutch coastal zone. By achieving this purpose, surrogate 
models were built in Chapter 3 and parsimonious models were built in Chapter 4. By 
analyzing the results, the following conclusions have been drawn: 
 

 Results have shown a strong possibility of building the surrogate model with 
artificial neural networks to predict SPM concentration.  

 
In order to improve the model performance, data used for building surrogate 
model were smoothed out by data filter; correlation and AMI analysis were used 
to choose the most appropriate input variables; data are transformed to zero mean 
and unit variance to adjust the data distribution to normal. Model performance is 
enhanced after processing data. In order to capture the seasonal effect on SPM 
concentration, stormy and non-stormy periods were defined in this study and 
models were built for them separately. Predictions of SPM were improved 
significantly. Sensitivity analysis was applied to invest the model performance 
with different input datasets.  

 
 Parsimonious surrogate modelling was built with linear regression method for 

predicting SPM at IJmuiden. By exploring how SPM is affected by local water 
depths, a series of parsimonious models were built at Noordwijk with different 
distances to the coast.   

 
For stormy periods, parsimonious models perform very well for most of the single 
storms at IJmuiden, which implies that SPM has a strong relationship with Tbss 
and Wep for a single storm. However, parsimonious model for all storms shows 
failure to predict SPM due to the large variation of SPM for stormy periods. 
Therefore, it is difficult for parsimonious model to capture the changing of SPM 
in a linear way. Testing results showed the possibility to predict SPM for a single 
storm by parsimonious model. With increasing of water depth, the parsimonious 
model performance was reduced.  This is mainly because the SPM generated by 
Tbss is diffused and advected. Thus, the relationship of SPM and Tbss is distorted 
to illegibility. 
 
For non-stormy periods, parsimonious model performed acceptable at IJmuiden. 
The prediction of SPM became weak with increasing of the water depth due to 
the diffusion of SPM. 

 
 
The following points are recommended in the future study: 

 

 

 Wep was introduced as an input variable in this study and sensitivity analysis 
showed the effectiveness of Wep to the model performance. In this study, we 
assumed that waves within the last two weeks (336 hours) give effects to the 
current SPM concentration and no influence any more of the wave energy before 
two weeks ago. Furthermore, Wep is a weighted sum of wave energy and the 
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weights are determined by a linear function. However, these two assumptions 
need to be investigated more carefully. An optimization approach could be 
applied for future study.     
 

 Stormy and non-stormy periods were defined in an arbitrary way in this study. 
This definition may show failure at other locations or using data from other years. 
The critical values for defining stormy and non-stormy (1m and 2.5m in this 
study) are flexible; values could be changed if the definition is quite different 
from the reality.  

 
 Surrogate model performance could be enhanced by selecting more parameters in 

addition to Tbss and Wep. 
 

 Due to the characteristics of fine sediment, salinity could be another significant 
effect to the distribution of SPM concentration. This can be introduced to the 
surrogate model in the future. 
 

 The applicable of parsimonious model in the Southern North Sea could be studied 
further in more locations. 
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	Abstract 
	Sediments, particularly fine sediments, are of great importance to coastal engineering and environmental issues. However, sediment transport processes are usually not easy to simulate by models largely because of the limited knowledge of describing the nature behaviour in precise mathematical terms. Process-based models, such as Delft3D developed by Deltares, have been proved to be useful in solving this problem. However, due to the complex nature in the real word, simulation is often quite expensive (time consuming), which makes it inconvenient for some cases. Data-driven models (DDM) have been shown to be successful in solving sediment transport problems by many previous researches. However, model results are sometimes difficult to interpret due to the ‘black-box’ nature. 
	A current trend in modelling is to use a hybrid approach, combining both advantages of process-based and DDM, where different components complement each other. In order to improve the prediction of fine sediment processes in the Dutch coastal zone, a surrogate modelling was built in this study. Surrogate model is essentially a ‘model of the model’ instead of a model of a nature system. The concept of surrogate modelling in this study is using data driven techniques to approximate the process-based model and further to be used as a complement of process-based models for future prediction of SPM concentration. Artificial neural network (ANN) is applied to build the surrogate modelling with output data from the Southern North Sea model. Model results showed a strong possibility of using surrogate modelling in prediction of SPM concentration.
	Parsimonious models are attractive for research purposes because they are transparent, requiring less computation time and their results are easy to interpret. The purpose of using parsimonious models in research is trying to seek the most essential character of nature processes, which is very useful for understanding the nature processes and for decision making. Linear regression method was applied to build a parsimonious model in this study. The main idea of parsimonious model is building a model with least variables. The possibility of applying parsimonious model for SPM prediction to the Southern North Sea area was explored. Model results showed the prediction of SPM for a single storm is quite well at IJmuiden but the model performance decreased at locations further offshore. The applicability of parsimonious model for predicting SPM in the Southern North Sea needs to be investigated further at more locations.
	Keywords: surrogate model, parsimonious model, fine sediment transport, hybrid approach, DDM, linear regression, ANN, Southern North Sea model, Dutch coastal zones, Delft3D.
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