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Abstract

Imaging by inversion of acoustic or electromagnetic wave fields have applications in a wide variety of
areas, such as non-destructive testing, biomedical applications, and geophysical explorations. Unfor-
tunately, each modality suffers from its own application specific limitations, typically being difficulties
in distinguishing different materials or tissues from each other in the case of acoustic wave fields and
a low spatial resolution in the case of electromagnetic wave fields. To exploit the advantages of both
imaging modalities, methods to combine them include image fusion, usage of spatial priors and applica-
tion of joint or multi-physics inversion methods. The latter can be based on empirical relations between
acoustic and electromagnetic medium properties or on structural similarity. In this work, two joint inver-
sion algorithms based on structural similarity are presented. To account for the structural similarity the
error-functional of standard Born inversion is extended with an additional penalty term. This additional
term is either based on the L2-norm of the cross-gradient (CG), i.e. the cross product of the gradients
of the acoustic and electromagnetic contrasts or on the L2-norm of the gradient difference (GD), i.e.
the difference between the normalized gradients of both contrasts. To test the proposed methods, two
synthetic models are considered; one with the gradients of the contrasts pointing in the same direction
and one where the gradients point in opposite directions. Results show that the GD constraint signif-
icantly improves the resolution for the electromagnetic reconstruction compared to separate Bl. The
mean square errors (MSE) of the reconstructed profiles for the separate Bl are 0.12 for the acoustic
and 0.51 for the electromagnetic case, and for the joint GD inversion, 0.09 for the acoustic and 0.46 for
the electromagnetic case. The joint GD inversion fails when using the model with the gradients of the
contrasts pointing in opposite directions. The joint CG inversion does not enhance the reconstructed
images, but shows similar performances for the different models. In conclusion, joint inversion based
on structural constraints is shown to improve the electromagnetic resolution, especially using the GD
constraint. Further research needs to be conducted to extend the functionality of the GD constraint to
acoustic and electromagnetic contrasts with opposite contrast gradient directions.
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Introduction

Imaging by inverse scattering of acoustic waves is used in a variety of fields, like non-destructive testing
of for example art objects [1], biomedical applications like breast imaging [2], remote sensing [3] and
geophysical explorations [4]. Correspondingly, imaging by inverse scattering of electromagnetic waves
also has wide applications in the same fields [5-9], although both modalities generally suffer from their
own application specific disadvantages. For example, in hydrocarbon explorations, seismic or acoustic
data inversion is unsuccessful in differentiating areas filled with water from hydrocarbons, due to the
low contrast in acoustic velocities between these fluids [10]. On the other hand, electromagnetic data
has the disadvantage of exhibiting a much lower resolution than the acoustic data due to its diffusive
nature [11], as well as the difficulty in distinguishing gas-filled regions from oil-filled regions [10]. Also in
breast cancer imaging the heterogeneous tissue causes low resolution and low localization accuracy,
when using long wavelength electromagnetic waves [12]. In contrast, acoustic imaging provides a high
resolution [2], but shows low contrast in speed of sound between malignant and healthy tissue [13],
where there is a high contrast between these tissues in electromagnetic parameters [6].

In order to exploit the advantages of both imaging modalities, several strategies to combine them
have been proposed in the last decades. Firstly, for combining ultrasound imaging with other imag-
ing modalities in biomedical applications, image fusion is commonly applied [14]. Here, images are
collected separately and combined afterwards. One step further is the technique of model fusion, or
the use of spatial priors [12,15-19]. In this approach structural information is derived from ultrasound
images and is incorporated as regularization term in the inversion process of the electromagnetic or
microwave image. Several methods have been proposed to use this information. The first method is
to extract regions from the ultrasound image, and assign a priori electromagnetic parameters, such as
the electric permittivity, to these regions, that are included as an inhomogeneous background during
inversion [12,15]. Another method is to use a regularization in the inversion process that favours simi-
larity of the permittivity within the a priori defined regions [16], or favours similarity of the permittivity of
neighbouring pixels that do not lie on an edge [16, 17]. A different approach is given in [19], where the
authors use a fuzzy C-means clustering to identify the background of the image, which is used as in-
put for the electromagnetic image. Lastly, a convolutional neural network can be applied to predict the
permittivity distribution, which can be used as prior information in the microwave inversion process [18].

All these methods include high resolution prior information into the inversion of electromagnetic waves
to improve the resulting reconstruction as compared to separate, sequential inversion. However, the
authors of [17] suggest that a better exploitation of this prior information could be preferable. A method
that combines acoustic and electromagnetic imaging in an even stronger manner by constraining both
imaging modalities with the other is called joint inversion or multi-parameter inversion and will be the
subject of this master thesis. The joint inversion algorithms are extended from widely used separate in-
version algorithms, which include the Born iterative method (BIM) [20], the distort BIM (DBIM) [21], the
variational BIM (VBIM) [22], Born inversion (BI) [23], contrast source inversion (CSI) [24] and subspace-
based optimization method (SOM) [25].



2 1. Introduction

In literature, three methods of joint inversion have been investigated; joint inversion based on empirical
relationships between the imaged parameters, based on mutual information and based on structural
similarity [26]. The former method is mostly investigated in geophysics [11,27-31], where petrophysical
links between seismic velocities and electromagnetic resistivity are used. This is for example done by
linking seismic velocities to water saturation and porosity through Archie’s equation [32], and resistivity
to water saturation and porosity through Gassmann'’s fluid-substitution equations [33]. Despite being
a strong constraint, the choice of petrophysical parameters is problem dependent, and the errors in
these parameters will easily propagate into the results [31]. The petrophysical joint inversion approach
is therefore very effective, if there is good a priori knowledge of the problem specific petrophysical re-
lationships [29]. In biomedical applications these relationships are less straightforward [34].

The second joint inversion method, joint inversion based on mutual information, is based on theoretical
properties and therefore intuitive. However the technique is highly non-linear due to the use of the prob-
ability density function [34]. In [26], no tests converged as local minima could not be avoided. The last
method, joint inversion based on structural similarity has also been first employed in geophysics [35].
Here, a similarity between the distribution of physical parameters is assumed and is incorporated as a
regularization term in the cost function.

Structural similarity is defined by [26] as the level sets of two functions, the contours or surfaces where
the functions are constant, being parallel to each other. An even stronger definition is that the level sets
should not only be parallel, but should located at the same positions. A measure for structural similarity
is given in [35] as the magnitude of the Laplacian operator and two thresholds. Another approach is the
use of the cross product of the gradients of the two images, or short the cross gradient function. This
method is widely explored in geophysics [10,26, 31,36—40], but also in the biomedical context [41-43]
and was first suggested by [36]. The cross-gradient function vanishes if the gradients in the acoustic
and electromagnetic image are in the same direction, irrespective of their sign. On top of that, if in
one image there is no structure, the gradient is zero and the structure present in the other image is
not enforced. A slightly different variant of the cross-gradient is the normalized cross-gradient func-
tion [39]. Normalizing the cross-gradient function removes the dominance of rapidly varying functions
which normally occur in the subsurface of the earth compared to deeper regions [39]. A problem with
the normalized cross-gradient function is that when discretized, very small gradients can result in arbi-
trarily large cross-gradients. Consequently, the inversion can focus primarily on minimizing these large
cross-gradients. Apart from the Laplacian and the cross-gradient function, the authors of [34,44] have
used a different method to imply structural similarity, by letting the magnitude of the gradients constrain
each other in interactive regularization terms. In [13], edge preserving regularization is used, where
hidden variables indicate the parameter discontinuities in different directions. These hidden variables
are updated alternatively with the contrasts of both wave fields. Finally, [41] proposes an approach
to use the difference between the gradients of the acoustic and electromagnetic contrasts as the joint
structural constraint, where promising results are found, but no tests on contrasts with opposite gradi-
ent signs have been conducted.

In this master thesis, two joint inversion algorithms using acoustic and electromagnetic waves based
on structural similarity are developed in Fortran. They serve as the framework of future research in this
field, in continuation of the work in [41]. Both the cross-gradient and the gradient difference constraint
are implemented as regularization to couple both imaging modalities, and the cost-function will be
minimized in an alternating fashion. The inversion is executed using Bl and CSI for the separate
case and Bl for the joint inversions, from which the results are compared. The underlying theory is
introduced in Chapter 2, next the method is presented in Chapter 3. Chapter 4 includes the inversion
results, followed by a discussion in Chapter 5 and finally, the conclusions are given in Chapter 6.



Theory

This chapter provides an overview of the theory used within this thesis. First the theory behind the
acoustic and electromagnetic wave fields are discussed in Section 2.1, followed by a section on solution
methods.

2.1. Wave fields

In joint inversion, data from reflected acoustic and electromagnetic wave fields is used to reconstruct
the physical properties of the imaged structure. The wave equations and properties of both wave fields
are discussed in the following two subsections.

2.1.1. Acoustic wave fields

Acoustic time-harmonic waves can be described by a spatially fluctuating scalar pressure field and a
spatially fluctuating vectorial velocity field of the particles of the medium. The pressure field and the
velocity field are described by Hooke’s law and Newton’s law respectively and are given by

ap(F' t) _ 1 - > 1 -
Pt —K(?)V -v(F,t) + ﬁq(r, t), (2.1)
G v, t) s
V(0 = —po— — +f(T D), (2.2)

where, p(#,t) is the pressure field, ¥(7, t) the velocity field, x(#*) the compressability of the medium, p,
the assumed constant mass density of the medium, q(7, t) the volume source density of injection rate,
f(#,t) the volume source density of volume force, 7 the coordinate vector and t the time.

Combining equation (2.1) and (2.2) gives the acoustic wave equation for heterogeneous media,

1 9%p(7,t) *p(7,t)
2.2 _ - eV Pz 7 P\
v p(T, t) Cf]_() ot2 a T, t) +XA(r) It2 (23)
Transforming (2.3) to the temporal Fourier domain with angular frequency, w, yields,
w? Apr
VEH(P) + () = =$§" (F) — 0 xa (P, (2.4)

C4,0

where p(7¥) = ffooo p(#,t)el®tdt is used as the definition for the Fourier transform, S§7 (#) is the primary

source term of the acoustic field given by $57 (#) = iwpoG () — V£ (), xa(7) the acoustic contrast of the
medium given by

1 1
AD) Cfx,o

xa(@® = ) (2.5)

3
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with ¢, (#) the speed of sound at position #, and ¢, , the speed of sound of the homogeneous back-
ground medium. These speed of sounds are defined by ¢;2(¥) = pox(#) and c;f) = poky, respectively.
The last term in equation (2.4) can also be regarded as an extra source term, called the acoustic con-
trast source, that equals w, (7) = y4(¥)p(¥). Note that from equation (2.4) and onward the caret symbol,
A, is used to denote quantities defined in the temporal Fourier domain.

