
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Beyond the Traceback
Using LLMs for Adaptive Explanations of
Programming Errors

IN5000: Final Project
Alexandru-Radu Moraru

Beyond the
Traceback

Using LLMs for Adaptive Explanations of
Programming Errors

by

Alexandru-Radu Moraru

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended on Friday August 29, 2025 at 1:00 PM CEST

Student number: 4798961
Research Group: Web Information Systems
Project duration: January 6, 2025 – August 29, 2025
Thesis committee: ir. S. Biswas, TU Delft, Daily Co-Supervisor

Dr. ir. U. Gadiraju, TU Delft, Thesis Advisor
Dr. ir. P. Pawelczak TU Delft, External Committee Member

Cover: Illustration of debating philosophers in the style of ancient Greek
vase artwork, generated with ChatGPT

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

In line with existing claims in literature about the current state of programming error messages, I too
often find them frustrating and insufficiently clear, having been “blessed” by genuinely intricate bugs
and lack of error message specificity both during my time as a student, and during my professional
career. This, coupled with my reluctance at first, later replaced by an ever-increasing enthusiasm for
LLMs, has led me to pursue this project, where I investigate the effectiveness of skill-adaptive LLM-
enhanced error messages. I hope that these findings, whatever their size, will have a positive impact
on error message design and will continue to inspire further research on this topic.

Acknowledgments
Over the past three years, pursuing an MSc degree while workly mostly full-time has been one of the
most (if not the most) challenging task of my academic and professional career. Although I am not
certain I would choose the same path again, I am proud of having seen it through and of the immense
discipline I discovered in myself. Still, the credit is not mine alone. Without the support of many people,
I would not be writing this preface today.

Back in 2021, I took the Human-Computer Interaction elective inmyComputer Science and Engineering
bachelor’s at TU Delft, and had the pleasure of learning from Ujwal Gadiraju. I remember thinking that if
I ever pursued anMSc at TUDelft, I would be grateful to have him asmy thesis advisor. After graduating
in 2021 amid the pandemic, the timing didn’t feel right for further study, so I started working in industry
as a software engineer. Fast-forward three years to 2024, I reached out to Ujwal, we shared interest
in this topic, and the collaboration began. Thank you for the very generous guidance and advice; I
learned a great deal from you.

I am equally grateful to Shreyan Biswas, who supervised me over the past nine months. Our weekly,
and sometimes twice a week sessions were crucial in shaping this work. Thank you for helping me sift
through the noise and for pushing me to investigate key aspects that might otherwise have been left
underexplored. Finally, I am also extending my appreciation to P. Pawelczak, for serving on my thesis
commitee.

In addition, I’m especially thankful to my colleagues at TomTom for the trust, flexibility, and encourage-
ment that made it feasible to balance work with my studies. To that end, I’m sending a big thank you to
Loredan, Andy, Patrick, Hristo, Monika, Andreas, Michael, Andrzej and Simon. These past four years
have taught me a lot, thanks to all of you. I’m particularly thankful for our online/offline discussions on
so many diverse and interesting subjects. On a more personal note, to my friends outside work–Sadry,
Davia, Mark, Andrei, Mara, Alex–thank you for sticking by me all these years (some of you more than
a decade!), even when I reluctantly had to cancel plans to dedicate more time to exams or this thesis.

That being said, I would have never been able to achieve even half of the things I did, were it not for
Ana, who I blessedly, and arguably very randomly, met in Groningen almost 5 years ago. Thank you for
being part of my life. Your love, kindness, and colossal amount of patience have been a constant source
of light and motivation all of these years. Last but not least, to my parents and grandparents, both those
with us and who we dearly miss, none of this would have been possible without you...“multumesc!”. To
my dad, thank you for teaching me how to be pragmatic and calm, even in the face of adversity. And
to my mom, thank you for showing me how to view life in a colorful, yet whimsical way.

Alexandru-Radu Moraru
Delft, August 2025

i

Summary

Error messages are a primary feedback channel in programming environments, yet they often obstruct
progress, especially for novices. Although large language models (LLMs) are widely used for code
generation and debugging assistance, there is limited empirical evidence that LLM-rephrased error
messages consistently improve code correction capabilities, and skill-adaptive designs remain largely
unexplored. We introduce a framework that uses an LLM to rewrite Python standard interpreter errors
in two different styles, which are designed to be tailored to user expertise: the pragmatic style, which is
concise and action oriented, and the contingent style, which provides scaffolded, actionable guidance
organized by a clear argumentation model. To measure Python skill level reliably, we first ran a pilot
study that informed the design of a short 8 multiple-choice question assessment focused on debugging
and error-message interpretation. We then used this instrument in themain study to classify participants
as either novices or experts.

To gauge the effectiveness of our LLM-enhanced programming error messages (PEMs), we evaluated
the framework in a crowdsourced Prolific study with 103 participants. Wemeasured objective outcomes
such as fix rate, time to fix, and number of attempts to fix, while also capturing subjective perceptions of
PEMs, including readability, cognitive load, and authoritativeness. Objectively, LLM-enhanced PEMs
showed favorable trends but did not produce statistically significant improvements over the standard
interpreter. Subjectively, novices and experts alike, rated the pragmatic messages as significantly
more readable and helpful, lower in intrinsic and extraneous cognitive load, and considerably less
authoritative. Contingent messages exceeded the baseline on average but did not consistently reach
statistical significance across all of our measurements, which points to a need for tighter control of error
message verbosity and granularity, particularly for beginners.

These results show that LLMs, especially small-sized ones, are already capable of delivering targeted
text-rewriting interventions that improve the perceived quality of error feedback. Future work should
validate the effects at larger scale and across languages, expand coverage of real-world error contexts,
and pursue true adaptivity in which error message style and level of detail adjust dynamically to user
skill and task state.

ii

Contents

Preface i

Summary ii

Nomenclature viii

1 Introduction 1
1.1 Contributions . 2
1.2 Research Questions . 2
1.3 Thesis Outline . 3

2 Background and Related Work 4
2.1 Compiler and Interpreter Errors . 4

2.1.1 Programming Paradigms . 4
2.1.2 Impact on Developer Experience . 6

2.2 Large Language Models in Software Engineering . 6
2.2.1 Overview of LLM Capabilities . 6
2.2.2 Limitations and Mitigation Strategies . 7
2.2.3 LLM Providers and Benchmarks . 8
2.2.4 Current Trends in Developer Experience . 9

2.3 Actionable Insights and Teaching . 10
2.4 Related Work . 11

2.4.1 Foundations: What makes an error message effective? 11
2.4.2 LLMs for Explaining and Rephrasing Errors . 11
2.4.3 Beyond Compilers: LLMs for Developer Diagnostics 12
2.4.4 Synthesis and Positioning . 12

3 Research Methodology 13
3.1 Python Proficiency Level Assessment . 13

3.1.1 Motivation . 14
3.1.2 Approach . 14
3.1.3 Pilot Study Results . 15

3.2 Selecting Candidate Code Snippets and Errors . 17
3.2.1 Motivation . 17
3.2.2 Approach . 17
3.2.3 Pilot Study Results . 18

3.3 Prompt Templates and LLM Settings . 18
3.3.1 Motivation . 18
3.3.2 Approach . 19

3.4 Prolific Web Application Design . 21
3.4.1 Motivation . 21
3.4.2 Approach . 21

4 Experimental Setup 25
4.1 Independent Variables . 25

4.1.1 Error Message Style . 25
4.1.2 Code Snippet and Error Message Type . 26
4.1.3 Python Proficiency Level . 26

4.2 Dependent Variables . 26
4.2.1 Behavioral Outcomes . 26
4.2.2 Perceptual Outcomes . 27

iii

Contents iv

4.3 Confounding Factors . 27
4.4 Prolific Configuration . 28

4.4.1 Recruitment & Screening . 28
4.4.2 Attention and Quality Monitoring . 28
4.4.3 Compensation and Duration . 28
4.4.4 Sample Size and Allocation . 28

5 Results 30
5.1 Prolific Participants Demographics . 30
5.2 Objective and Subjective Outcomes . 30

5.2.1 Fix Rate, Fix@k, and Time-to-Fix . 30
5.2.2 Subjective Evaluations . 33
5.2.3 Exploratory Analysis . 34

6 Discussion 37
6.1 Implications . 37

6.1.1 RQ1: Effectiveness of Skill-Adaptive Programming Error Messages 37
6.1.2 RQ2: Perceived Qualities of Skill-Adaptive Programming Error Messages 38

6.2 Looking Back and Ahead . 38
6.2.1 Limitations . 38
6.2.2 Future Work . 39

7 Conclusion 41

References 42

A Python Skill Level Assessment Qualtrics Questionnaire and Details 47

B Fantastic Four Code Snippets and Error Messages 49
B.1 Snippet A: SyntaxError: unterminated string literal 49
B.2 Snippet B: NameError: name not defined . 50
B.3 Snippet C: TypeError: unsupported operand types 51
B.4 Snippet D: TypeError: object is not subscriptable 52

C Prolific Full-Stack Web Application Design Details 53
C.1 System Architecture . 53
C.2 Deployment and Networking . 54
C.3 Monitoring and Inspection . 54

List of Figures

2.1 Example of a small code snippet and its associated error in a procedural programming
language, C. 5

2.2 Example of a small code snippet and its associated error in a functional programming
language, Haskell. 5

2.3 Example of a small code snippet and its associated error in an object-oriented program-
ming language, Java. 5

3.1 Project approach overview, including pilot studies and the main study conducted to ad-
dress the research questions. 13

3.2 Visualization of the approach to create the multiple-choice questions for the Python skill-
level assessment survey. 14

3.3 Self-reported years of experience with Python and programming in general. 15
3.4 Mean ratings for each candidate code snippet and error message across all four ques-

tions used in the pilot study. 19
3.5 Correlation matrix between the four questions used in the Fantastic Four pilot study for

all candidate code snippets. 19
3.6 Examples of the standard, pragmatic, and contingent programming errormessages styles,

which would be shown when running the code in Listing 3.1. The pragmatic error mes-
sage was generated using the template shown in Listing 3.2, and the contingent error
message using the template in Listing 3.3. 21

3.7 User interfaces from the Prolific web application used in the study: (a) Python YoE skill
screener, (b) MCQ assessment, (c) code editor interface, and (d) post code fix task
subjective ratings feedback. 22

5.1 Descriptive statistics for Prolific participants’ demographics. 31
5.2 Fix@k, for k ∈ 1, 2, 3, when varying error message style across all snippets and skill levels. 32
5.3 Box plot for time-to-fix (seconds) by message style. Time-to-fix sums all attempts until

the first success. Standard (M = 415.69, SD = 377.75); Pragmatic (M = 324.56, SD =
333.12); Contingent (M = 423.85, SD = 501.47). 33

5.4 Box plots for time-to-fix (seconds) by message style and skill level; left plot for novices,
and right plot for experts. 34

5.5 Mean ratings for readability, cognitive load, and authoritativeness by message style and
skill group. Brackets with asterisks indicate pairwise differences from Dunn’s post hoc
tests (Holm-adjusted) following Kruskal-Wallis: * (p < 0.1), ** (p < 0.05), and *** (p < 0.01). 35

5.6 Mean ratings for readability, cognitive load, and authoritativeness by message style.
Brackets with asterisks indicate pairwise differences from Dunn’s post hoc tests (Holm-
adjusted) following Kruskal-Wallis: * (p < 0.1), ** (p < 0.05), and *** (p < 0.01). 36

5.7 Statistics, such as mean completion time and correctness percentage pertaining to the
MCQs in the Prolific study. 36

5.8 Prolific participants’ self-reported Python YoE distribution. 36

A.1 Final set of survey items that most effectively discriminated between novices and experts
in the Python Skill-Assessment Survey. The images reproduce the question options and
interface, as presented in the Prolific web application during the main study. 48

B.1 Standard Python interpreter message displayed when running the code in Listing B.1. . 50
B.2 Standard Python interpreter message displayed when running the code in Listing B.2. . 50
B.3 Standard Python interpreter message displayed when running the code in Listing B.3. . 51
B.4 Standard Python interpreter message displayed when running the code in Listing B.4. . 52

v

List of Figures vi

C.1 System architecture of the Prolific study full-stack application: containerized frontend,
backend, database, local LLM inference, and reverse proxy orchestrated with Docker
Compose. We coordinated everything using a singleGitHub repository, https://github.
com/alemoraru/exceed-prolific-orchestrator. 53

List of Tables

3.1 Correlations examined in the Python skill-assessment survey. The correlation column
also indicates the test used: P for Pearson, S for Spearman; Python YoE = self-reported
years of experience with Python; General Programming YoE = self-reported years of
general programming experience; Dreyfus level = Ordinal scale (1 = no experience, 6 =
significant experience); accuracy = number of questions answered correctly, on a (0-16)
scale. 16

3.2 Difficulty, discriminative power, and p-value for the final selected questions of the Python
skill-assessment survey. 16

3.3 Mapping between the pilot study’s survey dimensions and their corresponding items. . . 17
3.4 Logic for assigning participants to skill level categories based on MCQ score and years

of Python experience (YoE). 23
3.5 Survey items for readability, cognitive load, and authoritativeness, with response scales. 24

4.1 Participant allocation by message style and skill level. 29
4.2 Participant allocation by snippet (A-D) within each message style. 29

5.1 Fix rate (%) by snippet ID, across all participants; n = the total number of participants
assigned the given snippet ID. 31

5.2 Fix rate (%) by message style and skill group (all snippets pooled). 32
5.3 Fix rate (%) by message style and snippet ID for novice participants. The number n, in

parentheses, represents the total number of participants assigned the given combination
of snippet ID and error message style. 32

5.4 Fix rate (%) by message style and snippet ID for expert participants. The number n, in
parentheses, represents the total number of participants assigned the given combination
of snippet ID and error message style. 33

A.1 Six-level self-rating of Python experience used in the study, informed by the Dreyfus
skill-acquisition model. 47

vii

Nomenclature

Abbreviations
Abbreviation Definition

ACID Atomicity, Consistency, Isolation, and Durability
AI Artificial Intelligence
API Application Programming Interface
CER Claim, Evidence, and Reasoning
CLT Cognitive Load Theory
CI/CD Continuous Integration and Continuous Delivery
CS1/CS2 Computer Science 1/2
CTT Classical Test Theory
DevEx Developer Experience
GenAI Generative Artificial Intelligence
GHA GitHub Actions
GPA Grade Point Average
GPT Generative Pre-trained Transformer
HCI Human-Computer Interaction
IDE Integrated Development Environment
IRT Item Response Theory
I/O Input/Output
LLM Large Language Model
MCQ Multiple-Choice Question
NLP Natural Language Processing
OOP Object-Oriented Programming
PEM Programming Error Message
RAG Retrieval Augmented Generation
RCT Randomized Controlled Trial
RQ Research Question
SaaS Software as a Service
SD Standard Deviation
SoTA State of The Art
UI User Interface
URL Uniform Resource Locator
VM Virtual Machine
YoE Years of Experience

viii

1
Introduction

Learning from mistakes is a fundamental aspect of human cognition and development. This principle
applies not only to individuals, but also to organizations and societies. Throughout life, challenges
and obstacles force us to adapt, refine our approaches, and learn from experience. In programming,
learning through mistakes is remarkably common, from novice programmers dealing with simple syn-
tax errors to seasoned developers facing complex architectural flaws in large-scale software systems.
The ability to learn from errors is essential for both personal growth and professional advancement in
software development.

Although the process can be frustrating, mistakes are a powerful driver of improvement and innovation.
However, not all mistakes carry the same weight. Typographical errors or minor syntax mistakes may
be easily forgiven, particularly when made by beginners who are still learning the basics, while other
errors can have far-reaching consequences [50, 24], potentially leading to fatal outcomes [20]. Re-
gardless of their severity, mistakes, especially compiler and interpreter errors, are an unavoidable part
of programming. Even with the emergence of large language models (LLMs) capable of generating
syntactically-correct code, building SaaS applications from natural language prompts, and assisting
with debugging, these systems remain fallible. Ultimately, the responsibility for code correctness rests
with the programmer, who must still engage in the often tedious process of identifying and fixing errors.

Despite decades of progress in programming language design, error messages remain notoriously dif-
ficult to interpret. Novice programmers often struggle to understand both their meaning and how to act
on them, while experienced developers, though better equipped, still invest significant effort in parsing
and applying the information they contain. Several studies [1, 46, 48] confirm that debugging remains
among the most time-consuming, challenging, and irritating aspects of software development, even
in professional environments. Extended debugging times slow feature delivery, inflate costs, reduce
productivity, and harm developer morale [67]. In industry settings, this can lead to missed deadlines,
budget overruns, and delayed releases [73]. In educational contexts, this can harm learners’ confi-
dence and ultimately lead to higher attrition rates in programming courses [70, 27].

A notable literature survey by Becker et al. [9] identified several persistent challenges in error mes-
sage design, including excessive technical jargon, insufficient contextual information, and a lack of
clear and actionable guidance. The authors emphasize the need for error messages that are more
accessible to the reader, supportive of learning, and less likely to hinder problem solving. Although
various approaches have been proposed to address some of these concerns in isolation [68, 40, 64],
no unified framework exists yet that is both theoretically grounded and practically applicable to creating
user-adaptive, LLM-enhanced programming error messages (PEMs).

This thesis report proposes such a framework, grounded in the theory of actionable insights, which aims
to rephrase error messages in ways that are (1) pragmatically useful, (2) contingent to both program
structure and the user’s expertise level, (3) reader-friendly, (4) less cognitively demanding and more
empathetic. In this context, we define pragmatic error messages as those that directly support problem
resolution, while contingent messages are those that provide more contextual information. We argue

1

1.1. Contributions 2

that such an approach can reduce the debugging overhead and enhance the learning experience,
ultimately enabling more efficient and effective programming practices.

By leveraging LLMs as adaptive tutors, this research investigates how error messages can be dynami-
cally rephrased and formatted to meet the needs of both novice and expert programmers. We conduct
a crowdsourced evaluation of the proposed framework, assessing whether contingent and pragmatic
error messages generated by LLMs can address the pain points identified by Becker et al. [9], namely
poor readability, excessive cognitive load, lack of context, limited actionability, and an intimidating tone.

1.1. Contributions
The main contributions of our research are as follows:

• We conducted an empirical investigation of Python error messages and debugging, then devel-
oped through a pilot study a multiple-choice Python skill assessment, focused on debugging and
error messages, which was used as a more reliable proxy than self-reported proficiency.

• A skill-contingent framework for rephrasing compiler and interpreter error messages, created for
both novice and expert programmers. Although designed for Python, the framework is readily
adaptable to other programming languages, with some modifications required before validation.

• We conducted a crowd-sourced evaluation on Prolific measuring the impact of our framework on
bug fixing performance, as well as perceived readability, cognitive load, and authoritativeness.

• Open-source release of all research artifacts, including code, datasets, evaluation pipelines, the
deployed web application used for the Prolific study, and a repository that can be used for bench-
marking error message styles across diverse code snippets [45].

1.2. Research Questions
Error messages are among the most frequent feedback channels in programming, yet they often hin-
der progress, especially for beginners. Despite rapid advancements in applying LLMs to software
engineering, there is little empirical evidence that LLM-generated error messages improve objective
code-correction, and skill-adaptive designs remain largely untested. To the best of our knowledge, this
is among the first controlled studies to evaluate skill-adaptive LLM-rephrased PEMs, jointly examining
objective and subjective outcomes. This motivates us to formulate the following research questions:

• RQ1: How do LLM-powered skill-adaptive Python error messages influence novice and
expert programmers’ code-correction performance in comparison to standard interpreter
messages?
Beyond learning, error messages’ primary goal is to guide code repair. By tracking fix rate (i.e.,
proportion of snippets corrected per error message style), time-to-fix, or number of attempts to
fix, we assess whether LLMs cut debugging overhead and improve code comprehension.

