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Preface

The core scientific work of this master of science (MSc) thesis has been written up in the form of a
journal paper. This paper is titled: Is something fishy going on" Evaluating the Poisson hypothesis
for rainfall estimation using intervalometers: first results from an experiment in Tanzania. Hereafter
referred to as ”The paper”. The paper will be submitted to the Atmospheric Measurement Techniques
journal of the European Geosciences Union shortly after the conclusion of the MSc defense. The paper
has been included in this thesis under chapter 1. Chapter 1 is the core work of this thesis and can be
read as a stand-alone document. The remainder of this thesis is taken up by supplementary materials
in the form of introductory notes and an appendix.

Appendix A contains a README for the python code that was developed during the course of the
MSc research. Several thousand lines of code were written and, as much as possible, the author has
attempted to write the code in such a way that it is easily legible to anybody who may be seeking to
build on this research or re-analyse the data. This means that the code is well spaced and sensible
variables names have been chosen and consistent naming hierarchy logic has been employed to the
best of the author’s ability. Despite these efforts it may still be difficult to understand the logical flow
and purpose of each script or function individually as well as how they relate to one another. Therefore,
it was deemed a necessary kindness to provide a README for the code in which the different tasks
that each python script or function completes are explained as well as the overall logical flow in the
data analysis that links one script or function to the next. The actual code files are submitted as
further supplementary materials alongside this thesis and can be found in the education repository at
https://repository.tudelft.nl, by searching for the title of this MSc thesis.
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Abstract. Sub-Saharan Africa is one of the most vulnerable regions in the world to climate change. This is largely driven by

the dependence on rain fed agriculture for food production. At the same time African climate observational networks have

been in decline since the 1990s. A new kind of rainfall sensor (the intervalometer), which counts the arrival of drops at a

piezo electric element, is tested during the Tanzanian monsoon season alongside tipping buckets and an impact disdrometer.

Rainfall rates are derived from rainfall arrival rates using Marshall and Palmer’s (1948) exponential parameterisation. This5

parameterisation is defined independently of a notion of scale and therefore implicitly assumes that rainfall is a homogeneous

Poisson process. Testing of the Poisson assumption shows that 22.5% of the total drops observed can reasonably be considered

Poisson and that the main reason for Poisson deviations are non compliance with the stationarity criterion (36.7%) and the

presence of correlations between drop counts (14.3%), particularly at higher arrival rates (ρa > 500 [m−2.s−1]). The total

rainfall amount [mm] calculated from intervalometer measurements overestimates the tipping bucket value by a factor of10

approximately three. The overestimate is most likely due to poor calibration of the minimum detectable drop size (Dmin). A

correction is applied to constrain the overestimates of mean drop size by the intervalometer parameterisation to the observed

disdrometer measurements. The correction results in an improvement in the estimate of the total rainfall amount to within 10%

of tipping bucket measurements. The total rainfall amount [mm] calculated from disdrometer rainfall arrival rates is within 5%

of co-located tipping bucket measurements. The form of the mean drop size relation with arrival rate appears stable in time and15

space. The intervalometer shows good potential for use as a rainfall measurement instrument or to derive estimates of mean

drop sizes.

1 Introduction

Africa and particularly Sub-Saharan Africa is one of the most vulnerable regions in the world to climate change (Boko et al.,

2007). This is predominantly because the main economic activity (by share of labour) is rainfed agriculture-98% of crop20

production is rainfed (Abdrabo et al., 2014). At the same time much of Sub-Saharan Africa is greatly under serviced by climate

observations and the existing observational networks have been in decline since the mid 1990s; from 8 stations reporting per

1,000,000 km2 to 1 or even none in some grid boxes in 2015 (data from the Climate Research Unit of the University of East
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Anglia, 2017). There are some organisations working on setting up new observational networks, such as the Trans-African

Hydro-Meteorological Observatory (TAHMO) but progress is slow due to the lack of existing value chains for weather data25

(TAH, 2017). In general, African climate has not been well researched (Otto et al., 2015; Washington et al., 2006).

There is a need for robust, inexpensive and accurate rainfall measuring instruments. For example, a recent review into the

scaling up of index insurance for smallholder farmers (some of the world’s poorest people) found that the sparsity of ground

based weather stations is a large challenge for insurers in Sub-Saharan Africa (Greatrex et al., 2015) and companies have been

forced to look to other sources of data or to develop other indices by which to insure crops. Satellite missions, such as the30

Global Precipitation Measurement (GPM) mission show good potential for bridging this gap. However, satellite observations,

whilst providing good spatial coverage, do not cover the entire temporal period and the spatial resolution may be too coarse for

some applications.

Satellite data faces another issue for areas with a lack of ground based data for validation. Since radars do not measure

rainfall directly, rainfall estimates are dependent on an accurate parameterisation of the drop size distribution (DSD) in order35

to develop rainfall (R) to radar reflectivity (Z) relationships (Munchak and Tokay, 2008; Guyot et al., 2019). A foundational

work in this regard is the negative exponential parameterisation presented by Marshall and Palmer 1948 as a fit to filter paper

measurements of rain drop sizes for different rain rates. A lot of work has been done on determining the functional forms

for these parameterisations and many different forms of the DSD have been proposed, of which the most widely used are the

aforementioned exponential, gamma (Ulbrich, 1983; Tokay and Short, 1996; Iguchi et al., 2017) and lognormal distributions40

(Feingold and Levin, 1986). It has also been shown that the appropriate parameterisation is dependent on the type of rainfall

(Atlas and Ulbrich, 1977) and the climatic setting (Battan, 1973; Bringi et al., 2003). Therefore, ground ’truthing’ of DSDs for

satellite retrievals is very important to ensure that the DSD is being parameterised correctly in the derivation of rainfall rates

(Munchak and Tokay, 2008).

An assumption that is seldom explicitly mentioned in the presentation of these parameterisations is the homogeneity as-45

sumption (Uijlenhoet et al., 1999). The concept of the DSD is only useful if at some minimum scale raindrops are distributed

homogeneously in space and time. If this was not the case then the parameterisation would depend on the size of the sample

volume/area/time period to which it pertains (Uijlenhoet et al., 1999). Statistical homogeneity implies that the frequency of

raindrops in a volume or arriving at a surface in fixed time intervals obeys Poisson statistics. The arrival of raindrops at a

surface has long been considered an example of a Poisson process (Kostinski and Jameson, 1997; Joss and Waldvogel, 1969).50

However, this assumption has been questioned and several studies argue that the homogeneity assumption is unable to cope

with the clumping of raindrops both in time and space that is observed in reality. To borrow Jameson and Kostinski’s (1997) ex-

ample; the ’streakiness’ that is part of the lived experience of rainfall can be seen when sheets of rain pass across the pavement

during thunderstorms. This clumping results in greater variability than is expected by Poisson statistics.

Generally two different approaches have been taken to explain the enhanced variability. Studies like (Lovejoy and Schertzer,55

1990; Lavergnat and Golé, 1998) propose to abandon the Poisson process framework and replace it with a scale dependent,

multi-fractal framework. And others, that propose to generalize the homogeneous Poisson process (with a constant mean)

to a doubly stochastic Poisson process or Cox process, where the mean itself is a random variable (Jameson and Kostinski,
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1998; Smith, 1993). The implications for radar meteorology of abandoning the Poisson framework would require an entire

re-working of how rainfall estimates are derived.60

The aim of this study is to formally assess the adequacy of the Poisson assumption and its importance in deriving rainfall

estimates from ground based measurements. To this end nine intervalometers were deployed over a two month period during

the Tanzanian tropical monsoon.

