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Abstract

Recent developments in the processor architectures have led application per-
formance to reach the PetaFlop mark. The advent of MultiCore processors in the
industry has motivated many application programmers to seek for more parallelism
in the computations performed to obtain speedups. The IBM Cell processor is cer-
tainly one of them and with its unique architectural features, making it a prospec-
tive chip for scientific computing. With the current advances in bone imaging
and progress in numerical techniques, the micro structural Finite Element analysis
(FEM) of human bone for stiffness and strength assessment for individual fracture
risk prediction, with a massive potential for parallelism as become a significant
candidate for investigation in the current multicore processors. This master the-
sis work focuses on investigating the credibility of Finite Element analysis of the
human bone structure on the IBM Cell processor.
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Preface

The Master thesis was carried out as a partial fulfillment for Master of Science
(MSc) degree from Technical University Delft. This research work was done at the
Department of Computer Science (D-INFK) at ETH Zurich with the parallel com-
puting group headed by Prof. Peter Arbenz. The thesis focuses on the implementa-
tion of the finite element analysis of human bone structures on the Cell Broadband
Engine(CBE). It involves a basis understanding of the application, its complexity,
its data flow, the behavior of the algorithms in it, the detailed architecture study of
the Cell Broadband Engine(CBE) and also programming methodology for it. The
complete project was investigated at D-INFK, ETH for about a period of 8 months
and this thesis gives an insight to the work carried out there.
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Chapter 1

Introduction

With the current trend of designing processors with more cores, scientists and re-
searcher have been made to rethink the design of algorithms so that they can gain
the most out of the hardware. This change over to many cores has impacted the
software design, compilers, operating systems and also the programming models
for multi processor systems. The industry, going by the Moore’s law have set to
reach processors with 80 cores [4] in a couple of years from now. This moti-
vates as well as challenges the algorithm developers and the programmers to in-
novate parallel methods [16] to try and reach the theoretical peak performance
offered by the new systems. The available parallelism in multicore processors has
affected software development right from application simulation to tool develop-
ments. Moreover the introduction of heterogeneous architectures have made things
worse. Currently, the software development for multicore processors has become
complicated and the processor industry is working hard to develop tools, APIs,
libraries, and benchmarks to easy the development process for scientists.

Applied sciences research is one field, which considerably relies on computer
simulation for the majority of its investigation. Currently, applied science re-
searchers are redesigning numerical algorithms so as to suit the current trend of
processor design. Many tools and application software are presently re-coded to
suit the new multicore architectures and to make them faster and more efficient
[13]. But this cannot be easily done as many applications/tools do not suit all the
architectures available. For example: an application with double precision floating
point operations cannot be run on machines which only support single precision
computing as it impacts the accuracy in computations performed. Furthermore the
multicore systems that have been developed have different instruction set, taxon-
omy of parallelism, available memory, programming model, compilers and several
other paramemters. This makes it hard for programmers to develop the software.
To make this easier, computer architects are developing systems supporting differ-
ent domains of computations. This should also be complemented with an easier
programming model and support tools. One such effort was the Cell Broadband
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Engine(CBE) which tried to alleviate the memory, power and frequency bottle-
necks [1].

This thesis involves porting an applied sciences application onto the new era
multicore processors. The subject of study here is the finite element analysis of
human bone structures on the Cell processor. The application concept is predicting
the possibility of fracture risk of human bones. The advancement in new imaging
techniques [6] have helped in scanning the micro-architecture of bone structures
which gives a better picture of the bone density, stiffness, and strength and will
eventually help in better fracture prediction. The finite element method is then
used to solve the problem by applying some stress and strain on the discrete bone
model. This simulation involves heavy computation of double precision floating
point operations and also involves linear algebra algorithms. A simulation model
of the complete application is given in Figure 1.1.

Figure 1.1: Simulation Model for Finite Element Analysis of the Human Bone
(Courtesy : C. Bekas, et al. Reference [23])

Figure 1.1 shows a bone image which is modeled with numerous finite elements
with large number of degrees of freedom and subjected to stress/strain constrained
with boundary conditions. Then this FE model is solved by applying the Precondi-
tioned Conjugate Gradient (PCG) method with different preconditioners for faster
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convergence. In the scope of this thesis, the simulation model was brought onto
the Cell processor, that solves the linear equation for a special set of boundary con-
ditions using Preconditioned Conjugate Gradient (PCG) aiming for speedup and
efficient execution.

The thesis is divided into 6 chapters, Chapter 2 deals with the synopsis of the
application and an overview of the algorithms involved in it and a proposal for port-
ing it to the Cell processor. For this purpose, the basics of the Cell processor have
to be understood. Chapter 3 explains the Cell processor’s new features, different
programming issues, and the techniques used to exploit the parallelism in the Cell
processor are discussed. Also an introduction to the software development tool Cell
SDK [5] is given. Implementation details and applied optimization techniques are
discussed in Chapter 4. Results of the simulation model with performance values
are provided in Chapter 5. Finally, a conclusion on the goals reached is provided
in Chapter 6 also with some suggestions for implementation of the application on
other processor.

3
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Chapter 2

Application Overview

This chapter discusses the finite element analysis of Human bone structures in
detail.

2.1 Finite Element Analysis of Human Bone structures

The application as a whole addresses the predictability of fracture risk. The concept
and the motivation for this research has been explained in detail [20, 18]. In the
scope of this thesis, I have summarized the content about the application from the
corresponding papers and thesis as mentioned above in this chapter.

Osteoporosis is a disease wherein people are suspected to have increased frac-
ture risk. This disease is characterized by low bone mass and deterioration of the
bone microarchitecture. This leads an increase in vulnerability to bone fractures
especially in the joints. Women are more predictable to this symptoms with 40
percent of the women in the world having a risk for fractures compared to 13 per-
cent of the men in the world. The prediction of these fractures is based on the bone
density which is a very reasonable one, since studies showed that bone strength is
a significant factor for fractures. This is because bones are not only made out of
solid structures, but also on soft matter. Figure 2.1 shows the structure of the bone
in detail. This diagram was taken from the paper [20].

