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Abstract

Production planning in the biomanufacturing sector presents significant challenges
due to uncertainties in job durations caused by biological variability, environmental
conditions, and raw material quality. Traditional scheduling methods typically fail
to adapt to these uncertainties, leading to suboptimal outcomes. This research
addresses this issue at DSM-Firmenich, focusing on optimizing production plan-
ning while maximizing profit, adhering to deadlines, and efficiently utilizing re-
sources. We propose an integrated approach using Mixed-Integer Linear Program-
ming (MILP) and Constraint Programming (CP) models, alongside Probabilistic
Simple Temporal Networks (PSTNs) to handle uncertainty in real-time scheduling.
The study introduces an offline optimization procedure for proactive scheduling de-
cisions and a reactive real-time algorithm for adjustments of the planned schedule.
This work showcases the potential of applying PSTNs in biomanufacturing and
sets the stage for future research aimed at enhancing real-time execution strategies
in factory environments.
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Chapter 1

Introduction

Production planning in a factory involves organizing and coordinating all activities
required for manufacturing products. This process includes estimating production
volumes for upcoming periods, forecasting inventory levels, and identifying the
workforce and resources needed to implement the plan. While estimating required
products is typically based on historical data, decisions regarding which orders to
accept and how to allocate resources are subject to optimization. These decisions
directly impact profit.

Factories often manage multiple orders from clients, with each order specify-
ing required products and deadlines for completion. Each product comprises a
sequence of unit operations called ”jobs.” Factories must complete all necessary
jobs to produce a product. Precedence or temporal constraints connect these jobs.
Such constraints dictate the permissible time differences between various jobs’
start and/or finish times. Every job has specific resource requirements; some jobs
can run in parallel since multiple resources are available.

In a theoretical setting, each job has a defined duration. In the real world, how-
ever, such durations are often uncertain. While a planner can estimate job dura-
tions based on historical data, such as average time for completion, the actual time
required may vary due to natural and operational factors. In the biomanufactur-
ing industry, such factors include biological variability, temperature or humidity
variability, and raw product quality. The variabilities affect job scheduling, as the
actual durations of jobs may lead to deviations from the original schedule construc-
ted using the predicted job duration. Such deviations may result in the inability to
produce an order on time.

DSM-Firmenich, a global leader in Nutrition, Health, and Bioscience, faces
challenges in biomanufacturing, which involves large-scale, long-horizon schedul-
ing problems. Currently, their workflow involves planners estimating demand for
upcoming orders and calculating production schedules based on predicted demand.
Products are then scheduled for production according to resource availability and
estimated deadlines. Optimizing such production schedules is challenging, as it
is an NP-hard problem. The complexity increases further when uncertainties in
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job durations appear, making it difficult to balance deadlines with efficient parallel
execution.

Furthermore, DSM-Firmenich needs to maintain the desired inventory level of
products. We define this combination of factors as an Integrated Production Plan-
ning Problem. The problem requires advanced algorithms to determine optimal
schedules that minimize delays, maximize profit, and ensure effective resource
utilization. Without such optimization, inefficiencies can increase operational costs
and strain client relationships.

This research focuses on leveraging advanced computational methods to optim-
ize production planning in manufacturing to address challenges faced by DSM-
Firmenich. We aim to design and implement techniques that (1) maximize profit
while adhering to the orders’ deadline and optimizing resource usage and (2) dy-
namically adapt schedules to account for deviations in job durations.

We analyze Mixed-Integer Linear Programming (MILP) and Constraint Pro-
gramming (CP) to assess their strengths and limitations in optimizing production
scheduling. While researchers have widely applied both approaches in production
planning [Bekrar et al., 2012] [Aguirre et al., 2018][Hosseini-Motlagh et al., 2021],
key aspects such as inventory and deadline management remain underexplored.
For example, the MILP model in [Belil et al., 2018] accounts for the inventory but
primarily aims to minimize stock levels. However, maintaining adequate inventory
is essential in the DSM-Firmenich factory setting. Therefore, we propose integ-
rating inventory management into the model, enabling planners to monitor stock
levels daily.

Additionally, we investigate Temporal Networks and their probabilistic exten-
sions (PSTNs) to enable real-time schedule adjustments. Although the research
[van den Houten et al., 2024] applied Simple Temporal Networks with Uncertainty
(STNUs) to scheduling problems, demonstrating the ability of STNUs to execute
schedules in real-time despite the presence of uncertainty efficiently, we did not
find STNUs applications in production planning. STNUs assume bounded uncer-
tainty values [Morris et al., 2001], which are unsuitable for production planning,
where probability distributions better represent job durations. The primary ad-
vantage of PSTNs in production planning lies in their ability to model uncertainty
explicitly. By representing job durations as probability distributions, PSTNs allow
for a more accurate and flexible representation of the production planning prob-
lem, compared to traditional deterministic models that cannot account for these
uncertainties. To our knowledge, researchers have not yet applied PSTNs to pro-
duction planning. This gap presents an opportunity to explore how PSTNs can
support planners by incorporating probabilistic reasoning to manage uncertainties
in a factory setting better.

Simple Temporal Networks (STNs) can execute in real time. A similar execu-
tion algorithm exists for STNUs [Hunsberger and Posenato, 2024b]. The algorithm
enables real-time schedule execution without rescheduling, ensuring rapid change
adaptation. It dynamically responds to uncertainties during execution, not relying
on pre-defined job start times. Instead, jobs are initiated as soon as the constraints
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permit, allowing for more flexibility and responsiveness. This adaptability is par-
ticularly critical in dynamic environments such as factories, where quick decisions
are essential to minimize downtime and achieve production goals. A drawback of
the existing STNU real-time execution algorithm is that it fails when one of the
problem constraints is not satisfied. In a factory setting, we do not want to termin-
ate all jobs if one violates a constraint due to uncertainty. Therefore, we introduce
a real-time execution algorithm that dynamically responds to uncertainties. Our
implementation of the real-time execution algorithm adjusts the schedule when ex-
ecution is disrupted and continues running to maximize expected profit.

This new application will assist planners in scheduling jobs required for products,
achieving optimal results in deterministic scenarios, and estimating optimal out-
comes for uncertain scenarios. The contributions of this paper can be summarized
as follows:

1. We develop MILP and CP models for the integrated production planning
and scheduling problem faced by DSM-Firmenich, which aims to maximize
profit.

2. We present a novel PSTN-based approach consisting of (i) an offline optim-
ization procedure that optimizes the scheduling decisions proactively and (ii)
a new reactive real-time algorithm designed to react to uncertainty.

This research aims to provide tools for planners that reduce manual effort, improve
resource utilization, and ensure the timely delivery of products. Furthermore, we
provide a detailed analysis of the existing PSTN tools and their usage in practice.

The remainder of this paper is organized as follows. Chapter 2 explains back-
ground needed to understand this research. Additionally, it presents a comprehens-
ive literature review on MILP and CP in production planning. It discusses offline
scheduling approaches, such as Partial Order Schedules (POS) and online schedul-
ing methods utilizing temporal networks. Chapter 3 formalizes the research ques-
tions addressed in the paper. Chapter 4 models the DSM-Firmenich production
planning problem using MILP and CP. Chapter 5 introduces the proposed PSTN-
based scheduling method, detailing both the offline optimization phase and the
online real-time scheduling adjustments. Chapter 6 presents the findings, evaluat-
ing a newly implemented PSTN-based approach. We discuss the results obtained
in Chapter 7. Finally, we conclude the work, summarizing key contributions in
Chapter 8.

By the end of this research, we aim to demonstrate how computational methods
can transform production planning into a more efficient and adaptive process to
maximize factory profit.
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Chapter 2

Background and Related Work

This chapter provides the necessary background and reviews related work to estab-
lish core concepts and identify research gaps in production planning and schedul-
ing.

Section 2.1 focuses on scheduling, outlining its role in production planning. It
introduces a Resource-Constrained Project Scheduling Problem (RCPSP), a fun-
damental scheduling problem in manufacturing, and explores practical constraints
that extend it, such as precedence constraints, known as a Resource-Constrained
Project Scheduling Problem with Time Lags (RCPSP/max), and stochastic job dur-
ations, referred to as a Stochastic Resource-Constrained Project Scheduling Prob-
lem with Time Lags (SRCPSP/max).

Since the SRCPSP/max incorporates uncertainties and can represent the real-
world DSM-Firmenich scheduling problem, Section 2.2 examines approaches to
solve the SRCPSP/max problem, including proactive, reactive, and hybrid schedul-
ing strategies. We focus on hybrid methods, such as Partial Order Schedules (POS),
Simple Temporal Networks (STNs), and their extensions, which allow for flexible
scheduling under uncertainty. We also highlight the recent advancements in Prob-
abilistic Simple Temporal Networks (PSTNs), which model stochastic job dura-
tions more accurately than traditional bounded uncertainty models.

Lastly, Section 2.3 explores different optimization techniques applied in pro-
duction planning, including Mixed Integer Linear Programming (MILP) and Con-
straint Programming (CP) models.

By the end of the chapter, readers should clearly understand the concepts rel-
evant to this research in production planning, with the research gaps outlined to
facilitate the formulation of research questions.

2.1 Scheduling

Scheduling involves assigning start and end times to the jobs outlined in the pro-
duction plan, ensuring efficient resource utilization, and meeting deadlines.

In the DSM-Firmenich manufacturing setting, there is a list of orders, where
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each order contains multiple products, and each product typically requires several
stages (or jobs) to complete.

Each job has specific resource demands, and resources, such as machinery,
labor, or materials, are limited. This scheduling scenario is often modeled as the
Resource-Constrained Project Scheduling Problem (RCPSP) [Baar et al., 1999], a
well-known scheduling problem.

The RCPSP has multiple products, each requiring multiple jobs, which must
be scheduled. Each job requires certain resources. Jobs can run in parallel as
long as resource constraints are satisfied. The typical objective in the RCPSP is to
minimize the makespan, the total time required to complete all jobs. However, in
manufacturing, objectives often include maximizing profit while adhering to strict
deadlines and optimizing resource utilization.