Equation (2.4) can be recasted into an integral equation of the second kind. Within this formulation the
pressure field is written as a superposition of the incident field, 5'"¢(#) induced by the primary source
term and propagating in the homogeneous background medium and the scattered field, $5¢¢ (7), induced
by the contrast source term, hence

p(F) = pme () + B (). (2.6)

The incident field is obtained by the convolution of the impulse response function of the homogeneous
background medium, the Green'’s function G, (# — ), with the primary source, hence

pf\inC(?) — f GAA(? _ ?’)ﬁgr(?')dV(?’). (27)

7#'eS

Similarly, the scattered field can be described by the convolution of the Green’s function with the contrast
source term,

P = 0 j Ca? = YA YAV (') = w? ] CaGF = PV xaGIPEYAVE).  (2.8)

7'eD 7' eD

In equations (2.7) and (2.8), S represents the spatial domain where the sources and the receivers are
placed, and D the domain of interest. In 2-D, the volume integrals in equations (2.7) and (2.8) reduce
to surface integrals. The Green’s functions of the 2-D and 3-D case are respectively,

—i

7 Ho (@IF = 71/cao), (2.9)

C3P G- 7) =

Lo oy
e~ iwlr=7"/cao

GPP(F—-7) = , (2.10)

Am|7 — 7|
where H((,Z)(a)|? — 7'|/cap) is the Hankel function of the second kind. A derivation of these functions
can be found in Appendix A, [45—-48].

2.1.2. Electromagnetic wave fields
The wave equation for electromagnetic time-harmonic waves in lossless (conductivity, ¢ = 0 S/m),
heterogeneous media can be derived from Maxwell’s equations,

. . dH(# 1)
VXECO =t (241 v-[e@EE D] =GO =0, (213
L AR .
VX H(F,t) = e@)—— +]" (0, (2.12) V- A @ 0] =0, (2.14)

where, E(#t) is the electric field, H(7, t) the magnetic field, J?" (7, t) the primary electric current den-

sity, p?" (#,t) the primary electric charge density source, u, the assumed constant permeability of the
medium and e(7) the electric permittivity of the medium.

Combining equations (2.11) - (2.14) and using the vector calculus identity V x (V x /f) =V(V- /T) — V24,
yields the wave equation for electromagnetic waves in lossless, heterogeneous media,

1 92E(#,t)

VE(R ) — 5 ——5— = —SE (A0 + x5 (P
Cgo Ot

92E (7, t)

92 +V(V-5(f’. t)). (2.15)
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In the temporal Fourier domain equation (2.15) can be written as

> 2, > > >
V2E(?) + C“’TE(?) = 8§77 — wlys(DEF) +V (v : E“(F)), (2.16)
E,0

where §’E’r (7) is the primary source term of the electric field given as §gr 7 = —iwyopr(F), xe (@) the
contrast for the electric field given by

1 1

2(F) ko

xg(@) = (2.17)

with ¢z (7) the speed of light at position 7 and ¢, o the speed of light within the background medium.
These speed of lights are defined by cz%(#) = poe(¥) and cz§ = poeo. The second term in equation

(2.16) can also be regarded as the electromagnetic contrast source, \f/E @ = )(E(?)E“(?).

Similar as for acoustic waves, the electric wave field can be described by an integral equation of the
second kind,

(7-.’) — ElnC(T-:) + Ez:sct(r—:)' (2.18)

5o

where the incident electric field £¢(#) and the scattered electric field I:Z“t(f’) are given by

EFine(p) = f Cp (7 — PSP (@) AV () (2.19)
7'es
and
ﬁsct(?) = w? J Ge(F — P (F)AV () = w? f Ge (7 — ?')XE(?')E(F')dV(?'), (2.20)
7'eD r'eD

where G (7 — ') is the Green’s function for the electric field. Because the electromagnetic wave fields
are vectorial quantities, a distinction is made between incident transverse electric (TE) waves and
transverse magnetic (TM) waves. The Green’s function for the electric field for the 2-D case using TE
and TM waves and for the 3-D case, are given by [49]

. c? —i
c?”@—W)=@+f%W)Zﬂ9@M—WV%w, (2:21)

. —i
GEPTM (2 _ 71y = ZH(EZ)(ww —#|/co)» (2.22)

2 e—twlF=7"|/cgo
> S (2.23)

C
A3D ;= SN E,0
GE (T'—T)—(1+?VV' 47_[“;,_?,'

A derivation of these functions is given in Appendix A, [45,50,51].

2.2. Separate solution methods

The inverse or imaging problem is the problem where the wave field incident in the embedding and the
measured wave field recorded by the receivers on the surface S are known, but where the contrast and
the total field within domain D are unknown. In the following subsections solution methods to solve this
highly underdetermined problem are discussed.
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2.2.1. Born inversion

One method to solve the inverse imaging problem is called Born inversion (BI) or linear inversion. Here
the problem is linearized by replacing the total field in the integral equation with the incident field. This
is called the Born approximation, and reduces the equations for the scattered acoustic field (2.8) to

Pt () = w? f Ga(F =) xa @R )V (), (2.24)
7'eD

and the scattered electric field (2.20) to

n':l)l

set (7) = f Ce G — )2 (DB (7Y aAV (7). (2.25)

7eD

This simplification of the problem however results in artifacts that arise due to neglected multiple scat-
tering effects and incorrectly included phase shifts, both caused by spatial variations in speed of sound
or speed of light within the media.

The contrast is iteratively estimated using the conjugate gradient scheme on minimizing the L2-norm
in the error, which generally reads for both fields:

|If €9 — G * @™ x ™)1
|Ifmees|i3

with Err(™ the normalized error in the data equation, y™ the contrast, G the Green’s function, * the
spatial convolution operator, ¢ and ™€ incident and the measured scattered field, all for either
the acoustic or electromagnetic field at the n-th iteration, and the subscript S denotes the inner product
over w and the receiver locations #7¢¢ € § for each source.

Err™ =

, (2.26)

The conjugate gradient scheme has the following general form:
d® = LFye-1)
Re <r® D 1dM >

||L a2 '
yM = 0D 4 g,

a® =

rm = fmeas _ LX(n):

where d™ and a™ are the update direction and amplitude at the n-th iteration, ™ is the residual at
the n-th iteration and L is the general operator given by Ly(™ = G * (w?f"x¥™), where * denotes a
spatial convolution and G is the general Green’s function.

2.2.2. Contrast source inversion

A solution method that does account for multiple scattering is contrast source inversion (CSl) or full-
waveform inversion, as for example described in [52]. This non-linear inversion method does not op-
erate within the Born approximation. Instead it defines contrast sources for the acoustic and electro-
magnetic fields, W, (7) and W (7), respectively, hence

Wa(F) = PP xa (@), (2.27)
Wg(P) = E@xp@). (2.28)

Now, the error to be minimized consists of the normalized error in the data equation, Errs(n), as well as
the normalized error in the object equation, Err,gn), given by

“fmeas _ é " (wZW(n)) ”é

m
Errg”’ = ~ , (2.29)
|Ifmeas||§
A~ _ ,,(n) ( finc + é 2.A(n) 2
Erri® = W =X (f * (w?w™)) Iy (2.30)

|1 fine| |
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v
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¥
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Figure 2.1: General flowchart of the joint inversion algorithm, including references to equations of parameters in case of the CG-/
GD method.

where W™ is the contrast source at the n-th iteration, f(™ is the total field at the n-th iteration and
fmeas is the measured scattered field, all for either the acoustic or the electromagnetic case and the
subscript D denotes the inner product over w and all discretized locations r € D for each source. When
the contrast source is determined, the total fields can be obtained via equations (2.6) and (2.8) for the
acoustic field and (2.18) and (2.20) for the electric field. The total additive error function to be minimized
is written as

Err®™ = Errs(n) + Errlgn). (2.31)

The conjugate gradient scheme for the contrast source inversion, including the Polak-Ribiére coeffi-
cient, Y™, in the general form is written as,

g = TR D 0L W0 = D 4 ),
lIfmees i [0 fime I O = i+ Lp w,
L) = | < g™, g — g1 >, |’ o _ Re < f"(n)'w(n) >
g5 X 1|2 ’
dm = g(n) + y(n)d(n—l)’ Ts(n) _ ]?meas S L e
L = Re < g™, d™ > 7 = ) fine 4 (L R0 — o),

- IILs d(n)llé/llfmeasﬂé + x™DLp d(n)||1]2]>/||)((n_1)fim||f»,

where g™ is the steepest direction, £ the total field, =™ the state residual, and 7" the data residual,
all for either the acoustic or the electric case at the n-th iteration and Lg is the data operator given by
Ls x = G *g (w?x) and Lg is the object operator given by Lp x = G *p (w2x).
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2.3. Joint solution methods

A possible method to overcome problems associated with separate inversion like low resolution or dif-
ficulties in distinguishing materials or tissues, is joint inversion based on structural constraints. The
main idea is to let the acoustic and electromagnetic inversion constrain each other, by assuming that
the material boundaries, and therefore the parameter boundaries are at the same locations. The gen-
eral flowchart of a joint inversion algorithm, based on separate Bl, is shown in Figure 2.1.

To create such a joint inversion algorithm, an extra error to be minimized must be incorparated in the
error function for Bl (2.26) and for CSI (2.31). Having boundaries at the same locations, means that
the level sets of both parameter profiles should be parallel. Consequently, the normals to these levels
sets, which are the gradients of the parameter profiles, must also be parallel. Additionally it is desired
that the error included, converges to zero when the structural constraint is met.

Two types of constraints that meet these criteria, are the cross-gradient (CG) and the gradient difference
(GD) constraints. Both constraints update in an alternative matter, using back propagation as a starting
point. Within each iteration, the acoustic contrast is updated first, followed by the electromagnetic
contrast, as shown in Figure 2.1. The reason for starting with the acoustic inversion is that the initial
acoustic resolution is assumed to be better than the electromagnetic resolution. The two types of
constraints are further discussed in the next paragraphs.

2.3.1. Cross-gradient constraint

The first constraint that can serve as a structural constraint is the cross-product of the gradients of the
contrasts, which in short is called the cross-gradient (CG), first proposed by [28]. The cross-product
of two parallel identities goes to zero, and therefore both conditions described above are met. The
normalized form of the CG constraint at the n-th iteration, Errj_’é)g, for the acoustic case and ErrE( C)G,

for the electromagnetic case, are given by

O 1127 R 7 i |
Err, ACG = n-1) -1 (2.32)
VxS x vy 2’
n) M2
Vxis’ XV
prol, = —a X Ve 1L (2.33)
VxS0 x vy 2

The difference in the iteration of the contrasts between the numerators of equations (2.32) and (2.33)
is due to the acoustic contrast being updated first within each iteration. The update direction and am-
plitude in the conjugate gradient scheme, have been derived for the additive form of the error functions
for both the acoustic and electromagnetic field as shown in Appendix B.1

2.3.2. Gradient difference constraint
Another method proposed by [41], is the gradient difference (GD) approach. Here the difference in
gradients of the contrasts is used as a constraint, the normalized form of the GD constraint at the n-th

iteration, Errjy’gD, for the acoustic case, and Erré_rgD, for the electromagnetic case are given by

=(n) =(n-1)

E’”TA GD = ||V —Vxg ||2» (2.34)

ErrdD = 11vx v, (2.35)

where )_(;n) and )_((En) are acoustic and electromagnetic contrast, normalized by the maximum of the
absolute real value. Note that the acoustic contrast is updated first within the same iteration, resulting
in a difference in iterations of the normalized contrasts in equations (2.34) and (2.35). The derivation
of the corresponding update direction and amplitude in the conjugate gradient scheme, is shown in
Appendix B.2, for both the acoustic and the electromagnetic case.



Methods

In this chapter the methodology to test the proposed methods is discussed. First a general overview
of the study is given, next the details of the forward and inverse simulations are provided.