• RQ2: How do novice and expert programmers perceive the readability, cognitive load,
and authoritativeness of skill-adaptive, LLM-powered Python error messages relative to
the standard interpreter messages?
While the primary aim of error messages is code repair, we also examine programmers’ percep-
tions, namely helpfulness, readability, and clarity, especially for novices who may struggle with
the jargon and complexity of standard messages. These subjective ratings complement objective
outcomes, yielding a more holistic view of our styles against the standard interpreter output.

To answer these research questions, we considered two LLM-powered message styles, pragmatic and
contingent, initially inspired by a student-led pilot study, which was launched as part of the Crowd
Computing MSc course at TU Delft. When taking a close look at our experimental results, while mean
correction rates favored our skill-adaptive messages, differences were ultimately not statistically signif-
icant. By contrast, pragmatic messages yielded significantly lower cognitive load and higher perceived
helpfulness and readability, while being seen as less authoritative for novices and experts alike. Contin-
gent PEMs trended better on most metrics but were, to our surprise, mostly non-significant. Although
LLM choice and performance lay outside of our RQs, the fact that these effects were achieved with an
8B parameter model highlights the feasibility of small models for targeted, text-rewriting interventions.

1.3. Thesis Outline 3

1.3. Thesis Outline
We begin in Chapter 2 with a review of relevant background literature and related work, highlighting
connections to our study where appropriate. Chapter 3 then outlines the research methodology, cover-
ing the Python skill-assessment pilot study, the second pilot for selecting candidate code snippets and
error messages for the main study, the design of the PEM rephrasing framework, and the development
of the Prolific web application for crowdsourced evaluation. The experimental setup of the main study is
formalized in Chapter 4, including independent and dependent variables, potential confounds, descrip-
tive statistics, and the participant recruitment configuration on Prolific. The results of the main study,
including Prolific participant descriptive statistics and the objective and subjective measures, are pro-
vided in Chapter 5. These findings are subsequently discussed in Chapter 6, where we also reflect on
the limitations and ethical considerations of our work and outline avenues for future research. Finally,
Chapter 7 closes the thesis by summarizing its key contributions and insights.

2
Background and Related Work

This chapter provides the theoretical foundation and situates our contributions within the literature,
drawing explicit connections between prior findings and the ideas we investigate. Section 2.1 begins
with an overview of the challenges associated with compiler and interpreter errors, discussing their
nature, common causes, and the difficulties developers encounter when diagnosing and resolving them.
Section 2.2 then explores the emergence and role of large language models in software engineering,
outlining their capabilities, limitations, how to evaluate them systematically, and potential applications
for improving developer experience and productivity. We take a slight detour in Section 2.3 to discuss
the concept of actionable insights and how it relates to teaching and learning in programming contexts,
emphasizing the importance of clear, context-aware feedback for effective learning. Finally, Section 2.4
provides a comprehensive review of previous related work, examining approaches to error message
design as well as research on using LLMs for error explanation and resolution.

2.1. Compiler and Interpreter Errors
Although the terms compiler errors and interpreter errors are sometimes used interchangeably, they
refer to distinct types of feedback generated by different execution models in programming languages.

Compiler errors occur when a program fails to meet the syntactic or semantic requirements of a lan-
guage during the compilation stage, preventing the creation of an executable artifact. Interpreter errors,
in contrast, arise at run-time when an interpreter encounters an issue, such as a type mismatch, unde-
fined variable, or unhandled exception, while executing the program.

However, the distinction is not always clear. For instance, Python, although typically described as an
interpreted language, performs certain compilation steps (e.g., bytecode generation) before interpreta-
tion. Throughout this thesis, the term (programming) error messages will be used collectively to refer
to both compiler and interpreter feedback, as many of the challenges in improving their clarity and
usefulness are similar regardless of the underlying execution model.

2.1.1. Programming Paradigms
Programming languages can be broadly classified into different paradigms, such as procedural, func-
tional, and object-oriented, each with its own design philosophy, abstractions, and typical application
domains. Although these paradigms are often presented as distinct, many modern languages are in
fact multi-paradigm. One such example is Python [17], which supports procedural, functional, and
object-oriented constructs, whereas many other languages, such as Java or Kotlin, which are primarily
considered object-oriented, have adopted functional features over time. Each paradigm emerged in
response to specific challenges in software development, offering different ways of reasoning about
and structuring programs. These differences influence not only how code is written and understood,
but also the types of errors programmers tend to usually make, as well as the style in which these
error messages are written. Below we summarize notable features of the most common programming
paradigms.

4

2.1. Compiler and Interpreter Errors 5

• Procedural programming (e.g., C, Fortran, COBOL) describes computation as a sequence of ex-
plicit instructions that modify the state of the program. Strengths: Direct and intuitive for express-
ing step-by-step algorithms, similar to the way machines execute code. Weaknesses: Readability
and maintainability can suffer in large codebases due to reliance on mutable state and control
flow complexity. Common mistakes: Incorrect variable initialization, unintended state changes,
improper control flow (e.g., misplaced loops or conditionals) and memory mismanagement in
low-level contexts.

(a) Buggy C code snippet. (b) Associated error message.

Figure 2.1: Example of a small code snippet and its associated error in a procedural programming language, C.

• Functional programming (e.g., Haskell, F#, Lisp) treats computation as the evaluation of mathe-
matical functions, emphasizing immutability, declarative expressions, and higher-order functions
[32, 31]. Strengths: Strong suitability for parallel and concurrent processing, predictable behav-
ior due to immutability, and expressive abstractions for transformations. Weaknesses: Steep
learning curve for programmers accustomed to procedural thinking, verbose or esoteric syntax
in some languages, and performance trade-offs in certain scenarios. Common mistakes: Type
mismatches, misunderstanding of lazy evaluation, incorrect function composition, and difficulty
reasoning about monads or other advanced abstractions.

(a) Buggy Haskell code snippet. (b) Associated error message.

Figure 2.2: Example of a small code snippet and its associated error in a functional programming language, Haskell.

• Object-oriented programming (e.g., Java, C#, Ruby) organizes code around objects, state bun-
dles (fields) and behavior (methods) often using principles such as encapsulation, inheritance,
and polymorphism. Strengths: Enables modeling of real-world entities, supports the organiza-
tion of large-scale systems, and encourages reuse of code through inheritance and composition.
Weaknesses: Overuse of inheritance can lead to fragile hierarchies, while deep object coupling
can reduce flexibility and testability. Common mistakes: Incorrect method overriding, violating
encapsulation, misuse of inheritance instead of composition, and misunderstanding the object
life cycle.

(a) Buggy Java code snippet. (b) Associated error message.

Figure 2.3: Example of a small code snippet and its associated error in an object-oriented programming language, Java.

• Logic programming (e.g., Prolog, Datalog, Mercury) is a declarative paradigm in which pro-
grams consist of facts and rules, and computation is performed by querying these rules to infer
logical consequences. Strengths: Naturally suited for symbolic reasoning, knowledge representa-
tion, and solving constraint-based problems. Programs tend to be concise and highly expressive
for theorem proving, and search. Weaknesses: Performance can be unpredictable due to the

2.2. Large Language Models in Software Engineering 6

search-based execution model. Programs may be less intuitive for developers accustomed to
procedural or object-oriented approaches. Common mistakes: Infinite recursion due to poorly
ordered rules, unintended variable bindings, and overly general queries that lead to inefficient
backtracking or failure to terminate.

The paradigm in which a language operates strongly influences the nature and presentation of pro-
gramming errors. For instance, statically typed functional languages often emit complex type inference
errors that require understanding advanced type system concepts, while dynamically typed languages
may generate runtime exceptions with limited contextual information. Similarly, procedural code may
produce errors related to incorrect parameter passing or global state conflicts, whereas object-oriented
code may fail due to misuse of inheritance or polymorphism.

Although this thesis focuses on improving error messages in Python, a multi-paradigm language with a
predominantly procedural and object-oriented flavor, understanding the broader landscape of program-
ming paradigms provides important context. The underlying paradigm shapes both the origin of errors
and the way compilers or interpreters communicate them, which in turn influences how error messages
can be made more effective.

2.1.2. Impact on Developer Experience
Compiler and interpreter errors have a direct impact on the developer experience. Unclear or verbose
error messages can increase cognitive load, leading to frustration [12], reduced productivity, and a
higher likelihood of introducing further mistakes (i.e., cascading errors).

For novice programmers, this problem is particularly important. Without prior mental models of how
errors typically manifest, they may find it difficult to interpret technical jargon, and locate the source of
the problem, thus often resorting to seeking any means of external help [25]. This can hinder learning
and discourage continued participation in programming activities. In fact, among novice programmers,
poor design of programming errors is often cited as a major barrier to learning, even being a reason
why many learners drop out of computer science (or other technical) degrees and switch to other fields
[70, 27]. Experienced developers, while often better equipped to navigate confusing diagnostics, still
face productivity losses when error messages are incomplete, misleading, or overly generic.

In both cases, the quality of error reporting shapes not only the efficiency of debugging but also the
overall usability of the programming environment. As a result, research into improving the clarity, accu-
racy, and contextual relevance of error messages has significant implications for developer satisfaction
and effectiveness.

2.2. Large Language Models in Software Engineering
Since the public release of OpenAI’s ChatGPT in November 2022, large language models have at-
tracted substantial attention within the software engineering community. These machine learning mod-
els, trained on vast corpora of natural language and source code, demonstrate remarkable proficiency
in understanding and generating human-like text across diverse domains. While initially celebrated for
tasks such as summarization, sentiment analysis, question answering, and translation, their utility has
expanded rapidly to encompass software engineering applications.

By 2023, LLMs were being evaluated for their ability to produce small code snippets and assist with
auto-completion. By 2025, they had matured to the point where they could generate entire functional
software systems, including SaaS applications, from high-level natural language descriptions (e.g.,
platforms such as Lovable, Replit, GitHub Spark, and others1). This growth has been accelerated by
advances in model architectures, training methodologies, and integration with development tools, as
well as by significant investment from major technology companies.

2.2.1. Overview of LLM Capabilities
Large language models have rapidly advanced in both research and practice, offering a wide range of
capabilities relevant to software engineering [59, 29]. These can be grouped into four main areas:

1Lovable - https://lovable.dev/; Replit - https://replit.com/; GitHub Spark - https://github.com/features/spark

https://lovable.dev/
https://replit.com/
https://github.com/features/spark

2.2. Large Language Models in Software Engineering 7

• Code generation, completion, and repair: LLMs can produce syntactically valid code from
natural language descriptions, complete partial snippets with contextually appropriate content,
and refine or repair code through iterative feedback. These abilities stem from large-scale training
on open-source code and natural language, allowing them to capture both structural syntax and
common patterns.

• Code comprehension and explanation: LLMs can translate code into clear, human-readable
explanations, annotate APIs, and generate documentation. This capability is valuable for under-
standing legacy codebases, onboarding new developers to existing systems, and summarizing
complex logic for easier maintenance.

• Error diagnosis and test generation: By interpreting compiler or runtime feedback, LLMs can
identify probable causes of errors and suggest targeted fixes. They can also produce unit and
integration tests to validate correctness, though these outputs still require human verification to
ensure semantic accuracy.

• Agentic behavior and cross-domain reasoning: LLMs are capable of decomposing tasks, in-
voking external tools, and reasoning across different knowledge domains. This allows them to
function as autonomous or semi-autonomous agents, integrating code generation with planning
and tool-assisted problem solving.

These capabilities have driven the emergence of AI-powered developer tools, ranging from in-IDE
coding assistants to autonomous multi-agent systems that can handle entire development workflows.

2.2.2. Limitations and Mitigation Strategies
Despite their impressive versatility, LLMs exhibit several limitations that affect their reliability and safe
deployment in software engineering [59, 23]. Put shortly, while a lot of enthusiasm is warranted for the
potential of LLMs (to continue) to revolutionize software development, arguably even more caution is
warranted in their use, especially in production environments. Some of the most notable shortcomings
include:

• Context window constraints: LLMs have a fixed limit on how much information they can con-
sider at once. In long interactions or when working with large codebases, they may lose relevant
details or produce inconsistent outputs. While techniques like chunking and retrieval-augmented
generation (RAG) can help mitigate this, they introduce additional complexity and potential for
errors. Recent advances in LLM architectures, such as the development of models with larger
context windows, have continued to improve this situation, but practical limits still exist.

• Hallucinations and factual errors: LLMs can produce plausible-sounding but incorrect or en-
tirely fabricated information. In software contexts, this can lead to faulty API calls, invalid syntax,
use of non-existent functions or libraries, and other issues that can cause runtime errors or unex-
pected behavior. While they can generate code that appears syntactically correct, the underlying
logic may be flawed or not aligned with the intended functionality. One can imagine that this is
particularly problematic for novice programmers, or even experienced programmers who are not
familiar with the specific domain or framework of the code being generated.

• Semantic gaps and surface-level fluency: While proficient in generating syntactically correct
code, LLMs often lack deep semantic understanding, making them prone to introducing subtle
logical flaws or overlooking domain-specific constraints. When coupled with small context win-
dows or incomplete prompts, this can result in outputs that superficially resemble valid code but
fail to meet the intended requirements or best practices.

• Bias and knowledge staleness: Because they are trained on large, static datasets, LLMs can
inherit biases present in their training data and fail to incorporate the most recent knowledge or
best practices without retraining or augmentation. This can lead to outputs that reflect outdated
conventions, security vulnerabilities, or other issues that have since been addressed in the soft-
ware engineering community.

• Ethical and safety concerns: The potential for LLMs to generate harmful, misleading, or other-
wise inappropriate content raises ethical questions about their deployment in production systems.
This includes risks of generating insecure code, propagating harmful stereotypes, or producing
outputs that violate intellectual property rights. These concerns require careful consideration of

2.2. Large Language Models in Software Engineering 8

how LLMs are integrated into software development workflows, including the need for human
oversight and validation.

• Dependence on prompt quality: The effectiveness of LLMs is highly dependent on the qual-
ity and specificity of the prompts they receive. While researchers at reputable institutions and
companies are aiming to develop increasingly more robust and reliable LLMs, that can provide
high-quality results even in the presence of noisy or incomplete prompts, the current state of the
art (SoTA) models still require careful prompt design to elicit the desired behavior. Interestingly,
a recently-published paper [52] highlighted that including one random fact within a prompt can
greatly decrease the quality of the generated output, even for SoTA models, which is a clear
indication that LLMs are still very sensitive to the input they receive.

To mitigate these limitations, practitioners have adopted several strategies:

• Prompt engineering: Carefully crafted prompts, often with explicit reasoning steps, can guide
LLMs toward more accurate and contextually relevant outputs. Techniques such as chain-of-
thought prompting, and few-shot learning, have been shown to improve performance on complex
tasks by providing structured guidance and examples.

• Model fine-tuning and domain adaptation: Fine-tuning LLMs on domain-specific data or us-
ing specialized models can enhance their performance in particular contexts, such as software
engineering. This approach allows the model to better understand the nuances of specific pro-
gramming languages, frameworks, or application domains, improving its ability to generate rele-
vant and accurate code. This is, of course, not without its own challenges, as it requires access
to high-quality, domain-specific datasets and careful consideration of the model’s training objec-
tives. Even before the rise in popularity of LLMs, machine learning models were often trained
on domain-specific data to improve their performance in specific tasks, such as natural language
processing, computer vision, and much more.

• Retrieval-augmented generation (RAG): Supplementing the model’s input with retrieved, up-to-
date, and domain-specific information helps ground responses and reduces the risk of hallucina-
tions. This approach is also useful for providing highly-sensitive or context-specific information
that may not be present in the model’s training data. While not related directly to software engi-
neering, companies within the legal or medical fields have been using RAG to provide up-to-date
information to their LLMs, further improving the quality of results, while also mitigating privacy con-
cerns by ensuring that sensitive information is not included in the model’s training data. Naturally,
this is also highly relevant to software engineering, where a company’s private codebases, which
were naturally not included in the training data of the model being used, can be used to provide
up-to-date information to the LLM, allowing it to generate more relevant and accurate code, only
in the context of that specific company.

• Human-in-the-loop and iterative validation: Involving developers in reviewing, testing, and
refining model outputs ensures correctness, safety, and alignment with project goals. Human
oversight is crucial for catching errors, validating assumptions, and ensuring that the generated
code meets the intended requirements.

In the context of this thesis, focused on improving Python error messages with LLMs, these strengths
and weaknesses are essential to acknowledge. They help define the scope, highlight the importance
of prompt design, and justify the decision to limit empirical evaluation to Python rather than attempting
to cover multiple programming paradigms at once. While we obviously did not explore all of the afore-
mentioned strategies in this thesis, they nonetheless provided sufficient context for understanding the
potential and limitations of LLMs, and therefore to addressing our research questions.

2.2.3. LLM Providers and Benchmarks
When designing and evaluating LLM-powered solutions, one of the most important prerequisites is to
have a holistic view onwhatmodels to choose from. Currently, a wide range of providers offer pretrained
languagemodels, both for general-purpose use and for domain-specific applications. Programming has
become one of the primary domains where such models are being adopted to support development
workflows and accelerate research progress. Some providers have released model weights under
open licenses, enabling their use for inference and further fine-tuning, thereby contributing to significant

2.2. Large Language Models in Software Engineering 9

innovation. Notable examples includeMeta with the Llama family [21], Mistral AI with the Mistral models
[35], and Alibaba Cloud with the Qwen series [33]. More recently, DeepSeek AI has attracted attention
with the DeepSeek family, in particular for introducing fine-tuning methods based on reward modeling
that reduce training costs [15]. In contrast, other providers restrict access to inference via APIs, without
releasing the underlying weights. Noteworthy examples include OpenAI with the GPT models [47],
Anthropic with the Claude family [3], and Google DeepMind with Gemini [63].

To assess which models are most suitable for software engineering tasks, systematic evaluation meth-
ods are needed to capture their capabilities and limitations. A number of benchmarks address code
generation performance, typically through unit-test evaluation. Widely used Python-focused bench-
marks include HumanEval [14] and EvalPlus [42], the latter focusing on the thoroughness of model
evaluation. The MBPP benchmark [5] extends coverage with a larger set of problems. However, pure
code synthesis from natural language does not capture the full range of developer interactions. To ad-
dress this, LiveCodeBench [34] expands evaluation to a broader set of coding-related tasks, such as
self-repair (assessing the ability to fix code using execution feedback) and test output prediction (mea-
suring code comprehension). Yet, these benchmarks still focus on self-contained tasks, which may not
fully reflect real-world development scenarios. For this reason, SWE-bench [36] evaluates models on
resolving GitHub issues that involve multiple files and higher bug complexity, thereby moving closer
to realistic software maintenance tasks. In addition, IFEval [74] has been proposed to specifically as-
sess instruction-following capabilities, offering complementary insights into how well models align with
user-provided prompts beyond code synthesis alone.

From the results of these benchmarks, a consistent pattern emerges: there is a substantial performance
gap between SoTA closed models and open-weight models. In particular, the GPT and Claude families
currently lead, largely attributed to their exposure to extensive, high-quality training data. Nevertheless,
fine-tuning with curated datasets has been shown to substantially improve performance, whether to
augment specific coding tasks or to better align models through instruction tuning [33, 22, 62].

Despite these advances, existing benchmarks face notable limitations. Data contamination, where
evaluation examples overlap with training sets, remains a persistent concern, and current tasks still fall
short of comprehensively measuring output quality, problem complexity, and real-world applicability.
Most critically, current evaluations provide limited insight into how effectively models augment the de-
veloper experience. Beyond solving code synthesis tasks, models should be assessed on their ability
to collaborate productively with developers. For instance, Kang et al. [37] highlight this need by intro-
ducing a technique that not only generates code fix patches but also produces intelligible explanations
of the repair process.

