
High-dimensional Pearson’s
chi-squared test

Hoge dimensionale Pearson chi-squared test.

by

Christiaan van Wingerde

Bachelor of Applied Mathematics, Technical University of Delft, 2025

Supervisor: F. Mies, Dr. rer. nat., Assistant Professor of Statistics at TU Delft
Examining Board: F.Mies, Dr. rer. nat., Assistant Professor of Statistics at TU Delft

D.Kurowicka, Dr., TU Delft

Abstract

This paper revisits Pearson’s chi-square test and studies its properties, highlight-
ing the behavior of the test when applied to large supports, i.e., the number of
cells versus the sample size. First, we explore the general behavior through a
controlled simulation, wherein we find that the test exhibits an increased num-
ber of type I errors. These errors occur when the sample size is small relative to
the number of cells. This behavior will be explained using a generalized central

limit theorem, showing that the support needs to be o
(√

n
logn

)
.

1

Contents

1 Introduction 3
List of variables42 Pearson’s chi-squared test statistic 5

3 Simulation of Pearson’s statistic for large discretizations 8
3.1 Discretization of a standard Gaussian 8
3.2 Errors in method . 9

4 Gaussian approximation for Pearson’s static 13

5 Application to Power net Hertz Time series 19

6 Conclusion 20

7 Appendix 21
7.1 Validation 1 code . 21
7.2 Critical values . 23
7.3 Application code . 24

2

1 Introduction

A Personal Story. During my free time as a student, my friends and I often
played a tabletop game called Dungeons and Dragons. This game tells fantasti-
cal stories and relies on the uniform fairness of dice, such as d6 (six-sided dice),
d12, d20, and even d100. However, one of our friends seemed to view the game
as a competition to be won rather than a collaborative storytelling experience.
This raised our suspicion that his dice might not be entirely fair.

As students of TU Delft, we decided to investigate this issue statistically before
confronting our friend. We used Pearson’s chi-square test and were able to
demonstrate, with high confidence (p ≤ 0.02), that his d6 was indeed biased.
However, we noticed that as the number of faces on a die increased, so did
the number of samples required to achieve reliable results. At the time, we
unknowingly began contemplating the relationship between the number of die
faces (i.e., the underlying support) and the required sample size.

This thesis aims to analyze the chi-squared approximation of Pearson’s test
statistic to distributions with very large support S.

To achieve this, the report begins by formally introducing Pearson’s chi-squared
test statistic and discussing the challenges posed by discretizing a continuous
distribution. The methodology is then outlined, including simulations, followed
by the introduction of a Gaussian approximation. This approximation will be
validated using the same statistical methods as previously applied.

3

Notation definitions

Table 1: Variables definitions

Notation Definition
zj expected cell counts under the null
nj realized cell counts
πj probability that X is observed within interval (aj , aj+1]
T (Z1, . . . , Zn) Pearson test statistic

T̂ (Y1, . . . , Yn)) Gaussian approximation for test statistic

4

2 Pearson’s chi-squared test statistic

Firstly, we will revise Karl Pearson’s Chi-squared test. Proposed by Pearson
in 1900 (Agresti, 2007), the test takes categorical data (x1, . . . , xn) i.i.d., and
compares them to the null distribution using the chi-squared distribution to cal-
culate the probability of rejection. That is to say, the observations are classified
into cells, which are then compared to the theoretical cell counts derived from
the null distribution.

We introduce the following notation:

zj : expected cell counts under the null hypothesis

nj : realized cell counts

See Equation (2), and Equation (3) respectively.

Intuitively, as the differences between zj , nj , the more probable the rejec-
tion of the null hypothesis will be. To illustrate this intuition, Example 1 will
continue on with the story of the Introduction.

Example 1 (DnD dice game). To continue on the introduction’s scenario, the
derived data would be the recorded amount of throws of the dice. The table
below portrays our recorded values (n = 200):

Value 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Count 7 9 6 10 4 10 10 5 11 8 8 10 4 8 12 10 14 12 7 35

Table 2: Recorded data of d20 throws

Here nj are the counts within the second row, and zj is expected to be 200
20 = 10.

The image belows displays a histogram of the data:

5

Figure 1: Histogram of record values of d20

The histogram clearly shows an overwhelming strange peak at value 20! Through
application of Pearson’s test, we statically concluded that these results could
almost never occur with a fair dice. A question one could pose is now: How
would the test change the more faces the die has?