Studying the mechanical properties of the bone is a huge challenge and since
bone structures vary across individuals. A promising technique that takes bone mi-
croarchitecture into account for successful prediction is micro finite element anal-
ysis (µFEM) [18]. This µFE takes into account the micro-architecture of the bone
specimen. To support this a high resolution micro-computed tomography imaging
can be used to get the FE models of the trabecular bone.

This microstructural FE analysis has an advantage by also taking into account
the anisotropic properties of the trabecular bone, this is restricted to bones only
when there is linear deformation. The FE representation shows good concurrence
with biomechanical compression tests when a single homogeneous, isotropic tissue
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Figure 2.1: (a) Distal part of a human radius, showing cortical and trabecular bone
as imaged using micro-CT scanning, part of the bone was artificially removed to be
able to look inside the bone and (b) four trabecular bone specimens (10mm height,
8mm diameter) taken from human vertebrae. (Courtesy of Dr Martin Stauber, ETH
Zurich, Switzerland)

modulus is applied. As many FEs are needed to precisely represent an intact hu-
man bone with its microarchitecture, the resulting FE models possess a very large
number of degrees of freedom.

The pQCT (three-dimensional quantitative micro computer tomography) gener-
ates a high resolution isotropic voxel image of the bone. This helps in capturing the
bone architecture in a three-dimensional micro-scaled finite element (FE) model
[18] by converting the voxel image into a mesh of hexahedral elements. The FE
mesh serves as input for simulation software to compute the elasto-static response
of bone tissue to certain loads, which is an important parameter to better under-
stand the state of musculoskeletal system and to supply more accurate diagnoses.
It is known that FE computations yield predictions of accuracy superior to common
methods like Xray-absorptiometry.

This FE method is a common method to solve elliptic partial differential equa-
tions (PDEs) arising from many physical problems, such as linearized elasticity.
The solution to the FE solver is a solution to the linear equation system Ax = b
where A denotes the global stiffness matrix, but when the problem size increases
the usage of resources and memory is very high making it very difficult to solve.
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Hence, the project needed massive computing facilities for solving it. The project
was carried out with the help of the Swiss Supercomputing facility [23].

2.2 Application Synopsis

The Application involves computationally heavy algorithms and huge amount of
data. The principal approach to solve this kind of problem is to parallelize it across
multiple resources and scale it to higher problem sizes. Hence, we can see a chal-
lenge in writing the software which that scale with processors and problem size.

Figure 2.2: Three Dimensional Grid.

The solution to the FE solver is the Preconditioned conjugate gradient algorithm
[22, 8] which is preconditioned for faster convergence. There are two precondition-
ers used for Preconditioned Conjugate Gradient(PCG), the first one is the Jacobi
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which is a simple, easy, and fast preconditioner which is being dealt as the primary
preconditioner for the Preconditioned Conjugate Gradient(PCG). As proposed in
the [20, 18, 17] the Multilevel Multigrid method can also be used for its optimal FE
discretizations with linearized elasticity and with a polylogarithmic parallel com-
plexity. The application incorporates a Jacobi/Multigrid Preconditioned Conjugate
Gradient (PCG) method to solve unstructured µFE problems.

Figure 2.3: Mirroring a small cube of human trabecular bone.

To represent the microarchitecture of the human bone many FEs are needed to
accurately represent with a large number of degrees of freedom. The FE discretiza-
tion leads to a linear system of equations.

Ku = f (2.1)

where K is a sparse symmetric positive-definite matrix. CG solvers involve
the action of K on a given vector. The number of non-zeros of K can be writ-
ten as nnz(K) = vn, where n is the order of K and v is the average number of
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non-zeros per row; with piecewise trilinear polynomials in a 3D rectangular grid.
Since the size of K rules out direct solvers, the method of choice for solving (1)
is the conjugate gradient (CG) algorithm. CG solvers only require that the action
of K on a given vector can be computed. Hence, two solution strategies arise: (1).
In matrix-ready methods, matrix K is assembled and fully stored in memory, re-
quiring memory space for about vn floating point numbers. Additionally, integer
pointers are needed to handle the sparse matrix data structure. Exploiting the 33
block structure of K, about vn/9 pointers suffice. (2). In matrix-free methods, the
global stiffness matrix K is never assembled (EBE method). Also the assumption
about the materials involved are isotropic and homogeneous. The discrete formu-
lation is based on a standard FE (voxel) discretization. Further piecewise trilinear
polynomials are used represent the displacements in all directions (X, Y, Z). The
Figure 2.2 shows a Standard FE Voxel and Figure 2.3 shows the mirror image of
the small cubes in a human bone specimen.

The EBE method is very memory efficient, but methods maintaining the as-
sembled global stiffness matrix usually yield better solution times. Keeping the
memory consumption in mind the EBE method is investigated in this thesis on
the Cell processor. The matrix ready method requires massive memory for stor-
ing double precision floating point numbers also pointers are needed to handle the
sparse matrix data structure. The matrix free method adopted in the application for
solving the linear problem is summarized from paper [20] is given below. In an
FE context, the representation

Ke =
∑
e

TeKeT
T
e (2.2)

can be employed, where ’e’ runs over all elements. In this element-by-element
(EBE) approach [9], the element stiffness matrices Ke and the topology matrices
Te exist; the matrices Te consist of a few columns of the identity matrix of order
n representing the mapping of the local to the global node numbers. In fact, the Te

are implicitly stored in a large so-called element-to-node table.
Matrix-free methods are favorable for problems arising from voxel conversions,

since all elements generated in the voxel conversion have exactly the same shape,
size, and orientation. This demands that all element matrices related to a given
material are identical. Hence, a single matrix Ke has to be formed with dimension
24 (The order of Ke is 24, reflecting the three displacements at the eight vertices
of the voxel element). The major drawback of the EBE approach is the difficulty in
defining efficient preconditioners. As the global stiffness matrix is not assembled it
prevents the usage of many algebraic preconditioners. Therefore, preconditioners
derived from the problem for which explicit matrices can be readily constructed
are used. Widely used preconditioners for matrix-free environments are Jacobi
preconditioning (diagonal scaling) or EBE preconditioning.

