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ABSTRACT
Neural Architecture Search (NAS) has recently become a topic
of great interest. However, there is a potentially impactful issue
within NAS that remains largely unrecognized: noise. Due to sto-
chastic factors in neural network initialization, training, and the
chosen train/validation dataset split, the performance evaluation
of a neural network architecture, which is often based on a sin-
gle learning run, is also stochastic. This may have a particularly
large impact if a dataset is small. We therefore propose to reduce
this noise by evaluating architectures based on average perfor-
mance over multiple network training runs using different random
seeds and cross-validation. We perform experiments for a combi-
natorial optimization formulation of NAS in which we vary noise
reduction levels. We use the same computational budget for each
noise level in terms of network training runs, i.e., we allow less
architecture evaluations when averaging over more training runs.
Multiple search algorithms are considered, including evolutionary
algorithms which generally perform well for NAS. We use two
publicly available datasets from the medical image segmentation
domain where datasets are often limited and variability among
samples is often high. Our results show that reducing noise in ar-
chitecture evaluations enables finding better architectures by all
considered search algorithms.
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1 INTRODUCTION
1.1 Neural architecture search
Neural Architecture Search (NAS), i.e., the automated design of
Neural Networks (NNs) architectures tailored for a specific task,
has become a topic of great interest recently. The main reason for
that is the growing number of ideas in NN design, many of which
demonstrate great performance. However, with this growth, it is
becoming more difficult to guess without running experiments
which network would be the best for a given task. This makes
automated network design a natural research topic positioned in
between deep learning and optimization algorithms.

Optimization algorithms used for NAS include Evolutionary Al-
gorithms (EAs) [5, 19, 29], Bayesian optimization algorithms using
performance predictors [17, 22], gradient descent-based methods
[13, 26], reinforcement learning algorithms [10], and Local Search
(LS) [6, 22]. Gradient descent-based methods use a so-called su-
pernetwork, of which the structure is optimized using a gradient
descent optimizer simultaneously with the network weights. How-
ever, it was shown in [27] that the performance of such methods
is often suboptimal, in some cases not better than the most simple
search approach - random search.

NAS can be extremely computationally expensive if the search
relies on training numerous networks. To reduce the computational
costs, part of the network trainings can be replaced by a compu-
tationally cheaper performance estimation made by performance
predictors (also called surrogate models). However, developing a
powerful performance predictor for NAS might be challenging and
search space specific [23].

1.2 Medical image segmentation
Segmentation is one of the major tasks in computer vision. Given
an image, the task is to automatically perform a specific pixel-wise
classification that outlines certain things in the image. Medical Im-
age Segmentation (MIS) is a special case with input images being
medical scans, such as Magnetic Resonance Imaging (MRI) or Com-
puted Tomography (CT) acquired of a region of interest determined
by a medical expert. Examples of common MIS tasks are organ,
tumour, and vessel segmentation. Designing a precise and fast MIS
algorithm can be immensely beneficial for healthcare as poten-
tially it can not only reduce the workload of physicians (for manual
scan segmentation), but also make some medical procedures faster
which may be beneficial for patients as well. In some cases, seg-
mentation performed by a deep NN can demonstrate human-level
performance [14]. Most of the proposed architectures are adapta-
tions of Unet [16]. The main idea of Unet is an encoder-decoder
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structure which, firstly, extracts features from the image, and then,
translates them into a segmentation. Despite good performance of
Unet in general, due to variability in both image quality and expert
input segmentations, finding the best network architecture for a
specific task is still challenging, and therefore, NAS for MIS has
high practical value.

1.3 Neural architecture search for medical
image segmentation

Research on NAS for MIS has so far been less elaborate than on
NAS for classification. However, several works have shown that
automatically found networks perform better than the state-of-the-
art manually designed ones [12, 21, 26, 29]. In general, the search
can be performed on two levels: 1) configuration and combinations
(also called a cell) of atomic operations in a network (e.g., number
and kernel size convolutions, or activation functions); 2) network
topology, i.e., defining the connections between cells, and input
/output tensor dimensionalities for them. In [21] NAS-Unet was
introduced, the main idea of which is to search for the configura-
tion of cells in the fixed Unet structure. The best found network
demonstrated better performance than a standard Unet. In [29] it
was shown that a bilevel search of a Unet-like network topology at
the first level and the structure of cells at second level, can find even
better performing networks than NAS-Unet. Simultaneous search
of cell structure and network topology was performed in [26], also
showing better performance than NAS-Unet. This suggests that
network topology and the configuration of cells are connected. In
[12] state-of-the-art performance was achieved on 10 MIS tasks
from the Medical Segmentation Decathlon challenge [1] by a newly
proposed method called nnUnet. However, it can be considered to
be a semi-NAS method as, while the networks are automatically
configured for each task, the number of options is very limited and
the network construction is rule-based, determined by the dataset
properties such as the resolution of the scans.