This report studies how many cells there can be before errors occur (See
section 3). We must first introduce notation to help. Firstly, initialize a partition
of the domain into a total of m parts, with exterior bins such that most of the
data is confined within the interior bins. Thus introduce the partition of the
axis:

(−∞,∞) = (−∞, a1] ∪ (a1, am] ∪ (am,∞) =

m⋃
j=1

(aj , aj+1] ∪ [am,∞) ∪ (∞, a1]

The theoretical cell counts are determined by the expected frequencies, thus we
determine the probability that an observation is observed in cell j as:

πj = P0(xt ∈ (aj , aj+1]) (1)

For t ∈ 1, ..., n and j ∈ 1, ..m.
From this definition it follows that the expected frequencies are simply,

zj := n ∗ πj (2)

For cell j. Continuing, the realized cell counts are defined;

6

nj =

n∑
t=1

1{xt ∈ (aj , aj+1]} (3)

Notably, nj follows a Binomial(n, πj) distribution, as it is a realization of zj .
Therefore, one applies the Central Limit Theorem to approximate nj as Gaus-
sian random variable. Continued by normalizing, we find that for large n:

nj − zj√
zj

∼ N(0, 1)

The Pearson’s χ2 statistic, denoted henceforth by T (x1, . . . , xn), calculates the
differences of the theoretical and realized cell counts, finding:

T (X1, . . . , Xn) =

m∑
j=1

(nj − zj)
2

zj
(4)

Notably, T (x1, . . . , xn) converges asymptotically in distribution to a χ2
m−1.

Theorem 2.1. T (x1, . . . , xn)
d−−−−→

n→∞
χ2
m−1

See Section 4 for the associated proof.
Concluding, an introduction to new notation of Xt, which will be helpful in
Section 4.

T (x1, . . . , xn) =

m∑
j=1

(nj − zj)
2

zj
(5)

=

∥∥∥∥∥∥∥∥


n1−z1√
z1
...

nm−zm√
zm


∥∥∥∥∥∥∥∥
2

(6)

=

∥∥∥∥∥∥∥∥


∑n
t=1 1{xt∈(a1,a2]}−nπ1√

nπ1

...∑n
t=1 1{xt∈(am,am+1]}−nπm√

nπm


∥∥∥∥∥∥∥∥
2

(7)

=

∥∥∥∥∥∥∥∥
1√
n

n∑
t=1


1{xt∈(a1,a2]}−π1√

π1

...
1{xt∈(am,am+1]}−πm√

πm


∥∥∥∥∥∥∥∥
2

(8)

: =

∥∥∥∥∥ 1√
n

n∑
t=1

Xt

∥∥∥∥∥
2

(9)

7

In particular, for any x ∈ R, we define the vector X ∈ Rd as

X =


1{x∈(a1,a2]}−π1√

π1

...
1{x∈(am,am+1]}−πm√

πm

 .

Regarding the attributes of the above noted Xt’s, firstly one notices the distri-
bution of the indicator functions within the entries. Should they confirm with
the null hypothesis, these are Bernoulli(πi) distributed. We will describe the
correlation structure of Xt within Section 4.

3 Simulation of Pearson’s statistic for large dis-
cretizations

Within this section, we shall display how the test statistic will incur type I errors
when support is disproportionate with sample size. We will build a simple sim-
ulation of sample from a standard Gaussian pdf, and test the generated sample
against being part of a standard Gaussian. Evidently as the null hypothesis is
correct we expect the test not reject.

3.1 Discretization of a standard Gaussian

We generate a standard Gaussian, discretized between (-3,3], such that 99.7%
of the sample are contained, adding both a left and right bin. Hence, taking the
null as:

H0: the underlying distribution is standard Gaussian

H1: the underlying distribution is not standard Gaussian

The samples are generated from a standard Gaussian, we expect the test to
generate p-values that are standard uniformly distributed.

Indeed, if the sample size is great enough compared to m, this does hold, which
we will see in subsection 3.2. Figure 2 depicts the discretized null distribution
partitioned with m = 30 bins.

8

Figure 2: This picture shows visually how a standard Gaussian is partitioned

We partition the domain (-3,3) into m parts:

P =

m⋃
j=0

Pj =

m⋃
j=0

(−3 + j∆x,−3 + (j + 1)∆x]

with j ∈ [0,m] and ∆x = 6
m . Calculating the expected frequency of each bin:

First calculating the probability of each bin.