2 Materials

2.1 Instruments65

Three different types of instrument were used in the experiment; a Tipping Bucket rain gauge made by Onset, in the US,

equipped with a HOBO datalogger; an Acoustic Disdrometer made by Disdro in Delft, The Netherlands; and an Intervalome-

ter. The intervalometer is a simple device that registers the arrival of raindrops at the surface of a piezo electric drum. It has a

minimum detectable drop diameter of 0.8 mm, determined by Pape (2018) in a lab experiment. Typical values of Dmin for im-

pact disdrometers are between 0.3 and 0.6mm (Johnson et al., 2011). The larger than typical Dmin value for the intervalometer70

means that the instrument may give slight underestimates of long term rainfall rates. The advantage of the intervalometer over

a standard rain gauge, is that the drop counts can be used to constrain radar observations. Furthermore, the combination of

intervalometer measurements with rain gauge data can be used to give crude estimates of the observed mean drop sizes. More

information about the intervalometer can be found at https://github.com/nvandegiesen/Intervalometer/wiki/Intervalometer or

in Pape’s (2018) report. The acoustic disdrometer, registers the kinetic energy of drop impacts at a drum and converts this to75

an estimate of the drop size. It can be thought of as a intervalometer that not only counts drops but also provides estimates of

the drop size. The minimum detectable drop diameter for the disdrometer is 0.6mm. The tipping bucket rain gauge collects all

drops over a surface area and funnels it to a small bucket with a resolution of 0.2mm. When the bucket is full, it tips over. The

volume of each tip is verified in situ via a field calibration experiment (WMO, 2014). A good discussion of the pros and cons of

impact disdrometers can be found at e.g. (Tokay et al., 2001; Guyot et al., 2019) and for tipping buckets at e.g. (Sevruk, 1985;80

WMO, 2014). In total, the experiment made use of nine intervalometers, one acoustic disdrometer and two tipping bucket rain

gauges at eight different sites.

2.2 Experiment

Eight sites were selected along the southern coast of Mafia Island, Tanzania in an approximate line, such that a rectangle 3.1

km in length and 500m in width would cover all the sites. The dimension of the long axis of the experiment was chosen to be85

approximately that of the spatial resolution ( 5km) of GPM mission’s dual polarization radar (DPR) instrument.
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Table 1. The rainfall measurement sites

Site Name and Coordinates Instruments Distance [m] from nearest site

Didimiza [−7.9792S,39.7317E] Intervalometer Meremeta [421m]

Meremeta [−7.9756S,39.7327E] Intervalometer Didimiza [421m]

Shamba Kilole [−7.9757S,39.7383E] Intervalometer Meremeta [621m]

Kinasi [−7.9767S,39.7444E] Intervalometer Pole Pole [90m]

Pole Pole [−7.9767S,39.7452E] (Main Site) Tipping Bucket, Disdrometer and Intervalometer Kinasi [90m]

MIL1 [−7.9732S,39.7485E] Tipping Bucket and 2 Intervalometers MIL2 [72m]

MIL2 [−7.9726S,39.7487E] Intervalometer MIL1 [72m]

Chole Mjini [−7.9718S,39.7584E] Intervalometer MIL2 [1070m]

2.2.1 Site Selection

Rainfall measurement sites were chosen to comply as much as possible with World Meteorological Organisation guidelines

within the constraints of accessibility and landscape. Ideally, this means that all of the sensors should be placed in clearings,

sheltered as much as possible from the wind at a height of 1.5m off the ground and 1.5m to the nearest instrument (if co-90

located) and between 2×H and 4×H from the nearest object, where H is the height of the nearest obstacle above the surface

of the rainfall measurement instrument (WMO, 2014). All guidelines where complied with except for the H requirement due

to dense vegetation within the entire observational area. In practice, the distance to the nearest object ranged between H and

2×H . No instruments where placed at sites where the nearest obstacle was ≤H away. Tipping buckets were calibrated in the

field.95

2.3 Data Availability

There were some issues over the course of the experiment with the various instruments which affect the availability of data. The

disdrometer picked up on a oscillating signal from the 20/05/2018 onwards that resulted in total corruption of the data. Some

intervalometers experienced water damage, particularly in storms with high rainfall intensities, which caused the instruments to

go offline for certain periods and two were damaged beyond repair. The Tipping Bucket gauges experienced no known issues.100

The complete data record is presented in figure 1.
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Figure 1. Record of "Instrument Online" for each intervalometer site and the total rainfall amount [mm] from the tipping bucket at Pole Pole.

3 Methods

3.1 Deriving rainfall rates from rain drop arrival rates

Uijlenhoet and Stricker (1999) present an excellent review of the exponential parameterization of the DSD as well as full

derivations in their paper. A small summary mostly derived from their work is presented below. The raindrop size distribution105

in a volume of airNV (D)[mm−1.m−3] is defined such that the quantityNV (D)dD represents the number of drops with diam-

eters between D and dD per unit volume of air. Marshall and Palmer (1948) proposed a negative exponential parameterisation

for NV (D), based on filter paper measurements, of the form:

NA(D) =N0exp(−ΛD),where (1)

Λ = 4.1R−0.21 [mm−1] (2)110

N0 = 8× 103 [mm−1m−3] (3)

If raindrops are assumed to fall at terminal velocity then NV (D) can be related to the DSD of drops arriving at a surface

NA(D)[m−2.s−1] by v(D), which describes the relationship between drop diameter and terminal fall velocity. NA(D) is the

form of the DSD that is observed by disdrometers and intervalometers (Uijlenhoet and Stricker, 1999; Smith, 1993).
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NA(D) = v(D)NV (D) (4)115

v(D) = αDβ (5)

Atlas and Ulbrich (1977) showed that α= 3.778[m.s−1mm−β ] and β = 0.67[−] provide a close fit to the data of Gunn and

Kinzer (1949) for 0.5mm≥D ≤ 5.0mm. The mean rainfall arrival rate ρA[m−2.s−1] is defined as the integral over all drop

sizes of NA(D). For, the intervalometer this is the integral between Dmin = 0.8 and∞ since the instrument has a minimum

detectable drop diameter.120

ρA =

∞∫
Dmin

NA(D)dD (6)

ρA = αN0

∞∫
Dmin

Dβ exp(−ΛD)dD (7)

ρA = αN0
Γ(1 +β,ΛDmin)

Λ1+β
(8)

Where Γ is the upper incomplete gamma function. Uijlenhoet and Stricker (1999) showed that for self consistency purposes,

the use of = 4.1R−0.21 determines that α= 3.25,β = 0.762 , which are quite similar to the values presented by Atlas and125

Ulbrich (1977). Using the Uijlenhoet and Stricker (1999) α,β values and the Marshall and Palmer (1948) R−Λ relationship

the rainfall rate (R) can then be calculated from the measured rainfall arrival rate ρA by first calculating the rainfall arrival

rate at different rainfall rates (0− 200mm/h in a step of 0.01mm/h) and then fitting a third order polynomial to the curve in

Python using polyfit. The fit is forced through the origin and returns a correlation coefficient of approximately 1. The constants

of the fitted polynomial can then be used to calculate the rainfall rate from the measured arrival rate. A plot of the ρA−R curve130

and fitted polynomial is shown in figure 2.

3.2 Calibrating the intervalometer

The intervalometer is still in development as an instrument and therefore, if it is giving poor estimates, then a more trusted

and proven instrument can be used for calibration. Sources of measurement error for the intervalometer are the calibration of

the parameter Dmin and the measurement of ρA. Errors in the determination of Dmin affect the ρA−R relationship. Errors135

in the rainfall arrival rate can result from, splashing of drops from outside the sensor onto the sensor surface during high

intensity rainfall (resulting in overestimates), spurious drops from something other than rain falling on the sensor (resulting in

overestimates), or from edge effects (resulting in underestimates). Drops with D >Dmin landing near the edges of the sensor

have a dampened signal and may not be recorded if D is quite close toDmin. If there are a priori disdrometer measurements of

the mean drop size for different rainfall intensity or arrival rates these can be used to constrain the intervalometer measurements140

and provide more accurate rainfall estimates. The observed mean drop sizes can be incorporated into the parameterisation to

ensure that the expected mean drop sizes of the parameterised gamma distribution match with the disdrometer measurements.
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Figure 2. The third order polynomial fitted to equation 8, used to calculate rainfall rate [mm/hr] from rainfall arrival rate [m−2.s−1]. The

correlation co-efficient has a value of 1, rounded to the sixth decimal place.

