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Abstract

The use of turbochargers in passenger vehicles is becoming more and more popu-
lar due to downsizing of engines. One of the quality criteria for a turbocharger is
a low noise level; noise which originates from the vibrations of the turbocharger.
To investigate the sources and levels of the noise a parametrized model is wanted
which can be used for the analysis of its dynamic behavior. In this thesis the
focus has been laid on the hydrodynamic radial bearings, so called floating ring
bearings (FRBs).

The influences included in the numerical model are the forces originating from
the pressure distribution in the oil films, viscous forces, gravity and unbalance
of the turbine rotor system. The calculation of the pressure distribution in the
two oil films is based on the short length bearing Reynolds equation. Thermal
influences other than the influence on oil viscosity are not taken into account.
A demonstrator has been designed and fabricated which allows measurement of
shaft motion and FRB rotation speed. The demonstrator is used to compare
the results of measurements with the demonstrator with numerical simulations
of the demonstrator to validate the numerical FRB model.

A numerical model is evaluated where the shaft is simulated as a point mass.
Results of this model show whirling behavior of the shaft and floating ring
and also a jump which indicates a change of mode shape of the system. This
jump and whirling behavior is also seen in measurements of turbocharger shaft
motion. Although this is a different system which makes this simulation and
the measurement incomparable, it does confirm that the subsynchronous vi-
brations which have been measured originate from the bearing system of the
turbocharger. A sensitivity analysis has been performed to investigate the in-
fluence of different FRB parameters on the dynamic behavior. This analysis
showed that the whirl and floating ring rotational frequencies were only affected
for a minor amount. The jump frequency appears to be the most sensitive to
changes in bearing configuration.

Experiments have been performed using a demonstrator. Controllable shaft
speeds up to 40.000 RPM have been achieved with the demonstrator. The results
of simulation and measurements do not match, but the shape of the measured
shaft motion shows odd behavior which may indicate that the demonstrator
is far from the ideal situation which has been simulated. The measurement
concept for measuring ring rotational speed has been validated and floating ring
rotational speeds of up to 27% of the shaft rotational speed have been measured.
The measured floating ring rotational speed showed to be non-monotonic.

Although the numerical model has not been validated by the demonstrator
simulation and measurements, the point mass simulation does show behavior
which is also seen in the results of turbocharger shaft motion measurements.
The origin of the whirl frequencies has been identified and jumping behavior is
seen in both the model and turbocharger shaft motion measurements.
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Thesis outline

This section gives an overview of the structure of this thesis.

Chapter 1 In the first chapter of this thesis the reader will be introduced to the
topic of this research. The context of the research will be explained to answer
the question why it has been done. Furthermore the goals and scope are treated.

Chapter 2 The physics which have been taken into account in the model of
the floating ring bearing are discussed in this chapter. The mathematical back-
ground of the physical effects and the way this has been implemented in Matlab
are presented.

Chapter 3 A demonstrator has been designed and built to validate the theo-
retical floating ring bearing model. The design of this test setup and its mea-
surement points are presented.

Chapter 4 The results of simulations and experiments are shown in this chap-
ter. The first simulation results are from a simulation where a situation with
constant shaft rotational speed has been simulated. This simulation is done to
validate the model. Secondly, a simulation of the floating ring bearing with the
shaft modeled as a point mass is performed. The third simulation is a simulation
of the test setup presented in chapter three and the results of the measurements
are shown in section four. A comparison between a turbocharger shaft motion
measurement and the shaft as point mass simulation and a comparison between
the theoretical and experimental demonstrator results are presented and the
chapter closes with a sensitivity analysis using the shaft as point mass model.

Chapter 5 In the final chapter the conclusions of the research are summed up
and suggestions for further research are given.
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Nomenclature

Unless specified otherwise, the meaning of the symbols used in this thesis are
listed in this section.

Symbol Description Unit

A Area m2

C Clearance m
D Bearing diameter m
e Eccentricity m
F Force vector -
FRB Floating Ring Bearing -
Izz Mass moment of inertia around

the z-axis
kg m2

L Bearing width m
M Mass matrix -
p Pressure Pa
R Radius m
u Translational speed m/s
u Vector with degrees of freedom -

Greek symbols

Symbol Description Unit

ε Eccentricity -
µ Dynamic viscosity Pa s
ω Rotational speed rad/s
τ Shear stress Pa
Θ Angular degree of freedom rad

ix



Subscripts

Symbol Description

a Atmospheric
b Bearing housing
g Gravitational
i Inner
o Outer
r Floating ring
s Shaft
u Unbalance
v Viscous
x X-direction
y Y-direction

x
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Introduction
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This chapter forms the introduction of this Master’s thesis. The chapter starts
with an introduction to turbochargers in section 1.1. In this section the working
principle of a turbocharger is explained. The context in which this research is
done is explained in section 1.2. The bearings which are used in turbocharg-
ers are discussed in section 1.3. In section 1.4, the goals of this research will
be presented. Literature on the subject is summarized in section 1.5 and the
first chapter ends with a description of the coordinate system and some of the
parameter names used in this thesis.

1.1 The working principle of a turbocharger

Turbochargers have been around since the early 1900s and are used to increase
the power output of a combustion engine. A turbocharger essentially consists of
a compressor and a turbine on one shaft, as can be seen in figure 1.1. Hot gases
which are formed by the combustion of fuel in the cylinders of the engine enter
the turbocharger at the turbine side, drive the turbine and exit the turbocharger.
Because the turbine is connected to the compressor, ambient air is sucked in at
the compressor side. The air is compressed and is led to the air intake manifold
of the engine. The compressed air contains more oxygen per volume, which
can be used for combustion. This higher oxygen level can be used to increase
the power output of a car. Turbochargers are also used in aviation, among
other industries. Turbochargers in helicopters, for example, can compress air at
high altitudes with lower atmospheric pressure to provide the necessary oxygen
needed by the engine.

Figure 1.1: The working principle of a turbocharger [3]

In the automotive industries the use of turbochargers is becoming more and
more popular. Due to the environmental trend, car manufacturers want to
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use engines with a lower cylinder volume, but they do not want to sacrifice
power. By combining smaller engines with a turbocharger, energy which would
otherwise would be lost can be reused and the power of the engine can be
increased.

1.2 Research context

Passengers cars are designed to get users of it safely and comfortably from point
A to B. Comfort contains many different aspects; the car should react well to
road variations, there should be enough leg space, the noise should be as low as
possible, etc.. In passenger cars noise is minimized for the comfort of the users
and one of the sources of noise is the turbocharger. It is possible to adjust the
design of the car and add damping in the transfer path from turbocharger to
the cabin, but it is better to handle the problem at its source.

In the turbocharger vibrations originate from the rotor-bearing assembly. These
vibrations are led to the cartridge1, which in turn excites the air around it. The
pulsating air is interpreted by the human ear as sound. At a certain point
during the production of a turbocharger the vibrations of the cartridge are
measured at predefined rotation speeds. The amplitude of the vibrations has to
be below a certain level to be acceptable and serves as a measure of noise. If
the amplitude is larger than the threshold value there is too much unbalance in
the rotating parts of the cartridge. Unbalance of the rotor can be interpreted as
a misalignment of the rotor axis of rotation and the center of mass of the rotor.
The further the center of mass is from the axis of rotation, the more unbalance
a rotor has. To lower the amplitude of the vibrations measured on the cartridge,
material is removed from the rotor assembly to reduce the unbalance until the
cartridge meets the vibration criteria. This process is called balancing.

A useful tool in identifying sources of noise in a turbocharger is the waterfall
plot. In this plot the frequency content of the measured vibrations at different
turbocharger operating speeds can be seen. A waterfall plot of a measurement
of the acceleration levels of a complete turbocharger during run-up is shown
in figure 1.2. The figure shows the frequency content of the vibrations of the
turbocharger for a certain range of operation speeds. The waterfall plot can
be divided in three frequency zones. For a specific operation speed, the syn-
chronous frequency is the frequency which matches the operational speed of
the turbocharger. For example, the synchronous frequency of 60.000RPM is
60.000

60 = 1000Hz. The subsynchronous frequency zone contains the frequencies
of the vibration which are lower than the synchronous frequency and the su-
persynchronous frequency zone contains frequencies which are higher than the
synchronous frequency. These frequency zones are visualized in figure 1.3.

In general, the three different frequency zones contain vibrations from three
different sources. Vibrations in the synchronous zone are caused by the unbal-
ance in the rotor of the turbocharger. Since the unbalance force originates in the

1Turbocharger nomenclature can be found in appendix A
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Figure 1.2: Waterfall plot of a vibration measurement of a turbocharger by Eling
[1].

rotor it has the same frequency as the rotational speed of the rotor. The subsyn-
chronous noise originates from the bearing system. It is caused by instabilities
of the oil films in the thin film bearings [14]. The supersynchronous vibrations
can be caused by, for example, turbine pulsation. If the turbine wheel has 11
blades, it can be expected that a vibration of 11 times the rotational frequency
will be measured due to the amount of pulses on the turbine wheel during one
rotation of the rotor.

An accurate parametrized model of a turbocharger is desired to be able to
predict the behavior of turbochargers. In the design phase changes to e.g.
geometry and lubricant properties can be simulated to see which effect they have
on the dynamic behavior of the turbocharger. Simulation can aid in improving
the quality and characteristics of the turbocharger, which in turn may improve
the reputation of the manufacturer.

1.3 Turbocharger bearings

Turbocharger manufacturers can use different bearing concepts to support the
turbocharger rotor. Because of the high rotational speeds of turbochargers,
which can be well over 200.000 RPM, the most common method of supporting
the rotor is using thin film fluid bearings. The main reason for using these
kind of bearings is the low cost. Figure 1.4 shows two types of thin film fluid
bearings; the journal bearing and the floating bearing. As can be seen, the

5



Figure 1.3: Frequency zones in a waterfall plot. Blue: Synchronous, Red: Subsyn-
chronous, Green: Supersynchronous

difference is that the floating bearing has an intermediate sleeve or ring which
causes the bearing to have two lubricant films. The floating bearing can thus
be a floating ring bearing

(
L
D < 1

)
or a floating sleeve bearing

(
L
D > 1

)
. In this

thesis floating ring bearings are treated.

In high-speed operation, overheating of journal bearings can be a problem. This
problem can be countered by increasing the clearance between the shaft and
bearing house, so the oil flow can be increased. This in turn leads to a higher
cooling capacity. Increasing the clearance has negative effects, like a decreased
load-carrying capacity and increased sensitivity for oil whirl, which is an orbital
movement of the shaft in the oil film [11, 12]. Shaw [15] compares the char-
acteristics of journal bearings and floating bearings. He observes that floating
bearings have a better cooling capacity and generate less heat than equivalent
journal bearings. The speed of the floating ring or sleeve depends mainly on the
ratio of the radii of the different components and the ratio of the clearances.

Figure 1.5 shows the inside of a cartridge. The cartridge contains three bearings;
two radial bearings and one axial bearing. The radial bearings provide a low
friction support of the shaft. The axial bearing protects the rotor against shocks
and prevents the rotating parts from making physical contact with its housing.
Pressurized lubricant enters the bearing house and flows to the three bearings.
In case of the radial bearings, the lubricant is distributed to the inner film
through the holes in the floating rings. Figure 1.6 shows a cross section of
the radial bearing, showing the connection between inner and outer film. The
working principle of the floating ring bearing relies on pressure build up of the
two lubricant films due to the relative motion of the solid parts of the bearing.
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(a) (b)

Figure 1.4: Journal bearing (left) and floating bearing (right). Dimensions are not
to scale for display purposes.

Under normal operation the ring nor the shaft makes physical contact with
another solid part.

1.4 Goals and scope of this research

To create understanding of the dynamics in a turbocharger, the SIM-T (Silence
in Mitsubishi Turbochargers) project has been started at Mitsubishi Heavy In-
dustries Equipment Europe (MEE). The goal of this project is to create un-
derstanding of turbocharger dynamics by creating a theoretical model of a tur-
bocharger and by performing experiments to identify the dynamic behavior. A
global overview of the SIM-T project can be seen in figure 1.7. By using the
results gained from simulations and experiments, information is obtained about
the turbocharger dynamics and can be used to create a better product and
better support to the customers of MEE.

As mentioned in section 1.2, turbocharger behavior may be improved if the de-
sign engineers would have tools to simulate the turbocharger dynamic behavior.
Eling [1] simulated the rotor of a turbocharger and determined the eigenfre-
quencies and mode shapes of a specific turbocharger. One of the aspects which
can improve his model is to replace the simple bearing model he used with a
more realistic bearing model. The goal of the research discussed in this thesis
is to

create a more realistic floating ring bearing model to simulate the dynamic
behavior of floating ring bearings.
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Figure 1.5: The turbocharger bearing system

Figure 1.6: Schematic bearing cross section
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Figure 1.7: Overview of the SIM-T project

By focusing on short length bearings, with a length to diameter ratio which
is smaller than one, assumptions are made which make the computations less
complex but also make them unsuitable for simulation of floating sleeve bearings.
In this thesis the temperature effects, which may be an influential variable, are
not taken into account. The only influence of temperature which is included
in the bearing model is the effect of temperature on oil viscosity. The feeding
holes in the floating ring have the function to supply the inner oil film with oil.
An effect which may occur is “communication” between the inner and outer oil
films; the pressure in the oil film on one side of the feeding hole may influence
the pressure in the oil film on the other side of the feeding hole. This effect is
not taken into account, the two oil films are independent of each other.