πj =

∫ aj+1

aj

f(x)dx = Φ(−3 + (j + 1)∆x)− Φ(−3 + j∆x)

Where Φ is the cumulative distribution function of the Gaussian distribution.
Then the expected frequency is zj = nπj . Performing Pearson’s test on Figure
2 attains T (x1, . . . , xn) = 32.83, with a p-value of p = 0.2845. Which aligns
with the null hypothesis, as we expect the test to output p-values uniformly in
[0, 1]. However, in Section 3.2 it shall be shown that this is not always the case.
As it will be demonstrated that if the sample size is lacking, then the p-values
will diverge from a uniform distribution and will tend to 0 erroneously. For the
code of this subsection, please see Appendix 7.1.

3.2 Errors in method

Why would the p-values tend to 0? Because T (x1, . . . , xn) relies on the central
limit theorem for each bin to converge in distribution to a standard Gaussian.
Suppose we fix sample size n, while we increase cell amountsm, then each πj will

9

decrease. Thus the expected value zj will decrease. Leading to the difference
between zj , nj becoming more sensitive. Which in turn results in greater overall
differences, or a greater χ2 value. Thus increasing the probability to reject. In
order to illustrate this behavior. we repeated the simulation of Figure 2 with
increasing cell counts m. Figure 3 shows the distributions of the p-values, which
becomes more and more centered on 0 as we increase the cell counts.

Figure 3: Histograms depicting 500 p-values of T (X1, . . . , Xn) for n,m combi-
nations

In order to simplify the comparison of the distribution of the p-values, we will

make use of the Kolmogorov-Smirnov test (Kolmogorov, 1933)[Ks test]. Which
agrees with our visual interpretation of Figure 3, which reject the uniformity of
sub-figure 3 and 4 (p3 = 0.028, p4 = 0.049). This numerical value will aid us for
comparing numerous combinations of sample amounts and cell amounts in the
form of Figure 4.

10

Figure 4: Heat-map of of KS test p-values of n,m combinations

Figure 5: Heat-map of KS test values of n,m combinations, showing that for
lower sample size compared to bin amount, the KS value drastically increases

11

Figure 6: Heat-map of KS test values of n,m combinations, showing that for
lower sample size compared to bin amount, the KS value drastically increases

The Figures above show the relationship of how the p-values deviate from the
standard uniform distribution. In particular, Figure 4 shows us that the p-
values tend heavily to 0 when the bin counts are too low. The figure depicts
the relationship line on the green line. This effect is also shown in figure 5,
where as the lighter the gradient becomes, the higher the value of the KS test.
The details of the test are the code of Appendix 7.1 was used to run a within
the next sections, we will discuss a Gaussian approximation which will perform
better within the same parameters as described here.

The figure above highlights the main issue of T (x1, . . . , xn), which is shown
behind the colored line in a clear dark curve. The colors within the heat map
represent the KS test’s p-value for uniformity. As our null hypothesis is indeed
correct, we should get random p-values for the KS test rather than the KS
test that constantly rejects higher values of m. The dark curve will be the
main argument for the usefulness of the next two sections which will prove and
employ a new Gaussian approximation which does not run into the dark curve
under the same situation. In details, 10000 iterations of Pearson’s test was run
and over the p-values was the KS test performed to attain the above results,
the code of which can be found in Appendix 7.1.

12

4 Gaussian approximation for Pearson’s static

The previous section shows that T (X1, . . . , Xn) leads to falsely reject the null
if the discrepancy between the sample size and bins amount is too great com-
paratively. To study this relation, we shall take a look at a high-dimensional
Gaussian approximation derived within [Rpaper].

Theorem 4.1. Let Z1, · · · , Zn be independent, centered, d-variate random vec-

tors that admit the bound (E||Zt||q)
1
q ≤ bt, t = 1, · · · , n for some q > 2. On

a different probability space, there exist independent random vectors Z̃t = Zt,
in distribution, and independent Gaussian random vectors Yt ∼ N (0, Cov(Zt)),
such that for some universal C > 0,E

∥∥∥∥∥ 1√
n

n∑
t=1

(Z̃t − Yt)

∥∥∥∥∥
2
 1

2

≤ C

min(
√
q − 2, 1)

(
d

n

) 1
2−

1
q √

log n

√√√√ 1

n

n∑
t=1

b2t .

Theorem 4.1 is in essence a version of the multivariate central limit theorem,
as we are approximating a sum of independent random vectors with a Gaussian
approximation. It even admits the expected bound between the two. We shall
employ this to find the previous mention relationship. To begin, we shall make
the approximation first explicit, followed, by proofs of needed tools. To finish
we shall show that the approximation follows a chi-squared distribution and is
approximately equal to the Pearson test statistic.

