
Delft University of Technology

Master Thesis Chemical Engineering

Scale-independent CFD modeling of gas
holdup and liquid velocity in bubble columns

Name: Bram vanden Abbeele
Student number: 5417651
Date: 12/09/2022 - 03/07/2023
Daily supervisor: ir. Lars Puiman
Thesis committee: Dr. ir. C. Haringa,

Dr A.J.J. Straathof,
Dr. ir. D.A. Vermaas

April 11, 2022



Abstract

This research aims to address the challenge of finding sustainable methods for producing hydrocarbons in the
context of a transition away from fossil fuels. Specific attention is given to the process of syngas fermentation,
where syngas is used to produce ethanol. Since this process always had its limitations when it comes to mass
transfer, this research focuses on the possibilities of integrating this process into the bubble column reactor,
since previous studies have shown promising results for improved mass transfer with this type of reactor.

Ethanol, as the primary product of syngas fermentation, has a substantial impact on reactor hydrodynamics
that engineers must account for during scale-up. CFD proves to be a cost-effective way to study these effects,
providing valuable insights without the need for expensive experiments. To achieve accurate simulations of
syngas fermentation, it is crucial to establish a foundation by investigating a water and air bubble column
system. Experimental data for four reactor diameters (0.15m, 0.4m, 1.0m and 3.0m) have been utilized for
this purpose.

This study intents to assess the effectiveness of a single CFD model in simulating hydrodynamic behaviours
as gas holdup and liquid velocity and its scale independence. Beginning setting up a base model by replicating
a water-air bubble column with a diameter of 0.4m and 1.0m used in the experimental setup. Subsequently,
a previously developed model for bubble column reactors was step-wise incorporated. Through comparisons
of simulation results with established correlations, the effects and instabilities associated with each step were
identified, allowing us to setup an improved model.

The results obtained from the CFD simulations demonstrated that the implementation of the NITA iterative
scheme reduced the simulation time by 3.7 and 5.3 times for D=0.4m and D=1.0m compared to the standard
iterative scheme. The inclusion of the Yao and Morel BIT model greatly improved the ability to replicate
experimental results. Incorporating the ideal gas law had a notable impact on the reactor with a diameter
of 1.0m, as expected due to a 37% increase in gas density. However, it compromised the ability to predict
hydrodynamics. Nevertheless, considering the fundamental nature of the ideal gas law as an equation relating
pressure and volume, it was retained in the model. Although the incorporation of turbulent dispersion, Grace
drag formulation and the RNG k−ϵ turbulence model showed ambiguous results, the Grace drag formulation
and turbulent dispersion were included in the improved model in analogy with previous research.

The comparison of the improved model with experimental data revealed instability issues when simulat-
ing bubble columns with diameters of 0.15m and 3.0m. The model also failed to accurately capture the
scale-independent gas holdup profile and exhibited a dependence on the measuring height, contrary to the
consistent gas holdup observed in experiments. Although higher-order discretization improved simulation
outcomes for D=1.0m, convergence issues arose, resulting in inconsistent gas holdup profiles. However, this
higher-order discretization corresponds well with results derived from previous CFD models.

This assessment of the effectiveness of a single CFD model in simulating hydrodynamic behaviours across
various column diameters for the design and optimization of bubble columns for syngas fermentation led to a
more clear perspective on the strengths and weaknesses of the current model and a first attempt towards an
improved model. Although the current model successfully simulated the reactor with diameters of 0.4m and
1.0m, it fell short in accurately reproducing gas holdup, liquid velocity profiles and the scale-independence
phenomena. Nevertheless, a crucial initial step towards the goal of accurately simulating bubble columns for
syngas fermentation has been made.

1



Contents

1 Introduction 7

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical background 9

2.1 Syngas fermentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Bubble column reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Flow regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Bubble rise velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Gas holdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Liquid velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 scale-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Wilkinson scale-up criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Computational fluid dynamics and bubble columns . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Multiphase Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Drag force model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.4 Bubble swarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.5 Turbulence dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.6 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.7 Multiphase turbulence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.8 Bubble induced turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.9 Non-iterative time advancement scheme (NITA) . . . . . . . . . . . . . . . . . . . . . 21

3 Model development 22

3.1 Model geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 CFD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



3.3.1 Momentum transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Turbulence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 User defined function (UDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Swarm modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 BIT model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Assumptions, materials and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Data gathering and data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Simulation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Results and discussion 37

4.1 Base model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Iterative scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Swarm modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 BIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Turbulent dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Drag model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Inclusion of the ideal gas law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.9 Improved model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Detailed model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10.1 Scale independent gas holdup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10.2 Measurement height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.11 Mesh dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Higher order discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3



4.13 Ertekin model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusion 58

6 Recommendations 60

6.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Measuring range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Gas density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Simonnet model instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Furter model improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4



List of abbreviations

Abbreviation Description
AR Aspect ratio
BCR Bubble column reactor
BIT Bubble Induced Turbulence
CFL Courant–Friedrichs–Lewy
CODH Carbon monoxide dehydrogenase
CO Carbon monoxide
CO2 Carbon dioxide
CPU Central processing unit
CFD Computational Fluid Dynamics
CSTR Continues stirred reactor
DNS Direct Numerical Simulation
Eo Eötvös number
Exp Experimental
H2 Hydrogen
ITA Iterative time advancement
LES Large Eddy Simulation
Mo Morton number
NITA Non iterative time advancement
N2 Nitrogen
O2 Oxygen
RANS Reynolds-Averaged Navier-Stokes
Re Reynolds number
RNG Renormalization Group
RMSE Root mean square error
Sim Simulation
UDF User Defined Function
UDMI User Defined Memory
WLP Wood-Ljungdahl pathway

Constants

Symbol Description Value Unit
a Liquid velocity correlation constant 2.976 -
b Liquid velocity correlation constant 0.943 -
bd Diameter bubble 5.1 mm
C3 k − ϵ Pfleger and Becker BIT constant 1.0 -
Cϵ k − ϵ turbulence model constant 1.3 -
Cvm virtual mass coefficient 0.5 -
c Liquid velocity correlation constant 1.848 -
g Gravitational acceleration 9.81 m/s2

m Exponent in drag correction equations 25 -
PHeadspace Headspace pressure 101325 Pa
ρL Liquid density 998.02 kg/m3

µL Dynamic viscosity 0.001 kg/(m s)
Sct,L Turbulent Schmidt number for the bulk phase 0.9 -
σL Surface tension 0.072 N/m
TBCR Temperature 293.15 K

5



uslip,max maximum slip velocity 5 m/s

Symbols

Symbol Description Unit
Cvm Virtual mass coeficient -
CD Drag coeficient -
CDSwarm Swarm drag coeficient -
CD∞ Single bubble drag coeficient -
D Reactor diameter -
ϵ Dissipation rate of turbulent kinetic energy m2/s3

FD Drag force N
FTD Turbulent dispersion force N
H0 Static liquid height m
HBCR Bubble column reactor height m
H/D Ratio of measuring height to reactor diameter -
k Turbulent kinetic energy m2/s2

Minter Interface momentum transfer kg/(m2 s2)
ṁG Mass gas flow inlet kg/s
n Exponent in drag correction equations -
p Pressure Pa
R Bubble column radius m
t Time sec
u Velocity vector -
Utrans Superfical gas velocity at regime transition m/s
V0 Central Liquid velocity m/s
VG Gas volume m3

VL Liquid volume m3

∆x cell size m
∇αG Gradient of gas phase fraction -
νbs Single bubble rise volocity m/s
νsg superfical gas velocity m/s
αG Gas holdup fraction -
αG Average gas holdup -

6



1 Introduction

Nowadays, significant efforts are dedicated to developing a sustainable future, aiming to move away from
fossil fuels and thereby limiting climate change[1]. However, the majority of the products and materials we
currently rely on are still carbon-based. Consequently, finding sustainable methods for producing hydrocar-
bons has proven to be a challenging endeavor. One such method involves the conversion of syngas [2], a
gas mixture primarily composed of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2). The
syngas is typically derived from industrial processes, where otherwise it would be burned and the resulting
CO2 vented into the atmosphere; syngas utilization hence reduces the emission of greenhouse gasses [2]. By
utilizing this syngas, the emission of greenhouse gasses is reduced.

Traditionally, the conversion of syngas has been achieved by the Fischer-Tropsch process, but this process re-
lies on relatively high temperatures (150 – 300 °C) and pressures (30 bar) [3]. Moreover, this process relies on
iron and cobalt catalysts, which require a specific H2/CO ratio, to avoid catalyst poisoning [4]. A promising
alternative for the chemical conversion is the use of microorganisms in a process called syngas fermentation.
This fermentation is performed in a multiphase bioreactor, where syngas is converted to ethanol, offering
several advantages. The process operates under mild conditions, reducing the overall energy demand and
greenhouse emissions. Unlike the Fischer-Tropsch process, syngas fermenation does not require a specific
H2/CO ratio nor the use of metal catalysts [5].

However, it is important to note that the aqueous solubility of H2 and CO is relatively low. Making the gas
fermentation process limited to the gas-to-liquid mass transfer [6]. In a continues stirred reactor (CSTR),
one commonly employed method to enhance mass transfer limitations, is an increase of the power input to
the impeller. This power increase leads to improved bubble breakup, resulting in a larger gas-liquid interface
and thus mass transfer [7]. The use of stirred fermentors is unfavorable due to the high power input, which
may limit economic feasibility, especially in the production of bulk chemicals with a relatively low value per
tonne. While mass transfer increases linearly with stirrer speed, power consumption exhibits a cubic increase
[8][9]. Therefore, achieving high mass transfer rates in an energy-efficient manner at industrial scale poses a
significant challenge.

The bubble column reactor offers a promising solution to this challenge, as it requires a minimal amount
of energy to achieve a high mass transfer coefficient. By introducing small bubbles at the reactor’s bottom
through sparging, a large surface area is created to enhance mass transfer [7][10].

The most common product of syngas fermentatio is ethanol, which is know to have a profound influence on
the bubble size distribution in the reactor trough the decrease of surface tension, resulting in less bubble
coalescence and subsequently decreasing the bubble mean Sauter diamter, and an increase in gas holdup
[11][12][13][14]. It is essential that engineers account for theses aspects in scale-up.

Experimental investigations and computational simulations, such as computational fluid dynamics (CFD),
can provide insights into these phenomena without having to build expensive experimental setups. There-
fore, conducting further research on the ability of CFD to capture important parameters such as gas holdup,
liquid velocity and scale dependency of syngas bubble column design in relation to hydrodynamics, using
CFD offers a promising avenue for investigation.

7



1.1 Background

In order to accurately simulate syngas fermentation using CFD, it is important to establish a foundation.
This involves initially investigating a water and air bubble column system to determine if the gas holdup and
velocity profiles can be reproduced using CFD. To conduct CFD simulations of bubble columns, reliable data
and correlations are essential for validation. The available data is primarily constrained to bubble columns
operating within the homogeneous regime. When considering reactors running in the heterogeneous regime,
the availability of such data is limited, and there is even less data for non-water air mixtures.

Raimundo addressed this issue by providing an experimental database specifically designed for validation
purposes [15] of heterogeneous run bubble columns. The experiments conducted by Raimundo involved a
range of reactor diameters, ranging from 0.15m to 3m, with air and tap water as the gas-liquid mixture.
These experiments were used to validate correlations for liquid velocity and gas hold-up. It was decided to
begin with the water-air bubble column from Raimundos’s experimental setup, as it had been validated using
experimental correlations, making it valuable for comparison with CFD results (appendix A). Due to limited
data and the absence of correlations for mixtures containing ethanol, validating the CFD results would
prove challenging, therefore it was decided to start with a water air bubble column. Raimundo conducted
experiments across a range of reactors, enabling us to investigate the ability of the CFD model to replicate
the scale-independence of the bubble columns.

Regarding the existing work in this field of water-air bubble column CFD, Ertekin successfully replicated
the gas holdup and liquid velocity profiles for both the 1m and 3m diameter columns using the database
provided by Raimundo [16]. She did this using the model developed by Fletcher [17].

The objective of Fletcher’s research was to assess the influence of various factors, including lift, drag, BIT
(Bubble induced turbulence), and volume fraction correction terms for drag [18]. This investigation aimed to
identify the most suitable models necessary to accurately simulate experimental bubble column results with
CFD. Fletcher’s findings revealed that incorporating terms to account for the drag reduction attributed to
the presence of additional bubbles, along with the inclusion of BIT, was needed to achieve good agreement
between simulation results and experimental data obtained from a reactor characterized by an initial liquid
height of 1m and a diameter of 0.19m.

In this work, the initial step involved replicating the water-air bubble column geometry used in Raimundo’s
experimental setup. Subsequently, Fletcher’s model [17] was incrementally integrated. The obtained results
were compared with Ertekin’s findings [16], as described in detail in the paragraph above, to identify any
existing gaps in reproducing Fletcher’s model.

1.2 Objective

The objective of this research is to develop a single CFD model capable of accurately simulating gas holdup
and liquid velocity behavior in bubble columns across a range of scales, varying from 0.15m to 3m in diameter.
The aim is to effectively capture the scale-independence gas holdup and liquid velocity while providing reliable
predictions of gas holdup and liquid velocity. By achieving this objective, the research aims to enhance the
understanding of bubble column hydrodynamics and enable more efficient process scale-up.

1.3 Research question

Can a single CFD model, developed by replicating experiment geometries, incrementally integrating a previ-
ously developed model, and validating simulation data with experimentally derived correlations, accurately
simulate gas holdup and liquid velocity behavior in bubble columns ranging from 0.15m to 3m in diameter
while effectively capturing scale-independence phenomena?

8



2 Theoretical background

This chapter introduces the concept of syngas fermentation in a bubble column reactor. After a short
introduction on the syngas fermentation process, the bubble column reactor’s physics are explained. This
includes a introduction of its main characteristics, such as gas holdup and liquid velocity. Eventually leading
us to an explanation on how a bubble column is simulated in CFD, going into the necessary models and
methodologies employed in this computational approach.

2.1 Syngas fermentation

Syngas fermentation is a process where a gaseous mixture containing at least CO is to converted to a hydro-
carbon product, using microorganisms. This is mainly ethanol, although other products are being explored
[19]. The microorganisms used for this process are known as acetogens [5][20]. These microorganisms utilize
the acetyl-CoA pathway known as the Wood-Ljungdahl pathway (WLP). In this pathway, CO and H2 are
used for their electrons and the CO and CO2 are used as the carbon source. CO and H2 release their
electrons by the enzymes carbon monoxide dehydrogenase (CODH) for the CO and hydrogenase for the
H2. The acetyl-CoA synthesis uses coenzyme A to form acetyl-CoA, by combining a carboxyl group derived
from CO or CO2 reduction, with a methylgroup originating from the reduction of CO2. The acetyl-CoA is
then converted into organic acids and alcohols [20]. The most studied bacteria exploiting the acetyl-CoA
pathway are the c.ljungdahlii and the c.autoethanogenum strains, both showing the ability to produce
ethanol [21][3].

The main bottleneck of the syngas fermentation is the low solubility of CO and H2, which limits the mass
transfer rate. In water at 25-37 °C and 1 atm, the solubility of hydrogen ranges from 0.0016-0.0014 g/L,
while the solubility of CO ranges from 0.0016–0.0013 g/L. It is noteworthy that these solubility’s represent
only 60% and 3% of the solubility of oxygen, on a mass basis [22]. The low aqueous solubility’s of CO and H2

make the production of ethanol dependent on the gas-to-liquid mass transfer rate, which leads to a reduced
productivity [5][7].

2.2 Bubble column reactor

Figure 1: Bubble column reactor running in Continuous
mode [23]

As the gas fermentation is limited by the mass trans-
fer, finding a way of achieving a high mass transfer
rate in an energy efficient manner is needed to com-
mercialize gas fermentation as an alternative way of
producing ethanol. A bubble column is a promis-
ing reactor design for this purpose, as it can provide
this large interfacial area. A bubble column reactor
is a type of multiphase reactor widely used in vari-
ous chemical and biochemical processes. It consists
of a cylindrical column filled with a liquid, usually a
solution or suspension, in which gas is sparged from
the bottom, creating small bubbles and thus a large
gas-liquid surface area, as can be seen in figure 1.
After leaving the sparger, the bubbles coalescence
with other bubbles. The rate at which this happens
is dependent upon the liquid composition, as well
as several other surface active components [10]. As
figure 1 shows, a bubble column reactor can operate
in continuous mode, allowing the liquid solution to

9



go in and out the reactor, allowing a continuously
circulation for the extraction of products. Alternatively, it can also be operated in batch mode, where the
liquid solution is held within the reactor.

As gas bubbles rise, they provide a large interfacial area between the gas and liquid phases, facilitating mass
transfer between the two phases. This mass transfer can go two ways: the process is called stripping when
dissolved gasses go from the liquid to the gas phase and when one or more components from the gas phase
are absorbed by the liquid phase, we can speak of absorption.

The flow pattern in a bubble column is driven by the momentum exchange between the gas and liquid phase,
creating a dynamic flow pattern within the reactor [24]. This dynamic behaviour makes it difficult to predict
the gas holdup and liquid velocity within the reactor. However, when we time-average the gas holdup and
liquid velocity a stable pattern emerges [25][26]. In heterogeneous flows, it is observed that in the center of
the column the gas holdup is greater, taking with it the liquid phase, leading to an upward liquid velocity
in the middle of the column[26].

As syngas fermentation encounters challenges related to mass transfer, there is the necessity to finding the
optimal reactor design. In this regard, the bubble column is seen as a favorable choice for syngas fermentation.
Its ability to provide a large interfacial area, and effective mixing proves to be ideal for delivering the reactants
to microorganisms while minimizing mass transfer limitations. As said, The gas bubbles also contribute to
the mixing of the liquid phase. With the movement of the bubbles turbulence is generated promoting liquid
mixing, helping with the distribution of reactants.

Furthermore, a large variety of sparger designs have been proposed to improve mass transfer, from simple
porous plates to more complex injectors that are able to generate very small bubbles and thus making bubble
columns even more efficient.

2.2.1 Flow regimes

Figure 2: Bubble column flow regimes [27]

In a bubble column two types of hydrodynamic flow
regimes and one transitional regime can be identi-
fied, one at low and one at high superficial gas ve-
locities, and one in between. The bubbly flow (ho-
mogeneous) regime is observed at low superficial gas
velocities. In this regime a narrow bubble size distri-
bution is observed, generally in the range of 1-7 mm
[27], and an almost uniform axial gas holdup. In
this regime large-scale circulation flows are absent
[28]. This regime will hold until a certain superficial
gas velocity (Utrans) is reached. When reached, co-
alescence of bubbles takes place producing the first
”large” bubbles. This region is called the transition
regime [27]. The superficial gas velocity at which
this occurs depends on the liquid and gas, as for
water and air it lays at a superficial gas velocity
of 0.02-0.04 m/s [10][29]. The churn turbulent flow
regime is observed after the transition regime, at
higher superficial gas velocities, in which a broader
bubble size distribution is observed, which is inde-
pendent of the sparger design. The gas holdup is no
longer uniform, and shows a parabolic profile with
higher gas holdups in the center of the column compared to near the wall [28]. These three flow regimes are
shown in figure 2.

10



Alcoholic solutions, such as ethanol, have shown an increase in Utrans [29], implying a homogeneous regime
that remains stable at higher superficial gas velocities. The presence of ethanol in the liquid phase reduces
the surface tension, thereby suppressing coalescence and resulting in a reduction in bubble diameter and an
increase in stability of the flow regime. [12] Moreover, the bubbles exhibit not only smaller sizes but also
a more spherical shape, as observed by Besagni [11]. Consequently, the stabilization of the homogeneous
regime leads to an increase in gas holdup [27][11].

2.2.2 Bubble rise velocity

The rise velocity of a bubble is an important parameter to determine for example the momentum transfer of
the dispersed phase on the continuous phase. It can also be used to get an initial guess for the gas holdup,
as will be shown in section 2.2.3. A common way to determine the bubble rise velocity is by examining the
shape of the bubble. Although Commonly used, problems may arise when applying this technique since the
shape of the bubble is also dependent on the rise velocity. Wallis therefore suggested different equations
to calculate the rise velocity, using the force balance for a spherical particle subjected to gravitational and
buoyancy forces in which the drag coefficient is a function of the Reynolds number. By combining these
equations he was able to make them dimensionless, thus containing only one variable, being either radius or
rise velocity. Consequently, different rise velocity regions could be determined [30]. Several more attempts
where made until Grace analyzed more data from bubbles rising in liquids and by using the dimensionless
numbers Reynolds (velocity characteristic), Eötvös Eo (bubble size characteristic) and the Morton number
(liquid property characteristics), later referred to as; Re, Eo, Mo (Chapter 2.4.3 we will go further into these
dimensionless numbers). With these numbers he was able to divide the bubbles into three shapes; spheres,
ellipses and spherical caps [31]. These shapes are shown in figure 3.

Figure 3: Bubble shapes from left to right spheres, ellipse and spherical cap. [32]

Spherical bubbles arise when the inertial forces are much smaller than the surface tension or viscous forces.
As the bubble diameter grows and thus the rise velocity increases, the bubble changes to a spheroid form
due to the resistance of the fluid on the bubble. When the bubble gets even bigger the rise velocity again
increases and the bubble bubble becomes even flatter and the middle of the sphere gets a dent.

The terminal rise velocity (vbs) for a bubble dispersed in water of different shapes can be described as;
[30][33]

Shperical bubble:

vbs,shp =


gρLd2

b

12µL
Re < 1

0.14425g
5
6

(
ρL

µL

)2/3
d
3/2
b 1 ≤ Re < 100

(2.1)

Ellipse bubbles:

vbs,ell =

√
2.14σL

ρLdb
+ 0.505gdb (2.2)

and spherical cap bubbles:
vbs,cap = 0.721

√
gdb (2.3)

11



Where, g equals the gravitational acceleration, ρL the liquid phase density, µL the liquid viscosity, db
represents the bubble diameter and σL the surface tension. To then determine the bubble rise velocity, we
can fill in the equations and see which one provides the lowest value. But, for simplicity reasons it can be
assumed that the single bubble rise velocity is 0.25 m/s for 1 mm < db < 10 mm. For bubbles db > 10mm it
is however needed to consider take the diameter into account as the rise velocity increases significantly with
the bubble diameter [10], due to the increase buoyancy forces.

2.2.3 Gas holdup

Gas holdup can be seen as one of the more important parameters for mass transfer in a bubble column, since
a greater gas holdup means a larger interfacial area. The average gas holdup in a bubble column is described
by the volumetric ratio of gas versus the total volume of fermentation broth, given by equation 2.4. Not
including the solid volume, since there are no solid particles in the bubble column for syngas fermentation.

αG =
VG

VG + VL
(2.4)

Equation 2.4, requires measurement of the volume increase, but the gas holdup can also be estimated. One
way of estimating the average gas holdup in homogeneous flows without having to measure it nor having to
run a simulation, is derived from the superficial gas velocity and the single bubble rise velocity, see equation
2.5 [10].

αG =
νsg
νbs

(2.5)

Where, νsg represents the superficial gas velocity and νsg the single bubble rise velocity. This equation
clearly exposes the need to know bubble rise velocity. This value mainly depends upon the bubble diameter
as previously explained in 2.2.2, where we saw that for bubbles with a diameter between 1 mm < db <
10 mm, the rise velocity can be assumed to be 0.25 m/s [10]. Since bubble columns are mostly run in the
heterogeneous regime, meaning that we can’t use equation 2.5.

Equation 2.4 and 2.5 already gave us some handles in determining the gas holdup, where equation 2.4 could
be used when we know the volume increase and in case of homogeneous flow νsg < 0.02m/s. But for a BCR
which runs in the heterogeneous flow regime these equations cannot be used to estimate the gas holdup. For
this we can use the average gas holdup equation developed by Raimundo based on experimental data from
BCR with D=0.15m to 3m [15].

αG = 0.49ν0.41sg D−0.047 (2.6)

Where, νsg again represents the superficial gas velocity and D the bubble column diameter. Raimundo,
found the bubble column diameter to have a effect on the avarage gas holdup, especially in the range of νsg
being 0.1 to 0.2 m/s, but not by much as the exponent indicates. The effect of the diameter is, however, very
small. As an alternative, Equation 2.6 can be replaced by an equation involving only Vsg with an exponent
of 0.41 and a prefactor of 0.5 instead of 0.49. This modification results in a mean error of 8%.