A test setup is created to measure the bearing behavior. To verify the model,
the results of the measurements are compared to a finite element model of the
test setup.

1.5 Literature on Floating Ring Bearings

Journal bearings and floating ring bearings have been a subject of research for
many years. In 1947, Shaw and Nussdorfer [15] described the characteristics of a
full-floating sleeve bearing and compared it with an equivalent journal bearing.
They observed that the characteristics of the full-floating bearing are mainly
dependent of the ratio of the clearances and the ratio of radii of the components.
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Compared to an equivalent journal bearing, the full-floating bearing generates
less heat.

Modeling of the thermal behavior has proven to be essential for accurate FRB
behavior simulation. The temperature of the inner and outer film may differ
from each other and the temperature may even be non-constant within a film.
Since temperature influences the viscosity and clearances of the bearing, it is
imaginable that the behavior of the FRB is dependent of temperature. Trippett
and Li [16] compared measurement data of the rotational speed of the floating
ring of a FRB with an isothermal and a thermal model. The results show that
the floating ring speed increases linearly with shaft speed when an isothermal
model is used. The measurement data shows that this is not true; the ring speed
becomes almost constant when the shaft speed is increased. Finite element
modeling of a FRB shows that the temperature in the inner film is higher than
in the outer film and that the temperature in the middle of the oil film is lower
than when the oil exits the bearing [4].

Eling [1] describes the structural dynamics of a turbocharger. The different
mode shapes of the turbocharger rotor are described and concluded that the ro-
tor vibrations in the radial direction contribute the most to the noise generated
by a turbocharger; axial and torsional vibrations of the rotor are of minor im-
portance. Schweizer [14] mentions in his article how the radial vibration modes
are excited. Schweizer describes how instabilities of the inner and outer oil films
may excite the different mode shapes of the turbocharger rotor.

1.6 Coordinates, parameters and variables used
throughout this thesis

An overview of the coordinates, parameters and variables used in this thesis is
shown in figure 1.8. The dimensions are not to scale because of display purposes.
The legend for figure 1.8 can be found in table 1.1.

The coordinate system used is a right-handed coordinate system with the x-
direction pointing down, the y-direction pointing to the right and the z-axis
coming out of the paper. The origin of the system is located in the center of
the bearing housing.

The location of the center of the shaft is defined by ex,s and ey,s, while the center
of the ring is located at the coordinates ex,r and ey,r. All units are according to
the SI unit standard, with the exception being the unit revolutions per minute
(RPM) for the rotational speeds of the turbocharger rotor and the floating ring.
RPM is commonly used in daily life and the automotive industry.

A nomenclature list of all symbols and its units used throughout this thesis can
be found on page ix.
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Figure 1.8: An overview of the coordinates, parameters and variables used in this
thesis

Table 1.1: Legend to figure 1.8

I Bearing housing
II Outer oil film
III Floating ring
IV Inner oil film
V Rotating shaft
ex,r Displacement of the ring in x-direction
ey,r Displacement of the ring in y-direction
exs

Displacement of the shaft in x-direction
ey,s Displacement of the shaft in y-direction
Rb Bearing housing radius
Rr,o Outer ring radius
Rr,i Inner ring radius
Rs Shaft radius
ωs Shaft rotational speed
ωr Ring rotational speed

11





Chapter 2

Modeling the floating ring
bearing
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In the previous chapter an introduction to this research has been given. To
improve the current turbocharger model and create more understanding of tur-
bocharger dynamics, a better floating ring bearing model is needed. This chap-
ter describes how the floating ring bearing is modeled. Section 2.1 globally
describes which steps are taken by the model to perform time integration. In
section 2.2 the dynamic equations used in the model are derived. Section 2.3
describes the thermal influences which have been taken into account. How the
model is implemented in Matlab is described in section 2.4.

2.1 Modeling steps for time integration

To integrate the non-linear bearing behavior over time, several calculation steps
are made. This section describes these steps.

Parameters
At the start of the integration of a
time step the parameters are loaded.
Figure 2.1 shows the physical pa-
rameters needed as input for the
simulation.

Figure 2.1: Model parameters

15



Calculate the pressure profiles
The first calculation step of the in-
tegration is the calculation of the
pressure profiles in the inner and
outer lubricant films. These pres-
sure films exert forces on the shaft
and floating ring which can be cal-
culated by integrating the pressure
film over the area it is working on.

Figure 2.2: Pressure distribution in
the oil films

Numerical integration
The system of equations is de-
scribed by the mass matrix M and
the force vector F, which contains
all external forces, for example the
forces originating from the oil film
pressure. The components of the
force vector may be dependent of
displacement u (t), velocity u̇ (t)
and shaft and floating ring rota-
tional speeds ωs (t) and ωr (t).

Mü (t) = F (u (t) , u̇ (t))

Results
The integration of the set of equa-
tions yields a new configuration of
the system, i.e. new positions and
speeds of the shaft and floating ring.
This new configuration serves as ini-
tial condition for the next time step.
For the next time step the process
is repeated.

Figure 2.3: The new calculated con-
figuration of the FRB

16



2.2 FRB model

This section describes the modeling of the FRB. The description of the model is
split up in two parts; 2.2.1 describes the translational dynamics, while section
2.2.2 describes the rotational dynamics of the floating ring.

2.2.1 Dynamics in translational direction

The pressure distribution in the fluid films of a floating ring bearing can be
calculated by using equation 2.1, in which ∆ex, ∆ey, ∆ėx, ∆ėy and ∆ω are time-
dependent and are respectively the relative displacement in x- and y-direction,
the relative velocity in x- and y-direction and the relative rotational speed of
the inner body compared to the outer body. For example, ∆ex = ex,inner body−
ex,outer body.

p (Θ, z, t)−pa = 6µ

(
∆ėx + ∆ey

∆ω
2

)
cos Θ +

(
∆ėy −∆ex

∆ω
2

)
sin Θ

(C + ∆ex cos Θ + ∆ey sin Θ)
3

(
z2 −

(
L

2

)2
)

(2.1)

Equation 2.1 is derived from the Reynolds equation. The derivation can be found
in appendix B.2. Using this equation, the pressure distributions in the inner
and outer film can be calculated. When calculating the pressure distribution
in the outer film, the floating ring can be considered as the inner body while
the bearing housing can be considered as the outer body. Because the bearing
housing is considered as fixed, the displacement, velocity and rotational speed
of the outer body equal zero. This leads to equation 2.2.

pout (Θ, z, t)−pa = 6µo

(
ėx,r + ey,r

ωr

2

)
cos Θ +

(
ėy,r − ex,r ωr

2

)
sin Θ

(Co + ex,r cos Θ + ey,r sin Θ)
3

(
z2 −

(
Lo
2

)2
)

(2.2)

For the calculation of the inner film pressure distribution the rotating shaft is
considered as the inner body, while the floating ring is considered as the outer
body and both can have non-zero valued displacements, velocities and rotational
speeds. This results in equation 2.3 for calculating the pressure distribution in
the inner film.

pin (Θ, z, t)−pa = 6µi

[ (
(ėx,s − ėx,r) + (ey,s − ey,r) ωs−ωr

2

)
cos Θ

(Ci + (ex,s − ex,r) cos Θ + (ey,s − ey,r) sin Θ)
3 +(

(ėy,s − ėy,r)− (ex,s − ex,r) ωs−ωr

2

)
sin Θ

(Ci + (ex,s − ex,r) cos Θ + (ey,s − ey,r) sin Θ)
3

](
z2 −

(
Li
2

)2
)

(2.3)
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As can be seen in the pressure distribution equations, the pressure distribution
is dependent of

� displacement (ex,s, ey,s, ex,r, ey,r),

� translational speed (ėx,s, ėy,s, ėx,r, ėy,r),

� rotational speed (ωs, ωr),

� geometry (Li, Lo, Ci, Co) and

� lubricant viscosity (µi (Ti) , µo (To)).

Because the pressure distribution is dependent of both displacement and ve-
locity, it contains stiffness and damping properties. An example of a pressure
profile which may be obtained by evaluation of equations 2.2 and 2.3 is shown
in figure 2.4. This figure shows a pressure profile which contains both positive
and negative pressures. When the pressure drops below zero, it is assumed that
cavitation occurs; a phase transition of the oil from a fluid state to a vapor state.
In reality the pressure in the cavitated region can not be lower than vacuum,
but because the pressure in the fluid region of the oil film are expected to be
much larger than vacuum the pressure in the cavitated region is set to zero.
This means that the cavitated region of the pressure film will not provide any
supporting force.
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Figure 2.4: Example of the shape of the pressure profile in an oil film

Besides the effect on the oil film pressure, cavitation also affects the viscous
drag which acts between the shaft and floating ring and the floating ring and
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bearing housing. Since the vaporized oil has a significantly lower viscosity than
the fluid oil, the assumption is made that the viscous drag is only caused by
the part of the oil film which is in fluid state. The viscous drag will contribute
in a small amount to the forces in translational direction, but is the main force
which causes the floating ring to rotate. The rotational dynamics concerning
the floating ring will be discussed in section 2.2.2.

In the following paragraphs the properties of the oil films and the forces present
in the floating ring bearing will be described. For details on these properties
and forces, appendices B.2 to B.3 can be consulted.

Pressure film force
The pressure distribution functions can be integrated with respect to area to
obtain the force caused by the film pressure. This results in the forces Fx,s,p
and Fy,s,p working on the shaft and the forces Fx,r,p and Fy,r,p working on the
floating ring.

The three time-dependent variables which influence the pressure distribution,
influence it in a different way. To illustrate this, the pressure profile in three
situations has been simulated. In all situations the inner body has a displace-
ment unequal to zero. In addition, in the first situation the inner body has a
rotational speed, in the second situation a speed in radial direction and in the
third situation the inner body has a tangential speed. An overview of the dif-
ferent situations is shown in table 2.1. The resulting pressure profiles are shown
in figure 2.5.

Table 2.1: Overview of the properties of the simulated situations shown in figure 2.5

Situation ex ey ėx ėy ω

Pure rotational speed > 0 0 0 0 > 0
Pure radial speed > 0 0 > 0 0 0
Pure tangential speed > 0 0 0 > 0 0

Since ex > 0 and ey = 0, the smallest gap between the inner and outer body is
located at Θ = π. The figure shows that in the case of pure rotational speed, the
pressure distribution is only non-zero for Θ < π. This results in a force which
is roughly in the same direction as the rotational direction of the shaft. When
the shaft only has a radial speed, a force is generated in the opposite direction
of the speed. This is also the case when the shaft only has a tangential speed;
this generates a force which is roughly in the opposite direction of the speed.
Summarizing,

19



0 pi 2 pi
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 p
re

ss
ur

e 
[−

]

Θ [rad]

 

 

Pure rotational speed
Pure radial speed
Pure tangential speed

Figure 2.5: Body position, velocity and rotational speed all influence the pressure
film in a different way.

� rotation of the inner body relative to the outer body generates a driving
force which induces motion of the inner body,

� radial speed of the inner body relative to the outer body generates a force
which counters the relative radial motion of the inner body and

� tangential speed of the inner body relative to the outer body generates a
force which counters the relative tangential motion of the inner body.

During operation the pressure distributions in the oil films are a combination
of these three effects.

Gravitational force
Although of minor influence in translational direction, the gravitational effects
of the shaft and floating ring are included. The gravitational forces work only
in the x-direction and therefore has only two non-zero components; Fx,s,g and
Fx,r,g.

Unbalance force
Since it is almost impossible to perfectly balance the rotor assembly of a tur-
bocharger, there will always be an unbalance residue. The amplitude of the
force generated by the unbalance is a centrifugal force which is described by

|Fs,u| = mrω2
s (2.4)
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In this equation, mr represents the amount of unbalance and has a value in
the order of 10−8kg ·m. This unbalance value may be very small, but with the
high speeds a turbocharger can achieve, the amplitude of the force may reach
approximately 15N at a turbocharger speed of 250.000RPM. Since unbalance
has a fixed physical location within the rotor, the unbalance force direction
rotates when the shaft rotates.

Viscous drag
The shear stress between two surfaces is described by equation 2.5 [17]. As can
be seen in this equation, the shear stress depends on the viscosity, relative speed
and gap between the two surfaces.