For clarity in the context of Theorem 4.1, we shall use 9 as the independent,
centered random vectors.

Explicit form of the approximation

By Theorem 4.1 states that the approximation Yt multivariate normal with mean
0 and covariance Σt := Cov(Xt). Thus we only need to determine the correlation
structure of Xt. We begin to determine the entries on the main diagonal, which
by the following calculations is 1 − πj . We introduce the notation Xt,j , as the
vector Xt, indexed as j.

Cov(Xt,j , Xt,j) = Var(Xt,j)

= Var

(
1{xt ∈ (aj , aj+1]} − πj√

πj

)
=

1

πj
Var(1{xt ∈ (aj , aj+1]})

=
1

πj
πj(1− πj) = (1− πj)

For non-main diagonal elements, we fix j, k ∈ (1, . . . ,m), with j ̸= k. To
maintain a clear view, we denote the following 1j := 1{xt ∈ (aj , aj+1]}. Then:

13

Cov(Xt,j , Xt,k) = E(Xt,jXt,k)− E(Xt,j)E(Xt,k)

= E

(
1j − πj√

πj

1k − πk√
πk

)
− E(1j − πj√

πj
)E(

1k − πk√
πk

)

= E

(
1

√
πjπk

(1j1k − πj1k − πj1j + πjπk)

)
− 1

√
πjπk

(E(1j)− πj)(E(1k)− πk))

=
1

√
πjπk

{E(1j1k)− πjE(1k)− πkE(1j) + πjπk}

− 1
√
πjπk

{E(1j)E(1k)− πjE(1k)− πkE(1j) + πjπk}

= −√
πjπk

We combine these calculation to reach:

Σt := Cov(Xt) =


1− π1 −√

π1π2 . . .
−√

π2π1 1− π2 . . .
...

...
. . .

...
...

. . . 1− πm−1 −√
πm−1πm

. . . −√
πmπm−1 1− πm


(10)

Note that Σt is independent of t, this followed from that Xt are i.i.d. Thus
Σt = Σ for all t. Thus:

Yt ∼ Nm(0,Σ)

Thus the Gaussian approximation of the Pearson’s statistic will be:

T (Y1, . . . , Yn) = ∥Y ∥2 =

∥∥∥∥∥ 1n
n∑

t=1

Yt

∥∥∥∥∥
2

(11)

Lemmas

Now, we present two lemmas that will play a crucial role in the proof of Theorem
4.4.

Lemma 4.2. Let Yt ∼ Nm(0,Σ) for t ∈ (1, . . . , n), with Σ as described in

Equation (10). Then T (Y1, . . . , Yn) = ∥Y ∥2 =
∥∥ 1
n

∑n
t=1 Yt

∥∥2 ∼ χ2
m−1.

14

Proof of Lemma 4.2. As Σ is real and symmetrical, by Spectral Theorem, it is
able to be diagonalized.
Diagonalisation of (10): We are able to diagonalize Σ, thus ∃O such thatOΣOT =

diag(λi). Begin by defining the vector Π = (
√
π1, . . . ,

√
πm)T , then we observe

that:
Σ = I −Π ΠT

The eigenvalues of Σ are the same as 1 − λm where λm are the eigenvalues of
Π ΠT . Thus the eigenvalues of the outer product of the vector Π are given by
(∥Π∥, 0, ..., 0).

If we ensure the constraint that
∑m

j=1 πj = 1, which is fulfilled as the discretiza-
tion fully covers and does not overlap. Then:

||Π|| =

√√√√ m∑
j=1

√
πj

2 =

√√√√ m∑
j=1

πj =
√
1 = 1

Thus plugging this into the previous observation leaves us with the eigenvalues
of Σ, being (0, 1, ..., 1) .

We consider the eigenvectors corresponding to the eigenvectors. For λ = 0, we
seen that eigenvector Π fits, as:

ΣΠ = λΠ

(Σ− λI)Π = 0

ΣΠ = 0

(I −ΠΠT)Π = Π−ΠΠTΠ = Π−Π ∗ 1 = 0

To find the eigenvectors associated with λ = 1, one can employ the the Gramm-
schmid process. These will not be explicitly calculated in this report. We shall
index them as (v(1), . . . , v(d−1)). Thus we construct matrix O:

O =


...

...
...

...
v(1) v(2) . . . v(d−1) Π
...

...
...

...