Many real-world scheduling problems in production planning extend the RCPSP
with additional constraints and complexities, such as:

• Precedence/Temporal Constraints: Certain jobs cannot start until specific
preceding jobs are completed [Revesz, 2009]. These dependencies ensure
that production sequences are logically and operationally feasible. In ad-
dition, minimum and maximum time lags often connect such jobs. For in-
stance, a job might need to start within a certain timeframe after completing
another job to maintain product quality. This alteration of the RCPSP is
called a Resource-Constrained Project Scheduling Problem with Minimum
and Maximum Time lags (RCPSP/max) [Neumann et al., 2006].

• Stochastic Job Durations: In manufacturing, job durations may vary due to
equipment performance, material quality, or environmental conditions [Man-
zini and Urgo, 2015]. These uncertainties make scheduling more challen-
ging, requiring robust approaches to accommodate variability while main-
taining feasibility. This problem can be addressed as a Stochastic Resource-
Constrained Project Scheduling Problem with Time Lags (SRCPSP/max)
[Bruni et al., 2015].

DSM-Firmenich acknowledges both of these complexities. There are minimum
and maximum time lags between jobs to produce a product successfully. Factors
such as the required cleaning time of a machine after completing a job can determ-
ine such time lags. Additionally, uncertainty arises due to the biological nature
of the jobs. We recognize that certain aspects of the defined integrated produc-
tion planning problem align with the SRCPSP/max structure. Consequently, we
leverage this scheduling problem as a framework to model and represent the DSM-
Firmenich production planning case. Below, we provide a detailed explanation of
the RCPSP/max and the SRCPSP/max.

2.1.1 RCPSP/max

The RCPSP/max variant extends the complexity of the RCPSP by incorporating
minimum and maximum time lags between jobs [Neumann et al., 2006]. These
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constraints create stricter temporal dependencies than standard precedence con-
straints by defining precise time windows within which a job must start or finish
relative to another job. This additional layer of complexity requires considering
both time-lag and resource restrictions simultaneously, significantly complicating
the scheduling process.

We formally express the RCPSP/max can as follows [Neumann et al., 2006]:

• A = {0, . . . , n, n+1} represents jobs, where 0 represents the start and n+1
represents the end of the production time.

• Each job i ∈ A has a duration di.

• There are R = {1, . . . , k} resources available.

• Each job i has a resource consumption rik of resource k.

• ck indicates capacity for each resource k.

• lagmin
ij indicates a minimum time-lag between jobs i and j.

• lagmax
ij indicates a maximum time-lag between jobs i and j.

• Tempmin represents jobs connected by minimum time-lags

• Tempmax represents jobs connected by maximum time-lags

Let starti be the start time of each job i. Then, the start of the first job is zero,
start0 = 0. Precedence constraints must be respected:

startj ≥ starti + lagmin
ij ∀(i, j) ∈ (Tempmin)

startj ≤ starti + lagmax
ij ∀(i, j) ∈ (Tempmax)

Resource constraints must be satisfied:∑
i∈A

rik ∗ αik(t) ≤ ck ∀k ∈ R, t

Here, αi(t) indicates if t is within the execution window of job i (αi(t) = 1).
Otherwise, αi(t) = 0.

In the DSM-Firmenich case, scheduling involves assigning jobs to specific re-
source IDs. However, since an efficient algorithm exists for converting a start-time
solution into a concrete machine assignment, we can first focus on solving the
scheduling problem in terms of start times and subsequently apply this algorithm
[Kleinberg and Tardos, 2005, p. 124] to determine the final machine allocations.
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2.1.2 Stochastic RCPSP/max

Another challenge in the RCPSP/max is managing stochastic processing times.
In the factory-based scenario, the durations of jobs are not fixed and may fluctu-
ate. This can happen due to the biological nature of processes like fermentation,
resembling the SRCPSP/max [Bruni et al., 2015]. This stochasticity introduces
uncertainty into the scheduling process, as the actual duration of each job becomes
known only upon its completion. Depending on the real execution time of the job,
the received schedule may fluctuate. Furthermore, it can lead to violations of time
lag and deadline constraints. Such violations may make previously feasible sched-
ules infeasible under the new durations. Conversely, scenarios may arise where
a schedule deemed infeasible under deterministic assumptions becomes feasible
after accounting for stochastic variations if the actual job durations are shorter than
expected.

When infeasibility arises due to uncertainty, the biomanufacturing factory may
encounter customer dissatisfaction and profit loss. Relying solely on deterministic
scheduling in such a setting is insufficient. Instead, incorporating and predict-
ing uncertainty is essential to minimizing the risk of infeasibility. By integrating
stochastic approaches, we can develop adaptive scheduling strategies that enhance
resilience to uncertainty.

2.2 Approaches to solve SRCPSP/max problems

There are two main spectrums for stochastic scheduling in the literature: proact-
ive and reactive scheduling. The primary objective of proactive scheduling is to
develop a robust schedule in advance, accounting for potential uncertainties [Her-
roelen and Leus, 2005]. In contrast, reactive approaches focus on dynamically
adjusting to uncertainties as they arise during execution. Recent studies demon-
strate that combining proactive methods with online rescheduling can yield im-
proved results [van den Houten et al., 2024], motivating further exploration of hy-
brid proactive-reactive approaches.

2.2.1 Proactive

In the DSM-Firmenich case, we assume job scheduling follows the SRCPSP/max.
Proactive scheduling approaches for such stochastic problems often employ the
Sample Average Approximation (SAA) method [Kleywegt et al., 2002], where
samples are drawn from stochastic distributions and incorporated as scenarios within
a stochastic programming formulation. The solver seeks a feasible solution across
all scenarios while optimizing the average objective.

The current state-of-the-art proactive approach for the SRCPSP/max problem
is SORU [Varakantham et al., 2016], an SAA-based Mixed Integer Programming
(MIP) approach designed to minimize the α-robust makespan. The method con-
structs an SAA formulation using a subset of sampled durations. It determines start
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times for each job for each sample while ensuring that precedence constraints with
minimum and maximum time lags are satisfied. Additionally, it allows up to α% of
scenarios to violate resource feasibility constraints, aiming to minimize the sample
average makespan across the selected samples.

The SAA method can be computationally expensive due to the large number of
required samples. A heuristic variant, SORU-H, has been introduced to approx-
imate the α-robust makespan [Varakantham et al., 2016]. Instead of relying on
multiple sampled scenarios, SORU-H uses a single approximating sample repres-
enting a quantile of the duration distribution, significantly reducing computational
efforts.

2.2.2 Hybrid

Partial Order Schedules (POS)

A Partial Order Schedule (POS) is a hybrid approach that represents a job network
where every feasible temporal solution is guaranteed to be resource-consistent [Po-
licella et al., 2007]. In a POS, jobs follow a relative ordering, ensuring that resource
feasibility is always satisfied.

A single-point solution with chaining can construct a POS [Policella et al.,
2004]. The algorithm divides each resource rj with capacity capj into capj single-
capacity sub-resources. Jobs are sorted by the start times and assigned to available
capacity units at their respective start times. Once a sub-resource allocates a job
[Kleinberg and Tardos, 2005, p. 124], a new precedence constraint is introduced
between the job and all previous jobs using the same sub-resource. We later refer
to this chaining algorithm as get resource chains.

Example 2.2.1 In Figure 2.1, resource 1, with a capacity of 5, is divided into five
sub-resources (machines). After job allocations on sub-resources, resource chains
indicate that job 0 0 0 must execute before the jobs 1 1 1 and 0 1 1. Job 1 1 1
must finish before job 0 1 1 starts.

Simple Temporal Networks

Temporal models, e.g., a Simple Temporal Network (STN), can complement a
POS. Such temporal models include nodes representing time points, and edges,
which represent temporal constraints [Dechter et al., 1991]. An STN includes only
ordinary edges, meaning that a chosen value bounds the execution time between
two nodes. Researchers formally express STN as (T,C), where T represents a set
of real-valued variables (time-points) and C represents a set of temporal constraints
[Dechter et al., 1991]. For example, A 3−→ B indicates a relation of two time points
A and B. The ordinary link shows that B − A ≤ 3. The edge A

−3−−→ B indicates
the relation B − A ≤ −3, which results in a lower bound edge. We provide an
example to help the readers understand STNs intuitively.

9



Figure 2.1: Resource chains

Example 2.2.2 Suppose Anna must travel to an important meeting and arrive at
her destination within 90 minutes after departing. An STN can model this situation:
let t1 and t2 represent the time Anna departs from home and arrives at the meeting.
Then, by adding t1

90−→ t2, we express temporal relation t2 ≤ 90 + t1.

Researchers have developed a flexible and efficient Real-Time Execution (RTE)
algorithm for STNs, which maintains time windows for each time point [Mus-
cettola et al., 1998]. As each time point X executes, the algorithm propagates
constraints locally to the neighboring time points in the STN graph rather than
across the entire network. We demonstrate RTE using Example 2.2.2. Suppose t1
happens at timestamp 10. Then, the RTE algorithm propagates a constraint stating
t2 ≤ 100. It executes t2 before 100, satisfying the initial constraint.

Simple Temporal Networks with Uncertainty

STNs are extended into Simple Temporal Networks with Uncertainty (STNUs) to
incorporate uncertainty. In STNUs, contingent links connect an activation point
(controlled by the agent) to a contingent point (controlled by external factors). The
duration of a contingent link varies within specified lower and upper bounds. An
STNU is a triple, S = (T,C, L) [Morris et al., 2001], where:

• (T,C) is an STN,

• L is a set of contingent links, each of the form (A, x, y, C), where A is
the activation time point and C is the contingent time-point [Morris et al.,
2001]. The duration is bounded: C − A ∈ [x, y], but it is uncontrollable.
Researchers also call these links labeled edges [Morris and Muscettola,
2005].
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Some studies model the temporal structure using STNUs, where they represent
each job with two nodes, start and finish, and create contingent links based on the
job’s duration bounds [Lombardi and Milano, 2009, Lombardi et al., 2013]. For

example, A
[3,5]−−→ B indicates the job with start time A and end time B. The

contingent link shows that B − A ∈ [3, 5]. External factors determine the exact
value of such an edge. Two labeled edges in the STNU often represent such a
contingent link: lower bound A

3−→ B and upper bound B
−5−−→ A.

In recent work, STNUs are applied to the SRCPSP/max problem [van den Houten
et al., 2024]. Solving the deterministic RCPSP/max problem with estimated job
durations generates a fixed-point schedule. Then, the get resource chains
algorithm constructs resource chains.