τ (Θ) = µ
du

dh (Θ)
(2.5)

Integration of the shear stress over the area results in a force. The viscous shear
force is a drag force, which means it works in one direction when looking at a
surface in radial direction. In translational direction this results in forces which
can act in both positive and negative directions, as can be seen in figure 2.6.
The figure also shows another effect which is the result of cavitation. In the
region where the oil pressure is below the vapor pressure pv, the oil has turned
from a fluid state to a vapor. Since the viscosity of the vapor is far lower than
the fluid pressure, the viscosity is set to zero and the viscous drag forces in the
vapor region are neglected.

µ =

{
0 when p (Θ) < pv

µ (T ) when p (Θ) > pv
(2.6)

System of equations
Now the forces which work on the floating ring and shaft are known, the system
of equations regarding the translational dynamics can now be described by

Mü = Fp (u, u̇, ω)︸ ︷︷ ︸
Pressure film

+ Fg︸︷︷︸
Gravity

+ Fu (ω)︸ ︷︷ ︸
Unbalance

+ Fv (u, u̇, ω)︸ ︷︷ ︸
Viscous drag

(2.7)

The displacement vector u and mass matrix M are described by equations
2.8 and 2.9. The left hand side of the equation does not contain stiffness or
damping terms. This is because the stiffness and damping forces of the oil films
are already counted for in the pressure film force vector Fp.

u =


ex,s
ey,s
ex,r
ey,r

 (2.8)
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Figure 2.6: Amplitude and sign of horizontal viscous drag forces working on the
inner surface of the floating ring. In the cavitated area (p < pv) viscous drag forces

are neglected.

M =


ms 0 0 0
0 ms 0 0
0 0 mr 0
0 0 0 mr

 (2.9)

2.2.2 Dynamics in rotational direction

In this section the dynamics in rotational direction are described. Because the
shaft has a prescribed rotational speed, there is only one degree of freedom in
rotational direction; the angle of the floating ring. The angle of the floating
ring is not very interesting. The derivative of the angle, the rotational speed, is
much more interesting and also influences the pressure distributions in the oil
films. The floating ring rotates due to the torque generated by the shear force
between the shaft and inner ring surface. The shear force between the outer
ring and bearing housing surfaces counteracts the torque generated in the inner
oil film. Recalling equations 2.5 and 2.6, the shear stress between two surfaces
is given by

τ (Θ) = µ
du

dh (Θ)
(2.5)

with
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µ (T,Θ) =

{
0 when p (Θ) ≤ 0

µ (T ) when p (Θ) > 0
(2.6)

The average shear stress between two surfaces is

τ̄ = du

∫ 2π

0
µ(T,Θ)
dh(Θ) dΘ

2π
(2.10)

The shear force, or viscous drag force, can now be calculated by multiplying
the average shear stress with the area it is working on. The force contributing
to the viscous torque is visualized in figure 2.7. The torque generated by the
viscous drag force is obtained by multiplying it with the radius it is working on.

Figure 2.7: Viscous torque originates from viscous drag forces, which act tangential
to the surface of the ring. Only the viscous torque in the inner oil film is shown in

this figure.

Fv = Aτ̄ = 2πRLτ̄ (2.11)

Mv = RFv = 2πR2Lτ̄ (2.12)

Substitution of equation 2.10 in equation 2.12 and substituting appropriate ex-
pressions for du and h (Θ) leads to expressions of viscous torque on the inner
and outer surfaces of the floating ring, respectively equations 2.13 and 2.14.
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Mi,v =R2
r,iLiµi (ωsRs − ωrRr,i) · . . .∫ 2π

0

1

Ci + (ex,s − ex,r) cos (Θ) + (ey,s − ey,r) sin (Θ)
dΘ

(2.13)

Mo,v = −R2
r,oLoµoωrRr,o

∫ 2π

0

1

Co + ex,rcos (Θ) + ey,rsin (Θ)
dΘ (2.14)

Since the shaft will always have a higher rotational speed than the floating ring,
the torque working on the inside of the floating ring always serves as a driving
force which makes the floating ring rotate. The torque working on the outer
surface of the floating ring always serves as a drag force, slowing the rotation of
the floating ring down.

2.3 Thermal aspects

As mentioned in section 1.5, Trippett and Li [16] found that an isothermal
model is not suitable for accurate predictions on the behavior of FRB’s . The
temperature dependence of the viscosity of a 5W-30 oil [2], a common motor
oil, is shown in figure 2.8.
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Figure 2.8: Temperature dependency of Mobil 1 5W-30 oil viscosity

Knoll et al. show the temperature distribution within a FRB with a finite
element model.[4] The results show how the temperature changes in both radial
and axial directions. As mentioned in section 1.4 an extensive thermal model
is out of the scope of this thesis. Instead, only the oil viscosity is temperature
dependent in this model.
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2.4 Implementation in Matlab

The physics which have been discussed in this chapter are implemented in a
Matlab code to simulate the FRB behavior in the time domain. In this section
Matlab related topics are discussed. In section 2.4.1 is described how the physics
are implemented in a Matlab routine; the section describes the sequence of steps
which are taken. How the time step is controlled during integration of the system
of equations is shown in section 2.4.2. After simulation, the waterfall plot is a
tool which is used frequently to analyze the dynamic behavior which has been
simulated. How the waterfall plots are calculated is described in section 2.4.3.

2.4.1 Implementation of the physics in Matlab

Matlab version R2010b has been used for evaluation of the theoretical FRB
model. Figure 2.9 shows an overview of which steps are taken during the sim-
ulation. Several simulation parameters can be altered which control the length
of the simulation. The simulated time is defined by the domain [0, tmax], with
a constant time step ∆t between saved simulation points.

� At the start of the simulation of a time step, the starting conditions
for the differential equation solver (ODE solver) are loaded. The vec-
tor with starting conditions contains the positions and velocities of the
shaft (ex,s, ey,s, ėx,s, ėy,s) and position, rotation, velocities and rotational

speed of the floating ring
(
ex,r, ey,r, φ, ėx,r, ėy,r, φ̇ = ωr

)
. At t = 0 this

vector is filled with zeros. At other time steps the results of the previous
time step serve as starting condition for the next time step.

� After the starting conditions for the ODE solver have been determined, the
ODE solver is started to solve the system of equations for the time range
[t, t+ ∆t]. The ODE solver has to integrate the system for a time length
∆t, but splits it in smaller time steps δt. The value of δt is determined
by the error of the results which is calculated by the ODE solver. If the
error is too large, the calculations are redone using a smaller δt. This error
control is described in more detail in section 2.4.2.

� When the ODE solver is started, first all the parameters are loaded, which
may be time-dependent. After the parameters are loaded the shaft rota-
tional frequency is calculated which is a function of time. In the simu-
lations performed in this thesis, the shaft rotational frequency is linearly
dependent on time, as shown in equation 2.15. Unless otherwise specified,
the simulations have been done with ωs,start = 0 rads and dωs

dt = 2618 rads2 ,

or 25000RPMs2 .

ωs (t) = ωs,start +
dωs
dt

t (2.15)
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� With the configuration at a certain time step, which is defined by the
starting conditions of the ODE solver, the forces which are working on
the system can be calculated. First the pressure distributions in the inner
and outer film and the resulting forces on the shaft and floating ring are
calculated. Secondly, the magnitude and the angle β of the unbalance
force is calculated. At t = 0, the unbalance direction is in the direction of
the positive x-axis, or θ = π. The unbalance forces are then calculated by

Fx,u = cos (β) |Fu| (2.16)

Fy,u = sin (β) |Fu| (2.17)

After the unbalance forces are calculated, the viscous drag forces and
torque are calculated. The forces which are calculated are the viscous
drag force in x- and y-directions which originate from the outer film and
viscous drag forces in x- and y-directions which originate from the inner
film. Furthermore, the torque caused by the viscous drag working on the
inner and outer surfaces of the floating ring is calculated.

� When all the mentioned forces which participate in the dynamics have
been calculated, the system of equations is formed and solved. The force
vector F (u, u̇) contains all the forces working on the different degrees of
freedom and is a function of u and u̇. This means that the force vector
changes during a solution step of the ODE solver. The system of equations
is shown in equation 2.18.

Mü = F (u, u̇) (2.18)

Because the system of equations contains the second derivative of the
degrees of freedom vector, the order has to be reduced to create a first
order differential equation. By defining the vector z as in equation 2.19,
the second order system of differential equations as shown in equation
2.18 is reduced to the first order system of differential equations shown in
equation 2.20.

z =

[
u
u̇

]
(2.19)

[
I 0
0 M

]
ż =

[
0 I
0 0

]
z +

[
0

F (z)

]
(2.20)

This first order system of differential equations is solved using an ODE
solver in Matlab.

� The ODE solver returns a matrix which contains solutions for the vector
z at different points in time in the interval [t, t+ ∆t]. For example, the
matrix which has been returned as output of the ODE solver could be a
20 by 10 matrix if the vector z is a vector of length 10 and the ODE solver
needed 20 time steps δt to solve the system of equations for the mentioned
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time interval. The last entry of each degree of freedom is saved to different
vectors; one vector for each degree of freedom. After this solution is saved
the ODE solver is started again for the next time interval. This start-stop
routine of the ODE solver results in vectors which contain entries which
have an equal time spacing ∆t between them. After a specified number
of entries in the vectors with results, the vectors are saved to a file on the
hard disk and the vectors are cleared to prevent memory issues.

Figure 2.9: Schematic overview of the steps taken by the Matlab model
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2.4.2 Time step control of the ODE solver

Integration of the system of equations is done using the ode15s ODE solver in
Matlab. This solver is used for solving stiff problems; problems which need a
very small time step to lead to a converging solution. The solution at each time
step has to meet certain error criteria. The criteria which are used by Matlab
are explained below and can also be found in the Matlab manual [7].

Error criteria can be defined which should be met by the solver before a solution
is accepted. These criteria are the relative error and the absolute error. The
relative error defines how many digits of a solution should be correct, taking
the order of the solution into account. The relative error of a solution on a time
step is set to 10−3. This means that the error e of solution y at step i should
meet the requirement

|e (i)| < 10−3 · |y (i)| (2.21)

If, for example, the solution is |y (i)| = 1 ·10−5, then the error should be smaller
than 10−3 · 10−5 = 10−8.

The absolute error defines the maximum amount of digits which should be
correct, regardless of the order of the solution. The order of the expected
displacements is 10−5, which is the order of the size of the gaps between the
structural parts. The maximum value of the absolute error is chosen 10−10.

|e (i)| < 10−10 (2.22)

To avoid unnecessary accuracy and therefore unnecessary computational time,
the solution at a time step is accepted when the largest of the two error criteria
is met. When neither of the criteria is met a new solution of the system of
differential equations will be calculated, but a smaller time step than during
the previous attempt will be used. When the time step is too small, i.e. the
magnitude of the time step is smaller than the smallest number the computer
can handle, an error is returned to the user.

2.4.3 Calculation of waterfall plots

A valuable tool to investigate dynamics is the waterfall plot. A waterfall plot
gives a good overview of the frequency content as a function of shaft rotational
speed, as was seen in figure 1.2. The simulated time signal of the different
degrees of freedom can be used to calculate waterfall plots. To create this wa-
terfall plot, fast Fourier transforms (FFT’s) have to be calculated. FFT’s are
calculated for the total shaft frequency range, from the minimum rotational fre-
quency up to the maximum rotational frequency with step size ∆RPM between
FFT’s. The FFT’s are calculated using Matlab’s fft function.
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The quality and resolution of the waterfall plot are influenced by the length
of the time block which is used to calculate the FFT of that time block and
the step size ∆RPM . The resolution in vertical direction can be controlled
by increasing or decreasing ∆RPM . A smaller value for ∆RPM means more
FFT’s are calculated and therefore a better resolution in vertical direction is
achieved. The resolution of the frequency axis (horizontal axis in this thesis) is
determined by

∆f =
1

tblock
(2.23)

In this equation tblock is the length of the time block in seconds. The time signal
yFFT,ωs which is used for calculating the FFT around a shaft speed ωs is defined
by

yFFT,ωs
= y

[
t (ωs)−

tblock
2

, t (ωs) +
tblock

2

]
(2.24)

Equation 2.23 implies that a longer time block leads to a better resolution on the
frequency axis. However, because the shaft rotational speed increases linearly
with time, a longer time block means that more information of other shaft speeds
is included. Examples of this effect are shown in table 2.2. Results in this table
show that when a smaller ∆f is used or when a faster run-up is simulated, the
range of shaft speeds included in the time data needed for the FFT is larger.
Each shaft speed has its own dynamic behavior, with different peak frequencies.
Because these frequencies are close, but not equal, the peaks will be “smudged”
if the bandwidth of frequencies is too large. To reduce the influence of the data
which is not exactly at the time of interest, a Hanning window is applied on the
time data before the FFT is calculated.