At a measured ρA the expected (mean) drop size can be calculated by recognising that the probability distribution of the

stochastic drop diameters arriving at a surface per unit time fD(A) = ρ−1
A NA(D) is a gamma distribution (Uijlenhoet and

Stricker, 1999); in this case truncated at Dmin.145

fD(A) =
Λ1+β

Γ(1 +β,ΛDmin)
×Dβ exp(−ΛD) (9)

β,Λ> 0,D ≥Dmin (10)

The expected value (mean) of a left truncated gamma distribution and complete gamma distribution is given by e.g. (Johnson

et al., 2011; Uijlenhoet and Stricker, 1999):

µDA,exp = E[DA,exp >Dmin] =

(
1 +β

Λ

)
1− γ(2+β,ΛDmin)

Γ(2+β)

1− γ(1+β,ΛDmin)
Γ(1+β)

(11)150

µDA,exp = E[DA,exp] =
1 +β

Λ
(12)

Where γ is the lower incomplete gamma function. Now, if the observed mean drop sizes (µDA,obs ) are some function of ρA,obs,

f(ρA,obs) then we can express the expected rainfall rate (Rexp) and a ’corrected’ rainfall rate (Rcorr) as functions of the

7



expected and observed mean drop sizes by using the relationship Λ = 4.1R−0.21. A good first guess for the form of f(ρA,obs)

is the expectation of the gamma parameterisation above, but could be any function or simply the observed data at each rainfall155

arrival rate. For the complete gamma distribution an analytical solution exists.

Rexp =

(
1 +β

µDA,exp
× 1

4.1

) −1
0.21

(13)

Rcorr =

(
1 +β

µDA,obs
× 1

4.1

) −1
0.21

(14)

Divide Rcorr by Rexp to get:

Rcorr
Rexp

=

(
1+β

µDA,obs
× 1

4.1

) −1
0.21

(
1+β

µDA,exp
× 1

4.1

) −1
0.21

(15)160

Rcorr
Rexp

=

(
µDA,exp
µDA,obs

) −1
0.21

(16)

Rcorr =Rexp ∗Deff (17)

Deff =

(
µDA,exp
µDA,obs

) −1
0.21

(18)

µDA,obs > µDA,exp→Deff > 1 (19)

µDA,obs < µDA,exp→ 0≤Deff ≤ 1 (20)165

Deff is an effective parameter that scales the expected rainfall rates (calculated from the parameterisation of the DSD) to the

observed DSD. Alternatively, if the intervalometer is co-located with a rain gauge then the independent observations of rainfall

can be used to give an estimate of the mean drop size relation by re-arranging equation 16.

µDA,exp = µDA,exp× (Reff )
−0.21 (21)

Reff =

(
Robs
Rexp

)−0.21

(22)170

There is a small time delay between the first registering of drops on the surface of the intervalometer and the first tip of

the tipping bucket due to the small volume of the bucket. Therefore it is not recommended to directly compare instantaneous

rainfall rates (Ciach, 2003). However, by averaging over longer time periods such as the length an entire day, reasonable total

rainfall amounts can be obtained in order to calculate Reff in equation 22.

For the truncated gamma distribution a numerical approach is required and can be implemented in Python.175
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µDA,exp =

(
1 +β

Λexp

)
1− γ(2+β,ΛexpDmin)

Γ(2+β)

1− γ(1+β,ΛexpDmin)
Γ(1+β)

(23)

Rexp =

(
1 +β

µDA,exp × 4.1
)
1− γ(2+β,ΛexpDmin)

Γ(2+β)

1− γ(1+β,ΛexpDmin)
Γ(1+β)

 1
−0.21

(24)

Rcorr =

(
1 +β

µDA,obs × 4.1
)
1− γ(2+β,ΛcorrDmin)

Γ(2+β)

1− γ(1+β,ΛcorrDmin)
Γ(1+β)

 1
−0.21

(25)

Divide Rcorr by Rexp to get:

Rcorr
Rexp

=


[

1
µDA,obs

1− γ(2+β,ΛcorrDmin)

Γ(2+β)

1− γ(1+β,ΛcorrDmin)

Γ(1+β)

]
[

1
µDA,exp

1− γ(2+β,ΛexpDmin)

Γ(2+β)

1− γ(1+β,ΛexpDmin)

Γ(1+β)

]


1
−0.21

(26)180

Λcorr = 4.1×R−0.21
corr (27)

Note that equation 26 is the same as equation 16 with an extra term to account for the truncation. The Dmin values in the

above equation are 0.6mm for the observed drop sizes (from the disdrometer) and 0.8mm for the expected drop sizes (from

the intervalometer). Rexp,Λexp and µDA,exp are calculated from the observed rainfall arrival rate and relevant equations.

Then if µDA,exp < µDA,obs guess Rcorr ==Rexp and calculate Λcorr and the right hand side (RHS) of equation 26. Iterate185

by increasing Rcorr by 0.01 [mm/h] until the LHS and RHS are equal. if µDA,exp > µDA,obs then guess Rcorr =Rexp and

calculate Λcorr and the RHS of equation 26. Iterate by decreasingRcorr by 0.01 [mm/h] until the LHS and RHS are equal. The

final value of Rcorr is the ’corrected’ rainfall rate. Equation 26 can also be used to derive estimates of the ’corrected’ mean

drop size by incorporating co-located tipping bucket measurements Robs with intervalometer estimates Rexp. Note, since the

tipping bucket measures all drops it has no minimum detectable drop size and therefore we can combine equation 11 and190

equation 12 with the R−Λ relationship to get:

µDA,corr =
µDA,exp ×

[
1− γ(1+β,ΛexpDmin)

Γ(1+β)

]
(RobsRexp

)−0.21×
[
1− γ(2+β,ΛexpDmin)

Γ(2+β)

] (28)

Λexp = 4.1×R−0.21
exp (29)

The ’corrected’ drop sizes can be calculated directly from the above equation.

3.3 Testing the Poisson homogeneity hypothesis195

The concept of a drop size distribution depends on the assumption that at some minimum spatial or temporal scale (the

primary element) the data is homogeneous. Homogeneity in a statistical sense implies that the data within the primary element
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follows Poisson statistics (Uijlenhoet and Stricker, 1999). In order for a process to be reasonably assumed as Poisson some key

assumptions must hold. As applied to rainfall, these are as follows:

1. The random process is stationary200

2. The event counts in non-overlapping time intervals are statistically independent

3. The probability of an event occurring during a time interval t, t+ δt is proportional to δt

4. The probability of more than one event in a time interval t, t+ δt becomes negligible for sufficiently small δt

If these fundamental assumptions hold then the distribution of event counts (rain drops) is given by (eg. (Feller, 2010)).

p(k) =
µk exp(−µ)

k!
(30)205

Where µ is the mean value per unit time and k is random number of drops observed during a particular counting interval/window

of time. Kostinski and Jameson (1997) show that this evenly mixed Poisson model does not explain the clumpiness and super-

Poisson variability that is observed in real rainfall. However, if µ itself is an unpredictable, random variable in time and space

then a rainfall event can be sub-divided into N patches, each with its own µ. In order to derive an unconditioned PDF of the

drop counts it is necessary to integrate over the probability distribution of the patches f(µ).210

p(k) =

∞∫
0

µk exp(−µ)

k!
f(µ)dµ (31)

The variance of the Poisson mixture is enhanced beyond the variance of a pure Poisson PDF. Kostinski and Jameson (1997)

show that the Poisson mixture provides a better description of the frequency of drop arrivals per unit time than a simple Poisson

model. The definition of f(µ) in equation 31 implies that there is a definable coherence time τ over which µ can be considered

stationary and to which the simple Poisson model can be applied. In order to estimate f(µ) with sufficient accuracy require215

(t� τ � T ). Where T is the entire length of a rainfall event, τ is the coherence time of a patch and t is the counting interval

for the raindrops. Kostinski and Jameson (1997) show that an order of magnitude difference is sufficient between t,τ and τ,T .

For the intervalometer data, rain drops are aggregated into 10 second bins. Therefore, the minimum value for τ is 100s and

for T it is 1000s. The length of τ can be determined by calculating the normalized auto-correlation function of a rainfall event

of length T at increasing lag times. The lag time for which the auto-correlation drops below 1
e is defined as τ (Kostinski and220

Jameson, 1997). A rainfall event can then be sub-divided into N patches of length τ and the fundamental Poisson assumptions

can be tested on each patch.

Assumptions 3,4 are trivial for rainfall and 1,2 can be tested. A hierarchical test is used, where a patch of rainfall, of length τ

must pass each test before moving onto the next test. Note that since it is impossible to know where such a patch of length τ may

start or end in the data record then it is best to view τ as a moving window over which the statistical tests are conducted. Upon225

conclusion of the test, the window shifts one data point forward in time and the tests are conducted again. This methodology

also ensures that the number of effective samples is increased. The system of hierarchical tests is as follows.
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1. Augmented Dickey-Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests for stationarity, with a p-value

of 0.05. Both test results must indicate stationarity.