As this project serves as a first framework for further research in the field of joint inversion, the verifi-
cation of the joint inversion algorithm is completely based on synthetic results. Forward simulation and
inversion are executed for both acoustic and electromagnetic fields, using a synthetic model. Next, two
joint inversion algorithms are tested and compared to the separate inversion data. The details of the
inversions algorithms are discussed in the previous chapter. For all simulations, FORTRAN 90 is used
as the programming language. MATLAB R2020a is used for the subsequent image visualisation.

3.1. Forward problem

The forward wave field propagation and scattering is simulated using the existing code for the acoustic
case by K.W.A. van Dongen, as used in [53], which was extended to the electromagnetic case. Two
numerical models are used as input in the simulations. The speed of sound and speed of light profiles
of model 1 have gradients pointing in the same direction and are shown in Figures 3.1(e) and 3.1(g)
respectively. In model 2 the gradients speed of sound and speed of light point in opposite directions, of
which the profiles are depicted in 3.1(f) and 3.1(h). The background speed of sound for both models is
1500 m/s and the background speed of light is 2.25 -108 m/s, corresponding to a relative permittivity,
&, of 1.78. The parameter settings of the other components of the model are shown in Table 3.1. The
model is discretized in 64x64 pixels, with a pixel length, Ax, of 1.5 mm.

In the forward simulations, 16 sources and 128 receivers are used, positioned in a ring around the con-
trast. The source positions are indicated by a black asterisk in figure 3.1(e-h). Each source is excited
with a center frequency of f, , = 0.1 MHz in the acoustic case and fz, = 1 GHz in the electromagnetic
case. The source pulses are shown in the time and frequency domain in figure 3.1(a) and 3.1(c) for the
acoustic case and in 3.1(b) and 3.1(d) for the electromagnetic case. The timestep, At, is set to 1/15-th
of the center frequency, giving At, = 6.67-1077 s and Atz = 6.67-10"'! s. The number of time steps, N,
is set for the acoustic case to N, 4, = 540 and the electromagnetic case to Ny g = 72.

Table 3.1: Speed of sound, ¢4 in m/s, speed of light, cg in m/s and relative permittivity, €,., of different components in the
models.

Model 1 Model 2
| ca(m/s) cg(m/s) & (-) [ ca(m/s) cg(m/s) & ()
Background | 1500 2.250 108 1.780 | 1500 2.250 108 1.780
T 1550 2.300-10% 1.700 | 1550 2.200 -10®  1.860
U 1450 2.200-10® 1.860 | 1450 2.300-10% 1.700
Circle 1525 2.275-108 1.740 | 1525 2.225-10% 1.820
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Figure 3.1: Overview of modeled input. Acoustic case: source pulse in time domain (a) and frequency domain (c), speed of
sound profiles of model 1 (e) and model 2 (f). Electromagnetic case: source pulse in time domain (b) and frequency domain (d),
speed of light profiles of model 1 (g) and model 2 (f). In (c) and (d) the selected frequencies for inversion are indicated with a
red x. In (e)-(h) the source locations are indicated with a black asterisk.

3.2. Inverse problem

To compare the conventional separate inversion to the proposed joint inversion methods based on
structural constraints, both reconstruction methods are applied to the data obtained by solving the
forward problem for all cases and models. The comparison is done by qualitative comparison, as well
as a numerical comparison using the mean square error (MSE), given by

MSE =

[lx

true __ Xin
| |Xtrue | |2

1;”2

)

(3.1)

where yt"%¢ are the contrast values of the model and y'™” are the values of the inverted contrast.

The existing code as used in [53], is used as the separate inversion algorithms for the acoustic case
and is extended to the electromagnetic case, for both Bl and CSI.

Two types of constraints are added to the separate Bl algorithms. Both the CG constraint and the
GD constraint, of which the details are described in Section 2.3, are implemented and tested. In a
first verification, the two synthetic models of the acoustic parameters are used as the input for the
electromagnetic joint inversion. Subsequently, simultaneous inversion is tested for both types of con-
straints, for both models. The extension to a joint CSl algorithm has not yet been realized in this project.

To speed up the inversion processes, a limited number of frequencies is used in both the separate
and joint inversion, which are indicated with a red x in figures 3.1(c) and 3.1(d). The frequencies are
selected out of the range of 0.1 to 1.25 times the center frequency of the Gaussian pulse. Less fre-
quencies are selected in the electromagnetic case, due to a relatively higher frequency interval, which
is in turn restricted due to the time step size and speed of light of the background medium. All inversion

algorithms run for 1024 iterations.

22
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Some modifications to the algorithms described in Chapter 2 are implemented. In case of the joint
inversion with the GD constraint, the contrasts, )(,(4") and )(( and the update directions, d(”) and d(”)
were set to zero at the source and receiver locations and one pixel adjacent to it in each direction at
each iteration, to avoid artifacts in the reconstructions at these locations. Next, at each iteration, the
values of the reconstructed contrasts that exceed the maximum value of the synthetic contrast used as
the input, are set to that maximum value. Similarly, the values of the reconstructed contrasts that are
lower than the minimum value of the synthetic contrast values, are set to that minimum value.

Finally, in both of the joint inversion algorithms, a ratio 1™ has been added in the total update directions
as described in equations (B.21, B.40) for the CG constraint, and (B.59, B.71) for the GD constraint,
both for the acoustic and electromagnetic case, respectively. The update directions in case of the CG
constraint equal

* 1
di = dfl; + ¥iledite = L™ + iV [Vl T x (U x v )] 62)
1 *
i = I(:"nI;I +1/)§nc)(; (n)(; = L )+1/)énc)(; [ " (VX(n Y XV}((n))] (3.3)

with the ratio of the update directions of the CG constraint wf{lc)c and 1/)3?6 at the n-th iteration being

m

dA,BI,M
ElngG = n) = ’ (34)
dA,CG,Max
(n) dénlgl Max
n ,BI,
E,CG = (Tl) y (35)
E,CG,Max

where the subscript Max indicates the maximum value of the real part. The update directions in case
of the GD constraint are now written as

1 —(n-1) _ _(n-1)\"

d{” = dSp, +iepdies = LY+l v (V- ) (3.6)
1 —(n-1)  —m)\"

df” = +widpdlop = " + v (27 - 7)) (3.7)

with the ratio of the update directions of the GD constraint, 1,05,’21) and l,bE ¢p» diven as

) _ D

n ax

AGD = ) , (3.8)
dA,GD,Max

(n) dg??l Max

EGD = Tm) (3.9)
dE GD,Max






Results

This chapter gives an overview of the results obtained by the methods described in the previous chapter.
First, results of the forward simulation are shown, next a comparison between separate inversion and
joint inversion with the CG constraint is given and lastly, the results of the separate inversion and the
joint inversion with the GD constraint are compared.

4.1. Forward simulations

The wave propagation of the pressure wave field and the electric wave field through both of the models
are shown in Figure 4.1, which are screenshots of the scattered and total wave fields. It is clearly
visible that the electromagnetic wavelength is significantly larger than the acoustic wavelength; the
center wavelengths are 1, o = 15 mm for the acoustic case and 1z, = 225 mm for the electromagnetic
case. On top of that, as the acoustic profiles of the two models are the same, the pressure fields are
also equal. The electric fields differ only slightly between the two models, as the shape of the models
and the norm of the gradients are equal; the gradients only differ in sign.
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Figure 4.1: Models, screenshots of pressure fields at t, = 0.133 ms and screenshots of electric fields at tg
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profiles (a) & (b), scattered fields (e) & (d) and total fields (f) & (g), of model 1 and 2 respectively. The subfigures indicated with
i are for the acoustic case: speed of sound and pressure fields, and the subfigures indicated with ii are for the electromagnetic
case: speed of light and electric fields.
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14 4. Results

Table 4.1: MSE’s of separate, joint with CG constraint and joint with GD constraint inversion results, for model 1 and model 2.

Model 1 Model 2

[MSE, MSE; | MSE, MSE;

Seoarate | B 0115 0507 | 0.115 0.523
P csl 0.071 0596 | 0.071  0.601
. syn in - 0.674 | - 0.865
Joint-CG | svnin | 0513 0917 | 0620 0899
. syn in - 0.284 | - 1.45
Joint-GD | cnin | 0089 0460 | 0261 0951

4.2. Inversion results

The inversion results are summarized in Figure 4.2. The corresponding MSE’s are shown in Table 4.1.
The separate and joint results of the different constraints are discussed subsequently.

Separate inversion

The separate Bl results are shown in Figures 4.2(c) and 4.2(d), for model 1 and 2 respectively. In the
acoustic results expected multiple scattering artefacts due to the Born approximation are visible, but
a good resolution and MSE, of 0.115 is obtained. The reconstructed speed of light profiles show very
low resolution due to the large wavelength. Consequently, the MSE for model 1 and 2, being 0.507
and 0.523, are significantly larger compared to the acoustic case. The results of CSI, 4.2(e) and 4.2(f)
for model 1 and 2 respectively, show improved results in the acoustic case with an MSE, of 0.071,
as multiple scattering effects are no longer neglected. The electromagnetic profiles do not improve
compared to BI, as the resolution of the data is too low to benefit from the more advanced inversion
algorithm. The MSEy’s for CSl of model 1 and 2 are 0.596 and 0.601.

Joint inversion - cross-gradient

The speed profiles resulting from the joint inversion with the CG constraint, using the acoustic synthetic
model as an input for the electromagnetic inversion, are shown in Figures 4.2(g)i and 4.2(h)i, for model
1and 2. No MSE, is assigned, since the output is the true model for the speed of sound. In the electro-
magnetic case, we see a clear profile of the edges of the characters in the speed of light profile of both
models. However the speed of light distribution is not following these boundaries, leading to MSE}’s of
0.674 and 0.865 for model 1 and 2 respectively. The color bar in 4.2(h)ii also indicates that when using
model 2, the inversion has trouble reconstructing the full range of speed of light values, compared to
separate inversion, causing the high MSE in case of model 2.

When inverting both data sets retrieved by the forward simulations, we see the joint inversion destroys
the structure of the acoustic speed of sound profile, as shown in Figures 4.2(i)i and 4.2(j)i, with a
corresponding MSE, of 0.513 and 0.620. On top of that, the electromagnetic results, Figures 4.2(i)ii
and 4.2(j)ii, do not benefit from the joint inversion and the characters cannot be recognized, yielding an
MSEg of 0.917 for model 1 and 0.620 for model 2.

Joint inversion - gradient difference

The reconstructed speed profiles by joint inversion with the GD constraint, show promising results
when using model 1. Both when using the synthetic acoustic model as input for the electromagnetic
inversion, Figure 4.2(k), and when inverting the both the data sets in alternating fashion, Figure 4.2(m),
the electromagnetic results show a clear structure of the characters in the imaged model. Not only
the edges are visible, but also the inner structure is inverted more correctly, yielding improved MSE}’s
of 0.284 and 0.460, for the synthetic acoustic input and the simulated acoustic input respectively. The
acoustic image, Figure 4.2(m)i, is qualitatively comparable to the separate inversions and has a slightly
improved MSE, of 0.089 compared to the separate Bl.

Nevertheless, when using model 2 with the acoustic and electromagnetic contrast gradients with oppo-
site sign, the inversion fails. In the case of using the synthetic model, Figure 4.2(l), we see an imprint
of the characters TU in the speed of light profile, but the values within the contrasts are inverted in
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Figure 4.2: Profiles of tested models 1 (a) & 2 (b).