By Spectral theorem, we find that Y = OΣOT = diag(1, . . . , 1, 0). We shall
now determine the approximation to the statistic. Firstly, as O is an orthogonal
matrix, we find:

||Y ||2 = ||OY ||2

15

Contingence of proof: If Y = OTZ, then Z is normally multivariate N(0, Im−1).
Then Z is a vector (Z1, Z2, . . . , Zk−1, 0), where the first k − 1 coordinates are
i.i.d. Gaussian random variables following N (0, 1), and the last coordinate is
zero

∥Y ∥2 =
∥∥OTZ

∥∥2
=

m∑
j=1

Z2
i

=

m−1∑
j=1

Z2
i + 0

=
m−1∑
j=1

Z2
i

Thus as we are summing up m−1 standard Gaussian random variables, and by
definition:

T (Y1, . . . , Yn) = ∥Y ∥2 =

∥∥∥∥∥ 1n
n∑

t=1

Yt

∥∥∥∥∥
2

∼ χ2
m−1.

Lemma 4.3. Let z1, . . . , zn ∈ Rm and y1, . . . , yn ∈ Rm. Then∣∣∣√T (z1, . . . , zn)−
√
T (y1, . . . , yn)

∣∣∣ ≤ ∥∥∥∥∥ 1n
n∑

t=1

(zt − yt)

∥∥∥∥∥ .
Proof of Lemma 4.3.

∣∣∣√T (z1, . . . , zn)−
√
T (y1, . . . , yn)

∣∣∣ =
∣∣∣∣∣∣∣
√√√√∥∥∥∥∥ 1√

n

n∑
t=1

zt

∥∥∥∥∥
2

−

√√√√∥∥∥∥∥ 1√
n

n∑
t=1

yt

∥∥∥∥∥
2
∣∣∣∣∣∣∣

=

∣∣∣∣∣
∥∥∥∥∥ 1√

n

n∑
t=1

zt

∥∥∥∥∥−

∥∥∥∥∥ 1√
n

n∑
t=1

yt

∥∥∥∥∥
∣∣∣∣∣

(Reverse Triangle Inequality) ≤

∥∥∥∥∥ 1n
n∑

t=1

zt −
1

n

n∑
t=1

yt

∥∥∥∥∥
=

∥∥∥∥∥ 1n
n∑

t=1

(zt − yt)

∥∥∥∥∥
The final tool that we need is the bound on (E ∥Xt∥q)

1
q . Firstly, we note that

for fixed t, there is only one singular indicator function that is nonzero. Denote
the interval for which this is true, as (ak, ak+1], then:

16

(E||Xt||q2)
1
q =

E


m∑
j=1

Xt,j


q
2


1
q

≤

E
 (1− πk)

2

πk
+

m∑
j=1

πj


q
2


1
q

≤
√

1

minj∈(1,...,m) πj
+ 1

≤
√

2

minj∈(1,...,m)πj

Thus we define:

bt =

√
2

minj∈(1,...,m)πj
(12)

Now the idea is to use Xt, as defined in (9), in Theorem 4.1, which forms an up-
per bound by Lemma 4.3, to show that T (X1, . . . , Xn) is close to T (Y1, . . . , Yn).
We shall now present this as follows:

Theorem 4.4. Let Yt, as in Theorem 4.1 and let f , the null probability density
function, be bounded from below. Then∣∣∣√T (x1, . . . , xn)−

√
T (Y1, . . . , Yn)

∣∣∣ p−→ 0. (13)

If one of the following holds:
a) d fixed and n → ∞
b) d, n → ∞ and d = o(

√
n

log(n))

Proof of Theorem 4.4. We use Theorem 4.1, with bt as described in Equation
(12). We observe that bt is independent of both q and t, meaning we can take
q arbitrary. However, we choose that q → ∞ such that we are able to find:E

∥∥∥∥∥ 1√
n

n∑
t=1

(Xt − Yt)

∥∥∥∥∥
2
 1

2

≤ Cbt
√
d

√
log n

n

(By Eq (12)) ≤ C

√
2d

minj πj

log n

n
.

17

Proof of a): Let d fixed in N, thus bt is also fixed. Taking the limit of n, we find
that using L’Hôpital’s Rule :

lim
n→∞

Cbt
√
d

√
log n

n
= lim

n→∞
Cbt

√
d

√
1

n
→ 0

Proof of b): Suppose we look at the limiting behavior as n → ∞ and d → ∞
simultaneously. In order to correctly evaluate the limit we need the order of
minj πj . So we consider;

min
j

πj = min
j

P0(X ∈ (aj , aj+1]))

= min
j

∫ aj+1

aj

f0(x)dx

≥ min
j

f0(xj)
aj+1 − aj

d

= O(
1

d
)

Thus as long as O(d2 log(n)) < O(n), we have that the right hand side goes to

0. Thus if d = o(
√

n
log(n)), the RHS goes to 0.