The construction of the STNU includes the following steps:

• Nodes represent the start and end times of each job.

• Contingent links are added between start and end nodes, with their bounds
defined by the job’s duration range.

• Researchers model minimal and maximal time lags as ordinary edges in the
temporal graph to ensure precedence constraints are respected. They achieve
this by inserting a directed edge from the successor start node B to the pre-

decessor start node A as Bstart
−lag−−−→ Astart, where lag is a time lag between

A and B, following the definition of the RCPSP/max time lag constraint.

• The work [van den Houten et al., 2024] incorporates resource chain depend-
encies derived from the chaining procedure as additional ordinary edges.
From the example in Figure 2.1, ordinary edges from the start node of 1 1 1
to the finish node of 0 0 0 and from the start node of 0 1 1 to the finish node
of 1 1 1 are inserted. In the STNU, this means that job 0 0 0 must finish
before 1 1 1 starts, and job 1 1 1 must finish before 0 1 1 starts.

Example 2.2.3 We consider a real-world scenario to present an STNU, where
Anna still needs to commute to an important meeting across town. She relies on
two transportation modes: a bus and a train. However, the bus route is subject to
traffic delays, and the train’s departure time is fixed at timestamp 40. The bus ride
can last 25 to 35 minutes, meaning it could take longer or shorter depending on
traffic. She must walk to the train station for 2 to 5 minutes upon arrival. The train
ride can last 27 to 33 minutes, and then she must walk 10 to 15 minutes to reach
her destination. She must reach her destination within 90 minutes to make it on
time. STNUs can model this problem in Figure 2.2.

Execution Strategies of STNU

The RTE algorithm suits STNs but cannot be directly applied to STNUs due to the
unknown duration of jobs.
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Figure 2.2: An STNU example, inspired by [Gao et al., 2020]

An STNU is dynamically controllable (DC) if there exists a dynamic, real-time
execution strategy that ensures all constraints are satisfied, regardless of how the
contingent durations unfold [Morris et al., 2001]. This means that even if each job
would take its upper bound to execute, the schedule remains feasible.

During real-time execution, the algorithm applies constraint-propagation rules.
These rules deduce implicit constraints from existing ones. For example, if two
edges (A,B) and (B,C) exist, the algorithm introduces a new edge (A,C) with a
derived constraint. A newly introduced edge bypasses an existing one if it creates
an alternative connection that removes the influence of the original constraint.

Such constraint propagation rules can introduce a path P in an STNU, where
newly derived edges bypass each lower constraint edge in P [Morris, 2006]. We
call such a path semi-reducible.

A semi-reducible negative cycle (SRN cycle) is a cycle where applying constraint-
propagation rules leads to a negative-weight cycle, meaning the sum of all con-
straint values in the cycle becomes negative. The dynamic controllability (DC) of
an STNU is guaranteed if and only if the network contains no such SRN cycles
[Morris, 2006].

Example 2.2.4 We summarize an example of the SRN cycle from [Hunsberger and
Posenato, 2024c]. In Figure 2.3, C −A ≤ 1, and D−C ≤ −1, which propagates
to D − A ≤ 0. The value of the cycle (A,C,D,B,A) is negative, resulting in the
SRN cycle.

The current state-of-the-art algorithm for checking the dynamic controllability
of an STNU operates with a time complexity of O(mn+ k2n+ kn log n), where
m represents the number of edges, n is the number of nodes, and k relates to
contingent constraints [Hunsberger and Posenato, 2022].

If an STNU is DC, executing the STNU in real-time without risk of infeasibility
is possible. However, the RTE algorithm cannot be directly applied to the STNU.
Instead, the STNU is first converted to an Extended STNU (ESTNU), which gen-
erates wait edges representing a conditional constraint [Hunsberger and Posenato,
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Figure 2.3: SRN cycle example, taken from [Hunsberger and Posenato, 2024c]

2024b]. DC-checking algorithms usually add the wait edges if an STNU is DC.
The algorithms also add a time point Z, which is fixed at zero and must execute
before all other time points. For example, suppose we have two contingent edges
A → B and A → C. A wait edge (C,B,−weight,A) indicates that while B is
not executed, C must wait at least weight after A [Morris, 2014] [Hunsberger and
Posenato, 2024b]. Such additional constraints indicate that a time point must wait
until an activated contingent link executes.

Example 2.2.5 We follow Example 2.2.3 and convert the given STNU into an ES-
TNU. The following wait edges are added:

• (t3, t2,−35, t1), which indicates that t3 must wait for 35 units of time after
t1, while t2 is not executed.

• (t5, t4,−5, t3), signifying that t5 must wait for at least 5 units of time after
t3, while t4 is not executed.

• (t7, t6,−33, t5), representing that t7 must wait for at least 33 units of time
after t5, while t6 is not executed.

A time point Z indicates that it must execute before all other time points. We
present the ESTNU in Figure 2.4.

The obtained ESTNU executes in real-time using the RTE* algorithm [Hunsber-
ger and Posenato, 2024b], a modified version of the RTE algorithm for STNs. This
algorithm operates iteratively by generating execution decisions, observing contin-
gent time points (CTPs), and updating information when a CTP executes. Each
time point has a lower and upper execution bound, initialized at 0 and +∞, re-
spectively.

The algorithm identifies activation time points without negative outgoing edges
and marks them as enabled. These time points can execute. When one of them
executes, the algorithm updates the bounds for its neighboring nodes based on the
constraints. It then checks whether some of the CTPs execute. Since the CTP
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Figure 2.4: ESTNU example

execution is uncontrolled, an external environment handles observations. The al-
gorithm then looks for activation time points with no outgoing negative edges,
except the time points already executed, and marks them as enabled. The al-
gorithm iterates till all time points execute. If the process succeeds, the algorithm
returns a function that maps time points to real values [Hunsberger and Posenato,
2024b]. The benefit of the RTE* algorithm is that it propagates the information as
soon as a CTP executes. Thus, it does not wait for the worst-case scenario to pro-
ceed, enabling efficient scheduling in polynomial time. While executing, the RTE*
algorithm keeps an rte data parameter, which includes a current propagated
schedule rte data.f and a current timestamp rte data.now. The schedule
maps each executed time point to its corresponding execution time, with executed
time points as keys and their execution times as values.

Example 2.2.6 We present the execution of the RTE* algorithm for Example 2.2.5.
The execution begins with Z as it must execute before any other time point. At
timestamp 0, RTE* executes Z. Then, t1, becomes enabled. The execution of t1
updates the upper bound for t5 to 40 and t8 to 90. The algorithm then identifies
that t2 must occur within the time window [25, 35]. Since external events govern
contingent time points, RTE* remains idle until t2 is observed. Due to the wait
edge, t3 must wait until t2 executes.

Assuming that t2 occurs at timestamp 29, t3 is enabled and executes at 29. Then,
the next constraint dictates that t4 must execute within [31, 34]. If t4 executes at
timestamp 34, t5 waits and executes at 40. Then, t6 is constrained to the inter-
val [67, 73]. Suppose t6 executes at timestamp 67; in that case, t7 is enabled
and executes at 68. t8 must be executed within [78, 83]. Finally, if t8 executes
at timestamp 79 — within its upper bound of 90 — the algorithm successfully
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completes its execution. The parameters rte data.now and rte data.f are
demonstrated in Table 2.1.

Timestamp
(rte data.now)

Execution
Propagated Schedule

(rte data.f)

0 Z executed Z : 0

0 t1 executed Z : 0, t1 : 0

29 t2 executed Z : 0, t1 : 0, t2 : 29

29 t3 executed Z : 0, t1 : 0, t2 : 29, t3 : 29

34 t4 executed Z : 0, t1 : 0, t2 : 29, t3 : 29, t4 : 34

40 t5 executed
Z : 0, t1 : 0, t2 : 29, t3 : 29, t4 : 34,

t5 : 34

68 t6 executed
Z : 0, t1 : 0, t2 : 29, t3 : 29, t4 : 34,

t5 : 34, t6 : 64

68 t7 executed
Z : 0, t1 : 0, t2 : 29, t3 : 29, t4 : 34,

t5 : 34, t6 : 64, t7 : 64

79 t8 executed
Z : 0, t1 : 0, t2 : 29, t3 : 29, t4 : 34,

t5 : 34, t6 : 64, t7 : 64, t8 : 79

Table 2.1: Execution trace of the RTE* with rte data.now and rte data.f.

Probabilistic Simple Temporal Networks (PSTNs)

STNUs’ contingent edges require defining lower and upper bounds for job dura-
tions. However, in the factory settings, these bounds are often unavailable. Instead,
planners typically use historical data to estimate the mean and standard deviation
of job durations. As a result, it is more natural to represent job durations as prob-
ability distributions rather than fixed bounds.

Probabilistic Simple Temporal Networks (PSTNs) are used to model unboun-
ded distributions. Unlike bounded contingent links in STNUs, PSTNs represent
each contingent link as a random variable with a specified probability density func-
tion [Fang et al., 2014]. This probabilistic representation enables the incorporation
of uncertainties inherent in real-world manufacturing processes, making PSTNs a
suitable model for factory scheduling challenges.

Example 2.2.7 Consider again a scenario where Anna needs to commute from
Figure 2.2 to understand PSTNs intuitively. However, now the bus and train routes
are subject to unpredictable traffic delays. The bus ride duration follows a normal
distribution with a mean of 30 minutes and a variation of 25 minutes (N (30, 25)).
The train ride has a duration drawn fromN (30, 9). Given the probabilistic nature
of travel times, Anna knows that delays are inevitable in some cases, potentially
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causing her to miss the meeting. This problem can be modeled using PSTNs in
Figure 2.5, which helps analyze and adjust her schedule to balance minimizing
total travel time and maximizing the probability of arriving on time for the meeting.

Figure 2.5: PSTN example, inspired by [Gao et al., 2020]

Execution Strategies of PSTNs

In a PSTN, underlying job distributions are unbounded. Referring back to the
traffic example in Figure 2.5, fully controlling the network might be impossible
since travel delays are not bounded. Instead of guaranteeing successful real-time
execution, the model aims to balance execution efficiency with maximizing the
probability of success. A PSTN must be approximated to an ESTNU to achieve
this, which captures the maximum probability mass. This means that all contin-
gent edges’ approximated lower and upper bounds must represent the highest pos-
sible proportion of the probability distribution. A recent paper [Hunsberger and
Posenato, 2024c] presents the following algorithm buildApproxSTNU. It takes
a PSTN as the input and executes the following steps:

1. Approximates the PSTN as an STNU, capturing most of the probability dis-
tribution. All lower and upper bounds of contingent edges are assigned as
exp(µ − 3.3 · σ) and exp(µ + 3.3 · σ) respectively, where µ is the mean
of the log-normal probability distribution on the edge, and σ is its standard
deviation. This captures 99.96% of the distribution.