Table 2.2: Examples of the influence of shaft speed increase step size and frequency
resolution on the data range which is used for calculating a FFT

ωs [Hz] dω
dt

[
Hz
s

]
∆f [Hz] tblock [s] ωs range [Hz]

1000 100 10 0.1 [995− 1005]
1000 200 10 0.1 [990− 1010]
1000 100 5 0.2 [990− 1010]
1000 200 5 0.2 [980− 1020]
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Chapter 3

Experimental approach
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In this chapter the experimental approach is highlighted. The goals of these
experiments are to

� compare the theoretical results of the demonstrator model to the experi-
mental results

� measure the frequency content of the movement of the floating ring bearing

� measure the rotational speed of the floating ring bearing

In section 3.1 the design of the demonstrator is discussed. Section 3.2 shows the
test setup as it has been used.

3.1 Demonstrator design

A cross section of the design of the demonstrator, without the drive, is shown
in figure 3.1 and its components are named in table 3.1.

Measurement points

Besides the shaft rotational speed, there are six measurement points which can
be used in the demonstrator. Four of these measurements points are used to
measure shaft motion and are two pairs of orthogonal measurements points;
shaft motion is measured at two points along the shaft in X- and Y-direction.
The other two sensors are placed orthogonally to measure the motion of the
FRB. As an addition to FRB motion, the rotational speed of the FRB can be
measured because the lubricant feeding holes can be detected.

The shaft and FRB motion sensors used are eddy-current sensors. Micro-
Epsilon, a manufacturer of eddy-current sensors, describes the working principle
of these sensors on page 2 of the technical note “Precise Non-contact displace-
ment sensor” as: “The eddy current measurement principle is an inductive
measuring method based on the extraction of energy from an oscillating circuit.
This energy is required for the induction of eddy currents in electrically con-
ductive materials. A coil is supplied with an alternating current, which causes
a magnetic field to form around the coil. If an electrically conducting object
is placed in this magnetic field, eddy currents are induced, which form an elec-
tromagnetic field according to Faraday’s Induction Law. This field acts against
the field of the coil, which causes a change in the impedance of the coil. The
controller calculates the impedance by considering the change in amplitude and
phase position of the sensor coil.”. [8]

The shaft motion can easily be measured by placing an eddy-current sensor
close to the shaft at the desired location. The measurement of FRB motion,
however, is harder to do with eddy-current sensors. Because it is undesired
to drill a hole through all of the bearing housing and thereby disturbing the
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Figure 3.1: Cross section of the demonstrator without motor

Table 3.1: Demonstrator component names

A Shaft motion sensor mounting; end of shaft side
B Rubber seal between cap and center piece
C Floating ring bearing lubricant inlet mounting
D Floating ring bearing
E Rubber seal between center piece and base
F Shaft motion sensor ball bearing side
G Ball bearing lubricant inlet mounting
H Super precision ball bearing
I Ball bearing lubricant inlet mounting
J Lubricant outlet; FRB side
K Floating ring vibration and rotational speed sensor mounting
L Shaft
M Lubricant outlet; ball bearing side
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oil film, the measurement principle eddy-current sensors rely on, is used in the
opposite way. As described, an object has to be electrically conductive to be
detected by an eddy-current sensor. The recommended minimum thickness of
the target material to be detectable is given by equation 3.1 [6].

minimum target thickness = 3δ (3.1)

with

δ = 0.0503

√
ρ

fµr
(3.2)

A material’s skin-depth, calculated by equation 3.2, is dependent of the mate-
rial’s electrical resistivity ρ, the material’s magnetic permeability µr and the
oscillation frequency f of the eddy-current sensor. When the electrical resistiv-
ity of a target material is very high, or the magnetic permeability is very low,
an eddy-current sensor will have difficulties detecting it.

By drilling a sensor hole which does not go all the way through the bearing
house and using a bearing house material which is hard to detect for the sensor,
the sensor will be able to “see through” the remainder of the bearing housing.
This is visualized in figure 3.2, which shows a cross section of the demonstrator
at the FRB. The names of the labeled components can be found in table 3.1.

Figure 3.2: Cross section of the demonstrator at the FRB, showing the orthogonal
sensor mounting holes

The material chosen for the bearing housing is a polycarbonate, which has a high
electrical resistivity and a low magnetic permeability. Evaluation of equation
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3.1 indicates that the thickness of this material should be large to be able to
detect it with an eddy-current sensor. By leaving 0.5mm of material between
the sensor head and the oil film, the oil film will not be disturbed and the sensor
will not be able to detect the polycarbonate. The sensor can still detect the only
electrical conductive object in its range; the floating ring.

3.2 Test setup

An overview of the demonstrator and its drive are shown in figure 3.3a. A close
up of the demonstrator is shown in figure 3.3b. The drive is a modified DV6D
type turbocharger. This turbocharger is modified so it can be connected to
the demonstrator by means of a coupling and can be driven by compressed air.
Controllable shaft rotational speeds up to approximately 40.000 RPM, or 667
Hz, are achieved.

The measurable quantities are

� shaft displacement at the ball bearing side in x-direction

� shaft displacement at the ball bearing side in y-direction

� floating ring displacement in x-direction

� floating ring displacement in y-direction

� shaft displacement at the end of the shaft in x-direction

� shaft displacement at the end of the shaft in y-direction

� shaft rotational speed

� acceleration of the cartridge

Although the demonstrator is designed to be able to measure displacement of
the floating ring in two directions, only one of these displacements could be used
simultaneously due to the availability of sensors. Details on the measurement
equipment can be found in appendix C.
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(a) Overview of the test setup; labeled are the (a) oil supply , (b) coupling
protection cover, (c) modified turbine housing with pneumatic feed tubing, (d)

demonstrator and (e) stand which hold the shaft rotational speed sensor

(b) Close up of the demonstrator which shows the floating ring on the shaft
with an eddy-current sensor which measures the floating ring displacement in

y-direction

Figure 3.3: The test setup used for the experiments; additional measurement equip-
ment and oil pump are not shown
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Chapter 4

Results and discussion
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In this chapter the results of simulations and experiments are presented. In
section 4.1 a simple situation is simulated to check the results of the theoretical
FRB model. In this simulation the shaft of the FRB is modeled as a point
mass and the configuration is under a constant load. In the second section, 4.2,
the point mass model which was used in the first section is used for a run-up
simulation. In this simulation realistic parameters are used.

The demonstrator, which is used for model validation, is simulated with a finite
element model. The results of a run-up simulation with this model are shown
in section 4.3. The results of the experiments with the demonstrator are shown
in section 4.4.

The results of the simulations and experiments are compared and discussed in
section 4.5. This chapter is closed with the results of a sensitivity analysis in
section 4.6. The results in this section have been obtained by using the point
mass simulation from sections 4.1 and 4.2, but using different parameters.

An overview of this chapter is shown below in table 4.1.

Table 4.1: Overview of the results obtained by simulation and experiments

Simulation results Experimental results
Model verification §4.1 -
Point mass simulation §4.2 -
Demonstrator §4.3 §4.4
Sensitivity analysis §4.6 -

4.1 Model verification

In figure 4.1 a FRB model with the shaft represented by a point mass is shown.
This means shaft influences, like rotordynamics of the shaft or rotor and bending
forces of the shaft are not present in this simulation. Figure 4.1 shows the
coordinates ex,r, ey,r, ex,s and ey,s and center of masses ms and mr of the model.
In this section the results of a simple situation are shown and is meant to check
whether the simulation results are the results which would be expected. The
parameters used in this simulation are shown in table 4.2. As can be seen in this
table, the shaft rotational speed is constant and no unbalance is present. The
mass of the shaft and floating ring are increased to increase bearing load, which
is chosen for verification purposes; if the combination of bearing parameters
and bearing load is chosen right the bearing behavior will not become unstable,
which is desired for model verification.

The simulation with constant shaft rotational frequency has been performed for
the time range [0− 4]s. The starting position of both the shaft and the floating
ring is in the origin [0, 0]. The result of the displacement of the system is shown
in figure 4.2. In this figure es∗ = es − er and stands for the displacement of the
shaft within the floating ring. In other words, the displacement of the shaft with
the center of the floating ring as origin. It is seen that the shaft and floating
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Table 4.2: Parameter values used in the point mass simulation of section 4.2

Parameter Value Unit

ωs 2 Hz
Shaft unbalance 0 kg·m
ms 200 · 10−3 kg
mr 100 · 10−3 kg
Ir 7.03 · 10−8 kgm2

Li 4 · 10−3 m
Lo 7 · 10−3 m
Ci 15 · 10−6 m
Co 36 · 10−6 m
Rs 3 · 10−3 m
Rr,o 5.5 · 10−3 m
µi 12 · 10−3 Pa·s
µo 12 · 10−3 Pa·s

ring first “fall down”, before moving to a more or less stable position. In figure
4.3 the magnitude of the velocities of the shaft and floating ring are displayed.
Since the velocities are very low, the system has almost reached an equilibrium
position.

If the system is in an equilibrium position, the sum of the forces in all directions
should be zero. The forces caused by the pressure in the oil films in x- and
y-direction are shown in figures 4.4a and 4.4b. The load in the x-direction is
caused by the gravitational forces of the shaft and floating ring, which have a
magnitude of

Fx,s,g = 0.2 · 9.81 = 1.962N (4.1)

Fx,s,r = 0.1 · 9.81 = 0.981N (4.2)

The pressure film force on the surface of the shaft is -1.959N in the x-direction.
This force works in the negative x-direction, because the gravitational force of
the shaft works in the positive x-direction. The magnitude of the pressure film
force is almost equal to the gravitational force. The remaining 0.003N is partly
supported by the viscous drag force and is partly a remainder of the dynamic
effects which are still present in the system. The same holds for the pressure film
force working on the outer surface of the floating ring. The pressure distribution
in the outer oil film generates -2.933N. The outer film has to support both the
weight of the floating ring as the force caused by the inner oil film, which is
2.943N combined. The remaining 0.01N is again a combination of viscous drag
force and dynamic effects. In the y-direction the forces are not equal to zero.
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Figure 4.1: Point mass model coordinates

The explanation of this is the same as the explanation for the remainder of the
forces in vertical direction.

The maximum pressures in time in both oil films are shown in figure 4.5. Both
oil films have converged to a constant pressure after reaching a peak pressure.
This peak pressure is caused by the impact of the “falling” shaft and floating
ring masses, which had their initial position in the origin. The pressures shown
in this figure are only the peak pressure in the oil films. Therefore, an increase
in peak pressure does not necessary mean a higher force generated by the oil
films. This is seen in the simulated situation; figure 4.4a shows that the pressure
film forces in vertical direction converge much faster than the peak pressures.

When the system which is under a constant load reaches its equilibrium position,
the rotational speed of the floating ring converges to a constant value as is seen
in figure 4.6.
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Figure 4.2: Displacement of the shaft, shaft relative to the floating ring and floating
ring resulting from the verification simulation
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Figure 4.3: Absolute velocities of the shaft and floating ring in x- and y-direction
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Figure 4.4: Velocities of the shaft and floating ring in radial and tangential directions
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Figure 4.5: Peak pressures in the oil films of the verification simulation
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Figure 4.6: Rotational speeds of the shaft and floating ring
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4.2 Point mass simulation

In this section the results of a FRB simulation with the shaft represented by
a point mass are shown. This is the same model as shown in figure 4.1 in the
previous section. The parameters which are used in this simulation are the
same as in a turbocharger and are shown in table 4.3. In this simulation the
magnitude of the point mass is chosen to be half the weight of a turbocharger’s
turbine-rotor assembly, which is supported by two FRB’s in a turbocharger.

Table 4.3: Parameter values used in the point mass simulation of section 4.2

Parameter Value Unit

ωs 0− 3750 Hz
Shaft unbalance 2 · 10−8 kg·m
ms 35 · 10−3 kg
mr 3.47 · 10−3 kg
Ir 7.03 · 10−8 kgm2

Li 4 · 10−3 m
Lo 7 · 10−3 m
Ci 15 · 10−6 m
Co 36 · 10−6 m
Rs 3 · 10−3 m
Rr,o 5.5 · 10−3 m
µi 12 · 10−3 Pa·s
µo 12 · 10−3 Pa·s

This section is divided in three subsections. In section 4.2.1 waterfall plots of
the simulation are discussed. These waterfall plots give insight in the frequency
content at different operating speeds.

4.2.1 Waterfall plots

To obtain an overview of the dynamic behavior of the system, waterfall plots
are made. Figure 4.7 shows the waterfall plot of the movement of the shaft with
three frequency lines labeled which have a major contribution to the dynamic
behavior. As explained in section 1.2, the synchronous frequency line originates
from the unbalance which is present in the shaft and therefore has a frequency
which is equal to the frequency of the shaft.

The other two frequency lines are located in the subsynchronous area and are
labeled ‘Whirl 1’ and ‘Whirl 2’. As the name indicates, these frequencies are
whirl frequencies; frequencies of limit cycle motions of one body within another.
Whirling is visualized in figure 4.8. At a certain rotation speed of the shaft,
whirl 1 suddenly disappears. This phenomenon will be referred to as jumping
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and the rotational speed at which this happens will be referred to as the jump
speed. The jump speed also marks the point where the mode shape of the
system changes from the first to the second mode shape.