Equation 2.6 provides a correlation to calculate the average gas holdup for a bubble column operated in the
heterogeneous regime. However, to validate CFD models having a correlation describing the axial gas holdup
is needed. Due to the chaotic nature of flow within a bubble column, the gas holdup changes constantly,
making it difficult, to validate against. Therefore the gas holdup measurements are time averaged, which
reveals the expected parabolic gas holdup profile for heterogeneous flow regimes. In 2001 Schweitzer setup
a correlation which can predict the axial gas holdup [34]. Schweitzer used a parabolic equation to describe

12



the time-averaged gas holdup. This correlation is only meant for the stabilized region, meaning it holds for
regions at least 1 m above the sparger and one diameter under the liquid with the BCR having at least a
aspect ratio (AR) of 5. The axial gas holdup correlation setup by Schweitzer can be seen in equation 2.7:

αG(x) = αG[−1.638(x6 − 1) + 1.228(x4 − 1)− 0.939(x2 − 1)] (2.7)

In this equation x =
(
r
R

)
, it also shows that if the gas holdup is normalized the axial gas holdup is independent

of the column diameter. This normalized axial gas holdup profile can be seen in figure 4.

Figure 4: Normilized radial gas hold-up profile calculated using the relation developed by Schweitzer (equation 2.7).

2.2.4 Liquid velocity

The instantaneous liquid circulation in a bubble column can be described as very chaotic and complex, but
as was the case with the gas holdup, when the liquid velocity is time averaged the flow pattern proves to be
logical. Where, we see a upward flow in the central region and a downward flow near the wall. The transition
between these flows lays at rtrans = 0.7R [15], this is logical because for this radius the inner and outer
circle have the same cross-sectional area. Forret used a polynomial model to describe this logical/stabilized
velocity profile of a bubble column, which he said was valid for D < 1m:

VL(x) =
VL(0)

a− c
[a exp(−b ∗ x2)− c] [26] (2.8)

With a = 2.976, b=0.943 and c = 1.848. Meaning that if the central liquid velocity is known the axial
liquid velocity profile can be setup, this can for example be measured but also calculated using a correlation
later setup by Raimundo, which predicted the central velocity with an average error of below 8%. Other
than setting up an equation for the central liquid velocity, which can be seen in equation 2.9 Raimundo also
found out that equation 2.8 agreed to his data from bubble columns up until D=3m, where it would slightly
underestimate the liquid velocity near the walls. Figure 5 shows the liquid velocity profile which is to be
expected for the reactor configurations, tested by Raimundo [15].

VL(0) = 1.35ν0.16sg D0.4 (2.9)

Again, just like with the axial gas holdup, equation 2.8 also shows that if the liquid velocity is normalized
by dividing by the central velocity, the liquid velocity profile is independent of the column diameter. The
normalized and axial velocity profiles can be seen in figure 5.

13



Figure 5: Liquid velocity profile for D=0.4 and 1.0 m (Left), Normalized liquid velocity profile for D=0.4 and 1.0 m
(right), according to equation 2.8

2.3 scale-up

When discussing the scaling up of a reactor, the process involves transitioning from laboratory-scale to full-
scale production, with intermediate pilot scales. A new reactor design starts in the laboratory, where small
amounts of reactants are used to assess the feasibility and performance of the desired reaction. This phase also
allows for evaluating the economic viability of the process without significant investments. Subsequently,
the research progresses to larger volumes, where factors like heat transfer and hydrostatic pressure are
investigated.

Equations 2.7 and 2.8 demonstrate the independence of normalized gas holdup and liquid velocity from the
bubble column diameter. This established relationship provides engineers and researchers with predictive
tools to determine the flow regime within large-scale bubble columns, for reactions occurring in mixtures com-
parable to water and air. In the following paragraph, additional scale-up criteria for achieving independent
gas holdup, regardless of the bubble column diameter, are introduced.

2.3.1 Wilkinson scale-up criteria

Regarding the scale-up, a pioneer for the bubble column has been Wilkinson. By conducting experiments in
two bubble columns with different diameters (0.15 m and 0.23 m), varying the liquids and combining these
results with existing literature, he determined that the average gas holdup is independent of diameter and
sparger design if three criteria are met. Meaning, that gas holdup data gathered from smaller scales can be
applied for large scale reactors [35].

Criteria 1: The bubble column diameter should be greater than 0.15m.
Criteria 2: The aspact ratio (AR) (Initial liquid height divided by diameter) is greater than 5.
Criteria 3: The sparger openenings should be greater than 1-2 mm.

In 2017 Giorgio Besagni, Lorenzo Gallazzini and Fabio Inzoli had a deeper look into criteria number two
with respect to the influence of ethanol. Here they challenged this criteria by doing there own experiments
with water and ethanol mixtures, from AR 1 to 15, as well as looking at data from literature. It was found
that indeed an AR of 5 would guarantee that the gas holdup would not be influenced by the AR, but found
this only to be true for water air mixtures [36].

14



2.4 Computational fluid dynamics and bubble columns

CFD is a very powerful computational tool, used for simulating and analyzing fluid flow behaviour and
other related phenomena which can occur in fluid flows. CFD is a numerical approach where it discretizes
governing equations such as the Navier-Stokes. CFD solves these equations iteratively over a small volume,
accounting for the influence of neighboring cells [37]. The capability of CFD in analyzing and visualizing
flow and reactions within a reactor enables engineers and researchers to gain insight into the performance
of different kinds of reactors, such as bubble columns. In the rest of this section we introduce what is
needed for setting up CFD simulations for bubble columns starting with the governing equations, followed
by momentum transfer, turbulence modeling and different iterative scheme’s.

2.4.1 Governing equations

The governing equations are the equations describing the conversation laws of mass, momentum and energy.
In the case of bubble columns only conservation laws of mass and momentum are taken into account as
there is no heat transfer in syngas fermentation. The equation describing these conservation laws are; the
continuity and the Navier Stokes equations [38][17].

Continuity equation:
The continuity equation shown in equation 2.10 describes the conservation of mass and the change of mass
within a finite volume.

∂ρ

∂t
+∇ · (ρu) = 0 (2.10)

Where ρ is the density of the fluid, t is the time and u is the velocity vector.

Navier-Stokes Equations:
The Navier-stokes equation described in equation 2.11, describes the conservation of momentum.

∂(ρu)

∂t
+ ρ(u · ∇)u = −∇p+∇ · τ + ρg (2.11)

With the stress tensor given by:

τ = µ(∇u+ (∇u)T )− 2

3
I(∇ · u) (2.12)

Where P is the pressure, µ is the dynamic viscosity, g is the gravitational acceleration, µ is the molecular
viscosity and I being the unit tensor. These equations form a system of partial differential equations that
are solved simultaneously to obtain the flow behaviour. To solve these equations Fluent uses a finite volume
method to approximate the derivatives of the governing equations and convert them into algebraic equations.
From which it can model, flow, pressure, and other relevant parameters [37].

2.4.2 Multiphase Modeling

In the context of bubble column modelling, the presence of two phases makes it that we cannot use equations
2.11 and 2.10, as they are only valid for single phase systems and don’t account for the momentum transfer
between the phases. Therefore, in order to model multiphase flows in bubble columns, we need equations
which take into account each phase and the momentum transfer between them. The Eulerian framework is
commonly used for modeling multiphase flows and bubble columns due to its computational efficiency [25],
as well as its feasibility at large scales, as it is not realistic to track all individual bubbles in such systems.

15



This approach solves the governing equations for each phase independently, considering the phase fraction
present within a finite volume.

Multiphase Continuity Equation

∂αnρn
∂t

+∇ · (αnρnun) = 0 (2.13)

Phase-averaged Navier-Stokes Equation

∂αnρnun

∂t
+ αnρn(un∇)un = −αn∇p+∇(αnτ) + αnρng+Minter

n (2.14)

The stress tensor is given by:

τ = αnµ(∇un + (∇un)
T − 2

3
I(∇ · u)) (2.15)

Here, M inter
n accounts for the interphacial forces between the phases. In the case of bubble column simu-

lations, only drag and turbulent dispersion forces will be considered and discussed in subsequent chapters.
This choice is motivated by the observation that including additional forces such as lift and added mass did
not lead to improved agreement with experimental data [17][39].

2.4.3 Drag force model

In the field of fluid dynamics, understanding and quantifying the drag force acting on bubbles is essential for
being able to model a bubble column, where the drag force is held to be most influential interface momentum
force [17]. The bubble drag force is calculated using equation 2.16 and includes the drag coefficient (CD),
the bubble diameter (db) ,liquid density and the relative velocity between the two phases. The equation is
then also multiplied by the gas volume fraction.

FD =
3

4

CD

db
ρLαG(uG − uL)|uG − uL| (2.16)

The determination of the drag coefficient for a bubble cannot be carried out using the same method as for
a sphere. As explained in Section 2.2.2, bubbles don’t always maintain their spherical shape. Only bubbles
where Re < 100 retain this shape. However, even in those cases, the interface remains mobile, which impacts
the drag coefficient. As bubble sizes increase, along with their velocities, the shape of the bubbles become
more capillary or elliptical in shape, which impacts the drag coefficient of the bubble.

Two models have been evaluated to calculate the drag coefficient of non-spherical bubbles in this thesis.
One of these models was developed by Grace [31], while the other was introduced by Tomiyama[40]. These
models consider the non-spherical shape of bubbles and incorporate dinensionless parameters, such as Eo
and Mo, to account for the influence of non-spherical shape on the drag coefficient. [31]

Eotvos number
The Eotvos number characterizecs the relative importance of gravitational forces to surface tension forces
acting on a buble, and is defined as:

Eo =
g(ρL − ρG)d

2
b

σ
(2.17)

The numerator is the gravitational force the and the denominator the surface tension force. If the gravi-
tational forces are much greater than the surface tension forces (Eo >> 1) the bubble deforms. If surface
tension forces are greater than gravitational forces (Eo << 1) the bubble are spherical.

16



Morton number
The Morton number takes into account the physical properties of the phases, described by:

Mo =
µ4
Lg(ρl − ρg)

ρ2l σ
(2.18)

Grace model
Using these numbers the grace model, calculates the drag coefficients for each shape and then compares
them according to the following equation:

CD = max(min(CD,ellipse, CD,cap), CD,sphere (2.19)

Where the different drag coefficients are described by:

CD,sphere =

{
24
Re , Re < 0.01
24(1+0.15Re0.687)

Re , 0.01 ≤ Re
(2.20)

CD,ellipse =
4

3

gdb
µ2
t

(ρL − ρG
ρL

) (2.21)

CD,cap =
8

3
(2.22)

ut =
µl

dbρL
Mo−0.149(J − 0.857) (2.23)

J =

{
0.94H0.757, 2 < H ≤ 59.3

3.42H0.441, 59.3 < H
(2.24)

H =
4

3
EoMo−0.149

( µL

9.10−4Pa s

)−0.14

(2.25)

Tomiyama model
Tomiyama also accounted for bubble having different shapes by equation 2.26:

CD = max

(
min

(
24
(
1 + 0.15Re0.687

)
Re

,
72

Re

)
,
8

3

Eo

Eo+ 4

)
(2.26)

2.4.4 Bubble swarms

In heterogeneous flows, bubbles experience a lower drag in the wake of large bubbles, which leads to a
higher rise velocity overall. These interactions are a result of a decrease in drag on a trailing bubble. As
bubble columns used in the bioprocessing industry operate at high gas fractions to achieve high mass transfer
rates, determining the drag reduction is sought to be very important in setting up CFD simulations[17]. To
incorporate this reduced drag into models, a drag correction factor is used, and multiplied with the single,
isolated bubble drag coefficient, as shown in equation: 2.27:

CD,swarm = f(αG)CD,∞ (2.27)

17



Various attempts have been made in determining the right value for f(αG). Simonnet setup a volume
fraction correction term, and found that experimental data and the model gave reasonable agreement [41].
This equation is given by:

f(αG) = (1− αG)

[
(1− αG)

m +

(
4.8

αG

1− αG

)m]−2/m

(2.28)

This model is found to be valid for a range of bubble diameters, from 5 to 10 mm and a gas volume fraction
of 30%. Later a modified form was developed by Fletcher, to account for higher gas fractions. Where he
used his own experimental data, to modify the equation of Simonnet[17]:

f(αG) =

{
1 f ′(αG) > 1

0.8f ′(αG) f ′(αG) < 1
(2.29)

Where f ′(αG) is equal to 2.28. One other drag reduction, which is also implemented in Fluent and commonly
used by others [42][17][41] is:

f(αG) = (1− αG)
n (2.30)

Where it is common to fit the exponent n to the data, as it depends on the superficial gas velocity. Olmos
found the range for this exponent to be between 0 and 4 [42]. ’n’ typically has a value of 2 or 4 depending
on the superficial gas velocity and bubble size [18]. When plotting the different equations as a function of
gas holdup we get the following graph, showing the effect of the Simonnet modification and n:

Figure 6: Comparison of different drag modification factors

2.4.5 Turbulence dispersion

One other momentum transfer term which should be accounted for is the turbulent Dispersion force. Dis-
persion is referred to the spread of particles, or medium. Turbulent dispersion, as the name suggests, is the
dispersion force caused by turbulent eddies. The turbulent dispersion force in a bubble column accounts
for the turbulence in the liquid phase transporting bubbles from areas of high gas holdup to areas of low
gas holdup [18]. Modeling this turbulent dispersion is done by using the Favre-avraged drag relationship
developed by Burns[43] which is available in Fluent:

FTD = FD
vt,L
Sct,L

(
∇αG

αG
− ∇αG

αg

)
(2.31)

18



Where FD is the inter-phase momentum transfer due to drag as described in 2.4.3 and Sct,L is the turbulent
Schmidt number for the bulk phase which has a standard value of 0.9.

2.4.6 Turbulence modeling

Turbulent flows, which can be characterized by chaotic behaviour, require additional modeling to account
for the turbulent eddies and their effects on the flow. Different techniques are available to model these
turbulent flows, depending on the level of detail required and computational resources available, such as:
RANS (Reynolds-Averagged Navier-Stokes), LES (Large eddy simulations) and DNS (Direct Numerical
Simulation) [37]. In this section we will look further into the k− ϵ models (a well known example of a RANS
turbulence model). This will be done, by explaining the idea behind the single phase k − ϵ model and the
different forms of this model. Later we build upon this to account for the dispersed phase turbulence and
how this effects the k − ϵ modelling.

K-epsilon
The k-epsilon has several variations, the standard, RNG and realizable models. Their basis is the same, where
they model two additional transport equations alongside the governing equations for mass and momentum.
These additional equations calculate the turbulent kinetic energy (k) and its dissipation rate (ϵ). These
two equations for turbulence allow for the determination of a turbulent length and time scale [37]. The
difference between the three types of k − ϵ models lays in the method of calculating the turbulent viscosity,
turbulent Prandtl numbers governing the turbulent diffusion of k and ϵ and the generation and destruction
terms. What they all share are the following; generation due to shear buoyancy, accounting for the effects
of compressibility, and heat and mass transfer [37]. Additionally, all equations allow for additional source
terms to be added, for example for the inclusion of the turbulence generated by a bubble, which will be
further discussed in chapter 2.4.8.

Standard k − ϵ model
The standard k − ϵ model has become one of the workhorses for practical engineering flow calculations
since it was proposed by Launder and Spalding [37][44]. This standard model is seen as the workhorse
because it offers a robust model with reasonable accuracy for a wide range of turbulent flows. One of the
assumptions for the k − ϵ model is that we have a fully turbulent flow, and that the effects of molecular
viscosity are negligible. These assumptions make it so that the standard k − ϵ model is only valid for fully
turbulent flows. Considering that the Raimundo experiments were carried out in the heterogeneous regime
[15], characterized by the presence of a fully turbulent flow, it is reasonable to expect that the utilization of
the standard k− ϵ model would yield suitable outcomes for the bubble column reactor as previously seen by
Ertekin and Fletcher [16][17].

RNG k − ϵ
The RNG model is derived using a statistical technique called re-normalization group theory. Compared to
the standard model, it includes the following refinements[37]:

• The ϵ equation has an extra term that improves the accuracy for rapidly strained flows.

• It accounts for the effect a swirly flow has on the turbulence, enhancing accuracy for swirling flows.

• Turbulent prandel number are constant for the standard form of the k − ϵ model, while RNG offers a
analytical expression for the turbulent prandel number.

• Effective viscosity is calculated by a analytically derived differential equation, which gives the RNG
k − ϵ model the ability to account for low-Reynolds number effects.

This extra term in the ϵ equation increase the turbulent dissipation rate in the central region, distinguishing
it from the standard and realizable k− ϵ models, and playing a crucial role in accurately simulating rapidly

19



strained flows [45]. It is suggested that the higher estimated turbulent viscositie by the Standard formulation
impede the gas flow in the core region, resulting in a more uniform gas holdup profile [45]. Consequently,
the RNG model is expected to better capture the non-uniform gas holdup profile.

2.4.7 Multiphase turbulence model

Having seen how the turbulence is modelled for a single phase, is is easy to imagine the complexity of solving
all computationally demanding equations when an extra phase is added to the process. For this reason,
Fluent provides three forms of the k − ϵ model, one of which we utilize, known as the Dispersed turbulence
model.

Dispersed turbulence model
This model is valid when the dispersed phase is very dilute. In the case where bubbles or small particles
are present in the continues phase, we can assume that the dispersed phase turbulence has a negligible
influence on the continues phase turbulence, meaning we only need to calculate the turbulence equations for
the continues phase [37]. This model can include the dispersed turbulence by adding extra terms (source
terms) to include turbulence caused by the secondary phase, which in our case is the BIT (bubble induced
turbulence), see section 2.4.8. The turbulence equations for the continues phase is then modeled according
to equations 2.32 and 2.33.

∂

∂t
(αLρLkL) +∇(αL(ρLkLuL)− (µL +

µt,L

σk
)) = αL(PL − ρLϵL) + TLG,k (2.32)

and,
∂

∂t
(αLρLϵL) +∇(αLρLkLuL − (µL +

µt,L

σϵ
)∇ϵL) = αL

ϵL
KL

(C1PL − C2ρLϵL) + TLG,ϵ (2.33)

Where PL is the turbulence production due to shear. C1, C2, σk and σϵ are constants set to: 1.44, 1.92, 1.0,
1.3. TLG,k TLG,ϵ are source terms, representing the turbulence generated by the bubbles in the continues
phase. Using the standard turbulent viscosity form used in the standard k − ϵ model as [37]:

µt,L = 0.09ρL

(
k2L
ϵL

)
(2.34)

2.4.8 Bubble induced turbulence

Bubble induced turbulence, as the name suggests, is the turbulence generated by the dispersed bubble
phase. Previously we saw that the turbulence could be modelled via a dispersed turbulence model for a
diluted system. In it’s standard form it assumes that there is a minimal impact of the dispersed phase
turbulence on the continues phase, but for the case of bubble columns it was found that, to be able to
predict the liquid velocity and gas holdup distributions, accounting for the turbulence generated by the
dispersed bubble phase was needed [46]. Pfleger and Becker stated that the turbulent energy produced by
the bubbles results from the forces between the continues and dispersed phase, and the local slip velocity
[47], see equation 2.35 and 2.36. Similar approaches were also used by other authors trying to capture the
bubble induced turbulence [48] [49].

TLG,k = αLC3|MLG||uG − uL| (2.35)

TLG,ϵ = C5αLC3|MLG||uG − uL|/τ (2.36)

20



where, C1 has a constant value of 1.44, UG is the gas phase velocity vector, UL is the liquid phase velocity
vector, C3 is a constant (1.0), τ is the time scale dissipation, calculated from the turbulence timescale k

ϵ
and MLG is the inter phase momentum transfer, for which only drag is considered as this is regarded as
the most dominant momentum transfer [17][39]. For the dissipation timescale, different models exist, one
developed by Troshko and Hassan [50], build into Fluent and one developed by Yao and Morel [51]. Troshko
and Hassan, determine the dissipation timescale, τ , based on the eddy residence time:

τ =

(
2Cvmdb

3CD|uG − uL|

)
(2.37)

In the model developed by Yao and Morel, the dissipation timescale, τ , is determined using the length-scale
related to the bubble diameter and turbulence eddy dissipation of the bubble :

τ =

(
d2b
ϵ

) 1
3

(2.38)

2.4.9 Non-iterative time advancement scheme (NITA)

Digging deeper into the iterative part of CFD simulations, it is important to start by taking a closer look at
the ”standard” iterative scheme: Fluent solves the governing equations in an iterative way, called the iterative
time-advancement (ITA) scheme. In this scheme, at every time step, all equations are solved iterative, until
convergence is achieved. In this scheme all the equations account for each other, eliminating the splitting
error. This requires a considerable amount of computational power because all governing equations have to
be solved each iteration, meaning that, if the turbulence isn’t impacted by the new iteration (convergence
met), it is again calculated. The idea behind the NITA scheme is that you don’t need to reduce the splitting
error to zero, you only need to make it as the same order as the truncation error (Error between the exact
and discrete solution) [37][52]. An overview of both scheme’s can be found in appendix B.

21



3 Model development

The experimental configuration which will be replicated in Fluent is based on the work done by Raimundo
[15]. As a brief recap on why we selected this configuration as our model basis: validating CFD models
is crucial in determining their ability to reproduce real-world experiments. Raimundo acknowledged a gap
in the availability of such data and provided these valuable measurements for a range of bubble column
diameters, including gas holdup, liquid velocity and bubble diameter. Furthermore, this reactor has already
been successfully simulated in Fluent [16] using a model developed by Fletcher [17], given an excellent
basis on which our model can be based. In the following sections, we will introduce the various reactor
configurations, discuss the model settings, assumptions and how the variables are measured.

3.1 Model geometry

Four different reactors have been simulated, with diameters of 0.15m, 0.4m, 1m and 3m. All reactors operate
in batch mode, meaning there is no liquid inflow or outflow. The heights of the 1m and 3m diameter reactors
were provided as 6.5m and 14m[15]. The heights of the remaining reactors were determined using the same
height-to-diameter ratio as the 1m diameter reactor, which was 6.5. By multiplying the column diameter of
the 0.15m and 0.4m with this ratio and rounding up, we were able to calculate the heights of these reactors
as can be seen in table 4. With these dimensions we were able to build the geometry using ANSYS Design
Modeler 2021 R2. A representation of the D=1.0m reactor can be found in appendix C. ANSYS Design
Modeler 2021 R2 was also used to define the boundaries, specifically the mass flow inlet and pressure
outlet boundary conditions.

Diameter (m) HBCR (m)
0,15 1
0,4 3
1 6,5 [15]
3 14 [15]

Table 4: Reactor dimensions used for simulation.

3.2 Meshing

ANSYS Fluent Meshing has been used for setting up the fluid domain mesh. Each geometry contained,
on average, 100.000 Poly-Hexcore elements. This value was chosen as a trade-off between accuracy and
computational requirements. Previous mesh independence studies had shown that going coarser than 100.000
influenced the results, while going to a finer grid did not improve the results either [18][16]. A finer grid was
also build to do our own mesh in dependency study, for this we used a mesh containing 200.000 elements.
For the exact number of cells, and the cell sizes see table 5.

The Poly-hexcore mesh utilizes mosaic meshing, where two cell types are connected with Polyhedral elements
[53]. In our case, it connected the outer poly-prism mesh with a hexahedral mesh in the core of the reactor.
These two types of elements can be seen in figure 7. Hexahedral elements allow for accurate results and
require less computational demand compared to other elements, such as polyhedral elements. This is because
hexahedral elements, on avarage, have fewer faces than polyhedral elements, reducing computational load
and memory requirements[53]. However, these elements are not well-suited for curved geometries. In such
cases, the poly-prism mesh is used to mesh these curved areas, as it is better suited for those areas [53].
The resulting fluid domain mesh for the D=0.4m and D=1m reactors can be seen in Appendix D . All the
settings for meshing can be found in table 6. If a parameter is not described, it is set to its default value.

22



Figure 7: Elements used for meshing; Hexahedral (left) and Poly-prisms (right)

Meshing Surface mesh Volume mesh
Diameter (m) Cells Min size (m) max size (m) min lenght (m) max lenght (m)

0,15 99271 0,003 0,006 0,003 0,006

0,4
118577 0,0125 0,025 0,0075 0,015
200318 0,0065 0,013 0,0065 0,013

1
96752 0,02 0,04 0,02 0,04
207651 0,015 0,03 0,015 0,03

3 116721 0,05 0,1 0,05 0,1

Table 5: Number of cells per geometry and the minimum and maximum cell sizes

Surface mesh
Growth rate 1,2
size functions curvature & proxmity
Curvature normal angle 18
cells per gap 1

Add boudary layers
location Sparger
offset method type Smooth-transition
number of layers 4
transition ratio 0,272
Growth rate 1,2

Volume mesh
Fill with poly-hexcore
Buffer layers 2
peal layers 2

Table 6: Mesh parameters used for the meshing of all columns

3.3 CFD model

In this section we present the models used in the simulations and their respective parameters, along with the
simulation strategy and the data collection. Starting with discussing the models, followed by the assumptions,
materials, and boundary conditions. Subsequently, explaining the data collection method, and conclude by
providing an overview of the simulation strategy.