The situation is radically different if K is assembled. Then, powerful scalable
preconditioners based on Multigrid ideas can be used. The algebraic Multigrid
method [20] based on aggregation has been successfully used for the solution of
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Figure 2.4: Preconditioned Conjugate Gradient Method - Pseudo Code. Courtesy
- http://www.icos.ethz.ch/education/courses/courses icos/parcomp/u7.pdf

linear systems arising in conventional analysis of bone strength. The challenge is to
construct an AMG preconditioner with a good convergence rate that is at the same
time cheap to set up and to apply. This complete development of the preconditioner
as been discussed in detail in Paper [20].

Having understood about the application, the two major algorithms in the appli-
cation are PCG with Jacobi or Multigrid Preconditioner. This shows the application
involves more of matrix and vector computations. Apart from this it also involves
a lot of operations, which can be implemented through SIMD.

To solve this problem effectively, current parallel computers have to be used with
advanced parallel techniques [15] to obtain faster solutions. This thesis shows the
effectiveness of Jacobi and MG combined with iterative methods, solving elasticity
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Figure 2.5: Multigrid Pseudo Code Courtesy Arbenz et, al reference [20]

problems arising from trabecular bone finite element analysis. The existence of
several features of the Cell processor gives rise to the design of the software. The
next section gives an idea of why it is ported to the Cell processor.

2.3 Porting to Cell Processor

Keeping up to the Moore’s law chip producers have gone into multicore processors
and other GPUs for high performance computing. With the current trend of multi-
core/GPU computing the opportunity for performance gain is increasing. Thinking
in the context of the application with immense double precision computations and
intensive matrix functionality, porting it to the Cell processor would be a calculated
effort for better performance keeping the power consumption for the application in
mind. The net result is a processor that at the power budget of a conventional PC
processor can provide ”approximately ten-fold the peak performance of a conven-
tional processor ” as quoted in [21] pg - 8. Some applications may benefit little
from the SPEs, whereas others show a performance increase well in excess of ten-
fold. Generally computationally intensive applications that use single precision
floating point operations are excellent candidates for the Cell Broadband Engine.
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But currently with release of PowerCell 8xi the double precision computing has
also become a significant candidate for the Cell processor.

Figure 2.6: Application Overview of programming considerations and relations -
Courtesy reference [21] pg - 32

Also, to study the feasibility of the application on the Cell processor we have to
find answers to some questions as depicted in the Figure 2.5. This questionnaire
was proposed by IBM [21] for porting applications on to the Cell processor. The
first step is to find the computational kernels involved in the application (Q1). Also
we have to find potential parallel programming models that it can support(Q3).
Further we have to find whether the computational kernels match one or more
of the Cell BE features(Q3). The different Cell BE features can either strongly
or weakly support the different parallel programming model choices(Q2). And the
chosen parallel programming model can be implemented on the CBE using various
programming frameworks. To answer questions Q1, Q2, and Q3 the programmer
needs to be able to match the characteristics of the computational kernel and paral-
lel programming model to the strengths of the Cell BE. There are many program-
ming frameworks available for the Cell BE. Which one is best suited to implement
the parallel programming model that is chosen for the application implementation?
Before going into detail about the implementation of the application the next chap-
ter gives an overview about Cell broadband engine architecture, its features and the
programming model.
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Chapter 3

Cell Processor

This chapter briefly explains the Cell processor architecture, its features and its
SIMD characteristics.

3.1 Cell’s Architecture Overiew

This section gives an summary of the Cell processor’s characteristics based on the
publications and documents made by IBM [21, 15, 2, 6, 24, 10, 14, 13, 7].

The Cell Broadband Engine [21, 15] was initially build for application in game
consoles like the playstation, high-definition televisions, rendering support to real-
time requirements, and consumer-electronics devices. However the Cell architec-
ture and its features also make it a potential processor for high performance com-
puting. The Cell Broadband Engine is a heterogeneous multiprocessor architecture
with nine cores. The cores and their function are specialized into two types: the
PowerPC Processor Element (PPE) and the Synergistic Processor Element (SPE).
The Cell processor has: one PPE and eight SPEs. It was designed with a dual-
threaded, dual-issue, 64-bit Power processor element (PPE) with 8 synergistic pro-
cessor elements (SPEs), an on-chip memory controller and a controller for a config-
urable I/O interface. The PPE, acts as the Cells main processor and is responsible
for handling computational threads associated with the operating system and for
coordinating the SPEs.

The interconnection support for such an extensive architecture was enabled by
the use of a coherent on-chip element interconnect bus (EIB). The SPE aka co-
op offload processor or multi-media accelerator comprises of three tightly coupled
units: the SPU (Synergistic Processing Unit), the associated local store and the
MFC (Memory Flow Controller). The SPUs operate only on instructions and data
in the associated 256-Kbyte local store. The SPU and associated local storage
are coupled to the main storage domain and other processors by the MFC. As
the SPU cannot access main memory directly, it issues Direct Memory Access
(DMA) commands to the MFC to bring data into local store or write computation
results back to main memory. The MFC enables software to move data between the
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storage domains and to synchronize with other processors in the system initiated
by using MFC commands. Each SPU has 128, 128-bit single-instruction multiple
data (SIMD) registers.

As a step towards improving programmability and facilitating support to the
many programming models, the size of the private store in the accelerator proces-
sor was increased twice: first, in the initial concept phases from 64 KB to 128
KB, and later doubled again to 256 KB. A crucial decision was made with the or-
ganization of the dataflow, by adopting the SIMD model, with a view to suit the
inherent characteristics of the multi-media workload. In order to satisfy real-time
requirements, the synergistic processors are equipped with the capability to indi-
vidually and autonomously schedule and receive DMAs as well as interrupts thus
making it responsive to external network events. The flexibility and applicability to
a wide range of platforms is an outcome of careful management of the architecture,
thereby ensuring full support for open systems such as those based on the Linux
operating system. As a consequence of designing the Cell using the Power Ar-
chitecture as its core, existing operating systems and applications can run without
modification, thereby requiring extra effort only to unleash the power of the SPEs.