Figure 4.7: Waterfall plot of the position of the shaft in x-direction

Waterfall plots of the position of the floating ring and the position of the shaft
with respect to the floating ring, respectively figures 4.9 and 4.10, give more
insight in the origin of the whirl 1 and whirl 2 lines. Figure 4.9 shows that the
first mode shape is dominated by the whirl 1 frequency line, which leads to the
conclusion that the whirl 1 frequency line is the whirl frequency of the floating
ring inside the bearing housing in the first mode shape. After the jump the
whirl frequency of the floating ring changes to whirl 2.

Figure 4.10 shows the waterfall plot of the position of the shaft relative to the
floating ring. This is the position of the shaft seen from a local coordinate
system which has its origin in the center of the floating ring; ex,s∗ = ex,s − ex,r
and ey,s∗ = ey,s − ey,r are the local coordinates of the shaft inside the floating
ring. In both modes the whirl 2 frequency line describes the major component
of the movement of the shaft relative to the floating ring.

The first mode shape can be visualized as follows: the floating ring whirls in-
side the bearing housing while the shaft whirls inside the floating ring with a
frequency which is higher than the floating ring whirl frequency. In the second
mode shape the whirl frequency of the shaft and floating ring is equal. This also
means that the mean phase between the eccentricity directions of the floating
ring and the shaft inside the floating ring is almost constant in the second mode
shape.

The two different mode shapes are shown in figures 4.11a and 4.11b. The effect
of different whirling frequencies of the shaft and floating ring is visible in figure
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Figure 4.8: Graphical interpretation of whirling. The shaft follows the gray orbit
within the floating ring with a rotational frequency of ωw,s. The floating ring moves
according to the yellow orbit within the bearing housing with a rotational frequency

of ωw,r

4.11a. The displayed values are the eccentricities in the x- and y-directions.
Eccentricity is a dimensionless quantity which can have values between 0, which
means centered operation, to 1, which means physical contact between shaft
and floating ring or floating ring and bearing housing. The eccentricity of the
shaft with respect to the global coordinate system is denoted by εs, εr is the
eccentricity of the ring with respect to the global coordinate system. The third
eccentricity, εs∗, is the eccentricity of the shaft with respect to a local coordinate
system which has its origin in the center of the floating ring. Equations 4.3 to
4.5 describe the eccentricities in mathematical form.

εs =

√
e2
x,s + e2

y,s

Ci + Co
(4.3)

εr =

√
e2
x,r + e2

y,r

Co
(4.4)
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Figure 4.9: Waterfall plot of the position of the floating ring

Figure 4.10: Waterfall plot of the position of the shaft relative to the floating ring
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(a) Trace of the movement while the sys-
tem is in the first mode shape

(b) Trace of the movement while the
system is in the second mode shape

Figure 4.11: Movement of the different bodies in the first and second mode shapes.
The red circle indicates the direction of the unbalance force at the time step of this
configuration. The blue and green lines represent the directions of respectively εs and

εs∗ .

εs∗ =

√
(ex,s − ex,r)2

+ (ey,s − ey,r)2

Ci
(4.5)

4.2.2 Body displacement and velocity

The eccentricities of the shaft and ring are visualized in figure 4.12. The jumping
behavior is visible in this figure. In the speed region of the first mode shape a
heavily oscillating εs is seen. This oscillation is caused by the fact that εs is a
combination of εr and εs∗. As explained in the previous section, the whirling
frequency of the shaft inside the floating ring is higher than the whirling speed
of the floating ring in the bearing housing. Because the whirling frequencies are
not equal, εs shows oscillating behavior. When the system is in the speed range
of the second mode shape the whirling frequencies are equal and εs shows stable
behavior.

The floating ring speed ratio, FRSR, is described by equation 4.6 and the results
from the simulation are shown in figure 4.13. At 30kRPM the FRSR shows a
local maximum and a local minimum at 55kRPM. This local minimum and
maximum FRSR is caused by the fact that at those rotational speeds a local
minimal and maximal difference between εs∗ and εr occurs, as seen in figure
4.12. When εr increases, the viscous moment working on the outer surface of
the floating ring increases, which means more friction. When ε decreases, the
friction becomes less. The same holds for εs∗. When εs∗ increases, the driving
moment on the inner surface of the floating ring increases and it decreases when
εs∗ decreases.
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Figure 4.12: Eccentricities of the shaft (εs), floating ring (εr) and shaft relative to
floating ring (εs∗) versus shaft rotational speed

FRSR =
ωr
ωs

(4.6)
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Figure 4.13: Ratio of the speed of the floating ring to the speed of the shaft

The velocities of the shaft and floating ring are split up in a tangential and a
radial component. The radial and tangential velocities of the shaft relative to
the floating ring can be seen in figures 4.14a and 4.14b. In the radial direction
the velocity of the shaft oscillates around 0, which indicates that the position of
the shaft relative to the floating ring vibrates in radial direction. The tangential
velocity originates from the whirling behavior which has a frequency and a radius
of the limit cycle. The magnitude of the tangential velocity keeps increasing with
increasing shaft rotational speed, but the slope is getting smaller.

The tangential and radial velocities of the floating ring are shown in figure
4.14c and 4.14d. The effect of the jumping is clearly seen in both radial and
tangential velocities. As can be seen in figure 4.12, the eccentricity of the ring
has less oscillation after the jump, which explains why the radial velocity is
smaller after the jump.
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(a) Velocity of the shaft relative to the floating ring in radial direction
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(b) Velocity of the shaft relative to the floating ring in tangential direction
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(c) Velocity of the floating ring in radial direction
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(d) Velocity of the floating ring in tangential direction

Figure 4.14: Velocities of the shaft and floating ring in radial and tangential direc-
tions
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4.2.3 Peak pressure development and fluid film forces

The development of the peak pressures in the inner and outer film versus the
shaft rotational speed is shown in figure 4.15. The pressures in the oil films may
reach 55 bar and it is clear that in this simulation the inner oil film always has a
higher maximum pressure than the outer oil film in the simulated situation. The
effect of the different movement modes is also seen in the development of the
maximum pressures. The effect of the transition from the first to second move
is visible, but does not appear to have a large effect the visible trend. After the
jump the peak pressure in the inner film keeps increasing and continues to have
large fluctuations. The outer peak pressure displays similar behavior, but the
maximum pressure after the jump does not rise above the maximum pressure
before the jump.
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Figure 4.15: Maximum pressure in the inner and outer oil films versus shaft rota-
tional speed

The forces which result from the pressure distribution in the oil films are shown
in figure 4.16. The three forces which are displayed in this figure are the force
Fs working on the shaft, Fr,i working on the inner side of the floating ring and
Fr,o which is working on the outer side of the floating ring. These three forces
can not be distinguished in the figure because the magnitudes of these three
forces are very close to each other.
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Figure 4.16: Magnitude of the fluid film forces versus shaft rotational speed

Figure 4.17 shows the pressure profiles at two points in the simulation. Figures
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4.17a, 4.17c and 4.17e show the configuration of the system and pressure profiles
at a point in the simulation when the system is in the first mode. Figures 4.17b,
4.17d and 4.17f show the configuration of the system and pressure profiles at a
point in the simulation when the system is in the second mode.

Comparing the pressure profiles of the inner and outer oil films in both situa-
tions, shows that the peak pressure in the inner film is approximately ten times
higher than the peak pressure in the outer film. Figure 2.5 showed the influ-
ences of rotational speed, radial and tangential velocity on the pressure profile
when the displacement of the inner body was fixed. At the moment the simu-
lation has been stopped while the system is in the first mode, both the inner
and outer pressure profiles mainly show characteristics of pressure generation
due to the rotational speed of the shaft. The specific moment shown during
the second mode mainly shows the characteristics of pressure generation due to
radial velocity.
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(a) Example state of the system in
the first movement mode. The rotating
shaft is shown in black, the floating ring

in yellow.

(b) Example state of the system in the
second movement mode. The rotating
shaft is shown in black, the floating ring

in yellow.
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(c) Pressure at the centerline of the in-
ner oil film in the first mode
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(d) Pressure at the centerline of the in-
ner oil film in the second mode
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(e) Pressure at the centerline of the
outer oil film in the first mode
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(f) Pressure at the centerline of the
outer oil film in the second mode

Figure 4.17: Example of pressure distributions in the oil films in the two movement
modes
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4.3 Demonstrator simulation

In order to validate the floating ring bearing model a demonstrator is created
and its results are compared to a theoretical representation of the setup. In
this section, the theoretical model of the demonstrator and its results are dis-
cussed. In section 4.3.1 the theoretical model is explained. In the sections 4.3.2,
4.3.3 and 4.3.4 respectively the waterfall plots, movement of the bodies and the
pressure and force development are discussed. In the final section, 4.3.5, a com-
parison of the waterfall plots of the point mass simulation and demonstrator
simulation is made.

4.3.1 Demonstrator model

The model of the demonstrator is limited to a finite element model of the shaft
and assuming a support which only allows rotation around the z-axis. A simple
representation of the finite element model of the shaft compared to the schematic
representation of the demonstrator is shown in figure 4.18. Characteristic points
are connected by vertical lines and the colors indicate different sets of physical
attributes; cross-section area A, area moment of inertia I and radius R.

Figure 4.18: The finite element model compared to the demonstrator. The different
colors represent different sets of physical parameters; different values for A, I and R.

The demonstrator shaft is modeled as a beam with different cross-sections and
is supported by a hinge joint (all translational degrees of freedom fixed) and
a reaction force from the FRB. The hinge joint is chosen to represent the ball
bearing support because the shaft has some freedom in the rotational directions
in the test setup. The expected rotational movement of the shaft at the location
of the ball bearing is within this freedom and therefore the ball bearing is
modeled as a hinge joint. Since the FRB model does not take tilting of the
shaft within the floating ring into account, the reaction force of the FRB is
modeled as a point force.
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The physical parameters which have been used in the simulation are shown in
table 4.4. Figure 4.19 shows some of the geometrical quantities.

Table 4.4: Parameter values used in the demonstrator simulation

Parameter Value Unit

L1 61.7 · 10−3 m
R1 4 · 10−3 m

L2 6 · 10−3 m
R2 6 · 10−3 m

L3 45 · 10−3 m
R3 3 · 10−3 m

ρ 7800 kg·m−3

E 210 · 109 Pa

mr 3.47 · 10−3 kg
Ir 7.03 · 10−8 kgm2

Li 4 · 10−3 m
Lo 7 · 10−3 m
Ci 30 · 10−6 m
Co 50 · 10−6 m
Rr,o 5.5 · 10−3 m
µi 12 · 10−3 Pa·s
µo 12 · 10−3 Pa·s

Figure 4.19: Nomenclature of some of the values listed in table 4.4

The finite element model is built out of ten nodes and nine elements, which is
shown in figure 4.20. The different colors represent different sets of physical
properties. These properties are listed in table 4.5 and are equal to the ac-
tual dimensions of the demonstrator. Each node has four degrees of freedom;
displacement in x- and y-directions and rotation around the x- and y-axes. Dis-
placement in axial direction is assumed zero and rotation around the z-axis is
prescribed by the shaft rotational speed.

57



0 0.02 0.04 0.06 0.08 0.1 0.12

F
b

z[m]

Figure 4.20: Finite element model of the demonstrator. The nodes are shown as
circles and elements by colored lines. Different colors stand for different physical

attributes.

Each element has a mass matrix Ms, shaft inertia matrix Ms,s , gyroscopic
matrix Cs and stiffness matrix Ks. These matrices can be found in appendix
D.1. These element matrices are used to assemble the system matrices M, C
and K which are needed for the system of equations Mü + Cu̇ + Ku = F. The
vector u contains the degrees of freedom of the system. The system has ten
nodes; the two translational degrees of freedom of the first node are fixed, so
the shaft has a total of 38 degrees of freedom. Three degrees of freedom are
added to u, which represent the x- and y-translation of the floating ring and
the rotation of the floating ring.

The right hand side of this equation is the force vector F, which contains all
external forces working on the system. These forces are the forces as explained
in chapter 2. All forces work on the degrees of freedom of the floating ring and
the shaft node where the floating ring is located, except for the unbalance and
gravity forces. The unbalance and gravity forces are modeled as distributed
forces which work on every node of the shaft.

A run-up simulation for 0− 40kRPM is presented in this section; the operating
range of the experimental setup. In the following sections the results of the
simulation are presented.

Table 4.5: Overview of the physical properties of the different elements shown in
figure 4.20

Element color R[m] A
[
m2
]

I
[
m4
]

L[m]

Black 4 · 10−3 5.03 · 10−5 2.01 · 10−10 15.4 · 10−3

Red 6 · 10−3 1.13 · 10−4 1.02 · 10−9 3.0 · 10−3

Green 3 · 10−3 2.83 · 10−5 6.40 · 10−11 5.0 · 10−3

Blue 3 · 10−3 2.83 · 10−5 6.40 · 10−11 17.5 · 10−3
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4.3.2 Waterfall plots

Waterfall plots of the shaft and floating ring motion have been created and
are shown in figures 4.21, 4.22 and 4.23. The results are similar to the results
obtained with the shaft simulated as a point mass, as shown in the previous
section. The frequencies which contribute most to the total motion are the
synchronous frequency and two whirl frequencies; there is no supersynchronous
frequency content. The waterfall plots of the floating ring, figure 4.21, and the
shaft relative to the floating ring, figure 4.23, show that whirl 1 is the whirling
frequency of the floating ring and whirl 2 is the whirling frequency of the shaft
inside the floating ring.