23



3.3.1 Momentum transfer

The developed models in this study make use of the Eulerian framework, which is known for its computa-
tional efficiency in solving multiphase flows [25]. This framework was recommended by Fletcher and utilized
by Ertekin when simulating bubble columns from Raimundo [17][16]. Regarding momentum transfer, only
drag and turbulent dispersion forces were considered, with the turbulent disperion force modelled using the
Burns model (equation 2.31).

For the drag force, two models, namely the Tomiyama and Grace drag models, were used, as a comparison
will be performed to evaluate their performance. Both models are well-suited for gas-liquid flows in which
bubbles can have a range of shapes [37]. For the drag force, a constant bubble size of 5.1 mm was assumed,
with the diameter being based on the average bubble diameter measured by Raimundo [15]. Previous studies
of water-air bubble column reactors have reported a range of bubble diameter between 3 to 13 mm [54], for
which the bubble terminal velocity is approximately constant (0.24 ± 0.01m/s) [55]. For that reason it is
stated that the approximation for using a single bubble size is reasonable, given that using a single bubble
size greatly reduces model complexity [54].

A drag reduction factor was used, to account for the bubble swarm effect. A value of 0.12 was chosen based
on a average gas holdup of 30%, and using equation 2.29. In addition to that, the drag reduction model
implemented in Fluent was used with n=4 (equation: 2.30), and the drag reduction model developed by
simonnet modified by Fletcher was used (equation: 2.29). As the latter was not available in Fluent as a
standard model, a UDF was implemented. The details of how this was achieved can be found in subsection
3.4.1.

3.3.2 Turbulence model

The turbulence in this study was modelled using the widely adopted and computationally efficient standard
k−ϵ model, due to the fully turbulent flow regime present in the reactor [37][16]. In addition to the standard
turbulence model, the RNG k− ϵ model was also used to provide a comparison. It should be noted that the
use of the RNG model was not strictly necessary, as there are no swirls present (time-averaged tangential
velocity is close to zero [56]). The model constants for both of the turbulence models, can be seen in table 7.

In terms of the gas phase turbulence, it is modelled using the dispersed turbulence model, as other models
resulted in convergence issues. This model assumes that the gas phase has a negligible influence on the liquid
phase turbulence. The bubbles however do add turbulence to the liquid phase as Fletcher found out [17]. He
saw that the addition of a BIT term was needed to comply CFD data with experimental data. To account
for this, a source term has been added to the turbulence equation of the liquid phase.

24



Viscous model
Model k − ϵ k − ϵ
k − ϵ Standard RNG
Near-wall treatments Standard wall functions Standard wall functions

Model constants
Cmu 0.09 0.0845
C1 1.44 1.42
C2 1.92 1.68
Cϵ 1.3 1.3
TKE prandl Number 1 -
TDR Prandtl Number 1.3 -
Dispersion Prandtl Number 0.75 0.75

Table 7: k − ϵ turbulence model settings

3.4 User defined function (UDF)

In Fluent, UDF’s are custom programs that can be implemented to extend the capabilities of the simulation
software. These programs are written in C++ using V isual StudioCode 1.78.2 and are able to access Ansys
Fluent solver data [57]. These program’s are then integrated into Fluent. This UDF capability in Fluent
has been used to model the drag reduction factor due to the presence of bubble swarms, as well as the BIT.
The V isual StudioCode codes for the thes UDF’s is provided in Appendix E.

3.4.1 Swarm modification

The modified Simonnet drag reduction factor, developed by Simonnet and Fletcher (equation 2.29) had
been implemented as UDF into Fluent. The modified version of the Simonnet model was implemented since
the gas holdup exceeded the valid range (αG > 0.3) for the Simonnet drag reduction model. For stability
reasons, the model assumed a minimum αG of 0.01. This was implemented because when αG is equal to 0,
the definition of Simonnet results in a value equal to 1. Since Fletchers modification only specifies whether
Simonnet is greater or smaller than 1, and the code only checks if the value is greater than 1, a value equal to
1 results in a drag reduction factor of 0.8, even when no gas is present. How this minimum function affected
the drag reduction factor is shown in figure 8.

Figure 8: Illustrating the impact of considering a minimum gas holdup on the model output.

25



3.4.2 BIT model

The turbulence generated by the bubbles is accounted for by the Yao and Morel BIT model ( see source [51]).
This model was implemented in fluent as a UDF and then added as source term to the equations for turbulent
kinetic energy (k) and turbulent dissipation (ϵ) of the liquid phase. When working with computationally
generated data, it is possible to obtain non-physical outputs, which can subsequently lead to unrealistic and
unstable UDF outputs, as was the case for the implementation of this model. To address this issue, limits
were implemented into the both source term UDF’s.

The slip velocity, which represents the relative velocity between the gas and liquid phases, was chosen to
be limited due to its physical significance. The limit was determined based the maximum rise velocity of
a single bubble and the maximum downward velocity. Terminal rise velocities reported for single bubbles
with a diameter ranging from 3 to 13 mm were found to be within the range of (0.24 ± 0.01m/s) [54].
Considering that the maximum downward velocity of the liquid phase was ±1m/s [15], it can be assumed
that the maximum relative velocity should be in the range of 1.24 m/s. Rounding up to 2 m/s, accounting
for the increased rise velocity of a bubble in a swarm. This value initially resulted in unstable simulations.
Therefore, the limit was raised to 5 m/s for both source terms, which provided stable simulations.

To visualize the impact of this slip limit on the output, a three-dimensional graph was created of the turbulent
kinetic energy output to show the dependence of the source term on gas holdup and slip velocity and the
influence of the slip limit (see Figure 9). The graphs demonstrate that by enforcing this slip limit, the
maximum output is limited to 2.311× 107 kg

ms3 instead of 1.849× 108 kg
ms3 , resulting in a decrease in turbulent

kinetic energy by a factor of 8.

By implementing this limit, the non-physical outputs that could potentially affect the accuracy and relia-
bility of the model are kept within acceptable limits, resulting in a more robust and physically meaningful
simulation.

Figure 9: Kinetic energy model output; Output without slip limit (left), output with slip limit (right)

If we examine the equation for turbulent energy dissipation, equation 2.36, it becomes clear that the calcu-
lation of the energy dissipation time scale used by Yao and Morel (equation 2.38), relies on the turbulent
eddy dissipation itself, leading to a non-linear relationship. Consequently, an iterative solving method is
required. To achieve this, the value of the energy dissipation is saved after each inner and outer iteration
using the User Defined Memory (UDMI) function in Fluent. This iterative process allows us to obtain the

26



correct value for the turbulent eddy dissipation.

To validate this method, different initial values were tested to assess their influence on the model output,
as well as the number of iterations required to converge. In figure 10, three different initial values (1e-9,
1e10, and 1e11) were used, and the resulting energy dissipation was calculated for a slip velocity of 2 m/s
and a gas holdup of 0.3. The graph clearly shows that the model output is independent of the initial value,
and after eight iterations, all value stabilized. To start this iterative process a initial value of 1e-9 had been
assumed. To ensure the turbulent energy dissipation can reach a constant value, it is necessary to setup the
solvers to perform at least ten iterations per time step.

Figure 10: Validation of the number of iterations needed and the influence of the initial value. Results obtaind with
a gas holdup of 30% and a slip velocity of 2 m/s

3.5 Assumptions, materials and boundary conditions

3.5.1 Assumptions

In order to run the simulation several assumptions have been made:

• Constant operating temperature of 293.15K and pressure of 101325 Pa.

• Constant bubble diameter of 5.1 mm.

• No slip at the wall

3.5.2 Materials

The bubble column reactor was simulated with water and air. The properties of these components are
presented in the table shown below.

Water Air Unit
Density 998.02 1.204 kg/m3

Molecular weight 18.02 28.966 g/mol
Viscosity 0.001 1.79E-05 Kg/(ms)

Table 8: Properties of materials used in simulations

27



3.5.3 Boundary conditions

There are three boundary conditions that had to be defined for the modelling of the bubble columns: one
at the wall, and one at each inlet and outlet. At the wall, a noslip boundary condition was applied to both
phases. The outlet boundary condition was set as pressure outlet, while the inlet was set as mass flowinlet
boundary condition. The gas flow inlet at the inlet was calculated using the superficial gas velocity, gas
density, and the area of the inlet (equation 3.1). As observed in Table 9, it is apparent that each geometry in
the experiments had a distinct superficial gas velocity for which the experimental paper by Raimundo does
not provide any justification.

It is important to consider the increase in air density caused by the hydrostatic pressure of the liquid. By
using the ideal gas law (equation 3.2) and equation 3.1, the mass flow at the inlet could be calculated while
considering the increased air density. All relevant data, including the final mass flow for each configuration,
is shown in table 9.

Qm = vgsAspargerρsparger (3.1)

ρsparger =
PspargerMair

RT
(3.2)

Where vgs represents the superficial gas velocity, Asparger the sparger area, ρsparger air density at the sparger,
Psparger refers to the pressure at the sparger, Mair is the molecular weight of air, R is the ideal gas constant
(8.314 J/(MolK)) and T the reference temperature.

Diameter (m) H0(m) vgs (m/s) [15]
Psparger

(bar)
ρsparger
(kg/m3)

Qm (kg/sec)

0.15 0.6 0.15 1.072 1.253 0.003
0.4 1.6 0.16 1.170 1.367 0.027
1 4 0.16 1.405 1.642 0.206
3 9 0.2 1.894 2.214 3.130

Table 9: Relevant data needed for the mass flow calculations

3.5.4 Solution

Discretization schemes
In CFD simulations, the governing equations are solved by discretization, and then solving them iteratively
for each cell while considering the neighboring cells. ANSYS Fluent computes and stores these values
at the cell centers. However, to account for convection terms, face values are necessary and need to be
interpolated from the cell center values. Various techniques are available for interpolating these face values,
including the upwind scheme, which obtains its value from the upstream cell [37]. ANSYS Fluent provides a
range of upwind schemes, such as first-order upwind, second-order upwind, and QUICK. The base model’s
discretization, as indicated in Table 10, primarily uses first-order upwind discretization to ensure model
stability. However, for achieving a more accurate solution, second-order discretization will also be employed
for the momentum and volume fraction equations in chapter 4.12.

28



Solution methods
Pressure-velocity coupling

scheme Phase Coupled SIMPLE
Spatial discretization

Gradient Least Squares Cell Based
Density First Order Upwind
Pressure Second Order Upwind
Momentum First Order Upwind
Volume fraction First Order Upwind
Turbulent Kinetic Energy First Order Upwind
Tubulent dissipation rate First Order Upwind

Table 10: Discretization schemes used in the multiphase model for simulating the Raimundo experimental setup.

Under-relaxation factors
Under relaxation factors are mostly applied to solution variables such as velocity, pressure, or temperature in
order to enhance the convergence behavior of iterative solvers. The objective is to dampen the magnitude of
the updated solution of these variables. This damping is necessary due to the non-linearity of the equations
being solved [37]. By controlling the rate of change of the variables through under relaxation factors, a stable
simulation can be achieved. The under relaxation factors for this work were determined by testing different
values until a stable solution was obtained. Subsequently, these factors remained unchanged for subsequent
simulations and are outlined in table 11.

Solution controls
Pressure 0.5
Denisty 0.5
Body Forces 0.5
Momentum 0.7
Volume Fraction 0.5
Turbulent kinetic energy 0.5
Tubulent dissipation rate 0.5

Table 11: Under-relaxation factors as defined in Solution controls used in the multiphase model for simulating the
Raimundo experimental setup

Time stepping

The time step plays a crucial role in simulating the behavior of fluid flow over time, as it directly affects the
stability of the solutions. Smaller time steps generally lead to more stable solutions but take more time to
run the simulation. Using a larger time step can result in unstable simulations, if the chosen step size is too
large to accurately capture the flow features [58].

One important concept in determining the time step is the Courant number. The Courant number is a
dimensionless parameter that relates the size of the time step to the spatial resolution and the velocity of the
fluid [58]. It represents the maximum distance a fluid particle can travel in one time step and is calculated
using equation 3.3. As a general rule, the time step should be smaller than the time it takes for a fluid
particle to travel through a cell [58], implying a Courant number less than one.

CFL =
Vmax∆t

∆x
(3.3)

29



For all different reactors the same time step was assumed, as the goal was to have a model able to simulate
all geometries. As in the paper by Ertekin [16], a time step of 0.001s was taken, and would result in a courant
number smaller than one, taking the maximum expected velocity of 5 m/s. Except for D=0.15m, based on
it’s minimum cell length of 0.003m the minimum time step for Courant to be 1 should be 0.0006, therefore
it was arbitrary chosen to use a time step of 0.0001s.

In order to maintain a model capable of simulating various reactor geometries, a uniform time step was
adopted across all reactor configurations. In the study by Ertekin [16], a time step of 0.001s was employed,
resulting in a Courant number below one when considering the maximum anticipated fluid velocity of 5 m/s
(the maximum slip velocity employed for the BIT model). However, for the specific case of D=0.15m, where
the minimum cell length is determined to be 0.003m, a minimum time step of 0.0006s is necessary to satisfy
a Courant number of 1. Consequently, a time step of 0.0001s was arbitrarily selected for this particular
scenario.

Simulation procedure
As the goal is to develop one single model able to capture the hydrodynamics of all reactors, each simulation
has the same simulation procedure. Where the first second would be run without the drag modification
factor, after which it would be enabled and run for a total of 30 seconds, before measuring the gas holdup
and liquid velocity. It had been assumend that when the first bubble reaches the surface, a stabilized flow
has been reached. Assuming a terminal rise velocity of a bubble in a bubble column is approximately 0.24
m/s [55], for the bubble to reach the surface of the highest reactor is approximately 27.5 seconds, looking at
the gas holdup profile from start to 30 seconds, it can be seen that from second 10 till 15 (figure 11), already
a stable gas holdup is measured, which supports our assumption that after 30 seconds a stable simulation is
reached, after which the gas holdup and liquid velocity can be measured for 60 seconds. 60, had been chosen
as the time average values didn’t change anymore.

In order to develop a comprehensive model capable of accurately capturing the hydrodynamics of diverse
reactor configurations, a standardized simulation procedure was employed for each case. The procedure
entailed an initial simulation period of one second without the inclusion of the drag modification factor,
followed by enabling the the drag modification and running the simulation for a total duration of 30 seconds
of flow-time. It was assumed that a state of stabilized flow is achieved once the first bubbles reach the
reactor surface. Based on literature estimates of a bubble’s terminal rise velocity in a bubble column being
approximately 0.24 m/s [55], it can be assumed that the time required for the bubble to ascend to the
surface of the tallest reactor (H0 = 6.6m) is approximately 27.5 seconds. Analyzing the gas holdup profile
from the start to 30 seconds for the largest reactor, it becomes evident that a stable gas holdup is already
observed between seconds 10 and 15 (see Figure 11). This observation supports our assumption that a
stable simulation is achieved after 27.5 seconds. Following this stabilization, gas holdup and liquid velocity
were measured for an additional 60 seconds, as it was determined that time-averaged values did not exhibit
further changes. When higher order discretization schemes, as described in Chapter 4.12, were enabled, the
simulation initially ran for 20 seconds of flow-time to reach a state of stable gas holdup (Figure 11. Following
this, the higher order discretization was activated and the simulation continued until 30 seconds of flow-time
had elapsed, after which time-average data was measured.

30



Figure 11: Measured average gas holdup over time for D=3.0m obtained using the improved model settings.

3.6 Data gathering and data processing

Before going into the measured variables and methodologies used, it is important to first established the
locations of the sampling points. The data collection locations were consistent with those used by Raimundo
[15], who obtained data at four different (H/D) ratios: 0.5, 1.25, 2.5 and 3.75. These locations can be seen
in figure 14. At each height, a total of 60 data points were collected, distributed evenly across four planes,
with each plane containing 15 data points and separated by 45° from one another. At each of these points,
the gas holdup, axial velocity and slip velocity were measured and provide us. All planes are then combined,
providing four data points for each radial location. Figure 12 gives a representation of each plane and how
the average plane compares to them.

Figure 12: Comparison of gas holdup profiles for each plane with the average gas holdup profile. Results obtained with
base model and NITA solver for D=0.4m

Considering the transient nature of bubble column simulations and the dynamic flow patterns seen in these
systems, instantaneous data alone does not provide the level of detail required for analyzing gas holdup and
liquid velocity. To generate the expected parabolic profiles of gas holdup and liquid velocity, time-averaging
of the data was necessary. To achieve this, the Welford′s algorithm [59] was used. Equation 3.4 (time-
averaging) was implemented into Fluent. An overview of the data gathering process can be seen in Figure
13. It involved achieving a stable simulation first, followed by time-averaging the measured gas holdup.

31



Figure 13: The average gas holdup over time for a D=0.4m with time averaged gas holdup using the base model
settings.

xn =
(n− 1)xn−1 + xn

n
(3.4)

Where x represents the time-averaged value and n stands for the current time step.

The implementation of these equations was done using a UDF, which was implemented to perform the
calculations at the end of each time step. These variables were then stored in a UDM and exported as a .txt
file for the analysis. The UDF responsible for the time-averaging process can be found in appendix E. The
python code used for the data processing and putting in the measuring point in the reactor are provided in
appendix F.

Figure 14: Schematic view of the 1m in diameter column with the sampling locations

32



3.7 Validation

Validation plays a crucial role in obtaining meaningful data from CFD simulations. Consequently, it was
decided to simulate the experimental setup by Raimundo, as his work was specifically aimed at providing
validation data for bubble columns [15]. The validation process is performed by computing the rolling
average gas holdup and liquid velocity, as explained in 3.6, using equation 3.4. These values are then
compared with the gas holdup and liquid velocity correlations (equation 2.7 and 2.8), that are consistent
with the experimental measurements of Raimundo [15].

To assess the agreement between the simulation and the correlation, two comparisons were performed. First,
the average gas holdup and liquid velocity from the simulation were compared to the corresponding values
from the correlation. Second, the individual points of the simulated gas holdup and liquid velocity were
compared to the correlation using root mean square error (RMSE) as a measure of deviation.

When comparing the average gas holdup, it is crucial to consider a specific measurement range, namely
between r

R = -0.875 and 0.875. This range was selected because the simulation measurements of gas holdup
were available exclusively within this interval. However, since a simulation is not limited to a specific range, it
is recommended to measure the data at a range of r

R = -1 to 1, as discussed in Chapter 6. Taking this limited
range into account is necessary to prevent underestimation of the gas holdup average when comparing it with
the correlation. The correlation considers the entire range, which includes lower gas holdups outside of the
specified range. By focusing on the measured range, the comparison provides a more accurate assessment of
the average gas holdup, ensuring that the correlation’s estimation aligns with the relevant simulation data.

The comparison between each data point and the the correlation results has been performed using the RMSE
to quantitatively assess the impact of additional models on the simulation results, as seen in figure 3.5. The
RMSE measures the average deviation between the observed values and the true (correlation) values.

RMSE =

√∑ (xobserved − xtrue)2

N
(3.5)

Later in chapter 4.10, a more detailed comparison is made between the experimental results and the model
outcomes to asses the model’s ability to replicate the experimental results. This comparison extends beyond
comparing the RMSE and average gas holdup.

It also examines the model’s ability to reproduce the measurement height independence of the stabilized
region and the scale-independence of the model. By taking into account these additional aspects, a more
comprehensive validation of the model’s performance can be established.

3.8 Simulation strategy

In CFD simulations, it is widely known that the incorporation of different models can give rise to instabilities.
To address this, the modeling approach initially starts in its minimal form (base model), as outlined in Table
12, in order to mitigate and recognize potential instabilities. The model will then be gradually expanded by
incorporating different models to assess their influence on the gas and liquid flow fields. Once the improved
model is established, a comprehensive analysis is conducted to assess whether the model is able to recreate
the scale-independence and measuring height independence seen in the experimental setup of Raimundo
[15], as well as compare the results with those achieved by Ertekin [16]. Furthermore, attempts are made to
optimize the improved model further by using higher discretization schemes as well as a mesh independancy
study. A visual representation of the strategy going from the base model to the improved model, including
the tested models at each step, can be seen in Figure 15. The steps to achieve the improved design have
only been applied for the bubble columns with diameters of 0.4 m and 1.0 m.

33



Figure 15: Step-wise flow chart, displaying how the model is going to expand each step

Solver ITA
Drag model Tomiyama
K-eps model Standard
Dispersed phase turbulence Dispersed
Swarm modification 0.12

Table 12: Simulation settings for the base case model

34



3.9 Model summary

This chapter provides a summary of all the model settings employed to simulate the experimental reactor
geometries from Raimundo.

parameter symbol D=0.15 D=0.4 D=1.0 D=3.0 unit
Geometry parameters reactor

Reactor diameter D 0.15 0.4 1 3.0 m
Reactor diameter A 0.02 0.13 0.79 7.07 m2

Meshing
Surface mesh

100k min cell size ∆x 0.003 0.0125 0.02 0.05 m
100k max cell size ∆x 0.006 0.025 0.04 0.1 m
200k min cell size ∆x - 0.00665 0.015 - m
200k max cell size ∆x - 0.013 0.03 - m

Growth rate - 1.2 -
size functions - Curvature & proximity -

curvature normal angle - 18° -
cells per gap - 1 -

Volume mesh
100k min cell size ∆x 0.003 0.0075 0.02 0.05 m
100k max cell size ∆x 0.006 0.015 0.04 0.1 m
200k min cell size ∆x - 0.00665 0.015 - m
200k max cell size ∆x - 0.013 0.03 - m

fill with - Poly-hexcore -
buffer layers - 2 -
peal layers - 2 -

Meshing boudary layers
Loction - Sparger -

offset method type - Smooth-transition -
number of layers - 4 -
transition ratio - 0.272 -
Growth rate - 1.2 -

Mesh size
100k - 99271 118577 96752 116721 Cells
200k - - 200318 207651 - Cells

Computational resources
Required CPUs 24 24 24 24 No. CPU’s

Table 13: Summary of model settings for each of the reactor geometries

35



parameter symbol D=0.15 D=0.4 D=1.0 D=3.0 unit
Operating conditions

Tempreture - 293.15 K
Headspace pressure PHeadspace 101325 Pa
Bottom pressure Psparger 107199 116990 140487 165943 Pa

Initial liquid height H0 0.6 1.6 4 6.6 m
Gas phase properties - air

Density base model ρL 1.204 kg/m3

Density improved model ρL Ideal gas law kg/m3

Gas viscosity µL 1.79E-05 kg/(ms)
Superficial gas velocity Vsg 0.15 0.16 0.16 0.2 m/s
Mass gas flow inlet ṁG 0.003 0.027 0.206 2.741 kg/s
Bubble diameter db 5.1 mm

Inlet mole fraction
Nitrogen N2 0.79 moln2/molG
Oxygen O2 0.21 mol02/molG

Liquid phase properties - water
Liquid density ρL 998.02 kg/m3

Liquid viscosity µG 0.001 kg/(ms)
Dispersion properties

Surface tension σ 0.072 N/m2

Table 14: Summary of model settings for each of the reactor geometries (continuation)

36



4 Results and discussion

This chapter presents the results obtained from the various CFD models developed throughout this study.
Sections 4.1 to 4.8 outline the steps taken to enhance the base model. In Section 4.9, a comparison is made
between the base model and the improved model, followed by a comprehensive analysis delving into scale-
independence and measuring height independence. Subsequently, a mesh dependency study is conducted,
and higher-order discretization models are implemented. Finally, a detailed comparison is done between the
model developed by Ertekin and the improved model. A full overview of each model, its stability and run
number are presented in Appendix G.

4.1 Base model

As stated in section 3.8, a base model was initially established according to the settings outlined in table 12.
Firstly the performance of this model was assessed by comparing the simulation results to the experimental
correlation profiles for liquid velocity and gas holdup (equations 2.7 and 2.8). The simulation results,
including RMSE, average gas holdup and central velocity value’s, are presented in table 15. The resulting
gas holdup and velocity profile graphs can be seen in figure 16.

Figure 16: Base model gas holdup (top) and liquid velocity (bottom) profiles for D=0.4m (left), D=1.0m (middle),
and non-dimensionalized (right).

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 26.7% 30.7% 0.048 0.698 0.317 0.233
D1.0 25.6% 39.1% 0.141 1.007 0.405 0.366

Table 15: Average gas holdup, liquid velocities and RMSE obtained from the base model simulations for two different
diameters (D=0.4m and D=1.0m).