230

(a) The KPSS null hypothesis is that the process is trend stationary.

(b) The ADF null hypothesis is that the series has a unit root (not stationary).

2. Auto-correlation function at increasing lag times must be within the 95% confidence limit (CL) of a Poisson process

with n samples

235

(a)

µauto−corr =
−1

n− 1
(32)

σ2
auto−corr =

n− 2

(n− 1)2
(33)

3. χ2 test for goodness of fit between the observed frequencies and the expected frequencies of a Poisson distribution with

the same mean, p-value = 0.05.

4. Dispersion criterion, such that the observed dispersion must be within the 95% CL of a Poisson distribution of n samples240

(a)

µdisp = 1 (34)

σdisp = [
2

n− 1
]
1
2 (35)

5. Calculation of Kullback-Leibler (KL) divergence to give a sample independent indication of how well the observed

distribution matches the Poisson distribution. The KL divergence, also known as the relative entropy, between two prob-245

ability density functions is commonly used as a measure of similarity or ’distance’ between the distributions (Hershey

and Olsen, 2007).

Tests 1 and 2 test the stationarity and independence assumptions of a Poisson process. Test 3 checks that the distribution

matches a Poisson distribution and Tests 4 and 5 are quality checks to ensure that the tests are providing good results. The

quality check is used because often the sample size over which each test is conducted is quite small. Figure 3 shows an250

example of a patch of rainfall that passes all of the tests and can therefore reasonably be assumed to comply with the Poisson

Homogeneity assumption.

The rainfall can be characterised by uncorrelated fluctuations around a constant mean rate of arrival, in this case 365.7

[m−2.s−1]. The corresponding probability mass function (pmf) of this patch of rainfall along with the expected pmf function
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Figure 3. Rainfall arrival rate (10 second drop counts in blue) of a patch of rainfall, with a coherence time of 20 minutes, that can reasonably

be assumed to be Poisson. The 3 min rolling mean is also plotted in the figure (in orange). The dispersion of the patch is 1.1 (expected value

of 1) and the KL-divergence is 0.0, indicating very good agreement between the observed probability densities of the patch and the expected

probability density from Poisson.

of a Poisson process with the same mean arrival rate is plotted in figure 4. These two figures are shown as an example of what255

the patches of rainfall that pass all of the hierarchical tests look like.

4 Results

4.1 Rainfall Rates

The total rainfall amounts [mm] observed by the co-located tipping bucket, intervalometer and disdrometer at the main site

(Pole Pole) for the longest ’online’ period of the three instruments are presented in figure 5. Estimates of total rainfall derived260

from the disdrometer arrival rates are in good agreement with the tipping bucket record (the records match to within std error).

This is not the case for the intervalometer, which provides a large over-estimate of the total rainfall compared to the tipping

bucket (by a factor of almost 3). The figure also shows that the intervalometer registers much higher arrival rates than the

disdrometer over all rainfall events despite having a smaller sensor area and a larger minimum detectable drop size. Calibration

of the intervalometer rainfall estimate (using equation 26) by the observed mean drop sizes results in good agreement with265

the tipping bucket record as a whole (within 8% of the tipping bucket value). In figure 6 the performance of the calibrated
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Figure 4. The Poisson Probability Mass Function (pmf in red) is plotted against the observed probability densities (in blue) of drop counts

for a patch of rainfall that passes all the hierarchical tests at Pole Pole. The coherence time is 20 minutes, dispersion = 1.1, KL divergence =

0.0.

parameterisation over certain rainfall events with the observational record for Pole Pole (left side) and MIL1 (right side) is

presented. For Pole Pole, the calibrated parameterisation also provides reasonable estimates over each rainfall event, except for

in panel three where it significantly underestimates the tipping bucket value. The rainfall event in panel three is characterised

by much lower arrival rates than the events in panels one and two.270

The intervalometer calibration derived from the main site can be applied to the MIL1 site measurements (right hand side

of fig 6), where tipping bucket measurements are also available. The calibration gives good estimates at this site over the

record as a whole and over the different rainfall events within the time period (right side of fig 6). Note that MIL1 is situated

approximately 1km from Pole Pole, where the mean drop sizes were observed by the disdrometer.

The total cumulative rainfall estimates over the entire online record of the intervalometers at Pole Pole and MIL1 are275

presented in table 2.

The table shows that the calibrated intervalometer results are in good agreement with the tipping bucket values. Within 5%

for Pole Pole and within 9% for MIL1.

The intervalometer estimates and co-located tipping bucket measurements are also used to derive estimates of the mean drop

sizes, via equation 28. The estimated drop sizes and the corresponding line of best fit (using the form of equation 11) are plotted280

alongside the observed mean drop sizes as well as the expected values from the parameterisation in figure 7. The drop size
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Figure 5. The total rainfall amounts [mm] observed by the co-located tipping bucket, intervalometer and disdrometer at the main site

(Pole Pole) for the longest ’online’ period of the three instruments are presented. The top panel shows the tipping bucket record against the

disdrometer record and the bottom panel shows the uncalibrated and calibrated intervalometer record against the tipping bucket. Also, plotted

(in black) are the rainfall arrival rates measured by the disdrometer and intervalometer, respectively. The suffixes ’Exp’ and ’Adj’ refer to the

un-calibrated rainfall from the exponential parameterisation and the calibrated rainfall, respectively.

Table 2. Total cumulative rainfall [mm] over the online period of the intervalometers compared to the tipping bucket at MIL1 and Pole Pole

Instrument and Parameterisation Pole Pole (Main Site) MIL1

Intervalometer, Uncalibrated 802.0 144.6

Intervalometer, Calibrated 253.5 49.6

Tipping Bucket 266.7 ± 7.1 45.3 ± 1.3
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Figure 6. The calibration of the exponential parameterisation (labelled as Adj) is used to estimate rainfall rates for three different rain-

fall events at Pole Pole (left three panels) and MIL1 (right three panels). The calibrated rainfall is compared to the tipping bucket (TB)

measurements as well as the un-calibrated measurements (Expon). Once again, the rainfall arrival rates are also plotted.

estimates are derived from only 22 data points. This is because it is necessary to aggregate tipping bucket measurements into

daily averages in order to compare beteen the tipping bucket and intervalometer measurements. The estimated drop sizes show

a large spread, particularly at arrival rates less than 500 [m−2.s−1]. Above this arrival rate the estimated data shows reasonable

agreement with the observed values. The best fit estimator gives β = 0.37,Dmin = 0.53 for the intervalometer.285

4.2 Testing the Poisson Hypothesis

The coherence time or window length over which the Poisson tests were performed ranged from 2-22 minutes across the sites,

with a typical length being in the order of 10 minutes. The rainfall that passes all the tests and can therefore reasonably be

assumed belong to a Poisson process has a mean dispersion value of 1.01 (expected value = 1) and a mean Kullback-Leibler

divergence of 0.02 (expected value of 0). This indicates that the tests have resulted in patches of rainfall that are stationary,290

exhibit no correlation between drop counts within a 95% confidence interval, match a Poisson distribution very well and have

a mean dispersion of approximately 1. The proportion of raindrops, averaged across all the intervalometers, that fail each of

the hierarchical tests for ’Poisson-ness’ as well as the mean arrival rate for each group is presented in figure 8. Overall, only

22.5% of all the observed rainfall can reasonably be assumed to be Poisson. 36.7% of rainfall patches fail because they are not

stationary and 14.3 % do not pass the independence criterion, indicating the presence of correlations between drop counts. In295
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Figure 7. Estimates of the mean drop size against rainfall arrival rate calculated from equation 28, using a combination of intervalometer

estimates and tipping bucket measurements of total rainfall amount are presented. The derived estimates and the line of best fit are plotted in

red. Also shown are the measured and expected mean drop sizes from the disdrometer and exponential parameterisation, respectively. These

are plotted in blue.

total 51% of all rainfall patches fail the tests due to the changes in the mean arrival rate or the presence of correlations between

drop counts on scales as small as 2 minutes. It should be noted that these patches of rainfall are characterised by higher arrival

rates (e.g. the rainfall that fails the independence test has a mean ρA that is approximately 3 times the Poisson value). Of the

remaining 49 % of the rainfall patches approximately half do not fit a Poisson distribution, and the other half are classified as

Poisson. A very small subset (3.1 %) do not pass the dispersion criteria due to being over-disperse. I.e. the observed variance300

is larger than what is expected for Poisson statistics. Again, this rainfall is characterised by higher rainfall arrival rates.