Figure 4.21: Waterfall plot of the position of the shaft at the floating ring bearing
in x-direction

In this simulation no jumping behavior is seen, but this may occur at higher shaft
rotational speeds and is not expected in the operating range of the demonstrator.
The motion of the floating ring and the point of the shaft in the floating ring is
displayed in figure 4.24. Due to the different whirl frequencies a spiraling effect
can be seen.

4.3.3 Body displacement and velocity

The eccentricity of the shaft and floating ring is displayed in figure 4.25. With
increasing shaft speed the unbalance force also increases, as can be seen in
equation (2.4). During the first part of the run-up it is mainly the shaft which
has moved out of the center position of the floating ring, the floating ring has
not moved as much yet. Because the surface area of the outside of the floating
is larger than the inside of the floating ring, εr will be smaller than εs∗ to obtain
an equal force. However, when εs∗ increases, the reaction force on the inner
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Figure 4.22: Waterfall plot of the position of the floating ring

Figure 4.23: Waterfall plot of the position of the shaft relative to the floating ring
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Figure 4.24: Trace of the movement of the shaft, floating ring and shaft motion
relative to the floating ring. The red circle indicates the direction of the unbalance
force at the time step of this configuration. The blue and green lines represent the

directions of respectively εs and εs∗ .

surface increases non-linearly due to the non-linear stiffness behavior of the oil
film. This in turn causes εr to increase as well.

Near the end of the figure, at approximately 37kRPM a small jump is seen in
εs∗ . This jump is unfortunately at a shaft speed which is out of the range of
the waterfall plot. The oscillating behavior of εs is caused by the difference in
whirl frequencies of the shaft and floating ring.
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Figure 4.25: Eccentricities of the shaft (εs), floating ring (εr) and shaft relative to
floating ring (εs∗) versus shaft rotational speed

The velocities of the shaft relative to the floating ring and the velocity of the
floating ring itself in tangential and radial direction are shown in figures 4.26a
to 4.26d. Figures 4.26b and 4.26d show that the sign of the tangential velocity
of both bodies does not change. This indicates that the whirling direction stays
the same. The jump mentioned in figure 4.25 is also seen in figures 4.26c and
4.26d.

The floating ring speed ratio is shown in figure 4.27. The ratio monotonically
increases from 0 to 0.25 times the rotational speed and shows no eye-catching
characteristics.
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(a) Velocity of the shaft relative to the floating ring in radial direction
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(b) Velocity of the shaft relative to the floating ring in tangential direction
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(c) Velocity of the floating ring in radial direction
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Figure 4.26: Velocities of the shaft and floating ring in radial and tangential direc-
tions
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Figure 4.27: Ratio of the rotational speed of the floating ring to the speed of the
shaft: ωr

ωs

4.3.4 Peak pressure development and fluid film forces

The peak pressure during the run-up and the resulting forces they generate are
shown in figures 4.28 and 4.29. Both increase non-linearly with increasing shaft
speed and a peak is seen at the jump at 37kRPM.

0 0.6 1.2 1.8 2.4 3 3.6

x 10
4

0

5

10

15

20

Shaft speed [RPM]

M
ax

im
um

 p
re

ss
ur

e 
[b

ar
]

 

 
P

i,max

P
o,max

0 100 200 300 400 500 600

Shaft rotational frequency [Hz]

Figure 4.28: Peak pressures during the run-up in both the inner and outer oil film
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Figure 4.29: Force magnitude working on the shaft and the inner and outer surface
of the floating ring
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4.3.5 Comparison with the point mass simulation

The waterfall plots of the shaft of the demonstrator simulation and point mass
simulation are shown in figures 4.30 and 4.31. The point mass simulation wa-
terfall plot has been zoomed in so it can be compared with the demonstrator
simulation waterfall plot. It can be seen that in both situations the whirl fre-
quencies are large contributors to the total motion. The whirl frequencies of
both simulations are in the same range, but show slightly different behavior.
With increasing shaft rotational speed, whirl 1 of the demonstrator simulation
becomes larger than whirl 1 of the point mass simulation. Regarding whirl 2
it is the other way around; the whirl 2 frequency of the point mass simulation
grows larger than whirl 2 of the demonstrator simulation when the shaft speed
is increased.

Figure 4.30: Shaft waterfall plot of the demonstrator model

Figure 4.31: Zoomed in waterfall plot of the shaft of the point mass simulation,
figure 4.7
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4.4 Experimental results

In this section the measurement data will be discussed which is obtained with the
setup from chapter 3. Run-up tests with shaft rotational speeds from approxi-
mately 2kRPM to 40kRPM have been performed and one of the measurements
has been chosen to discuss in this section. Figure 4.32 shows the shaft rotational
speed in time. The sensor lost the signal at a speed of 37kRPM.

Figure 4.32: The measured shaft rotational speed; note that the measurement equip-
ment lost track of the shaft rotational speed after 82s, at 37kRPM.

In section 4.4.1 the measured signals are discussed. An analysis of the frequency
content of the measured signals is done in section 4.4.2.

4.4.1 Motion analysis

During the experiments the displacement has been measured of four positions of
the shaft, one position of the floating ring, the acceleration level of the cartridge
and the rotational speed of the shaft. The measured signals of the displacement
sensors which measured in the x-direction are shown in figure 4.33. Only the
dynamic part is measured; the displacement for all sensors at t = 0s is set to 0m.
It can be seen that the amplitude of the shaft deflection close to the ball bearing
decreases over time, while the deflection at the end of the shaft increases over
time. Both signals show some additional amplitude fluctuations at 32s, 68s and
77s. The displacement level of the floating ring is misleading and can not be
used in this way. When one of the oil feeding holes passes the sensor, the sensor
measures “through” the hole and registers this as a large displacement. With
post-processing the floating ring data does provide useful information, which
will be discussed in section 4.4.2.
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Figure 4.33: The dynamic part of the measured signal from the displacement sensors
close to the ball bearing (top), at the floating ring (middle) and at the end of the shaft

(bottom)

Because the displacement of the shaft has been measured with orthogonal pairs
of sensors, circle diagrams can provide insight in the mode shapes of the shaft.
In figure 4.34 circle diagrams at three different points in time are shown. The
first observation is the shape of the motions which have been measured. The
shapes are asymmetric and show repeating spikes and dips, especially at the
ball bearing side at 17.4kRPM and 29.1kRPM. When comparing the motions
of the shaft at the two position at 17.4kRPM, it appears that they have the
same shape but a phase shift of approximately 180 degrees. This is the case at
every point in the measurement.

The amplitudes of both motions in x- and y-direction are plotted in figure 4.35.
The amplitude of the motion at the end of the shaft increases when the shaft
rotational speed increases, while the amplitude of the shaft motion close to the
ball bearing is much more stable.
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(a) Motion of the shaft measured at 6900RPM (t = 30 − 30.1s)

(b) Motion of the shaft measured at 17400RPM (t = 50 − 50.1s)

(c) Motion of the shaft measured at 29100RPM (t = 70 − 70.1s)

Figure 4.34: Circle diagrams of the motion of the shaft measured close to the ball
bearing (left) and at the end of the shaft (right).
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Figure 4.35: Level of the vibration of the shaft measured by the different sensors
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4.4.2 Frequency content analysis

To identify the frequency content of the measured displacements, waterfall plots
are created. In this section only the waterfall plots of the sensors which measure
in the x-direction are shown because the waterfall plots of the sensors which
measured in the y-direction show equal characteristics. The waterfall plots of
the quantities measured in the y-direction are shown in appendix E.

Starting with the shaft motion, figure 4.36 and figure 4.37 show the waterfall
plots of the shaft motion respectively close to the ball bearing and at the end of
the shaft. In both cases the synchronous frequency, or first order, contributes
most to the total displacement. In the supersynchronous area of both waterfall
plots the higher orders are visible, with the second to fourth the most notable.
Another phenomenon which at first looks remarkable are the constant frequen-
cies which are present throughout the whole shaft rotational speed range in
figure 4.37. These frequencies originate from the oil pump which is connected
rigidly to the same rig as the test setup.

Figure 4.36: Waterfall plot of the measured signal of the shaft near the ball bearing

The third interesting waterfall plot is figure 4.38 and contains the waterfall plot
of the displacement of the FRB. The dominating frequency line in this plot is
mostly supersynchronous. The origin of this frequency line is the measurement
of the oil feeding holes in the floating ring bearing. When one of these holes
passes the sensor it overloads; the depth of the hole is 2.5mm, which is larger
than the measuring range of the sensor. Because the output of the sensor is
maximum when it measures an oil feeding hole, the frequency of the passing of
the feeding holes is the dominating frequency in the waterfall plot. Since there
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Figure 4.37: Waterfall plot of the measured signal at the end of the shaft

are six feeding holes in the floating ring, the measured rotational frequency
of the floating ring is the feeding hole frequency divided by six; a frequency
line which is also clearly present in the waterfall plot. This first order floating
ring rotational speed frequency line in the waterfall plot originates from the
unbalance level of the floating ring.

Floating ring rotational speed

The floating ring rotational speed, which can be derived from figure 4.38, is
shown together with the shaft rotational speed in figure 4.39a. The floating
ring speed increases over time, but shows jumping behavior at approximately
56s (21kRPM shaft speed) and 68s (28kRPM shaft speed). The sudden change
in rotational speed of the floating ring at t = 68s may be connected to the
amplitude change which was seen in the throughput data of figure 4.33. An
effect of the jump at t = 56s can not be seen in the throughput data. The ratio
of floating ring to shaft rotational speed is displayed in figure 4.39b. In this
figure, one thing that stands out is that the FRSR decreases after the first jump
and increases again after the second jump.

Order analysis

Another way of displaying frequency content is relating it to the orders of a
certain frequency line and is called order analysis. Figure 4.40 shows how the

70



Figure 4.38: Waterfall plot of the measured signal of the floating ring

frequency content is related to the rotational speed of the floating ring. The first
to fourth orders of the shaft rotational speed have been filtered out to have more
contrast between the other frequencies. The figure shows that the frequency
content of the floating ring displacement sensor mainly contains the first and
sixth order of the floating ring rotational speed. This makes sense because, as
previously mentioned, these are respectively the floating ring rotational speed
and the frequency of feeding holes passing the sensor.

To investigate the influence of the floating ring on the shaft motion an order
analysis is shown in figure 4.40, with again the shaft rotational speed on the
vertical axis and the floating ring rotational speed orders on the horizontal axis.
Again, the first to fourth shaft rotational speed orders have been filtered out
for visibility purposes. The figure shows visible, but small contributions of the
first and sixth orders. This means that the unbalance of the floating ring and
the passing of the oil feeding holes influence the displacement of the shaft.

In the subsynchronous region of figure 4.36 a lot of frequency content looks
to be linearly dependent of the shaft rotational speed at first sight. An order
analysis of the displacement of the shaft measured close to the ball bearing is
shown in figure 4.42. On the horizontal axis an order range from zero to one is
displayed, which is the subsynchronous part. This order analysis shows that the
subsynchronous content is not linearly dependent of shaft speed; i.e., in the order
analysis there is no content which has a constant order throughout the run-up
measurement. A curious phenomenon occurs after 18kRPM around the 0.5th
order. Two frequency lines start at the 0.5th order and symmetrically move
away from the order line and return to the 0.5th order at 29kRPM . A source
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(a) Shaft and floating ring rotational
speed in time

(b) Floating ring speed ratio versus
shaft rotational speed

Figure 4.39: Measured rotational speed characteristics of the shaft and floating ring

of the 0.5th order line could be the “whirling” of the balls in the ball bearing.
Due to the geometry it takes two rotations of the shaft to complete one rotation
of the balls in the ball bearing, which therefore is the 0.5th order. However,
the 0.5th order is not visible throughout the whole run-up and therefore the
possible origin to be the ball bearing is just speculation.

Figure 4.40: Floating ring order analysis of the signal of the floating ring. Note that
the amplitude of the 6th order is mostly larger that the maximum value indicated by

the color bar. This is done because of displaying purposes.
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Figure 4.41: Floating ring order analysis of the displacement of the end of the shaft

Figure 4.42: Subsynchronous order analysis of the displacement of the shaft close to
the ball bearing
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4.5 Results discussion

In this section the theoretical and experimental results will be discussed. This
section is split in two. In 4.5.1 the results of the point mass simulation are com-
pared to the turbocharger measurement done by Eling.[1] In the second section
the theoretical and experimental results of the demonstrator are compared.