The Cell processor is a multiprocessor having processing units with two different
instruction sets corresponding to the SPEs and PPEs. The PPE is follows the Power
Architecture instruction set whereas the SPE implements a new ISA optimized
for power and performance on compute-intensive media applications. The SPEs
SIMD intrinsics is shown in Figure 3.2. The SPE architectures data type and oper-
ation repertoire emphasize on half word and word data types with traditional twos
complement integer arithmetic and floating-point formats and provide selected set
of instructions with byte operation support for efficient implementation of video
compression algorithms. The PPE has a fixed-point execution unit (XU) respon-
sible for all fixed-point instructions and all load/store-type instructions accompa-
nied by a vector scalar unit (VSU) responsible for all vector and floating-point
instructions. The XU has functional units capable of performing Simple arithmetic
computations in two cycles. Owing to the delayed-execution fixed-point pipeline,
load instructions also complete and forward their results in two cycles. The VSU
on the other hand has floating-point execution unit consisting of a 32-bit by 64-
bit register file per thread, as well as a ten-stage double precision pipeline. The
VSU vector execution units are organized around a 128-bit dataflow. The vector
unit contains four other subunits: simple, complex, permute, and single-precision
floating point. The SPUs are capable of dual issue; one slot supporting fixed and
floating-point operations and the other providing load/store and a byte permuta-
tion operations as well as branches. Simple fixed-point operations take two cycles,
and single- precision floating point and load instructions take six cycles. Two-way
SIMD double-precision floating point is supported with a maximum issue rate of
one SIMD instruction per seven cycles. All other instructions are fully pipelined.
The Figure 3.1 shows the Cell die representation.
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Figure 3.1: Diagrammatic Representation of the Cell Processor - Courtesy -
http://www.research.ibm.com/cell/cell chip.html

3.2 Cell’s Memory and Communication overview

The EIB [19] which constitutes the Cell processors communication architecture,
enables communication among the PPE, the SPEs, main system memory, and ex-
ternal I/O. The communication infrastructure has a separate communication path
for both requests and data. The bus element is connected in a point to point link
with the address concentrator. This concentrator is the one which receives, orders,
and broadcasts the commands from the bus elements. The data transfer also takes
place based on these signals obtained by the bus infrastructure. The EIB consists of
four 16 byte wide data rings. Two data rings are running clockwise, and the other
two counterclockwise. This topology allows concurrent data transfers as long as
the data path do not overlap. Also the communication structure consist of a arbiter
which helps scheduling the data transfers. Along with this the arbiter gives priority
to the memory controller’s requests.

The EIB operates at half the processor-clock speed. The EIB supports a peak
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bandwidth of 204.8 Gbytes/s for intra-chip data transfers among the PPE, the SPEs,
and the memory and I/O inter- face controllers as mentioned in [19]. The mem-
ory interface controller (MIC) provides a peak bandwidth of 25.6 Gbytes to main
memory.

The Cell processor has been designed to overcome the effects of the memory
wall. It adopts a hierarchical memory organization in order to counter main mem-
ory access latencies currently estimated at around thousand processor cycles for
multi-GHz clock frequencies. The PPE employs a conventional two-level cache
hierarchy with a unified 512KB L2 cache and a separate Instruction and Data cache
each of 32KB in L1. The PPE can also send up to eight requests to the L2 cache
without stopping even during a miss. This acts as a booster for FP and SIMD code,
since these typically have a very high data cache miss rates and also makes it easy
to identify independent loads. The local store organization(256KB) in the SPE
introduces another level of memory hierarchy beyond the conventional registers.
This allows for a large number of memory transactions to be in flight simultane-
ously without any speculation. This thereby mitigates the memory bottleneck. The
Memory Interface Controller in the Cell/B.E. chip acts as an interface to the ex-
ternal Rambus XDR DRAM through two XDR controller I/O (XIO) channels that
operate at a maximum effective frequency of 3.2 GHz. Each XIO channel can have
eight banks for a maximum size of 256 MB, for a total memory size of 512 MB.
With both XIO channels operating at 3.2 GHz, a peak bandwidth is 25.6 GB/s can
be achieved.

3.3 Programming the Cell

The aspect of the Cell that presents the greatest challenge and often the greatest op-
portunity for increased application performance, is the existence of the local store
memory and the fact that programmer must explicitly manage this memory. The
SIMD aspects of the SPE are handled by programmers and well-supported by com-
pilers. In addition, the programmer also statically identifies functions that should
execute on the PPE and those that should be offloaded to the SPEs by utilizing
separate source and compilation for the PPE and SPE components. A significant
challenge would be to let the compiler automatically determine this. Incorporat-
ing these advancements would certainly reduce the programming effort required.
The Cell supports various operation models, including the function offload model,
where the SPEs are used as accelerators for certain types of performance-critical
functions, device extension model, where the SPEs act as intelligent front end to an
external device, streaming model, where each SPE caries out one particular trans-
formation in a pipeline, asymmetric thread runtime model, where threads can be
scheduled to run on either the PPE or the SPE and other auxiliary models, like
computation acceleration and shared memory multiprocessor model. The afore-
mentioned models extend the usability of the Cell across multiple application do-
mains with varying requirement.
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Figure 3.2: SIMD Vector SPE Instructions.

The following are some of the issues, that one should take into account, when
developing software for the Cell processor:

1. It is strongly advised to take care about the alignment and the memory lay-
out right from the start of the application development. The performance of the
memory and DMA significantly depends on the alignment property. It is always
recommended to follow the same alignment in the local store as well as in the main
memory.