Inversion results of separate Bl (c) & (d) and CSI (e) & (f), joint with CG

constraint using acoustic synthetic input (g) & (h) and alternating inversion (i) & (j), joint with GD constraint using acoustic
synthetic input (k) & (I) and alternating inversion (m) & (n), for 1 & 2 respectively. All subfigures indicated with i are acoustic
results and with ii are electromagnetic results. Note that to enhance readability colorbars vary among the subfigures.
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the wrong direction, resulting in an MSEj of 1.45. When using both the data sets, Figure 4.2(n), some
structure can still be seen in the electromagnetic case, however the range on inverted values is less
accurate compared to the separate inversion when comparing the color bars, which gives the poor
MSEg of 0.951. Also the acoustic result now shows less structure compared to separate inversion, and
has an MSE, of 0.261.

Finally, in the overview of the MSE’s of all types of inversions given in Table 4.1, the bold values are
the most accurate values of the type of wave of all types of inversions. We see that only for the GD
constraint in the electromagnetic case of model 1, the joint inversion has an improved MSE over the
separate inversions, most significantly visible when using the synthetic acoustic model as input for
the electromagnetic inversion. Nevertheless, the joint inversion with GD constraint inverting both data
sets, gives a slightly improved MSE for both the acoustic and the electromagnetic case compared to
Bl. The qualitatively improvement in the electromagnetic inversion results is more impressive than the
MSE, as the structure of the contrast is now revealed, where it is completely absent in the separate
inversion. The values in the edges, outside the circle of the source and receiver locations, is off in the
joint GD electromagnetic case, and probably affects the MSE, while being less important for recognizing
structure.



Discussion

In this chapter, some final remarks and points of discussions are presented. First, a discussion on
the different implemented constraints, CG and GD, are given, including recommendations for further
research. Next, a view on the translation of the presented research to future applications are given,
especially focusing on the choice of parameters and reflecting on the type of joint inversion most viable
for applications.

5.1. Implemented constraints

The shortcomings and corresponding possible explanations of both the presented constraints are dis-
cussed in this section, as well as recommendations on how to overcome these shortcomings.

5.1.1. Cross-gradient constraint

From the results it is clear that the reconstructions when using the CG constraint are not satisfactory.
However, the use of the acoustic model as input for the electromagnetic joint CG inversion, has shown
that the algorithm is capable of detecting structures in the electromagnetic contrast profile that were
otherwise hidden. To avoid the error function to only work on the boundaries of the different materials,
one should assure that the error function does not go to zero within the different materials. In other
words, for both modalities, the gradient should not equal zero for the CG error function to do anything
at that point. A way to avoid the error function from going to zero at homogeneous regions within the
inverted data, could be by adding some noise or speckle to the acoustic starting model before using it
as input for the electromagnetic inversion.

On top of that, when using the simulated acoustic data as input for the joint CG inversion, the be-
haviour of reconstructing the outline of the contrast is no longer expected. When inverting the acoustic
data, the gradients are usually not absolutely zero, which becomes apparent from the resulting recon-
structions. Here, the outline of the boundary is no longer visible. Unfortunately, these results do not
only show no improvement in the electromagnetic reconstruction, but also destroy the structure in the
acoustic reconstruction. A possible explanation for these disappointing results is that the resolution of
the electromagnetic reconstruction dominates the joint inversion process. It can be interesting to redo
the simulations using a higher center frequency for the electromagnetic wave fields of for example 8
GHz, so some initial structure is visible after the first iteration of the electromagnetic data.

5.1.2. Gradient difference constraint

The reconstructions using the GD constraint of model 1 are remarkable, especially when considering
the low resolution of the separate electromagnetic reconstruction. Nevertheless, the algorithm fails
when using a model with the gradients of the speed of sound profile opposite to the gradients of the
speed of light profile. Effectively, this means the gradient difference model so far cannot be used for
any realistic sample to be imaged. It is therefore necessary to investigate how the GD constraint can
be extended such that opposite gradients do not form a problem.

17



18 5. Discussion

One possible solution for the problem of constructing the wrong update direction in case of gradi-
ents with different directions between the modalities, might be using the absolute GD of the contrasts.
Nonetheless, the absolute value is difficult to minimize, which is necessary in order to find the update
parameters. An alternative to the absolute value could be using the square of the GD in stead of the
absolute value. However, introducing a square in the L2-norm can cause local minima, causing flaws
in the update parameters. Finally, one can adjust the normalization to overcome the sign problem. A
proposed way is normalizing the gradient of the contrast, in stead of taking the gradient of the normal-
ized contrast. Note that the normalization should be using the maximum of the absolute value of the
gradient of the contrast in a near surrounding, but keeping the sign.

Apart from opposite gradient directions between the two different modalities, different gradient ampli-
tudes have not yet been tested. It would be interesting to see what happens when there is for example
only a slight difference in speed of sound between two materials, while there is a large difference in
speed of light. It is expected that the GD constraint, will not properly reconstruct these types of mod-
els. The normalized difference in gradients will not go to zero for the correct solution of the inversion.
However, if the the difference in amplitude between the normalized gradients of the contrasts is small
enough, no problems are expected. It is therefore necessary to discover in what range amplitude dif-
ference the GD constraint will still be useful, and if the chosen parameters 1™ and g can influence the
outcome.

Another issue that needs to be solved in future research is the minus sign in the joint part of the acous-
tic update direction in the GD case. When inspecting the update directions in the simulations it was
found this part of the acoustic update direction has the wrong sign. Adding a minus sign in the code
solved the problem, leading to the results as presented in Chapter 4. Despite a thorough search for a
mistake in the derivation in Appendix B.2.1, as well as in the implementation in the code, no mistakes
have been found so far. However, since the idea of the GD method holds conceptually for cases with
gradients in the same direction between the acoustic and electromagnetic contrasts, it is most likely
there is still an error in the implementation, yet to be found.

A next step to improve the algorithm, is to extend the algorithm to CSI, in contrast to the currently used
Bl. Especially for cases where strong scatterers are present, and multiple scattering effects play a sig-
nificant role, CSI can improve the accuracy of the reconstructions. Nevertheless for the model used in
this research, no large improvements are expected, since we see no large difference in the separate
Bl and CSI reconstructions.

Lastly, an interesting approach for the joint inversion constraints, would be to implement a combina-
tion of the two algorithms, exploiting the strengths of both constraints. Testing different regularization
parameters, a better understanding of both the constraints and their compatibility could be obtained.

5.2. Translation to applications

In order to make the translation from this computational research, to real life applications, both the
choice of parameters and the type of joint inversion method are of importance to be considered. In this
section both are discussed.

5.2.1. Parameters

In terms of model parameters, it can be fruitful to experiment with several cases to get a better under-
standing if and how joint inversion can be used for seismic, medical or other applications. First of all,
it should be noted that the choice of parameters within this research is rather arbitrary, as it serves as
a proof of concept rather than a validation of an implementation. The background speed of sound and
speed of light have been chosen to have the values of water. However, the frequency dependence
in case of the electromagnetic parameters was not taken into account, causing the speed of light and
electric permittivity to not have realistic values for a center frequency of 1 GHz. On top of that, the pa-
rameters assigned to the objects embedded in the background are not based on properties of physical
materials. For specific applications the acoustic and electromagnetic parameters should be adjusted
to realistic combinations, as well as the center frequencies.
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In addition to that parameters can be chosen based on real material properties, it is interesting to choose
the parameters such that the initial motivational practical limitations of separate inversion are better
explored. In this thesis, the focus lies completely on improving the resolution of the electromagnetic
inversion results, while the acoustic inversion results can also suffer from indistinguishable materials
or tissues. Simulations when using a model with comparable acoustic parameters for different objects,
while clearly different electromagnetic parameters, are therefore essential to fully test the applicability
of the proposed method in practical situations. Naturally, when all previously described shortcomings
are solved and the suggestions are tested, the next step would be to test the joint inversion algorithms
using experimental data.

5.2.2. Methods of joint inversion

In this research, we focus on implementing joint inversion using structural information in the most chal-
lenging sense: alternatively constraining both data sets by the other. However, we see that with the
currently used frequencies, the acoustic reconstructions barely benefit from the joint inversion method.
Therefore one can argue, it would be sensible to use the acoustic inversion results as input for the
electromagnetic inversion, but not the other way around. The separate inversion could be seen as
structural pre-information for the electromagnetic inversion. The advantages over complete joint in-
version would be a more accurate structural constraint for the electromagnetic inversion from the first
iterations on and a slightly better acoustic inversion result.






Conclusions

In this project, two joint Born inversion algorithms based on structural constraints have been devel-
oped and tested on two models, first by using the acoustic model as input, followed by using simulated
data from both modalities. The most significant improvement in reconstruction resolution, compared
to separate inversion, is observed in the electromagnetic joint reconstruction using the gradient differ-
ence (GD) approach, on the model with the gradients of the acoustic and electromagnetic parameters
pointing in the same direction. The acoustic joint GD reconstruction does not show advantages over
separate inversion yet. Nonetheless, the joint inversion based on the GD constraint fails when using a
model where the gradients of the acoustic and electromagnetic parameters point in opposite directions.

Additionally, the joint electromagnetic cross-gradient (CG) reconstruction shows some improvements
compared to separate inversion by reconstructing an outline of the model, when using the acoustic
synthetic model as input for the inversion. However, no improvements are shown here within different
structural components. Moreover, when using both simulated data sets as input for the joint CG inver-
sion, the structure in the acoustic results are destroyed, with no improvement in the electromagnetic
results to compensate. Nonetheless, the CG approach works equally well on both the model with the
gradients pointing in the same direction and the model with gradients pointing in opposite directions for
the acoustic and electromagnetic parameters and therefore has a more general working mechanism
at this point, compared to the GD approach.
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Derivation Green’s functions

This appendix shows the derivation of the Green’s functions for the acoustic and electromagnetic wave
fields. The derivation includes both the 2-D and 3-D case.

A.1. Acoustic field

In this work, the Green’s function is defined as the impulse response of the homogeneous embedding,
or in other words, the field generated by a point source in absence of any contrast. To derive the
acoustic or scalar Green’s function in the temporal Fourier domain, G,(#,#'), the wave equation for a
homogeneous medium in the temporal Fourier domain with the source term being a point source needs
to be solved, hence ,
V26,7, 7)) + C‘”Z—GA(F, Py = —8(F — ), (A1)
A0
with position vector, 7, angular frequency w, the Dirac delta function §(# — 7#") and the speed of sound
of the embedding c, o, defined by c;f) = pokgy, With py the assumed constant mass density of the
medium and k, the compressability of the embedding. Note that from (A.1), the caret symbol, #, is
used to denote quantities in the temporal Fourier domain. The used definition of the Fourier transform
is G(7) = ffooo G (%, t)e!®tdt. On the infinite domain, and in the special case of #' = 0, spherical or circular
symmetry arises for the 3-D and 2-D case respectively. First the 3-D case is discussed, followed by
the 2-D case.

A.1.1. Three dimensional case
The solution of the 3-D wave equation in (A.1), can be found using an analysis in the real domain [45,46]
or in the complex plane [47]. Both derivations are given for completeness.