From figure 16, we observe that the model shows the anticipated parabolic shape for the gas holdup and liquid
velocity. However, when examining the gas holdup profile, particularly for D=1.0m, it appears to remain

37



relatively flat. This flat profile becomes more apparent when considering the normalized gas holdup profile.
Furthermore, the model tends to overestimate the gas holdup, with the experimental results indication an
average gas holdup of 26.7% and 25.6% for D=0.4 and D=1.0m, while the model yields an average gas
holdup of 30.7% and 39.1%. A visual analysis also reveals that the performance of D=1.0m is worse than
the D=0.4m gas holdup profile, as the latter captures the gas holdup gradient closer to to the wall better,
while D=1.0 fails to do so. Additionally, the RMSE values for D=0.4 and D=1.0m were determined to be
0.048 and 0.141, respectively.

Turning to the liquid velocity profiles, it becomes evident that both velocity profiles are underestimating
the the central region. Specifically, the central velocity for D=0.4m and D=1.0m is 45.4% and 40.2%
lower, compared to the experimental values. Analyzing the normalized velocity profile reveals it corresponds
reasonably well with the experimental values. This is because the ratio between the central velocity and the
measured velocity is constant for each radial coordinate, independent of it’s true value. Consequently, the
normalized liquid velocity profile is not suitable for comparing the flow behavior observed across different
scales.

4.2 Iterative scheme

Building upon the base case, the model is expanded by incorporating the NITA iterative scheme to improve
computational efficiency. Considering that the same governing equations as well as momentum transfer
models are applied, it is expected that the gas holdup and liquid velocity profiles will remain largely unaffected
by implementing the NITA iterative scheme. The results from this comparison are presented in table 16 and
figure 17.

Figure 17: Graphs comparing the gas holdup (top) and liquid velocity (bottom) profiles of the Base model and the
Base model with the NITA iterative scheme for D=0.4m (left) and D=1.0m (right).

38



Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 ITA 26.7% 30.7% 0.048 0.698 0.317 0.233
D0.4 NITA 26.7% 29.5% 0.037 0.698 0.322 0.227
D1.0 ITA 25.6% 39.1% 0.141 1.007 0.405 0.366
D1.0 NITA 25.6% 39.2% 0.143 1.007 0.405 0.370

Table 16: Average gas holdup, liquid velocities and RMSE values obtained from the base model and the base model
with NITA iterative scheme for D=0.4m and D=1.0m.

When examining the graphs, it becomes clear that both iterative solvers give nearly identical results, which is
in line with the expectations. In the case of D=0.4m, the simulated gas holdup shows a marginal increase of
only 1.2%, while the central velocity is only 0.005 m/s higher. Similarly, when considering D=1.0m, minimal
change is observed in central velocity, while the gas holdup increased by only 0.1%.

The goal of implementing the NITA solver was not to achieve a more accurate solution but rather to reduce
the computational time required for simulations. Comparing the simulation times of the NITA solver and
the ITA solver (figure 18), shows that the NITA solver achieved simulation speeds that were approximately
3.7 and 5.3 faster, compared to the ITA solver.

Figure 18: Runtime comparison between the ITA and NITA iterative solver schemes for D=0.4m and D=1.0m.

This decrease in computational time can be attributed to the reduction in the number of calculations that
are required to be solved, as explained in 2.4.9. This is achieved by first converging the momentum equations
before advancing to the next set op equations. This approach however increasing the splitting error, did
not have a notable impact on the solution. This suggest that the splitting error remained smaller than the
truncation error[37], which represents the difference between the exact and discrete solution.

Due to its reduction in simulation time while maintaining a accurate solution, the NITA solver was selected
for all subsequent simulations.

4.3 Swarm modification

Until now, we have assumed a constant drag modification to account for the presence of bubble swarms.
In this step we will evaluate the impact of a swarm modification that considers the local gas holdup by
implementing two models. One model, referred to as the modified Simonnet model (equation: 2.29), was
used in the work of Ertekin during the validation of the experiments conducted by Raimundo. The second
model utilizes the Grace drag formulation (equation: 2.19), where the parameter ’n’ was set to 4. It is

39



important to note that the latter swarm modification model, based on Grace drag, can only be activated
with the Grace drag model. Hence, to ensure a fair comparison, the Grace drag formulation was chosen
for both simulations. In chapter 4.6, a comparison will be made between the Tomiyma and Grace drag
formulations. The results of this comparison are presented below.

Figure 19: Graphs comparing the gas holdup (top) and liquid velocity (bottom) profiles of the Base model with NITA
and a constant drag modification, and the Base model with NITA and the Grace drag modification for D=0.4m (left)
and D=1.0m (right).

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 constant 26.7% 28.5% 0.033 0.698 0.313 0.237
D0.4 grace n=4 26.7% 35.5% 0.090 0.698 0.353 0.206
D1.0 constant 25.6% 37.0% 0.121 1.007 0.426 0.358
D1.0 grace n=4 25.6% 39.8 % 0.146 1.007 0.519 0.300

Table 17: Average gas holdup, liquid velocities, and RMSE values obtained from the Base model with NITA and a
constant drag modification, as well as the Base model with NITA and the Grace drag modification for D=0.4m and
D=1.0m.

As is apparent from the graphs, the modified Simonnet model was not included in the results due to its
instability when running in Fluent. Chapter 6, provides detailed explanation on what measures can be taken
to increase the stability of the model. Due to these instabilities, it was only possible to compare the constant
drag modification with the one provided in Fluent.

40



The analysis of liquid velocity reveals a slight increase in the central liquid velocity. Specifically, for D=0.4m
and D=1.0m, the observed increments are 0.04 m/s and 0.093 m/s, respectively. However, these differences
are relatively small.

Upon analyzing the gas holdup profiles, it is evident that the implementation of the Grace drag formulation
leads to an overall increase in gas holdup. For D=0.4m, a increase of 7.0% is observed, while for D=1.0m, the
increase is 2.8%. This difference in the impact of the Grace formulation can be attributed to the difference
between the constant drag modification and the Grace drag modification being greater for D=0.4m compared
to D=1.0m. The higher gas holdup values are a result of the enhanced drag force acting on the bubbles, as
drag force is less reduced until a gas holdup of 41.1% (Figure 20) is achieved, in comparison to the constant
drag modification. Consequently, the bubbles experience reduced rise velocities, leading to longer residence
times and consequently higher gas holdup values. Furthermore, the gas holdup profile is less flat, suggesting
that bubbles near the walls tend to migrate towards the central region. This behavior can be attributed to
the greater drag force experienced by the bubbles near the wall, as the drag reduced less in that region. It
is expected that the phenomenon of bubble accumulation in regions with higher gas holdup will be more
pronounced when employing the Simonnet model, where there is a greater difference in the drag modification
between the central and near-wall regions.

Unfortunately, it was determined that the Grace drag force modification could not run in a stable manner
when implementing the BIT. Therefore, the decision was made to proceed with the constant drag modification
instead.

Figure 20: Modeled drag modification as a function of gas holdup, compared to the constant drag modification of 0.12

41



4.4 BIT

Figure 21: Comparison between the gas holdup (top) and liquid velocity (bottom) profiles of the Base model (including
NITA) with and without BIT for D=0.4m (left) and D=1.0m (right).

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 no BIT 26.7% 29.5% 0.037 0.698 0.322 0.227
D0.4 BIT 26.7% 25.8% 0.016 0.698 0.447 0.140
D1.0 no BIT 25.6% 39.2% 0.143 1.007 0.405 0.370
D1.0 BIT 25.6% 33.7% 0.088 1.007 0.958 0.087

Table 18: Average gas holdup, liquid velocities, and RMSE values obtained from the Base model (including NITA)
with and without BIT for D=0.4m and D=1.0m.

The graphs above show the base model with the NITA iterative scheme with BIT enabled. When comparing
this to the model without BIT, we visually see that BIT produced a notable improvement in both liquid
velocity and gas holdup for both scales. When looking in greater detail at the gas holdup, it is clear that, the
RMSE almost halved in both cases, decreasing from 0.037 to 0.016 and from 0.143 to 0.088, for D=0.4 and
D=1.0, confirming the visual observations. Especially for D=0.4m, a better agreement with the experimental
correlation can be observed. However, the central gas holdup is still underestimated. The same accounts for
the model with D=1.0 m, in which a reduction of the average gas holdup of 4.8% had been achieved, but the
gas holdup is still underestimated, particularly near the walls. Regarding the liquid velocity profile, similar
improvements can be identified. For the model with D=0.4m, we see an increase of the central velocity and

42



a decrease in the velocity closer to the wall, converging more towards the experimental value. As evident
from the decrease in the RMSE values from 0.227 to 0.140 for D=0.4m and from 0.370 to 0.087 for D=1.0m,
it is clear that Notable improvements have been achieved.

Previous studies conducted by Fletcher and McClure [18][54] have also demonstrated the improved agreement
with experimental data resulting from the inclusion of BIT. In line with Fletcher’s findings, the present study
demonstrated a notable increase in the energy dissipation rate. (Figure 22)

Figure 22: Comparison of turbulent dissipation rates between base model (including NITA) without BIT (left) and
with BIT (right) for D=0.4m.

4.5 Turbulent dispersion

After incorporating the BIT into the base model, which already included the NITA solver, the influence
of the turbulent dispersion force was examined. This force was modeled by activating the Burns turbulent
dispersion model in Fluent.

43



Figure 23: Comparison between the gas holdup (top) and liquid velocity (bottom) profiles of the Base model (including
NITA and BIT) with and without turbulent dispersion for D=0.4m (left) and D=1.0m (right).

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 no TD 26.7% 25.8% 0.016 0.698 0.447 0.140
D0.4 TD 26.7% 25.3% 0.021 0.698 0.522 0.099
D1.0 no TD 25.6% 33.7% 0.088 1.007 0.958 0.087
D1.0 TD 25.6% 34.1% 0.094 1.007 0.863 0.096

Table 19: Average gas holdup, liquid velocities, and RMSE values obtained from the Base model (including NITA and
BIT) with and without turbulent dispersion for D=0.4m and D=1.0m.

Visually an improvement in the velocity profile for D=0.4m can be seen, which is supported by the increase
in central velocity to 0.522 m/s, reducing the difference between the model and the correlation by 0.075
m/s. This reduction in difference is also reflected in the decrease of RMSE by 0.041. However, for D=1.0m,
the inclusion of turbulent dispersion led to a slight deterioration, resulting in an increase in the difference
between the correlation and the model. Consequently, there was an increase in the velocity RMSE by 0.009.
Examining the gas holdup profile, both D=0.4m and D=1.0m show an increase in RMSE of 0.005 and 0.006.

Previous research had shown that the inclusion of the turbulent dispersion force in bubble column simulations
improves agreement with experimental results [18][60]. It has also been observed that turbulent dispersion
contributes to a more flat gas holdup profile [60]. However, in this study, no notable improvements were
observed. Only a slight improvement was noticed in the gas holdup for D=0.4m. Upon closer examination of

44



the gas holdup profile, a slightly flatter profile for D=1.0m was observed, which aligns with previous research
findings [60].

Despite these ambiguous results, showing an improvement in D=0.4m but not in D=1.0m, it was decided
to include the turbulent dispersion force into our model. The rationale behind this decision lies in the fact
that the existing literature on previous experiments clearly states that it improved their models[18][60][16].

4.6 Drag model

The base model has now been expanded to include the NITA iterative scheme, as well as BIT, a constant
swarm modification and turbulent dispersion. The next step involves comparing different drag models. For
this the Grace, and Tomiyama drag formulations were included. Results are shown in figure 24 and table 20

Figure 24: Comparison between the gas holdup (top) and liquid velocity (bottom) profiles of the Base model (including
NITA, BIT, turbulent dispersion) with the Tomiyma drag formulation, and the Grace drag formulation for D=0.4m
(left) and D=1.0m (right).

45



Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 Tomiyama 26.7% 25.3% 0.021 0.698 0.522 0.099
D0.4 Grace 26.7% 24.1% 0.031 0.698 0.473 0.124
D1.0 Tomiyama 25.6% 34.1% 0.094 1.007 0.863 0.096
D1.0 Grace 25.6% 31.8% 0.068 1.007 0.808 0.109

Table 20: Average gas holdup, liquid velocities, and RMSE values obtained from the Base model (including NITA,
BIT, turbulent dispersion) with the Tomiyma drag formulation, and the Grace drag formulation for D=0.4m and
D=1.0m.

Figure 24 shows a decrease in gas holdup and liquid velocity, for the grace drag formulation compared to
the Tomiyama drag force. The decrease in liquid central velocity was 0.049 m/s and 0.055 m/s for D=0.4m
and D=1.0m. The gas holdup decreased by 1.2% respectively 2.3% for D=0.4m, and respectively D=1.0m.
The implementation of the Grace drag formulation resulted to an increase in the liquid velocity RMSE for
D=0.4m and D=1.0m, as well as an increase in the gas holdup RMSE of D=0.4m. However, it is worth
noting that the gas holdup RMSE for D=1.0m showed a decrease, due to it’s initial overestimation. The
reduction in gas holdup, consequently resulted in an improved match with the experimental data, where the
overestimation became smaller and thus decreasing the RMSE.

The observed reduction in both gas holdup and liquid velocity can be attributed to a consistent difference
in the estimation of drag coefficients between the Tomiyama and Grace model. The Grace model predicts
a lower drag coefficient compared to the Tomiyama model, resulting in a reduced bubble drag force and,
consequently, a decrease in the liquid velocity, since the liquid doesn’t get dragged along as much by the
bubbles. Both drag coefficient models are a function of bubble diameter and slip velocity (equations 2.26
and 2.19). Even though both equations are a function of slip velocity and bubble diameter, assuming a fixed
bubble diameter of 5.1mm, resulted in a constant difference of 0.14 between both models predicted drag
coefficients(figure 25). Although this difference may vary at very small slip velocities (figure 25, it can be
assumed that during the simulation, the difference between the drag coefficients remained unchanged. This
assumption is justified by the fact that the bubble rise velocity falls within the range of 0.25 m/s for bubble
diameters between 1 mm and 10 mm [10], very low slip velocity’s are therefore not expected.

Based on the previously conducted validation studies by Fletcher and Ertekin[17][16], which demonstrated
successes with the Grace model, we decided to implement this model in the following simulations. Although
visually, it might seem like the Tomiyama model provides better results for the liquid and gas holdup profiles
in this particular case, no notable differences between both models could be observed. Since there wasn’t
one model outperforming the other in our simulations, it was the rational decision to work in analogy with
prior studies.

Figure 25: Modeled drag coefficient with a slip velocity of 2 m/s as a function of bubble diameter (left) and modeled
drag coefficient with a constant bubble diameter of 5.1mm as a function of slip velocity (right).

46



4.7 Turbulence modeling

A comparison has been made to assess the impact of different turbulence models on the simulation results.
For these simulations, the base model (table 15) was used, which now included the NITA iterative schema,
constant drag modification, Yao and Morel BIT, Burns turbulent dispersion and Grace drag coefficient.
Previous simulations had used the standard k − ϵ turbulence model. The comparison between different
turbulence models involved evaluating both the standard the standard k − ϵ and the RNG k − ϵ turbulence
models.

Figure 26: Comparison between the gas holdup (top) and liquid velocity (bottom) profiles of the Base model (including
NITA, BIT, turbulent dispersion, Grace drag formulation) with the standard k − ϵ turbulence model, and the RNG
k − ϵ turbulence model for D=0.4m (left) and D=1.0m (right).

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 standard 26.7% 24.1% 0.031 0.698 0.473 0.124
D0.4 RNG 26.7% 23.8% 0.033 0.698 0.429 0.138
D1.0 Standard 25.6% 31.8% 0.068 1.007 0.808 0.109
D1.0 RNG 25.6% 31.7% 0.070 1.007 0.701 0.153

Table 21: Average gas holdup, liquid velocities, and RMSE values obtained from the Base model (including NITA,
BIT, turbulent dispersion, Grace drag formulation) with the standard k − ϵ turbulence model, and the RNG k − ϵ
turbulence model for D=0.4m and D=1.0m.

The inclusion of the RNG k− ϵ model, did not result in a notable difference in the model’s ability to predict

47



the liquid velocity and gas holdup. However, it did predicted a lower average gas holdup for both cases,
increasing the difference between the model and correlation from 2.6% to 2.9% for D=0.4m. The decrease
for D=1.0m was only 0.1%. These reductions in gas holdup resulted in a minimal increase of both their
RMSE of 0.002. Similarly, for the liquid velocity, an increase in the RMSE of 0.014 and 0.044 was observed
for D=0.4 and D=1.0m. This increase was accompanied by a rise in difference between the model’s central
velocity and the correlation, with a difference of 0.044 m/s and 0.107 m/s for D=0.4 and D=1.0m.

The RNG k−ϵ was designed to include the turbulence generated by swirly flows, thereby improving accuracy
in such flows[37]. However, the flow in a bubble column does not exhibit swirling flows within its domain.
The inclusion of the RNG k − ϵ did therefore not lead to a better agreement with the correlation. As a
result, the decision was made to exclude the RNG k − ϵ model from the following simulations and continue
using the standard k − ϵ model. This choice aligns with the approach followed by Fletcher and Ertekin in
their validation studies.

4.8 Inclusion of the ideal gas law

For all previous simulations, a constant gas density had been assumed instead of using the ideal gas law.
This choice was motivated by stability concerns, as the inclusion of the ideal gas law was found to destabilize
the Yao and Morel BIT model. To address this, a two-step simulation approach was adopted. Initially, the
simulation was run for 20 seconds without incorporating the ideal gas law, ensuring stability. After which
the ideal gas law was included.

Assuming a constant gas density is a great simplification, considering the hydrostatic pressure at the bottom
of D=1.0m gives a density of 1.642 kg/m3, compared to the constant density assumption of 1.204 kg/m3,
resulting in an increase of 36.4%. Instead of employing a constant value for all reactors, the selection
should have been predicated on the average pressure, thereby reducing the density difference between both
approaches. This is discussed in further detail in Chapter 6. For D=0.4, the increase in density was 13.5%
due to the lower initial liquid height (1.6m instead of 4m in D=1.0m), resulting in a lower hydrostatic
pressure.

In the following simulations, a comparison has been made between the base model (table 15) including; the
NITA iterative schema, constant drag modification, Yao and Morel BIT, Burns turbulent dispersion and
Grace drag coefficient, and the same model with the gas density modeled according to the ideal gas law.
The simulation results are presented in Figure 27 and table 22.

48



Figure 27: Comparison between the gas holdup (top) and liquid velocity (bottom) profiles of the Base model (including
NITA, BIT, turbulent dispersion, Grace drag formulation) with and without the ideal gas law for D=0.4m (left) and
D=1.0m (right).

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 Constant 26.7% 24.1% 0.031 0.698 0.473 0.124
D0.4 Ideal gas 26.7% 23.3% 0.038 0.698 0.456 0.131
D1.0 Constant 25.6% 31.8% 0.038 1.007 0.808 0.170
D1.0 Ideal gas 25.6% 29.3% 0.061 1.007 0.482 0.290

Table 22: Average gas holdup, liquid velocities, and RMSE values obtained from the Base model (including NITA,
BIT, turbulent dispersion, Grace drag formulation) with and without the ideal gas law for D=0.4m and D=1.0m.

If we analyse the results of both reactors, it becomes clear that the effect on D=0.4m is relatively minor
compared to that of D=1.0m. In D=0.4, the liquid velocity profile remained largely similar, with only a
slight decrease in the central velocity of 0.017 m/s compared to the model with constant density. The gas
holdup profile showed a decrease of 0.8% in the average gas holdup.

In contrast, the ideal gas law had a more bigger effect on D=1.0m, as expected, due to the 36.4% density
increase compared to the 13.5% for D=0.4m. For D=1.0m, the gas holdup experienced a reduction of 2.5%
and the RMSE increased by 0.023. Additionally, the central velocity decreased by 0.326 m/s, accompanied
by an increase in the RMSE by 0.120.

The decrease in gas holdup can be attributed to the increased gas density resulting from the activation of

49



the ideal gas law. The gas holdup is calculated by dividing the gas volume by the total gas-liquid volume
(equation 2.4). When the ideal gas law is applied and the gas density increases, the gas volume decreases,
leading to a reduction in the gas holdup. This decrease in gas volume, also decreases the number of bubbles
present, resulting in less bubbles exerting an upward force on the liquid. Consequently, the liquid velocity
decreases as a result of this reduced upward force.

Despite the decrease in the model’s ability to predict the gas holdup and liquid velocity caused by the
activation of the ideal gas law, it should still be included in the simulation. The ideal gas law is a fundamental
equation that relates pressure and volume. Its inclusion is therefore crucial for achieving more realistic
simulations. Without incorporating the ideal gas law, the model would neglect this correlation between
pressure and volume.

4.9 Improved model

Past efforts have resulted in the refinement of the base model, to an improved model. The specific settings
for both models are summarized in table 23. In this chapter both models have been compared, in their
ability to reproduce the experimental data. The comparison results, are displayed in figure 28 and table 24.

Base model Improved model
Itterative solver ITA NITA
Drag model Tomiyama Grace
k − ϵ turbulence model Standard Standard
Dispersed phase turbulence Dispersed Dispersed
Swarm modification 0.12 0.12
BIT - Yao and Morel
Turbulent disperion - Burns
Gas density 1.204 kg/m3 ideal gas law

Table 23: Base and improved model setting following a step wise optimization method

50



Figure 28: Comparison between the gas holdup (top) and liquid velocity (bottom) profiles of the Base model and the
improved model for D=0.4m (left) and D=1.0m (right).

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

D0.4 Base model 26.7% 30.7% 0.048 0.698 0.317 0.233
D0.4 improved model 26.7% 23.3% 0.038 0.698 0.456 0.131
D1.0 Base model 25.6% 39.1% 0.141 1.007 0.405 0.366
D1.0 improved model 25.6% 29.3% 0.061 1.007 0.482 0.290

Table 24: Average gas holdup, liquid velocities, and RMSE values obtained from the Base model and the improved
model for D=0.4m and D=1.0m.

The optimized model has demonstrated to improve the ability to predict the gas holdup and liquid velocity
for D=0.4 and D=1.0m. In the case of D=0.4m, the optimized model shows a better gas holdup gradient
compared to the base model, which can be attributed to the inclusion of the BIT model, resulting in a RMSE
reduction of 0.01. Similarly, for D=1.0m, the optimized model shows a improvement by reducing the average
gas holdup by 9.8%, resulting in a 3.7% difference between the correlation and the simulation, which was
originally 13.5%. Additionally, improvements in the liquid velocity profiles are observed, with the RMSE
decreasing by 0.080 and 0.076 for D=0.4 and D=1.0m.

The improved model has demonstrated to be better able to capture the experimental gas holdup and velocity
profiles, while maintaining computational stability for both D=0.4m and D=1.0m.

51



4.10 Detailed model comparison

Previous model comparisons have primarily focused on scale-dependent profiles, neglecting the scale-independence
and influence of measuring height. However, Raimundo did conducted an investigation into these aspects.
His experimental findings demonstrated the scale-independence of the results, as shown in Figure 29 [15].
These findings align with Schweitzer’s research, which described that the gas holdup should follow equation
2.7, independent of it’s scale [34]. Raimundo’s work confirmed that the measuring height had a negligible
effect on the gas holdup, which aligned with the observations made by Forret [26]. Therefore, the model
was tested to validate its ability to reproduce both of these characteristics. This validation is crucial, as the
model aims to serve as a valuable tool for assisting in the scale-up of bubble columns.

4.10.1 Scale independent gas holdup

To assess the improved model’s ability to predict the scale-independent characteristics of a bubble column,
we compare the model results with the normalized gas holdup, equation: 2.7 and the experimental results
from Raimundo [15].

In order to validate the model’s ability to capture the scale-up criteria, simulations were performed for all
four reactor geometries using the improved model settings outlined in Table 23. The simulations for D=0.15
and D=3.0 were unfortunately not stable, and no meaningful results could be obtained from them. The
simulation for D=0.15m could only be run for a duration of 0.642 seconds, whereas D=3.0m was able to run
for the required 90 seconds. However, the results obtained from this simulation were considered invalid due
to the presence of gas accumulation below the water surface at the measurement height (foaming). Such
foaming regimes are uncommon in bubble columns [61] and were not observed by Raimundo, thus rendering
the results unreliable. As a result, the scale-up criteria were tested based on the already known results
obtained from D=0.4m and D=1.0m. Figure 29 shows the normalized gas holdup profiles for D=0.4m and
D=1.0m as well as the empirical correlation.

Figure 29: Comparison of non-dimensionalized gas holdup profiles of D=0.4m, D=1.0m, and the experimental corre-
lation.

The analysis of the normalized gas holdup profile provided by Raimundo reveals that the outcomes obtained
for D=1.0 comply to the scale independent correlation. For D=0.4m, although the data appears to deviate
from the normalized gas holdup, but as stated by Raimundo[15], this data follows the normalized gas holdup
profile with an average error below 5%.