2.2.4. Current Trends in Developer Experience
While recent advances have demonstrated remarkable capabilities of LLMs in software engineering,
the idea of developers being replaced still belongs more to science fiction than reality. Instead, the
emerging trend points towards collaboration, where developers and models work together to automate
routine tasks and tackle more complex challenges. This augmentation is increasingly visible in the
rise of agentic systems deployed within enterprise environments. Agents can be understood as au-
tonomous systems that operate over extended periods, use diverse tools to accomplish complex tasks,
and ground their actions in reasoning and environmental observations [2].

In software engineering, such agents are already finding their way into popular development environ-
ments, for example through integration with JetBrains IDEs2. The research community has pursued
similar directions with systems such as SWE-agent [69], which autonomously interacts with developer
tools, including compilers, debuggers, and version control systems to address real-world software en-
gineering tasks. At present, agents typically perform the bulk of the work, with developers guiding,
reviewing, and approving their outputs. This collaboration highlights a central challenge: errors and
bug fixing remain inevitable, making it crucial that models are not only effective at their assigned tasks
but also capable of interacting meaningfully with developers across varying backgrounds and expertise
levels. In parallel, personalization has emerged as a key trend, with increasing emphasis on adapting
models to individual developers [72].

2https://www.jetbrains.com/junie/

https://www.jetbrains.com/junie/

2.3. Actionable Insights and Teaching 10

Personalization also extends beyond the human level to the task itself. As demand for agentic work-
flows grows, cost considerations have become a central concern [10]. One promising line of research
advocates the use of smaller models, on the order of millions rather than billions of parameters, that
can be fine-tuned for niche tasks and deployed as part of a fleet of specialized models. A practical
example is JetBrains’ Mellum, a 4-billion parameter model designed specifically for code completion
and intended for local deployment within repositories [56]. This reflects a broader shift toward domain-
specialized models, a trajectory that suggests future systems will not only be tailored to particular tasks
but also increasingly to the needs of individual developers.

2.3. Actionable Insights and Teaching
Throughout this study, we understand actionable insights as feedback that is (1) clear and specific to
what the learner is doing, (2) practical enough to act on without extra guesswork, and (3) timely, arriving
right when a problem occurs. In programming, error messages are one of the most common forms of
feedback. When they are vague, overloaded with jargon, or poorly placed, they add unnecessary
mental effort and slow down both debugging and learning. When phrased clearly and placed in the
right context, however, they can serve as small but powerful teaching moments: concise messages
that help learners get back on track and build long-lasting mental models.

From a teaching perspective, actionable feedback aligns well with ideas in learning sciences [38]: scaf-
folding (providing just-enough support), contingency (adapting support to the learner’s apparent need),
and showing or hinting at the next correct step while reducing irrelevant detail. It also connects to cog-
nitive load considerations: clearer, better-localized messages reduce extraneous load, allowing the
learner to devote effort to the germane aspects of the task (i.e., diagnosis, fix, and reflection). For
novices, who have not learned how to “read between the lines”, these properties are especially impor-
tant. For experts, succinct, non-intrusive explanations help maintain focus and avoid over-specification.

From pedagogy to design choices, we operationalize actionable insights through two message styles
that map directly onto instructional strategies:

• Pragmatic (task-oriented): concise, directive guidance that localizes the fault and proposes the
next concrete step (e.g., “Convert x to int before addition”). This mirrors procedural guidance
and is designed to minimize detours and reduce extraneous load.

• Contingent (scaffolded): short, guided hints or questions that respond to likely misconceptions
(e.g., “Are you adding a string to an integer? If so, type cast one side.”). This mirrors contingent
scaffolding: support that theoretically should adjust to the learner and fade as understanding
grows.

These styles complement the taxonomy of issues introduced earlier (Section 2.1) and themulti-paradigm
context (Section 2.1.1). For example, runtime type errors in dynamically typed, imperative settings
might benefit from highly localized, pragmatic guidance, whereas complex type-inference diagnostics
in functional settings may call for scaffolding that reveals hidden assumptions before proposing a fix.

Framing error messages as actionable teaching interventions motivates the two goals of this study:

1. Objective effectiveness (RQ1): if messages are actionable, they should measurably improve
code-correction performance (e.g., higher fix rates), independent of preference.

2. Subjective perception (RQ2): if messages reduce extraneous load and support understanding,
participants should report higher readability, lower perceived cognitive load, and lower perceived
authoritativeness (i.e., a more supportive, less prescriptive tone).

The skill-adaptive framing hypothesis follows directly: novices would benefit from slightly more structure
and explication, while experts would benefit from brevity and minimal disruption.

Finally, although we do not adopt a specific educational framework verbatim, two concepts help orient
our study: Bloom’s taxonomy [39] and argumentation models. In Bloom’s terms, error messages would
function as micro-interventions that move learners fromUnderstand (i.e., what failed) to Apply (i.e., how
to fix) and, when needed, to Analyze/Evaluate (i.e., why it failed, while seeking alternatives) [4]. From
the argumentation point of view, lightweight structures, such as Toulmin’s claim-evidence-warrant [6]
and the compact Claim-Evidence-Reasoning (CER) [44], may offer a logical way to name the fault,

2.4. Related Work 11

point to the line, and give a plain-language reason, improving clarity without sounding too prescriptive.
In particular, Toulmin’s model informed our contingent prompt template, which we cover in detail within
Section 3.3.

2.4. Related Work
This section places our study at the intersection of three areas of research: (1) foundational work on the
design and impact of programming error messages (clarity, tone, timing, context), (2) recent efforts that
use large language models (LLMs) to explain or rephrase errors, and (3) human-computer interaction
(HCI). We first summarize core design principles and error patterns that motivate our constructs (read-
ability, perceived cognitive load, perceived authoritativeness). We then review LLM-based approaches,
highlighting where evidence converges or conflicts, and how these insights inform our skill-adaptive in-
tervention.

2.4.1. Foundations: What makes an error message effective?
A comprehensive review by Becker et al. [9] maps five decades of research on PEMs, revealing sev-
eral noteworthy themes relevant for PEM improvements: improve readability and reduce extraneous
cognitive load, provide context and concrete hints/examples, adopt a supportive tone, use logical struc-
ture in explanations, and surface diagnostics at the right time. These themes directly motivate some of
the constructs we measure in our study, and the error message properties we target (i.e., localization,
plain language, actionable next steps).

Complementing design guidance, several studies examine the distribution and types of errors develop-
ers encounter. One study [51] shows that error frequencies in Python and Java follow a Zipf-Mandelbrot-
like distribution, with a small set of error types (e.g., SyntaxError, NameError in the case of Python)
dominating. This distribution suggests that targeted improvements to high-frequency cases can yield
the most impact. Work by Shirafuji et al. [57] further differentiates novice and expert error profiles:
novices more often lack knowledge of API existence/usage/specification, whereas experts more often
misread problems or overlook constraints, evidence that error message design may need to adapt to
skill. Beyond syntax, Ettles et al. [18] and Hristova et al. [30] catalog logical/semantic and common
Java errors, respectively, highlighting that many failures reflect misconceptions rather than mere syn-
tax violations, implying that brief, well-placed why-style cues (not only what) within error messages can
improve understanding.

2.4.2. LLMs for Explaining and Rephrasing Errors
Recent systems explore LLMs as on-demand “explainers” or “rephrasers” of compiler/interpreter out-
put. Taylor et al. [61] integrated an LLM into the dcc C compiler to help CS1/CS23 learners, reporting
conceptually accurate explanations in most compile-time and many run-time cases, while noting is-
sues with adhering to prompt instructions (e.g., revealing solutions when being explicitly told not to)
and weaker run-time quality. Within another study, Leinonen et al. [41] showed that Codex-generated
enhancements can be more novice-friendly than standard Python messages but suffer from incomplete
or incorrect fix suggestions (e.g., only a subset included fixes, and even less were correct). Their ex-
periments also suggested that a low temperature of 0 improved the consistency of high-quality outputs.

Evidence is mixed on whether LLM-enhanced messages improve objective performance. A 2024 study
by Santos et al. [54] found that LLM-enhanced PEMs often underperform both standard and expert-
crafted variants on several tasks, raising questions about when and how to deploy LLMs. In contrast,
Salmon et al. [53] reported that GPT-3.5 can produce useful code-only explanations (without the orig-
inal error text), though correctness gains mostly came from trimming verbosity via one-shot/fine-tune
rather than large accuracy jumps. Another study by Santos et al. [55] found that including the full source
context together with the PEM substantially improved clarity and fix specificity with GPT-4, proving that
prompting matters and that one should always provide code context to LLMs. Complementing these,
Wang et al. [66] conducted a large-scale randomized controlled study (RCT) across six Python mes-
sage variants (from raw interpreter to GPT-4 explanations and forum links), finding that GPT-generated
messages can reduce repeated runs and fix attempts, indicating practical benefits in authentic settings.

3CS1/CS2 are acronyms which typically refer to introductory programming courses for Computer Science university degrees.

2.4. Related Work 12

2.4.3. Beyond Compilers: LLMs for Developer Diagnostics
Beyond compiler and runtime errors, LLMs have also been applied to related diagnostics, including
CI/CD failure logs. A recent large-scale empirical study proposed the first taxonomy of GitHub Actions
(GHA) problems [71]. Partly in response to that, Toledo et al. [65] use LLMs to explain GHA failures. The
authors report that developers, especially less experienced ones, rate LLM explanations of GHA failures
positively on correctness and clarity for smaller logs, while experienced developers prefer more concise
summaries for complex scenarios. This reinforces a central premise of our own work: explanations
should be audience-aware, and brevity versus scaffolding is a skill-sensitive trade-off.

LogPrompt, a system by Liu et al. [43], leveraged several prompting techniques to improve LLM perfor-
mance on automated log analysis tasks, such as anomaly detection, log parsing and log interpretation.
While LogPrompt is not directly related to error messages, it highlights the potential of LLMs to assist
with diagnostics in software engineering contexts. The different prompt engineering techniques used
for LogPrompt, are also relevant to our work on improving error messages, and have partly informed
our initial exploration of prompting methods.

2.4.4. Synthesis and Positioning
Across these threads, three gaps emerge. First, while readability and cognitive load are longstanding
concerns, few evaluations thoroughly distinguish objective correction outcomes from subjective per-
ceptions in a single controlled design. Second, despite suggestive evidence that novices and experts
need different levels of support, skill-adaptive rephrasings remain underexplored. Third, results for
LLM-enhanced messages vary: some studies show improvements, others report null or negative ef-
fects, pointing to the importance of prompt design, message structure, and appropriate use of code
context.

Our study addresses these gaps by (1) evaluating objective code-correction performance and sub-
jective perceptions (i.e., readability, perceived cognitive load, perceived authoritativeness) within one
experiment, (2) explicitly testing skill-adaptive styles, pragmatic (brief, fix-oriented) and contingent (de-
tailed, “intent-aware” scaffolds), and (3) crafting prompts containing both the original interpreter mes-
sage and source code context to minimize mis-localization and improve specificity. In doing so, we align
with prior design advice (clarity, tone, timing, localized context), attempt to reconcile conflicting findings
around LLM effectiveness by standardizing inputs and evaluation criteria, and extend the literature with
a targeted look at novices vs. experts.

3
Research Methodology

This chapter describes the methodology used to investigate and answer the research questions in
Section 1.2. We proceed in four stages. In an initial pilot study, we develop an objective, task-aligned
assessment of Python proficiency (Section 3.1). A second pilot study (Section 3.2), then curates “the
Fantastic Four”, four buggy Python code snippets selected for realism and calibrated difficulty, for use
in the main study. Third, we describe the design of our prompt templates and motivate the choice of
the LLM to generate rephrased error messages (Section 3.3). Finally, in Section 3.4, we present the
Prolific-based web application that operationalizes the main crowdsourced study. To aid the reader,
Figure 3.1 illustrates the project approach, showing how both pilot studies and the main experiment
were conducted to address our research questions.

Figure 3.1: Project approach overview, including pilot studies and the main study conducted to address the research questions.

3.1. Python Proficiency Level Assessment
To meaningfully evaluate noteworthy effects across skill levels (RQ1–RQ2), we first require a reliable
measure of Python proficiency that reflects the kinds of abilities involved in reading, understanding and
fixing errors. This section motivates and details the design and results of our assessment instrument.

13

3.1. Python Proficiency Level Assessment 14

3.1.1. Motivation
Self-reports (e.g., Likert ratings of expertise or years of experience) are convenient, but known to suffer
from bias and weak alignment with specific competencies such as debugging or error interpretation.
Because our study focuses on how people understand error messages and repair faults, we sought a
task-aligned assessment that emphasizes those skills. Although no proficiency measure is perfect, an
instrument targeted at error comprehension, fault localization, andmodifications shouldmore effectively
enable the skill-level classification required for our analyses.

Multiple formats (MCQ, fill-in-the-blank, coding tasks, open-ended responses) are generally viable
means to assess skills. However, given the scale of the planned main crowd-sourced study and the
need to control cognitive load before the main tasks, we opted for a multiple-choice format with carefully
designed items that assess relevant sub-skills.

3.1.2. Approach
We conducted a literature-informed analysis of programming proficiency measures and of the anatomy
of Python errors (e.g., syntax, semantics, runtime behavior) to derive assessment themes aligned with
our goals. We then authored a bank of 56 multiple-choice items: 7 items across 8 themes relevant to
debugging. A high-level visualization of this approach is presented within Figure 3.2. The themes are:

(a) High-level view of constructs influencing the content of the survey. (b) In-depth view of constructs influencing the content of the survey.

Figure 3.2: Visualization of the approach to create the multiple-choice questions for the Python skill-level assessment survey.

• General Programming Error Understanding: We recognize that a flawless programming lan-
guage, one that would be ideal for every programming requirement, does not exist. Consequently,
it is not unusual for programmers to use multiple programming languages professionally or to tran-
sition between them over the course of their careers. For this reason, we crafted certain questions
aimed at evaluating a fundamental comprehension of programming errors, irrespective of the lan-
guage utilized, as numerous concepts are shared across different languages.

• Python-Specific Error Understanding: Beyond grasping general programming errors, we crafted
questions specifically focused on Python, including its syntax and semantics. These questions
aim to cover Python-specific elements, which might not be common across other languages, such
as applying indentation to define code blocks and using unique keywords and constructs inherent
to Python.

• Code Reading & Understanding: Effective debugging requires code comprehension at both
syntactic and semantic levels. Consequently, we included items that assess this competence,
explicitly accounting for Python’s dynamic typing, which can increase ambiguity and reduce com-
prehension, particularly in the case of novices.

• Error Message Comprehension: Error-message comprehension is foundational to debugging
and typically the first actionable step after code execution. We therefore included items that as-
sess the ability to parse Python diagnostics (i.e., exception type, traceback and offending line(s))
and map them to the underlying fault.

• Error Identification: Following message interpretation, the next step is fault localization in the
source code. This step is demanding, particularly for novices, because it requires integrating
code comprehension with diagnostic cues. We therefore included items that assess the ability to
identify errors in Python code.

3.1. Python Proficiency Level Assessment 15

• Error Resolution: After fault localization, the task shifts to repair selection and implementation.
Although related, identification and resolution are distinct: recognizing the fault does not guaran-
tee knowledge of an effective remedy. As such, we included items that present the fault and its
cause and require participants to choose the correct fix.

• Natural Language Scenarios: We also incorporated natural-language scenarios in which partic-
ipants receive a problem description without any accompanying code, and must identify the most
likely cause of the defect. This theme approximates real-world conditions where developers in-
terpret imperfect specifications and reason about unfamiliar situations.

• Miscellaneous: We additionally included multiple-choice items that span multiple categories, are
more difficult, and which would hopefully be more reflective of compact real-word scenarios.

Administering all 56 items to participants would introduce significant cognitive load. We therefore de-
signed our pilot study so that each participant received a 16-item subset, with 2 randomly sampled
items per theme. Theme order, item order within themes, and option order were fully randomized to
mitigate ordering and learning effects. The survey was implemented in Qualtrics1 and distributed via
convenience sampling (i.e., LinkedIn, the CHI Nederland community, authors’ networks) to achieve a
balanced mix of experience levels.

Alongside the instrument, participants reported their self-assessed Python proficiency level via Dreyfus’
model [11] of skill-acquisition2 and years of experience (Python, as well as general programming) to
serve as comparative baselines. Finally, participants estimated how many of the 16 questions they
believed they answered correctly. Prior work [19] suggests self-evaluations can correlate with work
quality in crowdsourcing contexts, and we explored whether this held here as well, and would be ben-
eficial for us in our main study. In the end, we decided to drop this method of participant pre-selection
for the Prolific study, as we had enough measures of quality control and screening. The resulting item
statistics from this pilot study informed the selection of a high-discriminative subset of questions to be
used in the main study (see Section 3.4).

3.1.3. Pilot Study Results
For this pilot study, 78 participants started and 60 completed the survey, yielding a completion rate of
76.92%. The median response time was 16 minutes; we do not report the mean because response
times were skewed by the 7-day completion window. Distributions of self-reported years of experience
with Python and with programming in general are shown in Figure 3.3.

(a) Distribution of self-reported years of experience with Python
(M= 5.7, SD= 4.55).

(b) Distribution of self-reported years of experience with programming
in general (M= 12.76, SD= 9.60).

Figure 3.3: Self-reported years of experience with Python and programming in general.

Participants answered on average 10.78 of 16 items correctly (67.37% accuracy). When asked to esti-
mate their own accuracy, the mean estimate was 12.2 out of 16 (76.25%). The Spearman correlation
between self-estimated and actual accuracy was r ≈ 0.35with p ≈ 0.006, indicating a moderate positive

1https://www.qualtrics.com/
2Interested readers can review Table A.1 which lists the six-level self-rating of Python experience that we used verbatim in

the study, which was informed by Dreyfus’ skill-acquisition model.

https://www.qualtrics.com/

3.1. Python Proficiency Level Assessment 16

association. For further exploratory analysis and reference, Table 3.1 lists the full set of Pearson/Spear-
man correlations examined in this survey.

Variable A Variable B correlation (method) p-value

Python YoE General programming YoE 0.55P 0.00001
Python YoE Dreyfus level 0.52S 0.00003
Python YoE Self-estimated accuracy 0.24S 0.00655
Python YoE Actual accuracy 0.28P 0.01527
Dreyfus level Self-estimated accuracy 0.24S 0.00655
General programming YoE Actual accuracy 0.06P 0.62229
General programming YoE Self-estimated accuracy 0.03S 0.82473
Actual accuracy Self-estimated accuracy 0.35S 0.00671

Table 3.1: Correlations examined in the Python skill-assessment survey. The correlation column also indicates the test used:
P for Pearson, S for Spearman; Python YoE = self-reported years of experience with Python; General Programming YoE =
self-reported years of general programming experience; Dreyfus level = Ordinal scale (1 = no experience, 6 = significant

experience); accuracy = number of questions answered correctly, on a (0-16) scale.

For extracting the best-performing questions, we calculated the point-biserial correlation3 between each
question and the total score, as well as the difficulty of that question. When using an acceptable difficulty
value range of 0.2 to 0.9 for each question, while keeping the best performing question within each
block / topic, and after removing some questions that held little discriminative power, we selected the
questions listed in Table 3.2 to be used in the skill assessment part of our main Prolific study.

Question ID Difficulty Discriminative Power (rpb) p-value
Q4.6 0.82 0.50 0.04224
Q5.2 0.83 0.65 0.00351
Q6.5 0.84 0.60 0.00631
Q7.1 0.88 0.81 0.00008
Q7.2 0.56 0.51 0.04598
Q8.2 0.78 0.40 0.10440
Q9.5 0.76 0.30 0.24669
Q10.1 0.87 0.45 0.08909

Table 3.2: Difficulty, discriminative power, and p-value for the final selected questions of the Python skill-assessment survey.