4.5.1 Comparison: Point mass simulation and turbocharger
measurements

The waterfall plots of the turbocharger measurement shown in figure 1.2 and
a waterfall plot resulting from the point mass simulation, shown in figure 4.7,
are shown again in figures 4.43 and 4.44. Although the waterfall plots are not
entirely comparable, because both are different systems, they do show some
comparable behavior. Whirling behavior which is seen in the subsynchronous
region of the measured waterfall plot is, although not at the same frequencies,
also present in the theoretical model. Jumping behavior is also seen during a
run-up simulation and understanding is created what happens before and after
the jump.

The turbocharger measurement shows two jumps, one at 70kRPM and a jump
at 175kRPM, while the simulation only shows one jump. Although the mea-
surement contains a lot of subsynchronous dynamics, only one frequency line
stands out. This is the whirl frequency between the two jump speeds. How-
ever, around the whirl frequency which is clearly seen a phenomenon called
the beat phenomenon is seen.[10] The beat phenomenon occurs when the whirl
frequency is not a unit fraction of the synchronous frequency. The beat phe-
nomenon around the visible whirl frequency is indicated by “Beating 2” in figure
4.43. Another beat like phenomenon is seen in the subsynchronous area and is
denoted by “Beating 1”. This may indicate, although not visible, the presence
of a second whirl frequency.

Before the first jump there is no subsynchronous content which really stands
out; after the second jump the whirl frequency jumps to approximately 350Hz,
but decays in amplitude. A clear difference between the simulated and measured
whirl is that the simulated whirl frequency increases much more with increasing
shaft frequency than the measured whirl. The measured whirl frequency stays
between 600 and 900Hz.
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Figure 4.43: Figure 1.2; measured waterfall plot of turbocharger shaft motion

9

Figure 4.44: Figure 4.7; theoretical waterfall plot of a FRB simulation with the shaft
modeled as a point mass
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4.5.2 Comparison: Theoretical and experimental demon-
strator results

In this section some of the results previously shown in sections 4.3 and 4.4 will
be shown side by side. In figures 4.45 and 4.46 the theoretical and experimental
waterfall plots of the demonstrator are shown. Both waterfall plots show the
synchronous frequency, but there are no further clear similarities. The theoret-
ical results show two whirl frequencies, but whirling does not clearly show in
the experimental results.

When the circle diagrams of the theoretical and experimental results are com-
pared, the same conclusion as with the waterfall plots is drawn. Due to the
absence of whirling in the test setup, the circle diagrams look different. The
shape of the shaft motion of the demonstrator close to the ball bearing, the
left figure in 4.47b, is a shape which is not an explainable result if the demon-
strator is in the perfect situation as it is modeled. The odd shape may be the
result of physical imperfections in the demonstrator, such as misalignment of
the demonstrator and drive shafts, a bended demonstrator shaft or ball bearing
imperfections.

The floating ring speed ratios are shown in figure 4.48. The range of the simu-
lated and measured ratio are comparable, however, the simulated ratio is mono-
tonically increasing, while the measured ratio shows non-monotonic behavior.

The theoretical and experimental results show little similarities. Simulation
showed whirling while this effect was absent in the experiments. The exper-
imental results, especially the circle diagrams, indicate that the experimental
configuration is probably far from the perfect situation which was simulated.
Although the theoretical model could not be verified using this experimental
setup, useful results have been obtained with the experiments. The method of
measuring the floating ring displacement and rotational speed has proven to be
feasible.
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Figure 4.45: Figure 4.21; theoretical demonstrator waterfall plot

Figure 4.46: Theoretical and experimental waterfall plots of the demonstrator
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(a) Figure 4.24; motion of
the shaft and floating ring at

35000RPM

(b) Figure 4.34c; shaft motion at two locations of the demon-
strator at 29100RPM

Figure 4.47: Shaft motion of the theoretical and experimental results of the demon-
strator. The blue trace in figure 4.47a should be compared to the circle diagrams in

figure 4.47b
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(a) Figure 4.27; floating ring speed ratio of the demonstrator simulation

(b) Figure 4.39b; measured floating ring speed
ratio of the demonstrator

Figure 4.48: Floating ring speed ratios of the theoretical and experimental results
of the demonstrator
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4.6 Sensitivity analysis

A first sensitivity analysis has been performed to see which effect changes in
geometry and oil viscosity have on the behavior of the FRB.

The results of the simulations have been summarized in table 4.6. In this table
the jump speed is shown, the whirl ratios and the floating ring speed ratio.
The whirl 1 and 2 ratios are defined by equation 4.7. In this equation ω1 and
ω2 represent the whirl frequencies at a shaft frequency ωs. Several simulations
failed due to tolerance errors; the ODE solver could not meet the tolerance
requirements, not even when the smallest time step the computer could handle
was used.

WRi =
ωi
ωs
, i = {1, 2} (4.7)

Table 4.6: Parameter values used in the point mass simulation of section 4.2

Simulation Jump speed Whirl 1 ratio Whirl 2 ratio FRSR range
[kRPM] ([Hz]) at ωs = 1kHz at ωs = 1kHz

Reference 160 (2667) 0.105 0.400 [0− 0.33]
Larger Li No jump 0.120 0.365 [0− 0.35]
Larger Lo 160 (2667) 0.100 0.400 [0− 0.29]
Smaller Ci - Simulation failed -
Larger Ci 100 (1667) 0.105 0.395 [0− 0.30]
Smaller Co 125 (2083) 0.095 0.400 [0− 0.32]
Larger Co - Simulation failed -
Lower µi, µo 210 (3500) 0.120 0.380 [0− 0.30]
Higher µi, µo - Simulation failed -

The jump speed is largely influenced by the change of parameters, while the
whirl ratios seem to be barely influenced by the change of parameters. The
effects on the floating ring speed ratio are small, but feasible explanations are
listed below.

� Larger Li: Increasing the inner floating ring width Li causes an increase
of the inner floating ring surface. A larger surface increases the viscous
torque. Because the inner torque is the driving torque of the floating ring
rotation, the maximum FRSR increases.

� Larger Lo: A larger Lo results in a larger outer surface of the floating
ring. This in turn leads to a higher viscous torque, increasing the drag
and therefore lowering the maximum floating ring speed ratio.
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� Larger Ci: A larger inner gap likely leads to a smaller du
dh , which is a

term in the viscous drag equation. When this term decreases, the viscous
drag decreases which results in a smaller driving torque.

� Smaller Co: When the outer gap is decreased, the du
dh term is increased.

The effect is a higher drag torque on the outer surface of the floating ring,
lowering the FRSR.

� Lower µ: Since viscous drag is linearly dependent of viscosity, a change
in viscosity does not directly influence the FRSR. A lower viscosity may,
however, allow larger eccentricities of the shaft and floating ring. This in
turn influences du

dh in a way that the maximum FRSR decreases.
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Chapter 5

Conclusions and
recommendations
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In this chapter the conclusions from this research and recommendations for
future research are shown. Section 5.1 shows the conclusions from the modeling
and testing which has been done. In 5.2 recommendations for further research
are done to further increase the understanding of the dynamics of turbochargers.

5.1 Conclusions

In the first chapter of this thesis the goal of the research was formulated as
to create a realistic floating ring bearing model to be able to investigate the
dynamics of a FRB under automotive turbocharger conditions. A parametrized
FRB model has been made based on Reynolds’ equation, which is used to calcu-
late the pressure distribution in a fluid film. Because the model is parametrized,
different geometries and conditions can be simulated to see the effect of changes
on the dynamic behavior. A simplified cavitation model has been used, which
assumes the pressure and viscosity to be zero in the cavitated region of the oil
films. A thermal model has not been implemented; only the viscosity of the oil
is dependent of the temperature.

The FRB model shows the whirling phenomenon as well as jumping behavior
from one mode shape to another. Visualization of the simulation provides un-
derstanding of these mode shapes. Whirling and jumping behavior has also
been seen in measurements of shaft motion of turbochargers under operating
conditions.

The results of the simulation of the demonstrator and the measurements of
the demonstrator do not match. In the simulation whirling frequencies were
contributing significantly to the total motion, while in the measurement there
were no notable contributing frequencies besides the synchronous frequency.
The results of the measurements lead to the suspicion that the test setup is
far from the perfect situation which has been simulated. This could be caused
by, for example, alignment imperfections of the driving and driven shafts or
ball bearing imperfections. Because of this suspicion the model has not been
validated nor proven wrong.

Although the demonstrator did not validate the theoretical model, the measure-
ments led to some useful results. The measurement method of sensing “through”
a small amount of bearing housing material with an eddy-current sensor, has
proven to be feasible. Using this measurement method the displacement of the
floating ring and the floating ring rotational speed have been measured. The
model has yet to be validated, but this measurement method can be used in
another validation attempt.

5.2 Recommendations

A first step in the realistic modeling of a FRB has been done, but further
modeling can be done to improve the simulation results.
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Thermal effects are not taken into account in the model presented in this thesis.
Temperature is an influencing factor of for example the viscosity of the oil and
expansion of material. It is also possible that the oil films both have a different
temperature and therefore a different viscosity. It is even possible that the
temperature is not uniform within an oil film. A thermal model which predicts
the temperature in the oil films would improve the estimation of the viscosity
and therefore improve the results of the simulation.

Another aspect of the oil film which has been simplified is the effect of cavitation.
In this model, the pressure of the oil film which is lower than the vapor pressure
is assumed to be 0Pa. In the axial direction of a FRB there may be regions
in the oil film which have cavitated and regions which are not cavitated. This
effect is shown for a journal bearing in figure 5.1. Integrating a cavitation model
will increase the definition of the fluid films.

Figure 5.1: Cavitation in a journal bearing [13]. A clear difference can be seen where
the oil film has cavitated (the metal surface of the shaft can be seen) and where the

oil film is still intact.

A third possible improvement of the model is to include tilting of the floating
ring. In the current model the surfaces of the floating ring are always parallel
to the surfaces of the shaft and bearing housing. In reality the floating ring
and shaft may tilt and cause the oil film thickness to be non-uniform in the
z-direction. The tilt of the shaft and floating ring can cause a moment and
larger force on the shaft due to the non-linear characteristic of the pressure film
equation.

Measurements of the shaft and floating ring dynamics showed that the direct
influence of the oil feeding holes in the floating ring on the dynamics of the
shaft were very limited; the amplitude of the sixth order floating ring rotational
frequency is very small in the waterfall plot of the shaft vibrations. Because
the oil feeding holes are meant to transfer oil from the outer film to the inner
film, this also means that there may be “communication” between the inner
and outer pressure distributions. In other words; the pressure on one side of a
feeding hole may influence the pressure on the other side of the feeding hole.
Whether or not this communication is significant to the pressure distributions
in the oil films is another possible point of interest.
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A recommendation on validation of the model is to build a cartridge out of
polycarbonate, glass or a similar material which can be used with the mea-
surement method explained. With such a test setup the floating ring dynamics
can be measured under the operating conditions of a turbocharger. The FRB
model should be integrated in the turbocharger rotor model of Eling[1] so the
experimental and theoretical results can be compared.

The evaluation of the model may take, depending on the simulation settings, up
to eight hours. To become a more useful tool for bearing designers it is prefer-
able to reduce the evaluation time. Speed improvements may be achieved by
improving the Matlab code or by using look-up tables for bearing configurations
of shaft and floating ring positions which can be pre-calculated. An extensive
sensitivity analysis of the design parameters can be done with this model and
can point designers in the right direction of bearing improvement. The effect
of parameter changes on for example vibration levels and jump speeds will give
interesting information on the behavior of FRB’s.
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Turbocharger nomenclature
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A.1 Turbo nomenclature

Figure A.1: General component names of a turbocharger [9]

Table A.1: Turbocharger component names

A Actuator
B Compressor cover
C Cartridge assembly (outlined in red)
D V-clamp
E Turbine housing
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A.2 Cartridge nomenclature

Figure A.2: Parts of the cartridge assembly [9]

Table A.2: Cartridge component names

A Compressor wheel
B Assembly insert
C Axial bearing
D Oil inlet
E Floating ring bearings
F Turbine rotor
G Oil deflector
H Bearing housing
I Water cooling inlet
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A.3 Floating ring geometry nomenclature

(a) Photograph of a floating
ring

(b) Cross section of the floating ring with
important geometry labeled

Figure A.3: The floating ring

A floating ring is shown in figure A.3a. A cross-section with the most important
geometry labeled is shown in figure A.3b.
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Appendix B

Modeling details
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B.1 Journal bearing nomenclature

This section describes the nomenclature used throughout this appendix. Figure
B.1 shows the coordinate system and the symbols used.

Figure B.1: Journal bearing coordinate system and units. Note that the dimensions
are not to scale.