From figure 29, it is evident that current model is not able to accurately capture the scale-independence of
the normalized gas holdup. This is evident from the different normalized gas holdup values obtained from

52



both reactors, implying that the current model is unsuitable for scaling up.

An important consideration should be taken into account regarding this comparison, the average gas holdup
was only measured within the range of r/R = -0.875 to 0.875. Consequently, the measured average gas
holdup is higher compared to when the entire range is considered. Since a lower average gas holdup would
yield higher normalized values, it would align the normalized gas holdup more closely with the normalized
gas holdup correlation.

4.10.2 Measurement height

Raimundo’s work noted that the measuring height had a negligible effect on the gas holdup profile. Therefore,
the model was tested to validate its ability to reproduce this characteristic. For this comparison, only D=0.4m
was considered, as Raimundo had only provided this dataset. Visually analyzing the gas holdup profiles from
the simulation, it becomes evident that the gas holdup is influenced by the measurement height, in contrast
to the Raimundo data, as depicted in Figure 30. This observation implies that the simulation fails to capture
the stable region where the gas holdup is independent of measuring height.

While Raimundo acknowledges the discrepancies in the middle of the column for the profiles measured at
H/D = 2.5 and 3.75, the difference between the simulated measurements at different heights demonstrate
larger deviations compared to Raimundo’s experimental observations. Hence, it is not possible to conclude
that the model is able to capture a stable region.

Figure 30: Comparison between the gas holdup profiles obtained at different measuring heights (top), the improved
model gas holdup profiles (bottom left), and the experimental measured gas holdups (bottom right).

53



Looking at the RMSE value’s from these simulations as well as the graphs in figure 30, it is evident that
the gas holdup does not increase along the reactor height. The gas holdup measured at H/D = 0.5, doesn’t
follow the trend of increasing gas holdup along the reactor height, as is evident in the bottom left graph of
in figure 30.

Upon analysis of the RMSE, and average gas holdup values derived from these simulations, as well as visual
examination of the corresponding graphs, it is evident that the gas holdup does not exhibit a consistent
increase along the vertical axis of the reactor. Notably, the gas holdup measured at H/D = 0.5 appears to
be higher compared to the subsequent points, where a gradual increase can be observed.

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

H/D = 0.5 26.7% 27.1% 0.014 0.698 0.192 0.300
H/D = 1.25 26.7% 23.9% 0.036 0.698 0.358 0.194
H/D = 2.5 25.6% 24.1% 0.031 0.698 0.473 0.124
H/D = 3.75 25.6% 25.7% 0.017 0.698 0.558 0.067

Table 25: Average gas holdup and RMSE values obtained from the improved model at different heights in the reactor.

4.11 Mesh dependency

The mesh dependency comparison is a crucial step in CFD simulations, as it involves assessing the sensitivity
of the solution to changes in mesh characteristics. In this study, the comparison focuses on a mesh containing
100,000 and 200,000 cells and the modeling of D=1.0m, as attempting to simulate other geometries with the
finer mesh did not yield stable results.

Figure 31: Comparison between the gas holdup (left) and liquid velocity (right) profiles of the improved model with
100k cells and with 200k cells for D=1.0m.

Figure 31, displays the results of the simulation, from which it is apparent that the mesh has an influence
on the simulation results. This is not in agreement with mesh dependency studies performed by other
researchers. The mesh used in the work of Ertekin used 80,100 cells, who used a finer mesh containing
211,960 cells had been used to perform a mesh independency study. Where it was concluded, that a coarser
mesh did not influence the simulation results [16]. Other papers (not simulating Raimundo experiments),
also suggested that a mesh containing 100,000 cells, was sufficient to not influence the results [18][54]. The
main difference between these studies and this Study, is the cell types used. All above mentioned simulations

54



used hexahedral mesh. This mesh type has been simulated but was not able to run in a stable manner.

Figure 31 presents the simulation results, revealing a influence of the mesh on the simulation results. This
observation is in contradicts previous mesh dependency studies conducted by other researchers. Ertekin
also performed a mesh independence study. They increased the mesh from 80,100 cells, to 211,960 cells,
after which they concluded that the results were not influenced by the coarse mesh. [16]. Similarly, other
papers (not specifically simulating Raimundo experiments) suggested that a mesh containing 100,000 cells
was sufficient to avoid influence from the mesh size on the results [18][54]. The key distinction between these
studies and the one presented here lies in the cell types employed. All the other simulations employed a
hexahedral mesh, which was also attempted in this study but could not be run in a stable manner.

4.12 Higher order discretization

Regarding the numerical discretization for bubble columns, it is recommended to incorporate higher order
discretization schemes to mitigate discretization errors [62]. In the context of bubble column reactors, it
is common to incorporate the Quick discretization scheme for the volume fraction and momentum transfer
terms [16][17][62]. Building upon this established approach, the enhanced model has been extended to include
the Quick discretization scheme for the volume fraction and momentum transfer terms.

Figure 32: Comparison between the gas holdup (left) and liquid velocity (right) profiles of the improved model with
and without Quick discretization for momentum transfer and volume fraction for D=1.0m.

Both improved models with diameters of 0.4m and 1.0m were expandend by including higher order dis-
cretization schemes. However, the model with a diameter of 0.4m could not be run in a stable manner. The
simulation for D=1.0m was successfully carried out. Nevertheless, the gas holdup graph presented in Figure
32 demonstrates a lack of consistency. This inconsistency arises due to the simulation failing to meet the
convergence criteria of 5e-5; instead, a residual of 1e-3 was observed.

From Figure 32, it is evident that the inclusion of higher order discretization schemes leads to improved
simulations. The higher-order schemes successfully captures the gas holdup gradients near the wall more
accurately, resulting in a gas holdup profile that is less flat. This improvement is further supported by the
reduced RMSE of the gas holdup, which decreased from 0.061 to 0.046.

In addition, the liquid velocity plot shows a more consistent trend, without any irregularities. Here, an
improvement is observed as the central velocity increases from 0.482 m/s to 0.836 m/s, approaching the
central velocity of the correlation, which was 1.007 m/s.

55



Improved model Improved model with Quick Ertekin model
cell type Poly-Hexcore Poly-Hexcore Hexahedral
Itterative solver NITA NITA NITA
Drag model Grace Grace Grace
k − ϵ turbulence model Standard Standard Standard
Dispersed phase turbulence Dispersed Dispersed Dispersed
Swarm modification 0.12 0.12 Simonnet
BIT Yao and Morel Yao and Morel Yao and Morel
Turbulent disperion Burns Burns Burns
Gas density ideal gas law ideal gas law ideal gas law

Discretization
Momentum First order upwind Quick Quick
Volume fraction First order upwind Quick Quick

Table 27: Overview of the model settings for the improved model, the improved model with Quick discretization for
momentum and volume fraction, and Ertekins model settings.

These results align with the recommendation to incorporate higher-order discretization schemes for the
momentum and volume fraction as an improvement in both graphs can be observed. However, it is cru-
cial to consider that higher-order discretization schemes can potentially result in unstable simulations, as
demonstrated in this particular case.

Average gas holdup Average Liquid velocity (m/s)
Exp Sim RMSE Exp V0 Sim V0 RMSE

First 25.6% 29.3% 0.061 1.007 0.482 0.290
Quick 25.6% 21.5% 0.046 1.007 0.836 0.114

Table 26: Average gas holdup, liquid velocities, and RMSE values obtained from the improved model with and without
Quick discretization for momentum transfer and volume fraction for D=1.0m.

4.13 Ertekin model

As the current study builds upon the model developed by Ertekin, a comparison between the simulation
results of the two models has been conducted. For this comparison, D=1.0 was selected since Ertekin’s
research did not include reactors smaller than this specific dimension [16]. Given that the D=3.0m model in
this work yielded unsatisfactory results, the decision was made to focus solely on D=1.0m for the analysis.
For the measurement of the liquid velocity profile, the location at H/D = 3.75 was chosen, as the results
provided by Ertekin were limited to this height [16]. However, the gas holdup profile for this comparison
was still obtained from H/D = 2.5, as those were available for this height.

For the comparison, three simulation results have been included: the improved model, the improved model
with Quick scheme discretization (as discussed in Chapter 4.12), and the results obtained from Ertekin’s
model, along with the correlation plot. The decision to incorporate the improved model with Quick dis-
cretization was based on its promising results. The model by Ertekin incorporates the Simonnet model,
utilizes hexahedral cells instead of poly-hexcore cells, and employs the Quick discretization scheme. An
overview of the settings for each of the models is presented in Table 27.

56



Figure 33: Comparison between the gas holdup profiles (left) and liquid velocity profiles (right) of the improved model
with and without Quick discretization for momentum transfer and volume fraction, and Ertekins model for D=1.0m.
The liquid velocity is measured at H/D = 3.5, deviating from the standard measurement at 2.5.

Upon examining both graphs, it is evident that the improved model without the Quick scheme fails to
comply with the simulation results presented by Ertekin. The gas holdup is overestimated, with a flattened
profile, while the liquid velocity is underestimated, exhibiting a flat profile in the central region, as observed
previously.

The results from the improved model with the higher order discretization show to be in good agreement with
the results obtained by Ertekin. Where the only difference between both models has been drag modification,
and cell type, for which Ertekin used the simonnet model and hexahedral cells and the improved model used
a constant value of 0.12 as drag modification and Poly-Hexcore cells. From this we can conclude that the
use of simonnet nor hexahedral cells have a influence on the results for D=1.0.

Ertiken claims that her simulation is capable of reproducing the experimental data [16]. However, when
utilizing Raimundo’s experimental correlation [15] instead of the experimental results used by Ertiken [16],
it becomes evident that the simulation underestimates the gas holdup and liquid velocity, failing to replicate
the correlation and thus concluding that the simulation is capable of reproducing the experimental setup.
Ertiken’s decision to directly use Raimundo’s results, rather than incorporating the experimental correlation
to validate her model, likely contributed to these differing observations, as further discussed in 6. It should
be noted that a different measuring height (H/D of 3.5 instead of 2.5) was used to reach the conclusion that
the liquid velocity reproduces the experimental results [16].

57



5 Conclusion

The aim of this project was to establish a single CFD model capable of accurately simulating gas holdup and
liquid velocity as well as scale independent phenomena. This involved the establishment of a CFD model
replicating experimental observations in bubble columns with diameters ranging from 0.15m to 3m.

Initially, a base model was established as the foundation for model evaluations. The base model exhibited a
flat gas holdup profile across two different reactor diameters, D=0.4m and D=1.0m. However, it was observed
that the average gas holdup for D=0.4m was overestimated by 4.0%, while for D=1.0m, the overestimation
reached 13.5%. Furthermore, an analysis of the central liquid velocity revealed an underestimation of 0.381
m/s and 0.602 m/s for D=0.4m and D=1.0m, respectively.

Subsequently, the base model was extended through the incorporation of diverse turbulence and drag formu-
lations, higher order discretization methods, and an alternative iterative scheme. These were implemented
in a step wise manner aimed to explore the effects of these modifications on the model’s performance. The
outcomes obtained from these enhancements are summarized below.

• The incorporation of the NITA iterative solver showed minimal influence on the resultant outcomes.
However, it accelerated the run time by a factor of 3.7 and 5.3 for D=0.4m and D=1.0m, respectively.

• The inclusion of the Grace drag modification with n=4 demonstrated an improvement in the simulation
bringing it closer to the correlation value, and yielding a less flat profile. The stability of this model was
however compromised upon the inclusion of the BIT model, and grace drag modification was therefore
not included in further models.

• The incorporation of the Yao and Morel BIT model yielded a substantial improvement in the simu-
lation results. As it reduced the RMSE value for the gas holdup and for the liquid velocity. These
outcomes align with the previous validation efforts conducted by Ertekin and Fletcher, providing fur-
ther substantiation for the efficacy of the Yao and Morel BIT model [16][17].

• The inclusion of turbulent dispersion did not improve the simulation results. Previous studies have
shown that turbulent dispersion can improve the accuracy of simulations [18][60]. Nevertheless, due to
its proven success in other simulations, turbulent dispersion was included in the base model.

• The Grace drag model exhibited a marginal influence on the simulation results compared to the
Tomiyama drag formulation. With Grace the liquid velocity decreased for both reactor geometries, due
to the lower drag coefficient estimation of the Grace model. The Grace drag model led to an overall
reduction in the gas holdup, improving alignment with the experimental correlation for D=1.0m, while
slightly compromising the agreement for D=0.4m.

• The RNG k − ϵ model has been compared to the standard k − ϵ model, which offers an additional
term to account for swirl turbulence resulting in reduced turbulent viscosity. This reduction would
decrease the hindrance of the liquid flow, consequently leading to higher liquid velocities in the central
region. However, no notable increase in liquid velocity profile had been observed, and no other notable
improvements were observed. The RNG k − ϵ model was therefore not included in further models.

• The inclusion of the ideal gas law in the base model had a notable impact on the model’s ability to
accurately predict the hydrodynamics of D=1.0m, because the density increased by 36.4% at the sparger
for this geometry. The incorporation of the ideal gas law had minimal effect on the hydrodynamics
prediction for D=0.4m. Considering the fundamental nature of the ideal gas law it was included in the
base model.

• The inclusion of NITA, turbulent dispersion, BIT, the Grace drag formulation, and the ideal gas law
in the base model yielded substantial improvements, particularly for D=1.0m.

58



• The detailed model comparison revealed that the improved model exhibited instability issues when
simulating bubble columns with diameters of 0.15m and 3.0m. Additionally, The model failed to
accurately capture the scale-independent gas holdup profile, as well as dependence on the measuring
height, which contradicts experimental observations.

• The implementation of a finer mesh resolution revealed that the model’s performance was sensitive to
the mesh size.

• The utilization of higher-order discretization for D=1.0m yielded a notable improvement in the simu-
lation outcomes. This came at the cost of convergence, as the model failed to reach the convergence
threshold of 5e-5. Consequently, the gas holdup profile exhibited inconsistencies, indicating a lack of
accurate predictions.

• The inclusion of higher order discretization has been shown to result in good agreement with the results
obtained by Ertekin [16] for D=1.0m.

This study aimed to explore the possibility of developing a single CFD model capable of accurately cap-
turing the gas holdup and liquid velocity profiles, as well as the scale-independence phenomena observed in
bubble columns with diameters ranging from 0.15m to 3.0m. The objective was to assess whether a single
model could effectively simulate these hydrodynamic behaviors across various column diameters, thereby
providing valuable insights for bubble column design and optimization. The findings of this study revealed
that although the current model successfully simulated D=0.4m and D=1.0m, it fell short in accurately
reproducing the gas holdup and liquid velocity profiles, as well as the scale-independence phenomena.

This study establishes an initial step in the development of a single CFD model for simulating bubble
columns with water and air, laying the foundation for future research. By incorporating the discussed
models and providing the necessary code, this thesis offers a well-established starting point for investigating
the instabilities and limitations of the current model. Through these endeavors, the ultimate objective of
accurately simulating bubble columns for syngas fermentation can be progressively approached.

59



6 Recommendations

6.1 Validation

The validation process involved utilizing equations 2.7 and 2.8 to evaluate the model’s capability to replicate
the experimental setup. Raimundo [15] performed a comparative analysis between his experimentally derived
data and these correlations, revealing a satisfactory level of agreement. However, it was observed that it
had an average error of 5% [15]. Conversely, our investigation, employing the same correlations, led to
the conclusion that the model inadequately reproduced the experimental outcomes. Notably, our findings
exhibited concurrence with Ertikin’s results [16], where she noted a favorable correspondence between her
outcomes and the experimental data. Ertikin’s assessment was based on her utilization of the experimental
results for deriving her conclusions. Given the discrepancy regarding the model’s proficiency in replicating
experimental results, it is imperative to conduct the comparison using the actual experimental data, as this
doesn’t contain an error of 5%.

6.2 Measuring range

The data had been measured for a range between r
R = -0.875 and 0.875. This range was selected because

the simulation measurements of gas holdup were available exclusively within this interval. However, since a
simulation is not limited to a specific range, and an empirical correlation had been selected for validation,
it is recommended to measure the data within the range of r

R = -1 to 1. In addition to gaining a better
understanding of the gas holdup profile, it would have been possible to determine the average gas holdup,
which is currently based on the measured range between r

R - 0.875 and 0.875.

6.3 Gas density

The initial models assumed a constant gas density that was not related to the average pressure in the reactor.
Consequently, there was a density difference of 37% at the sparger for D=1.0m. The incorporation of the
ideal gas law revealed a notable disparity between the constant density assumption for this geometry and
the ability to accurately reproduce the experimental setup. However, previous simulations that included
the drag law occasionally resulted in unstable simulations. In such cases, a constant density model may
be deemed acceptable if the constant density is derived from the average gas density within the reactor.
This approach is expected to yield satisfactory results, based on the fact that the smaller reactors were less
influenced by the ideal gas law model due to their proximity to the assumed constant density.

6.4 Simonnet model instability

Previous research incorporated the Simonnet model to account for the drag reduction resulting from the
swarming behavior of bubbles, which demonstrated improved model performance. However, in this study,
attempts to achieve stable simulations using the Simonnet model were unsuccessful. Consequently, the model
could not be implemented and applied for analysis. To mitigate this instability, the time step was reduced
from 0.001 sec to 0.0001 sec. Despite this adjustment, the model continued to be unstable, accompanied by
a increase in simulation time. The rapid variability of the drag reduction factor between consecutive time
steps likely contributes to this instability, posing challenges for achieving convergence. To address this issue,
Fluent introduced relaxation factors, a method that limits the magnitude of change for specific variables
[57], thereby enhancing simulation stability. This methodology can potentially be applied to the Simonnet
model as well. Initially, a UDF implementing a constant drag reduction could be employed to establish a
stable simulation and determine an initial drag reduction factor. Once a stable simulation state is attained,

60



the Simonnet model can be introduced using appropriate relaxation factors. The selection of an appropriate
under relaxation factor involves an iterative process due to the absence of a universally accepted standard
value. A recommended starting point is 0.5. By systematically adjusting this value by 0.2, changes in model
stability can be observed, aiding in the determination of the optimal relaxation factor.

6.5 Furter model improvement

The improved model with Quick discretization demonstrated the ability to reproduce results obtained by
Ertekin [16] and displayed the most potential. However, this model encountered two primary issues: it could
only be run for D=1.0m, and it exhibited limited convergence. Prior to incorporating additional models into
the current simulation, it is preferred to enhance the existing model to meet convergence criteria. This could
be achieved by minimizing the number of models included, focusing solely on those that have an influence
on the results, such as the BIT, ideal gas law, and Quick discretization. By reducing the model complexity
to these key factors, it would be possible to gain insights into the sources of model instability.

If convergence issues persist, it is advisable to conduct simulations without the BIT model. If the simulation
shows improvement without the BIT model, further investigation can be directed towards the maximum slip
condition, which is currently set at 5 m/s. As this value is arbitrarily chosen, modifying it by either increasing
or decreasing could potentially resolve instabilities. Additionally, implementing alternative approaches, such
as defining a maximum output for the bubble-induced turbulence, may help mitigate model instability.

61



References

[1] Hairong Yue, Xinbin Ma, and Jinlong Gong. An alternative synthetic approach for efficient catalytic
conversion of syngas to ethanol. Accounts of Chemical Research, 47(5):1483–1492, 5 2014.

[2] Xiao Sun, Hasan K Atiyeh, Raymond L Huhnke, and Ralph S Tanner. Syngas fermentation process
development for production of biofuels and chemicals: A review. 2019.

[3] Fayetteville James L. Gaddy. Gas Fermentation-A Flexible Platform for Commercial Scale Production
of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks. Frontiers in Microbiology
— www.frontiersin.org, 1:694, 2016.

[4] Mark E. Dry. The Fischer-Tropsch process: 1950-2000. Catalysis Today, 71(3-4):227–241, 1 2002.

[5] Haris Nalakath Abubackar, Maŕıa C Veiga, and Christian Kennes Biofuels. Biological conversion of
carbon monoxide: rich syngas or waste gases to bioethanol.

[6] Konstantinos Asimakopoulos, Hariklia N. Gavala, and Ioannis V. Skiadas. Reactor systems for syngas
fermentation processes: A review, 9 2018.

[7] Marshall D. Bredwell, Prashant Srivastava, and R. Mark Worden. Reactor design issues for synthesis-gas
fermentations. Biotechnology Progress, 15(5):834–844, 9 1999.

[8] James J. Orgill, Hasan K. Atiyeh, Mamatha Devarapalli, John R. Phillips, Randy S. Lewis, and Ray-
mond L. Huhnke. A comparison of mass transfer coefficients between trickle-bed, Hollow fiber membrane
and stirred tank reactors. Bioresource Technology, 133:340–346, 2013.

[9] Muhammad Yasin, Yeseul Jeong, Shinyoung Park, Jiyeong Jeong, Eun Yeol Lee, Robert W. Lovitt,
Byung Hong Kim, Jinwon Lee, and In Seop Chang. Microbial synthesis gas utilization and ways to
resolve kinetic and mass-transfer limitations. Bioresource Technology, 177:361–374, 2 2015.

[10] J. J. Heijnen and K. Van’t Riet. Mass transfer, mixing and heat transfer phenomena in low viscosity
bubble column reactors. The Chemical Engineering Journal, 28(2), 1984.

[11] Giorgio Besagni, Fabio Inzoli, Giorgia De Guido, and Laura Annamaria Pellegrini. Experimental inves-
tigation on the influence of ethanol on bubble column hydrodynamics. Chemical Engineering Research
and Design, 112:1–15, 8 2016.

[12] Lars Puiman, Marina P. Elisiário, Lilo M.L. Crasborn, Liselot E.C.H. Wagenaar, Adrie J.J. Straathof,
and Cees Haringa. Gas mass transfer in syngas fermentation broths is enhanced by ethanol. Biochemical
Engineering Journal, 185:108505, 7 2022.

[13] Gunter Keitel and Ulfert Onken. Inhibition of bubble coalescence by solutes in air/water dispersions.
Chemical Engineering Science, 37(11):1635–1638, 1982.

[14] M. Jamialahmadi and H. Müller-Steinhagen. Effect of alcohol, organic acid and potassium chloride
concentration on bubble size, bubble rise velocity and gas hold-up in bubble columns. The Chemical
Engineering Journal, 50(1):47–56, 1992.

[15] P. Maximiano Raimundo, A. Cloupet, A. Cartellier, D. Beneventi, and F. Augier. Hydrodynamics and
scale-up of bubble columns in the heterogeneous regime: Comparison of bubble size, gas holdup and
liquid velocity measured in 4 bubble columns from 0.15m to 3m in diameter. Chemical Engineering
Science, 198:52–61, 4 2019.

[16] Ege Ertekin, John M. Kavanagh, David F. Fletcher, and Dale D. McClure. Validation studies to assist in
the development of scale and system independent CFD models for industrial bubble columns. Chemical
Engineering Research and Design, 171:1–12, 7 2021.

62



[17] David F. Fletcher, Dale D. McClure, John M. Kavanagh, and Geoffrey W. Barton. CFD simulation of
industrial bubble columns: Numerical challenges and model validation successes. Applied Mathematical
Modelling, 44:25–42, 4 2017.

[18] Dale D. Mcclure, John M. Kavanagh, David F. Fletcher, and Geoffrey W. Barton. Development of
a CFD model of bubble column bioreactors: Part two - comparison of experimental data and CFD
predictions. Chemical Engineering and Technology, 37(1):131–140, 1 2014.

[19] I. Katharina Stoll, Nikolaos Boukis, and Jörg Sauer. Syngas Fermentation to Alcohols: Reactor Tech-
nology and Application Perspective, 1 2020.

[20] Mark R. Wilkins and Hasan K. Atiyeh. Microbial production of ethanol from carbon monoxide, 6 2011.

[21] Dinesh K. A. Ko C. W. phillips J. R. Basu R. Wilkstrom C. V. et al. Gaddy, j.L. Methods for increasing
the production of ethanol from microbial fermentation. US7285402. Washington, DC: U.S. Patent and
Trademark Office, 2007.

[22] Ánxela Fernández-Naveira, Maŕıa C. Veiga, and Christian Kennes. H-B-E (hexanol-butanol-ethanol)
fermentation for the production of higher alcohols from syngas/waste gas, 4 2017.

[23] Daniele Pugliesi. Bubble column reactor, 7 2012.

[24] Giorgio Besagni and Fabio Inzoli. The effect of liquid phase properties on bubble column fluid dynamics:
Gas holdup, flow regime transition, bubble size distributions and shapes, interfacial areas and foaming
phenomena. Chemical Engineering Science, 170:270–296, 10 2017.

[25] R. Krishna and J. M. Van Baten. Scaling up bubble column reactors with the aid of CFD. Chemical
Engineering Research and Design, 79(3):283–309, 2001.