2. Finds all SRN cycles in the obtained STNU. If no SRN cycles are present,
the STNU is DC, and the process can be finished.

3. Attempts to resolve each SRN cycle by adjusting the bounds on the parti-
cipating contingent links, making them more restrictive while preserving as
much probability mass as possible from their respective probabilistic dura-
tions using a non-linear optimizer from MatLab. It determines new bounds
for the contingent links that maximize the captured joint probability mass
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while ensuring the SRN cycle remains non-negative [Hunsberger and Posenato,
2024c]. If no contingent links are in the SRN cycle, the algorithm cannot
proceed, as it is not possible to adjust the durations of ordinary edges. If the
solver fails to determine a new set of bounds for the contingent links needed
to resolve the SRN cycle, the algorithm as a whole terminates unsuccessfully.
Otherwise, new bounds are determined and pasted into STNU.

4. If all SRN cycles are resolved, the obtained STNU is DC and approximates
the initial PSTN. The DC STNU and the probability mass obtained are saved.

The algorithm results in status, which contains the following fields:

1. finished: A Boolean value indicating whether the approximation function
was completed successfully. If false, the PSTN is considered non-convertible
to a DC STNU.

2. exitFlag: If exitFlag is greater than 0, the PSTN is convertible to a DC
STNU. Otherwise, it is not.

3. probabilityMass: If the PSTN is convertible, this field represents the prob-
ability mass captured by the resulting DC STNU. The algorithm maximizes
the probability mass.

4. approximatingSTNU: If the PSTN is convertible, this field contains the DC
STNU to which the PSTN was transformed.

The implementation of this algorithm is publicly available in the CSTNU-tool
[Posenato, 2022].

Although DC-checking combined with the RTE* has been applied to the SR-
CPSP/max in [van den Houten et al., 2024], its application to production plan-
ning remains underexplored. Job durations also do not have defined bounds in the
defined integrated production planning problem. Thus, instead of using STNUs,
PSTNs are more suitable for the DSM-Firmenich problem. PSTNs have not yet
been utilized in production planning. Therefore, we identify a research gap in ap-
plying recent advancements in the PSTN literature to the defined integrated produc-
tion planning problem, where jobs follow the SRPSP/max pattern, but also include
deadlines and inventory management.

2.3 Approaches for production planning and scheduling

There are multiple modeling approaches for production planning, with the most
popular being Mixed-Integer Linear Programming (MILP) [Guzman et al., 2022].
A linear objective function, linear constraints, and integer variables characterize
MILP [Castillo et al., 2011]. During the presolve phase, MILP solvers analyze
whether they can tighten bounds or strengthen inequalities to reduce the number of
variables and constraints. After presolve, combinatorial optimization algorithms,
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e.g., local search [Crama et al., 2005] or branch and bound [Clausen, 1999], are
applied to find the optimal solution [Huang et al., 2021].

Multiple MILP models exist to represent production planning. For instance,
a case study in Algeria used a MILP model for multi-stage optimization in the
agri-food supply chain, demonstrating significant performance gains over tradi-
tional planning heuristics [Bekrar et al., 2012]. Similarly, researchers have cre-
ated efficient MILP-based models for multi-product, multi-stage continuous plants
[Aguirre et al., 2018], addressing complexities such as demand uncertainty and
the price elasticity of demand. Additionally, MILP models, incorporating costs,
demand, and supply uncertainties, have outperformed deterministic approaches
[Hosseini-Motlagh et al., 2021]. Researchers proposed a MILP model in agri-
culture and solved it using a CPLEX optimizer, effectively reducing production
costs [Bayá et al., 2022]. Furthermore, a MILP model for a multi-product envir-
onment demonstrated its effectiveness in addressing real-sized problem instances
[Belil et al., 2018]. These studies highlight MILP’s versatility and effectiveness in
optimizing production planning across diverse applications.

In recent years, Constraint Programming (CP), initially developed within arti-
ficial intelligence, has proven highly effective for solving production sequencing
problems [Pinedo, 2022]. A key feature of CP is constraint propagation, which
reduces the search space by inferring new constraints from existing ones [Rossi
et al., 2008].

CP supports global constraints—complex constraints that capture common pat-
terns in real-world problems and include specialized propagation algorithms to en-
hance computational efficiency [Van Hentenryck and Saraswat, 1996]. CP also
utilizes interval variables, whose domains consist of time intervals [Laborie et al.,
2012]. These variables effectively represent factory jobs, capturing a start time, job
duration, and completion time.

Researchers proposed CP and MILP models for the distributed flexible job shop
scheduling problem, showing that the CP model outperforms the MILP formula-
tion [Meng et al., 2020]. Similarly, the CP model for parallel machine scheduling
surpassed the results of MILP and genetic algorithm models by leveraging interval
variables [Eray Cakici and Akdemir, 2024].

While researchers have extensively utilized MILP and CP models in produc-
tion planning optimization, we found no research exploring their application to
the defined integrated production planning problem. In this problem, each product
consists of jobs following the SRCPSP/max pattern. The problem also involves
additional complexities, such as deadline constraints and inventory management.
The objective of DSM-Firmenich’s problem is to maximize profit instead of min-
imizing makespan.

While the MILP model proposed in [Belil et al., 2018] incorporates inventory
considerations, its primary focus is minimizing inventory levels. In contrast, in the
DSM-Firmenich factory scenario, the factory aims to maintain a sufficient product
inventory level. Multiple studies have explored inventory management within sup-
ply chains [Vicente, 2025] [Aktas and Temiz, 2020], where inventory is maintained
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at a desired level. However, the supply chain context differs from the defined in-
tegrated production problem, where each job follows the SRCPSP/max schedule.

Thus, we identify a research gap in integrating inventory management, deadline
constraints, and profit maximization into existing production planning models.
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Chapter 3

Research questions

In this section, we present the main research question of this work. Then, we
list the sub-questions that help answer the main question. The main goal of this
work is to assist DSM-Firmenich in tactical and operational level decisions: offline
scheduling, online scheduling, and optimization for the defined integrated produc-
tion planning problem.

Research question: How can Probabilistic Simple Temporal Networks
(PSTNs) be effectively utilized to maximize expected profit in the defined
integrated production planning problem?

Uncertainties in job durations, modeled as stochastic processing times, are in-
herent in real-world production systems. Proactive scheduling approaches aim to
anticipate and mitigate these uncertainties by creating robust schedules that in-
corporate buffer times or flexible constraints. In contrast, reactive scheduling dy-
namically adjusts schedules in response to real-time deviations, providing planners
with a more flexible and adaptive approach. Hybrid methods combine proactive
and reactive strategies to balance efficiency and adaptability.

Simple Temporal Networks with Uncertainty (STNUs) combined with Partial
Order Schedules (POS) have shown promise in optimization [van den Houten et al.,
2024]. However, STNUs require bounded values, which may not fully capture the
complexities of the defined integrated production planning. Probabilistic Simple
Temporal Networks (PSTNs), which use probability distributions instead of fixed
bounds, better align with the DSM-Firmenich case study. Since PSTNs have not
yet been explored for production planning, we aim to investigate their potential for
dynamically optimizing production schedules under uncertainty.

A PSTN needs to be complemented with a POS due to the presence of resource
constraints, similarly to [van den Houten et al., 2024]. Thus, offline scheduling and
online execution are required to answer the research question.

Sub-question 1: How can computational models like Mixed Integer
Linear Programming (MILP) and Constraint Programming (CP) be
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utilized to model and optimize the deterministic version of the integ-
rated production planning problem?

MILP and CP have been widely applied in production planning, including supply
chain optimization, distributed flexible job shop scheduling, and parallel machine
scheduling. While MILP is the more commonly used approach, CP has demon-
strated superior performance in certain complex scheduling problems, highlighting
its potential as an alternative.

We focus on modeling the DSM-Firmenich case with all relevant constraints,
incorporating dynamic inventory management and demand forecasting – an aspect
not extensively explored in the literature.

Using the CP and MILP models, we also evaluate whether CP can provide
greater efficiency than MILP in solving the integrated production planning prob-
lem.

Sub-question 2: Offline Scheduling: How can a CP/MILP model be
converted into a POS and a PSTN?

CP/MILP deterministic models produce a fixed schedule. However, for a PSTN
representation, a POS must define the order of resource usage to ensure that the
resource capacity constraints are met. Prior research has explored converting a
Stochastic Resource-Constrained Project Scheduling Problem with Time Lags (SR-
CPSP/max) into a POS [van den Houten et al., 2024]. However, the DSM-Firmenich
case introduces additional complexity, incorporating optional orders—an aspect
not yet mapped to POS in the literature.

Furthermore, existing work [van den Houten et al., 2024] focuses on a POS com-
bined with STNUs, whereas the defined integrated production planning problem
requires a PSTN representation to address our core research question. Thus, we
investigate how to construct a PSTN while complementing it with a POS structure.

Sub-question 3: Online Execution: How do we adjust the real-time ex-
ecution algorithm (RTE*) for the defined problem, given a constructed
PSTN?

The original RTE* algorithm determines whether execution is successful or res-
ults in failure. However, in the DSM-Firmenich factory setting, production does
not halt entirely even if a scheduling step fails. Instead, the factory adjusts the
schedule to maximize expected actual profit dynamically. If execution were to
stop at the first failure, the realized profit from already produced products could be
significantly lower than expected.

By modifying the schedule in response to failures, the factory can continue pro-
duction and potentially achieve a higher profit. This makes the original RTE*
unsuitable for the defined integrated production planning problem. We propose an
extension of RTE* with a recovery mechanism that enables adaptive rescheduling
in case of failure, ensuring a more resilient and profitable execution strategy.
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Sub-question 4: Optimization: How can the construction of a POS
influence the expected actual profit?