Real domain derivation
Due to the spherical symmetry in 3-D and considering the case 7 # 0 and #’ = 0, equation (A.1) reduces
to

1d]| ,dé32@#0)| w?, ﬁ
| AN L T G302 ) = A2
el e + Z G3P(#,0) = 0. (A.2)

Multiplying equation (A.2) with r2, using the product rule on the first term and dividing again by r, yields,

dG3P(#,0)  d2G3P(#0) w? ... s
2 Adr +r firz + rcz—GjD(r, 0) = 0. (A.3)
A0

Noting the second derivative of rG3P (7, 5) can be rewritten as,

(A.4)

@y dGPE0) | d [ d6PPED)| L dGPED) | d26iPE0
—[rGjD(?,o)]=M+_r a B0, dei (10) d7Gi( )’
dr? dr dr dr dr dr2
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equations (A.3) and (A.4) can be combined into

2 S w? S
— [r63° @ 0)] + 763 #0) = 0. (A.5)
dr Cao

Equation (A.5) is a second order ordinary differential equation (ODE), which has the solution
TGAED(F, 6) = C e”iwT/Ca0 4 C etiwT/Ca0, (A.6)

with C; and C, constants to be determined. The first term in equation (A.6) represents outward propa-
gating waves, while the second term represents inward propagating waves. Since the second term is
unphysical, it is disregarded. The remaining solution can be substituted into equation (A.1), integrated
over a small sphere centered at # = 0 of radius € — 0, to yield C; = (4m)~1. Generalizing the case for
7' # 0, r can be replaced by the distance from #' to the observation point 7. This gives the 3-D scalar
Green'’s function

R VP

GO0 =) =

(A7)
with which equation (2.10) has been derived.

Complex plane derivation

A method to avoid having to disregard a mathematically valid solution, as necessary using the real
domain derivation, is by evaluating the integral that is the solution of the spatial Fourier transform of
(A.1) in the complex plane. The spatial Fourier transform of (A.1) and its solution are given by

—|kI2G3P —y2G3P = —1, (A.8)
~ 1
GjD = = (A9)
|k|? +y?

where from now on a tilde,”, above a quantlty denotes the a temporal and spatial Fourier domain, kis
the spatial angular wave number and y = l— + &, with § a small real number, which will be needed

later on in the derivation to create a complex pole. In the final stage the limit will be taken of § — 0,
2

w
such that 11my =-= To retrieve G3P (# — '), the inverse spatial Fourier transform,
A0

G —7) = o5 f G3Pe=k- =P qy k), (A.10)
v

is evaluated. Spherical coordinates are introduced, with dV(I?) = |I€|2 sin(6)d|k|d6d¢ and with limits
0<]k| <o, 0<8<mand 0 < ¢ < 2m. Rewriting the inner product as k - (* — ') = |k||F¥ — #'| cos 0,
the result of the integration over ¢ and 6 respectively, is

1 007T|
GPE-7) = Wff
00 |

i4m2|7 — 7 f 12 2
| |2 k12 +y

|2

sin 6 e~ ilklIF= F'|cos€d|k|d9 (A.11)

?N b

(00

(ei|f<||F—?’| _ e—uﬁnf—m)d“a (A.12)

N k] elKIF=7"14| k|, (A.13)
A2 |F =7 J k|2 + 2

d e-ilkllF=#"|cos® . Rl . .
where @ o = sin ge~lIkllT="Icos 8 s ysed to evaluate the integral over 8 by means of an

anti-derivative, and to yield (A.13) a change of variables and swapping of integration limits is used on
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the second term of (A.12).

To evaluate (A.13), a contour integration will be performed in the complex plane, using the complex

function f(z),
1

V4  1a_at
[ £t = i | e e (A14)
Cr Cr

with Cy the closed, positively oriented contour, being the union of the line I, the Iine‘on the real axis
from —R to R, and the semicircle in the upper half plane Iz, parametrized by I'; = Re't with t € [0, 7],
such that fCR f(z)dz = sz f(z)dz + er f(z)dz, as depicted in Figure A.1. Note that the integral to be

evaluated in (A.13) is equal to ,%imsz f(z)dz.

The contour integrals over Cr and I’y will be evaluated separately, starting with C;. Since Cy is a
positively oriented, closed contour, Cauchy’s residue theorem can be used to evaluate the integral.
The function f(z) in (A.14) has two simple poles, z; = iy and z, = —iy. Since y = iw/cyo + § and
w > 0,c40 >0and § > 0, z; lies in the upper left quadrant of the complex plane and z, in the lower
right quadrant of the complex plane, as shown in Figure A.1. As z, is the only pole enclosed by C, only
the residue of z; needs to be evaluated, which is done using the pole theorem. Here f(2) = p(2)/q(2)
is used with p(z) = ze?™ "'l and q(z) = i4n?|# — #|(z% + y?). Because p(z;) # 0, q(z;) = 0 and
q'(z1) # 0, the pole theorem and Cauchy’s residue theorem give

—yIF=7|
ff(z)dz — 2miRes f(z) = 2mi ). _ ¢
Z1
Cr

S A.15
0@ =7 (A1)

To evaluate er f(2)dz, Jordan’s lemma will be used, as the integral is of the form er g(2)e'*dz, with

g(2) = z/(i4n|? — #'|(z% + y?)) and a = |# — 7'|. The requirements of the lemma: g(2) is analytic in
the upper half complex plane exterior to I, T is a semicircle parametrized by Iy = Re't with ¢t € [0, ],
a > 0 and for all z € Ty there is a maximum My, > 0, such that |g(z)| < M and limg_,,, Mz = 0, are

met. Here the maximum of |g(z)| on I is found to be My = ﬁl—l%ﬁ' Therefore according to

Jordan’s lemma, the integral over I in the limit of R — o goes to zero,

}%i_r)l;loff(z)dz = 0. (A.16)
I'r

Now subtracting (A.16) from (A.15) in the limit of R — oo, the solution to the original integral in equation
(A.13) is found. Finally taking the limitof § - 0 iny = iw/cso + &, the Green’s function

C o oy
e~ lw|=7"|/ca0

GIPFE—-7) = ) (A7)

A7 — 7|

is obtained and we see the result of the real domain derivation (A.7) is reproduced.

A.1.2. Two dimensional case

For the 2-D case, again two different derivations yielding the same result are given, solving the 2-D
differential equation (A.1) directly [46] and integrating the 3-D result (A.7) over the z-axis to obtain the
2-D result [48]. A similar derivation in the complex plane as done for the 3-D case is not as simple,
since the resulting integral equation is not of the form where Jordan’s lemma can be applied and will
therefore not be discussed here.

2-D differential equation
Firstly, the 2-D acoustic Green’s function can be derivgd by solving (A.1) directly. Due to circular sym-
metry and when considering the case 7 # 0 and #' = 0 , equation (A.1) reduces to

d2G3P(#,0)  1dG}P(F0)  w? ,,p . =
- ——G2°(7,0) = 0. A1
dr? + r dr + cZo Ga (1, 0) =0 (A.18)
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Figure A.1: Complex plane with contours Cg (red), Ir (dashed blue) and T'r (dashed green) and the poles z; = iy and z, = —iy.

The solution to this second order ODE is given in terms of the zeroth order Hankel functions of the first

and second kind, H((,l) and Héz), respectively,

G2P(7,0) = CLHSD (wr/cap) + CHSD (wr/cap), (A.19)

where C; and C, are constants. Since only outgoing waves are considered, C; is set to 0. The constant
C, can be solved to be C, = —i/4 [46]. This gives the 2-D scalar Green’s function in terms of the zeroth
order Hankel function of the second kind H((,z) = J, — iYy, for the general case where #' + 0,

C3P (=) = - HEP (IF = 71/ca0) (A20)
with which equation (2.9) has been derived.

Integration of 3-D result

Another method to derive the Green'’s function for two dimensions is to convolve the 3-D Green’s func-
tion with a source that reduces it to two dimensions [48]. This source is located at (x,y) = (x”,y”) and
is an infinite line source in the z-direction. The convolution is given by

GIPF -7 = f S(x' —x")8(@y' —y")GP (#p — Hip)dx'dy'dZ’, (A.21)
VI
where in this case 7 = (x,y) is the 2-D position vector and #, = (x,y, z) is the 3-D position vector to

make the distinction. Now plugging in the found formulation for G3° (%, — 74p) (A.7), integrating over
dx'dy' and letting { = z — 7/,

. 1 [ e-lo/cao/G—x)+r—y)Z+(2
G207 — ) = — J dz, (A.22)
! ) -2ty

is obtained. Using the integral definition of the Hankel function of the first kind [54], and using that for
real arguments of the Hankel function H((,l) (x) = Héz)*(x),

@ i eikVaZee?
Hy” (kx) = = | ———=dt, A.23
0 ( ) T[_OO \/m ( )
can be compared with equation (A.22), to obtain the final result of the 2-D Green’s function
pop e e —i .
G (7 —7) = THg”(wV —#|/ca0)s (A.24)

which is the same result as the result in equation (A.20).
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A.2. Electromagnetic field

A.2.1. Three dimensional case
For the derivation of the 3-D electromagnetic Green’s function [45], the starting point are the Maxwell
equations, (2.11-2.14), in the temporal Fourier domain,

Vx E(F) = —iopoA@®,  (A25) v-[e@E@| =t =0, (A27)
Vx AR = iwe@E@) + /77, (A26) v [uoﬁ (f’)] =0, (A.28)

where 5(?) is the electric field, ﬁl(?) the magnetic field, ﬁ’r(F) the primary electric current density,

N

pb" (7) the primary electric charge density source, all in the temporal Fourier domain, p, the permeabil-
ity of the medium and e(#) the electric permittivity of the medium at location 7.

The wave equation for electromagnetic waves in the temporal Fourier domain (2.16) can be obtained
from (A.25 - A.28)ﬁ, by taking the curlpf both sides of (A.25), plugging in (A.26), using the vector calculus
identity V x (V x 4) = V(V - A) — V24 and the electromagnetic contrast in (2.17), to yield

- 2 - - - -
VED + 5@ = ool () - 0 xe ME® +7 (V- ED), (A.29)
E,0

with the electromagnetic contrast, xz(7) = cz(¥) — cz3, the speed of light at position 7, cz(#), and
the speed of light of the homogeneous background medium, cgo. The speed of lights are defined by
c;2(7) = ey, and cgf, = €olUy, With €, the electric permittivity of the homogeneous background
medium.

It is important to note that wave equation (A.29) cannot be solved directly using the Green'’s function
from the previous sections, since the vector components of the electric field are not independent and
there is a divergence term on the right side. To tackle this, first the wave equation will be split using
the fact that the total field can be split into the incident field and the scattered field (2.18). These split
wave equations are

2

V2EnC () + S Fin(7) = iwpefl () + V (v : Einc(f’)), (A.30)
CE0
-> 2, 2 2
v2set (7) 4 C“’Z_ ESCU(7) = —wyg(DEF) +V (v : ES“(F)), (A.-31)
E,0

with pi"¢(#) and Einc(f') the incident pressure and electric field, respectively, and p*¢t(#) and ES“(F)

the scattered pressure and electric field, respectively. The derivation of the Green’s function will be
treated separately, starting with the equation for the incident field (A.30).