1.4 Potentially impactful issue: noise
NAS, just as any search task, needs a definition of a function that
maps a solution (i.e., a candidate network architecture) to a perfor-
mance score. It is common practice in NAS to evaluate a network
(assign a performance score) using a fixed validation set. More-
over, in most cases, the evaluation is deterministic, meaning that
only one random seed for the initialization of network weights and
stochastic training components (i.e., applied augmentations and
sampling of batches) is used.

In our own experiments with NAS, we have noticed that, NN net-
work performance can depend a lot on the chosen random seed and
train/validation dataset split, especially (in a relative sense) when
considering well-performing architectures. A demonstration of this
for the case of MIS is given in Figure 1. The Spearman rank corre-
lation between networks trained with two different random seeds
is poor (< 0.1) when calculated for the top 20% of the networks.
A similar result applies for networks trained with two different
train/validation data splits. Moreover, the best network according
to one random seed or one train/validation data split, does not cor-
respond to the best network when another seed or train/validation
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Figure 1. Differences in performance of NNs trained
with different random seeds (upper plot) and different
train/validation data splits (lower plot). Each dot represents
one architecture. Zoomed-in plots correspond to the top 20%
of the networks (that will likely be discovered in the later
stages of the search process). Spearman rank correlation is de-
noted by 𝜌 . The dataset is the Prostate segmentation dataset
from the Medical Segmentation Decathlon [1]. The perfor-
mance metric displayed in both axes is the Dice coefficient
(see definition in Section 2.2). Red and green dots denote
the best architectures according to each seed (top) and each
train/validation data split (bottom). Networks in the plots
are collected during a run of the SAGOMEA search algorithm
(see Section 2.1) with a budget of 200 function evaluations.

data split is used. This means that using a standard evaluation pro-
cedure (one seed and one train/validation data split) might lead
to finding suboptimal networks, of which the true performance
(e.g., on an independent test set or obtained by cross-validation
with several random seeds if a test set is not available) is not as
good as expected. Similar results are shown for the case of NAS for
classification using the NAS-101 benchmark [28] in Figure 2.

In this paper, we study whether increasing the network perfor-
mance evaluation reliability by using cross-validation and multiple
random seeds leads to better quality of networks found by NAS. We
use different performance evaluation setups as fitness functions for
various search algorithms to understand whether more computa-
tionally expensive network evaluations lead to better generalization.
To the best of our knowledge, this is the first time such a study
is conducted. In contrast to just measuring network performance
using different training random seeds (as, for instance, in NAS-101
[28], NAS-201 [7]), we study how more reliable performance evalu-
ation setups affect the found network quality when measured in an
independent performance evaluation. We focus on NAS for MIS as
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medical image datasets used for training segmentation models are
often small (tens of scans) and the generalization problem, i.e., the
problem of results transferability obtained for a particular training
random seed, or validation subset, might have a more substantial
impact on NAS.
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Figure 2. Differences in performance of NNs trained with dif-
ferent random seeds from the NAS-101 tabular benchmark
(CIFAR-10 dataset). Each dot represents one architecture. The
zoomed-in plot corresponds to the top 20% of the networks
(that will likely be discovered in the later stages of the search
process). Spearman rank correlation is denoted by 𝜌 . The per-
formancemetric displayed in both axes is validation accuracy.
Red and green dots denote the best architectures according
to each seed. Networks in the plot are collected during a run
of the Local Search algorithm (see Section 2.1) with a budget
of 1000 function evaluations.

2 NAS METHOD
To use a NAS method, a search algorithm and a fitness function
need to be defined. The choice of search algorithm depends on the
chosen NAS task formulation (e.g., a combinatorial optimization
paradigm). The definition of the fitness function depends on the cho-
sen performance evaluation strategy and the selected segmentation
quality metric.