2. The usage of the SIMD Cell intrinsics play a very critical role in the perfor-
mance of the machine. These intrinsics have to be scheduled in such a way so that
it they do not get stalled, (Data/resource/control Dependencies) which has a big
impact on the performance. The arrangement of the SIMD depends on the appli-
cation characteristics as well as the movement of the data to the local store by the
programmer.

3. Buffering techniques play a major role for overlapping computation and com-
munication. There are many strategies(eg: single, double and multi) to implement
it. These techniques must be used based on the data sets, data size, and data type
of the application. Also DMA intrinsics (eg: DMA and DMAlist) can be changed
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based on the data sets. Hence it is very important to make a correct decision on the
DMA intrinsics and buffering methods.

4. In the first Cell generation, the pipelines of the SPEs did not fully support
double precision (64 bit) floating point values. This was a problem for applications
that require accuracy. This was solved in the new Cell processors wherein the dou-
ble precision units were pipelined and also supported SIMD intrinsics. This was a
significant motivation for porting many applications on to the new Cell processor.

5. Applications are usually coded using pthreads and there are also different
models for implementation. The most prevalent model is one wherein the PPE runs
a control thread, which takes care of the SPE threads, running compute-intensive
tasks. Spawning more threads in the system requires scheduling, according to its
data flow.

In Chapter 4 discusses about the parallel implementation of the application on
the Cell processor.

3.4 Power Factor influence

Figure 3.3: Rough peak Power values.

Just talking about the performance offered by the Cell processor is not enough.
Also the power needs to be considered. Cell processors in the new IBM blade have
a peak performance of about 400 Gflops for single precision but the interesting
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thing is that it uses about half the power and space compared to a typical dual- or
quad-core Intel or AMD processor. Whether we measure by performance per watt
or performance per square foot, Cell blades are a clear winner [5].

The power data on the Cell and other processor summarized in Figure 3.3 are
from data sheets of the concerned machines which is referred in [5, 3, 12]. Pow-
erXCell 8i processors run at 90 watts vs. 130 and 150 watts for the Intel general
purpose CPUs. The major competitor for the PowerXCell 8is are the new spe-
cialized processor segment known as GPUs and FPGAs (field programmable gate
arrays). It is very interesting to see the Tesla line of GPU G80 processors which are
an add-on card for workstations. Also all these GPUs need a separate x86 system
to send the compute tasks and gather the results. But the GPUs performance is
very high and a direct competitor to the performance of the Cell blade. Discussing
about the power consumed by the G80 processor is almost twice the power of the
Cell processor (170 watts vs. 90 watts), also it needs a x86 system to control the
tasks running in it which also accounts for more power consumption. This whole
concept of power issue is considered to be very significant in the current trend in
high performance computing. Cell processor being the lowest power consumer
compared to the current high performance processors adds a valid point for porting
scientific applications on to it.
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Chapter 4

Implementation

4.1 Enabling the Application on the Cell processor

The Figure 4.1 shows the common flow graph followed for porting any application
to the Cell processor from the textbook [21]. This process of enabling any applica-
tion to the Cell can be both incremental and iterative. Profiling is the first step in the
flow wherein the application is first run on the PPE (general purpose machine) to
get the hot spots of the application. These hotspots are nothing but the most com-
putationally intensive phases of the application. These hotspots are the ones which
are potential candidates for moving to the SPEs. This process is sometimes incre-
mental as hotspots are gradually moved to the SPEs. After this is done the ported
SPEs code is iteratively optimized for more performance. This is usually done by
using SIMD intructions, buffering and other Cell features. Usually a multi-SPE
implementation code with all the data transfer and synchronization between the
PPE and the SPE is written when hotspots are moved on the SPEs. Going further
down in the flowchart the last 2 steps are repeated again until we come close to the
theoretical performance. This flow is followed for porting this application and the
next section explains the application behavior for this flow graph.

The implementation of any scientific application on the Cell can be benefitted if
the workload (algorithms/operations involved in it) were already been implemented
as a specific library. This helps the programmer by easing the effort to code and
further optimization can be avoided(as Cell libraries have already been optimized
to the maximum). The aim of any project on the Cell would be to exploit the
architectural features to the fullest. This can be achieved by understanding the data
movement, synchronization required, pushing more work to SPEs and using other
Cell optimization features.
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Figure 4.1: General flow for enabling an application on Cell BE courtesy - refer-
ence [21] pg - 62

4.2 Application Flow

The flow of finite element analysis of human bone structures is illustrated in the
Figure 4.2.

The application is first profiled to have a picture of which computational ker-
nels have to be ported to the SPE of the Cell processor. The profiling shows that
the conjugate gradient method is the key factor in the application’s computational
complexity taking around 80 percent of the application’s time. Furthermore, the
Element by Element matrix multiplication consumes another 10 percent of the ap-
plication’s time. Moreover the EBE MV method is also reused inside the PCG
algorithm and it takes around 80 % of the PCG algorithm time. This profile data
tells us that the main computational kernel is the PCG algorithm (EBE MV func-
tion in PCG) which must be successfully ported to the SPE to have significant
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Figure 4.2: Stages in the Application Flow.

speedup. The setup phases of the application are coded for the PPE and then the
PPE controls the rest of the application running on the SPE’s. On the whole, the
initial Element by Element matrix vector product and the EBE MV of the PCG are
key functions which have to be effectively ported on to the SPE’s for execution.
The Table 4.1 shows the profile information.

4.3 Parallel Implementation

There are different opportunities available to exploit parallelism on the Cell BE.
The most widely used way for extracting parallelism is by porting the application
to the eight cores and using SIMD intrinsics [6] or auto-SIMDization capabilities
of the compilers.
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Phases in the Application Application time Consumption(in percent)
Setup Phase 5 %
EBE MV 10 -15 %
PCG 80-85 %

Table 4.1: Application Profile - Split up of Application Time.