Incident field

To continue, the Maxwell equations (A.25 - A.28) need to be determined for the wave equation of the
incident electric field. By splitting the equations or using the reverse argument which was used to obtain
(A.29), the following equations are found for the incident field

V x E‘inC(f.’) _ —iwﬂoﬁlinc(f)), (A.32) V- [eoginc(f’)] =pP"(#) =0, (A.34)
V x A7) = iwe, ENC(F) + JPr (@), (A.33) v [uoﬁ ””(?)] =0, (A.35)

with ﬁinc(f') the incident magnetic field. To keep the analogy with the acoustic waves, an analogous
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vector Helmholtz equation is to be found. To get here, it is required to introduce the vector potential
A™c(#) and the scalar potential ¢ (7). Using the vector calculus identity, V- (V x AT) =0, and equation
(A.35), the vector potential can be introduced as

V x Aine(7) = fine (@), (A.36)
Now substituting (A.36) into (A.32) yields
v x (EW(?) + iwﬂoﬁi’w(?)) 0. (A.37)
Next, the scalar potential can be introduced using the vector calculus identity, Vx (V¢) = 0, and equation
(A.37), such that
EMC () + iwp A (#) = =V (7). (A.38)
Now to satisfy equation (A.33), equations (A.36) and (A.38) are substituted into it to obtain

2. N 2 o 2
v x (v X Am(?)) = —iweVHIne(P) + C“’Z—A”w(?) NG (A.39)

E,0

By rearranging and using the vector calculus identity V x (V x /T) =V(V- AT) — V24, this is reduced to

- - 2 - -
\Y (v - Aine (7)) — V2ZAIMC(7) = —iwen VI (7) + C“’TAL'”C @ + /P (). (A.40)
E,0

Since the divergence of the vector potential has not been set yet, equation (A.40) can be simplified by
using the Lorenz gauge condition,

V- AnC () = —iwey e (), (A.41)

such that equation (A.40) reduces to

2 w? 2 2
2 ginc 3 inceyy — _jpr(3#
VoA () + CszoA @) JPT(7), (A.42)

which is the vector Helmholtz equation. This second order partial differential equation is linear, that is
it can be expressed as the linear superposition of the solutions due to point sources, which is the 3-D
Green’s function (A.7) as discussed in the previous section. This gives

Ay = [ @i - injranav ) (A.43)

7'eD
Substituting (A.41) into (A.38), the equation to determine Ei"C(F) from jinc(f’) is obtained,
2 2 1 2
Fine(?) = —iwpoAine(?) + ——V (v : A‘”C(?)). (A.44)
Llweg
Inserting (A.43) into (A.44), the electric incident field integral equation,

R . . CZ A - -7 2 =7 =27
EMe(?) = —iwpq f [1 + %W-] G3P (F — #HJPT (#)dV (), (A.45)
7'eD
is obtained. This can be simplified to
Finc(iy = f G2 (7 — #)SET () AV (), (A.46)

7'eD

with primary source term of the electric field Egr(?) = —iwuof”r(F), such that (2.19) is reproduced.
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Scattered field
Now a similar procedure will be followed, starting from the wave equation for the scattered field (A.30).
The Maxwell equations leading to this wave equations are

V x Evsct(F) — —iw#oﬁSCt(F), (AA4T) V- [E(T’)ESCt(r)] PP () =0, (A.49)

¥ x At (7) = iweo bt () + iw(e(®) — e)B(®), (A48) V- ol @] = o, (A50)

with ﬁSCf(F) the scattered magnetic field. Again a vector potential ES“(F) and a scalar potential ¢t
will be introduced. As for the vector potential, the vector calculus identity V - (V x Z) = 0, and equation
(A.50) are used to obtain
V x ASCE(7) = HSCE (7). (A.51)
Next, (A.51) is substituted into (A.47),
v x (ES“(?) + iwuoﬁsa(?)) = 0. (A52)

Now the scalar potential function for the scattered field can be introduced, by combining equation (A.52)
and the identity V x (V¢) = 0, as

ESCt(7) + iwopg A5 (7)) = —V@set (). (A.53)
To satisfy (A.48), equations (A.51) and (A.53) are plugged in to obtain

V X (VX A“t) = —iwen VSt (#) + A“t(r) +iw(e(@) — EO)E(T) (A.54)

Using vector calculus identity V x (V x A) =V(V- A - V24 ) (A.54) becomes

v (v : ZS“(?)) — V2ASCL(R) = —iwe,VGSet () + “’—25 R + iw(e(®) — o) E (D). (A.55)
0

The divergence of the vector potential is set by the Lorenz gauge,
V. ASCE(R) = —iwey (D), (A.56)

which can be substituted into (A.55) to yield the vector Helmholtz equation for the scattered vector
potential

- 2 b 2
VZA\SCf(T'Z) + (:‘)_ZAASCt(?) = —l(J)(E(?) - Eo)E(F) (A57)
0

The solution to this second order partial differential equation is the convolution of the 3-D Green’s
function (A.7) with the term on the right side of (A.57), which is

A5t (@) = iw f G (F —7) [e(F) — €0l EF)AVE). (A.58)

7'eD

Substituting (A.56) into (A.53), 55“(17) can be expressed in terms of ZS“(F)

2 2 1 2
ESCE(P) = —iwugASCH(F) + mv (V . AS“(?)>. (A.59)
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Figure A.2: Schematic representation of four TM and TE waves propagating into the imaged 2-D surface in the (x,y)-plane (gray
surface), E¢ (blue arrow) the incident electric field and kinc (green arrow) the incident wave vector representing the direction of
propagation. (a) TM waves, with electric field completely perpendicular tot the surface, (b) TE waves, with electric field completely
parallel to the surface.

Inserting (A.58) into (A.59), the electric scattered field integral equation,

- 2 -
ESCE(#) = w? f [1 + ZE—'ZOW-] G3P(F — Py FHEF@)AV (), (A.60)

7eD

is obtained. This can be simplified to

By =a? [ @G- ae@EEvE, (A61)

7'eD
such that (2.20) is reproduced.

3-D electromagnetic Green’s function

Finally, it can be seen that from both the integral equation of the incident field (A.45) and (A.46) and the
integral equation of the scattered field (A.60) and (A.61) the expression for the 3-D Green’s function for
the electric field can be written as

2 e—iwlP—7|/cgo
ED ) —_— (A.62)

GPF—7) =1+ Llyy.
P (-r)= w? 4|7 — 7|

which is equal to equation (2.23).

A.2.2. Two dimensional case

For the 2-D electromagnetic case, the derivation of the Green'’s function is for the largest part equal to
that of the 3-D case. In particular, one method to obtain it, is integrating the 3-D result over the z-axis,
like has been done for the acoustic 2-D Green'’s function.

The same result can be obtained when considering the Maxwell equations in two spatial dimensions
[50, 51]. In this case, the vector calculus must change. When an outer product is involved, AxB
will be written in the 2-D case as ffl . B, with ffl = (Ay,—Ay). Accordingly the differential operator
in two dimensions is written as V = (d/dx, d/dy), the curl will be replaced by V, = (d/dy,—0d/dx),
the Laplacian by V2 = V-V =V, -V, = (0%/0x?, 0%/0y?) and finally the vector calculus identity of
the curl of a curl will be V, (V, - /T) = V24 — V(V - /f). Using this vector calculus, the derivation of
the 2-D Green’s function of the electromagnetic field is completely analogous to the derivation of the
3-D Green'’s function. However, in 2-D one can distinguish transverse magnetic (TM) and transverse
electric (TE) waves, of which the geometries are shown in Figure A.2. First the derivation of the TM
case is discussed, followed by a discussion of the TE case.
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TM waves

In the case of TM waves, the magnetic field is transverse to the vector that describes the imaged plane,
i.e. the normal [30], [43]. This means, the incident magnetic field is completely parallel to the imaged
plane, and the incident electric field is completely perpendicular to the imaged 2-D surface, as shown
in Figure A.2(a). In other words, the electric field no longer has a direction into the 2-D surface, as it

points in the z-direction. From (A.32) and (A.36), it can be seen that ff““(?) is parallel to 1?7""6(?). The

2-D divergence of /finc(?) is therefore zero. This means, that for the 2-D TM case, equation (A.44)
reduces to . .
EMe(#) = —iwp A (). (A.63)

Note that in (A.63) the electric field and the vector potential are still written in vector notation, but that
the direction in the 2-D plane in this case has no definition, not containing a z-direction. Now continuing
with the derivation, (A.43) is inserted into (A.63), yielding

B = f G20 (7 — 1) (—iwyofpr(?’)) dAG), (A.64)

7#'eD
where —iwuo;pr (#) is the source term $%7 (#), with fpr (#) and therefore S& (#') pointing in the z-direction

inthe 2-D TM case, as they are parallel to l:z(?). Equation (A.64) shows the 2-D electromagnetic Green’s
function for the TM case is identical to the 2-D acoustic Green’s function and therefore is

GOTM 1y = Tl}ngz)(ww —#'1/cg0). (A.65)
TE waves
The case of TE waves is shown in Figure A.2(b). Here, the incident electric field is transverse to the
normal vector of the imaged plane, or, in other words, parallel to the imaged 2-D surface. Now the
electric field only has x- and y-components. As the divergence term in (A.44) will not be zero, the
derivation of the 2-D electromagnetic Green’s function for the TE case remains completely identical to
the 3-D electromagnetic case, except for replacing the scalar 3-D Green’s function by the scalar 2-D
Green’s function, to finally yield

. c? —i
GEPTE(R — 71y = <1 + %VV‘) TH(()Z)(G)W —7'|/cg0)- (A.66)






Derivation update direction and
amplitude joint inversion

This appendix holds the derivation of the minimization of the error functions for the joint inversion, to find

the update directions, d{” and d{” and the corresponding amplitudes, a{™ and a{", of both contrasts
at the n-th iteration, as given by

X./(ln) _ X/(;n_l) n agn)dﬁn), (B.1)
Xgn) _ Xgl_l) n aé")dén), (B.2)

where Xﬁ”) is the acoustic contrast at the n-th iteration and )(gn) the electromagnetic contrast at the n-th
iteration. The corresponding separate residuals at the n-th iteration, rff") and rbg") are given by

Tén) = pmeas _ LAX(n): (B.3)
) = Emeas — Ly, (B4)

with L, the acoustic operator given by Lax'™ = G, * (02p™x{) and Ly, the electromagnetic oper-
ator given by Lgy(” = Gg * (w2E™cx™), where w is the angular frequency, G, and G5 the acoustic
and electromagnetic Green’s functions, * the spatial convolution operator and, p™¢%S and E™¢%5 the

measured pressure and electric field, respectively. Note that from here and onward, the caret symbol,
A, is used to denote quantities in the temporal Fourier domain, with the used definition of the Fourier
transform p(?) = [ p(7, t)el®tdt.

First the derivation is given for the cross-gradient approach (CG), the acoustic and electromagnetic
case treated subsequently, next, the derivation for the gradient difference (GD) approach is shown.

B.1. Cross-gradient approach

Within this section the derivation of the update direction and the update amplitude is shown for the
CG constraint. In the developed algorithm, the acoustic contrast will be updated first, followed by
the electromagnetic contrast. Therefore, the electromagnetic derivation will follow after the acoustic
derivation of the update parameters.