These average values are quite representative for all the sites, except for Chole Mjini. This site is atypical in that it was only

online for a relatively short period between the 30/04/2018 and the 08/05/2018 and during this period 77% of all the rainfall

was classified as Poisson. This can be clearly seen in the two middle panels of figure 9. The time series of rainfall arrival rates
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Figure 8. The percentage of all rainfall patches, measured by the intervalometer, that fail each of the hierarchical tests as well as the mean

rainfall arrival rate for each group. The data is taken from all of the intervalometer sites.

clearly show that the mean rainfall arrival rate is a good predictor of ’Poisson-ness’. Patches of rain with high rainfall arrival305

rates are typically not classified as Poisson, whereas patches of rainfall with low arrival rates are. This can be clearly seen in the

top two right hand panels where the rainfall peak does not pass the Poisson tests but the consistent light rainfall, characterised

by low rainfall arrival rate, does.

The reason for the high percentage of Poisson rain at the Chole Mjini site is that the rainfall over this period is dominated

by consistent rainfall with a low arrival rate. The signature of this storm can also be seen in the other sites that were online310

during this period. For example, in the beginning part of the record for Pole Pole, top left (zoomed in top right). And also in

both bottom panels between the 01/05/2018 and the 04/05/2018. This consistent light strati-form type rainfall is quite atypical

for the rainfall record as a whole. The time series for Pole Pole (top left) and Meremeta (bottom right) show that the record

is dominated by intermittent sharp peaks of mostly non Poisson rainfall followed by dry spells. This is the typical pattern for

convective rainfall and is consistent with the ’lived’ experience during the monsoon.315

The disdrometer drop size measurements can be used to characterise Poisson and non-Poisson rainfall patches further and are

presented in figure 10. The trend in mean drop size with rainfall arrival rate for Poisson and non Poisson rain is presented in the

top panel. This shows that Poisson Rain is characterised by low arrival rates. No Poisson rain is found at ρA > 1500[m−2.s−1].

The data also shows a positive correlation between the mean drop sizes and the arrival rate.
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Figure 9. The rainfall record of Pole Pole and Chole Mjini showing an ’atypical’ storm characterised by consistent light rainfall rates with

little fluctuation over an extended period is presented in the top two rows. This can be clearly seen in the two middle panels of the figure.

The time series of rainfall arrival rates clearly show that the mean rainfall arrival rate is a good predictor of ’Poisson-ness’. Patches of rain

with high rainfall arrival rates are typically not classified as Poisson, whereas patches of rainfall with low arrival rates are. This can be clearly

seen in the top two right hand panels where the rainfall peak does not pass the Poisson tests but the consistent light rainfall, characterised by

low rainfall arrival rate, does. This consistent light strati-form type rainfall is quite atypical for the rainfall record as a whole. The time series

for Pole Pole (top left) and Meremeta (bottom right) show that the record is dominated by intermittent sharp peaks of mostly non Poisson

rainfall followed by dry spells.

In the middle panel of figure 10 for each data point the reason for failing to be classified as Poisson rain is also presented. This320

panel also clearly shows that Poisson rain is found almost entirely at the bottom of the arrival rate range, ρA ≤ 600[m−2.s−1].

As was seen for the intervalometer. This range of rainfall arrival rates contributes little to the total rainfall, 69% of all drops

fall in this range but only contribute 16% to total rainfall. Data greater than 2100[m−2.s−1] exclusively fail the stationarity and

independence tests. This rainfall is therefore characterised by correlations between drop counts and fluctuations in the mean

arrival rate at scales smaller than 2-22 minutes. At arrival rates between 700 and 1300 [m−2.s−1] the rainfall is a mixture325

of Poisson rain and mostly patches of rainfall that fail the χ2. Data that fail the χ2 test are patches of stationary rainfall with

uncorrelated fluctuations about the mean. However the data are over or under dispersed compared to the expected Poisson value

of 1 and therefore do not match the Poisson distribution. Mostly, this data is over-dispersed, i.e. the variance is greater than

expected by Poisson statistics. As arrival rate increases to between 1400 and 2000 [m−2.s−1], a higher proportion of rainfall
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(in the sub-range) fails the stationarity and independence tests indicating that rainfall is becoming more and more dynamic330

(rapid changes in the mean and correlations between drop counts).

In the bottom panel trends in the mean drop size for Poisson and non-Poisson rain are presented. The expected mean drop

size of the parameterisation at each arrival rate is also shown. The expected drop sizes are a slight over-estimate of the observed

drop sizes, although they are well within the standard error. The overall agreement between the expected and observed drop

sizes is quite good and in particular, over the region between 500 and 2500m−2.s−1, which contributes most to the total rainfall335

amount. This region accounts for 63% of the total rainfall amount. The parameterisation overestimates most of the drop sizes

at arrival rates greater than 2500 m−2.s−1, however the data becomes quite sparse at higher arrival rates. The positive trend in

mean drop size expected by the parameterisation is not as clear for the Poisson data as the non-Poisson data. At arrival rates

less than 700m−2.s−1 the Poisson mean drop sizes are larger than the parameterisation and non-Poisson values and at arrival

rates greater than 700m−2.s−1 the opposite is the case.340
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Figure 10. Trends in mean drop size for Poisson and non-Poisson rain are presented as well as the percentage of drops that fail to pass each

of the tests for "Poisson-ness". The top panel differentiates between Poisson and non-Poisson rain. The middle panel is further subdivided

to show which of the Poisson tests each data point fails. The bottom panel shows the observed mean drop sizes with standard error bars for

Poisson (in red) and non-Poisson drops (in blue) as well as the parameterised values (red-dashed line).
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5 Discussion

5.1 Rainfall Rates

Accurate estimates of total rainfall rainfall can be derived using Marshall and Palmer (1948)’s parameterisation with no ad-

justment from disdrometer arrival rate measurements. This is because the expected mean drop size of the parameterisation

shows good agreement with the observed mean drop sizes. I.e. it is within the std error of the observed mean. In particular,345

the expected and observed values match quite closely over the range of rainfall arrival rates that contribute most to the total

rainfall (63% of total rainfall occurs between 500-2500 m−2.s−1). The parameterisation under-estimates the observed mean

drop size at low arrival rates ρA ≤ 500 in comparison to observed values. However, it is known that impact disdrometers under-

estimate the number of small drops and the number of drops in general due to the truncation of drops below the detection limit.

Therefore, this difference between the parameterisation and the observed values could be a result of under-reporting of small350

drops by the instrument. This leads to underestimates of rainfall at low arrival rates. The parameterisation also overestimates

the mean size of drops at high arrival rates which leads to over-estimates of the rainfall at high arrival rates. The key point is

that Marshall and Palmer (1948)’s parameterisation provides a good estimate of observed mean drop sizes and consequently

accurate rainfall estimates can be derived.

This is not the case for the intervalometer estimates of rainfall. The intervalometer results in large over-estimates (by a factor355

of approximately 3) of the total rainfall amount. This is because the intervalometer registers higher arrival rates during each

rainfall event at Pole Pole in comparison to the disdrometer. The intervalometer has a smaller sensor area and a larger Dmin

value than the disdrometer. It should not register higher arrival rates. The possible reasons for the overestimation are, splashing

from the intervalometer housing onto the sensor during intense rainfall events, spurious drops due to an electromagnetic signal

or physical interference with the sensor, the minimum detectable drop diameter is actually smaller than 0.8mm. Comparison of360

the rainfall arrival rate records for the disdrometer and intervalometer, for example in figure 5, show that when the intervalome-

ter senses rain, so too does the disdrometer and vice versa. Spurious drops from an interfering signal would also be expected

to register outside the rainfall periods. This is not observed. Throughout the observational period and during all rainfall events

the intervalometer registers a higher rainfall arrival rate than the disdrometer. I.e. the intervalometer overestimates are not con-

strained to intense rainfall periods. These two findings indicate that spurious drops and splashing are unlikely causes for the365

higher arrival rates registered by the intervalometer. It is most likely that the parameter Dmin was poorly determined and the

intervalometer registers drops that are smaller than 0.8mm. The overestimation of rainfall occurs because the parameterisation

expects a much larger mean drop size than what is likely observed by the intervalometer.