B.2 Fluid film forces

This section will show the derivation of the fluid film pressure equation of a
plain journal bearing. In this context, the word “plain” indicates that features
like lubricant feeding holes are not taken into account. The equation is based
on the Reynolds equation of classical lubrication theory. This equation is valid
for a thin film flow of a Newtonian, inertialess, isoviscous fluid. A derivation of
the Reynolds equation is given by San Andrés [13]. The derivation of the fluid
film pressure equation is also based on the work of San Andrés. In B.2.2 it is
shown how the fluid film pressure equation is used to obtain the forces acting
on the journal originating from the pressure in the fluid film.
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B.2.1 The fluid film pressure equation

The Reynolds equation is described by
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1

2

∂

∂x
ρhU (B.1)

Because the clearance to journal ratio is very small, i.e. C
R � 1, the substitution

δx = RδΘ can be made. Substitution of δx = RδΘ, defining journal surface
speed as U = ωR and dividing B.1 by ρ leads to

1

R2

∂

∂Θ

(
h3

12µ

∂p

∂Θ

)
+

∂

∂z

(
h3

12µ

∂P

∂z

)
=

∂

∂t
h+

ω

2

∂

∂Θ
h (B.2)

The film thickness and its derivatives with respect to t and Θ are

h = C + ex cos Θ + ey sin Θ (B.3)

∂h

∂t
= ėx cos Θ + ėy sin Θ (B.4)

∂h

∂Θ
= −ex sin Θ + ey cos Θ (B.5)

Substitution of B.4 and B.5 in B.2 leads to the following equation.
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h3
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∂Θ
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∂
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(
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12µ
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ω

2
ey

)
cos Θ +

(
ėy −

ω

2
ex

)
sin Θ

(B.6)

Equation B.6 is the equation which describes a plain journal bearing. To re-
duce computational time, the Reynolds equation is simplified by using the short
length bearing assumption. The short length bearing model assumes that the
lubricant flows in the axial direction, the flow in circumferential direction is
neglected. This means that the pressure does not change in circumferential di-
rection on an infinitesimal element. In mathematical terms this means ∂p

∂Θ
∼= 0.

Applying the short length bearing assumption and substitution of equation B.3
in equation B.6 leads to

∂

∂z

(
(C + ex cos Θ + ey sin Θ)3

12µ

)
∂p

∂z
=
(
ėx + ey

ω

2

)
cos Θ +

(
ėy − ex

ω

2

)
sin Θ

(B.7)
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Equation B.7 can be integrated twice with respect to z to obtain an equation
for the pressure in the fluid film.

p (Θ, z, t)− pa = 6µ

(
ėx + ey

ω
2

)
cos Θ +

(
ėy − ex ω2

)
sin Θ

(C + ex cos Θ + ey sin Θ)
3

(
z2 −

(
L

2

)2
)

(B.8)

The −
(
L
2

)2
term in the above equation is introduced to meet the boundary

conditions of the pressure at the sides of the bearing in axial direction; the
pressure at z = ±L2 should be equal to the ambient pressure pa. Equation B.8

gives the film pressure at a point defined by −L2 ≤ z ≤ L
2 in the axial direction

and 0 ≤ Θ ≤ 2π in circumferential direction when the position and speed of the
shaft is known.

B.2.2 Forces acting on the journal

The force in X and Y directions performed by the pressure of the fluid film
on the journal can be calculated by integrating the film pressure equation with
respect to z and Θ. Integration of equation B.8 with respect to z can be done
analytically.

∫ L
2

−L
2
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3
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)2
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)
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2

(B.9)

P (Θ, t) = −8µ

(
ėx + ey

ω
2

)
cos Θ +

(
ėy − ex ω2

)
sin Θ

(C + ex cos Θ + ey sin Θ)
3

(
L

2

)3

+ paL (B.10)

Using the rectangle rule, equation B.10 is numerically integrated to obtain the
forces on the journal in x and y directions. With n being the number of steps
in which the domain 0 ≤ Θ ≤ 2π is split and where ∆Θ = 2π

n , the forces are

Fx,j =

n∑
k=0

P (k∆Θ, t)Rs∆Θ cos (k∆Θ) (B.11)

Fy,j =

n∑
k=0

P (k∆Θ, t)Rs∆Θ sin (k∆Θ) (B.12)
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B.3 Forces in and on the floating ring bearing

This appendix describes the forces which act on the shaft and floating ring in
the floating ring bearing.

B.3.1 Pressure film force

The pressure distribution functions can be integrated with respect to area to
obtain a force. Integrating equations 2.2 and 2.3 as described in section B.2.2
results in the forces working on the shaft, inner ring surface and outer ring
surface.

This results in forces Fx,s and Fy,s working on the shaft, the forces Fx,r,i and
Fy,r,i working on the inner area of the floating ring and the forces Fx,r,o and
Fy,r,o working on the outer area of the floating ring. The pressure film forces
working on the different surfaces can be calculated with equations B.13 to B.18,
in which ∆Θ = 2π

n . Since the assumption is made that the pressure film force
working on both bodies a oil film is squeezed in between is equal, an average
radius is used in calculating the pressure film forces. These average radii are
calculated with equations B.19 and B.20.

Fx,s =

n∑
k=0

Pin (k∆Θ, t)Ravg,in∆Θ cos (k∆Θ) (B.13)

Fy,s =

n∑
k=0

Pin (k∆Θ, t)Ravg,in∆Θ sin (k∆Θ) (B.14)

Fx,r,i = −Fx,s (B.15)

Fy,r,i = −Fy,s (B.16)

Fx,r,o =

n∑
k=0

Pout (k∆Θ, t)Ravg,out∆Θ cos (k∆Θ) (B.17)

Fy,r,o =

n∑
k=0

Pout (k∆Θ, t)Ravg,out∆Θ sin (k∆Θ) (B.18)

Ravg,in =
Rs +Rr,i

2
(B.19)
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Ravg,out =
Rr,o +Rb

2
(B.20)

The net forces working on the shaft and floating ring in x- and y-directions are


Fx,s,p
Fy,s,p
Fx,r,p
Fy,r,p

 =


Fx,s
Fy,s

Fx,r,o − Fx,r,i
Fy,r,o − Fy,r,i

 (B.21)

B.3.2 Gravitational force

Although of minor influence in translational direction, the gravitational effects
of the shaft and floating ring are included. The gravitational forces of the shaft
and floating ring in the y-direction are:

Fx,s,g = msg (B.22)

Fx,r,g = mrg (B.23)

B.3.3 Unbalance force

Since it is almost impossible to perfectly balance the rotor assembly of a tur-
bocharger, there will always be an unbalance residue. The amplitude of the
force generated by the unbalance is a centrifugal force which is described by

|Fs,u| = mrω2
s (B.24)

In this equation, mr represents the amount of unbalance and has a value in
the order of 10−8kg ·m. This unbalance value may be very small, but with the
high speeds a turbocharger can achieve, the amplitude of the force can be in
the order of 101 or 102N . The direction of the unbalance force is described by
the angle β, which is defined by

β =

∫ t

0

ωs (t) dt (B.25)

The equations which describe the unbalance forces are

Fx,s,u = mrω2
scos (β) (B.26)
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Fy,s,u = mrω2
ssin (β) (B.27)

B.3.4 Viscous drag force

The shear stress between two surfaces is described by equation B.28. In this
equation, τ is the shear stress and du is the difference in speed between the two
surfaces.

τ = µ
du

dh
(B.28)

The terms in equation B.28 can be substituted with terms related to floating
ring bearings. This results in equation B.29 for the shear stress in the inner film
and equation B.30 for the shear stress in the outer film.

τin = µin
ωrRr,i − ωsRs

Ci + (ex,r − ex,s) cos (Θ) + (ey,r − ey,s) sin (Θ)
(B.29)

τout = µout
ωrRr,o

Co + ex,rcos (Θ) + ey,rsin (Θ)
(B.30)

Multiplying the shear stress by sin (Θ) and integrate it over the area it works on,
results in the viscous drag force in the x-direction. Multiplying the stress equa-
tion by cos (Θ) and integrating results in the viscous drag force in y-direction.

Fx,k,v =

∫ 2π

0

τk (Θ) sin (Θ) dΘ, k = {in, out} (B.31)

Fy,k,v =

∫ 2π

0

τk (Θ) cos (Θ) dΘ, k = {in, out} (B.32)
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Appendix C

Measurement equipment
details
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The details of the measurement equipment which has been used for the experi-
ments are shown in this appendix.

Table C.1: Measurement system

Property Value

Manufacturer Müller-BBM
Measurement system PAK Mobile
Software PAK 5.6 Service release 4

Table C.2: Properties of the eddy-current sensors

Property Value

Manufacturer AEC
Type PU-03A
Measuring range 0-1 mm
Controller AEC-5503A

Table C.3: Properties of the turbocharger speed sensor

Property Value

Manufacturer Picoturn
Type SM5.7
Measuring range 200− 400.000 RPM
Controller BM
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The calibration factors of the different sensors are shown in table C.4. The out-
put of the eddy-current sensors is influenced by its environment and therefore
these sensors have to be calibrated while they are mounted in the demonstrator.
The calibration is done by slightly altering the sensor position and measuring
the output voltage. This results in measured values at different measurement
positions. A linear fit is applied to the measured points to determine the cali-
bration factor.

Table C.4: Calibration factors

Sensor location Value

End of shaft X 1504 V/m
End of shaft Y 1331 V/m
Floating ring X 4128 V/m
Floating ring Y 3680 V/m
Shaft at ball bearing X 6000 V/m
Shaft at ball bearing Y 4608 V/m
Acceleration sensor cartridge 0.298 pC/m/s2
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Appendix D

Theoretical modeling



110



D.1 Demonstrator simulation FEM matrices

In this section the finite element matrices for one element are displayed. Matrix
D.1 shows the mass matrix of a shaft element and D.2 shows the shaft stiffening
matrix of an element. Matrices D.3 and D.4 are respectively the damping and
stiffness matrices of a shaft element. [5]

Ms =
ρAL

420



156 22L 0 0 54 −13L 0 0
22L 4L2 0 0 13L −3L2 0 0

0 0 156 22L 0 0 54 −13L
0 0 22L 4L2 0 0 13L −3L2

54 13L 0 0 156 −22L 0 0
−13L −3L2 0 0 −22L 4L2 0 0

0 0 54 13L 0 0 156 −22L
0 0 −13L −3L2 0 0 −22L 4L2


(D.1)

Mss =
ρI

30L



36 3L 0 0 −36 3L 0 0
3L 4L2 0 0 −3L −L2 0 0
0 0 36 3L 0 0 −36 3L
0 0 3L 4L2 0 0 −3L −L2

−36 −3L 0 0 36 −3L 0 0
3L −L2 0 0 −3L 4L2 0 0
0 0 −36 −3L 0 0 36 −3L
0 0 3L −L2 0 0 −3L 4L2


(D.2)

Cs =
ρI

15L



0 0 36 3L 0 0 −36 3L
0 0 3L 4L2 0 0 −3L −L2

−36 −3L 0 0 36 −3L 0 0
−3L −4L2 0 0 3L L2 0 0

0 0 −36 −3L 0 0 36 −3L
0 0 3L −L2 0 0 −3L 4L2

36 3L 0 0 −36 3L 0 0
−3L L2 0 0 3L −4L2 0 0


(D.3)

Ks =
EI

L3



12 6L 0 0 −12 6L 0 0
6L 4L2 0 0 −6L 2L2 0 0
0 0 12 6L 0 0 −12 6L
0 0 6L 4L2 0 0 −6L 2L2

−12 −6L 0 0 12 −6L 0 0
6L 2L2 0 0 −6L 4L2 0 0
0 0 −12 −6L 0 0 12 −6L
0 0 6L 2L2 0 0 −6L 4L2


(D.4)
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D.2 Sensitivity analysis waterfall plots

In this appendix the waterfall plots of the motion of the shaft in x-direction are
shown which are obtained with the simulations done for the sensitivity analysis.
Table D.1 shows the values of the parameters which have been altered. Figures
D.1 to D.6 show the waterfall plots resulting from the simulations.

Table D.1: Parameter values used in the point mass simulation of section 4.2

Simulation Reference simulation value Simulation value

Reference - -
Larger Li 4mm 7mm
Larger Lo 7mm 10.5mm
Larger Ci 15µm 25µm
Smaller Co 36µm 25µm
Lower µi, µo 0.012Pa·s 0.0038Pa·s

Figure D.1: Reference simulation
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Figure D.2: Point mass simulation with an increased inner bearing width

Figure D.3: Point mass simulation with an increased outer bearing width
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Figure D.4: Point mass simulation with an increased inner gap

Figure D.5: Point mass simulation with a decreased outer gap
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Figure D.6: Point mass simulation with decreased oil viscosity

115



116



Appendix E

Additional experimental
results
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In this section additional measurements results are shown. Figures E.1 and E.2
show the waterfall plots of the shaft motion in y-direction. The characteristics
of these waterfall plots are the same as the waterfall plots of the motion in
x-direction.

Figure E.1: Waterfall plot of the displacement of the shaft close to the ball bearing
in y-direction

Figure E.2: Waterfall plot of the displacement of the shaft at the end of the shaft in
y-direction
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