B.1.1. Acoustic field

The additive acoustic error function, Errfg"), to be minimized at the n-th iteration is

A m)y,2 (n) (n-1) 2
) ) m _ P —Laxa || Vxa” xVxg Il
Erry” =Errg g+ Evrycec = - +p — — , (B.5)
A A, BI ACG [[pmeas||2 A ||VX£1n 1) % VXLgn 1)”2
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where ErrA 31 is the contribution as seen in separate Born inversion, ErrA CG the contribution due to
the joint structural constraint by the CG term, p™¢%® the measured scattered field and g, the acoustic
regularization parameter for the joint inversion. The Ioca’uon dependenmes of p™meas vy, and yy are
left out for simplicity. Note that within the numerator of ErrA CG the electromagnetic contrast for the
(n — 1)-th iteration is used, as the acoustic contrast is updated first.

Update direction
To find the update direction of the acoustic contrast, a Fréchet derivative of error function (B.5) can

be used, finding the steepest negative direction. This will be done for both terms separately. For the

Errj 3)1 we have:

om0 - L (a0 o) P - e LR
_ im |

(n) ”ﬁmeaS”Z £50 € ’

0xa
where ¢ is a small real number and dA 51 is the contribution of Errfg, to the update direction df,") in
equation (B.1). Equation (B.6) can be reduced by expanding the brackets and square terms, taking the
acoustic operator to the other side of the inner product, using equation (B.3) and finally taking the limit
of e » 0, to yield

-1 1 -1
oErryy 1[I VN2 + €2 |Lad a1 — 2eRe < 1"V, Ladl, > —lin V1 ®7)
ax™  PesS|Z e e '
-1
= ey I [e”LAdg"g,”z —2Re < Lir{" ™, a3, >| (B.8)
—2Re < LIr{™™,d{y, >
A,BI (B.9)

meas||2 ’
[lpmees]|

In order to minimize equation (B 9) the inner product of LJr ™1 and dg?,, is to be maximized. This is

achieved when LJr ™1 and dA 4, are parallel. Thus for dg_l,;, the following expression is found,
diy, = Lir" Y. (B.10)

The Fréchet derivative of the second term in equation (B.5), Errjfé)c, is given by

OBTTice _ Ba e (0 a2 )} T D x v ) 2
™ oD oD im . (B.11)
dy Xa ||V XVxg ||2£—>0 €

where ¢ is again a small, real number and dA ¢c is the contribution of Errfé)g to the update direction

(") in (B.1). By expanding the brackets, expanding the square terms and taking the limit of ¢ — 0,
equat|on (B.11) is reduced to

IETTLLs Ba O A2 P A vz |2 MG S| 6.42)
L R £
Pa n) (n-1) M) Lo (-Dg. (-1 _o_(n-1)
e||Vdy e XVxg lIPH2Re<djcoXVxg  Vxai XVyxg >| (B.13)
”V)((n 1)va(n 1)||2$—>0[ ACG ACG ]
_ 2B4Re < V{0 x Vx& D vy Y x vy > 514
- (-1 -1, 2 (B.14)
IVxa 7 xVxg Il
2B8,Re < Vd™ x g(n=1) p(n-1) 5
_ % ) (B.15)

||b(=1)]|2
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where in (B.15) d™ = d{2;, ™ = vy and b™ = vy{ x vy to simplify the expressions in the rest
of the derivation. Next, the mngr product Ln equation jB.15) is rewritten to the integral form, and the
vector calculus identity (V¢p) X A =V X (¢pA) — ¢p(V X A) is used to obtain

0E rrfé)a 20,4 " -
S kIwaWWﬂDhWW—WNW@W%JﬂﬁWV (B.16)
axM b2

Next, the vector calculus identity V - (ﬁ X E’) =(Vx AT) ‘B - (Vx 1§) - A is used in the first term on the
right-hand side of (B.16) and subsequently Gauss’ theorem is applied to yield

0E rrgé)(; 204
o™ |-y

j ((d(n)ﬁ(n D)xp (- 1)) (VXg(n—l)*).d(n)g(n—i)_d(n) (Vxem-D).5n-Dqy (B.17)

2Ba

|—|b(" o Jd(n)(é’(n 1))><b(n 1)*d5+Jd(n)<va(n 1)) gn-1) _ g (ng(n—l)),l;(n—n*dv_ (B.18)

oV 14

Since all terms in the surface integral consist of contrasts, and the contrasts are assumed to be zero on
the boundary, this term vanishes. On the remaining volume integral the same vector calculus identity

as before, V - (ff X E) = (V X /T) ‘B - (V% §) - 4, can be applied to result in

9Err™. —2B4Re [, d™V . (*m 1) x pn- 1>*) A%

TacG
= (B.19)
0x4" [ERlIE
To minimize this result, d™ should be parallel to V - (8("‘1)* X 5("‘1)), which gives
a6 = V- [V x (Va0 x v V)] (B.20)
Finally, the total update direction of the acoustic contrast is given by
A = ddy + a0 = LD + 0 [720" x (T x v D). ®.21)

Update amplitude
To find the update amplitude of the acoustic contrast, " , in equation (B.1), error function (B.5) is

minimized with respect to o (™ "I order to do this, the error function first needs to be rewritten, starting
by plugging in equation (B.1), to obtain

. - ”ﬁmeas _ LA (X,Eln_l) + a[gn)d/(ln)) ”2 .\ ‘B ||V( n-1) + (n)d(n)) X VX(n 1)”2 (B 22)
Ty = . . .
A [|pmeas||? A 11§ (n-1) ><V)((n 1)”2

Next, by expanding the brackets and square terms and using the residual in (B.3), equation (B.22)
becomes

o P12 + @ LadS? 11 - 2aPRe < 7"V, Lyd{” >
A~ = [|pmeas||2

(B.23)

IV xS D112 4+ a2 1Vd x| 12420 {VRe < VxS Oy vdxvp Y >

V2" v 12

XVxg

Ba
xXVy

Now, the error (B.23) is minimized with respect to ("),

9Err” 20V |[Lad{V||? — 2Re < 1"V, Ly >
daiM [[pmeas]|?
2a”11Vd{Y x V|2 + 2Re < VY x vp Y, vag? x v >

B =0. (B.24)
! |w“”xmeF
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Reordering the terms, « ) is found to be

a(n)_Re<r,§"‘1),LA (")>||v = T D 12-8, Re<Vy M Vxvy D vd Wxvy D> | [pmeas| |2
A - .

(B.25)
1 1 1
ILAdSP 21V xS 1124 Bl VAP xV &0 2| pmeas| |2

B.1.2. Electromagnetic field
For the electromagnetic case, the additive error function, ErrE ™ to be minimized at the n-th iteration is

||Emea5 (n)”Z ||V (n) xvx(n)HZ
£ N2

Errd® = Errd'y; + Errids = (B.26)

”Emeasllz ||V (n-1) XVX

where ErrE 31 is the contrlbutlon as seen in separate Born inversion, ErrE CG the contribution due to
the joint CG constraint, Eme‘” the measured scattered electric field and B the electromagnetic regu-

larization parameter for joint inversion. The location dependencies of E™eas  y. and yj are left out for

simplicity. Finally, note that within the numerator of ErrE CG, the acoustic contrast or the n-th iteration
is used, as it was updated before the electromagnetic contrast.

Update direction

Similarly as in the acoustic derivation, the update direction of the electromagnetic contrast can be found
using a Fréchet derivative on the error function (B.26), to find the steepest negative direction, for both
terms separately. For the first term, ErrE 31 this gives,

2 1 2 1
aEwgg, 1 |nEmees —ip (7Y + eaff,) 117 — 1E™ee — Lpx V)12
= — lim , (B.27)
6)(5 ||E'"meas||2 -0 3

where ¢ is a real number, dgfg, is the contribution of ErrE(rg, to the update direction dé”) in (B.2). Fol-

lowing the same argument as in Section B.1.1, equation (B.27) reduces to

dErryY,  —2Re < LIn\"™V a1 >
= = ! , (B.28)
6){ ||Emeas||2

To m|n|m|ze equation (B.9), the inner product of LJr ™1 and dg_g, is to be maximized. Now, LJr (n-1)

and dE 41 are set parallel, to result in
dff; = Lin" ™. (B.29)

The minimization by means of a Fréchet derivative with respect to the electromagnetic contrast of the
second term in (B.26) is written as,

1 1
OErT Be 1 ) (T + eaf2e ) 12 = 1V x vt P2
o) =) =) lim , (B.30)
o IV x gz 0 €
where dE ¢c is the contribution of Erré’é)g to the update direction d . By expanding the brackets,

expanding the square terms and taking the limit of £ - 0, similar to the steps for the acoustic case in
equations (B.12 - B.15),

(')Err(ré)c 2BgRe < V)((n D VdgnC)G, (n) X V)((n D
™ -1 (n— 1) 2 (B.31)
OXE [IVxa XVyg Il

2BzRe < @™ x vd™, p™ >
- MCETE , (B.32)
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is obtained. In (B.32) d™ = d{2;, a™ = vy, b = vy x vxd' ™ and b1 = vy "D x vy 8t
are used for simplification of the notation. Next, equation (B.32) is written in the integral form, and a
circular shift is applied to the triple product inside of the integral, A (§ X 5‘) =B (5 x A). After that the
vector calculus identity (V) x 4 = V x (¢p4) — ¢(V x 4) is used to result in,

dETTS": 2 -
(i)CG %P ge f (va®™ x 57 - amay (B.33)
2 ST
2 > >
= 2P e [ (v x (a5)) a0 — 4 (v x50 - aav. (B.34)
T

Now on the first term in equation (B.34) the vector calculus identity V- (Ax B) = (VxA)-B— (VxB)-4
and subsequently Gauss’ theorem is applied to the first term,

AErr™ 2 N N -
ice 2P po V- (d®b® xd™ ) +(Vxa™)-d™pm* —a® (vx5™*)-a™av  (B.35)
9 2]1) ||b(n—1)||2
2 > = -
:WLZ”Z e f AMB* X GM s+ f 4 (Tx ™) -5 —d® (VxB®*)-a® ay|. (B.36)

4

Analogous to the acoustic derivation, all the terms within the surface integral consist of contrasts, which
are assumed to be zero on the bound;ary.ﬁThis term}herefore vanishgs. The remaining part reduces,
using the vector calculus identity V- (A X B) = (VX A)-B— (VX B) - 4, to

dErn{Y,  —2PgRe [, dMV- (f,(n)* x a(n)) dv

FOR e (B.37)
To minimize (B.37), d™ and V - (5(") X &(”)*) are set parallel to obtain,
dfle = V- [(vaf x V) x vl (B.38)
=v. [v;(,gm (v;((” D V)((n))]. (B.39)
So in total, the update direction for the electromagnetic contrast is given by
4 = S, + 0 = L™ v [T x (T8 x 7). (8.40)

Update amplitude

To find the update amplitude of the electromagnetic contrast, a,(gn) in equation (B.2), a similar deriva-
tion as used in the acoustic case is followed. The error function (B.26) is rewritten and subsequently

minimized with respect to aé"). Firstly, equation (B.2) is plugged into the error function, to obtain

l1Emees — L (g™ + afdfP) 112 197 x V(7 + afVdg” ) |12
Erri™ = +B (B.41)
E R meas |12 E Vy§ (n— 1)><V (n-1)|2 : :
[|Emeas|] I 280

Next, by using the residual in (B.4) and expanding the brackets and square terms equation (B.41)
becomes

—1 2 1
g _ IO+ @ Led I — 20f"Re <"V Led® > B.42)
E Hg‘measllz ‘

17X VD112 +al? | Vx x Va2 +2a " Re < VxdY x x 8 Oup Y xvd >
V25" <1

XVxg
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Now, the error (B.42) is minimized with respect to a(n)

dErY  2af”||Lgd{V||? — 2Re < 1", Lgd” > s
aa(n) B ”E‘meas”z
2a Ve x Va2 + 2Re < V(P x vy, vy x vd( >
.BE ”V)((n D y VX(n 1)”2 =0. (B.43)

Reordering the terms, a ) is found to be

o _Re<i" OLpdi” > 1Vx XN ppRe <V UxV OV xvdg? S| Eme 2
E .