We note the following of importance:

E

∥∥∥∥∥ 1√
n

n∑
t=1

(X̂t − Yt)

∥∥∥∥∥
2
 1

2

→ 0.

=⇒ E

∥∥∥∥∥ 1√
n

n∑
t=1

(X̂t − Yt)

∥∥∥∥∥ → 0

=⇒

∥∥∥∥∥ 1√
n

n∑
t=1

(X̂t − Yt)

∥∥∥∥∥ p−→ 0

In both cases of a) and b), we are able to combine these result with Lemma 4.3
to find that:

∣∣∣√T (x1, . . . , xn)−
√
T (Y1, . . . , Yn)

∣∣∣ ≤ ∥∥∥∥∥ 1n
n∑

t=1

(Xt − Yt)

∥∥∥∥∥ p−→ 0

18

In conclusion, we have found that for the above conditions:

T (x1, . . . , xn) ≈ T (Y1, . . . , Yn) (14)

And,
T (Y1, . . . , Yn) ∼ χ2

m−1.

5 Application to Power net Hertz Time series

This section will cover the application of the previously discussed theory. Using
publicly available data on Power Grid Frequency from the public power grid fre-
quency database (see [powergridfrequency]), we analyze data from January
2019 for Germany (n ≈ 106). The dataset is a time series of frequency devia-
tions from a baseline of 50 Hertz. The hypothesis is that these deviations are
Gaussian-distributed. We examine the data for January to test for normality,
observing the effects of different numbers of bins on the test results. In Figure 7,
we plot the time series of the deviations for the month.

Figure 7: Time series of frequency deviations

Figure 8, plots the deviations as a histogram.

19

Figure 8: Histogram of frequency deviations

Figure 8 is quite apparent that the probability mass is overly concentrated at
the center, exceeding the peak of the Gaussian distribution by nearly 0.010.

Likewise testing for normality for the deviations find the following results for
different amount of bins.

d Chi value p value
202 5.148024e+06 0.0
405 1.260701e+07 0.0

164538 6.063210e+09 0.0

Table 3: Chi-squared values and corresponding p-values

Table 5 show that a Gaussian distribution is overwhelmingly rejected.

6 Conclusion

This paper has analyzed Pearson’s chi-squared test and statistic, showing that
the test statistic tends to return type I errors when the support increases too
much relative to the sample size. This was visualized by a heatmap using the
Kolmogorov-Smirnov test, which was employed to show the boundary function
for how large the sample size must be given a cell count. This relationship was
described by comparing the test statistic to its Gaussian approximation, which

was used to derive a bound of d = o

(√
n

log(n)

)
.

20

References

[1] Agresti, A. (2007) An Introduction to Categorical Data Anal-
ysis. 2nd Edition, John Wiley and Sons, Hoboken, New
Jersey. https://mregresion.files.wordpress.com/2012/08/

agresti-introduction-to-categorical-data.pdf

[2] Mies, Fabian, and Ansgar Steland. Sequential Gaussian Approximation for
Nonstationary Time Series in High Dimensions. Bernoulli 29, no. 4 (2023):
3114-40. https://doi.org/10.3150/22-BEJ1577.

[3] Kolmogorov, A. N., & Smirnov, V. (1939). Tests of the goodness of fit.
Doklady Akademii Nauk SSSR, 66, 3-4.

[4] Power Grid Frequency Project. Power Grid Frequency Database. 2024.
Available at: https://power-grid-frequency.org/database/. Accessed:
April 29, 2025.

7 Appendix

7.1 Validation 1 code

%Replace it

#imports

import scipy

from scipy.stats import kstest

from scipy.stats import norm

from scipy.stats import chi2

import math as m

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

#critical values

bins_amount = 30

df=bins_amount-1

sample_amount= 10000

#Creating the bins

bound = 3

step_size = (2*bound/bins_amount)

bins=np.arange(-bound,bound,step_size)

#creating a list of expected frequencies

expected_frequencies=[]

for i in range(len(bins)-1):

expected_frequencies.append(sample_amount*(norm.cdf(bins[i+1])-norm.cdf(bins[i])))

degrees_of_freedom=len(expected_frequencies)-1

21

#Generate n samples from std gaussian

samples=np.random.normal(0,1,sample_amount)

counts, bin_edges = np.histogram(samples, bins=bins)

counts

#compare the counts with the expected frequencies

chi=[]

for j in range(len(counts)):

item=(counts[j]-expected_frequencies[j])**2/expected_frequencies[j]

chi.append(item)