2.1 Search algorithms
The first considered search algorithm is Local Search (LS). It is a sim-
ple search approach, but it was shown to perform better in various
NAS cases than random search and in some cases even be on par
with advanced EAs [6, 22]. LS works by iterating over variables in
a random order and greedily choosing the best option for each vari-
able. Evolutionary algorithms are powerful general-purpose search
algorithms and have also successfully been applied to NAS, see, e.g.,
[15, 19]. Therefore, the next algorithm we consider is the parame-
terless version of the state-of-the-art EA Gene-pool Optimal Mixing
Evolutionary Algorithm (P3-GOMEA) [8, 9] (further referred to as
GOMEA). P3-GOMEA is a model-based EA that attempts to de-
tect and exploit linkage information during optimization. It was
shown to perform better than other EAs on a range of problems
[8], and, importantly, it does not have a population size hyperpa-
rameter which needs to be tuned in many other EAs. Further, we
consider surrogate-assisted GOMEA (SAGOMEA): a modification

of GOMEA which uses a surrogate model for cheap fitness estima-
tion. SAGOMEA was designed specifically for discrete optimization
problems with computationally expensive fitness functions and
has been shown to be efficient [8]. Finally, we use a Bayesian opti-
mization algorithm called Tree Parzen Estimator (TPE). Specifically,
we use its implementation in the Hyperopt optimization package
[2]. Similarly to SAGOMEA, TPE was designed for problems with
expensive fitness functions.

2.2 Segmentation quality metrics
To use the above-described search algorithms, a fitness function
needs to be defined. The Dice score is a commonly used metric for
medical image segmentation quality evaluation. There exist other
metrics to evaluate segmentation quality (Surface Dice coefficient,
Hausdorff distance), but in this work we focus on the most com-
monly used in literature Dice coefficient. Moreover, its calculation
is computationally cheap and independent from from the voxel
spacing of scans. For the Dice coefficient calculation, a reference
segmentation 𝑅 and the predicted segmentation 𝑃 need to be binary
segmentation maps of dimensionality 𝐶 × 𝑋 × 𝑌 × 𝑍 (where 𝐶 is
the number of segmentation classes, and 𝑋 ×𝑌 ×𝑍 is the scan size),
i.e., the value one in position (𝑐, 𝑥,𝑦, 𝑧) means that the voxel with
coordinates (𝑥,𝑦, 𝑧) belongs to class 𝑐 . We use the average Dice of
multiple classes which is defined by the formula 1

𝐶−1
∑𝐶
1

2 |𝑅𝑐∩𝑃𝑐 |
|𝑅𝑐 |+ |𝑃𝑐 | .

Note that the zero class which is usually the image background is
not included in the Dice calculation.

2.3 NAS task formulation
We formulate the NAS task as a combinatorial optimization prob-
lem (maximization) with the search space consisting of possible
network architectures encoded with discrete variables and the fit-
ness function being a network segmentation performance (in our
case: the Dice coefficient). Ultimately, the goal of NAS is to find an
architecture which performs well on unseen (during search) data.
Therefore, it is a common practice in NAS, to divide the dataset into
train, validation, and test parts. In each fitness function evaluation
of NAS, a network is trained (from scratch) on the train subset, and
its performance is evaluated on the validation subset. After obtain-
ing the best performing network according to the validation set,
i.e., at the end of NAS, its performance is verified on the test subset.
This way, it is checked whether overfitting to the specific valida-
tion subset took place. However, in case of small medical datasets,
a performance on a single test subset might be not sufficiently
indicative. Therefore, we do not use a separate test set. Instead,
for the final evaluation procedure (to obtain the true performance
measure), we retrain the networks from scratch using an averaged
cross-validation performance on previously (during search) unseen
cross-validation data splits and random seeds different from the
ones used for training during optimization.