(B.44)
ILed 21V Oxux 8012 4+ By |V xwd (| 2] | Fmeas| 2

B.2. Gradient difference approach

This section holds the derivation of the update direction and amplitude, when using the GD constraint.
In the developed algorithm, the acoustic contrast will be updated first, followed by the electromagnetic
contrast. Therefore, the electromagnetic derivation will follow after the acoustic derivation of the update
parameters.

B.2.1. Acoustic field

The error function to be minimized when using the difference in normalized contrast gradients as the
structural constraint at the n-th iteration is

™ ™) m _ |pmer = LAX(n)”Z —()  —(n-1),,
Errg” = Erry gy + Errjep = pmeas |2 +BallVxy —Vxg % (B.45)

where Errj G)D is the contribution to the total error due to the joint structural constraint by the difference

in contrast gradients. The location dependencies of p™¢%%, v, and yj are left out for simplicity. Note

that in the Errf};),,-term the electromagnetic contrast of the (n — 1)-th iteration is used, as the acoustic

contrast is updated before the electromagnetic contrast. In (B.45), ¥ _( ) and )( ) are the normalized

contrasts of the acoustic and electromagnetic field at the n-th |terat|on and are defined as

(n) (n)
)—((n) X4 X4 (B.46)
4 Max|Re(x,)| Xg",{,ax’
(n) (n)
—n) _ XE XE
X (B.47)
¢ MaXlRe(XE)l Xl(inl)\/lax

Update direction

The steepest negative direction of error function (B.45) is found using a Fréchet derivative. The update
direction for the term Errf;), is identical to the earlier derivation with the result given in equation (B.10).

The Fréchet derivative of the second term on the right-hand side in (B.45) is given by

m (n-1) n)
OETT5) . Xa ~ tedygp —(n-1) —(n-1) _ _—(n-1)
(n) zﬁA lim — ||V< (n-1) -V E ”2 - ”vXA _VXE ”2 ) (848)
-0 &
0Xa XAa,Max

where ¢ is a small, real number, d?,, is the contribution of Err{"%), to the update direction dS in (B.1)

and )(gf,;,ll)x is the maximum of the absolute value of the real part of the acoustic contrast at the n-th

iteration. By expanding the brackets, expanding the square terms and taking the limit of ¢ —» 0, equation
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(B.48) is reduced to

aErrﬂ)D 1 —(n—-1) —(n-1) € —(n-1) —(n-1)
—ay o = Balim = IV = VR 4 ey VA |~ IIVZ, T =V I (B.49)
aX XA,Max
. € 2 ( 1) —(n 1)
4 lim ——— V{2,112 - — Re<Vx; -V Va2, > (B.50)
(X,(Llnl;(?x) XA,Max
2B, —(n-1) _ _(n 1)
= ———5 Re < V(¥ Va2, > . (B.51)
XA,Max

Since the goal is to find d4 ¢p, and the gradient of it, the inner product of the discrete gradients requires
some further inspection. The vectors within the inner product in (B.51) have a dimension of 2 x Ny x N,,
with N, and N,, the number of discrete steps of the domain in the x- and y-direction respectively. This
inner product can be rewritten into the sum of two (N,,N, )-dimensional inner products as follows

<V Vd>—<aa ad>+<aa ad> (B.52)
@ ~ T ox’ ox oy’ ay '
. —(n-1) —(n-1) _ . . . . .
where the notation a = y - XA and d = d, ;p is used. In this thesis, the central difference is

used for the discrete differentials. The first term in (‘B.52) is therefore written in discrete form as

1

1
Shy S i1 T i1,y div1,j—di-1j >=2Tx[< Q1= io1,j div1,j > — <Qpy1—i—1j, di—1,;>], (B.53)

where Ax is the spatial spacing of the domain, i the index for the x-direction and j the index for the

y-direction. Now when disregarding the first two and the last two rows the vectors, the two terms on
the right-hand side of (B.53) can be recombined to yield

1
2Ax [< 2a;; — ;3 — Qiy2,5, dij >] . (B.54)
The same procedure can be done for the derivative in the y-direction, to give
1
A% [< Zai_j — Qi j—2 — Qjj+2, di,j >] . (B.55)

Summing (B.54) and (B.55), not including the outer two rows and columns of the vectors, the final
discrete inner product is obtained

hx Sol<4ai —ai2j = Qivaj — Qi j2 — Qi o, dij >, (B.56)

where the left side of the inner product can be recognized as the discrete negative Laplacian. Therefore
(B.51) can be rewritten as

AErr("Y 2
Acp _ 2P Re<V? (% =%y ).d5op > (B.57)
5, (=D
Xa XA Max

—(n— 1) (n 1)

To minimize this result, V2(x, )* should be parallel to dA op, to give'

—(n-1) _ —_(n-1\"
il =2 (xa V-7 ) . (B.58)
In total, the update direction for the acoustic contrast when using the difference method is

df” = d), +d50, =L+ v (20 -7 ) (B.59)

"Inspection of the simulated dE{ED has shown an extra minus sign is required in front of equation (B.58), for the update direction

to be correct. It is unclear whether there exists a flaw in the derivation, or in the implemented code.
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Update amplitude
To find the update amplltude of the acoustic contrast, ( in equation (B.1), error function (B.45) is

minimized with respect to ay ™ In order to do this, the error function first needs to be rewritten, starting
by plugging in equation (B.1), to obtain

||pmeas — (X,gn 1) + a(n)d(n)) ”2
”pmeasllz

)

E rrén)

(n-1)
XAr,lMax

(n—-1) m ()
X +a, dy —(n-1
+3A||V< 4 )—VXS‘ 2. (B.60)

Next, by expanding the brackets and square terms and using the residual in (B.3), equation (B.60)
becomes

o IR + afP?ILadiP ) - 2a{VRe < 1"V, Lyd{ >
Erry” = ||ﬁmea5||2 + (B.61)
—(n-1) —(n-1) ,BA A ,BAaA (n 1) _—(n-1)
BallVZ, =IO+ A | VAV |+ Re <V, -V, vdY>
XA,Max A,Max
Now, the error (B.62) is minimized with respect to ("),
9Err”  2a{V|[Lad{”||? — 2Re < 1"V, Lad{” >
da™ |[pmeas] |2
2 —
fA_’; | 1va{™ |2 + (ﬁ‘*l) Re <Vry Y —vze ™ v >=o. (B.62)
(XA,Max) Xa,Max
Reordering the terms, « ) is found to be
Re < 7" D LydM > ——2A_Re < vz —vxl Y, va(® > |jpmeas) 2

mn _ XA ,Max
ay? = . (B.63)
ILAdfV 112 + —LA—||vdV| |2 [pmees| |2
(XAMax)

B.2.2. Electromagnetic field
The error function for the electromagnetic contrast to be minimized when using the difference in con-
trasts as the structural constraint at the n-th iteration is

2 n)2
[|[E ™% — Lgxg || ) L=
= Errg) + Errigp = +BellVE,” = VI 12, (B.64)
||E meas”Z

Errbg m =

where Errbg G)D is the contribution to the total error due to the GD constraint for the electromagnetic

case and the location dependencies of E meas’ v, and yg are left out for simplicity. Note that in the
electromagnetic case, within the Erré’gD—term, the acoustic contrast of the n-th iteration is used, since

it was updated before the electromagnetic contrast within the same iteration.

Update direction

The update direction for term Erré 3)1 is identical to the earlier derivation with the result given in equation

(B.29). The Fréchet derivative of the second term in error function (B.64) can be written as

TS, (8D +edfdp —)_ o=(n-1)

— _ﬁEllm WXy =V = |IP=1IVXs =YXz II?|, (B.65)
@) D)

aX E,Max

where ¢ is a small, real number and dE ¢p 1s the contribution of ErrE('g)D to the update direction d,(,;n) in

(B.2), and )(,(,;fl,)v,ax is the maximum value of the absolute value of the real part of the electromagnetic
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contrast at the n-the iteration. By expanding the brackets, expanding the square terms and taking the
limit of ¢ = 0, equation (B.30) is reduced to

OErr(n) 1 —(n) —(n-1) € d™ 2 —(n) —(n-1), >

—n = fe hm WVXa  —=VXe = — = Vdeenll® = 1IVX, —Vxg "l (B.66)

()] -1

OXg XE,Max

—(m) —(n-1)
= f; lim —ZII vd{olI? - (n SRe<vxy —vze " vdlY, > (B.67)
(Xg Max) XE Max
2P —(n) _ —(n-1)
= Re < V()(A — X5 ),Vd,(z—n();D >, (B.68)
XE Max

Following the same steps as in the acoustic case in equations (B.52 - B.56), again the inner product in
equation (B.68), can be rewritten as

OETT ey 2 Be —() —(m-1D\ L,
22 = - Re < V2 (X Xy ) dSn > (B.69)
ax X
E E,Max

To minimize this result, V2 ()(f,") x - 1)) should be parallel to Vdy? ,, to give
—(n-1) _ —m\"
il =V (75 =%a) - (B.70)
In total, the update direction for the acoustic contrast when using the difference method is
df” = d), +df2p = LI+ 2 (77 - 77) (B.71)

Update amplitude
To find the update amplitude of the electromagnetic contrast, aén) in equation (B.2), once again error

function (B.45) is minimized with respect to a(") To start, the error function first is rewritten by plugging
in equation (B.2), to obtain

2 (n-1) M ;M\ (2 1 n) ,(n

16 meas — L (x{' + afPdf) | VG + aal)

Err{™ = y + B[V — (n—1)E E212 (B.72)
||E meas”Z

XE,Max
Next, by expanding the brackets and square terms and using the residual in (B.4), equation (B.72)
becomes

) _ D12 + af?ILgdP |12 — 2afPRe < 7", Lgd{” >
m

> B.73
||E‘ meas||2 ( )
( ( )
)  _—(n-1) Bea 2fg —(m) _ =(n-1)
BellVZa =V 117+ —2” vad |2 - “E2E Re < vz —vEy Y, vdd >
(XI(E I;ax) XE Max
Now, the error (B.74) is minimized with respect to a(n)
OErny”  2a”||Lgd{”||? — 2Re < iV, Lgd{” >
60((") B ||E meas||2
n)
2Ppag —
%”W(“)Hz e Re < v - vEe TV, vdf >=0. (B.74)
(XE Max) XE Max

Reordering the terms, o is found to be

Re < TE(n_l),LEdl(gn) >+ (n—1) Re < VX;) Vx Vd(n) > ||E' meas| |2
a,(gn) - = XE,Max = _ . (B75)
[|ILeds” |2 + (n—l)ZHVd [12||E meas||2
(XE Max)

_(n 1)
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