The values in the discriminative power column represent the point-biserial correlation between each
question and the total test score, essentially reflecting how well an item can distinguish between high-
and low-performing participants4. Higher values correspond to stronger discriminative power. For
interpretation, we use the following guideline:

• 0.00–0.19: Weak discriminative power; item does not properly separate high and low scorers.
• 0.20–0.29: Fair discriminative power; item shows some separation ability.
• 0.30–0.59: Good discriminative power; item effectively distinguishes between groups.
• ≥0.60: Excellent discriminative power; item very effectively distinguishes between groups.

Negative correlations may technically also occur (i.e., values are in the [−1, 1] interval), meaning that
lower scorers are more likely than higher scorers to answer the question correctly. Such cases typically
suggest that the item is poorly constructed, however, we generally did not encounter such occurrences,

3We did not use item response theory (IRT) because our sample size was too small for stable item estimates. IRT usually
needs many more responses per item, so the point-biserial measure within Classical Test Theory (CTT) was more appropriate.

4The value for rpb should not be interpreted by itself, as one must also look at the corresponding p-value, which indicates the
probability of observing the calculated rpb value if the null hypothesis of no correlation is true. When p < 0.05, it suggests that
the correlation is statistically significant and unlikely due to chance. In our case, most items had statistically significant positive
correlations, however, Q8.2, Q9.5, and Q10.1 remain an exception. Since we did not have better alternative options for those
respective item categories/themes, we ultimately decided to keep them in for the final assessment.

3.2. Selecting Candidate Code Snippets and Errors 17

and none of the final set of questions exhibited this. The values in the difficulty column capture the
proportion of participants who answered an item correctly: values near 1 indicate easier items, whereas
values near 0 denote more difficult ones.

3.2. Selecting Candidate Code Snippets and Errors
The main study requires buggy snippets that are realistic, diverse, and appropriately challenging for
novices and experts alike. This section describes how we constructed and reduced an initial pool of
candidate options to a final set of four representative Python code snippets, and their respective PEMs.

3.2.1. Motivation
Given the vast space of possible Python faults, an exhaustive coverage is inherently impossible. Our
objective was a pragmatic yet informed selection: snippets that (1) trigger commonly encountered
Python error types, (2) vary in presentation and underlying fault cause to avoid bias toward any single
pattern, and (3) sit in a “Goldilocks”5 difficulty band, neither trivial nor unreasonably difficult, for our
target mixed-skill population. We discuss potential limitations and generalizability about the approach
that we used to source these buggy code snippets in Section 6.2.

3.2.2. Approach
Building on the literature review supporting Section 3.1, we targeted high-incidence error families (e.g.,
SyntaxError, TypeError, NameError) and used an LLM to generate candidate synthetic snippets that
elicit these errors. The generation prompt that we used enforced the following constraints:

• Self-contained: Single-file Python programs relying only on the standard library.
• Runnable structure: Optional class and/or main function, which would be executable as a stan-
dalone script.

• Balanced complexity: ≤ 60 lines, at least 3-5 functions across class and standalone definitions,
low cyclomatic complexity, and concise Python docstrings to make function intent explicit.

We used OpenAI’s GPT-4o-mini-high to generate eight candidate snippets. Each was manually val-
idated to ensure (1) it triggers the targeted error, (2) it complies with prompt constraints, and (3) it
contains only a single fault to avoid cascading failures [8] when participants attempt program repairs.
If any violations were found, we manually addressed them or re-generated snippets accordingly.

We then ran a pilot study in which participants rated each snippet on (a) perceived difficulty of under-
standing the code, (b) perceived difficulty of fixing, (c) mental demand of reading the error message,
and (d) helpfulness of the error message, using 5-point Likert scales. Table 3.3 lists the exact questions
that were used in the pilot study, which were designed to capture these four dimensions of interest.

Construct assessed Survey item
Code difficulty “This code snippet is difficult to understand.”
Fix difficulty “I would find it challenging to resolve the issue in this code snippet.”
Error mental demand “Reading this error message feels mentally demanding.”
Error usefulness “This error message is useful for identifying the problem.”

Table 3.3: Mapping between the pilot study’s survey dimensions and their corresponding items.

From this data we sensibly selected four snippets, i.e., the “Fantastic Four”, that collectively span
error types and difficulty while remaining suitable for our audience. For brevity, we present only one
of the final 4 chosen snippets in Listing 3.1, and leave the interested reader to consult Appendix B,
which lists the chosen four snippets, alongside their respective error messages, which were created
by the standard Python interpreter when executing the code snippets as standalone files (i.e., python
<file_name>). Detailed results of the analysis for this is reported within Section 3.2.3.

5“Goldilocks” denotes a just-right range, neither too easy nor too hard, inspired from the English fairy tale “Goldilocks and the
Three Bears” (first published by Robert Southey, 1837).

3.3. Prompt Templates and LLM Settings 18

1 import random
2

3

4 class UserData:
5 """Represents user data with a name and a list of scores."""
6

7 def __init__(self, name, scores):
8 self.name = name
9 self.scores = scores
10

11 def top_score(self):
12 """Returns the highest score."""
13 return maximum(self.scores) if self.scores else 0
14

15 def add_score(self, score):
16 self.scores.append(score)
17

18

19 def summarize_scores(users):
20 return {u.name: u.top_score() for u in users}
21

22

23 if __name__ == '__main__':
24 """Main routine to generate user data, summarize scores, and print the results."""
25 users = [UserData(f"user_{i␣+␣1}", [random.randint(0, 100) for _ in range(random.randint

(2, 5))]) for i in range(4)]
26 summary = summarize_scores(users)
27 for name, score in summary.items():
28 print(f"{name}:␣{score:.2f}")

Listing 3.1: One of the chosen four buggy Python code snippet, which when executed as a standalone file, will trigger a
NameError on line 13 of the code listing, due to the undefined variable maximum.

3.2.3. Pilot Study Results
In this pilot study, participants were recruited through both convenience sampling and Prolific, yielding a
total of 20 valid responses (one additional participant was excluded for failing the attention check). Fig-
ure 3.4 presents the mean ratings for each candidate code snippet and error message across the four
questions listed in Table 3.3. The relationships between these questions are further explored through
a correlation matrix, shown in Figure 3.5. As expected, perceived fix difficulty positively correlates
with error-message mental load. On the other hand, error message usefulness decreases as cognitive
load and perceived difficulty rise. These patterns suggest that participants interpreted the questions as
intended and that the selected candidate code snippets and messages were appropriate for the pilot.

From a brief glance alone, the snippet IDs reported in the mean ratings figure (3.4) do not convey
much meaning by themselves as one cannot immediately see the underlying code and error for which
the values are applicable. Establishing the connection between this figure and what was chosen is
therefore challenging. For this reason, we provide the final four selected code snippets in Appendix B.
For readers interested in a more detailed view, one of our public GitHub repository [45] hosts the full
analysis scripts together with all candidate Python code snippets and their corresponding PEMs.

3.3. Prompt Templates and LLM Settings
This section describes how we designed the prompts that rephrase Python errors into more usable
messages and how we selected the LLM that executes these prompts under our constraints. This
represents one of the main contributions of our research, and is in effect a key element of our framework
for generating skill-adaptive error messages.

3.3.1. Motivation
The quality of rephrased messages, and thus our ability to improve comprehension and repair, relies on
(1) prompts that elicit readable, precise, and actionable feedback, while reducing cognitive load, and
(2) an LLM that reliably follows instructions, handles code context, and produces concise, readable
text, which incurs low cognitive load. Given LLMs’ prompt sensitivity on small and large models alike
[75, 13], prompts and model must be designed and evaluated jointly.

3.3. Prompt Templates and LLM Settings 19

Figure 3.4: Mean ratings for each candidate code snippet and error message across all four questions used in the pilot study.

Figure 3.5: Correlation matrix between the four questions used in the Fantastic Four pilot study for all candidate code snippets.

3.3.2. Approach
We collected design principles from prompt-engineering best practices and analyses of Python diag-
nostics. Target properties of the rephrased messages were: (1) high readability (i.e., plain language,
short sentences where appropriate), (2) low cognitive load (i.e., minimal jargon, explicit reference to
the offending line), (3) precise localization cues, and (4) grammatical correctness. In line with our in-
tent to provide skill-adaptive error messages, we created two closely related templates for rephrasing
error messages: pragmatic (succinct, fix-oriented guidance) and contingent (scaffolded, explanatory
feedback). In relation to our research questions, we hypothesize that pragmatic messages better suit
advanced users with established mental models, whereas contingent messages better support novices
who benefit from additional context and guidance. This scaffolding is intended to reduce jargon-driven
overload and to make the messaging tone more empathetic to learners. Both pragmatic and contingent
prompt templates that we used are referenced verbatim within Listings 3.2 and 3.3, respectively.

3.3. Prompt Templates and LLM Settings 20

1 INSTRUCTION:
2 You are an assistant helping a Python programmer by explaining the error, in a clear and

concise way.
3

4 CONTEXT:
5 The programmer's code and error message are below:
6 ---
7 CODE:
8 ```python
9 {code}
10 ```
11 ERROR MESSAGE:
12 ```
13 {error}
14 ```
15 ---
16 TASK:
17 1. Identify the cause of the error and the relevant line number from the code snippet. DO NOT

FETCH THE LINE NUMBER FROM THE ERROR MESSAGE.
18 2. Write exactly one paragraph (around 20-25 words or less) that:
19 - Begins with "**<ExceptionType >** at **line <line>**:"
20 - Briefly states the cause and hints at a fix.
21 - Focuses on providing helpful actionable insights, without directly giving the corrected

code.
22

23 FORMAT:
24 You may use markdown for emphasis, but do NOT include lists or code fences.
25

26 NOW WRITE YOUR RESPONSE:

Listing 3.2: The Pragmatic error message prompt template.

1 INSTRUCTION:
2 Guide the Python programmer to resolve their error in 3-5 supportive sentences. Focus on

actionable steps and encouragement,
3 while avoiding an authoritative tone.
4

5 CONTEXT:
6 The programmer's code and error message are below:
7 ---
8 CODE:
9 ```python
10 {code}
11 ```
12 ERROR MESSAGE:
13 ```
14 {error}
15 ```
16 ---
17 TASK:
18 1. Identify the cause of the error and the relevant line number from the code snippet. DO NOT

FETCH THE LINE NUMBER FROM THE ERROR MESSAGE.
19 2. Then write 3-5 sentences that:
20 - Begin your response with "**<ExceptionType >** at **line <line>**:" on the first line.
21 - Then confirm the likely intent or goal (e.g. "Did you mean to ...?") – this is the

claim, showing you understand what the programmer was trying to do.
22 - Only if useful, mention whether this error is common or if there are exceptions.
23 - Only if relevant, note whether there are situations where the error might occur

differently.
24

25 FORMAT:
26 You may use markdown for emphasis, but do NOT include lists or code fences.
27

28 NOW WRITE YOUR RESPONSE:

Listing 3.3: The Contingent error message prompt template.

Because code context is crucial, each prompt includes (1) the exact snippet that produced the error and
(2) the interpreter message/traceback, alongside our task instructions. We also saw that prepending
the line numbers for the code snippet and the traceback to the prompt improves the model’s ability

3.4. Prolific Web Application Design 21

to reference them correctly in the rephrased message. Using the Python standard interpreter error
message and the snippet’s line numbers as ground truth within our prompts minimizes the risk of citing
the wrong line in the LLM-rephrased message.

We formatted prompts in a mix of Markdown and plain text for clarity and consistency with common
prompt engineering practices. However, since prior work [28] suggests formatting effects are gener-
ally secondary to content and depend on task and model, we fine-tuned our templates to the specific
model and use case until finding something that works generally well. For better visualization of how
these error message styles differ, Figure 3.6 illustrates all three examples which would be shown when
running the code from Listing 3.1.

(a) Standard interpreter error message. (b) Pragmatic programming error message. (c) Contingent programming error message.

Figure 3.6: Examples of the standard, pragmatic, and contingent programming error messages styles, which would be shown
when running the code in Listing 3.1. The pragmatic error message was generated using the template shown in Listing 3.2, and

the contingent error message using the template in Listing 3.3.

In parallel, we tested open-source LLMs that could run on a self-hosted VM, follow instructions reliably,
perform well on relevant code-related benchmarks, and handle enough context to include medium-
length code along with its standard Python error message. Consequently, we reviewed and selected
the llama-3.1-8B-Instruct model for generating the rephrased messages6, balancing performance
on the IFEval and HumanEval benchmarks, with single-machine deployment feasibility. In terms of
other relevant settings, we set the temperature to 0 and used zero-shot prompting. We were informed
of this optimal settings for our case by prior work [41] and our validation tests. A zero temperature
maximized stability and reproducibility, while pilot runs showed that one- and few-shot prompts biased
outputs toward the provided examples and reduced generalization.

3.4. Prolific Web Application Design
The main study was deployed as a custom web application integrated with Prolific for recruitment and
eligibility enforcement. This section describes the system architecture, participant workflow, and task
logic of the application. To aid the reader, Figure 3.7 illustrates the main participant-facing user in-
terfaces. Additionally, Appendix C provides a description of the full-stack system and the key design
choices.

3.4.1. Motivation
To answer the research questions at scale with a diverse participant pool, we used Prolific solely for
recruitment, prescreening, and compensation management. Prolific enables targeted screeners, pre-
vents duplicate participation, and standardizes inclusion criteria, thereby improving external validity.
After passing eligibility checks on Prolific, participants were redirected to our custom web application,
independent of Prolific, where all tasks were administered and all responses were recorded. Prolific
thus facilitated sampling and eligibility enforcement (e.g., country, age, prior exposure), while the study
itself ran entirely on our platform and was responsible for the task logic, data collection, and participant
experience.

3.4.2. Approach
We implemented a full-stack application with Next.js/React on the frontend and FastAPI on the back-
end, persisting data in PostgreSQL. Participants arrive from Prolific with their unique Prolific ID (used
as an URL parameter) for enforcing one completion per user and to align records across tasks. The
UI prioritizes clarity (e.g., concise instructions, consistent layouts) and familiarity (i.e., code editor re-

6To reiterate and avoid confusion: the candidate buggy snippets in the prior step (Section 3.2) were generated with
GPT-4o-mini-high for efficiency, whereas all participant-facing rephrasings in the main study used llama-3.1-8B-Instruct.

3.4. Prolific Web Application Design 22

(a) Skill assessment screener: self-reported Python
years-of-experience slider component used in skill grouping.

(b) Skill assessment screener: multiple-choice component used in skill
grouping.

(c) Embedded code editor used for debugging tasks with the assigned
error message style. The error message in this picture belongs to the

contingent error message style.

(d) Post-task user feedback form. Participants need to provide their
impressions on three different panels: (1) readability, (2) cognitive load,

(3) authoritativeness.

Figure 3.7: User interfaces from the Prolific web application used in the study: (a) Python YoE skill screener, (b) MCQ
assessment, (c) code editor interface, and (d) post code fix task subjective ratings feedback.

sembling common IDEs, such as PyCharm7 or VSCode8 with Python syntax highlighting and non-AI
rule-based inline completion).

After providing their consent to our terms and means of collecting data, participants must review inter-
active instructions and a sandbox interface for each task in the survey before proceeding. The survey
instructions can be accessed at any time later during the actual study. We log integrity signals (e.g.,
copy/paste/cut, window blur, tab switching) for manual review. Submissions exhibiting clear evidence
of low-effort (e.g., random typing, repeated identical code fix submissions) or external assistance are
rejected, as disclosed upfront. Participants can withdraw at any time, and their data is anonymized and
used solely for this research. Once participants go through the consent and instructions, they proceed
to the main study which consists of three sequential parts, as outlined below:

7https://www.jetbrains.com/pycharm/
8https://code.visualstudio.com/

https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/

3.4. Prolific Web Application Design 23

1. Python Skill Assessment: Participants report their years of Python experience using a slider
(see Figure 3.7a), and answer 8 MCQs (see Figure 3.7b), as identified by the pilot study described
in Section 3.1. Items and options are randomized to avoid ordering effects, whereas backtracking
is disabled to prevent answer revision based on later items. Using the assessment responses
and years of experience, the backend logic of the application assigns participants a skill level.
The exact skill-assignment logic is reported within Table 3.4.

2. Code Fix Task: After determining the participant’s skill level, the assignment logic then selects
one of the four curated snippets and one error-message condition (i.e., standard, pragmatic, or
contingent). Assignment logic maintains both global balance (across all participants) and local
balance (across snippets within message style). Participants attempt to repair the snippet in an
embedded editor (see Figure 3.7c), which they had gotten familiar with during the survey instruc-
tions. A submission is considered correct if it removes the targeted error and passes a hidden
test suite, which checks for semantic correctness. Participants were allowed up to three submis-
sion attempts in the code fix task. This cap was motivated by Wang et al.’s RCT [66] showing
that LLM-enhanced PEMs reduce re-runs, with students repeating errors 23.1% less often and
resolving them in 34.8% fewer additional attempts than with standard messages, and by practical
constraints on session length and participant fatigue. After each unsuccessful attempt, the editor
resets to the original code. Success is acknowledged immediately, so as not to confound the re-
sults of the final evaluation task. In essence, this code fixing task addresses RQ1 by measuring
repair effectiveness under each message condition and skill level.

3. Error Message Evaluation: Regardless of repair outcome in the previous task, participants are
asked to rate the error message they saw using 5-point Likert scales (see Figure 3.7d). For this
final task, we display the error message they had received in the previous task in addition to the
actual statements to be rated, which will measure readability, cognitive load, and the authorita-
tiveness of the error message (see Table 3.5 displaying all of the questions against which each
error message was rated). To that end, readability is captured via four items, namely, length,
jargon, sentence structure, and vocabulary. These items, both their wording and Likert scales,
are adopted verbatim from previous work [16], which showed they correlate with readability and
understanding. Cognitive load is probed along intrinsic, extraneous, and germane dimensions,
as inspired by cognitive load theory (CLT) [58]. Finally, while there currently does not exist a
validated instrument for measuring the authoritativeness of error messages, we capture this via
a single item centered around the tone and empathetic quality of the error message. Overall,
the error message evaluation task addresses RQ2 by testing whether LLM-enhanced PEMs are
more readable, less demanding, and less authoritative in tone than Python standard messages.

MCQ score (correct) Python years of experience Assigned skill level category
≥ 6 Any Expert
≤ 3 Any Novice
[4, 5] ≥ 5 Expert
[4, 5] < 5 Novice

Table 3.4: Logic for assigning participants to skill level categories based on MCQ score and years of Python experience (YoE).

3.4. Prolific Web Application Design 24

Metric Question Scale (1-5)

Readability

Length “Is the message expressed using more
words than needed?”

Succinct - Verbose

Jargon “Does the message contain jargon and
technical terms?”

Less - More

Sentence Structure “How clear is the sentence structure of the
message?”

Clear - Unclear

Vocabulary “How complex is the vocabulary used?” Simple - Complex

Cognitive load

Intrinsic Load “This error message was inherently difficult
to understand.”

Disagree - Agree

Extraneous Load “The wording or formatting of this error
message wasted mental effort.”

Disagree - Agree

Germane Load “This error message helped me recognize
the underlying error concept.”

Disagree - Agree

Authoritativeness

Tone (respectfulness) “How respectful (i.e., reader-centered) is
the tone of the error message?”

Disrespectful - Respectful

Table 3.5: Survey items for readability, cognitive load, and authoritativeness, with response scales.