2.4 Network performance evaluation
The most basic way to evaluate network performance (i.e., map a
solution to a fitness score), is to calculate the Dice score on a single
validation set using one random seed for network initialization and
training. However, due to the differences between medical scans,

2106



GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Dushatskiy, et al.

performance of networks may vary a lot depending on the vali-
dation dataset. Moreover, due to the stochastic nature of network
training and initialization, performance may depend on the random
seed used for weights initialization and training. This may affect
NAS. To mitigate this problem, we investigate different possible
evaluation procedures. The first considered procedure is a basic
one that is mostly used in NAS literature: only one random seed
and a fixed validation set (Setup-1Fold). The second proposed
evaluation procedure uses 5-fold cross-validation (CV) instead of a
single validation set (Setup-CV). In order to address both of the
above-mentioned reasons for performance variance, different ran-
dom seeds are used for network initialization and training in each
of the cross-validation folds. The most computationally expensive
considered evaluation procedure repeats 5-fold cross-validation us-
ing three different data partitionings into folds (Setup-3CV). These
three evaluation procedures are shown schematically in Figure 3.

Figure 3. Different setups for evaluating architecture perfor-
mance. Each row denotes one training. In each row, a lighter
rectangle denotes the used validation subset, while darker
ones constitute a training subset. The second and the third
data splits used in Setup-3CV (with fold numbers 6-10, 11-
15) denote different cross-validation data splits (this is also
shown with different colors) than the one with the fold num-
bers 1-5. In total, Setup-1Fold requires one network training,
Setup-CV 5, and Setup-3CV 15.

3 SEARCH SPACE
In choosing the search space for our experiments, we followed
three main design principles: 1) The search space should contain
networks that perform reasonably well, preferably better than a
Unet. 2) The search space should be large and contain diverse net-
works to make the search a non-trivial task. 3) The search space
should not contain networks which are prohibitively computation-
ally expensive to train. We decided to adopt the search space used
in [29] while making it more versatile to meet all these criteria.
Such a search space allows NAS formulation as a discrete combina-
torial problem, is reasonably large, and in [29] promising results
are shown. Instead of a bi-level search, we search simultaneously
for the architecture topology and cells. Secondly, we allow differ-
ent cells instead of repeating the same structure in all positions.
Finally, to enlarge the search space and avoid the situation that the
majority of networks are considered infeasible, we lift the architec-
tural restrictions which were applied in [21]: in contrast to a fixed
encoder-decoder structure, we allow all possible architectures from
the topology space described below.

3.1 Topology search subspace
The topology part of the search space determines the general struc-
ture of the network. It is shown in Figure 5. The network topology
is defined by a sequence of 𝑁 cells, which can be on different levels,
i.e., 𝑆 = (𝑙0, 𝑙1, . . . , 𝑙𝑁−1). At level 𝑖 , feature maps have the dimen-
sionality

(
𝐷 ∗ 2𝑖 , 𝑊 ′

2𝑖 ,
𝐻 ′

2𝑖
)
, where 𝐷 is the number of channels of

the network input (after the stem convolution is applied, see Sec-
tion 3.3), and (𝑊 ′, 𝐻 ′) is its spatial dimensionality. We allow only
one level change between the consecutive cells: i.e., |𝑙𝑖 − 𝑙𝑖+1 | ≤ 1.
Therefore, to encode the network topology 𝑆 , it is sufficient to spec-
ify whether to increase the level (from 𝑙𝑖 to 𝑙𝑖 + 1) for the next cell
(downsampling), decrease (upsampling), or keep it at the previous
level (normal). The topology search space encoding is therefore a
vector of size 𝑁 : {0, 1, 2}𝑁 , where 0, 1, and 2 encodes normal, down-
sampling, and upsampling cells respectively. Note that some vectors
from such search space represent infeasible architecture topologies
as 1) it is not possible to apply an upsampling operation from the
first level, and 2) a downsampling operation cannot be applied from
the maximum allowed level. The most straightforward way to fix a
vector representing an infeasible architecture is to change infeasible
downsampling or/and upsampling operations to normal ones.

Figure 4. The network cell structure. The dotted parts are op-
tional. Downsampling and upsampling operations depend on
the network topology, while a skip-connection is always ap-
pliedwhen possible (see Section 3.2).When a skip-connection
is applied, the corresponding feature maps are firstly con-
catenated (Concat. block) with the input feature maps and
then passed through a 1 × 1 convolution to keep the spatial
dimensions equal to the input dimensions.
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3.2 Cells search subspace
The structure of a cell is shown in Figure 4. Each cell consists of
its main block, optional downsampling or upsampling operations,
and an optional skip-connection from one of the previous cells. As
the necessity for downsampling or upsampling is encoded in the
topology subspace, and the skip-connections presence is fixed (see
Section 3.3), only block types need to be additionally encoded.