Since the intervalometer and the disdrometer employ a similar sensor it is reasonable to assume that the drop sizes observed

by the intervalometer are of a similar size to those observed by the disdrometer. Using this assumption the intervalometer370

results are calibrated by the expected values of the mean drop size for the disdrometer. This results in accurate rainfall rates

for the intervalometer compared to the tipping bucket (within 5 %) for the entire experiment. This indicates that the actual

minimum detectable drop size for the intervalometer is most likely closer to 0.6mm than 0.8mm.
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Both forms of the calibration also result in good estimates at another intervalometer site approximately 1 km away (within 9

% of the tipping bucket value). This indicates that the observed mean drop size and therefore the DSD is reasonably stable over375

scales of 1 km. The calibration also gives good results outside the period of time when the disdrometer was online. The last

rainfall estimate from the intervalometer is approximately 1 month later than the last measurement by the disdrometer. This

indicates that the DSD is also relatively stable over the entire two month period of the experiment. The derivation of reasonably

accurate rainfall measurements with both the disdrometer and the intervalometer indicates that Marshall and Palmer’s (1948)

parameterisation of the DSD is a good approximation of the observed DSD over the period of the experiment. The interval-380

ometer also shows good potential for being used to derive estimates of the parameter β,Dmin of the drop size distribution.

Using only 22 data points it was possible to estimate β = 0.37,Dmin = 0.53. More work, with a larger data-set is necessary to

fully assess the validity of using intervalometer measurements for deriving estimates of the DSD parameters but this first step

shows good promise.

5.2 Testing the Poisson Hypothesis385

The results show that the majority of rainfall does not comply with the Poisson Homogeneity assumption. Over all the sites only

22.5 % of all the raindrops observed by the intervalometers can be reasonably assumed to behave according to Poisson statistics.

For the disdrometer only 15% of the rainfall behaves according to Poisson statistics. The majority of this Poisson rainfall is to

be found in a series of "atypical" rainfall events. These events are atypical because they are characterised by consistent periods

of light rainfall that have a duration of up to several hours interspersed with sharper peaks of higher intensity. The rest of the390

rainfall record is characterised by short intense showers with high arrival rates preceded and followed by dry periods. It seems

that rainfall can be divided into two types over the experimental period. Consistent light rain which is most often classified as

Poisson and short, intense showers that are never classified as Poisson.

The results of the tests indicate that high arrival rates are indicative of rainfall which has a fluctuating mean on very short time

scales (< 2 min in some cases). Rainfall with high arrival rates is also characterised by correlations between drop counts on395

very short time scales. Almost all of the rainfall that contributes most to the total rainfall amount does not exhibit characteristics

that are consistent with Poisson statistics. One would then expect that estimates of rainfall based on a parameterisation that has

been defined independently of the size of a reference volume, thus implying an assumption of homogeneity, would not return

good results. This is not the case.

Estimates of rainfall are good and more surprisingly the trend in mean drop size with increasing rainfall arrival rate is not400

only consistent with expected values derived from the parameterisation but also appears to be mostly captured by non-Poisson

rainfall. The trend in the mean drop size of Poisson rainfall with increasing arrival rate is much less clear. This would imply

that estimates of rainfall derived from an exponential parameterisation of the DSD would be less accurate over the patches

of rainfall that contain Poisson rain as opposed to patches of rainfall that contain non-Poisson rain. In figure 11 two different

rainfall patches of a similar total rainfall amount but very different arrival rate profiles are compared. One event contains a405

significant proportion of Poisson rain and the other contains no Poisson rain. The figure clearly shows that the quality of the

rainfall estimate is much worse for the rainfall event that contains Poisson rain. In that event rainfall is under-estimated by
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Figure 11. The performance of the rainfall parameterisation over a period of rainfall with a high proportion of "Poisson Rain" (top panel)

compared to a period of rainfall with a similar total rainfall amount but with no "Poisson Rain" (bottom panel). The disdrometer estimates

are plotted against the Tipping bucket values and the rainfall arrival rate in both panels.

approximately 41%. In the rainfall event with no Poisson rain, the parameterised estimate is within 10% of the tipping bucket

value. This seems to indicate that the presence of Poisson rainfall leads to worse rainfall estimates. However, the rainfall event

with Poisson rain also contains a significantly higher proportion of light rainfall in general (both Poisson and not) compared410

to the rainfall event with no Poisson rain. It is known that impact disdrometers underestimate the numbers of small drops and

therefore the rainfall rate at low rainfall arrival rates. So, whilst the figure does show that rainfall estimates are worse when

there is Poisson rainfall this cannot be de-tangled from the fact that rainfall estimates in general are also worse when arrival

rates are low. More work needs to be done in order to understand if the poor rainfall estimates are due to Poisson rain or

are simply an artefact of the measuring instrument. However, this research does show that the compliance with the Poisson415

homogeneity hypothesis is not necessary for deriving accurate rainfall estimates.
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One of the criticisms that arises with the statistical tests employed in this research is that the tests are less strict with smaller

sample sizes and also at lower arrival rates. This could bias the results such that rainfall with low arrival rates is more likely to

pass all of the tests. This was understood by Cornford (1967) and led to his simple sampling criterion requiring 23 drops per

bin size. This criterion is not fulfilled in this study. However as is pointed out by Jameson and Kostinski Kostinski and Jameson420

(1997); Jameson and Kostinski (1998), rainfall conditions are changing rapidly, sometimes at scales less than 2 minutes. The

presence of these fine structures within rainfall would be obscured by larger sampling windows. Furthermore sampling across

such structures with different means may actually lead to increased uncertainty in the mean. This increased uncertainty in the

mean over an entire rainfall event would make it impossible to test the Homogeneous Poisson assumption because rainfall is

very rarely stationary over longer time periods. Therefore in such cases the sampling criteria need to be adjusted to account for425

the patch size. In this research it was decided to treat τ as a moving window to increase the effective number of samples and

account for the small sample size. In this way the same tests are run on each of the drop counts many times, providing more

robust and reliable results.

6 Conclusions

This research leads to the following conclusions.430

1. The majority of rainfall that was observed is not consistent with Poisson statistics on observation scales from 2-22 min-

utes. The observed Poisson rainfall is characterised by low mean rainfall arrival rates. No Poisson rain is observed with

ρA > 1500m−2.s−1.

2. The majority of the Poisson rainfall can be associated with a series of storms over a three day period that are atypical435

in comparison to the entire observed rainfall period. These storms are characterised by long periods of light stratiform

type rainfall, most likely caused by a large scale synoptic forcing. The rest of the rainfall record is mostly comprised of

convective showers.

3. The homogeneous Poisson assumption does not apply for the majority of rainfall observed in this study. Rainfall shows440

correlations between drop counts and changes in the mean at scales as small as 2 min. It is possible that rainfall is homo-

geneously distributed at smaller time scales but these would be so small as to invalidate the very concept of a drop size

distribution.

4. Despite the apparent invalidity of the Homogeneous Poisson assumption, plots of mean drop sizes against rainfall arrival445

rate reveal that the expected mean drop sizes from Marshall and Palmer (1948) parameterisation shows good agreement

with observed values both over spatial scales of 1km and a temporal period of 2 months.
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5. Total cumulative rainfall estimates derived from the disdrometer drop counts are within the standard error of the total

rainfall amount measured by a co-located tipping bucket over the same time period.450

6. The intervalometers at both tipping bucket sites give large over estimates of the total rainfall. This is most likely due to a

poor calibration of the parameterDmin. The actualDmin is most likely close to 0.6mm. Constraining the intervalometer

arrival rates by the observed mean drop sizes results in rainfall estimates that are within within 5-10% of tipping bucket

measurements. The form of the constraint relationship is the parameterisation used for the disdrometer measurements.455

The accuracy of rainfall estimates is determined by the accuracy of the DSD parameterisation.

7. It is possible to determine reasonable rainfall estimates using an intervalometer. It is also likely that the intervalometer

can be used in conjunction with co-located rain gauges to give good estimates of mean drop sizes and therefore the

parameters of the exponential DSD. In turn this may improve satellite-derived rainfall estimates. Due to its low cost, the460

instrument shows good potential for being deployed in Africa to alleviate the observational crisis.
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A
README for the python code files

This appendix is a README for the python code files that were developed during the course of the MSc
research. Note, the actual python code is not contained within this document. It has been submitted as
supplementary material, along with the raw and processed data, to the TU Delft education repository
and can be found at https://repository.tudelft.nl, by searching for the title of this MSc thesis.