4
Experimental Setup

This chapter describes the design of themain study conducted on Prolific to evaluate whether rephrased
Python error messages, specifically pragmatic or contingent error message styles, improve participants’
ability to correct buggy code compared to the standard interpreter messages (RQ1). Beyond repair
effectiveness (i.e., fix rate, time-to-fix, number of attempts to fix), we assess participants’ perceptions
of readability, cognitive load, and authoritativeness of the error message they received (RQ2). The
main crowdsourced study we launched consisted of three parts: (1) a Python MCQ skill assessment,
(2) a single code-fixing task when being shown one error message style, and (3) an evaluation of
the error message that was used in the previous task via Likert scales (see Table 3.5). Procedural
details of these parts are described in Chapter 3, the research methodology. In this chapter we focus
on formalizing the study design, by describing the independent variables in Section 4.1, dependent
variables in Section 4.2, and possible confounding factors within Section 4.3. Lastly, in Section 4.4 we
also report on more details surrounding our recruitment of participants via Prolific.

4.1. Independent Variables
This section specifies the factors that structure the study design and assignment. We control the error
message style as the primary factor, assign the code snippet and corresponding PEM to control error
diversity and difficulty, and measure Python proficiency to enable stratified balancing and subgroup
analyses. Assignment uses constrained randomization to preserve global balance across styles and
local balance within the determined code snippet group.

4.1.1. Error Message Style
Participants were pseudo-randomly assigned to one of three error message styles that were displayed
alongside the offending code snippet:

• Standard: The unmodified Python interpreter message corresponding to the triggered error. This
serves as the baseline against which rephrased variants are evaluated.

• Pragmatic: A concise, task-oriented rephrasing aimed at suggesting actionable next steps (e.g.,
what to check or change immediately) while avoiding extraneous detail. The goal is to lower the
cognitive load for a fix without altering the underlying diagnostic content.

• Contingent: A scaffolded, stepwise rephrasing formulated using Toulmin’s argumentation model
to guide understanding and diagnosis (e.g., stating the claim, offering grounds, and prompting
likely checks). This format completely changes the original error while making the reasoning
path for a cause and fix explicit.

To reduce confounds, all rephrasings for a given snippet were authored from the same base interpreter
message, and their length/structure were kept within pre-defined bands. Constrained randomization
maintained global balance across styles and local balance within each snippet, and each participant
saw exactly one error message style (i.e., no cross-over).

25

4.2. Dependent Variables 26

4.1.2. Code Snippet and Error Message Type
Each participant received exactly one of four curated Python snippets (which we encode as A, B, C, D).
Every snippet contains a single targeted bug with a unique ground-truth fix and was accompanied by a
hidden test suite to validate semantic correctness. Code snippet choice functions as a blocking factor
to control for difficulty variability: balanced assignment ensured comparable counts per style within
each snippet, thereby mitigating confounding from snippet-specific characteristics.

Naturally, the underlying error message type, i.e., the interpreter’s error category raised by the snippet,
such as NameError, always represents the error message that was triggered when running the assigned
code snippet, and is the one which is rephrased into the pragmatic and contingent variants without
changing its meaning or scope.

4.1.3. Python Proficiency Level
Participants first completed a Python skill assessment comprising (1) self-reported years of experience
via a slider and (2) eight MCQs selected as best-performing in the pilot (see Section 3.1). The backend
logic combined these measures to assign participants to proficiency strata (e.g., novice vs. expert),
which were then used to:

1. Support balanced assignment: Stratified constrained randomization preserved style balance
within snippet while maintaining similar skill distributions across conditions.

2. Enable subgroup analyses: Skill level was not manipulated, but explicitly assessed (e.g., style
× skill interactions).

This approach limits bias from self-reporting measures alone by combining years of Python experience
with objective (MCQ) indicators, while maintaining the grouping strictly at the message-style level.

4.2. Dependent Variables
This section outlines the study’s dependent variables, which fall into two broad categories: (1) behav-
ioral outcomes, which capture objective measures of participants’ performance during the code-fixing
task, and (2) perceptual outcomes, which reflect subjective ratings of the error message they received.
Behavioral outcomes quantify the ability and efficiency with which participants corrected the targeted
bug, while perceptual outcomes assess the clarity, cognitive demand, and tone of the error messages.

4.2.1. Behavioral Outcomes
Fix Rate: For each experimental group g (e.g., defined by message style × skill level, or message
style × code snippet), we define Fix Rate as the proportion of participants who successfully repaired
the snippet within at most three attempts, relative to all participants in that group. Formally:

FRg =

∑
i∈g

1(Si,1 = 1 ∨ Si,2 = 1 ∨ Si,3 = 1)∑
i∈g

1(Si,1 = 0 ∧ Si,2 = 0 ∧ Si,3 = 0) +
∑
i∈g

1(Si,1 = 1 ∨ Si,2 = 1 ∨ Si,3 = 1)
(4.1)

Note: FRg = Fix Rate for group g, where Si,k ∈ {0, 1} encodes whether participant i’s submission at
attempt k was correct (1) or incorrect (0).

Time-to-Fix: For each participant iwho achieved a successful fix, Time-to-Fix is the total elapsed time
(in seconds) from message display to the successful attempt, summing the durations of all attempts
leading up to and including the successful one:

TTFi =

Ki∑
k=1

ti,k (4.2)

Note: TTFi = Time-to-Fix for participant i, where ti,k is the time taken for attempt k, and Ki is the
index of the first successful attempt for participant i (with 1 ≤ Ki ≤ 3). This metric is undefined for
participants without a successful fix.

4.3. Confounding Factors 27

Fix@k Metrics: We further define and record the following metrics:

• Fix@1: Number of participants whose first attempt was successful at fixing the given buggy
Python code snippet, i.e., Si,1 = 1.

• Fix@2: Number of participants whose second attempt was the first successful one at fixing the
given buggy Python code snippet, i.e., Si,1 = 0 ∧ Si,2 = 1.

• Fix@3: Number of participants whose third attempt was the first successful one at fixing the given
buggy Python code snippet, i.e., Si,1 = 0 ∧ Si,2 = 0 ∧ Si,3 = 1.

Note: Si,k ∈ {0, 1} encodes whether participant i’s submission at attempt k was correct (1) or not (0).

4.2.2. Perceptual Outcomes
Following the code-fixing task, participants rated the error message they received on a 5-point Likert
scale for three constructs:

• Readability (4 items): length, jargon, sentence structure, vocabulary.
• Cognitive Load (3 items): intrinsic, extraneous, germane load (per Cognitive Load Theory).
• Authoritativeness (1 item): perceived tone and empathetic quality, with higher scores indicating
a less authoritative, more considerate tone.

Some scales were designed so that higher values indicate more desirable perceptions, while others
were reverse-coded1.

• Readability items: lower ratings reflect greater readability, therefore are better.
• Cognitive load items: lower ratings indicate reduced load and are therefore more desirable,
except for germane load, where higher ratings are better.

• Authoritativeness: measured with a single item, where higher ratings represent a more reader-
centered, and thus a better perceived error message.

4.3. Confounding Factors
We identified potential confounds and implemented our design to account for them:

• Skill heterogeneity: Individual ability can affect both fix rate and perceptions. We measured
skill, namely Python years of experience and the number of correct multiple-choice questions,
and used it for stratified balancing at assignment and for subgroup/adjusted analyses.

• Snippet difficulty: To mitigate difficulty-driven effects, we curated four single-bug snippets, pi-
loted them for comparability, and blocked randomization by snippet. In our analysis, we some-
times treat the snippet choice as a factor.

• Message length/content differences: Pragmatic and contingent messages naturally differ in
length/structure, yet this was an intentional introduced covariate.

• Prior familiarity with specific errors: Pre-existing familiarity may ease fixes. We use random
assignment and snippet blocking to distribute such familiarity across conditions, thereby residual
effects are partially mitigated by code snippet assignment logic.

• Editor/task familiarity: Participants interacted with the code editor interface during the survey’s
mandatory instructions step to reduce UI-driven cognitive load. The editor resets after attempt
failures to avoid cumulative code drift.

• External assistance: As with any remote study, undisclosed external help cannot be fully ex-
cluded. We did instruct participants to work independently, with time-on-task, window/copy/paste
events, and attempt patterns enabling us to detect implausibly rapid successes or other signs of
malicious intent. In addition, copying and pasting text was disabled by default within the browser.

1We did not perform numerical reverse-coding, such as computing x′ = 6 − x when higher raw scores indicated worse
outcomes. Instead, we kept the original coding and interpreted the direction of the scales when reporting results. Exact item
wording and scales are provided in Table 3.5.

4.4. Prolific Configuration 28

• Order and fatigue effects: Each participant fixes only one snippet under one message condition,
then immediately rates that same message. This avoids cross-message carryover and ordering
effects.

• Randomization balance: Constrained randomization ensured approximately equal allocation
across message styles globally and within the code snippet subgroup, thereby allowing us to
perform meaningful analyses and comparisons across groups.

4.4. Prolific Configuration
We recruited participants via Prolific, adhering to the platform’s ethical and compensation guidelines.
This section reports the recruitment configuration, allocation, and how we ensured high-quality data for
our subsequent analysis. All experimental tasks were hosted on a dedicated virtual machine configured
with 36 GB RAM, an NVIDIA GeForce RTX 2080 Ti GPU with 12 GB VRAM, and an Intel Xeon Gold
6226 CPU @ 2.70GHz. These specifications ensured efficient execution of code submissions within
the embedded editor and provided sufficient capacity to deliver rephrased error messages to all users
via Ollama2.

4.4.1. Recruitment & Screening
Participants were required to meet several eligibility criteria configured via Prolific’s built-in screeners.
These included being at least 18 years old, fluent in English, having prior Python programming experi-
ence (as determined by Prolific’s Python proficiency screener), and maintaining an approval rate above
90% on previous Prolific studies. We additionally required access to a desktop or laptop computer, as
the task involved code editing in an embedded editor and was unsuitable for mobile devices. To avoid
carryover effects, participants who had taken part in our earlier pilot study, conducted to identify the
final four code snippets used in this experiment, were excluded.

4.4.2. Attention and Quality Monitoring
No explicit attention-check questions were included in the survey. Instead, data quality was safe-
guarded through several monitoring measures. We logged and analyzed browser focus events to
detect prolonged tab switching or window minimization, prevented copy-paste actions via JavaScript,
with in-browser notifications upon detection. We also recorded the time_taken_ms for each submission
and examined timing patterns across all survey parts to flag implausibly fast completions or irregular
submission intervals. Whenever any of these quality checks were triggered, participants’ data was
manually reviewed, and those failing these checks, such as seen to issue random-typing submissions,
or repeatedly submitting the same code without making any changes to it, were rejected and removed
from our final analysis.

4.4.3. Compensation and Duration
The study was initially estimated to take only 15-20 minutes. After a soft launch with 10 participants,
the average completion time was observed to be approximately 24 minutes. As a consequence, we
adjusted the Prolific listing to reflect this updated duration. After the entire recruitment ended, the ob-
served mean completion time was 26 minutes, with a median of approximately 23 minutes. Participants
were compensated at a rate of £9.00 per hour, 50% higher than the minimum payout on the platform,
and consistent with Prolific’s recommendation to ensure ethical pay and high-quality data collection.

4.4.4. Sample Size and Allocation
A total of 103 participants completed the study legitimately and passed all of the quality checks that we
enforced (both manually and automatically). Allocation was balanced by design across error message
styles and code snippet groups. Table 4.1 reports counts by error message style × skill level, and
Table 4.2 reports counts by code snippet ID within each error message style. Once again, note that
the counts in these tables reflect the final analyzed sample after excluding participants who were not
eligible for our analysis, or had failed the data quality standards, as outlined in Sections 4.4.1 and 4.4.2.

2https://ollama.com/

https://ollama.com/

4.4. Prolific Configuration 29

Standard Pragmatic Contingent Total
Novice 13 13 12 38
Expert 22 22 21 63

Total 35 35 33 103

Table 4.1: Participant allocation by message style and skill level.

A B C D Total
Standard 9 8 9 9 35
Pragmatic 9 9 8 9 35
Contingent 8 9 8 8 33

Total 26 26 25 26 103

Table 4.2: Participant allocation by snippet (A-D) within each message style.

5
Results

Having detailed our research methodology and experimental setup in the preceding chapters, we now
present the results in an objective, sequential manner. We first report on the demographics of our
Prolific participant user-base in Section 5.1. After this, we thoroughly cover the analysis and results
of the Prolific main crowdsourced study in Section 5.2, which constitutes the bulk of our experimental
evaluation and provides the primary evidence addressing our research questions.

5.1. Prolific Participants Demographics
For completeness, we report descriptive statistics on age, gender, and nationality for those Prolific
participants whose demographic information was available, without collecting any personally identifying
data, as shown in Figure 5.1. We do not conduct inferential analyses or subgroup comparisons on
these demographics in this chapter, because several nationality categories and some age bands have
limited counts, and such analyses are outside our research questions. Additional backgroundmeasures
such as years of Python experience and MCQ skill scores are summarized and, where appropriate,
examined in the Exploratory Analysis in Section 5.2.3.

5.2. Objective and Subjective Outcomes
As previously explained in Section 4.4, the participants of our main study (N=103) attempted to fix
one of four buggy Python snippets (balanced across conditions) and were randomly assigned to one
of three message styles: Standard (baseline), Pragmatic, or Contingent. We first report objective
performance, such as fix rates, Fix@{1,2,3}, and time-to-fix in Section 5.2.1. We then report subjective
perceptions, namely readability, perceived cognitive load, and perceived authoritativeness in Section
5.2.2. Finally, we also perform exploratory analyses that investigate additional potentially unexplored
patterns in Section 5.2.3, in addition to the main results.

As a reminder for interpreting the results in the following sections, participants were classified according
to our assignment logic, which combined their performance on the skill-assessment survey with their
self-reported Python YoE. Out of the 103 participants, 65 were categorized as experts and 38 as novices.
The distribution of participants across skill levels and snippets is provided in Table 4.1.

5.2.1. Fix Rate, Fix@k, and Time-to-Fix
For measuring participants’ objective performance on the code fix task, across different subgroups we
record the following metrics:

• Fix rate: proportion of participants whose final submission is fully correct.
• Fix@1/2/3: correctness achieved within the first, second, or third submission attempt.
• Time-to-fix: total seconds from code fix task start until the first correct submission.

30

5.2. Objective and Subjective Outcomes 31

(a) Participants’ nationality distribution. (b) Participants’ gender distribution.

(c) Participants’ age distribution.

Figure 5.1: Descriptive statistics for Prolific participants’ demographics.

Fix Rate: Table 5.1 reports overall fix rates by snippet across all participants, and Table 5.2 breaks
them down by message style and skill level. Fix rate, and therefore difficulty, varies significantly across
snippets, with snippet A showing the lowest success rate. This outcome is expected because the
standard interpreter output for snippet A fails to reveal the true root cause, and actually points to the
non-offending line1.

Looking more in-depth, Tables 5.3 and 5.4 report fix rates by message style and snippet ID for novices
and experts. For snippet A, LLM-enhanced PEMs, which do correctly identify the offending line and
root cause, generally increase fix rates, with the pragmatic style among novices as the main exception.
However, across snippets, style effects vary widely, so we refrain from making any conclusions.

A B C D
Fix Rate 53% (n = 26) 84% (n = 26) 64% (n = 25) 69% (n = 26)

Table 5.1: Fix rate (%) by snippet ID, across all participants; n = the total number of participants assigned the given snippet ID.

1Interested readers can refer to Listing B.1 and Figure B.1 in Appendix B, which present the code and the corresponding
standard error message for the least solved buggy code snippet in our study (when being shown the standard interpreter output).

5.2. Objective and Subjective Outcomes 32

Standard Pragmatic Contingent
Novice (n = 38) 46% 54% 42%
Expert (n = 65) 68% 82% 90%

Table 5.2: Fix rate (%) by message style and skill group (all snippets pooled).

A B C D
Standard 33% (n = 3) 67% (n = 3) 33% (n = 3) 50% (n = 4)
Pragmatic 0% (n = 3) 100% (n = 4) 67% (n = 3) 33% (n = 3)
Contingent 67% (n = 3) 67% (n = 3) 0% (n = 3) 33% (n = 3)

Table 5.3: Fix rate (%) by message style and snippet ID for novice participants. The number n, in parentheses, represents the
total number of participants assigned the given combination of snippet ID and error message style.

Fix@k: We initially introduced the Fix@k metric to quantify how many attempts participants needed
to repair each buggy snippet. Our aim was to test whether error message style influenced repeated
submissions across the full sample and within novice and expert subgroups. In practice, results were
situated at the extremes. Most participants either fixed the error on the first try, or did not succeed
at all within the three allowed attempts. Because Fix@k showed limited variation (Figure 5.2), we
could not conduct meaningful further analysis, so Fix@k remains largely unexplored in this study. A
visual reading of the figure nevertheless suggests that pragmatic and contingent messages may yield
higher fix rates, in general, than the baseline, since they outperform standard at k = 1. For contingent
messages in particular, outcomes often cluster at either “fixed on the first attempt” or “not at all within
three attempts”. Therefore, interpreting low Fix@2 and Fix@3 counts requires care, since they can
result from either strong first-attempt performance or a large tail of unresolved cases. Future studies
should relax the bound on k (within reason) to better visualize the average number of attempts per
error-message style until successful code repair.

Figure 5.2: Fix@k, for k ∈ 1, 2, 3, when varying error message style across all snippets and skill levels.

Time-to-Fix: As for the time-to-fix metric, Figure 5.3 shows that, averaged across skill levels, par-
ticipants fixed errors fastest when shown pragmatic messages. Contingent messages also reduced
time-to-fix relative to the baseline, but less than pragmatic, which is unsurprising given their greater
verbosity and the extra reading time required. However, when split by skill level (see Figure 5.4), both
LLM-enhanced PEMs tend to speed fixes versus standard. With few novice successes (standard n=6,
pragmatic n=7, contingent n=5), statistical tests found no significant effects, though the current pattern
seems to favor LLM explanations. As for experts, results remain inconclusive.

5.2. Objective and Subjective Outcomes 33

A B C D
Standard 33% (n = 6) 80% (n = 5) 67% (n = 6) 100% (n = 5)
Pragmatic 83% (n = 6) 100% (n = 5) 80% (n = 5) 67% (n = 6)
Contingent 80% (n = 5) 83% (n = 6) 100% (n = 5) 100% (n = 5)

Table 5.4: Fix rate (%) by message style and snippet ID for expert participants. The number n, in parentheses, represents the
total number of participants assigned the given combination of snippet ID and error message style.

Figure 5.3: Box plot for time-to-fix (seconds) by message style. Time-to-fix sums all attempts until the first success.
Standard (M = 415.69, SD = 377.75); Pragmatic (M = 324.56, SD = 333.12); Contingent (M = 423.85, SD = 501.47).

5.2.2. Subjective Evaluations
Figure 5.5 shows mean ratings by error message style and skill level. For novices, Holm-adjusted
Dunn tests indicate lower extraneous load for Pragmatic vs. Standard (p = 0.039) and also for Contin-
gent vs. Standard (p = 0.054). The results also report lower authoritativeness for Pragmatic vs. Stan-
dard (p = 0.011), while vocabulary also shows a trend favoring Pragmatic vs. Standard (p = 0.087),
meaning Pragmatic messages are generally seen as using simpler vocabulary.

For experts, Pragmatic vs. Standard is associated with lower intrinsic (p = 0.0049) and higher germane
load (p = 0.0043), and both Pragmatic and Contingent are rated less authoritative than the Standard
ones (p = 0.0097 in both contrasts). Experts also perceive messages as more verbose for Contingent
vs. Standard (p = 0.035), with a trend toward simpler vocabulary for Pragmatic vs. Standard (p = 0.088).
Overall, adaptive style, especially Pragmatic, are consistently rated by experts as lighter in cognitive
load, less authoritative, and more useful than the Standard baseline. Contingent error messages are
also, on average, rated better by experts across almost all metrics, yet their increased verbosity seems
to impact their overall usefulness.

Figure 5.6 reports mean ratings for the full sample, aggregated only by message style. Similarly, we
also perform Kruskal-Wallis tests followed by Holm-adjusted Dunn comparisons where necessary, and
the results indicate several pairwise differences.