For each cell block, we consider five different options, four of
which are non-trivial and one is an identity operation, the purpose
of which is to act as a placeholder and allow more light-weight
networks. The first type of block is a VGG block [18], which is
also used in a standard Unet [16]. In addition to this type of block,
we consider three blocks that are used in classification networks
that exhibit top performance: a block with a residual connection
[11, 24] (ResNet block; a block that uses a concept of a depth-wise
separable convolution [4] (Xception block); and a block used in one
of the state-of-the-art classification networks, namely, Efficient-net
[20]. We believe that the selected options can, firstly, contribute to
a good performance in segmentation tasks, and, secondly, make the
architectures in the search space diverse as different blocks can be
used in different parts of the network.

After performing block operations, downsampling cells perform
convolution with stride 3 and stride 2. In the upsampling cells, the
upsampling operation is transpose convolution with kernel size 3.

Similar to [29], skip-connections are added to the input of a cell
in two cases: 1) The cell follows an upsampling cell. Then, a skip-
connection is added from the previous cell on the same level. 2)
There is a cell before the previous one on the current level of input.
Then, a skip-connection is added from that cell.

3.3 Search space details
Just as done in related literature [13, 29], we set the maximum
network depth to 𝑁 = 12. Note, however, that in contrast to [29],
we allow the number of effective cells to be lower due to possible
identity blocks. The maximum cell level is 5, this value was also
used in [29]. In total, our search space encoding consists of 𝑁 =

12 discrete variables which encode the network topology, and 12
variables which encode the corresponding block type for each cell
in the network. The topology related variables have a cardinality
of 3, while the cell type variables have a cardinality of 5.

4 EXPERIMENTS
First, we compare different search algorithms in terms of perfor-
mance on the given optimization problems. Secondly, we compare
how the quality of the found architectures after independent re-
training and re-evaluation depends on the used performance eval-
uation approach. Statistical tests (Wilcoxon test with Bonferroni
correction, 𝛼 = 0.05) are conducted to verify the results. Then, we
analyze the reasons for the observed differences. Finally, we com-
pare performance of the best found networks to commonly used
handcrafted architectures.

4.1 Experimental setup
4.1.1 Performance evaluation setups. We consider three setups for
the evaluation of neural network performance during the search
(i.e., the fitness functions) as described in Section 2.4: 1) Training

on one seed and using one dataset split (Setup-1Fold); 2) Using 5-
fold cross-validation (Setup-CV); 3) Using 5-fold cross-validation on
three different partitionings of the folds (Setup-3CV). For each of the
setups and each of the algorithms (LS, GOMEA, TPE, SAGOMEA)
we perform five runs per dataset. These runs differ in both the
random seed used by the search algorithm, and the seeds used for
the networks performance evaluation.

4.1.2 Handling infeasible solutions. For all search algorithms, the
same strategy of handling solutions that encode infeasible architec-
tures is applied: before evaluating fitness, an architecture is checked
for feasibility, and, if necessary, repaired as described in Section 3.1.
Note that the algorithms receive a fitness score for infeasible so-
lutions, i.e., the repaired genotype is only used for evaluation; it
does not replace the original infeasible genotype. Such choice was
made in order to fairly compare different search algorithms without
modifying them for infeasible solutions handling.

4.1.3 Independent performance measure. The final evaluation met-
ric (also further referred to as architecture quality) is the perfor-
mance of the architecture obtained after retraining it from scratch
with three different 5-fold cross-validations (basically, as in the
Setup-3CV). Importantly, both random seeds and cross-validation
splits in this independent training and evaluation procedure do
not overlap with the seeds and splits used during the search phase.
While averaging only three cross-validations preserves some amount
of noise in the score, we did not observe a substantial change in
results if more than three cross-validations are used, and, therefore,
we stick to the computationally cheaper procedure of using three
different cross-validations.