Our approach complements PSTNs with a POS. The structure of the POS dir-
ectly impacts how the PSTN is constructed, influencing its edges and values. As a
result, different POS configurations lead to variations in the expected actual profit,
which can either increase or decrease based on the flexibility and robustness of the
generated PSTN.

Since the objective is to maximize profit, identifying an optimal POS that en-
sures a well-structured PSTN is crucial. To our knowledge, no existing research has
explored the direct relationship between a POS and a PSTN. We address this gap
by investigating whether a certain POS construction can lead to a higher expected
actual profit, thereby enhancing production planning efficiency under uncertainty.
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Chapter 4

Problem definition

This chapter explores the integrated production planning problem and the methods
used to model it. First, we outline the DSM-Firmenich factory workflow and the
key assumptions about its operations in Section 4.1. We then introduce a Mixed-
Integer Linear Programming (MILP) model in Section 4.2, followed by a Con-
straint Programming (CP) model in Section 4.3. The objective is to develop a
structured representation of the problem that can be efficiently solved using ad-
vanced algorithms.

4.1 Production planning: DSM Firmenich case

Production planning is the process of developing a detailed plan that specifies the
anticipated production levels over a sequence of future periods within a defined
timeframe, known as the planning horizon [Thomas and McClain, 1993]. DSM-
Firmenich, a global leader in health, nutrition, and bioscience, faces the challenge
of optimizing production plans. Within the factory, multiple orders must be man-
aged under limited resource capacity, where each order can be represented as a list
of products (product types). Every order has a specified deadline by which all its
products must be produced, and each product is associated with a profit value. The
total profit of an order is calculated as the sum of the individual profits from each
product included in the order.

Each product consists of a series of unit operations called ”jobs”. These jobs are
connected through precedence constraints, which define temporal dependencies
between their execution times. These dependencies are quantified using a para-
meter called lag. For example, the start time of job k can be at most lag time units
after the start time of job m if lag represents the maximum time lag. Conversely,
if lag represents the minimum time lag, the start time of job k must be at least lag
time units after the start time of job m.

Each job has specific resource requirements, and multiple resources are avail-
able, enabling jobs to run in parallel, thereby reducing overall production time and
optimizing resource utilization.
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Figure 4.1: Four stages of production planning

Production planning at DSM-Firmenich spans multiple decision-making levels:
strategic, tactical, and operational, each addressing distinct aspects of factory op-
erations. Strategic decisions involve investments in equipment, product portfolio
management, and customer portfolio strategy. This is done using market trends
and historical data from the factory. Tactical decisions involve making a forecast
for the planning horizon and constructing a schedule based on predicted demand.
Operational decisions include optimizing the schedule and schedule adjustments
due to uncertainties in job durations. In biomanufacturing, factors such as envir-
onmental conditions and the quality of raw materials influence job durations. The
common practice by DSM-Firmenich is to use average durations from historical
data. However, when executing the schedule in real-time, deviations can occur,
requiring planners to adjust schedules dynamically.

The part of the pipeline of the planner can be seen in Figure 4.1. The pipeline
consists of four stages. The first stage involves demand prediction by the planners,
which refers to the tactical decision. The next stage focuses on offline scheduling,
meaning that the products are scheduled without considering uncertainty. The final
two stages, monitoring and adjusting the schedule, address the online part of the
pipeline. They account for deviations arising from uncertainty in job durations.
Offline scheduling, online scheduling, and optimization correspond to operational
decisions.

An offline schedule generates an initial predicted profit. After executing the
online schedule, the expected actual profit is calculated by summing the profit from
all produced products.

The primary goal of the production planning model is to maximize the expected
actual profit by fulfilling as many high-profit products as possible while ensuring
all orders are completed on time, required constraints are satisfied, and resources
are utilized efficiently.

Lastly, DSM-Firmenich maintains product inventory at a safety stock level set
by the factory to increase flexibility in meeting order demands. This inventory
ensures that predicted demand can always be met. Maintaining excessive inventory
is generally undesirable in biomanufacturing. Many products have limited shelf
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life; prolonged storage can lead to quality degradation, reducing their efficacy and
value. Thus, inventory must be replenished only when requested.

We refer to the described production planning process as the defined integrated
production planning problem further in the report.

We aim to support planners at the tactical and operational decision levels, includ-
ing constructing and optimizing their schedules. Since scheduling is an NP-hard
problem, advanced optimization algorithms can be employed. Offline scheduling,
in particular, can be leveraged by mathematical models and advanced algorithms.
The factories can use advanced algorithms during the planning stage to better es-
timate the time needed for a set of orders. During online scheduling, algorithms
help adjust the schedule if a disruption occurs.

The interviews with DSM-Firmenich revealed that their scheduling approach
does not account for the fact that certain product combinations may lead to more
efficient schedules. We use advanced algorithms that consider such product com-
binations, possibly achieving higher profit and utilizing resources effectively.

We make the following assumptions about the defined integrated production
planning problem in the models:

1. Each order contains products in the standard quantity. If an order contains
more than the standard quantity of a product, this order is duplicated in the
input.

2. The system categorizes orders as required or optional to address inventory
replenishment. The model must produce required orders, while optional or-
ders are not obligatory but desirable for maintaining inventory levels. If the
factory capacity permits, the model can produce optional orders to replen-
ish inventory. Optional orders generate profit, and accepting more of them
increases the factory’s overall profitability.

3. In the defined integrated production planning problem, profits are given per
product. Our model assumes that the profit of an order is the sum of the
profits of all products included in that order.

One can use the constructed models specifying the following input:

1. Define the orders and job structure. This involves specifying orders with
their deadlines for the planning horizon. Each order consists of a list of
products, and each product has a corresponding list of jobs. Define the time
lags between jobs, their expected durations, and the required resources. The
model automatically calculates the demand for each product based on the
order deadline. For example, if order o has a product p with deadline t, the
demand for p at timestamp t increases by 1.

2. Input the available resources and their capacities.
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3. Plan inventory replenishment by creating optional orders for the products.
The model prioritizes fulfilling mandatory orders first. If constraints allow,
the model schedules optional orders, leading to inventory replenishment.

The output is an optimized schedule for all jobs that maximizes profit and the
ability to monitor daily inventory levels. This approach ensures efficient planning
while considering both mandatory and optional orders.

Example 4.1.1 Deterministic example of the problem
Suppose the factory receives two orders: o1 and o2 described in Table 4.1. There
are two products: p1 and p2 summarized in Table 4.2. Two resources are available
r1 and r2. Capacity of r1 is 5, and capacity or r2 is 10.

Order Type Products Deadline (days) Profit ($)

o1 Required p1, p2 14 20
o2 Optional p2 14 20

Table 4.1: Details of orders o1 and o2

Product Jobs Initial Inventory

p1 j1, j3 0
p2 j2 0

Table 4.2: Details of products

The resource requirements and durations for each job are shown in Table 4.3.

Job E(duration) Standard deviation Resource r1 Resource r2 Temporal

j1 9 0.9 5 0 EMPTY
j2 5 0.5 5 0 EMPTY
j3 2 0.2 0 6 start(j3) - start(j1) ≤ 12

Table 4.3: Details of Jobs

Firstly, we allocate the required order o1. For p1, two jobs are required, and j3
must start at least 12 days after j1. Thus, the only possible start time for j3 is day
12 to ensure it is completed by the deadline of 14. Job j1 can start immediately at
0, finishing by day 9. Job j2 can then start at day 9. Since j1 and j2 share the same
resource (r1) and cannot run in parallel, they must be scheduled sequentially.

There is no capacity left for the optional order o2 because resource r1 is fully
occupied from day 0 to day 14. Hence, the maximum profit in this case is 20. The
schedule is visualized in Figure 4.2.
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Figure 4.2: Visualization of the problem example schedule

4.2 MILP model

Below, we provide a mathematical definition of the defined integrated production
planning problem.

Indices, Sets, and Parameters

The indices identified are:

• i ∈ {1, . . . , no}: Represents one of the orders that should be completed.

• j ∈ {1, . . . , np}: Represents one of the products.

• k ∈ {1, . . . , nj}: Represents one of the jobs.

• l ∈ {1, . . . , nr}: Represents one of the resources available.

• t ∈ {0, . . . , nt}: Represents the time (day) in the planning horizon.

Parameters

Based on the indices, we define the following data:

• P (i): Set of products for order i.

• J(j): Set of jobs for product j.

• deadlinei ∈ Z: Deadline of order i.
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• profiti ∈ Z: Profit value of order i.

• requiredi ∈ {0, 1}: Boolean indicator showing if order i is obligatory for
production (1) or not (0).

• inventory0j ∈ Z: Initial inventory level for product j.

• demt
j ∈ Z: Demand for product j at timestamp t.

• ρlk ∈ Z: Resource l requirements for job k.

• durationk ∈ Z: Duration of job k.

• capacityl ∈ Z: Capacity of resource l.

• temporalConstraints: Set of precedence relationships (pred, lag, succ),
where pred and succ are jobs, while lag ∈ Z.

• M ∈ Z: Large integer to model if clauses linearly.

Decision Variables

We identify the following decision variables:

• invtj ∈ Z: Inventory level of product j at timestamp t.

• stijk ∈ {0, 1}: Boolean variable, equal to 1 if job k ∈ J(j) for product
j ∈ P (i) for order i is started exactly at timestamp t, and 0 otherwise.

• etij ∈ {0, 1}: Boolean variable, equal to 1 if product j ∈ P (i) for order i is
finished exactly at timestamp t, and 0 otherwise.

• yi ∈ {0, 1}: Boolean variable, equal to 1 if order i is accepted, and 0 other-
wise.