This project is mainly focussed on implementing the application on a single Cell
processor and using parallelism available across different SPEs. SIMD instruc-
tions/Buffereing are the key opportunities for gaining speedup in this kind of paral-
lel implementation. The parallel implementation of the application is very critical
for performance especially here were it involves mainly matrix operations. The
Element by Element matrix-vector product (EBE MV) is one of these functions
with immense computations and is iteratively used in the application (especially
in the PCG algorithm). The parallel implementation of this function is a major
step here. Typically partitioning the work among the available processor elements
must be done taking the available features of the processor. In determining when
and how to distribute the workload and data we must take into account the follow-
ing considerations: processing-load distribution, program structure, program data
flow and data access patterns, cost, in time and complexity of code movement and
data movement among processors, and cost of loading the bus and bus attachments.
Keeping the program structure and dataflow in mind, the PPE-centric model fits the
requirement wherein the main application runs on the PPE, and individual tasks are
off-loaded to the SPEs. The PPE then waits for and coordinates the results return-
ing from the SPEs. This model fits an application with serial data and parallel
computation. This function involves multiplication of a identical 24x24 matrix in
all the SPUs with all the elements of the cube which is around one million double
precision data types (depends on the dimension in this case (64x64x64)). This is
exactly a data parallel model (depicted below in Figure 4.3) were data is streamed
across the cores for processing. This EBE MV was implemented without using any
Cell libraries but extensively used the optimization techniques (Eg: SIMD, Buffer-
ing, DMA, Prefetch and Loop unrolling) offered by the Cell processor. Further the
major Cell features used in this implementation for performance gain are explained
in detail in the following sections.

Overlapping the computation and communication is one of the unique features
of the Cell processor, which has a massive effect on the performance. DMA en-
gines in each of the SPEs enable asynchronous data transfer. The basic technique
to achieve this overlapping between data transfers and computation are done by
buffering using the DMA engines. First DMA the incoming data from main mem-
ory to LS buffer B, then wait for the transfer to complete, then compute on data
in buffer B. After computation the data is put back to B and then DMA transfers
it back to the main memory. This sequence is not very efficient because there is
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Figure 4.3: Data Parallel Model - PPE Centric

time spent on waiting for the completion of the computation(effectively no over-
lapping). With double buffering there is effective overlapping of computations and
communication by allocating two buffers, B0 and B1, and overlapping computa-
tion on one buffer with data transfer in the other. This technique is called double
buffering. This technique of double buffering is from a private class of multibuffer-
ing, which can be extended to usage of many buffers in a form of a circular queue
instead of single/double buffering techniques. The major drawback of multibuffer-
ing is, that it uses the memory of the local store which is very limited. In this
application this concept of double buffering is being implemented using 2 buffers
for overlapping communication and computation. The data transfer was done by
moving elements from each layer of the cube to the local store. The simple DMA
intrinsics can send 16KB of data from the main memory to the local store in one
transfer. The buffers should be of size 16KB at least. Further DMA-list can be used
to transfer more data and buffers size vary accordingly. Considering a cube of size
32x32x32 both DMA strategies were implemented. The transfer was carried out
with 16KB and 56KB buffers. The transfer was done by layers in the cube which
is shown in the Figure 4.4. It required minimum of a 52 KB buffer for transferring
one layer of double precision elements via DMA. The data was moved in layers
and along the Z axis as shown in the Figure 4.4. This way of moving data in a
pipeline along the Z axis helps in keeping the required data for the next iteration,
also reduces memory traffic and helps low local store memory use. This technique
was worth implementing, as we can see the gain in performance which is shown
in the Figure 5.2. Clever use of the memory in the SPEs must be done so that
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there is a possibility for speedup. The parallel implementation of the Element by
Element multiplication is diagrammatically explained in Figure 4.5. The parallel
implementation involves the storage of the the elements of the FE representation
in the main memory of the system. The local stiffness matrix (24x24) which is
identical for all the elements is also stored in the main memory. The first step in-
volves a broadcast of the local stiffness matrix to the all the SPEs. Considering the
size of the matrix, it can be understood that it can be stored in the local store for
the entire EBE algorithm. Then the huge vector of elements is streamed across the
SPEs in the form of layers of the cube to the cores using the interconnection bus
and also the corresponding grid values from the input image for the each layers.
Further the EBE algorithm is run on all the cores simultaneously processing differ-
ent vector elements. This computation is overlapped with communication by the
use of double buffering. This complete parallelization was done using pthreads and
PPE thread having the control over all the SPE threads. This figure also shows the
implementation of buffering, data streaming and also computations taking place in
the SPEs, following a data parallel model. This parallel implementation had a key
effect on the application as it was used several times in the PCG algorithm. The
EBE MV alone, applying optimizations produced around 1.1 Gflops in each of the
SPEs for a 32x32x32 cube size in a playstation. The reusability of this function
influenced the programming and the performance gain in a good way.

The vector/matrix operations involved in the algorithm are implemented using
SIMD instructions, which are a part of the Cell intrinsics. The SPE assembler in-
struction example : c = spuadd (a,b) wherein the addition of vector a takes
place and the resulting vector gets stored in vector c. There are several SIMD in-
trinsics, which are used in this algorithm implementation especially the Arithmetic
intrinsics performing arithmetic operation on all the elements of the given vectors
e.g. spuadd, spumadd, and spumul. The intrinsics support both single pre-
cision and double precision data types and the SPU compiler translates them to
the corresponding instructions. In order to use SIMD intrinsics, the spuintrinsics.h
header file must be included. This SIMD was also a vital optimization for the
matrix vector product function.