[26] A. Forret, J. M. Schweitzer, T. Gauthier, R. Krishna, and D. Schweich. Influence of scale on the
hydrodynamics of bubble column reactors: An experimental study in columns of 0.1, 0.4 and 1 m
diameters. Chemical Engineering Science, 58(3-6):719–724, 2003.

[27] R Krishna and S T Sie. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor.
Technical report, 2000.

[28] Robert F. Mudde. Gravity-driven bubbly flows. Annual Review of Fluid Mechanics, 37:393–423, 2005.

[29] Xiangan Li, Derek Griffin, Xueliang Li, and Michael A. Henson. Incorporating hydrodynamics into
spatiotemporal metabolic models of bubble column gas fermentation. Biotechnology and Bioengineering,
116(1):28–40, 1 2019.

[30] Graham B Wallis. The terminal speed of single drops or bubbles in an infinite medium, volume !
Pergamon Press, 1974.

[31] J.R. Grace. Shapes and velocities of bubbles rising in infinite liquids. Transactions of the Institution of
Chemical Engineers, pages 116–120, 1973.

[32] E. Dinesh Kumar, S. A. Sannasiraj, and V. Sundar. Phase field lattice Boltzmann model for air-water
two phase flows. Physics of Fluids, 31(7), 7 2019.

[33] Sung Hoon Park, Changhwan Park, Jin Yong Lee, and Byungchul Lee. A Simple Parameterization for
the Rising Velocity of Bubbles in a Liquid Pool. Nuclear Engineering and Technology, 49(4):692–699, 6
2017.

[34] J. M. Schweitzer, J. Bayle, and T. Gauthier. Local gas hold-up measurements in fluidized bed and
slurry bubble column. Chemical Engineering Science, 56(3):1103–1110, 2 2001.

[35] Peter M. Wilkinson, Arie P. Spek, and Laurent L. van Dierendonck. Design parameters estimation for
scale-up of high-pressure bubble columns. AIChE Journal, 38(4):544–554, 1992.

63



[36] Giorgio Besagni, Lorenzo Gallazzini, and Fabio Inzoli. On the scale-up criteria for bubble columns.
Petroleum, 5(2):114–122, 6 2019.

[37] ANSYS Fluent Theory Guide 15.

[38] Roland Rzehak and Sebastian Kriebitzsch. Multiphase CFD-simulation of bubbly pipe flow: A code
comparison. International Journal of Multiphase Flow, 68:135–152, 1 2015.

[39] Mohan R. Rampure, Amol A. Kulkarni, and Vivek V. Ranade. Hydrodynamics of bubble column
reactors at high gas velocity: Experiments and computational fluid dynamics CFD simulations. In
Industrial and Engineering Chemistry Research, volume 46, pages 8431–8447, 12 2007.

[40] Akio Tomiyama, Isao Kataoka, Iztok Zun, and Tadashi Sakaguchi. Drag coefficients of single bubbles
under normal and micro gravity conditions. JSME International Journal, Series B: Fluids and Thermal
Engineering, 41(2):472–479, 1998.

[41] M. Simonnet, C. Gentric, E. Olmos, and N. Midoux. CFD simulation of the flow field in a bubble column
reactor: Importance of the drag force formulation to describe regime transitions. Chemical Engineering
and Processing: Process Intensification, 47(9-10):1726–1737, 2008.

[42] E. Olmos, C. Gentric, and N. Midoux. Numerical description of flow regime transitions in bubble column
reactors by a multiple gas phase model. Chemical Engineering Science, 58(10):2113–2121, 2003.

[43] Alan D Burns, Thomas Frank, Ian Hamill, and Jun-Mei Shi. The Favre Averaged Drag Model for
Turbulent Dispersion in Eulerian Multi-Phase Flows. Technical report.

[44] Launder and Spalding. The mathematical modelling of turbulent flows. 1985.

[45] Cédric Laborde-Boutet, Faiçal Larachi, Nicolas Dromard, Olivier Delsart, and Daniel Schweich. CFD
simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical
Engineering Science, 64(21):4399–4413, 11 2009.

[46] Y Sato, M Sadatomi, and K Sekoguchi. Momentum and heat transfer in two-phase bubble flow. Technical
report, 1981.

[47] D Peger and S Becker. Modelling and simulation of the dynamic flow behaviour in a bubble column.
Technical report, 2001.

[48] M. Lopez de Bertodano, R. T. Lahey Jr, and O. C. Jones. Phase distribution in bubbly two-phase flow.
International Journal of Multiphase Flow, 20(5):805–818, 1994.

[49] L. Kataoka and A. Serizawa. Basic equations of turbulence in gas-liquid two-phase flow. International
Journal of Multiphase Flow, 15(5):843–855, 1989.

[50] A A Troshko and Y A Hassan. A two-equation turbulence model of turbulent bubbly fows. Technical
report, 2001.

[51] Wei Yao and Christophe Morel. Volumetric interfacial area prediction in upward bubbly two-phase flow.
International Journal of Heat and Mass Transfer, 47(2):307–328, 2004.

[52] Yohana Ezzat and Ahmed A. Abdel-Rehim. Numerical modelling of lauric acid phase change material
using iterative and non-iterative time-advancement schemes. Journal of Energy Storage, 53, 9 2022.

[53] ANSYS Fluent Mosaic Technology Automatically Combines Disparate Meshes with Polyhedral Elements
for Fast, Accurate Flow Resolution. Technical report, 2018.

[54] Dale D. McClure, Hannah Norris, John M. Kavanagh, David F. Fletcher, and Geoffrey W. Barton.
Validation of a computationally efficient computational fluid dynamics (CFD) model for industrial
bubble column bioreactors. Industrial and Engineering Chemistry Research, 53(37):14526–14543, 8
2014.

64



[55] R. Clift, J. R. Grace, and M. E. Weber. Bubbles, Drops and Particles. Academic Press: New York,
1978.

[56] S Becker, H De Bie, and J Sweeney. Dynamic flow behaviour in bubble columns. Chemical Engineering
Science, 54:10591–6714, 1999.

[57] Ansys Fluent Customization Manual. Technical report, 2021.

[58] Bengt Andersson. Computational fluid dynamics for engineers. Cambridge University Press, 2011.

[59] B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and Products. Techno-
metrics, 4(3):419–420, 1962.

[60] Mandar V. Tabib, Swarnendu A. Roy, and Jyeshtharaj B. Joshi. CFD simulation of bubble column-An
analysis of interphase forces and turbulence models. Chemical Engineering Journal, 139(3):589–614, 6
2008.

[61] Nigar Kantarci, Fahir Borak, and Kutlu O. Ulgen. Bubble column reactors, 6 2005.

[62] Giorgio Besagni, Nicolò Varallo, and Riccardo Mereu. Computational Fluid Dynamics Modelling of
Two-Phase Bubble Columns: A Comprehensive Review. Fluids, 8(3):91, 3 2023.

65



Appendix A - Experimental validation Raimundo

This section contains the experimental scale-independent gas holdup profiles from Raimundo[15], from which
the empirical gas holdup correlation by Schweiter has been validated [34]. As well as the validation of the
liquid velocity scale-independent correlation by Forret [26].

Figure 34: Gas holdup profiles at H/D = 2.5 obtained by Raimundo, normalized by the average gas holdup with the
empirical correlation (Equation 2.7)

Figure 35: Normalized liquid velocity profile obtained by Raimundo and the empirical normilized liquid velocity profile
(equation 2.8)

66



Appendix B: Overview of the ITA and NITA iterative schemes

This section contains an overview of both iterative schemes employed in this study.

Figure 36: Overview of the ITA and NITA iterative schemes [37].

67



Appendix C: Reactor geometry

This section displays the geometry of the reactor with a diameter of 1m.

Figure 37: Schematic overview of the reactor with a diameter of 1m.

68



Appendix D: Meshing

This section contains the meshes used to model D=1.0m and D=0.4m as well as the mesh of D=1.0m used
in the mesh independence study.

Figure 38: Overview of the meshes for D=0.4 and D=1.0, as well as the mesh used for the mesh independancy study

69



Appendix E: User-Defined functions

This section introduces the UDFs employed in this study, along with the locations of the UDMIs (table 28).
The provided codes are; the Simonnet drag reduction factor UDF, the time-averaging UFD, and the BIT
UDFs.

UDMI

UDMI Phase Var description unit UDF
0 Liquid u velocity average m/s time avg
1 Liquid v velocity average m/s time avg
2 Liquid w velocity average m/s time avg
3 Gas u velocity average m/s time avg
4 Gas v velocity average m/s time avg
5 Gas w velocity average m/s time avg
6 Liquid u velocity stdev m/s time avg
7 Liquid v velocity stdev m/s time avg
8 Liquid w velocity stdev m/s time avg
9 Gas u velocity stdev m/s time avg
10 Gas v velocity stdev m/s time avg
11 Gas w velocity stdev m/s time avg
12 Liquid Turb kin energy average m2/s2 time avg
13 Liquid Turb energy dissipation average m2/s3 time avg
14 Gas Volume fraction average time avg
15 Liquid Turb kin energy average m2/s2 time avg
16 Liquid Turb kin energy stdev m2/s3 time avg
17 Gas Volume fraction stdev time avg
18 liquid & gas Slip velocity average m/s time avg
19 liquid & gas Slip velocity instantanous m/s time avg
20
21
22 liquid K source instantanous eps source
23 liquid eps source instantanous eps source
24 liquid CD swarm instantanous eps source
25 liquid CD instantanous eps source
26 liquid CD factor instantanous eps source
27 liquid F drag instantanous eps source
28 liquid tau instantanous eps source
29 liquid Rey instantanous eps source

Table 28: Overview of the UDMI memory locations used for the time-averaging, Simonnet drag reduction factor and
the BIT UDFs.

70



Simonnet drag reduction factor

1 /* **************************************************************

2 UDF for Simonnet ’s drag modification in the heterogeneous regime

3 *************************************************************** */

4

5 #include "udf.h"

6 #include "math.h"

7 #include "mem.h"

8

9 DEFINE_EXCHANGE_PROPERTY(Simonnet_modification ,cell ,mix_thread ,s_col ,f_col)

10 {

11

12 /* Variables */

13 Thread *thread_g; /* Gas and liquid threads */

14 real CD_correction;

15

16 /* Get the Threads */

17 thread_g = THREAD_SUB_THREAD(mix_thread , f_col); /* Gas phase */

18

19 /* gas holdup */

20 real alpha_g = C_VOF(cell ,thread_g);

21

22 /* exponent */

23 real m = 25.0;

24

25 /* CD correction term */

26 real C1 = 0.8;

27

28 /*model stability */

29 alpha_g = MAX(0.01, alpha_g);

30

31 /* Compute drag coefficient correction */

32 real CD_factor = (1-alpha_g)* pow((pow((1- alpha_g),m)+pow ((4.8*( alpha_g /(1- alpha_g))),m))

,(-2/m));

33

34 /* correct CD_correction */

35 if (CD_factor < 1)

36 {

37 CD_correction = C1 * CD_factor;

38 }

39 else

40 {

41 CD_correction = 1;

42 }

43

44

45 return CD_correction;

46 }

Listing 1: modified Simonnet drag modification

71



Time-averaging UDF

1 /* function to compute a rolling average in a multi -phase process */

2

3 #include "udf.h" /* these are the packages to be imported */

4 #include "dpm.h" /* these are the packeges to be imported */

5 #include "mem.h" /* these are the packeges to be imported */

6

7 /* definitions */

8 int timer = 1; /* number of timesteps , initialize at 1 */

9

10 /* executes at end of every timestep */

11 DEFINE_EXECUTE_AT_END(Time_average_std)

12 {

13 Domain *d; /* Load domain */

14 cell_t cell; /* will loop over all cells c */

15 Thread *tr; /* will loop over all threads tr */

16 double BU, M2; /* backup variable for computation */

17 double slip ,slip_U ,slip_V ,slip_W; /* variable for slip velocity */

18

19 /* if multiphase specify liquid and gas thread. */

20 Thread *SUBT_Liq; /* sub -thread for liquid */

21 Thread *SUBT_Gas; /* sub -thread for gas */

22 d = Get_Domain (1);

23

24 /* loop over all cells to get average and std data per cell */

25 thread_loop_c (tr,d)

26 {

27

28 SUBT_Liq = THREAD_SUB_THREAD(tr ,0); /* set liquid thread */

29 SUBT_Gas = THREAD_SUB_THREAD(tr ,1); /* set gas thread */

30

31 /* this list can be made arbitrarily long. Make sure to refer to right thread (for

epsilon ,

32 in mixture k-epsilon mode this is the mixture level thread tr, in dispersed mode this is

the liquid thread)

33 make sure to include UDM in simulation! */

34

35 begin_c_loop (cell ,tr)

36 {

37 /* velocity averages & stdev , liquid */

38 BU = C_UDMI(cell ,tr ,0);

39 C_UDMI(cell ,tr ,0) = (C_UDMI(cell ,tr ,0)*(timer -1) + C_U(cell ,SUBT_Liq))/(timer) ;

/* average liquid_vel u direction */

40 M2 = C_UDMI(cell ,tr ,6)+(( C_U(cell ,SUBT_Liq) - BU)*(C_U(cell ,SUBT_Liq)-C_UDMI(cell ,tr ,0))

); /* standard deviation */

41 C_UDMI(cell ,tr ,6) = M2/timer;

42

43 BU = C_UDMI(cell ,tr ,1);

44 C_UDMI(cell ,tr ,1) = (C_UDMI(cell ,tr ,1)*(timer -1) + C_V(cell ,SUBT_Liq))/(timer) ;

/* liquid_vel v */

45 M2 = C_UDMI(cell ,tr ,7)+(( C_V(cell ,SUBT_Liq) - BU)*(C_V(cell ,SUBT_Liq)-C_UDMI(cell ,tr ,1))

);

46 C_UDMI(cell ,tr ,7) = M2/timer;

47

48 BU = C_UDMI(cell ,tr ,2);

49 C_UDMI(cell ,tr ,2) = (C_UDMI(cell ,tr ,2)*(timer -1) + C_W(cell ,SUBT_Liq))/(timer) ;

/* liquid_vel w */

50 M2 = C_UDMI(cell ,tr ,8)+(( C_W(cell ,SUBT_Liq) - BU)*(C_W(cell ,SUBT_Liq)-C_UDMI(cell ,tr ,2))

);

51 C_UDMI(cell ,tr ,8) = M2/timer;

52

53 /* velocity averages & stdev , gas */

54 BU = C_UDMI(cell ,tr ,3);

55 C_UDMI(cell ,tr ,3) = (C_UDMI(cell ,tr ,3)*(timer -1) + C_U(cell ,SUBT_Gas))/(timer) ;

/* average gas_vel u */

56 M2 = C_UDMI(cell ,tr ,9)+(( C_U(cell ,SUBT_Gas) - BU)*(C_U(cell ,SUBT_Gas)-C_UDMI(cell ,tr ,3))

); /* std dev */

72



57 C_UDMI(cell ,tr ,9) = M2/timer;

58

59 BU = C_UDMI(cell ,tr ,4);

60 C_UDMI(cell ,tr ,4) = (C_UDMI(cell ,tr ,4)*(timer -1) + C_V(cell ,SUBT_Gas))/(timer) ;

/* gas vel v */

61 M2 = C_UDMI(cell ,tr ,10) +((C_V(cell ,SUBT_Gas) - BU)*(C_V(cell ,SUBT_Gas)-C_UDMI(cell ,tr ,4)

));

62 C_UDMI(cell ,tr ,10) = M2/timer;

63

64 BU = C_UDMI(cell ,tr ,5);

65 C_UDMI(cell ,tr ,5) = (C_UDMI(cell ,tr ,5)*(timer -1) + C_W(cell ,SUBT_Gas))/(timer) ;

/* gas vel w */

66 M2 = C_UDMI(cell ,tr ,11) +((C_W(cell ,SUBT_Gas) - BU)*(C_W(cell ,SUBT_Gas)-C_UDMI(cell ,tr ,5)

));

67 C_UDMI(cell ,tr ,11) = M2/timer;

68

69 /* turbulence averages & stdev , gas */

70 BU = C_UDMI(cell ,tr ,12);

71 C_UDMI(cell ,tr ,12) = (C_UDMI(cell ,tr ,12)*(timer -1) + C_K(cell ,SUBT_Liq))/( timer) ;

/* turb kinetic energy - average */

72 M2 = C_UDMI(cell ,tr ,15) +((C_K(cell ,SUBT_Liq) - BU)*(C_K(cell ,SUBT_Liq)-C_UDMI(cell ,tr

,12))); /* turb kinetic energy - stdev */

73 C_UDMI(cell ,tr ,15) = M2/timer;

74

75 BU = C_UDMI(cell ,tr ,13);

76 C_UDMI(cell ,tr ,13) = (C_UDMI(cell ,tr ,13)*(timer -1) + C_D(cell ,SUBT_Liq))/( timer) ;

/* Turb energy dissipation rate - average */

77 M2 = C_UDMI(cell ,tr ,16) +((C_D(cell ,SUBT_Liq) - BU)*(C_D(cell ,SUBT_Liq)-C_UDMI(cell ,tr

,13))); /* Turb energy dissipation rate - stdev */

78 C_UDMI(cell ,tr ,16) = M2/timer;

79

80 BU = C_UDMI(cell ,tr ,14);

81 C_UDMI(cell ,tr ,14) = (C_UDMI(cell ,tr ,14)*(timer -1) + C_VOF(cell ,SUBT_Gas))/(timer) ;

/* Gas fraction */

82 M2 = C_UDMI(cell ,tr ,17) +(( C_VOF(cell ,SUBT_Gas) - BU)*(C_VOF(cell ,SUBT_Gas)-C_UDMI(cell ,

tr ,14)));

83 C_UDMI(cell ,tr ,17) = M2/timer;

84

85 /*slip velocity */

86 slip_U = C_U(cell ,SUBT_Gas) - C_U(cell ,SUBT_Liq);

87 slip_V = C_V(cell ,SUBT_Gas) - C_V(cell ,SUBT_Liq);

88 slip_W = C_W(cell ,SUBT_Gas) - C_W(cell ,SUBT_Liq);

89 slip = pow(pow(slip_U ,2.)+pow(slip_V ,2.)+pow(slip_W ,2.) ,(1./2.));

90

91 /* averaging & t slip*/

92 BU = C_UDMI(cell ,tr ,18);

93 C_UDMI(cell ,tr ,18) = (C_UDMI(cell ,tr ,18)*(timer -1) + slip)/( timer);

94 C_UDMI(cell ,tr ,19) = slip;

95

96

97 }

98 end_c_loop (cell ,tr)

99 }

100 timer = timer +1;

101 }

Listing 2: Time-averaging UDF

73



BIT UDF

The BIT model includes the modeling of the momentum transfer term, which has been implemented modeled
with two drag formulations and two drag modifications resulting in four distinct codes. For redundancy pur-
poses, only two codes have been added: BIT with Tomiyama and a constant drag formulation, and BIT with
Grace drag formulation and Simonnet drag modification. The remaining two codes can be derived from these.

BIT with Tomiyama and constant drag correction

1 /* **************************************

2 UDF moddeling BIT using source terms

3 **************************************** */

4

5 #include "udf.h"

6 #include "math.h"

7 #include "mem.h"

8 #include "stdlib.h"

9 #include "sg_mphase.h"

10

11 DEFINE_SOURCE(k_BIT , cell , phase_thread , dS , eqn)

12 {

13 /* variables */

14 Thread *Thread_GL; /* thread to receive all phase threads */

15 Thread *Thread_L; /* sub -thread for liquid */

16 Thread *Thread_G; /* sub -thread for gas */

17

18 /* position variable */

19 real alpha_g , Rey , CD, Eo;

20

21 /* momentum transfer */

22 real F_drag;

23

24 /* velocity vector */

25 real slip , slip_U , slip_V , slip_W;

26

27 /* properties */

28 real rho_g , rho_l;

29 real mu_L , diab , surf_ten;

30

31 /* storage */

32 real min1 ,min2 ,max1 ,max2;

33

34 /* simonnet drag correction */

35 real CD_correction , CD_swarm;

36

37 /* result */

38 real k_source;

39

40 /* constants */

41 real C1 = 1.44;

42 real max_slip = 5.;

43

44 /*gas & liquid threads */

45 Thread_GL = THREAD_SUPER_THREAD(phase_thread); /* liquid & gas thread */

46 Thread_L = THREAD_SUB_THREAD(Thread_GL ,0); /* set liquid thread */

47 Thread_G = THREAD_SUB_THREAD(Thread_GL ,1); /* set gas thread */

48

49 /* properies */

50 rho_l = C_R(cell ,Thread_L);

51 rho_g = C_R(cell ,Thread_G);

52 mu_L = C_MU_L(cell ,Thread_L);

53 alpha_g = C_VOF(cell ,Thread_G);

54 diab = 5.1e-3; /*m*/

55 surf_ten= 0.072; /*N/m*/

56

74



57 /*slip velocity */

58 slip_U = C_U(cell ,Thread_G) - C_U(cell ,Thread_L);

59 slip_V = C_V(cell ,Thread_G) - C_V(cell ,Thread_L);

60 slip_W = C_W(cell ,Thread_G) - C_W(cell ,Thread_L);

61

62 /* vector velocity */

63 slip = pow(pow(slip_U ,2.)+pow(slip_V ,2.)+pow(slip_W ,2.) ,(1./2.));

64 slip = MIN(slip ,max_slip);

65

66 /* Tomiyama drag model*/

67 Rey = (rho_l * fabs(slip) * diab) / mu_L;

68 Eo = (9.81*( rho_l -rho_g)*pow(diab ,2.))/surf_ten ;

69

70 /*Drag coefficient tomyama */

71 min1 = (24/ Rey)*(1+0.15* pow(Rey ,0.687));

72 min2 = (72/ Rey);

73 max1 = (8./3.) *(Eo/(Eo+4));

74

75 max2 = MIN(min1 ,min2);

76 CD = MAX(max1 ,max2);

77

78 /* Constant drag modification */

79 CD_correction = 0.12;

80

81 /* correcting drag*/

82 CD_swarm = CD*CD_correction;

83

84 /*drag force - iterfacial momentum transfer */

85 F_drag = (3./4.) * (CD_swarm/diab) * alpha_g * rho_l *(slip)*fabs(slip);

86

87 /* turbulent dissiaption energy epsilon source term*/

88 k_source = (1.- alpha_g)*C1*fabs(F_drag)*fabs(slip);

89

90 /*force explicit solution */

91 dS[eqn] = 0.;

92

93 return k_source;

94 }

Listing 3: BIT kinetic energy source term with Tomiyama and a constant drag modification

1 /* **************************************

2 UDF moddeling BIT using source terms

3 **************************************** */

4

5 #include "udf.h"

6 #include "math.h"

7 #include "mem.h"

8 #include "stdlib.h"

9 #include "sg_mphase.h"

10

11 DEFINE_SOURCE(eps_BIT , cell , phase_thread , dS, eqn)

12 { /* variables */

13 Thread *Thread_GL; /* thread to receive all phase threads */

14 Thread *Thread_L; /* sub -thread for liquid */

15 Thread *Thread_G; /* sub -thread for gas */

16

17 /* position variable */

18 real tau , alpha_g , Rey , CD , Eo, eps_B , k_source;

19

20 /* momentum transfer */

21 real F_drag;

22

23 /* velocity vector */

24 real slip , slip_U , slip_V , slip_W;

25

26 /* properties */

27 real rho_g , rho_l;

75



28 real mu_L , diab , surf_ten;

29

30 /* storage */

31 real min1 ,min2 ,max1 ,max2;

32

33 /* simonnet drag correction */

34 real CD_correction , CD_swarm;

35

36 /* result */

37 real eps_source;

38

39 /* constants */

40 real C1 = 1.44;

41 real C3 = 1.;

42 real max_slip = 5.;

43

44 /*gas & liquid threads */

45 Thread_GL = THREAD_SUPER_THREAD(phase_thread); /* liquid & gas thread */

46 Thread_L = THREAD_SUB_THREAD(Thread_GL ,0); /* set liquid thread */

47 Thread_G = THREAD_SUB_THREAD(Thread_GL ,1); /* set gas thread */

48

49 /* properies */

50 rho_l = C_R(cell ,Thread_L);

51 rho_g = C_R(cell ,Thread_G);

52 mu_L = C_MU_L(cell ,Thread_L);

53 eps_B = C_UDMI(cell ,Thread_GL ,23);

54 alpha_g = C_VOF(cell ,Thread_G);

55 diab = 5.1e-3; /*m*/

56 surf_ten= 0.072; /*N/m*/

57

58 /*check if BIT has initial value*/

59 eps_B = MAX(eps_B ,1.185928e-09);

60

61 /*slip velocity */

62 slip_U = C_U(cell ,Thread_G) - C_U(cell ,Thread_L);