Objective function

The objective function is to maximize the profit:

Maximize:
∑
i

yi · profiti (1)

Constraints

Construct decision variables:

invtj = BooleanV ar ∀t,∀j

stijk = BooleanV ar ∀t,∀i,∀j ∈ J(i), ∀k ∈ K(j)
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etij = BooleanV ar ∀t,∀i,∀j ∈ J(i)

yi = BooleanV ar ∀i

If the order is required, it must be accepted:

yi ≥ requiredi, ∀i

If the order is accepted, all corresponding jobs must be started within the planning
horizon: ∑

t

stijk ≥ yi, ∀i, j ∈ J(i), k ∈ K(j)

If the order is accepted, all products must be finished within the planning horizon.
Each product can be finished only once.∑

t

etij = yi ∀i, j ∈ J(i)

We connect the start time of each job within a product to the end time of the
product’s production:∑

t

t · etij ≥
∑
t

t ∗ stijk + durationk −M ∗ (1− yi) ∀i, j ∈ J(i), k ∈ K(j)

We update the inventory according to demand:

invtj = invt−1
j +

∑
i

etij − demandtj , ∀j, t > 0

inv0j = inventory0j , ∀j

invtj ≥ 0, ∀j, t

All produced products must finish before their deadline:∑
t

t · etij + durationk ≤ deadlinei +M ∗ (1− yi), ∀i, j

All time lags must be respected:∑
t

t · stijk + lagkm ≤
∑
t

t ∗ stijm +M ∗ (1− yi)

∀i, j ∈ J(i); (k ∈ K(j), lag,m ∈ K(j)) ∈ temporalConstraints

The resource capacity cannot be exceeded:

∑
i

∑
j∈J(i)

∑
k∈K(j)

t∑
τ=t−durationk+1

ρlk · sτijk ≤ capacityl +M ∗ (1− yi), ∀l, t
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4.3 CP model

Sets and indices

• O = {1, 2, . . . , no}: Set of no orders.

• P = {1, 2, . . . , np}: Set of all possible np product types.

• J = {1, 2, . . . , nj}: Set of all possible nj jobs.

• R = {1, . . . , l, . . . , nr}: Set of resources.

• T = {0, . . . , t, . . . , nt}: Set of time units (days).

• P (i): Set of products for order i.

• J(j): Set of jobs for product j.

• S(k): Set of successors of job k.

• i: standard index for order

• j: standard index for product ‘

• k: standard index for job

• l: standard index for resource

• t: standard index for time

Parameters

• deadlinei ∈ Z: Deadline for order i (day).

• profiti ∈ Z: Profit for order i.

• requiredi ∈ {0, 1}: Binary variable (1) if order i is required, (0) otherwise.

• inventoryj0 ∈ Z: Inventory level for product j at the beginning of planning.

• demjt ∈ Z: Demand for product j at the time t (the demand is increased
only at orders’ deadlines).

• durationk ∈ Z: Duration of job k.

• ρk(l) ∈ Z: Amount of resource l required by job k.

• lagkm ∈ Z: Time lag between jobs k and m.

• capacityl ∈ Z: Capacity of resource l.
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Decision Variables

• xijk: (optional) interval CP variable for job k for product j for order i. It
represents the interval of time during which ijk happens, with a duration
durationk. The optimizer should assign a start time and end time for this
interval variable, which is notated with startOf (start time of the job) and
endOf (end time of the job). If no interval is available, it stays empty.

• invjt: Inventory level of product j at time t

• qjt: Quantity of product j produced at time t

• yi: Binary variable, 1 if order i is completed, 0 otherwise

Objective Function

Maximize
∑
i∈O

yi · profiti

Constraints

Interval Variables

xijk ∈

{
IntervalVar(i, j, k, durationk) if requiredi = 1

OptionalIntervalVar(i, j, k, durationk) if requiredi = 0
, ∀i ∈ O, j ∈ P (i), k ∈ P (j)

Inventory Balance

invjt =

{
inventoryj0 if t = 0

invj,t−1 + qjt − demjt if t > 0
, ∀j ∈ P, t ∈ T

invjt ≥ 0, ∀j ∈ P, t ∈ T

Production Quantities

If the order is accepted, we check if the maximum end time of the jobs involved in
each product’s production is t.

qjt =
∑

i∈O if yi=1

[
max
k∈J(j)

{endOf(xijk) = t}
]
, ∀j ∈ P, t ∈ T

Task Scheduling

Presence Constraint: Order i is accepted only if all job intervals involved in order
i are present.

yi =

 ∧
j∈P (i),k∈J(j)

presenceOf(xijk)

 , ∀i ∈ O if requiredi = 0
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Deadline constraint: If the order is accepted, it must be completed before the dead-
line.

if yi = 1, max
k∈J(j)

{endOf(xijk) | j ∈ P (i)} ≤ deadlinei, ∀i ∈ O

Precedence Constraints

if yi = 1, startOf(xijk)+lagkm ≤ startOf(xijm), ∀i ∈ O, j ∈ P (i), k ∈ J(j),m ∈ S(k)

Resource Capacity∑
i∈O if yi=1

∑
j∈P (i)

∑
k∈J(j)

Pulse(xijk, ρk(l)) ≤ capacityl, ∀l ∈ R
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Chapter 5

PSTN Stochastic Approach

This chapter outlines a method using Probabilistic Simple Temporal Networks
(PSTNs) to deal with the defined integrated production planning problem. This
method aims to develop a scheduling system that maximizes expected profit while
respecting job dependencies, resource constraints, and deadlines under job dura-
tion uncertainty. Furthermore, the method adjusts the execution schedule online
instead of strictly following a predefined schedule. We present an overview of the
method in Section 5.1. Then, we explain the offline part of the method in Sec-
tions 5.2, 5.3, and 5.4. In these sections, we answer Sub-question 2, explaining
how to convert a Partial Order Schedule (POS) into a PSTN. Lastly, we present a
novel real-time execution approach applicable for the DSM-Firmenich scenario in
Section 5.5, answering Sub-question 3.

5.1 Method overview

The method consists of two main components: offline and online execution. The
offline phase creates a Partial Order Schedule (POS) over the given time horizon,
ensuring it meets all constraints and can execute without conflicts given determin-
istic job durations. The online phase, on the other hand, is responsible for execut-
ing the schedule in real time. It continuously monitors job execution and adapts
to deviations caused by uncertainties in job durations. Figure 5.1 shows the whole
PSTN-based method.

The offline process begins by modeling the instance as deterministic, with fixed
job durations. We first solve this deterministic instance using a Constraint Pro-
gramming (CP) or a Mixed-Integer Linear Programming (MILP) solver. The solu-
tion provides an objective value (profit), a schedule for the deterministic scenario,
and a set of selected orders for production.

Next, we apply the resource alignment algorithm (see Section 2.2.2) to the gen-
erated schedule, which produces resource chains. We construct a PSTN using the
data it needs and invoke the buildApproxSTNU function, explained in Section
2.2.2. This function returns three key outputs: (i) the status of the approximation,
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(ii) an approximating Simple Temporal Network with Uncertainty (STNU), and
(iii) the probability mass associated with the approximation.

If the approximation is successful and the probability mass meets the acceptance
criteria, we convert the approximating STNU into an Extended STNU (ESTNU).
Subsequently, we start the online execution by running the Real-Time-Execution
(RTE*) algorithm, which enables online scheduling by considering real job dur-
ations rather than their deterministic estimates. This step ultimately provides the
realized profit of the factory.

However, if the approximation fails or the probability mass is too low, we modify
the original deterministic instance. Adjustments may include removing certain
products or modifying deterministic job durations. The process then returns to the
deterministic modeling step and iterates until a satisfactory solution is found.

The objective of the method is to maximize the actual expected profit, defined
based on the products produced.

Figure 5.1: Method Overview

5.2 Deterministic Approximation

By problem definition, the factory receives both mandatory and optional orders.
We must decide which orders O should be accepted for the planning horizon and
which should be canceled. Additionally, we need to determine the sequence in
which resources are utilized to process these orders.

We first solve a deterministic instance of the problem, where job durations are
fixed. Let x represent an instance. We fix durations using the SORU-H robust
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Algorithm 1: Construct a Partial Order Schedule

1 Function solve deterministic instance(instance, quantile):
// Construct deterministic instance

2 deterministic instance = SORUH(instance, quantile)
// Solve deterministic version of the problem

3 result, schedule← solve(deterministic instance)
4 if result ̸= None then

// Construct resource chains
5 resource chains← get resource chains(schedule)
6 return result.objective value, schedule, resource chains

7 return None

optimization approach introduced in Section 2.2.1. This algorithm takes one ap-
proximating sample, representing a quantile of the distribution.

Solving deterministic x yields a deterministic schedule that only includes the
accepted orders Oaccepted ⊆ O. We apply the resource-chaining procedure from
this schedule to determine how resources are allocated.

The objective of solving the deterministic instance is to construct a Partial Order
Schedule (POS) that maximizes the expected actual profit.

We formalize this process in Algorithm 1. The function takes a problem instance
and attempts to solve its deterministic variant.

In line 2, we determine the job durations for the deterministic instance. In line 3,
the problem is formulated and passed to a solver. The solver outputs the solution
status and the corresponding schedule if the problem is solved.

In line 4, we check whether the solver successfully found a solution. If a solution
is found, we proceed to construct resource chains using get resource chains
in line 5 (refer to Section 2.2.2). Algorithm 1 then returns the deterministic profit
estimate f∗(x), the generated schedule, and the resource chains.

If the problem is deemed unsolvable, the function instead returns None, indic-
ating that no valid schedule could be found.

5.3 PSTN construction

The next step of the offline part of the pipeline is constructing a PSTN network by
creating nodes and edges representing the problem.

We utilize the schedule obtained by solving the deterministic version of the prob-
lem in Algorithm 1 to determine which nodes to include. The obtained schedule
only includes accepted orders, which are incorporated into the PSTN. If an order
is rejected in the deterministic model, it is likewise excluded from the probabilistic
model.

We represent all problem constraints by using edges. As a result, the following
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structure is created below. The indices and sets used are identical to the indices and
sets in the MILP and CP models (see Sections 4.2 and 4.3).

Nodes:

• EXECUTION START: a node representing the beginning of the planning at
timestamp 0.

• ∀i ∈ O, j ∈ P (i), k ∈ J(j): we add STARTijk and ENDijk: two nodes for
each job in each product in each order, representing their start and end times,
respectively.

Edges:

• Ordinary Edges:

– An edge that represents a deadline constraint:

∀i ∈ O, j ∈ P (i), k ∈ J(j)

EXECUTION START
deadlinei−−−−−−→ ENDijk

(5.1)

In the defined integrated production planning problem, every order has
a deadline. Such an edge represents Equation 5.2.