In terms of readability, differences appear for sentence structure between Pragmatic and Standard (p =
0.0218), for vocabulary between Pragmatic and Standard (p = 0.0063) and Pragmatic vs. Contingent
(p = 0.0423), and a trend for length between Standard and Contingent (p = 0.0949).

For cognitive load, we observe differences in intrinsic load for Pragmatic vs. Standard (p = 0.0017) and
Contingent vs. Standard (p = 0.0431). In extraneous load we notice differences only for Pragmatic vs.
Standard (p = 0.0064). We also reported differences in germane load, both for Pragmatic vs. Standard
(p = 0.0013) and Contingent vs. Standard (p = 0.0488).

Finally, in terms of authoritativeness, both Pragmatic and Contingent differ from the Standard error
message style (p = 0.0001 and p = 0.0032, respectively).

Overall, the most frequent contrasts involve Pragmatic (and, in several cases, Contingent) relative to
the Standard, consistent with adaptive styles differing from the baseline interpreter output on readability,
perceived load, and tone.

5.2. Objective and Subjective Outcomes 34

(a) Time-to-fix box plot for novices, by message style.
Standard (M = 471.58, SD = 375.0); Pragmatic

(M = 253.71, SD = 178.52); Contingent
(M = 396.41, SD = 437.06).

(b) Time-to-fix box plot for experts, by message style.
Standard (M = 393.34, SD = 389.57); Pragmatic

(M = 352.13, SD = 377.56); Contingent
(M = 431.08, SD = 527.85).

Figure 5.4: Box plots for time-to-fix (seconds) by message style and skill level; left plot for novices, and right plot for experts.

For the previously mentioned statistical analysis, we use the Kruskal-Wallis test with Dunn’s pairwise
comparisons (Holm-adjusted) because our outcomes are Likert ratings (i.e., ordinal, bounded), and
after performing validation checks we saw that the data was not normally distributed. Kruskal-Wallis
is an alternative to ANOVA that handles such data well and tolerates unequal group sizes. When the
omnibus test indicates a difference, Dunn’s test tells us which styles differ. Holm’s adjustment controls
false positives across the three pairwise checks per metric while being less conservative (and more
powerful) than an alternative like Bonferroni. Overall, this is a data-appropriate choice for our setting.

5.2.3. Exploratory Analysis
In addition to the previous results, we also performed additional exploratory analysis to see whether
we could find uncovered patterns. For instance, Figure 5.7 depicts statistics about the multiple-choice
questions that compose the Python skill assessment in the first part of the Prolific study, where we are
reporting mean completion time and question correctness percentage. On average, we noticed that
correct answers tend to require more time on the respective question, indicating that our questions
were mostly answered thoughtfully and legitimately, rather than at random.

Another aspect we wanted to verify was whether the piloted Python skill assessment survey reliably
reflects true proficiency and predicts debugging performance in the main Prolific study. To that end,
we tested whether performance on the survey, measured as the number of MCQs answered correctly,
relates to fixing the assigned code snippet. A point-biserial correlation showed a moderate positive
association, rpb = 0.368 with p = 0.0001, indicating that higher MCQ scores correspond to a greater
likelihood of producing a correct fix.

5.2. Objective and Subjective Outcomes 35

(a) Readability metrics (Novices). (b) Readability metrics (Experts).

(c) Cognitive load metrics (Novices). (d) Cognitive load metrics (Experts).

(e) Authoritativeness metric (Novices). (f) Authoritativeness metric (Experts).

Figure 5.5: Mean ratings for readability, cognitive load, and authoritativeness by message style and skill group. Brackets with
asterisks indicate pairwise differences from Dunn’s post hoc tests (Holm-adjusted) following Kruskal-Wallis: * (p < 0.1), **

(p < 0.05), and *** (p < 0.01).

5.2. Objective and Subjective Outcomes 36

Figure 5.6: Mean ratings for readability, cognitive load, and authoritativeness by message style. Brackets with asterisks
indicate pairwise differences from Dunn’s post hoc tests (Holm-adjusted) following Kruskal-Wallis: * (p < 0.1), ** (p < 0.05),

and *** (p < 0.01).

(a) Mean completion/answering time in seconds for each MCQ in the
Prolific study.

(b) Percentage of correct and incorrect answers for each MCQ in the
Prolific study.

Figure 5.7: Statistics, such as mean completion time and correctness percentage pertaining to the MCQs in the Prolific study.

Figure 5.8: Prolific participants’ self-reported Python YoE distribution.

6
Discussion

This chapter provides an in-depth discussion of our results, linking them back to the research questions
posed in the introduction and considering their implications (Section 6.1). We then take a retrospective
view of our work, outlining the limitations of our approach and suggesting potential directions for future
work (Section 6.2).

6.1. Implications
The results of our study carry implications for both how programmers respond to error messages in
practice and how they perceive their clarity and usefulness. We discuss these implications in relation
to RQ1 (objective effectiveness) and RQ2 (perceived qualities).

6.1.1. RQ1: Effectiveness of Skill-Adaptive Programming Error Messages
The results from Section 5.2.1 show that our LLM-powered, skill-adaptive error messages reduced de-
bugging time and improved fix rates for both novices and experts, though these improvements were
not statistically significant compared to baseline interpreter messages. While this may appear disap-
pointing, given the relatively small sample size which limits statistical power, we believe the trends are
promising enough to warrant further study with larger populations. It is also important to note that not
all code snippets used in the study were equally difficult, and error message effectiveness varied by
error message style and participant skill level.

Looking at Fix@k metrics, which were meant to measure attempts and error message style effects,
results generally indicated that participants either fixed the given code on the first try or not at all within
three attempts, leaving too little variation for meaningful analysis. Interpreting Fix@1 alone may sug-
gest that contingent messages are most effective (when looking at the entire population, and not when
grouping by skill level), yet the sparse Fix@2 and Fix@3 counts could also imply that they are poten-
tially confusing, with participants either understanding them from the beginning or not at all. Future
work should revisit Fix@k, and allow a larger k in related experiments to better capture attempt effects.

Finally, we were particularly surprised to find that contingent error messages did not consistently im-
prove the fix rate for novices when comparing against both baseline and pragmatic, despite being
designed to provide more scaffolding and context through an argumentation-based structure. A plau-
sible explanation is that the increased verbosity of contingent messages led novices to spend more
time reading and interpreting them rather than applying correct fixes, offsetting their potential benefits.
Still, fix rate and time-to-fix are only two metrics, and contingent messages may yet prove valuable
in other respects. Interestingly, contingent messages did significantly improve fix rates for experts,
even compared to pragmatic ones, suggesting that detailed, structured feedback can actually benefit
experienced programmers, despite increased verbosity.

37

6.2. Looking Back and Ahead 38

6.1.2. RQ2: Perceived Qualities of Skill-Adaptive Programming Error Messages
Turning to subjective perceptions, as reported in Section 5.2.2, participants of all skill levels tended
to rate LLM-enhanced PEMs, pragmatic and contingent, more favorably than the standard Python
interpreter ones. They found them clearer, more helpful for understanding the underlying issue, lower
in intrinsic cognitive load, and less authoritative. Experts strongly preferred pragmatic messages, which
they judged better across most subjective dimensions (with significant results for vocabulary, intrinsic
load, germane load, and authoritativeness). This aligns with our hypothesis that concise, to-the-point
feedback is more suitable for experienced users than scaffolded information. The only anomaly that
we encountered was that experts perceived pragmatic messages as more verbose than standard ones,
even though they were objectively shorter. We attribute this either to differences in how participants
interpreted “verbosity” (textual vs. structural conciseness) or to possible confusion about the survey
scales and their actual meaning (1 = very succinct, 5 = very verbose).

For novices, subjective ratings followed a similar pattern. Pragmatic messages were generally pre-
ferred over contingent and baseline ones, with significant results for vocabulary, extraneous load, and
authoritativeness. Contrary to our hypothesis, novices did not perceive contingent PEMs as the most
useful. We suggest that highly detailed and scaffolded feedback may actually overwhelm learners still
grappling with the basics, leading to cognitive overload rather than support. Another possibility is that
some participants of our “novice” group, as categorized by our skill assessment survey in the first part
of the Prolific study, were in fact more intermediate-level programmers and not “true” novices. While we
initially considered finer-grained skill categorization, we opted for a strict novice/expert split to preserve
clarity in our factorial design.

In summary, even with a modest sample size of 103 participants, our study indicates that LLM-powered,
skill-adaptive error messages can support both novices and experts. Pragmatic messages appear most
consistently effective, while contingent messages surprisingly offer benefits mainly for experts. These
findings align with broader trends toward personalized and adaptive developer support using LLMs.
At the same time, they highlight the need for caution: such tools are not a “silver bullet” and should
augment, rather than replace, existing debugging practices and human instruction. In educational
contexts, over-reliance on LLM feedback, particularly if explanations are overly confident but incorrect,
risks strengthening misconceptions, false confidence, and inhibiting learning [26]. This highlights the
importance of balancing adaptive AI support with opportunities for learners to develop independent
debugging and problem-solving skills [7].

6.2. Looking Back and Ahead
Our findings show significant promise, but they also reveal some limitations in how much our methods
can currently be generalized. In this section, we reflect on those limitations and indicate concrete
directions for extending and testing our approach in more realistic and varied settings.

6.2.1. Limitations
Our study has several limitations that need to be considered when interpreting our findings. First,
although we aimed to develop a more reliable evaluation of programming skills than self-reported mea-
sures, the skill-assessment survey we created via our first pilot study, and which we used in our main
study, was not empirically validated at a large scale before launch. Additionally, in the Prolific study,
participants were grouped by skill using this survey, together with self-reported Python years of expe-
rience, using the deterministic grouping logic described in Table 3.4. This rule was a pragmatic choice
given our study constraints, rather than a validated scoring model, and we did not compare it against
alternatives or correlate it with external criteria such as course grades, other exams performance or
any other sort of user-provided certifications. Given the heterogeneity of programmer backgrounds,
no single measure could possibly perfectly capture skill level. Nevertheless, stronger validation of this
skill-assessment survey would improve confidence in the subgroup analyses of Chapter 5.

A second limitation concerns task coverage for the code fix task in the Prolific main study and its ecolog-
ical validity. Even after a second pilot reduced the set of eight initial synthetic candidate snippets to the
four we used, our buggy Python code snippets still captured only a limited range of error contexts. Real-
world failures span diverse categories (e.g., NameError, SyntaxError, IndentationError, TypeError
and much more) and typically arise in code with far greater variability than our concise (≤ 60 lines of

6.2. Looking Back and Ahead 39

code) snippets designed to be feasible for Prolific participants. Effects may therefore differ for larger
programs, multi-file projects, or complex build and tooling pipelines. Generalization to such contexts
may require larger models with longer context windows or more sophisticated prompting and retrieval
strategies.

Third, in selecting our model and prompting strategy, we prioritized practicality rather than breadth.
We used llama3.1:8b at temperature 0 with zero-shot prompting to support low-latency, concurrent
inference on a single VM for ∼100 participants and to ensure stable, “deterministic” outputs, which
are not overly biased on prior exemplars. Although our choices were pragmatic and consistent with
prior work and benchmark results for the selected model, they also limited the scope of exploration. A
combination of different settings, such as largermodels, or different prompting strategies (e.g., one-/few-
shot, chain-of-thought, or other types of unexplored prompts) might have produced different outcomes.
Likewise, we relied on single templates for pragmatic and contingent styles without adapting them to
individual error types, which may have left some potential gains unexplored.

Finally, scope and power also constrain generalizability, especially since all experiments were con-
ducted in Python. Although several design ideas (e.g., prompt structure and information provided to
the model) may transfer, languages with different error types and compiler/runtime feedback (e.g., Rust,
Haskell, Java) may require some slight adaptation. Our post-quality check sample (N=103) is relatively
modest, which limits statistical power. While some of our interventions did yield statistically significant
effects, the small sample size nonetheless constrains the strength and generalizability of these findings.
Additionally, a few subjective items within our Prolific main study (e.g., perceived verbosity) may have
been interpreted differently despite careful wording and anchors, suggesting room to refine instrument
design and reverse-coded clarity.

6.2.2. Future Work
The aforementioned limitations suggest several ideas worth investigating in follow-up studies. A first
priority is validation in an authentic educational setting, where true novice programmers would be eval-
uating our skill-adaptive error messages. We propose a controlled deployment in an introductory pro-
gramming course over 1-3 weeks, randomizing at the participant or assignment level to compare base-
line, pragmatic, and contingent messages (or an adaptive selector). Beyond immediate outcomes (fix
rate, time-to-fix), such a deployment should track learning outcomes (e.g., assignment/exam perfor-
mance, delayed post-tests for retention checks) and correlate them with multiple skill measures, such
as MCQs, instructor rubrics, prior GPA, etc.

A second avenue for future work is evaluation at scale when triggering errors for large, real-world code-
bases. An IDE plugin (e.g., VS Code or PyCharm) could surface our LLM-enhanced PEMs alongside
standard interpreter output via an opt-in toggle or randomized exposure, thus enabling between or
within-subject comparisons at scale. Fine-grained telemetry, such as time-to-fix, edit distance to fix,
error recurrence, hint or toggle requests, should be collected under strict privacy safeguards. Comple-
mentary offline benchmarks (e.g., log replay from IDE failures or historically common issues) would
provide controlled comparability across teams and repositories.

Moving beyond static styles, a third direction is genuine skill adaptivity. Rather than pre-assigning
novices and experts to fixed groups, future systems could adapt dynamically by estimating transient
user skill state from behavioral signals (i.e., recent success rate, fix latency, error recurrence patterns,
scope of edits, number of failed runs). Methods such as contextual multi-armed bandits or reinforce-
ment learning could select message style, granularity, and tone in real time. Exposing a “skill/state”
control variable to the LLM would allow direct tests of whether the model reliably conditions its expla-
nations. Note, however, that this would represent a non-trivial extension to our framework.

Fourth, there is room to explore richer ways of testing and personalizing our approach. Future studies
could try different model sizes, temperatures, decoding methods, or prompt templates, perhaps tied to
specific error types, to see how they affect clarity, speed, and accuracy. Error messages could also be
made more helpful through retrieval-augmented explanations (e.g., linking to examples or documenta-
tion) and by letting users adjust the level of detail. Also, developing a specialized, fine-tuned model
for explaining diverse error messages in an educational or simple natural language style has the po-
tential to further improve the debugging and learning experience. In addition, fairness and accessibility

6.2. Looking Back and Ahead 40

need to be considered, including readability for non-native speakers, support for dyslexic readers, and
attention to color and contrast.

Fifth, broader generalization is needed. Replications in other languages and environments (e.g., com-
piled languages, or even for build tools, such as GitHub Actions, Azure DevOps, etc.) and exten-
sions from medium-sized code snippets to project-scale interactions would test ecological robustness.
Longer term outcomes, such as debugging self-efficacy, the formation of accurate mental models, and
the risk of over-reliance on LLM explanations should be evaluated to ensure that short term gains are
not achieved at the cost of genuine understanding. Prior work on the benefits and harms of genera-
tive AI for novice programmers found that GenAI can amplify existing metacognitive difficulties among
struggling students [49], which reinforces the need to monitor these effects.

Finally, both measurement and openness deserve greater attention. Subjective survey instruments
could be improved with clearer examples of concepts such as “verbosity”, explicit checks for scale
orientation, and reporting of reliability (e.g., Cronbach’s α1). Subjective measures of cognitive load
could also be complemented by lightweight behavioral proxies, such as pause times before edits or
navigation events, if using an IDE to assess performance. Moreover, continuing to publicly release
prompts templates, alongside a synthetic yet realistic benchmark of errors spanning multiple types and
code sizes, would strengthen reproducibility and enable cumulative comparison across future studies.

In summary, this work provides initial evidence that skill-aware programming error messages can be
beneficial, though their effectiveness cannot be proven to be consistent across all users and contexts,
yet. The critical next step is to test them in larger, more ecologically valid settings, paired with dy-
namic skill estimation and adaptive customization, to move toward genuinely effective, personalized
debugging support.

1Cronbach’s alpha is an index of internal consistency that shows how closely a set of items is related, essentially reflecting
whether they measure the same construct [60].

7
Conclusion

This thesis proposed a framework for designing LLM-powered, skill-aware Python programming error
messages aimed at improving readability, reducing cognitive load, and adopting a more reader-friendly
tone compared to the standard interpreter output. While prior work has explored ways to improve
programming error messages across languages, many approaches are still inherently rigid and struggle
to accommodate differences in expertise and learning preferences. Recent advances in large-language
models open up intriguing opportunities for more tailored feedback.

Motivated by the need for personalized support at the point of failure, we developed and evaluated two
styles of LLM-powered error messages with both novice and expert participants. Pragmatic messages
were designed to be concise and action-oriented, whereas contingent messages provided scaffolded,
actionable guidance structured by a clear argumentation model. To operationalize skill, we designed
and piloted a brief Python assessment focused on debugging and understanding interpreter errors. The
scores from this assessment determined the novice/expert grouping used in our evaluation.

In our study, pragmatic messages were, on average, more effective than both the baseline and con-
tingent variants, helping programmers fix issues with less effort and, often, in less time. Contingent
messages also outperformed the baseline but generally trailed behind the pragmatic style, especially
when considering time-to-fix metrics. Objectively, improvements in fix rate and time were not statis-
tically significant. However, subjective ratings showed clear, statistically significant advantages for
the LLM-generated messages, with pragmatic, to-the-point guidance proving broadly effective. Partici-
pants in our study, novices and experts alike, judged pragmatic messages to be more readable, lower
in intrinsic cognitive load, more helpful for understanding the underlying issue, and less authoritative in
tone. By contrast, contingent messages, though informative, sometimes increased the perceived intrin-
sic cognitive load. This was especially true for novices, suggesting that verbosity, even when correct
and relevant to the context, can introduce cognitive overhead contrary to our initial hypothesis.

This work is an initial promising step covering personalized error message design, with numerous
opportunities for extension. Future research should (1) evaluate the approach at a larger scale in
authentic educational and industrial settings, (2) generalize beyond Python to languages with different
error surfaces, and (3) move toward true adaptivity, where the message style and level of detail adjust
dynamically to signals of user skill and task state. Pursuing these directions will bring us closer to
genuinely personalized, effective debugging support: error messages which adapt to you and your
experience as you grow and learn more.

41

References

[1] Abdulaziz Alaboudi and Thomas D. LaToza. “What constitutes debugging? An exploratory study
of debugging episodes”. In: Empirical Softw. Engg. 28.5 (Sept. 2023). ISSN: 1382-3256. DOI:
10.1007/s10664-023-10352-5. URL: https://dl.acm.org/doi/10.1007/s10664-023-10352-
5.

[2] Anthropic. Building effective agents. Anthropic Engineering Blog. https://www.anthropic.com/
engineering/building-effective-agents. Dec. 2024.

[3] Anthropic. The Claude 3 Model Family: Opus, Sonnet, Haiku. Anthropic model card. https://w
ww-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_
3.pdf. Mar. 2024.

[4] Patricia Armstrong. “Bloom’s taxonomy”. In: Vanderbilt University Center for Teaching 12.05
(2010), p. 2023.

[5] Jacob Austin et al. Program Synthesis with Large Language Models. 2021. arXiv: 2108.07732
[cs.PL]. URL: https://arxiv.org/abs/2108.07732.

[6] Titus Barik et al. “How should compilers explain problems to developers?” In: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. ESEC/FSE 2018. Lake Buena Vista, FL,
USA: Association for Computing Machinery, 2018, pp. 633–643. ISBN: 9781450355735. DOI:
10.1145/3236024.3236040. URL: https://dl.acm.org/doi/10.1145/3236024.3236040.

[7] Elisabeth Bauer et al. “Looking Beyond the Hype: Understanding the Effects of AI on Learning”. In:
Educational Psychology Review 37 (Apr. 2025), pp. 1–27. DOI: 10.1007/s10648-025-10020-8.