63 slip_V = C_V(cell ,Thread_G) - C_V(cell ,Thread_L);

64 slip_W = C_W(cell ,Thread_G) - C_W(cell ,Thread_L);

65

66 /* vector velocity */

67 slip = pow(pow(slip_U ,2.)+pow(slip_V ,2.)+pow(slip_W ,2.) ,(1./2.));

68 slip = MIN(max_slip ,slip);

69

70 /* Tomiyama drag model*/

71 Rey = (rho_l * fabs(slip) * diab) / mu_L;

72 Eo = (9.81*( rho_l -rho_g)*pow(diab ,2.))/surf_ten ;

73

74 /*Drag coefficient tomyama */

75 min1 = (24/ Rey)*(1+0.15* pow(Rey ,0.687));

76 min2 = (72/ Rey);

77 max1 = (8./3.) *(Eo/(Eo+4));

78

79 max2 = MIN(min1 ,min2);

80 CD = MAX(max1 ,max2);

81

82 /* Constant drag modification */

83 CD_correction = 0.12;

84

85 /* correcting drag*/

86 CD_swarm = CD*CD_correction;

87

88 /*drag force - interfacial momentum transfer */

89 F_drag = (3./4.) * (CD_swarm/diab) * alpha_g * rho_l *(slip)*fabs(slip);

90

91 /* timescale dissipation */

92 tau = pow((pow(diab ,2)/( eps_B)) ,(1./3.));

93

94 /* k_source */

95 k_source = (1.- alpha_g)*C1*fabs(F_drag)*fabs(slip);

76



96

97 /* turbulent dissiaption energy epsilon source term*/

98 eps_source = (C3/tau)*k_source;

99 eps_source = MIN(eps_source ,1e8);

100

101 /* storage */

102 C_UDMI(cell ,Thread_GL ,22) = k_source;

103 C_UDMI(cell ,Thread_GL ,23) = eps_source;

104 C_UDMI(cell ,Thread_GL ,24) = CD_swarm;

105 C_UDMI(cell ,Thread_GL ,25) = CD;

106 C_UDMI(cell ,Thread_GL ,26) = CD_correction;

107 C_UDMI(cell ,Thread_GL ,27) = F_drag;

108 C_UDMI(cell ,Thread_GL ,28) = tau;

109 C_UDMI(cell ,Thread_GL ,29) = Rey;

110

111 /*force explicit solution */

112 dS[eqn] = 0.;

113

114 return eps_source;

115 }

Listing 4: BIT energy dissipation source term with Tomiyama and a constant drag modification

BIT with Grace and Simonnet drag correction

1 /* **************************************

2 UDF moddeling BIT using source terms

3 **************************************** */

4

5 #include "udf.h"

6 #include "math.h"

7 #include "mem.h"

8 #include "stdlib.h"

9 #include "sg_mphase.h"

10

11 DEFINE_SOURCE(k_BIT , cell , phase_thread , dS , eqn)

12 {

13 /* variables */

14 Thread *Thread_GL; /* thread to receive all phase threads */

15 Thread *Thread_L; /* sub -thread for liquid */

16 Thread *Thread_G; /* sub -thread for gas */

17

18 /* position variable */

19 real alpha_g , Rey , CD, Eo , Mo , H, J, Ut;

20 real CD_cap , CD_ell , CD_sph;

21

22 /* momentum transfer */

23 real F_drag;

24

25 /* velocity vector */

26 real slip , slip_U , slip_V , slip_W;

27

28 /* properties */

29 real rho_g , rho_l;

30 real mu_L , diab , surf_ten;

31

32 /* storage */

33 real max2;

34

35 /* simonnet drag correction */

36 real CD_factor , CD_swarm;

37 real m = 25.;

38

39 /* result */

40 real k_source;

41

42 /* constants */

43 real C1 = 1.44;

77



44 real max_slip = 5.;

45

46 /*gas & liquid threads */

47 Thread_GL = THREAD_SUPER_THREAD(phase_thread); /* liquid & gas thread */

48 Thread_L = THREAD_SUB_THREAD(Thread_GL ,0); /* set liquid thread */

49 Thread_G = THREAD_SUB_THREAD(Thread_GL ,1); /* set gas thread */

50

51 /* properies */

52 rho_l = C_R(cell ,Thread_L);

53 rho_g = C_R(cell ,Thread_G);

54 mu_L = C_MU_L(cell ,Thread_L);

55 alpha_g = C_VOF(cell ,Thread_G);

56 diab = 5.1e-3; /*m*/

57 surf_ten= 0.072; /*N/m*/

58

59 /*slip velocity */

60 slip_U = C_U(cell ,Thread_G) - C_U(cell ,Thread_L);

61 slip_V = C_V(cell ,Thread_G) - C_V(cell ,Thread_L);

62 slip_W = C_W(cell ,Thread_G) - C_W(cell ,Thread_L);

63

64 /* vector velocity */

65 slip = pow(pow(slip_U ,2.)+pow(slip_V ,2.)+pow(slip_W ,2.) ,(1./2.));

66 slip = MIN(slip ,max_slip);

67

68 /* reynolds */

69 Rey = (rho_l * fabs(slip) * diab) / mu_L;

70

71 /*Eo*/

72 Eo = (9.81*( rho_l -rho_g)*pow(diab ,2.))/surf_ten ;

73

74 /*Mo*/

75 Mo = (pow(mu_L ,4.) *9.81*( rho_l -rho_g))/(pow(rho_l ,2.)*pow(surf_ten ,3.));

76

77 /*H*/

78 H = (4./3.)*Eo*pow(Mo , -0.149)*pow((mu_L /0.0009) ,-0.14);

79

80 /*J*/

81 if (H > 2. && H <= 59.2)

82 {

83 J = 0.94 * pow(H ,0.757);

84 }

85 else if(H >59.2)

86 {

87 J = 3.42 * pow(H ,0.441);

88 }

89 else

90 {

91 Message("Error H<2");

92 }

93

94 /* terminal rise velocity */

95 Ut = (mu_L/(diab*rho_l))*pow(Mo , -0.149)*(J -0.857);

96

97 /*Drag coefficient grace */

98 if (Rey <0.01)

99 {

100 CD_sph = 24/ Rey;

101 }

102 else

103 {

104 CD_sph = (24/ Rey)*(1+0.15* pow(Rey ,0.687));

105 }

106

107 CD_ell = (4./3.) * ((9.81* diab)/pow(Ut ,2))*((rho_l -rho_g)/rho_l);

108

109 CD_cap = (8./3.);

110

111 /* taking minimum and maximum */

78



112 max2 = MIN(CD_ell ,CD_cap);

113 CD = MAX(CD_sph ,max2);

114

115 /* Simonnet drag coefficient correction */

116 CD_factor = (1.- alpha_g)* pow((pow((1.- alpha_g),m)+pow ((4.8*( alpha_g /(1- alpha_g))),m))

,(-2./m));

117

118 /* correct CD_correction */

119 if (CD_factor < 1)

120 {

121 CD_swarm = 0.8 * CD_factor*CD;

122 }

123 else

124 {

125 CD_swarm = CD;

126 }

127

128 /*drag force - iterfacial momentum transfer */

129 F_drag = (3./4.) * (CD_swarm/diab) * alpha_g * rho_l *(slip)*fabs(slip);

130

131 /* turbulent dissiaption energy epsilon source term*/

132 k_source = (1.- alpha_g)*C1*fabs(F_drag)*fabs(slip);

133

134 /*force explicit solution */

135 dS[eqn] = 0.;

136

137 return k_source;

138 }

Listing 5: BIT kinetic energy source term with Grace and simonnet drag correction term

1 /* **************************************

2 UDF moddeling BIT using source terms

3 **************************************** */

4

5 #include "udf.h"

6 #include "math.h"

7 #include "mem.h"

8 #include "stdlib.h"

9 #include "sg_mphase.h"

10

11 DEFINE_SOURCE(eps_BIT , cell , phase_thread , dS, eqn)

12 { /* variables */

13 Thread *Thread_GL; /* thread to receive all phase threads */

14 Thread *Thread_L; /* sub -thread for liquid */

15 Thread *Thread_G; /* sub -thread for gas */

16

17 /* position variable */

18 real tau , alpha_g , Rey , CD , Eo, eps_B , k_source , Mo, H, J, Ut;

19 real CD_cap , CD_ell , CD_sph;

20

21 /* momentum transfer */

22 real F_drag;

23

24 /* velocity vector */

25 real slip , slip_U , slip_V , slip_W;

26

27 /* properties */

28 real rho_g , rho_l;

29 real mu_L , diab , surf_ten;

30

31 /* storage */

32 real max2;

33

34 /* simonnet drag correction */

35 real CD_factor , CD_swarm;

36 real m = 25.;

79



37

38 /* result */

39 real eps_source;

40

41 /* constants */

42 real C1 = 1.44;

43 real C3 = 1.;

44 real max_slip = 5.;

45

46 /*gas & liquid threads */

47 Thread_GL = THREAD_SUPER_THREAD(phase_thread); /* liquid & gas thread */

48 Thread_L = THREAD_SUB_THREAD(Thread_GL ,0); /* set liquid thread */

49 Thread_G = THREAD_SUB_THREAD(Thread_GL ,1); /* set gas thread */

50

51 /* properies */

52 rho_l = C_R(cell ,Thread_L);

53 rho_g = C_R(cell ,Thread_G);

54 mu_L = C_MU_L(cell ,Thread_L);

55 eps_B = C_UDMI(cell ,Thread_GL ,23);

56 alpha_g = C_VOF(cell ,Thread_G);

57 diab = 5.1e-3; /*m*/

58 surf_ten= 0.072; /*N/m*/

59

60 /*check if BIT has initial value*/

61 eps_B = MAX(eps_B ,1.185928e-09);

62

63 /*slip velocity */

64 slip_U = C_U(cell ,Thread_G) - C_U(cell ,Thread_L);

65 slip_V = C_V(cell ,Thread_G) - C_V(cell ,Thread_L);

66 slip_W = C_W(cell ,Thread_G) - C_W(cell ,Thread_L);

67

68 /* vector velocity */

69 slip = pow(pow(slip_U ,2.)+pow(slip_V ,2.)+pow(slip_W ,2.) ,(1./2.));

70 slip = MIN(max_slip ,slip);

71

72 /* reynolds */

73 Rey = (rho_l * fabs(slip) * diab) / mu_L;

74

75 /*Eo*/

76 Eo = (9.81*( rho_l -rho_g)*pow(diab ,2.))/surf_ten ;

77

78 /*Mo*/

79 Mo = (pow(mu_L ,4.) *9.81*( rho_l -rho_g))/(pow(rho_l ,2.)*pow(surf_ten ,3.));

80

81 /*H*/

82 H = (4./3.)*Eo*pow(Mo , -0.149)*pow((mu_L /0.0009) ,-0.14);

83

84 /*J*/

85 if (H > 2. && H <= 59.2)

86 {

87 J = 0.94 * pow(H ,0.757);

88 }

89 else if(H >59.2)

90 {

91 J = 3.42 * pow(H ,0.441);

92 }

93

94 /* terminal rise velocity */

95 Ut = (mu_L/(diab*rho_l))*pow(Mo , -0.149)*(J -0.857);

96

97 /*Drag coefficient grace */

98 if (Rey <0.01)

99 {

100 CD_sph = 24/ Rey;

101 }

102 else

103 {

104 CD_sph = (24/ Rey)*(1+0.15* pow(Rey ,0.687));

80



105 }

106

107 CD_ell = (4./3.) * ((9.81* diab)/pow(Ut ,2))*((rho_l -rho_g)/rho_l);

108

109 CD_cap = (8./3.);

110

111 /* taking minimum and maximum */

112

113 max2 = MIN(CD_ell ,CD_cap);

114 CD = MAX(CD_sph ,max2);

115

116 /* Simmonet_CD_Swarm */

117 /* Compute drag coefficient correction */

118

119 CD_factor = (1-alpha_g) * pow((pow((1- alpha_g),m)+pow ((4.8*( alpha_g /(1- alpha_g))),m)) ,(-2/

m));

120

121 /* correct CD_correction */

122 if (CD_factor < 1)

123 {

124 CD_swarm = 0.8 * CD_factor*CD;

125 }

126 else

127 {

128 CD_swarm = 1*CD;

129 }

130

131 /*drag force - interfacial momentum transfer */

132 F_drag = (3./4.) * (CD_swarm/diab) * alpha_g * rho_l *(slip)*fabs(slip);

133

134 /* timescale dissipation */

135 tau = pow((pow(diab ,2)/( eps_B)) ,(1./3.));

136

137 /* k_source */

138 k_source = (1.- alpha_g)*C1*fabs(F_drag)*fabs(slip);

139

140 /* turbulent dissiaption energy epsilon source term*/

141 eps_source = (C3/tau)*k_source;

142 eps_source = MIN(eps_source ,1e8);

143

144 /* storage */

145 C_UDMI(cell ,Thread_GL ,22) = k_source;

146 C_UDMI(cell ,Thread_GL ,23) = eps_source;

147 C_UDMI(cell ,Thread_GL ,24) = CD_swarm;

148 C_UDMI(cell ,Thread_GL ,25) = CD;

149 C_UDMI(cell ,Thread_GL ,26) = CD_factor;

150 C_UDMI(cell ,Thread_GL ,27) = F_drag;

151 C_UDMI(cell ,Thread_GL ,28) = tau;

152 C_UDMI(cell ,Thread_GL ,29) = Rey;

153

154 /*force explicit solution */

155 dS[eqn] = 0.;

156

157 return eps_source;

158 }

Listing 6: BIT energy dissipation source term with Grace and simonnet drag correction term

81



Appendix F: Python codes

The data analysis involved the use of two Python codes: one for the setting up the gas holdup profiles and
another for the liquid velocity profiles. Furthermore, a supplementary code was developed to generate a text
file containing the coordinates of each measuring point, facilitating straightforward implementation.

Data processing python code
Each simulation is assigned a unique code (Appendix G) that corresponds to specific mesh and simulation
settings. This code can be used as as input for the Python code to configure the corresponding profiles
accordingly. The codes then read the simulation data from a text file in the same folder as the python code
to set up the profiles.

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Oct 28 14:59:00 2022

4

5 @author: bramb

6 """

7 import numpy as np

8 from scipy.integrate import quad

9 import matplotlib.pyplot as plt

10 import pandas as pd

11 import os

12 from scipy.stats import sem

13

14 "non diminsional plot"

15 ndim_plot = ’N’

16

17 "what to plot?"

18 plot_exp_correlation = ’Y’ #Y/N

19 plot_only_mes_range = ’N’ #Y/N

20 plot_sim_planes = ’N’ #Y/N

21 plot_sim_avg_plane = ’Y’

22 plot_half_rR = ’N’

23 plot_t_step = ’N’

24 plot_err_bar = ’N’ #N,PL ,M

25 plot_t_legend = ’N’

26 plot_each_case = ’Y’

27 plot_label = ’Y’ #not available when error bar enabled

28

29 case = [2,3] #[1,2,3,4] -> D = [ 0.15 , 0.4 , 1 , 3 ] m

30 run_num = [11.381 ,11.382]

31 run_label = [’Improved model’,’Improved model with Quick’]

32 t_steps = [10 ,20 ,30 ,40 ,50] #sec

33

34 coll = [’green’,’red’]

35

36 case_all = [3]

37 plot_all = ’N’

38

39 "limiting graph size" #not yet working

40 graph_lim = [’N’,’N’] #[ylim ,xlim]

41 y_lim = 0.225 ,0.33

42 x_lim = 0,1

43

44 "number of points per line used"

45 ppl = 15

46 n_pl = 4

47 r_R = np.linspace ( -0.875 ,0.875 ,1000) #mes = -0.875 ,0.875

48 run_num = np.array(run_num)

49

50 """ reactor set up"""

51 R_set = np.array ([[0.15 ,0.4 ,1.0 ,3.0] , #diameter

52 [0.15 ,0.16 ,0.16 ,0.2] , #vel

82



53 [0.6 ,1.6 ,4 ,9]]) #H0

54

55

56 "compiling answers"

57 show = [plot_sim_planes ,plot_sim_avg_plane ,plot_half_rR ,plot_t_step]

58

59 def func_Bd (r_R):

60 d32 = 5.8 -2*r_R **2

61 return d32

62

63 def avg_gas_h (case):

64

65 set_up = case -1

66 gas_h = 0.49*( R_set[1,set_up ]**(0.41))*R_set[0,set_up ]**( -0.047)

67 return gas_h

68

69 def ax_gas_h (case ,r_R ,ndim_plot):

70 if ndim_plot == ’Y’:

71 gas_h = ( -1.638*(( r_R **6) -1) +1.228*(( r_R **4) -1) -0.939*(( r_R **2) -1))

72 else:

73 gas_h = avg_gas_h(case)*( -1.638*(( r_R **6) -1)+1.228*(( r_R **4) -1) -0.939*(( r_R **2) -1))

74 return gas_h

75

76 "plot title , axis , legend"

77 "dim"

78 def plt_gh(set_up):

79 plt.axvline(0,color=’grey’)

80 plt.xlabel(’r/R’)

81 plt.ylabel(’$\u03B1_g$ ’)
82 plt.legend(loc=8)

83 return

84

85 def plt_gh_ndim(set_up):

86 plt.axvline(0,color=’grey’)

87 plt.xlabel(’r/R’)

88 plt.ylabel(’$\u03B1_g$/$\u03B1_{avg}$’)
89 plt.legend(loc=8)

90 plt.axhline(y=1,linestyle=’--’,color=’grey’)

91 return

92

93 "takes average and std over t&a data , and last rolling gh data"

94 def gem_std(data ,ppl ,n_pl):

95 gh = data[-1,1:ppl*n_pl +1]

96 gh = gh.reshape(-1,ppl)

97 gh_M.append(np.mean(gh ,axis =0))

98

99 "determine errors of value’s"

100 while plot_err_bar != ’N’:

101 if plot_err_bar == ’t’:

102 gh_e = data[:,ppl*n_pl +1: -1] #t data

103 else:

104 gh_e = data [:,1:ppl*n_pl +1] #a data

105 gh_e = gh_e.reshape (-1,15)

106 ghe_M.append(sem(gh_e))

107 break

108

109 return ()

110

111 "checks if cases requested exist"

112 def check_file_exists(filename):

113 directory = os.getcwd ()

114 for path , dirs , files in os.walk(directory):

115 if filename in files:

116 return True

117 print(’filename %s doesnt exist ’ %filename )

118 return False

119

120 "memory"

83



121 run_M , gh_M , ghe_M , gha_M ,t_M ,file_M , M_mean ,M_ndim , M_ghr , cases , M_var , M_std , M_err ,

M_std_pl ,M_sim_pl =[],[] ,[],[],[] ,[],[] ,[],[],[] ,[],[],[] ,[],[]

122 rmse , rmse2 , err = [],[],[]

123 abb = []

124

125 "checks if data is available"

126 file_M = []

127 for i in range(len(case)):

128 for ii in range(len(run_num)):

129 file_name = ’d%s_%g_gha.txt’%(R_set[0,case[i]-1], run_num[ii])

130 exist = check_file_exists(file_name)

131 if exist:

132 cases.append(case[i]-1)

133 file_M.append ([file_name ,case[i]-1,run_num[ii]])

134

135 "which size data is being analyzed"

136 cases = set(cases)

137

138 "graph labels"

139 if plot_label == ’Y’:

140 label = run_label

141 for i in range(int(len(file_M)/len(run_label)) -1):

142 run_label = run_label + label

143

144

145 "x-value"

146 x_axis = np.zeros(ppl)

147 x = -1 #starting on the left hand side

148 for i in range(ppl):

149 x = x +(2/( ppl +1))

150 x_axis[i] = x

151

152 "putting plane data"

153 if len(file_M) == 0:

154 print(’there is no data for these settings ’)

155

156 for i in range(len(file_M)):

157 da_set = file_M[i]

158 data = np.loadtxt(da_set [0])

159 test= data [: ,60: -2]. reshape(-1,ppl)

160 ght_pl = np.loadtxt(’d%s_%g_gha_pl.txt’%(R_set[0,da_set [1]], da_set [2]))

161 M_ghr.append(np.mean(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl),axis =0))

162 M_mean.append(np.mean(data [: ,60: -2]. reshape(-1,ppl)))

163 M_ndim.append(M_ghr [-1]/ M_mean [-1])

164 M_sim_pl.append(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl))

165 M_std.append(np.std(data [: ,60: -2]. reshape(-1,ppl),axis =0))

166 M_std_pl.append(np.std(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl),axis =0))

167 M_err.append(np.mean(abs((np.mean(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl),axis =0)-ax_gas_h

(da_set [1]+1, x_axis , ’N’))/ax_gas_h(da_set [1]+1, x_axis , ’N’))))

168 E = np.mean(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl),axis =0)

169 T = ax_gas_h(da_set [1]+1, x_axis ,’N’)

170 et = abs(E-T) / (abs(E)+abs(T))

171 RRMSE = np.sqrt(np.mean((E-T)**2))/sum(T)

172 abb.append(et)

173

174 RMS = np.sqrt(sum((E-T)**2)/len(E))

175 print(’MREA =\t %.3f \t SMAPE =\t %.3f \t RME =\t %.3f for %s with %s’ %(M_err[-1],np.

mean(et),RMS ,R_set[0,da_set [1]], run_label[i]))

176

177 "Root mean square"

178 rmse.append(np.sqrt(sum(sum(row) for row in (data[-1,1:ppl*n_pl +1]. reshape(-1,ppl)-

ax_gas_h(da_set [1]+1, x_axis , ’N’)**2))/len(data[-1,1:ppl*n_pl +1])))

179 rmse2.append(np.sqrt(sum(( M_ghr[-1]- ax_gas_h(da_set [1]+1, x_axis , ’N’))**2)/len(M_ghr

[-1])))

180 err.append(np.mean(M_ghr[-1]- ax_gas_h(da_set [1]+1, x_axis , ’N’)))

181

182

183 "time correction"

84



184 data[:,-1] -= data[0,-1] #all times - t end because t doesnt start at 0

185 t_M.append(data[-1,-1])

186

187 "extracting std ,avg"

188 gem_std_data = gem_std(data , ppl , n_pl)

189

190 "take valuas at other t if asked"

191 if show [3] == ’Y’:

192 dt = data[2,-1]-data[1,-1]

193 plot_t_legend = ’Y’

194

195 for i in t_steps:

196 if i > data[-1,-1]:

197 print(’no data at t= %.f’%(i))

198 else:

199 plot_t_legend = ’Y’

200 t_M.append(data[int(i/dt) ,-1])

201 gha_M.append(np.mean(data[int(i/dt) ,1:ppl*n_pl +1]))

202 data2 = data[:int(i/dt) ,:]

203 gem_std_data = gem_std(data2 , ppl , n_pl)

204

205 "plot each plane data"

206 if plot_sim_planes == ’Y’:

207 print(’hello ’)

208 da_set = file_M[i]

209 for i in range(len(file_M)):

210 sim_pl = M_sim_pl[i] #get 4 planes from current measurement

211 plt.figure(’All sim for D=%.2f’%R_set[0,da_set [1]])

212 for ii in range(n_pl):

213 plt.plot(x_axis ,sim_pl[ii ,:],label=’Plane %i’%(ii+1),linestyle=’--’)

214 plt.plot(x_axis ,M_ghr[i],label=’Avarage profile ’,color=’black ’)

215 plt_gh (1)

216

217

218 "now plotten"

219 "plot data per case"

220 if ndim_plot == ’N’:

221 for i in range(len(file_M)):

222 da_set = file_M[i]

223 if plot_each_case == ’Y’:

224 plt.figure(’gh_%s’ %( R_set[0,da_set [1]]))

225 plt.title(’D=%sm Average axial gas holdup ’%(R_set[0,da_set [1]]))

226 if plot_label == ’Y’:

227 plt.plot(x_axis ,gh_M[i],label=run_label[i])

228 plt_gh(da_set [1])

229 print(’The gas avg holdup for D=%s is %.3f for label: %s \\’%( R_set[0,da_set

[1]], M_mean[i],run_label[i]))

230 continue

231

232 if plot_err_bar == ’M’:

233 plt.errorbar(x_axis , gh_M[i], M_std[i],capsize=5, elinewidth = 1,label=’D=%.2

fm r=%.3f’%( R_set[0,da_set [1]], da_set [2]))

234 print(’The error for D=%.2fm r=%.3f is %.3f’%( R_set[0,da_set [1]], da_set [2],

M_err[i]))

235 continue

236

237 if plot_err_bar == ’PL’:

238 plt.errorbar(x_axis , gh_M[i], M_std_pl[i],capsize=5, elinewidth = 1,label=’D

=%.2fm r=%.3f’%(R_set[0,da_set [1]], da_set [2]))

239 print(’The error for D=%.2fm r=%.3f is %.3f’%( R_set[0,da_set [1]], da_set [2],

M_err[i]))

240 continue

241

242 plt.plot(x_axis ,gh_M[i],label=’D=%.2fm r=%.3f’%(R_set[0,da_set [1]], da_set [2]))

243 plt_gh(da_set [1])

244 print(’The error for D=%.2fm r=%.3f is %.3f’%( R_set[0,da_set [1]], da_set [2],M_err

[i]))

245

85



246

247 plt.figure(’ndim’)

248 if ndim_plot == ’Y’:

249 plot_each_case = ’N’

250 print(’Plot all cases not available for ndim plots , plot all cases changed to No’)

251 for i in range(len(file_M)):

252 da_set = file_M[i]

253 plt.figure(’ndim’)

254 plt.title(’Normalized gas holdup ’%(R_set[0,da_set [1]]))

255 if plot_label == ’Y’:

256 run_label[i]=(’D=%sm %s’%( R_set[0,da_set [1]], run_label[i]))

257 plt.plot(x_axis ,M_ndim[i],label=run_label[i])

258 plt_gh(da_set [1])

259 continue

260 plt.plot(x_axis ,M_ndim[i],label=’D=%.2fm r=%.3f’%(R_set[0,da_set [1]], da_set [2]))

261 plt_gh_ndim(da_set [1])

262

263 if plot_exp_correlation ==’Y’:

264 for i in cases:

265 if plot_each_case == ’Y’:

266 plt.figure(’gh_%s’ %( R_set[0,i]))

267 plt.plot(r_R ,ax_gas_h(i+1,r_R ,ndim_plot),color=’black’, label = ’Empirical

correlation ’%(R_set[0,i]))

268 plt_gh(da_set [1])

269 if plot_each_case == ’N’:

270 plt.plot(r_R ,ax_gas_h(1,r_R ,ndim_plot),color=’black’, label = ’Empirical

correlation ’%(R_set [0,1]))

271 plt_gh(da_set [1])

272

273

274 "changing graph limits"

275 if graph_lim [0] == ’Y’:

276 plt.ylim(y_lim)

277 if graph_lim [1] == ’Y’:

278 plt.xlim(x_lim)

Listing 7: Python code to set up gas holdup profiles

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Oct 28 14:59:00 2022

4

5 @author: bramb

6 """

7 import numpy as np

8 from scipy.integrate import quad

9 import matplotlib.pyplot as plt

10 import pandas as pd

11 import os

12 from scipy.stats import sem

13

14 "non diminsional plot"

15 ndim_plot = ’Y’

16

17 "what to plot?"