4.1.4 Computational budget. For all setups we allocate an equal
computational budget in terms of network trainings. We study per-
formance under four different computational budgets: T, 2T, 4T, 8T.
Due to computational time constraints, the largest considered bud-
get of 8T comprises 3000 network trainings. Smaller budgets of T,
2T, 4T comprise 375, 750, 1500 network trainings correspondingly.
With the Setup-1Fold, one fitness evaluation entails one network
training. Thus, given, for instance, budget T, search algorithms per-
form T fitness evaluations in each optimization run. As the Setup-
CV entails 5 network trainings in each fitness evaluation, search
algorithms perform T/5 fitness evaluations given budget T (which
equals to the same number of network trainings, namely, T). With
the Setup-3CV, which is 15 times more computationally expensive
than the first one, search algorithms can perform only T/15 fitness
evaluations under budget T. While running search algorithms, we
count only actual network trainings by storing all trained networks
(after repair) along with their measured performance in an archive.

4.2 Datasets
In this work we perform experiments on two publicly available
medical image segmentation datasets. The first segmentation task
is prostate segmentation taken from the Medical Segmentation De-
cathlon challenge [1]. This dataset consists of 30 MRI scans (two
scans with ids 18 and 32 were removed from the original dataset
due to suspected label inconsistencies compared to the other scans)
comprising two modalities: T2-weighted and ADC. The segmenta-
tion classes are background, prostate peripheral zone, and prostate

2108



GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Dushatskiy, et al.

Figure 5. The scheme of network architectures in the proposed search space and an example Unet-like architecture. Each
circle represents feature maps (a three-dimensional tensor), the blue ones are used in the shown architecture. Feature maps
at depth 𝑗 (from 0 to 4) have 2𝑗 smaller spatial resolution and 2𝑗 more channels than the feature maps after applying stem
convolution (in the left upper corner). Each architecture is defined as a sequence of 𝑁 = 12 cells (represented by arrows). Each
cell is defined by two discrete variables: its main block specification (five different options), and its type: normal (norizontal
arrows), downsampling (downward arrows), or upsampling (upward arrows). Skip-connections are added using fixed rules (see
Section 3.3). A stem convolutional block translates an input image to feature maps with 32 channels. An output convolutional
block translates corresponding feature maps to segmentation masks.

transition zone. The second dataset is from the Automated Cardiac
Diagnosis Challenge (ACDC) [3]. It contains MRI scans (in one
modality) of 100 patients and the task is multi-class segmentation
(left ventricular endocardium, myocardium and right ventricular
endocardium). We keep only one scan per patient (from the di-
astole phase) to make the validation process easier, i.e., the total
considered number of scans is 100. These datasets were chosen
due to their diversity (were collected for different segmentation
challenges, are focused on different organs) and relatively low scan
resolution which allows for faster experiments.

4.3 Preprocessing and training
We adopt the preprocessing resampling and voxel value normal-
ization) and training setups used in the nnUnet framework [12] as
it demonstrates state-of-the-art performance on various datasets.
The loss function for training is a sum of soft Dice loss and cross-
entropy. The optimizer is Stochastic Gradient Descent (SGD) with
Nesterov momentum and weight decay. Momentum and weight
decay values are 0.99 and 3 ∗ 10−5 respectively. The initial learning
rate is 0.01 and a polynomial decay learning schedule is used. To
avoid overfitting, data augmentations are used with magnitude and
probability values adopted from the nnUnet. For computational
efficiency reasons, in our main experiments for training we use
patches of size 128 × 128 pixels which are randomly sampled from
the original images. The training is performed for 40 epochs. This
value was chosen as a trade-off between training time and network
performance. In order to minimize noise coming from one of the
performance factors that we do not focus on here, i.e., different per-
formance scores after slightly different number of training epochs,
we average the segmentation prediction (which is then evaluated)
over the last five epochs.

4.4 Implementation details
Neural network training and evaluation is implemented in Python
using Pytorch. LS, GOMEA, and SAGOMEA are implemented in
C++. The source code is provided at 1. Experiments are conducted
on a system with Nvidia A100 GPUs. One full network training (40
epochs) and evaluation takes≈ 2minutes. Therefore, one search run
with the largest budget of 8T takes approximately 100 GPU-hours.