A.1. Overview of the code
In this README each of the various python scripts that were developed during the course of this MSc
research are explained. The order in which they should be used is also laid out. The research resulted
in X different python scripts being developed. Each script completes a different set of tasks. Each of
the scripts could conceivably be combined into one long script but this would be clumsy to run and
debug.

Note, it is recommended to download all the raw data (tipping bucket, intervalometer and disdrometer
data) from https://repository.tudelft.nl/. It is recommended to keep the same folder organization for
the raw data files as in the zipped file. I.e. do not change folder names or move folders within the
downloaded data. Save the downloaded data to a chosen folder and specify that folder’s path.

The scripts, listed in the order they are used to analyse the data, are as follows:

1. import_DC.py

2. import_disdro.py

3. import_tb.py

4. continuous_record_dc.py

5. continuous_record_disdro.py

6. stations_online.py

7. Poisson_Testing.py

8. PoissonAnalysis.py

9. RainfallAnalysis.py

And the associated functions, also listed in the order that they are used:

1. poisson_test.py

2. poisontest.py

3. seperate_rainfall_events.py
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4. mean_drop_sizes.py

A more detailed description of each script and function is presented in the next section.

A.2. Description of each script and function

A.2.1. Script Name: import_DC.py

Overview

This script reads all of the raw intervalometer txt files from each of the sites and processes the data.
The raw data is in 4 forms all mixed into one txt file; a millisecond Unix timestamp at the start of
each txt file, timestamps (in millisecond Unix time) for each time a drop is registered by the sensor,
a check timestamp every 10 minutes so that you know that the intervalometer is online even when it
is not raining and a voltage stamp (depending on the version of the Arduino software installed on the
intervalometer). Version 6 includes voltage readings and Version 5 does not.

The script sorts the drop data from the check and voltage data and records the start and end times of
each txt file. The end time is taken as the time of the last drop. Unix time is converted to date-time in
UTC. The script also imports a manual record of when the intervalometer was being physically handled.
E.g. working around the sensor to download data etc. The script deletes all drops registered within
the manual record windows since these are spurious drops from touching the sensor. All the start and
end times of each of the txt files are used to determine a continuous record for the instrument. I.e.
the time period when the instrument was online and registering rainfall. Finally the continuous record
data, drop arrival data and check/voltage data are each saved to their own txt file.

Usage

Modify the root_path variable within this script so that it points to the folder where all the data has
been saved. No other changes are necessary. This script can be run from the terminal by calling:
python path_to_script -s ’Name_of_site’

For example: python ’/Users/didierdevilliers/Documents/TU_Delft/Graduation/Python_Scripts/import_DC.py’
-s ’Didimiza’

Alternatively, you can open the script in a python IDE, such as Spyder, and run it within that environ-
ment.

Inputs

The excel file containing the manual record of working around the sensors and all the raw intervalometer
data txt files.

Outputs

The script produces three txt files which contain the voltage data, processed drop arrival data and
check/voltage data. These files are saved to sub-folders within the root_path folder.

A.2.2. Script Name: import_disdro.py

Overview

This script reads the raw disdrometer csv file and removes any spurious drops from within the manual
record windows that may have been caused by touching the sensor. The ’cleaned’ data is saved to a
txt file.
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Usage

Modify the root_path variable within this script so that it points to the folder where all the data has
been saved. No other changes are necessary. This script can be run from the terminal by calling:
python path_to_script. Alternatively, you can open the script in a python IDE, such as Spyder, and run
it within that environment.

Inputs

The excel file containing the manual record of working around the sensors and the csv file containing
the raw disdrometer data.

Outputs

One txt file containing the cleaned drop data from the disdrometer.

A.2.3. Script Name: import_tb.py

Overview

This script imports the raw tipping bucket data in csv files from Shamba Kilole, MIL1 and Pole Pole and
removes any spurious tips from within the manual record windows. The results of the field calibration
are also applied to convert from tips to mm of rainfall. The cleaned and processed rainfall amounts as
well as the tips are saved to a txt file.

Usage

Modify the root_path variable within this script so that it points to the folder where all the data has
been saved. No other changes are necessary. This script can be run from the terminal by calling:
python path_to_script. Alternatively, you can open the script in a python IDE, such as Spyder, and run
it within that environment.

Inputs

The csv files of raw tipping bucket data from teh three sites and the excel file containing the manual
record of working around the sensors.

Outputs

A txt file containing the rainfall tips and volume of each tip (determined by a field calibration experi-
ment).

A.2.4. Script Name: continuous_record_dc.py

Overview

This script reads all the processed intervalometer drop data txt files that were generated with the
import_DC.py script as well as the files containing the continuous record (periods of online operation)
for each intervalometer. All the drop data within the continuous record periods is merged into one data
frame for each site along with an indication of which continuous record period a drop corresponds to.
The complete continuous record of drops for each site is then re-sampled into 10 second time bins.
The re-sampled drop data as well as the continuous record of drops are saved to separate txt files for
each site. I.e. this script takes many different txt files of drop data from each site and combines them
into two txt files, one with data that has been re-sampled to 10s time bins and one with the original
timestamps. The script also makes some plots with the drop data for each site.
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Usage

Modify the root_path, drop_path and cr_path variables within this script so that they point to the
relevant folders. No other changes are necessary. This script can be run from the terminal by calling:
python path_to_script. Alternatively, you can open the script in a python IDE, such as Spyder, and run
it within that environment.

Inputs

Processed drop data for each intervalometer site as well as the continuous record data for each inter-
valometer site.

Outputs

Two txt files for each intervalometer site, one containing the entire record of continuous drop data for
the site and the other containing the same record but re-sampled into 10s time bins.

A.2.5. Script Name: continuous_record_disdro.py
Overview

This script reads the processed disdrometer data txt file that was generated with the import_disdro.py
script and deletes data after the malfunction date. The remaining data is re-sampled into 10s time bins.
For each bin some basic statistical indices of the drop sizes (mean, median, var etc) are calculated.
The processed data are saved to a txt file. The script also makes some plots of the drop arrival time
series.

Usage

Modify the root_path and disdro_path within this script so that they point to the relevant folders. No
other changes are necessary. This script can be run from the terminal by calling: python path_to_script.
Alternatively, you can open the script in a python IDE, such as Spyder, and run it within that environ-
ment.

Inputs

Processed drop data from the disdrometer.

Outputs

One txt file containing re-sampled drop data and basic statistical indices for each 10s bin.

A.2.6. Script Name: stations_online.py
Overview

This script reads the processed tipping bucket data from Pole Pole generated by import_tb.py, the
processed disdrometer data generated by continuous_record_disdro.py and the continuous record data
for each intervalometer site generated by import_DC.py and uses this to generate a plot showing the
periods within the data record when the different instruments are online or offline in comparison to
one another. The plot is saved to a specified path.

Usage

Modify the root_path variable and the path where the figure is saved so that they point to the relevant
folders. No other changes are necessary. This script can be run from the terminal by calling: python
path_to_script. Alternatively, you can open the script in a python IDE, such as Spyder, and run it within
that environment.
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Inputs

Continuous record data, processed tipping bucket data and processed disdrometer data.

Outputs

A plot saved in a png file.

A.2.7. Script Name: Poisson_Testing.py

Overview

This script reads the re-sampled disdrometer and intervalometer data (for each site) and then performs
some tasks. It first separates the raindrop record into distinct rain events, using the function seper-
ate_rain_events.py, determined by a dry period of greater than 1 hour between consecutive drops. The
auto correlation of each rainfall event at increasing lag times is calculated. The lag time at which the
auto-correlation drops below ኻ

፞ is defined as 𝜏. A check is performed to determine if 𝑡 ≪ 𝜏 ≪ 𝑇, where
𝑡 = 10𝑠 and T is the length of the rainfall event. If the rainfall event passes this ’Kostinski’ criterion it
is labelled a ’Kostinksi’ storm. The script then passes all the Kostinski storms to another function called
poisson_test.py. This function performs all of the hierarchical tests for ’Poisson-ness’ on each of the
Kostinski storms for each of the sites. The distinct rain events, Kostinski storms and the results of the
Poisson tests are all saved to their own txt file. This analysis is performed for the intervalometer data
at each site as well as the disdrometer data.