#print the value of chi-squared statistic

Chi=sum(chi)

print(Chi,degrees_of_freedom)

#discretized distribution

plt.hist(samples,bins=bins)

x_axis = np.arange(-3, 3, 0.001)

Mean = 0, SD = 2.

plt.plot(x_axis, sample_amount/5*norm.pdf(x_axis,0,1))

plt.xlabel("frequency")

plt.ylabel("value")

plt.title("discretized distribution")

plt.show()

#p-value

chi2.sf(Chi,df=df)

#Do the previous steps numerous times to confirm uniformity of p-values

#creating repeated version

def ChiTest(bins_amount,sample_amount): #chi2 test for standard gaussian

df=bins_amount-1

#Creating the bins

bound = 4

step_size = (2*bound/bins_amount)

bins=np.arange(-bound,bound,step_size)

#creating a list of expected frequencies

expected_frequencies=[]

for i in range(len(bins)-1):

expected_frequencies.append(sample_amount*(norm.cdf(bins[i+1])-norm.cdf(bins[i])))

degrees_of_freedom=len(expected_frequencies)-1

#Generate n samples from std gaussian

samples=np.random.normal(0,1,sample_amount)

counts, bin_edges = np.histogram(samples, bins=bins)

#compare the counts with the expected frequencies

chi=[]

for j in range(len(counts)):

22

item=(counts[j]-expected_frequencies[j])**2/expected_frequencies[j]

chi.append(item)

return(chi2.sf(sum(chi),df=df)) #returns the p-value of this iteration

#Repeating the chi2 test to bould sample space of p-values

#We maintain the amount of samples and bins amount for now

#we expect the p-values to ascertain a uniform(0,1) dstribution

#parameters

iterations=500

local_bins_amount = 50

local_samples_amount= 3000*local_bins_amount

p_values=[]

for k in range(iterations): #do the test iterations amount of times

p_values.append(ChiTest(local_bins_amount,local_samples_amount))

#Testing for uniformity for p values

plt.hist(p_values)

plt.ylabel("Frequency")

plt.title(f"p-values of chi2, d= {local_bins_amount}")

#Heavy parameters

iterations=50

#Iterative testing

def IteratedTesting(local_bins_amount,iterations):

local_samples_amount=30*local_bins_amount

p_values=[]

for k in range(iterations): #do the test iterations amount of times

p_values.append(ChiTest(local_bins_amount,local_samples_amount))

return kstest(p_values,cdf="uniform")

#creating a list of bins amount with p-values of KS test

Bins=[50,100,200,400,800,2000]

data=[]

for bin in Bins:

data.append((bin,IteratedTesting(bin,iterations)[1]))

#creating a dataframe

colums =["Bins amount", "p-value"]

Df=pd.DataFrame(data=data,columns=colums)

Df

7.2 Critical values

The following code was done in MatLab:

%%

23

function a_quantile = FindCriticalValue(N)

alpha = 0.05;

pi = [0; 0];

Sigma = [1 - pi(1), -sqrt(pi(1)*pi(2)); -sqrt(pi(1)*pi(2)), 1 - pi(2)];

mu = [0; 0];M=200;

% Generate a range of values from 0 to 1 (with a reasonable number of points)

A = linspace(0, 10, 3000); % Adjust this range as needed for your problem

lst = NaN(1, length(A)); % Initialize lst as NaN to track critical values

for a = 1:length(A)

% p(T(Y) > a) <= 0.05

running_total = 0;

for n = 1:N

% Draw samples from multivariate normal distribution

Y = mvnrnd(mu, Sigma, M); % Generate one sample of size 1

Y2 = (1/M)*sum(Y.^2); % Sum of squares of the components

if Y2 > A(a) % Compare the sum of squares with the current threshold

running_total = running_total + 1;

end

end

probability = running_total / N; % Estimate probability

% If probability is <= alpha, we store this value of A as a candidate for the critical value

if probability <= alpha

lst(a) = A(a); % Store the threshold corresponding to this probability

end

end

% Find the minimum value of A where the condition holds

lst = lst(~isnan(lst)); % Remove NaN values

a_quantile = min(lst); % The critical value corresponding to alpha

end

%%

% Example usage

a_quantile = FindCriticalValue(1000);

disp([’The critical value is: ’, num2str(a_quantile)]);