The next major step involved in the parallel implementation of the application is
the PCG algorithm. The PCG being the main algorithm of the application (signif-
icant hotspot) must be ported to the SPEs with utmost importance. The EBE MV
computation involved in the PCG is the main computational kernel to be ported.
This EBE MV function already ported on the SPEs can be reused for PCG as well.
The PCG algorithm as shown in Figure 2.3 was implemented in the PPEs and the
major computational routines mainly the EBE MV product were ported on to the
SPEs. The part of the PCG running on the SPEs were controlled by the PPEs with
the help of cell mailboxes and other signaling strategies offered by the cell pro-
cessor. This PCG was preconditioned with Jacobi and Multigrid methods. The
Jacobi (diagonal preconditioner) was run on the PPE for generating the diagonal
matrix, which was then broadcasted used by the PCG for early convergence. But
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Figure 4.4: DMA transfer of each layer of the cube to the local store.

this was not the case in the Multigrid method, which involved smoothing, prolon-
gation and restriction consuming a significant amount of the computational time.
The Multigrid method was difficult to implement on the SPEs due to the lack of
memory storage in the local store. Considering the time factor only preliminary
analysis of the method was carried out. It was found that the storage of the coarser
and the finer grid on the local store was fairly difficult. Also, the movement of data
for interpolating the computed correction values between the coarser and the finer
grid was also one of the consequence, for performance hit in the Multigrid method.
The multigrid method needs some more fine tuning as it did not converge for many
problem sizes and the results obtained were not promising. Due to the lack of time
this can be taken as a possible future work. The complete idea of mapping the
application on the Cell processor is shown Figure 4.6 and the pseudo code for the
application is shown in Figure 4.7

Apart from this parallel implementation done, details about other optimization
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Figure 4.5: Parallel Implementation of EBE.

techniques used are explained in the next section.

4.4 Optimization Techniques

The general optimization techniques applied [21, 15, 6] and major pitfalls faced
while programming the application are briefly discussed in this section. The Cell
SDK [1] was of tremendous help when the optimization techniques were applied.
This tool assisted in doing some tweaks to the code which gave an increase in the
performance. The visualization, register usage, pipeline usage, and statistics data
of the tool features helped to a great deal for optimizing the application. The details
and the functionality of the Cell SDK is detailed in [1].

1.Alignment: This factor plays a major role in accessing the data from the mem-
ory at a faster rate. When working on the implementation the use of 128 byte
alignment was used for transactions that occur often. The major drawback that was
encountered using this alignment was, that it considered the variables as global
and used more registers. This also had an effect on the code size of the SPEs. This
alignment should be carefully set as it impacts several other optimizations possi-
ble on the Cell processor, which makes it significant while programming the Cell
processor. In the application the 128 byte alignment was used as the DMA was
frequently used for data transfer.

2.Intrinsics: These intrinsics play a major role in performance gain in the Cell
processor. Important thing to notice here is that some data types have to be type-
casted to be able to use the functionality. This SIMD and DMA intrinsics played
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Figure 4.6: Mapping of the Application on the Cell Processor.

a vital role for gaining more performance. All these intrinsics played a significant
role in PCG algorithm for speedups in the application, which is explained in detail
in chapter 5.

3. Local Store: The local store is the software programmable cache in each of
the SPE’s. The design of the program structure must be done keeping the LS size
in mind. The LS holds up to 256 KB for the program, stack, local data structures,
heap, and DMA buffers. The code optimization techniques were implemented
with great care as this had a direct impact on the code size of the application.
For example: loop unrolling would have increased the code size considerably and
was not done in some parts of the PCG algorithm. Unrolling the loops reduces
dependencies and increases dual-issue rates, and this helps in exploiting the large
SPU register file by the compiler. But all this must be done with respect to the local
store memory and the code size.

4.SIMD programming: For all computation bounded programs, the use of
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SIMD is very crucial. Correct SIMD programming provides very good perfor-
mance but requires significant development effort.

5.Mailboxes: Mailboxes are very important for synchronization between the
SPEs and the PPEs. Using the mailbox messages one could know the available
resources in the SPEs and also to know about available memory. This synchroniza-
tion helps one to coordinate and control the parallel execution of the application on
the cell processor.
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Figure 4.7: Pseudo Code of the Application on the Cell Processor.
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Chapter 5

Results

After the parallel implementation of the application, the pivotal question is about
the outcome of the applied effort in terms of performance. The application was
executed on both the playstation as well as the Cell blade QS20 (Appendix A). The
same code works in both the machines. The major difference in the two machines
are: (1). availability of SPEs which is 6 in playstation and 8 in QS20. (2). the over-
all memory size of the Playstation is 256 MB, whereas the QS20 has got 1 GB.
This memory constraint has an effect over the maximum problem size executed on
the playstation. Each blade contains 2 Cell processors and with a theoretical band-
width of 25.6 GB/s for each of the Cell processors. The blade also plays a major
role in double precision computation as it delivers more performance compared
to the playstation. The application was run on the Cell processors for different
problem sizes and this chapter shows the observed speedup and the effect of the
optimizations performed. The calculation of the performance for the application
was done using the Cell processor SPU timer library. Here the library was used to
find the each of the SPUs working time. This working time helped in calculating
the performance. Further with the Cell SDK (Playstation) which gave the num-
ber of clocks used by the program and the instructions executed by them were also
very useful is calculating the performance (using Instruction per clock values). The
Performance analysis given in the next section shows the SPEs performance of the
application.

5.1 PCG with Jacobi Preconditioner

The PCG with Jacobi preconditioner as explained in the previous chapters is a
strong contender for scaling on the Cell processor. This application was run on both
the playstation and the blade for analysis. The graphs below show the scalability
obtained for the respective problem sizes.

The theoretical peak is calculated by considering the number of floating point
operations performed by the EBE MV, the available data(stencil elements) for com-
putation, the data size (64bits) and the bandwidth offered by the interconnection
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Figure 5.1: Performance Graph for Cube FE with Jacobi Preconditioner.

network (25.6 Gb/s). This bruteforce calculation was referred from [11], gives
the theoretical peak performance which the Cell can offer for the corresponding
stencil. This theoretical peak varies with different cube sizes as the required data
and the number of computations increases with cube sizes. Also this theoretical
peak can vary based on the data availability. The formula for calculating it is given
below.