18 plot_exp_correlation = ’Y’ #Y/N

19 plot_only_mes_range = ’N’ #Y/N

20 plot_sim_planes = ’N’ #Y/N

21 plot_sim_avg_plane = ’Y’ #Y/N

22 plot_half_rR = ’N’

23 plot_t_step = ’N’

24 plot_err_bar = ’N’ #a,t,N

25 plot_t_legend = ’N’

26 plot_each_case = ’Y’

27 plot_label = ’Y’

28

29 case = [3] #D = [ 0.15 , 0.4 , 1 , 3 ] m

30 run_num = [11.381 ,11.382]

86



31 run_label = [’Improved model’,’Improved model with Quick’]

32 t_steps = [10 ,20 ,30 ,40 ,50] #sec

33

34 case_all = [3]

35 plot_all = ’N’

36

37 "limiting graph size" #not yet working

38 graph_lim = [’N’,’N’] #[ylim ,xlim]

39 y_lim = 0.225 ,0.33

40 x_lim = 0,1

41

42 "number of points per line used"

43 ppl = 15

44 n_pl = 4

45 r_R = np.linspace ( -0.875 ,0.875 ,1000) #mes = -0.875 ,0.875

46 run_num = np.array(run_num)

47

48 """ reactor set up"""

49 R_set = np.array ([[0.15 ,0.4 ,1.0 ,3.0] , #diameter

50 [0.15 ,0.16 ,0.16 ,0.2] , #vel

51 [0.6 ,1.6 ,4 ,9]]) #H0

52

53 "compiling answers"

54 show = [plot_sim_planes ,plot_sim_avg_plane ,plot_half_rR ,plot_t_step]

55

56 def cent_vel (case):

57 set_up = case -1

58 CV = 1.35* R_set[1,set_up ]**(0.16)*R_set[0,set_up ]**(0.4)

59 return CV

60

61 def ax_vel (case ,r_R ,ndim_plot):

62 a = 2.976

63 b = 0.943

64 c = 1.848

65 gas_h = (cent_vel(case)/(a-c))*(a*np.exp(-b*r_R **2)-c)

66 if ndim_plot ==’Y’:

67 gas_h = (1/(a-c))*(a*np.exp(-b*r_R **2)-c)

68 return gas_h

69

70

71 "plot title , axis , legend"

72 "dim"

73 def plt_lvu(set_up):

74 plt.axhline(y=0,linestyle=’--’,color=’grey’)

75 plt.axvline(0,color=’grey’)

76 plt.xlabel(’r/R’)

77 plt.ylabel(’$V_L$ (m/s)’)

78 plt.legend(loc=8)

79 return

80

81 def plt_lvu_ndim(set_up):

82 plt.axhline(y=0,linestyle=’--’,color=’grey’)

83 plt.axvline(0,color=’grey’)

84 plt.xlabel(’r/R’)

85 plt.ylabel(’$V_L$/$V_0$ ’)
86 plt.legend(loc=8)

87 return

88

89

90 "takes average and std over t&a data , and last rolling gh data"

91 def gem_std(data ,ppl ,n_pl):

92 gh = data[-1,1:ppl*n_pl +1]

93 gh = gh.reshape(-1,ppl)

94 gh_M.append(np.mean(gh ,axis =0))

95

96 "determine errors of value’s"

97 while plot_err_bar != ’N’:

98 if plot_err_bar == ’t’:

87



99 gh_e = data[:,ppl*n_pl +1: -1] #t data

100 else:

101 gh_e = data [:,1:ppl*n_pl +1] #a data

102 gh_e = gh_e.reshape (-1,15)

103 ghe_M.append(sem(gh_e))

104 break

105

106 return ()

107

108 "checks if cases requested exist"

109 def check_file_exists(filename):

110 directory = os.getcwd ()

111 for path , dirs , files in os.walk(directory):

112 if filename in files:

113 return True

114 print(’filename %s doesnt exist ’ %filename )

115 return False

116

117 "memory"

118 abb = []

119 run_M , gh_M , ghe_M , gha_M ,t_M ,file_M , M_mean ,M_ndim , M_ghr ,M_var ,M_std ,M_err ,M_cent_vel ,

M_sim_pl ,cases= [], [],[],[],[],[],[],[],[],[],[],[],[],[],[]

120

121

122 "checks if data is available"

123 for i in range(len(case)):

124 for ii in range(len(run_num)):

125 file_name = ’d%s_%g_ulv.txt’%(R_set[0,case[i]-1], run_num[ii])

126 exist = check_file_exists(file_name)

127 if exist:

128 cases.append(case[i]-1)

129 file_M.append ([file_name ,case[i]-1,run_num[ii]])

130

131 "graph labels"

132 if plot_label == ’Y’:

133 label = run_label

134 for i in range(int(len(file_M)/len(run_label)) -1):

135 print(i)

136 run_label = run_label + label

137

138 "x-value"

139 x_axis = np.zeros(ppl)

140 x = -1 #starting on the left hand side

141 for i in range(ppl):

142 x = x +(2/( ppl +1))

143 x_axis[i] = x

144

145

146 "which size data is being analyzed"

147 cases = set(cases)

148

149 "putting plane data"

150 if len(file_M) == 0:

151 print(’there is no data for these settings ’)

152

153 for i in range(len(file_M)):

154 da_set = file_M[i]

155 data = np.loadtxt(da_set [0])

156 data_avg = data[-1,1:ppl*n_pl +1]. reshape(-1,ppl) #roling avg data

157 data_t = data [: ,60: -2]. reshape(-1,ppl) #measured data

158 M_ghr.append(np.mean(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl),axis =0))

159 M_mean.append(np.mean(data_t))

160 M_cent_vel.append(np.mean(data_avg [-1,7]))

161 M_ndim.append(np.mean(data_avg ,axis =0)/M_cent_vel [-1])

162 M_sim_pl.append(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl))

163 M_var.append(np.var(data [: ,60: -2]. reshape(-1,ppl),axis =0))

164 M_std.append(np.std(data [: ,60: -2]. reshape(-1,ppl),axis =0))

165 M_err.append(np.mean(abs((np.mean(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl),axis =0)-ax_vel(

88



da_set [1]+1 , x_axis , ’N’))/ax_vel(da_set [1]+1 , x_axis , ’N’))))

166

167 E = np.mean(data[-1,1:ppl*n_pl +1]. reshape(-1,ppl),axis =0)

168 T = ax_vel(da_set [1]+1 , x_axis ,’Y’)

169 et = abs(E-T) / (abs(E)+abs(T))

170 RRMSE = np.sqrt(np.mean((E-T)**2))/sum(T)

171 abb.append(et)

172

173 RMS = np.sqrt(sum((E-T)**2)/len(E))

174 print(’MREA =\t %.3f \t SMAPE =\t %.3f \t RME =\t %.3f for %s with %s’ %(M_err[-1],np.

mean(et),RMS ,R_set[0,da_set [1]], run_label[i]))

175

176 "time correction"

177 data[:,-1] -= data[0,-1] #all times - t end because t doesnt start at 0

178 t_M.append(data[-1,-1])

179

180 "extracting std ,avg"

181 gem_std_data = gem_std(data , ppl , n_pl)

182

183 "take valuas at other t if asked"

184 if show [3] == ’Y’:

185 dt = data[2,-1]-data[1,-1]

186 plot_t_legend = ’Y’

187

188 for i in t_steps:

189 if i > data[-1,-1]:

190 print(’no data at t= %.f’%(i))

191 else:

192 plot_t_legend = ’Y’

193 t_M.append(data[int(i/dt) ,-1])

194 gha_M.append(np.mean(data[int(i/dt) ,1:ppl*n_pl +1]))

195 data2 = data[:int(i/dt) ,:]

196 gem_std_data = gem_std(data2 , ppl , n_pl)

197

198 "plot each plane data"

199 if plot_sim_planes == ’Y’:

200 da_set = file_M[i]

201 for i in range(len(file_M)):

202 sim_pl = M_sim_pl[i] #get 4 planes from current measurement

203 plt.figure(’All sim for D=%.2f’%R_set[0,da_set [1]])

204 for ii in range(n_pl):

205 plt.plot(x_axis ,sim_pl[ii ,:],label=’Plane %i’%(ii+1))

206 plt.plot(x_axis ,M_ghr[i],label=’Avarage profile ’)

207 plt_lvu (1)

208

209 "now plotten"

210 "plot data per case"

211 if ndim_plot == ’N’:

212 for i in range(len(file_M)):

213 da_set = file_M[i]

214 if plot_each_case == ’Y’:

215 plt.figure(’gh_%s’ %( R_set[0,da_set [1]]))

216 plt.title(’D=%sm Average liquid velocity ’%(R_set[0,da_set [1]]))

217 if plot_label == ’Y’:

218 plt.plot(x_axis ,M_ghr[i],label=run_label[i])

219 plt_lvu(da_set [1])

220 print(’The liquid vel MRAE for D=%s is %.3f for label: %s \\’%(R_set[0,

da_set [1]], M_err[i],run_label[i]))

221 continue

222

223 if plot_err_bar == ’Y’:

224 plt.errorbar(x_axis , M_ghr[i], M_std[i],capsize=5, elinewidth = 1,label=’D

=%.2fm r=%.3f’%(R_set[0,da_set [1]], da_set [2]))

225 print(’The error for D=%.2fm r=%.3f is %.3f’%( R_set[0,da_set [1]], da_set [2],

M_err[i]))

226 continue

227 plt.plot(x_axis ,M_ghr[i],label=’D=%.2fm r=%.3f’%( R_set[0,da_set [1]], da_set [2]))

228 plt_lvu(da_set [1])

89



229 print(’The error for D=%.2fm r=%.3f is %.3f’%( R_set[0,da_set [1]], da_set [2],M_err

[i]))

230

231 if plot_exp_correlation ==’Y’:

232 for i in cases:

233 if plot_each_case == ’Y’:

234 plt.figure(’gh_%s’ %( R_set[0,i]))

235 plt.plot(r_R ,ax_vel(i+1,r_R ,’N’),color=’black ’, label = ’Empirical correlation ’

%(R_set[0,i]))

236 plt_lvu(da_set [1])

237

238 if ndim_plot == ’Y’:

239 plot_each_case = ’N’

240 print(’Plot all cases not available for ndim plots , plot all cases changed to No’)

241 for i in range(len(file_M)):

242 da_set = file_M[i]

243 if plot_each_case == ’Y’:

244 plt.figure(’gh_%s’ %( R_set[0,da_set [1]]))

245 plt.title(’D=%sm n_dim liquid velocity ’%(R_set[0,da_set [1]]))

246 else:

247 plt.figure(’ndim’)

248 plt.title(’Normalized liquid velocity ’)

249

250 if plot_label == ’Y’:

251 run_label[i]=(’D=%sm %s’%( R_set[0,da_set [1]], run_label[i]))

252 plt.plot(x_axis ,M_ndim[i],label=run_label[i])

253 plt_lvu_ndim(da_set [1])

254 continue

255

256 if plot_err_bar == ’Y’:

257 plt.errorbar(x_axis , M_ndim[i], M_std[i],capsize=5, elinewidth = 1,label=’D=%.2fm

r=%.3f’%(R_set[0,da_set [1]], da_set [2]))

258 continue

259

260 plt.plot(x_axis ,M_ndim[i],label=’D=%.2fm r=%.3f’%(R_set[0,da_set [1]], da_set [2]))

261 plt_lvu_ndim(da_set [1])

262 print(’The error for D=%.2fm r=%.3f is %.3f’%( R_set[0,da_set [1]], da_set [2],M_err[i])

)

263

264 if plot_exp_correlation ==’Y’:

265 for i in cases:

266 if plot_each_case == ’Y’:

267 plt.figure(’gh_%s’ %( R_set[0,i]))

268 plt.plot(r_R ,ax_vel(i,r_R ,ndim_plot),color=’black ’, label = ’Empirical

correlation ’%(R_set[0,i]))

269

270

271 if plot_each_case == ’N’:

272 plt.plot(r_R ,ax_vel(i,r_R ,ndim_plot),color=’black ’, label = ’Empirical

correlation ’%(R_set[0,i]))

273

274 for i in range(len(file_M)):

275 da_set = file_M[i]

276 if plot_label == ’Y’:

277 print(’The liq vel for D=%s with %s is %.3f compared to exp value of %.3f meaning an

%.3f procent increase \\’%(R_set[0,da_set [1]], run_label[i] ,M_cent_vel[i], cent_vel(

da_set [1]+1) ,(M_cent_vel[i]/ cent_vel(da_set [1]+1)) ))

278

279 "changing graph limits"

280 if graph_lim [0] == ’Y’:

281 plt.ylim(y_lim)

282 if graph_lim [1] == ’Y’:

283 plt.xlim(x_lim)

Listing 8: Python code to set up the liquid velocity profiles

90



Measuring points

1 # -*- coding: utf -8 -*-

2 """

3 Created on Mon Oct 17 12:17:23 2022

4

5 @author: bramb

6 """

7

8 import numpy as np

9 import matplotlib.pyplot as plt

10 from scipy import integrate

11 import scipy

12 import pandas as pd

13 import math as m

14

15 """ function input """

16 H0_D = np.array ([0.5 ,1.25 ,3.75]) #np.array ([0.5 ,1.25 ,2.5 ,3.75]) std 2.5

17 case = 3 #D = R_set ([0.15 ,0.4 ,1 ,3])

18 n_vert_planes = 4 #how many vertical planes

19 ppl = 15

20 hor_planes = "Y" #Y/N

21 vert_planes = "N" #Y/N

22

23

24 #making of the horizontal planes data points and putting them in a group per plane

25 def data_hor (case ,H0_pl ,ppl ,sli):

26 file.write("horizontal planes")

27 file.write(’\n’)

28 X0 = []

29 x = Dia = R_set[0,(case -1) ]*0.5

30

31 figure , axes = plt.subplots ()

32 plt.title(’Horizontal plane data sampling ’)

33 axes.add_artist( plt.Circle ((0,0),Dia ,fill=False ))

34 lim = Dia +0.1* Dia

35 plt.xlim(-lim ,lim)

36 plt.ylim(-lim ,lim)

37 axes.set_aspect( 1 )

38

39 for i in range (ppl):

40 dx = R_set[0,(case -1)]/(ppl +1)

41 x -= dx

42 X0.append(x)

43 X0 = np.array(X0)

44

45 #making data points and adding to plane

46 for Y in H0_D:

47 for ii in range(sli):

48 X = X0*m.cos(ii*1/sli*m.pi)

49 Z = X0*m.sin(ii*1/sli*m.pi)

50

51 plt.scatter(X,Z,color=’black’,s=3)

52

53 #make point and put it in a group

54 for iii in range((ppl)):

55 file.write("surface/point -surface point -%.2f-%02d-%02d %.3f %.3f %.3f"%(Y,(

ii),(iii),X[iii],Y,Z[iii]))

56 file.write(’\n’)

57 plt.plot()

58 return ()

59

60

61 #making of the horizontal plane data points and putting them in a group per plane

62 def data_vert (case ,n_hor_planes ,ppl):

63 H0_D = np.array ([0.5 ,1.25 ,2.5 ,3.75])

64 file.write("vertical planes")

65 file.write(’\n’)

91



66 #flilling in the x-cordinates

67 X0 = []

68 x = R_set[0,(case -1) ]*0.5

69 for i in range (ppl):

70 dx = (R_set[0,(case -1)])/(ppl+1)

71 x -= dx

72 X0.append(x)

73 X0 = np.array(X0)

74 for ii in range(n_hor_planes):

75

76 X = X0*m.cos(ii *0.25*m.pi)

77 Z = X0*m.sin(ii *0.25*m.pi)

78

79 for Y in H0_D:

80 for iii in range((ppl)):

81 file.write("surface/point -surface point -%.2f-%02d-%02d %.2f %.2f %.2f"%(Y,(

ii),(iii),X[iii],Y,Z[iii]))

82 file.write(’\n’)

83 return ()

84

85

86 """ reactor set up"""

87 R_set = np.array ([[0.15 ,0.4 ,1 ,3] ,

88 [0.15 ,0.16 ,0.16 ,0.2] ,

89 [0.6 ,1.6 ,4 ,9]])

90

91 file = open("Data_points H0_ %.1f.txt" %(R_set [0,(case -1)]) ,’+w’ )

92

93 if vert_planes == ’Y’:

94 vert_plane_data = data_vert(case ,n_vert_planes ,ppl)

95

96 if hor_planes == ’Y’:

97 hor_planes_data = data_hor(case , H0_D ,ppl ,n_vert_planes)

98

99 file.close()

Listing 9: Python code providen measuring points coordinates

92



Appendix G: Simulation overview

This overview contains all model settings, as well as the simulation codes required to set up the gas holdup
and liquid velocity profiles.

93



F
ir
st

or
d
er

S
ec
on

d
o
rd
er

fi
rs
t

or
d
er

se
co
n
d

or
d
er

S
ol
ve
r

ga
s

d
en
si
ty

D
ra
g

m
o
d
el

K
-e
p
s

m
o
d
el

D
ra
g

m
o
d

T
u
rb
u
le
n
t

d
is
p
er
si
o
n

B
IT

B
IT

D
ra
g

B
IT

co
rr
ec
ti
o
n

T
st
ep

D
0,
15

D
0,
4

D
1.
0

D
3,
0

D
0
,4

D
1
,0

N
IT

A
v
s
B
a
se

c
a
se

1
1

37
-

cs
t

T
om

i
S
td

D
is
p

0,
12

0,
0
01

x
x

1
1

38
50

N
it
a

cs
t

T
om

i
S
td

D
is
p

0,
12

0,
0
01

x
x

t=
9
5

t=
6
5

W
it
h

si
m
m
o
n
n
e
t
o
r
w
it
h
o
u
t

1
1

38
50

N
it
a

cs
t

T
om

i
S
td

D
is
p

0,
12

0,
00
1

x
x

t=
9
5

t=
6
5

1
1

68
N
it
a

cs
t

G
ra
ce

S
td

D
is
p

0,
12

x
x

1
1

45
N
it
a

cs
t

T
om

i
S
td

D
is
p

S
im

0,
0
00
1

x
x

1
1

45
N
it
a

cs
t

T
om

i
R
N
G

D
is
p

S
im

0,
00
1

x
x

1
1

45
N
it
a

cs
t

T
om

i
R
N
G

D
is
p

S
im

0,
00
1

x
x

1
1

46
N
it
a

cs
t

G
ra
ce

S
td

D
is
p

n
=
1

0,
00
1

x
x

1
1

49
N
it
a

cs
t

G
ra
ce

S
td

D
is
p

n
=
4

0,
00
1

x
x

x
x

A
d
d
it
io
n

o
f
B
IT

w
it
h

a
n
d

w
it
h
o
u
t
B
u
rn

s
1
1

39
51

N
IT

A
cs
t

T
om

i
S
td

D
is
p

0,
12

k
-e
p
s
V
25

T
om

i
0,
1
2

0,
0
01

x
x

x
x

1
1

40
52

N
IT

A
cs
t

T
om

i
S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
25

T
om

i
0,
1
2

0,
0
01

x
x

x
t=

5
6
s

1
1

70
N
it
a

cs
t

G
ra
ce

S
td

D
is
p

n
=
4

k
-e
p
s
V
28

G
ra
ce

n
=
4

0,
0
01

t=
1
1

t=
3
0

1
1

71
N
it
a

cs
t

G
ra
ce

S
td

D
is
p

n
=
4

B
u
rn
s

k
-e
p
s
V
28

gr
a
ce

n
=
4

t=
1
1

x
1
1

N
it
a

cs
t

G
ra
ce

S
td

D
is
p

n
=
4

T
H

G
ra
ce

n
=
4

x
x

D
ra

g
m
o
d
e
l
to

iy
a
m
a
v
s
g
ra

c
e

1
1

40
52

N
IT

A
cs
t

T
om

i
S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
25

T
om

i
0,
1
2

0,
0
01

x
x

x
t=

5
6
s

1
1

41
53

N
IT

A
cs
t

gr
ac
e

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x
x

x
x

D
ra

g
m
o
d
ifi
c
a
ti
o
n

1
1

41
53

N
IT

A
cs
t

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x
x

x
x

x
x

1
1

42
N
IT

A
cs
t

G
ra
ce

S
td

D
is
p

S
im

B
u
rn
s

k
-e
p
s
V
22

G
ra
ce

S
im

0,
0
01

x
1
1

43
N
IT

A
cs
t

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
22

G
ra
ce

S
im

0,
0
01

x
x

1
1

44
N
IT

A
cs
t

G
ra
ce

S
td

D
is
p

n
=
1

B
u
rn
s

K
-e
p
s
V
2
2

G
ra
ce

S
im

0,
0
01

x
x

T
u
rb

u
le
n
c
e
m
o
d
d
e
li
n
g
w
it
h

si
m
o
n
n
e
t

1
1

43
N
IT

A
cs
t

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
22

G
ra
ce

S
im

x
x

1
1

47
N
IT

A
cs
t

G
ra
ce

R
N
G

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
22

G
ra
ce

S
im

x
x

T
u
rb

u
le
n
c
e
m
o
d
d
e
li
n
g
W

it
h

c
o
n
st
a
n
t
d
ra

g
m
o
d

1
1

41
53

N
IT

A
cs
t

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x
x

x
x

1
1

48
60

N
IT

A
cs
t

G
ra
ce

R
N
G

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x
x

x
x

M
e
sh

in
d
e
p
e
n
d
a
n
c
y

1
1

41
N
it
a

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

0,
6s

x
x

re
si

1
6

41
N
it
a

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

t=
4
3

x
1
6

53
N
IT

A
IG

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

t=
4
7

1
6

65
N
IT

A
IG

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

t=
2
9,
5

D
iff
e
re

n
t
lo
c
a
ti
o
n
s

1
1

41
3

N
it
a

G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x
x

n
o
n

c
o
n
st
a
n
t
d
e
n
si
ty

a
n
d

m
e
sh

d
e
p
e
n
d
a
n
c
y

1
1

72
73

N
it
a

IG
G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x
x

x
re
si

1
6

72
N
it
a

IG
G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x
x

x
1
6

77
N
it
a

IG
G
ra
ce

S
td

D
is
p

0,
12

B
u
rn
s

k
-e
p
s
V
26

G
ra
ce

0,
1
2

0,
0
01

x

94