[8] Brett A Becker et al. “Fix the First, Ignore the Rest: Dealing with Multiple Compiler Error Mes-
sages”. In: SIGCSE ’18. New York, NY, USA: Association for Computing Machinery, Feb. 2018,
pp. 634–639. DOI: 10.1145/3159450.3159453. (Visited on 12/13/2023).

[9] Brett A. Becker et al. “Compiler Error Messages Considered Unhelpful: The Landscape of Text-
Based Programming Error Message Research”. In: Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education. ITiCSE-WGR ’19. Aberdeen,
Scotland Uk: Association for Computing Machinery, 2019, pp. 177–210. ISBN: 9781450375672.
DOI: 10.1145/3344429.3372508. URL: https://dl.acm.org/doi/10.1145/3344429.3372508.

[10] Peter Belcak et al. Small Language Models are the Future of Agentic AI. 2025. arXiv: 2506.02153
[cs.AI]. URL: https://arxiv.org/abs/2506.02153.

[11] Patricia Benner. “Using the Dreyfus model of skill acquisition to describe and interpret skill acqui-
sition and clinical judgment in nursing practice and education”. In: Bulletin of science, technology
& society 24.3 (2004), pp. 188–199.

[12] Tessa Charles and Carl Gwilliam. “The Effect of Automated Error Message Feedback on Un-
dergraduate Physics Students Learning Python: Reducing Anxiety and Building Confidence”. In:
Journal for STEM Education Research 6.2 (Aug. 2023), pp. 326–357. ISSN: 2520-8713. DOI:
10.1007/s41979-022-00084-4.

[13] Anwoy Chatterjee et al. POSIX: A Prompt Sensitivity Index For Large Language Models. 2024.
arXiv: 2410.02185 [cs.CL]. URL: https://arxiv.org/abs/2410.02185.

[14] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv: 2107.03374
[cs.LG]. URL: https://arxiv.org/abs/2107.03374.

[15] DeepSeek-AI et al.DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement
Learning. 2025. arXiv: 2501.12948 [cs.CL]. URL: https://arxiv.org/abs/2501.12948.

42

https://doi.org/10.1007/s10664-023-10352-5
https://dl.acm.org/doi/10.1007/s10664-023-10352-5
https://dl.acm.org/doi/10.1007/s10664-023-10352-5
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3236024.3236040
https://dl.acm.org/doi/10.1145/3236024.3236040
https://doi.org/10.1007/s10648-025-10020-8
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1145/3344429.3372508
https://dl.acm.org/doi/10.1145/3344429.3372508
https://arxiv.org/abs/2506.02153
https://arxiv.org/abs/2506.02153
https://arxiv.org/abs/2506.02153
https://doi.org/10.1007/s41979-022-00084-4
https://arxiv.org/abs/2410.02185
https://arxiv.org/abs/2410.02185
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

References 43

[16] Paul Denny et al. “On Designing Programming Error Messages for Novices: Readability and its
Constituent Factors”. In: Proceedings of the 2021 CHI Conference on Human Factors in Com-
puting Systems. CHI ’21. Yokohama, Japan: Association for Computing Machinery, 2021. ISBN:
9781450380966. DOI: 10.1145/3411764.3445696. URL: https://dl.acm.org/doi/10.1145/
3411764.3445696.

[17] Robert Dyer and Jigyasa Chauhan. “An exploratory study on the predominant programming
paradigms in Python code”. In: Proceedings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering. ESEC/FSE
2022. Singapore, Singapore: Association for Computing Machinery, 2022, pp. 684–695. ISBN:
9781450394130. DOI: 10.1145/3540250.3549158. URL: https://dl.acm.org/doi/10.1145/
3540250.3549158.

[18] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. “Common logic errors made by novice
programmers”. In: Proceedings of the 20th Australasian Computing Education Conference. ACE
’18. Brisbane, Queensland, Australia: Association for Computing Machinery, 2018, pp. 83–89.
ISBN: 9781450363402. DOI: 10.1145/3160489.3160493. URL: https://dl.acm.org/doi/10.
1145/3160489.3160493.

[19] Ujwal Gadiraju et al. “Using Worker Self-Assessments for Competence-Based Pre-Selection in
Crowdsourcing Microtasks”. In: ACM Trans. Comput.-Hum. Interact. 24.4 (Aug. 2017). ISSN:
1073-0516. DOI: 10.1145/3119930. URL: https://dl.acm.org/doi/10.1145/3119930.

[20] Joshua Garcia et al. “A comprehensive study of autonomous vehicle bugs”. In: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. ICSE ’20. Seoul, South
Korea: Association for Computing Machinery, 2020, pp. 385–396. ISBN: 9781450371216. DOI:
10.1145/3377811.3380397. URL: https://dl.acm.org/doi/10.1145/3377811.3380397.

[21] Aaron Grattafiori et al. The Llama 3 Herd of Models. 2024. arXiv: 2407.21783 [cs.AI]. URL:
https://arxiv.org/abs/2407.21783.

[22] Daya Guo et al. DeepSeek-Coder: When the Large Language Model Meets Programming – The
Rise of Code Intelligence. 2024. arXiv: 2401.14196 [cs.SE]. URL: https://arxiv.org/abs/
2401.14196.

[23] Muhammad Usman Hadi et al. Large Language Models: A Comprehensive Survey of its Appli-
cations, Challenges, Limitations, and Future Prospects. July 2023. DOI: 10.36227/techrxiv.
23589741.v1.

[24] Mark Halper. “How Software Bugs led to “One of the Greatest Miscarriages of Justice” in British
History”. In: Commun. ACM 68.3 (Feb. 2025), pp. 12–14. ISSN: 0001-0782. DOI: 10 . 1145 /
3703779. URL: https://dl.acm.org/doi/10.1145/3703779.

[25] Björn Hartmann et al. “What would other programmers do: suggesting solutions to error mes-
sages”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’10. Atlanta, Georgia, USA: Association for Computing Machinery, 2010, pp. 1019–1028.
ISBN: 9781605589299. DOI: 10.1145/1753326.1753478. URL: https://dl.acm.org/doi/10.
1145/1753326.1753478.

[26] Emma Harvey, Allison Koenecke, and Rene F. Kizilcec. “”Don’t Forget the Teachers”: Towards
an Educator-Centered Understanding of Harms from Large Language Models in Education”. In:
Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems. CHI ’25.
Association for Computing Machinery, 2025. ISBN: 9798400713941. DOI: 10.1145/3706598.
3713210. URL: https://dl.acm.org/doi/10.1145/3706598.3713210.

[27] Anja Hawlitschek et al. “Drop-out in programming courses – prediction and prevention”. In: Jour-
nal of Applied Research in Higher Education ahead-of-print (July 2019). DOI: 10.1108/JARHE-
02-2019-0035.

[28] Jia He et al. Does Prompt Formatting Have Any Impact on LLM Performance? 2024. arXiv: 2411.
10541 [cs.CL]. URL: https://arxiv.org/abs/2411.10541.

[29] Xinyi Hou et al. “Large language models for software engineering: A systematic literature review”.
In: ACM Transactions on Software Engineering and Methodology 33.8 (2024), pp. 1–79.

https://doi.org/10.1145/3411764.3445696
https://dl.acm.org/doi/10.1145/3411764.3445696
https://dl.acm.org/doi/10.1145/3411764.3445696
https://doi.org/10.1145/3540250.3549158
https://dl.acm.org/doi/10.1145/3540250.3549158
https://dl.acm.org/doi/10.1145/3540250.3549158
https://doi.org/10.1145/3160489.3160493
https://dl.acm.org/doi/10.1145/3160489.3160493
https://dl.acm.org/doi/10.1145/3160489.3160493
https://doi.org/10.1145/3119930
https://dl.acm.org/doi/10.1145/3119930
https://doi.org/10.1145/3377811.3380397
https://dl.acm.org/doi/10.1145/3377811.3380397
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://doi.org/10.36227/techrxiv.23589741.v1
https://doi.org/10.36227/techrxiv.23589741.v1
https://doi.org/10.1145/3703779
https://doi.org/10.1145/3703779
https://dl.acm.org/doi/10.1145/3703779
https://doi.org/10.1145/1753326.1753478
https://dl.acm.org/doi/10.1145/1753326.1753478
https://dl.acm.org/doi/10.1145/1753326.1753478
https://doi.org/10.1145/3706598.3713210
https://doi.org/10.1145/3706598.3713210
https://dl.acm.org/doi/10.1145/3706598.3713210
https://doi.org/10.1108/JARHE-02-2019-0035
https://doi.org/10.1108/JARHE-02-2019-0035
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541

References 44

[30] Maria Hristova et al. “Identifying and correcting Java programming errors for introductory com-
puter science students”. In: SIGCSE Bull. 35.1 (Jan. 2003), pp. 153–156. ISSN: 0097-8418. DOI:
10.1145/792548.611956. URL: https://dl.acm.org/doi/10.1145/792548.611956.

[31] Paul Hudak. “Conception, evolution, and application of functional programming languages”. In:
ACM Comput. Surv. 21.3 (Sept. 1989), pp. 359–411. ISSN: 0360-0300. DOI: 10.1145/72551.
72554. URL: https://dl.acm.org/doi/10.1145/72551.72554.

[32] John Hughes. “Why functional programming matters”. In: The computer journal 32.2 (1989),
pp. 98–107.

[33] Binyuan Hui et al. Qwen2.5-Coder Technical Report. 2024. arXiv: 2409.12186 [cs.CL]. URL:
https://arxiv.org/abs/2409.12186.

[34] Naman Jain et al. LiveCodeBench: Holistic and Contamination Free Evaluation of Large Lan-
guage Models for Code. 2024. arXiv: 2403.07974 [cs.SE]. URL: https://arxiv.org/abs/
2403.07974.

[35] Albert Q. Jiang et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL]. URL: https://arxiv.org/
abs/2310.06825.

[36] Carlos E. Jimenez et al. SWE-bench: Can LanguageModels Resolve Real-World GitHub Issues?
2024. arXiv: 2310.06770 [cs.CL]. URL: https://arxiv.org/abs/2310.06770.

[37] Sungmin Kang et al. Explainable Automated Debugging via Large Language Model-driven Scien-
tific Debugging. 2023. arXiv: 2304.02195 [cs.SE]. URL: https://arxiv.org/abs/2304.02195.

[38] Nam Ju Kim, Brian R Belland, and Andrew E Walker. “Effectiveness of computer-based scaffold-
ing in the context of problem-based learning for STEM education: Bayesian meta-analysis”. In:
Educational Psychology Review 30.2 (2018), pp. 397–429.

[39] David R Krathwohl. “A revision of Bloom’s taxonomy: An overview”. In: Theory into practice 41.4
(2002), pp. 212–218.

[40] John Lee, Fengkai Liu, and Tianyuan Cai. “Code Debugging with LLM-Generated Explanations
of Programming Error Messages”. In: Nov. 2024, pp. 1–5. DOI: 10.1109/ICEED62316.2024.
10923833.

[41] Juho Leinonen et al. “Using Large Language Models to Enhance Programming Error Messages”.
In: Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1.
SIGCSE 2023. Toronto ON, Canada: Association for Computing Machinery, 2023, pp. 563–569.
ISBN: 9781450394314. DOI: 10.1145/3545945.3569770. URL: https://dl.acm.org/doi/10.
1145/3545945.3569770.

[42] Jiawei Liu et al. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of
Large Language Models for Code Generation. 2023. arXiv: 2305.01210 [cs.SE]. URL: https:
//arxiv.org/abs/2305.01210.

[43] Yilun Liu et al. “Interpretable Online Log Analysis Using Large Language Models with Prompt
Strategies”. In: Proceedings of the 32nd IEEE/ACM International Conference on Program Com-
prehension. ICPC ’24. Lisbon, Portugal: Association for Computing Machinery, 2024, pp. 35–46.
ISBN: 9798400705861. DOI: 10.1145/3643916.3644408. URL: https://dl.acm.org/doi/10.
1145/3643916.3644408.

[44] Katherine L McNeill and Dean M Martin. “Claims, evidence, and reasoning”. In: Science and
Children 48.8 (2011), p. 52.

[45] Alexandru-Radu Moraru. Project Replication Packages. https://github.com/alemoraru/exce
ed-project-overview. 2025.

[46] Ike Obi et al. “Identifying Factors Contributing to Bad Days for Software Developers: A Mixed
Methods Study”. In: arXiv preprint arXiv:2410.18379 (2024).

[47] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL]. URL: https://arxiv.
org/abs/2303.08774.

[48] Michael Perscheid et al. “Studying the advancement in debugging practice of professional soft-
ware developers”. In: Software Quality Journal 25.1 (Mar. 2017), pp. 83–110. ISSN: 0963-9314.
DOI: 10.1007/s11219-015-9294-2. URL: https://dl.acm.org/doi/10.1007/s11219-015-
9294-2.

https://doi.org/10.1145/792548.611956
https://dl.acm.org/doi/10.1145/792548.611956
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://dl.acm.org/doi/10.1145/72551.72554
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2304.02195
https://arxiv.org/abs/2304.02195
https://doi.org/10.1109/ICEED62316.2024.10923833
https://doi.org/10.1109/ICEED62316.2024.10923833
https://doi.org/10.1145/3545945.3569770
https://dl.acm.org/doi/10.1145/3545945.3569770
https://dl.acm.org/doi/10.1145/3545945.3569770
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://doi.org/10.1145/3643916.3644408
https://dl.acm.org/doi/10.1145/3643916.3644408
https://dl.acm.org/doi/10.1145/3643916.3644408
https://github.com/alemoraru/exceed-project-overview
https://github.com/alemoraru/exceed-project-overview
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1007/s11219-015-9294-2
https://dl.acm.org/doi/10.1007/s11219-015-9294-2
https://dl.acm.org/doi/10.1007/s11219-015-9294-2

References 45

[49] James Prather et al. “The Widening Gap: The Benefits and Harms of Generative AI for Novice
Programmers”. In: Proceedings of the 2024 ACM Conference on International Computing Edu-
cation Research - Volume 1. ICER ’24. Melbourne, VIC, Australia: Association for Computing
Machinery, 2024, pp. 469–486. ISBN: 9798400704758. DOI: 10.1145/3632620.3671116. URL:
https://dl.acm.org/doi/10.1145/3632620.3671116.

[50] Christian Prause, Ralf Gerlich, and Rainer Gerlich. “Fatal Software Failures in Spaceflight”. In:
Encyclopedia 4 (June 2024), pp. 936–965. DOI: 10.3390/encyclopedia4020061.

[51] David Pritchard. “Frequency distribution of error messages”. In: Proceedings of the 6thWorkshop
on Evaluation and Usability of Programming Languages and Tools. PLATEAU 2015. Pittsburgh,
PA, USA: Association for Computing Machinery, 2015, pp. 1–8. ISBN: 9781450339070. DOI:
10.1145/2846680.2846681. URL: https://dl.acm.org/doi/10.1145/2846680.2846681.

[52] Meghana Rajeev et al. Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for
Reasoning Models. 2025. arXiv: 2503.01781 [cs.CL]. URL: https://arxiv.org/abs/2503.
01781.

[53] Audrey Salmon et al. Debugging Without Error Messages: How LLM Prompting Strategy Affects
Programming Error Explanation Effectiveness. 2025. arXiv: 2501.05706 [cs.SE]. URL: https:
//arxiv.org/abs/2501.05706.

[54] Eddie Antonio Santos and Brett A. Becker. “Not the Silver Bullet: LLM-enhanced Programming
Error Messages are Ineffective in Practice”. In: Proceedings of the 2024 Conference on United
Kingdom & Ireland Computing Education Research. UKICER ’24. Manchester, United Kingdom:
Association for Computing Machinery, 2024. ISBN: 9798400711770. DOI: 10.1145/3689535.
3689554. URL: https://dl.acm.org/doi/10.1145/3689535.3689554.

[55] Eddie Antonio Santos, Prajish Prasad, and Brett A. Becker. “Always Provide Context: The Effects
of Code Context on Programming Error Message Enhancement”. In: Proceedings of the ACM
Conference on Global Computing Education Vol 1. CompEd 2023. Hyderabad, India: Association
for Computing Machinery, 2023, pp. 147–153. ISBN: 9798400700484. DOI: 10.1145/3576882.
3617909. URL: https://dl.acm.org/doi/10.1145/3576882.3617909.

[56] Anton Semenkin and Michelle Frost. Mellum Goes Open Source: A Purpose-Built LLM for De-
velopers, Now on Hugging Face. JetBrains AI Blog. https://blog.jetbrains.com/ai/2025/
04/mellum-goes-open-source-a-purpose-built-llm-for-developers-now-on-hugging-
face/. Apr. 2025.

[57] Atsushi Shirafuji et al. “Rule-Based Error Classification for Analyzing Differences in Frequent
Errors”. In: Nov. 2023, pp. 1–7. DOI: 10.1109/TALE56641.2023.10398341.

[58] John Sweller. “Cognitive load theory”. In: Psychology of learning and motivation. Vol. 55. Elsevier,
2011, pp. 37–76.

[59] Alex Tamkin et al. Understanding the Capabilities, Limitations, and Societal Impact of Large Lan-
guage Models. 2021. arXiv: 2102.02503 [cs.CL]. URL: https://arxiv.org/abs/2102.02503.

[60] Mohsen Tavakol and Reg Dennick. “Making sense of Cronbach’s alpha”. In: International journal
of medical education 2 (2011), p. 53.

[61] Andrew Taylor et al. “dcc –help: Transforming the Role of the Compiler by Generating Context-
Aware Error Explanations with Large Language Models”. In: Proceedings of the 55th ACM Tech-
nical Symposium on Computer Science Education V. 1. SIGCSE 2024. Portland, OR, USA: Asso-
ciation for Computing Machinery, 2024, pp. 1314–1320. ISBN: 9798400704239. DOI: 10.1145/
3626252.3630822. URL: https://dl.acm.org/doi/10.1145/3626252.3630822.

[62] CodeGemma Team et al. CodeGemma: Open Code Models Based on Gemma. 2024. arXiv:
2406.11409 [cs.CL]. URL: https://arxiv.org/abs/2406.11409.

[63] Gemini Team et al. Gemini: A Family of Highly Capable Multimodal Models. 2025. arXiv: 2312.
11805 [cs.CL]. URL: https://arxiv.org/abs/2312.11805.

[64] Emillie Thiselton and Christoph Treude. Enhancing Python Compiler Error Messages via Stack
Overflow. 2019. arXiv: 1906.11456 [cs.SE]. URL: https://arxiv.org/abs/1906.11456.

https://doi.org/10.1145/3632620.3671116
https://dl.acm.org/doi/10.1145/3632620.3671116
https://doi.org/10.3390/encyclopedia4020061
https://doi.org/10.1145/2846680.2846681
https://dl.acm.org/doi/10.1145/2846680.2846681
https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2501.05706
https://arxiv.org/abs/2501.05706
https://arxiv.org/abs/2501.05706
https://doi.org/10.1145/3689535.3689554
https://doi.org/10.1145/3689535.3689554
https://dl.acm.org/doi/10.1145/3689535.3689554
https://doi.org/10.1145/3576882.3617909
https://doi.org/10.1145/3576882.3617909
https://dl.acm.org/doi/10.1145/3576882.3617909
https://blog.jetbrains.com/ai/2025/04/mellum-goes-open-source-a-purpose-built-llm-for-developers-now-on-hugging-face/
https://blog.jetbrains.com/ai/2025/04/mellum-goes-open-source-a-purpose-built-llm-for-developers-now-on-hugging-face/
https://blog.jetbrains.com/ai/2025/04/mellum-goes-open-source-a-purpose-built-llm-for-developers-now-on-hugging-face/
https://doi.org/10.1109/TALE56641.2023.10398341
https://arxiv.org/abs/2102.02503
https://arxiv.org/abs/2102.02503
https://doi.org/10.1145/3626252.3630822
https://doi.org/10.1145/3626252.3630822
https://dl.acm.org/doi/10.1145/3626252.3630822
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2406.11409
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/1906.11456
https://arxiv.org/abs/1906.11456

References 46

[65] Pablo Valenzuela-Toledo et al. Explaining GitHub Actions Failures with Large Language Models:
Challenges, Insights, and Limitations. 2025. arXiv: 2501.16495 [cs.SE]. URL: https://arxiv.
org/abs/2501.16495.