5 RESULTS
5.1 Search performance
First, we study how different search algorithms perform on given
optimization tasks. These results are shown in Figure 6 (Prostate
dataset, budget 4T), and in Supplementary, Figure 1 (budgets T and
2T). All results are also provided in tabular form in Supplementary,
Table 1. LS and GOMEA are approximately equal in optimization
quality on all three setups. TPE finds solutions with better aver-
age fitness values than LS and GOMEA on all three setups. The
difference is more substantial with Setup-1Fold. SAGOMEA out-
performs TPE on Setup-1Fold and Setup-CV, however, it slightly
underperforms on Setup-3CV. Statistical significance testing re-
sults are provided in the Supplementary, Table 4. With a budget of
4T, TPE performs better than LS and GOMEA on Setup-1Fold and
Setup-3CV with statistical significance. SAGOMEA performs better
than LS, GOMEA, and TPE on Setup-1Fold and Setup-CV with sta-
tistical significance. These results demonstrate that algorithms that
use surrogate models and were designed for expensive optimiza-
tion problems have great potential in NAS. In further experiments
(the second dataset and larger budget) we use only SAGOMEA

1https://github.com/ArkadiyD/Noise_in_NAS
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and TPE algorithms as they demonstrate better ability to solve the
considered NAS optimization task.
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Figure 6. Comparing optimization performance of search al-
gorithms in different setups with a computational budget of
4T (as described in Section 4.1.4). The image shows distribu-
tions (over five runs, five best architectures from each run) of
search results. Note that these results take into account only
fitness function values, not the final architectures quality.

5.2 Quality of found networks
Secondly, we study the differences in quality of the found archi-
tectures by different search algorithms with different performance
evaluation setups and computational budgets. Quality of the net-
works is calculated independently from the search runs as described
in Section 4.1. The results are shown in Figure 7; Supplementary, Fig-
ure 2 and in tabular form in Supplementary, Table 2. These results
suggest that with enough computational budget for a search run,
it is better (on average) to use more reliable, yet computationally
more expensive performance evaluation setups as the fitness func-
tion. We see that as the budget increases, in most cases Setup-CV
starts to find better architectures than Setup-1Fold. We hypothesize
that with an even larger budget the most computationally expen-
sive Setup-3CV might level to even results than Setups-1Fold and
Setup-CV as it demonstrates steady improvement with the budget
increase. On the contrary, the performance of Setup-1Fold seems to
improve slower or, in some cases (for instance, with TPE, on both
datasets), even decline as the budget increases. Such behaviour indi-
cates overfitting to a specific train/validation split and random seed.
Similar trends are observed for all considered search algorithms
which suggests that our findings do not depend on a specific search
algorithm. Note that even with the budget of 8T, search algorithms
with Setup-3CV are allowed to do only 200 function evaluations
which is not a big number even for expensive optimization algo-
rithms. From a practical perspective, the Setup-CV seems to be a
good trade-off between reliability and computational cost.

Statistical tests results are provided in Supplementary, Table 3.
Setup-CV results into better quality architectures than Setup-1Fold
with statistical significance for SAGOMEA on the Prostate dataset
with budget T and on the ACDC datasets with budgets 2T, 4T, and
8T.

5.3 Explaining performance differences
In order to better understand why Setup-1Fold is underperforming,
we do the following experiment. We take two networks, one is
among the best found networks for the Prostate dataset, and the
second also performs reasonably well, but worse than the first one
by ≈ 0.01 (in the independent evaluation). We do 30 different eval-
uations of these two networks (different seeds and cross-validation
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Figure 7. Main experimental results. The graphs show av-
erage (over 5 runs, 5 best architectures per run) architec-
tures quality (obtained in the independent evaluation) under
different computational budgets and different performance
evaluation Setups.

splits) and calculate in how many cases the first net would be pre-
ferred to the second one when different evaluation setups are used.
These results are shown in Figure 8. When Setup-1Fold is used, the
first net correctly shows better performance in only 17/30 cases
(57%). This ratio goes up to 70% (21/30 cases) when Setup-CV is
used. As expected, with Setup-3CV this ratio is even higher, namely
to 29/30 cases or 97%. While there are subtle differences in some
of the scores of Setup-3CV and the independent evaluation, their
average values are reasonably close. These results show that using
Setup-1Fold for fitness function calculation causes many situations
when a suboptimal net is selected during the search, and, therefore,
such an approach underperforms compared to more reliable Setup-
CV and Setup-3CV (with enough computational budget). Due to low
noise in fitness function scores, Setup-3CV should potentially lead
to finding the best architectures if enough computational budget is
available.