7.3 Application code

#BEP APPLICATION TO ENERGY GRID

#Libs

24

import math as m

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from scipy.stats import chi2

from scipy.stats import norm

from scipy.stats import laplace

#dataset

Load the Excel file (replace ’your_file.xlsx’ with your actual file name)

Read the CSV file (assuming no header)

df = pd.read_csv(’germany_2020_01.csv’, header=None, names=[’datetime’, ’frequency deviation’], dtype=str)

#remove jumps using ’#######’

df = df[~df.astype(str).apply(lambda x: x.str.contains(’#’)).any(axis=1)]

Convert the columns to appropriate data types

df[’datetime’] = pd.to_datetime(df[’datetime’], errors=’coerce’)

df[’frequency deviation’] = pd.to_numeric(df[’frequency deviation’], errors=’coerce’)

Drop rows with failed conversions (optional but recommended)

df = df.dropna(subset=[’datetime’, ’frequency deviation’])

#remove the first row, as it contains only NaN values

df = df.iloc[1:].reset_index(drop=True)

Remove jumps and convert data types

df = df[~df.astype(str).apply(lambda x: x.str.contains(’#’)).any(axis=1)]

df[’datetime’] = pd.to_datetime(df[’datetime’], errors=’coerce’)

df[’frequency deviation’] = pd.to_numeric(df[’frequency deviation’], errors=’coerce’)

df = df.dropna(subset=[’datetime’, ’frequency deviation’])

df = df.iloc[1:].reset_index(drop=True)

#Initial vieuwing of the data set

sample_mean = np.mean(df[’frequency deviation’]) #sample mean

sample_variance = np.var(df[’frequency deviation’]) #sample variance

n = len(df[’frequency deviation’]) #sample amount

df[["datetime", "frequency deviation"]].describe() #quick look at the core properties of the data set

Plot histogram normalized to form a probability density

plt.hist(df[’frequency deviation’], bins=200, density=True)

Generate x values within the data range

xmin, xmax = plt.xlim()

x = np.linspace(xmin, xmax, 10000)

Compute the Gaussian (normal) distribution

p = norm.pdf(x, sample_mean,np.sqrt(sample_variance))

25

Plot the Gaussian curve

plt.plot(x, p, ’r’, linewidth=2)

plt.title(’Histogram of frequency deviations’)

plt.xlabel(’Frequency Deviation’)

plt.ylabel(’Density’)

plt.grid(True)

plt.show()

#line plot of the frequency deviations over time

plt.figure(figsize=(10, 4))

plt.plot(df[’datetime’], df[’frequency deviation’])

plt.xlabel(’Datetime’)

plt.ylabel(’Frequency Deviation’)

plt.title(’Frequency Deviation Over Time’)

plt.grid(True)

plt.tight_layout()

plt.show()

#The Chi-squared test: Gaussian test

def Chi_Test(df, bins_amount, mean, variance):

define parameters

n = len(df[’frequency deviation’]) # sample amount

d = bins_amount # bins amount

Create probability-equal bins

bins = norm.ppf(np.linspace(0, 1, d + 1), loc=mean, scale=np.sqrt(variance))

Creating a list of expected frequencies under the null hypothesis

cdf_values = norm.cdf(bins, loc=mean, scale=np.sqrt(variance))

expected_frequencies = n * np.diff(cdf_values) # Corrected here

Counting hits to bins

counts, bin_edges = np.histogram(df[’frequency deviation’], bins=bins)

Chi-square statistic

counts = np.asarray(counts)

expected_frequencies = np.asarray(expected_frequencies)

Chi = np.sum((counts - expected_frequencies) ** 2 / expected_frequencies)

Degrees of freedom = d - 1 (usually) - for goodness of fit

p_value = chi2.sf(Chi, d - 1)

return Chi, p_value

#testing the dataset with different bins amount for normally

Calculate the d values

d_optimal = m.floor(m.sqrt(n/m.log(n))) # proposed optimal bin amount

d_small = m.floor(d_optimal/2)

26

d_great = m.floor(n/m.log(n))

Create a list of d values to test

d_values = [d_small, d_optimal, d_great]

Initialize lists to store results

chi_values = []

p_values = []

Perform Chi-square test for each d value

for d in d_values:

chi, p = Chi_Test(df, d, sample_mean, sample_variance)

chi_values.append(chi)

p_values.append(p)

Create a results table

results_table = pd.DataFrame({

’d’: d_values,

’Chi_value’: chi_values,

’p_value’: p_values

})

Display the table

print(results_table)

27