∀i ∈ O, j ∈ P (i), k ∈ J(j)
ENDijk − EXECUTION START ≤ deadlinei

(5.2)

– An edge corresponding to the time lag constraints, connecting STARTijm
to STARTijk ∀i ∈ O, j ∈ P (i), k ∈ J(j),m ∈ S(k):

STARTijm
−lagkm−−−−−→ STARTijk (5.3)

The edge can be translated to the following equation:

∀i ∈ O, j ∈ P (i), k ∈ J(j),m ∈ S(k)
STARTijk − STARTijm ≤ −lagkm

(5.4)

– For the resource constraints, we utilize resource chains constructed in
Algorithm 1. Resource chains are a list of predecessor-successor pairs,
where a predecessor and a successor are jobs for a certain product in
an order. The jobs are indexed by three integers: order, product, and
job. We add the ordinary edge ∀(ijk, ijm) ∈ resource chains between
ENDijk and STARTijm:

STARTijm
0−→ ENDijk (5.5)

We can represent this edge as an equation below:

∀(ijk,ijm)∈resource chains

ENDijk − STARTijm ≤ 0
(5.6)
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– We ensure that all start nodes execute after the EXECUTION START so
that the EXECUTION START executes at timestamp 0. A new ordinary
edge is introduced from the STARTijk to the EXECUTION START:

∀i ∈ O, j ∈ P (i), k ∈ J(j)

STARTijk
0−→ EXECUTION START

(5.7)

These edges are transformed into the following equations:

∀i ∈ O, j ∈ P (i), k ∈ J(j)
EXECUTION START− STARTijk ≤ 0

(5.8)

• Contingent Edges:

– An edge representing the probabilistic (uncertain) duration ∀i ∈ O, j ∈
P (i), k ∈ J(j), connecting STARTijk to ENDijk:

STARTijk
µ=E(durationijk),σ=σijk−−−−−−−−−−−−−−−−→ ENDijk (5.9)

where µ is the mean of the job duration and σ refers to the standard
deviation of the job duration.

Given the Partial Order Schedule (POS) constructed in Algorithm 1, we create
the PSTN using the algorithm parse instance to pstn, which adds all the
nodes and ordinary and contingent edges described above. We then add the re-
source chain edges using the add resource chains algorithm. The detailed
implementations of parse instance to pstn and add resource chains
can be found in Appendix A, in Algorithms 3 and 4, respectively.

Example 5.3.1 PSTN Construction Example
I utilize the example 4.1.1 introduced earlier to illustrate a PSTN construction,

modifying the deadline of o1 from 14 to 20. The adjusted schedule appears in
Figure 5.2. All jobs are scheduled, and both orders are accepted. Algorithm
1 returns the objective value 40 and the schedule visualized in Figure 5.2. The
resource usage is visualized in Figure 5.3. The following resource chains are
constructed and returned: (o1, p1, j1) → (o2, p2, j2), (o1, p1, j1) → (o1, p2, j2),
(o2, p2, j2)→ (o1, p2, j2).

This example produces the following Graph 5.4. In the PSTN, EXECUTION START
is connected to all finish nodes, representing deadline constraints. The time lag
between o1, p1, j1 and o1, p1, j3 translates to the edge between their correspond-
ing start nodes. Resource chains edges are added between the start and finish
nodes with a value 0. Lastly, contingent edges are added to represent job duration
distributions.
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Figure 5.2: Visualization of the problem example schedule

Figure 5.3: Use of resources (upper: resource 1; lower: resource 2; )

40



Figure 5.4: PSTN Construction Example

5.4 PSTN approximation

The PSTN Construction (Section 5.3) corresponds to the PSTN Construction Al-
gorithm step in Figure 5.1. The next step is to approximate the received PSTN
with a Dynamically Controllable Simple Temporal Network with Uncertainty (DC
STNU) using the buildApproxSTNU algorithm [Hunsberger and Posenato, 2024c]
explained in Section 2.2.2. The PSTN obtained from the PSTN Construction is
used as input for the buildApproxSTNU. Then, if the buildApproxSTNU
succeeds, we save the obtained approximating DC STNU (approximatingSTNU)
and its probability mass.

5.5 Real time execution

The DC STNU received from the PSTN Approximation maximizes the probabil-
ity mass of the PSTN. We have operated offline until now, meaning we use pre-
defined job durations and translate the obtained Partial Order Schedule (POS) into
the PSTN. We want to employ the RTE* algorithm to execute jobs in real-time us-
ing their actual durations. However, the RTE* can only be successfully applied to
an Extended Simple Temporal Network with Uncertainty (ESTNU). Consequently,
we convert the received DC STNU into an ESTNU using the DC checking al-
gorithm [Hunsberger and Posenato, 2024a].

A received ESTNU approximates the PSTN; hence, it does not capture the entire
range of the underlying duration distribution. As a result, there exists a risk that
actual job durations may fall outside the predefined bounds, causing the RTE* to
fail.

41



This scenario is particularly relevant in manufacturing environments, where strict
adherence to predefined time bounds may not always be feasible. Instead of halt-
ing the entire production line and performing a full rescheduling, an alternative
approach is to allow the factory to continue operations by selectively canceling
jobs that contribute to disruptions. This strategy has the potential to enhance over-
all efficiency while still maintaining acceptable levels of profitability.

We present a novel approach to executing RTE*, allowing the execution to pro-
ceed even if the RTE* fails. We use the output parameters of the RTE* – the
schedule rte data.f and the current timestamp rte data.now (see Section
2.2.2) to recover from failure.

We propose the following procedure: run the classical RTE* algorithm while it
does not fail. As soon as it fails, we introduce modifications to the schedule.

Suppose we have an ESTNU for a given factory instance. During the execution
of RTE*, some nodes become active while the algorithm propagates information
to other nodes. If the RTE* halts at a timestamp t, we can categorize the jobs into
three distinct sets:

• Completed Jobs (JC): a set of jobs already started and finished before timestamp
t.

• Ongoing Jobs (JO): a set of jobs that have already started before timestamp
t but have not ended.

• Pending Jobs (JP ): a set of jobs that have not started/finished before timestamp
t.

Regarding the factory, completed jobs are unaffected by the crash and do not
require any rescheduling as they have already finished. Ongoing jobs, on the other
hand, are disrupted and thus need to be adjusted.

Completed jobs are found by checking which jobs are fully present in the current
schedule (rte data.f) – the schedule of jobs until t. This means that each job
with both START and END in the schedule is present. We also find pending jobs;
their START nodes are present in the schedule, while the END nodes are absent.
The detailed algorithm for finding completed and pending jobs can be found in
Appendix A (Algorithm 5).

We can translate the obtained sets of jobs into the product sets:

• Completed Products (PC): a set of products that have been produced, mean-
ing that all jobs required to make a product belong to JC .

• Ongoing Products (PO): a set of partially started products that have not
been produced yet. This means that while some of the jobs required for
the product belong to JC , some jobs remain in JO or JP .

• Pending Products (PP ): a set of products that have not started/finished before
timestamp t. This means that none of the jobs required for products are part
of JC or JP .
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Completed products are found by checking if all jobs required for a product are
present in the completed jobs. Each product in this category is already produced;
thus, we can collect the profit: current profit =

∑
p∈PC

profitp.
If the product’s jobs are partially present in completed jobs or ongoing jobs,

the product is added to the ongoing products. The detailed implementation for
finding current profit, completed products, and ongoing products can be found in
Algorithm 6 in Appendix A.

The DC STNU received from the buildApproxSTNU needs to be modified.
At the time t, when the RTE* fails, the DC STNU includes all initial jobs from
POS. A new DC STNU must include only jobs for products that are not produced
or canceled. The following modification steps are introduced:

Step 1: Removal of completed products
Since completed products are finished before the RTE* failure, they are already

counted for the profit, and we do not schedule them again. Thus, we remove all jobs
required for completed products from the DC STNU, as well as their corresponding
edges.

Step 2: Removal of ongoing products
Ongoing products were halted between the execution stages; thus, they could

not be entirely produced. We cancel such products, and they do not contribute to
the profit. We represent it in the DC STNU by removing all nodes and edges from
the DC STNU that correspond to jobs required to produce ongoing products.

This step is strict, as not necessarily all of the ongoing products disrupted the
RTE* algorithm. However, the current version of the algorithm does not support
finding exactly the jobs that caused the disruption. Furthermore, if the new DC
STNU consists of only a subset of jobs for certain products, the time lag edges of
such jobs need to be updated. This happens because some jobs have already been
executed, but they still might have time lag dependencies on pending jobs. This
can cause the newly adjusted STNU to no longer be DC. We propose modifying
time lag edges in Appendix C – a technique that should be explored in the future.
In the current version of the algorithm, only products that have not yet started (their
jobs are not completed or ongoing) remain in the DC STNU.

Step 3: Modification of deadlines
EXECUTION START now marks the beginning of the new execution, requir-

ing an adjustment of all deadlines accordingly. The RTE* halted at timestamp t,
meaning that some time has already passed in the execution. If we use initial dead-
lines, the pending products have more time to complete. An alternative would be
to set EXECUTION START to t. However, due to the current implementation of
the RTE* algorithm, it always starts with a timestamp 0. We decide to stay con-
sistent with the logic and mark EXECUTION START as 0. Thus, we need to alter
the ordinary edges for the deadlines to be the following:

EXECUTION START
deadlinek−t−−−−−−−→ EVENT ENDk (5.10)
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which represents that

EVENT ENDk − EXECUTION START ≤ deadlinek − t (5.11)

We now present Algorithm 2, which describes the online execution of a DC
STNU and utilizes functions presented above. The Algorithm takes three input
parameters: (i) a DC STNU generated by the buildApproxSTNU, (ii) the in-
stance containing job and product information, and (iii) the sample, which provides
actual job durations during execution. Since we aim to track the actual profit ob-
tained in real-time, the profit is stored at the beginning (line 2).

The DC STNU is converted to an ESTNU to execute the RTE* algorithm. The
algorithm attempts to run RTE* (line 4), returning a result (indicating success or
failure) and rte data (data generated by RTE*). If execution fails, the algorithm
then identifies all jobs and products that have started and finished and calculates the
current profit (lines 7-9, refer to Algorithms 5 and 6 for detailed implementation).

Subsequently, the DC STNU is altered in lines 10-11. The STNU is then con-
verted back into an ESTNU, and the process repeats until execution is either suc-
cessfully completed or fails due to infeasibility. This iterative approach ensures
that the schedule adapts dynamically to real-time uncertainties while maintaining
temporal consistency and maximizing the expected profit. The algorithm oper-
ates fully online, meaning that no offline rescheduling is needed, as the resource
chains are reused from the initially constructed POS. As a result, the runtime of
the proposed RTE* remains polynomial, rather than exponential as in traditional
rescheduling approaches. This efficiency makes the method particularly suitable
for factory settings, where real-time responsiveness is essential and computational
delays can lead to costly downtime or suboptimal decisions.