5.4 Comparison to alternative network
architectures

Though obtaining state-of-the-art networks is not the main goal
of this work, we compare the performance of the found architec-
tures to well-known Unet-like architectures in order to ensure that
the used search space contains well performing architectures. The
considered alternative architectures are the automatically config-
urable nnUnet 2, and three Unets with different encoders (Resnet-18,
Efficientnet-b0, Efficientnet-b7) as implemented in the Segmenta-
tionModelsPytorch library [25] 3. Results are shown in Table 1. The
2https://github.com/MIC-DKFZ/nnUNet
3https://github.com/qubvel/segmentation_models.pytorch
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Figure 8. Histograms and fitted Kernel Density Estimation
(KDE) of 30 evaluation score differences (different seeds,
cross-validation splits) between two networks (score of the
first netminus the score of the second net) for the three inves-
tigated Setups. The black vertical line shows the performance
difference in the independent evaluation procedure. The sam-
ples to the left from zero mean that these two networks are
wrongly ordered: the second one is better according to the
corresponding Setup, while in the independent evaluation
the first one is better. The y-axis is normalized such that the
area under the KDE curve is 1.

Table 1. Comparison of the best found architectures to al-
ternative Unet-like architectures. Numbers in the table are
final (independent) evaluation scores. Note that for each of
our setups, for fairness of comparison, we report here the
final evaluation score of the network found to have the best
fitness according to the search procedure (among all runs of
all search algorithms).

Architecture Prostate, Dice ACDC, Dice
ResNet-18-Unet 0.690 0.893
EfficientNet-b0-Unet 0.703 0.885
EfficientNet-b7-Unet 0.707 0.895
nnUnet 0.699 0.897
Ours, Setup-1Fold (best) 0.723 0.894
Ours, Setup-CV (best) 0.723 0.896
Ours, Setup-3CV (best) 0.726 0.897

best found architectures are visualized in Supplementary, Figure 3.
For the Prostate dataset, all our NAS configurations managed to
find better networks than the alternatives. For the ACDC dataset,
our Setup-CV and Setup-3CV found better networks than all alter-
natives except the nnUnet. The performance of nnUnet is on par
with our best Setup (3CV). Note however that in contrast to our net-
works, nnUnet does not use downsampling in the first convolution
which allows to effectively process images in higher resolution.

6 DISCUSSION
In this work we focused on NAS for medical image segmentation.
Due to computational cost reasons, we used a 2D segmentation par-
adigm and quite compact architectures. However, it was shown [12],
that using a 3D segmentation approach (i.e., train on 3D volumetric
patches instead of 2D patches), might be beneficial for performance.
Moreover, increasing the resolution of the patches, removing the
image downsampling in the stem convolution and training for more
epochs might potentially substantially increase the performance
of the found networks. The computational cost of our experiments
and the available computing capacity did not allow us to make such
modifications, but we argue that the conducted experiments are
well suited for this study.

We used a natural, yet not necessarily the most efficient type of
NAS: to evaluate the performance of each architecture, we trained it
from scratch. However, there exist approaches aimed at reducing the
computational costs of NAS. Two main classes of such approaches
are learning curve modelling (predicting architecture performance
from partial training) and supernetwork-based NAS (training one
large network which has all networks in the search space as its
subnetworks). For practical usage of NAS, using such methods can
be beneficial as they might substantially reduce the computational
costs. In this work, we did not focus on such approaches. Further-
more, we observe that even without partial training (for a fewer
number of epochs) network performance scores are quite noisy, and
using partial training can only aggravate this problem. However,
we believe that further studying noise in network performance eval-
uation with more advanced NAS techniques, including approaches
based on supernetworks, is an interesting topic for further research.

7 CONCLUSION
In this work we address the problem of stochasticity in the architec-
ture performance evaluation score in Neural Architecture Search
(NAS). We focused on NAS for medical image segmentation. To
reduce the stochasticity of the network performance evaluation
procedure, instead of a simple performance evaluation (training
a network with one random seed and evaluating it on a fixed val-
idation set), we proposed to use cross-validation with different
random seeds for each fold or even three times repeated cross-
validation with different data splits. We conduct experiments on
two publicly available segmentation datasets. In our experiments we
allocated equal computational budget to the three considered per-
formance evaluation setups and studied differences in performance
of found networks when calculated independently from the con-
ducted search runs. Results showed that more reliable performance
evaluation setups lead to finding better performing architectures if
enough computational budget is provided. We believe the obtained
conclusions can be valuable for both practical applications of NAS
and the development of new NAS approaches.
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