Usage

Modify the root_path and disdro_path within this script so that they point to the relevant folders. No
other changes are necessary. This script can be run from the terminal by calling: python path_to_script.
Alternatively, you can open the script in a python IDE, such as Spyder, and run it within that environ-
ment.

Inputs

The re-sampled (10s) disdrometer and intervalometer data and two functions (seperate_rain_events.py
and poisson_test.py).

Outputs

Three txt files for each intervalometer site as well as the disdrometer site. The txt files contain, the
separate rain events, the Kostinski storms and the results of the Poisson tests.

A.2.8. Script Name: PoissonAnalysis.py

Overview

This script reads in many data files; the results of the Poisson tests, the Kostinski storms, the separate
rain events, the re-sampled drop data and the un-resampled drop data for the disdrometer and all the
intervalometer sites. Several different analyses are performed on the data.

• All the single drops within the un-resampled record are classified according to the results of the
Poisson tests

• Basic statistical indices are calculated for these data groups and plots are made

• Expected mean drop sizes are calculated using the function: exp_drop_size.py
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• These are compared with observed values and more plots are made

• Time series plots are made for Poisson vs non-Poisson rainfall

• Trends in the % of large drops are plotted

All the plots are saved to a prescribed path.

Usage

Modify the root_path within this script so that it points to the relevant folders. No other changes
are necessary. This script must be opened in a python IDE, such as Spyder, and run within that
environment.

Inputs

The function exp_drop_size.py and the following data for the intervalometer sites and the disdrometer:

• Results of Poisson tests

• Kostinski storms

• The separated rainfall events

• Re-sampled drop data

• Un-resampled drop data

Outputs

This script produces many different figures based on the analyses.

A.2.9. Script Name: RainfallAnalysis.py

Overview

This script reads in many data files; the results of the Poisson tests, the Kostinski storms, the separate
rain events, the re-sampled drop data and the un-resampled drop data for the disdrometer and all the
intervalometer sites. It also reads in the tipping bucket rainfall data for each of the three tipping bucket
sites. The main function of this script is to calculate rainfall rates using the functions, expon_rain.py
and rain_adf_final.py, from the intervalometer and disdrometer re-sampled (10s bins) drop data. The
calculated rainfall rates are then compared with the tipping bucket values over the same time period.
Several different plots are produced and saved.

Usage

Modify the root_path within this script so that they point to the relevant folders. No other changes are
necessary. This script can be run from the terminal by calling: python path_to_script. Alternatively,
you can open the script in a python IDE, such as Spyder, and run it within that environment.

Inputs

This script requires the following functions; expon_rain.py, exp_drop_size.py, rain_adj_final.py and
exp_poly_constants.py, and the following data files:

• Results of Poisson tests

• Kostinski storms

• The separated rainfall events
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• Re-sampled drop data

• Un-resampled drop data

• Tipping bucket rainfall data

Outputs

This script produces many different figures based on the analyses.

A.2.10. Function Name: seperate_rain_events.py

Overview

This function takes three arguments; a data frame of re-sampled drop data,a string containing the
name of the of the site and a string specifying the re-sample period (in this case 10s). The function
takes the re-sampled drop data and separates it into distinct rainfall events using a criterion of more
than 1 hour between consecutive drops. The value of 𝜏 for each storm is determined and the ’Kostinski’
criterion is applied. The function returns the separated rain events, the Kostinski storms, the 𝑇 and 𝜏
used to determine the Kostinski storms and a continuous record counter.

Usage

The function must be imported into the relevant script (as you would import any python module) and
can then be called within the script by its name. Note, for the import to work, the function location in
your hard drive must be part of the Python PATH.

Inputs

This function takes three arguments; a data frame of re-sampled drop data,a string containing the
name of the of the site and a string specifying the re-sample period (in this case 10s).

Outputs

The function returns the separated rain events, the Kostinski storms, the criterion used to determine
the Kostinski storms and a continuous record counter.

A.2.11. Function Name: poisson_test.py

Overview

This function takes the Kostinski storms and performs a series of tests of them to determine if the
rainfall data can reasonably be assumed to comply with the Poisson Homogeneity hypothesis. The
tests are performed on a sub-section of each Kostinski storm with length 𝜏, determined in the seper-
ate_rain_events.py function. The series of tests that are performed are explained in the methodology
section of the paper. This function returns the results of the tests for each sub-section of each Kostinski
storm.

Usage

The function must be imported into the relevant script (as you would import any python module) and
can then be called within the script by its name. Note, for the import to work, the function location in
your hard drive must be part of the Python PATH.
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Inputs

The function takes the following arguments: Kostinski storm data, storm number (identifier), 𝜏 value, n
= number of sub-sections within each storm, continuous record period, re-sample time, site name and
the instrument (disdrometer or intervalometer). All of these inputs are calculated in previous scripts
or are outputs of previous functions.

Outputs

This function returns the results of the tests for each sub-section of each Kostinski storm in a data
frame.

A.2.12. Function Name: expon_rain.py

Overview

This function calculates the rainfall rate from the rainfall arrival rate using Marshall and Palmer’s (1948)
parameterisation. The rainfall rate is calculated using the polynomial constants from the function
exp_poly_constants.py. The function returns a data frame containing the rainfall rates.

Usage

The function must be imported into the relevant script (as you would import any python module) and
can then be called within the script by its name. Note, for the import to work, the function location in
your hard drive must be part of the Python PATH.

Inputs

The function takes three arguments, the rainfall arrival rate data, the instrument (disdrometer or inter-
valometer) and the value of 𝐷፦።፧. The function also uses another function called exp_poly_constants.py.

Outputs

The rainfall rates.

A.2.13. Function Name: exp_poly_constants.py

Overview

This function fits a third degree polynomial to the 𝜌ፀ − 𝑅 relationship given by Marshall and Palmer’s
(1948) parameterisation. It takes only one argument, 𝐷፦።፧, the minimum detectable drop size and
returns the polynomial constants.

Usage

The function must be imported into the relevant script (as you would import any python module) and
can then be called within the script by its name. Note, for the import to work, the function location in
your hard drive must be part of the Python PATH.

Inputs

The value of 𝐷፦።፧.

Outputs

The polynomial constants.
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A.2.14. Function Name: exp_drop_size.py

Overview

This function calculates the expected mean drop size as a function of rainfall arrival rate using the
expectation of a left truncated gamma distribution. It first converts the rainfall arrival rate to rainfall
rate using the function exp_poly_constants.py and then converts the rainfall rate to Λ in order to
calculate the expected mean drop size. The function returns the expected drop size for the truncated
distribution as well as for the complete distribution.

Usage

The function must be imported into the relevant script (as you would import any python module) and
can then be called within the script by its name. Note, for the import to work, the function location in
your hard drive must be part of the Python PATH.

Inputs

The function takes three arguments, the rainfall arrival rate data, the instrument (disdrometer or inter-
valometer) and the value of 𝐷፦።፧. The function also uses another function called exp_poly_constants.py.

Outputs

The mean expected drop size for the truncated gamma and complete gamma distributions.

A.2.15. Function Name: expon_rain_adj.py

Overview

This function constrains the rainfall estimates from Marshall and Palmer’s (1948) parameterisation by
a priori observations of the mean drop sizes from the disdrometer by using the equation derived in the
methodology section of the paper for a complete gamma distribution.

Usage

The function must be imported into the relevant script (as you would import any python module) and
can then be called within the script by its name. Note, for the import to work, the function location in
your hard drive must be part of the Python PATH.

Inputs

The function takes three arguments, the rainfall arrival rate data, the instrument (disdrometer or inter-
valometer) and the value of 𝐷፦።፧. The function also uses two other functions, exp_poly_constants.py
and exp_drop_size.py.

Outputs

The corrected rainfall rates.

A.2.16. Function Name: rain_adj_final.py

Overview

This function constrains the rainfall estimates from Marshall and Palmer’s (1948) parameterisation by
a priori observations of the mean drop sizes from the disdrometer by using the equation derived in the
methodology section of the paper for a left truncated gamma distribution.
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Usage

The function must be imported into the relevant script (as you would import any python module) and
can then be called within the script by its name. Note, for the import to work, the function location in
your hard drive must be part of the Python PATH.

Inputs

The function takes three arguments, the rainfall arrival rate data, the instrument (disdrometer or inter-
valometer) and the value of 𝐷፦።፧. The function also uses two other functions, exp_poly_constants.py
and exp_drop_size.py.

Outputs

The corrected rainfall rates.
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