PeakPerformance = 25.6 ∗ NumberofF loatingPointOperations
AvailableData ∗Datasize

(5.1)

This can be calculated assuming that all the required data is in the local store
which is not the case always. As depicted in the graph the performance obtained
in the blade was around 35 Gflops compared to 48.2 Gflops theoretical peak per-
formance [11] for the Jacobi preconditioned CG method for cube size 32. The
playstation however, which has low peak performance for double precision oper-
ations performed with 10 - 12 Gflops. The application was first ported onto the
PPE first and then to the SPEs. The graph below shows the effect of optimizations
(mainly Processor specific features) on the application performance. As you can
see in the graph the major speedup was because of the double buffering strategy
and porting significant computations on the SPEs and using the SIMD facility.

The key computational part of the application is the matrix vector product, which
runs for several iterations in the PCG and consumes most of the computation time.
The efficient parallelization of this shows good scalability in the application, in
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Figure 5.2: Effect of various optimization techniques on the Performance.

both the playstation and the blade QS20. Another key aspect was porting the com-
plete PCG algorithm on to the SPEs. The application size that was run varied
from cube sizes 3 to 48 and the peak performance obtained for this application was
around 40-42 GFlops and this was around 70-75 percent of the theoretical perfor-
mance expected for the application with Jacobi preconditioner. This PCG ran for
around 20 to 500 iterations for it to get converged increasing with the cube size.
The tolerance was kept a constant across all problem sizes. The same application
on the playstation where the performance for double precision is low was around
10 Gflops and this was because of the non-pipelined double precision floating point
units. The theoretical peak for the playstation was not calculated by using the for-
mula as it does not take the pipeline into consideration. It is the peak performance
announced by IBM for double precision applications in the playstation. It can be
seen that the application followed a data parallel model, the performance scaled
with increase in the number of cores. This shows that effective parallelization of
the application using MPI on the Cell blade would be good idea for bigger problem
sizes(grids).

5.2 Multilevel Multigrid

The preliminary analysis of the multigrid method was carried out on the cell pro-
cessor. The implementation was tricky because of the memory constraint(local
store) of the processor. The peak performance obtained was around 20 Gflops
in the blade and for the playstation the performance was very low with around 6
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Gflops but the results for the application were not promising and further tuning
of the implementation is needed for better results. The major drawback in imple-
menting this part of the application was fitting the complete grid in the local store
of the SPEs which was a tedious coding process. The interpolation of the results
to the finer grid and moving the residual to the coarser grid is a lot of data transfer.
This had to be done while maintaining the data consistency in the structure of the
grid(elements). This consequently had a effect on the problem size of the grid that
could be run on the Cell. These are the major reasons for performance degradation
for the Multigrid method.

The Overall results obtained for the application is formulated as a table shown
below.

Problem Size Tolerance Runtime Iterations
3x3x3 1e-14 0.01 23
4x4x4 1e-14 0.02 24
8x8x8 1e-14 1.07 34
15x15x15 1e-14 14.22 124
31x31x31 1e-14 42.38 271
47x47x47 1e-14 110.67 454

Table 5.1: Runtime statistics for different problem sizes.

Preconditioner Machine Theoretical Peak Performance
Jacobi Blade QS20 58.75 Gflops 42 Gflops
Jacobi Playstation 18 Glops (IBM’s) 10 Gflops

Table 5.2: Performance value table for the Application.

The table shows the observed performance and application’s theoretical peak
performance are shown based on the machine it as been run along with the total
runtime of the application. This can be further improved by investigating other
optimizations, parallel techniques and using new hybrid programming model and
tools.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the scope of this thesis, the finite element analysis of Human bone structures
was implemented on the Cell Broadband Engine. This work included porting the
key hotspots of the application to the SPEs managing the data sets and structures
of the application to the specific requirements given by the cell platform. The
thesis also took a look into the mathematical basis of the proposed problem, the
implementation of the problem on the Cell processor, especially the SPEs and the
performance analysis of the problem. The result that was achieved is motivating. A
peak performance of about 40 GFlops was obtained for the application with Jacobi
preconditioning on the Cell blade. However, on the other hand, there are topics left
for future research and ideas for possible improvements that evolved during the
work on the thesis. Tests were performed with the Cell processor, on a Playstation
3 as well as on an IBM QS20 blade, in order to find out, what performance can be
gained. The results of these tests show, that the maximal usage of available mem-
ory and optimization can help in achieving maximal speedup. Further preliminary
analysis of the multigrid method was done and implemented on the cell processor
but did not show promising results which could taken up as a future work.

Altogether, the Cell processor is a big prospective for scientific computations.
The main drawback is the time and effort taken for developing software for the
system. The developments of tools, other system libraries and APIs can make
programming simpler and faster.

6.2 Future Work

The multigrid method needs more fine tuning for better performance and accuracy.
This is one possible work which could be taken up in future and also with cur-
rent advancement in the GPGPUs, this application can be further implemented on
them for investigations to gain more performance. The latest and future GPGPUs
promise to offer excellent performance for double precision floating point opera-
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tions which is for ideal finite element analysis of human bone analysis. Moreover,
the application can also be ported for future multicore processors like the Intel 80
core processor and other improvements in the respective architecture family.
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Appendix A

Simulation Machines - A
Technical Specification

The specifications of the machines used for the simulations are mentioned here.
The data here are taken from the corresponding machine labs. The Georgia Tech
Cell/B.E. cluster cell buzz was used for the simulations. The details are quoted as
given by the cluster description in [25]. It contains 14 IBM BladeCenter QS20 and
6 IBM BladeCenter QS22 dual-Cell blades named cell01 through cell20.

An IBM BladeCenter QS20 blade features::

• Two Cell BE processors

• 1 GB XDRAM (512 MB per processor

• 410 GFLOPS peak performance

• Blade-mounted 40 GB IDE hard disk drive

• Two 1 Gb Ethernet (GbE) controllers that provide connectivity to the Blade-
Center chassis midplane and BladeCenter GbE switches

• BladeCenter interface that offers Blade Power System and Sense Logic Con-
trol

• Double-wide blade (uses two BladeCenter slots)

• InfiniBand (IB) option, supporting up to two Mellanox IB 4x Host

• Channel Adapters Peak performance of 2.8 TFLOPS in a standard single-
chassis configuration and over 17 TFLOPS may be possible in a standard
42U rack

43