[66] Sierra Wang, John Mitchell, and Chris Piech. “A Large Scale RCT on Effective Error Messages in
CS1”. In: Proceedings of the 55th ACM Technical Symposium on Computer Science Education
V. 1. SIGCSE 2024. Portland, OR, USA: Association for Computing Machinery, 2024, pp. 1395–
1401. ISBN: 9798400704239. DOI: 10.1145/3626252.3630764. URL: https://dl.acm.org/
doi/10.1145/3626252.3630764.

[67] J. Christopher Westland. “The cost of errors in software development: evidence from industry”.
In: J. Syst. Softw. 62.1 (May 2002), pp. 1–9. ISSN: 0164-1212. DOI: 10.1016/S0164-1212(01)
00130-3. URL: https://dl.acm.org/doi/10.1016/S0164-1212(01)00130-3.

[68] Patricia Widjojo and Christoph Treude. Addressing Compiler Errors: Stack Overflow or Large
Language Models? 2023. arXiv: 2307.10793 [cs.SE]. URL: https://arxiv.org/abs/2307.
10793.

[69] John Yang et al. SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineer-
ing. 2024. arXiv: 2405.15793 [cs.SE]. URL: https://arxiv.org/abs/2405.15793.

[70] Stephanie Yang et al. “Decoding Debugging Instruction: A Systematic Literature Review of De-
bugging Interventions”. In: ACM Trans. Comput. Educ. 24.4 (Nov. 2024). DOI: 10.1145/3690652.
URL: https://dl.acm.org/doi/10.1145/3690652.

[71] Yang Zhang et al. “How do Developers Talk about GitHub Actions? Evidence from Online Soft-
ware Development Community”. In: Proceedings of the IEEE/ACM 46th International Confer-
ence on Software Engineering. ICSE ’24. Lisbon, Portugal: Association for Computing Machin-
ery, 2024. ISBN: 9798400702174. DOI: 10.1145/3597503.3623327. URL: https://dl.acm.
org/doi/10.1145/3597503.3623327.

[72] Zhehao Zhang et al. Personalization of Large Language Models: A Survey. 2025. arXiv: 2411.
00027 [cs.CL]. URL: https://arxiv.org/abs/2411.00027.

[73] Michael Zhivich and Robert K. Cunningham. “The Real Cost of Software Errors”. In: IEEE Security
Privacy 7.2 (2009), pp. 87–90. DOI: 10.1109/MSP.2009.56.

[74] Jeffrey Zhou et al. Instruction-Following Evaluation for Large Language Models. 2023. arXiv:
2311.07911 [cs.CL]. URL: https://arxiv.org/abs/2311.07911.

[75] Jingming Zhuo et al. ProSA: Assessing and Understanding the Prompt Sensitivity of LLMs. 2024.
arXiv: 2410.12405 [cs.CL]. URL: https://arxiv.org/abs/2410.12405.

https://arxiv.org/abs/2501.16495
https://arxiv.org/abs/2501.16495
https://arxiv.org/abs/2501.16495
https://doi.org/10.1145/3626252.3630764
https://dl.acm.org/doi/10.1145/3626252.3630764
https://dl.acm.org/doi/10.1145/3626252.3630764
https://doi.org/10.1016/S0164-1212(01)00130-3
https://doi.org/10.1016/S0164-1212(01)00130-3
https://dl.acm.org/doi/10.1016/S0164-1212(01)00130-3
https://arxiv.org/abs/2307.10793
https://arxiv.org/abs/2307.10793
https://arxiv.org/abs/2307.10793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://doi.org/10.1145/3690652
https://dl.acm.org/doi/10.1145/3690652
https://doi.org/10.1145/3597503.3623327
https://dl.acm.org/doi/10.1145/3597503.3623327
https://dl.acm.org/doi/10.1145/3597503.3623327
https://arxiv.org/abs/2411.00027
https://arxiv.org/abs/2411.00027
https://arxiv.org/abs/2411.00027
https://doi.org/10.1109/MSP.2009.56
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2410.12405
https://arxiv.org/abs/2410.12405

A
Python Skill Level Assessment

Qualtrics Questionnaire and Details

This appendix collects material that was used for, or is directly relevant to, the Python Skill Level Assess-
ment that informed our pilot study, which we launched on Qualtrics1. It brings together the elements
that shaped the assessment and the specific items that we later relied on in the main study2.

Table A.1 presents the self rating question for Python experience that we used in the pilot study. The
question uses six levels that are informed by the Dreyfus model of skill acquisition. The table shows
the exact wording of the question and the response options so that the reader can see how participants
reported their level of experience.

Figure A.1 shows the eight multiple choice questions that we selected from an initial pool of 56 items3.
These eight items were identified as the most capable of distinguishing novices from experts in the
context of debugging and understanding error messages. As explained in Section 3.1, this set of eight
items was then carried forward and used in the main Prolific study.

Numerical Level Experience level statement
1 I have no previous experience in Python.
2 Focusing on syntax & basics, relying on tutorials, lacking real-world project ex-

perience.
3 Practical experience, small projects or assignments. Grasping basic concepts,

and troubleshooting independently.
4 Experience with projects. Able to independently plan and execute tasks, profi-

cient with Python’s libraries.
5 Experience in complex projects. Deep understanding, ability to consciously re-

solve difficult problems
6 Significant experience in larger complex programs. Solves complex problems

effortlessly and subconsciously

Table A.1: Six-level self-rating of Python experience used in the study, informed by the Dreyfus skill-acquisition model.

1https://www.qualtrics.com/
2Readers ought to remember that within the main contents of this paper, Section 3.1 describes the motivation for creating the

assessment and the approach we followed during the pilot phase. It explains why a dedicated instrument was needed and how
we constructed and refined it.

3For brevity, we do not include all 56 pilot questions here. The full set, along with additional plots, and the analysis scripts and
notebooks used to select the final eight, is available at https://github.com/alemoraru/exceed-python-skill-assessment.

47

https://www.qualtrics.com/
https://github.com/alemoraru/exceed-python-skill-assessment

48

(a) Question ID Q4.6 of the Python Qualtrics Skill-Assessment
Survey.

(b) Question ID Q5.2 of the Python Qualtrics Skill-Assessment
Survey.

(c) Question ID Q6.5 of the Python Qualtrics Skill-Assessment
Survey.

(d) Question ID Q7.1 of the Python Qualtrics Skill-Assessment
Survey.

(e) Question ID Q7.2 of the Python Qualtrics Skill-Assessment
Survey. (f) Question ID Q8.2 of the Python Qualtrics Skill-Assessment Survey.

(g) Question ID Q9.5 of the Python Qualtrics Skill-Assessment
Survey.

(h) Question ID Q10.1 of the Python Qualtrics Skill-Assessment
Survey.

Figure A.1: Final set of survey items that most effectively discriminated between novices and experts in the Python
Skill-Assessment Survey. The images reproduce the question options and interface, as presented in the Prolific web

application during the main study.

B
Fantastic Four Code Snippets and

Error Messages

This appendix presents the four buggy Python snippets used in the Prolific study, with their standard
interpreter errors. Sections B.1–B.4 show each code snippet followed by its error message.

B.1. Snippet A: SyntaxError: unterminated string literal
1 class BookShelf:
2 def __init__(self, log):
3 self.log = log
4

5 def preview(self):
6 """
7 Shows first two book titles, if any.
8 """
9 if not os.path.exists(self.log):
10 return "No␣log␣found."
11 with open(self.log) as f:
12 lines = f.readlines()
13 preview = "".join(lines[:2])
14 return f"""Preview:\n{preview}""
15

16 def summary(self):
17 """
18 Gives a summary of the log.
19 """
20 total = count_books(self.log)
21 return f"Books logged: {total}"
22

23 def add_book(log, title):
24 """
25 Adds a book entry with timestamp.
26 """
27 with open(log, 'a') as f:
28 f.write(f"{datetime.now().isoformat()} - {title}\n")
29

30 def count_books(log):
31 """
32 Counts books in the log.
33 """
34 if not os.path.exists(log):
35 return 0
36 with open(log) as f:
37 return sum(1 for _ in f)

Listing B.1: One of the chosen four buggy Python code snippet, which when executed as a standalone file, will trigger a
SyntaxError, due to the unclosed triple-quoted string literal on line 17.

49

B.2. Snippet B: NameError: name not defined 50

Figure B.1: Standard Python interpreter message displayed when running the code in Listing B.1.

B.2. Snippet B: NameError: name not defined
1 import random
2

3

4 class UserData:
5 """Represents user data with a name and a list of scores."""
6

7 def __init__(self, name, scores):
8 self.name = name
9 self.scores = scores
10

11 def top_score(self):
12 """Returns the highest score."""
13 return maximum(self.scores) if self.scores else 0
14

15 def add_score(self, score):
16 self.scores.append(score)
17

18

19 def summarize_scores(users):
20 return {u.name: u.top_score() for u in users}
21

22

23 if __name__ == '__main__':
24 """Main routine to generate user data, summarize scores, and print the results."""
25 users = [UserData(f"user_{i␣+␣1}", [random.randint(0, 100) for _ in range(random.randint

(2, 5))]) for i in range(4)]
26 summary = summarize_scores(users)
27 for name, score in summary.items():
28 print(f"{name}:␣{score:.2f}")

Listing B.2: One of the chosen four buggy Python code snippet, which when executed as a standalone file, will trigger a
NameError on line 13 of the code listing, due to the undefined variable maximum.

Figure B.2: Standard Python interpreter message displayed when running the code in Listing B.2.

B.3. Snippet C: TypeError: unsupported operand types 51

B.3. Snippet C: TypeError: unsupported operand types
1 import random
2

3 def generate_scores(n):
4 """Generate n random test scores."""
5 return [random.randint(0, 100) for _ in range(n)]
6

7 def average(scores):
8 """Compute the average score."""
9 if not scores:
10 return 0
11 return sum(scores) / len(scores)
12

13 def filter_passing(scores, threshold=60):
14 """Return scores that are passing."""
15 return [s for s in scores if s >= threshold]
16

17 class ScoreReport:
18 def __init__(self, scores):
19 self.scores = scores
20

21 @classmethod @staticmethod
22 def describe():
23 """Describe the scoring system."""
24 return "Scores␣range␣from␣0␣to␣100."
25

26 def passing_percentage(self):
27 """Return the percentage of passing scores."""
28 passing = filter_passing(self.scores)
29 return 100 * len(passing) / len(self.scores) if self.scores else 0
30

31 def report(self):
32 """Return a formatted report."""
33 avg = average(self.scores)
34 pct = self.passing_percentage()
35 desc = self.describe()
36 return f"{desc}\nAverage:␣{avg:.1f}\nPassing:␣{pct:.1f}%"
37

38 def main():
39 scores = generate_scores(12)
40 report = ScoreReport(scores)
41 print(report.report())
42

43 if __name__ == "__main__":
44 main()

Listing B.3: One of the chosen four buggy Python code snippet, which when executed as a standalone file, will trigger a
TypeError on line 21 of the code listing, due to adding both @classmethod and @staticmethod on the same line.

Figure B.3: Standard Python interpreter message displayed when running the code in Listing B.3.

B.4. Snippet D: TypeError: object is not subscriptable 52

B.4. Snippet D: TypeError: object is not subscriptable
1 import math
2

3 def normalize(vec):
4 norm = math.sqrt(sum(x ** 2 for x in vec))
5 return [x / norm for x in vec] if norm else vec
6

7 def dot(a, b):
8 return sum(x * y for x, y in zip(a, b))
9

10 def cosine(a, b):
11 if len(a) != len(b): raise ValueError("Vectors␣must␣be␣of␣the␣same␣length")
12 return dot(normalize(a), normalize(b))
13

14 def fixed_vectors():
15 """Returns a fixed set of vectors for testing purposes."""
16 return [
17 [1.0, 2.0, 3.0],
18 [2.0, 0.0, 1.0],
19 [-1.0, 1.0, 0.0],
20 [0.5, -2.0, 2.0]
21]
22

23 def most_similar_pair(vectors):
24 """Finds the most similar pair of vectors based on cosine similarity."""
25 max_sim = -2
26 pair = (0, 1)
27 for i in range(len(vectors)):
28 for j in range(i + 1, len(vectors)):
29 sim = cosine(vectors[i], vectors[j])
30 if sim > max_sim:
31 max_sim = sim
32 pair = (i, j)
33 return pair
34

35 def main():
36 vs = fixed_vectors()
37 print("Most␣similar␣pair:", most_similar_pair(vs))
38 for i in range(len(vs)):
39 print("Vector", i, ":", vs.__getitem__[i])
40

41 if __name__ == "__main__":
42 main()

Listing B.4: One of the chosen four buggy Python code snippet, which when executed as a standalone file, will trigger a
TypeError on line 39 of the code listing, due to using the wrong syntax for accessing a list’s elements.

Figure B.4: Standard Python interpreter message displayed when running the code in Listing B.4.

C
Prolific Full-Stack Web Application

Design Details

This appendix describes the full-stack platform we deployed on Prolific for the main study and ex-
plains the key design decisions behind it. We coordinated services with Docker Compose1 to keep
components modular and easy to start, stop, and update. Containerization also allowed us to deploy
everything on a Linux virtual machine with only the docker binary installed. This reduced configuration
drift over time as we developed the application, and improved reproducibility, which was an important
requirement for our study.

C.1. System Architecture
The platform consists of a web frontend, a Python backend, a relational database, a local LLM inference
service, and a reverse proxy. Figure C.1 shows the high-level architecture and how these components
interact within a containerized environment.

Figure C.1: System architecture of the Prolific study full-stack application: containerized frontend, backend, database, local
LLM inference, and reverse proxy orchestrated with Docker Compose. We coordinated everything using a single GitHub

repository, https://github.com/alemoraru/exceed-prolific-orchestrator.

The frontend2 was implemented with Next.js, React, Typescript, and TailwindCSS. We chose this stack
mostly due to familiarity and because it was straightforward to build reusable components, such as
forms, multi-step submission flows, and interactive elements for task execution and feedback collection.

The backend3 was built with FastAPI4 in Python. FastAPI offers strong type support, automatic API
documentation, and efficient asynchronous I/O. These features suited our needs for handling user-
provided code execution and returning LLM-rephrased error messages. Keeping the backend in Python
also simplified integration with our evaluation logic and the LLM client used for inference.

1https://docs.docker.com/compose/
2https://github.com/alemoraru/exceed-prolific-frontend
3https://github.com/alemoraru/exceed-prolific-backend
4https://fastapi.tiangolo.com/

53

https://github.com/alemoraru/exceed-prolific-orchestrator
https://docs.docker.com/compose/
https://github.com/alemoraru/exceed-prolific-frontend
https://github.com/alemoraru/exceed-prolific-backend
https://fastapi.tiangolo.com/

C.2. Deployment and Networking 54

We stored participant data, submissions, feedback, and event logs in PostgreSQL. PostgreSQL pro-
vides mature tooling, transactional guarantees, and expressive queries. A relational schema with ACID
properties helpedmaintain integrity acrossmulti-step tasks, for example when linking code submissions
to feedback and timing events. Given our relatively modest scale, any other relational or non-relational
database would have been equally suitable for our requirements, yet PostgreSQL aligned best with our
planned analysis workflow.

Local LLM inference was provided by Ollama. Running inference on a self-hosted service gave us con-
trol over data handling and latency while not incurring additional costs by using an external API5, such
as OpenAI’s API. The service loaded the model used for error-message rephrasing. Our application
can technically support any other open-source models available on Ollama within the available memory
and latency budget. However, as described in Section 3.3, we selected llama-3.1-8B-Instruct.

Finally, Nginx6 served as the reverse proxy. It routed requests to the frontend and backend and cached
static assets to improve responsiveness during data collection. It also restricted public access to a
single entry point, which simplified networking, while reducing exposure and risks for seeing malicious
activity.

C.2. Deployment and Networking
All services ran as containers managed by Docker Compose. Only Nginx was exposed to the outside
network on port 80. The backend, database, and LLM service communicated over an internal Docker
network, which reduced the attack surface and allowed services to address each other by name. The
frontend interacted with the backend through proxied API routes, and static assets benefited from Nginx
caching. This layout kept the public interface relatively secure while allowing internal services to restart
or scale independently. In practice, load was very low and no scaling actions were even required.

Runtime configuration was provided through environment variables. Some of the settings included
database credentials and the database URL for the backend, the model identifier for the LLM service,
and the frontend host URL used for API requests. For our research deployment, however, we used
a set of conventional defaults, as we did not need to deploy on multiple environments with different
settings.

C.3. Monitoring and Inspection
During development and data collection we used a small Python utility, postgres/db_inspect.py, to
query selected tables and verify that submissions, feedback, and events were recorded as expected.
The script also supported troubleshooting ingestion issues and exporting snapshots of collected data.
These checkpoints helped us monitor progress, assess data quality, and decide whether to recruit
additional participants when attrition or exclusion, due to malicious behavior, affected our stratified
sampling procedure.

5https://openai.com/api/
6https://nginx.org/

https://openai.com/api/
https://nginx.org/

	Preface
	Summary
	Nomenclature
	Introduction
	Contributions
	Research Questions
	Thesis Outline

	Background and Related Work
	Compiler and Interpreter Errors
	Programming Paradigms
	Impact on Developer Experience

	Large Language Models in Software Engineering
	Overview of LLM Capabilities
	Limitations and Mitigation Strategies
	LLM Providers and Benchmarks
	Current Trends in Developer Experience

	Actionable Insights and Teaching
	Related Work
	Foundations: What makes an error message effective?
	LLMs for Explaining and Rephrasing Errors
	Beyond Compilers: LLMs for Developer Diagnostics
	Synthesis and Positioning

	Research Methodology
	Python Proficiency Level Assessment
	Motivation
	Approach
	Pilot Study Results

	Selecting Candidate Code Snippets and Errors
	Motivation
	Approach
	Pilot Study Results

	Prompt Templates and LLM Settings
	Motivation
	Approach

	Prolific Web Application Design
	Motivation
	Approach

	Experimental Setup
	Independent Variables
	Error Message Style
	Code Snippet and Error Message Type
	Python Proficiency Level

	Dependent Variables
	Behavioral Outcomes
	Perceptual Outcomes

	Confounding Factors
	Prolific Configuration
	Recruitment & Screening
	Attention and Quality Monitoring
	Compensation and Duration
	Sample Size and Allocation

	Results
	Prolific Participants Demographics
	Objective and Subjective Outcomes
	Fix Rate, Fix@k, and Time-to-Fix
	Subjective Evaluations
	Exploratory Analysis

	Discussion
	Implications
	RQ1: Effectiveness of Skill-Adaptive Programming Error Messages
	RQ2: Perceived Qualities of Skill-Adaptive Programming Error Messages

	Looking Back and Ahead
	Limitations
	Future Work

	Conclusion
	References
	Python Skill Level Assessment Qualtrics Questionnaire and Details
	Fantastic Four Code Snippets and Error Messages
	Snippet A: SyntaxError: unterminated string literal
	Snippet B: NameError: name not defined
	Snippet C: TypeError: unsupported operand types
	Snippet D: TypeError: object is not subscriptable

	Prolific Full-Stack Web Application Design Details
	System Architecture
	Deployment and Networking
	Monitoring and Inspection