Algorithm 2: Novel RTE* mechanism with recovery: Directly modify-
ing ESTNU after RTE* failure

1 Function run estnu online(stnu: STNU, sample, instance):
2 profit← 0
3 estnu← dc check(stnu)
4 result, rte data = rte star(estnu, sample)
5 while (!result) do
6 t← rte data.now
7 JC , JO ← find current jobs(rte data.f, estnu)
8 profitr, PC , PO ←

find corresponding products(JC , JO, instance)
9 profit = profit+ profitr

10 remove nodes and edges(PC ∪ PO, stnu)
11 modify deadline edges(t, stnu)
12 estnu← dc check(stnu)
13 result, rte data = rte star(estnu, sample)

14 return profit
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Chapter 6

Evaluation

This chapter evaluates a novel Probabilistic Simple Temporal Network (PSTN)-
based approach for the integrated production planning problem. Section 6.1 de-
scribes the process of generating the instances used in the experiments. Then, we
aim to verify the correctness and compare Mathematical Integer Linear Program
(MILP) and Constrained Programming (CP) models in Section 6.2. This evalu-
ation aims to understand whether one model is preferred over the other based on
the objectives and scalability. Section 6.3 provides insight into which determin-
istic instances to use in order to maximize expected profit. Lastly, we evaluate the
PSTN-based method compared to a simple proactive method based on the expected
profit in Section 6.4.

6.1 Instance creation

We use the data from the benchmark test sets J101 for the single-mode Resource-
Constrained Project Scheduling Problem with Time Lags (RCPSP/max) to con-
struct experimental instances. We chose this RCPSP/max benchmark due to the
assumption that all jobs follow the RCPSP/max pattern in the defined integrated
production planning problem. Each of these instances represents a single product
type in a standard quantity. Each test set consists of twelve jobs, where ten jobs
have a specific duration, and two jobs serve as sink and source with a duration of 0.
We assume that ten jobs for each product can represent a real product in the DSM-
Firmenich factory. The instances contain the necessary job information, including
job durations and resource usage, which we use without modification. We merge
the resources defined in the individual instances and adjust accordingly to simulate
a shared resource environment between product types. We also exclude infeasible
instances to ensure the experiments’ feasibility.

The procedure for creating experimental instances involves the following steps:

1https://www.wiwi.tu-clausthal.de/en/ueber-uns/abteilungen/betriebswirtschaftslehre-
insbesondere-produktion-und-logistik/research/research-areas/project-generator-progen/max-
and-psp/max-library/single-mode-project-duration-problem-rcpsp/max
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1. Determining the number of orders and the number of product types per or-
der: the number of orders and the number of product types per order are
predefined. Each order is randomly assigned a set of product types, con-
strained by a predetermined maximum number of product types per order.
This approach aims to replicate a factory’s operations, where a fixed number
of orders are processed, each containing specific products. Since the recipe
for each product is predefined and remains unchanged within an order, we
utilize product data from the J10 benchmark.

2. Combining and adjusting resources: each instance initially contained exactly
five resources with defined capacities due to the J10 benchmark data. We
fix the total number of resources at five, matching the original setup. We
track the minimum demand for each resource across all products to establish
a reasonable lower bound for each resource capacity. Once the demands
are collected, we determine the final resource capacities using a randomized
approach, setting each resource’s availability between five and six times the
observed minimum requirement. This adjustment ensures that resources are
adequately allocated across products, balancing sufficient availability and
limited capacity. Doing so prevents the unrealistic scenario where all jobs
can run in parallel, effectively enforcing resource constraints and ensuring
the scheduling problem remains feasible.

3. Determining the deadline based on the makespan of its constituent product
types: we define the makespan of a product type as the minimum time re-
quired to complete all its associated tasks. Deadlines are assigned randomly
within a range, where the lower bound is defined as the maximum makespan
of the products within the order, extended by 20%. The upper bound is then
set as an additional 20% beyond this lower bound. For example, suppose
the makespan is 100. Then, the lower bound for the deadline is extended by
20%, meaning that it is 120. The upper bound extends the lower bound by
20% leading to the value of 144.

This deadline extension accounts for potential variations in job durations.
If deadlines are too strict, even minor delays can result in infeasibility. We
introduce this slack to enhance scheduling flexibility since deviations are
common in the factory setting.

The overall timespan for the experiment is then set as the maximum deadline
across all orders, ensuring sufficient time for task scheduling.

4. We randomly assign each product’s profit a value between 0 and 100 to sim-
ulate varying levels of importance and profit contribution. We assume that in
the real factory setting, each product maintains a fixed profit regardless of the
order it belongs to. Since the factory aims to maximize overall profit, a ran-
dom assignment is sufficient for conducting experiments while preserving
realistic variability.
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5. We assume that the inventory level of each product is zero at the start of the
planning. Although this may not reflect the actual conditions in the real fact-
ory, our primary goal is to evaluate the PSTN-based method, which operates
independently of the initial inventory state. We leave a detailed analysis of
inventory tracking and its impact on the model for future work.

6.1.1 Uncertainty in the instances

The instances given in the J10 benchmark are deterministic. However, the factory
faces uncertainty in job durations. We transform the deterministic instances into
stochastic ones using the following assumptions:

1. We set the expected job durations (µ) according to the initial durations from
the J10 instance. Using these initial durations ensures that the instance re-
mains feasible while respecting both time lags and resource constraints. The
J10 benchmark is also widely recognized as a representative dataset for real-
istic RCPSP/max instances. Assuming that the integrated production plan-
ning problem reflects the RCPSP/max pattern, we proceed with the initial
durations.

2. The standard deviation σ incorporates variability in job durations. We set it
to the following values:

σ = ϵ · √µ
where ϵ influences noise level

ϵ ∈ 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.7
(6.1)

Higher values of standard deviation introduce greater uncertainty in job dur-
ations. We select ϵ values that represent both minimal and substantial devi-
ations to evaluate the PSTN-based method’s robustness under different un-
certainty levels. Small standard deviations ensure that actual job durations
remain close to their expected values, while larger standard deviations intro-
duce significant variability. By testing multiple cases, we gain insights into
how well the PSTN-based approach handles uncertainties in scheduling.

We assume that job durations follow a log-normal distribution. This choice is
motivated by two key factors. First, the log-normal distribution only produces
positive values, making it well-suited for modeling job durations, which cannot be
negative. Second, our approach relies on the CSTNU tool for PSTN support, which
exclusively supports log-normal distributions.

6.2 Comparing CP and MILP models to solve a determ-
inistic problem

The primary goal of this experiment is to verify the correctness and compare the
performance of the Constraint Programming (CP) and Mixed Integer Linear Pro-
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gramming (MILP) models in solving a deterministic variant of the factory schedul-
ing problem. Performance is evaluated based on scalability and feasibility.

Three key parameters are varied systematically to construct the instances:

1. Number of orders: the experiments consider scenarios with 3, 5, 10, 15, and
20 orders. This allows for assessing how increasing orders affect the models’
performance, particularly regarding computation time and feasibility. We
choose these numbers to reflect the potential demand of the factory, starting
from a very small number of orders and increasing it.

2. Number of products per order: this parameter is set to 5, 10, 20, and 30,
creating varying levels of complexity in the structure of individual orders.
Higher values introduce greater diversity in product combinations and in-
crease the instance size. This variation helps evaluate how the models handle
increasing internal complexity within individual orders.

We randomly assign each order as required or optional. While we do not have
access to the actual proportion of required versus optional orders in the factory,
this randomized assignment allows us to evaluate the model’s ability to handle
both critical and flexible demands within a single planning instance.

The models under evaluation were introduced in Sections 4.2 and 4.3. For the CP
model, we utilize CP Optimizer, a robust and widely recognized solver provided
by IBM ILOG CPLEX Optimization Studio, 2 which recently demonstrated superi-
ority over CPLEX across a set of benchmark scheduling problems [Naderi et al.,
2023]. For the MILP model, we select the Gurobi Solver,3 as it outperformed
CPLEX Optimizer on multiple benchmarks [Anand et al., 2017]. We execute all
the problem instances using the CP and MILP models and compare their perform-
ance, focusing on objective values and execution times. We also verify that the
obtained solution satisfies all problem-related constraints.

The objective values obtained from the MILP and CP approaches are identical
for all feasible instances, meaning that both models can find a feasible solution or
result in a timeout. However, in the case of an infeasible problem, the CP model
results in a timeout (set to one hour), whereas the MILP model identifies infeasib-
ility. This suggests that both models are suitable when constraints are flexible, but
if the problem is potentially infeasible, the MILP model is preferred. Furthermore,
running both models in parallel could provide the optimal solution in the shortest
possible time.

Figure 6.1 shows that the CP model consistently solves feasible instances faster
than the MILP model in this application. Since the integrated production planning
problem is NP-hard, the solving time increases exponentially with input size. Al-
though the CP model’s execution time appears to grow more rapidly, this effect
stems from the one-hour timeout limit — MILP reaches the timeout for smaller

2https://www.ibm.com/docs/en/icos/22.1.0?topic=cp-optimizer
3https://www.gurobi.com/
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instances, while CP manages to find an optimal solution. Despite this, both models
still produce identical feasible solutions. However, the MILP model cannot always
verify optimality due to the timeout. Overall, the CP model achieves lower solving
times for feasible instances, confirming findings from prior research that highlight
the efficiency of CP-based methods for scheduling and resource allocation prob-
lems [Meng et al., 2020, Eray Cakici and Akdemir, 2024]. In contrast, Figure 6.2
illustrates the results for infeasible problems, where the MILP model outperforms
the CP model by successfully identifying infeasibility rather than timing out. Pre-
vious studies did not account for optional interval variables, which we use in our
CP model, and these variables may contribute to the observed inefficiencies. This
needs investigation in future research.

Given these results and the need for efficiency, we use both the MILP and CP
models in subsequent experiments.

Figure 6.1: CP vs MILP execution times for feasible instances

6.3 Influence of POS on the expected actual profit

The experiment aims to determine how constructing deterministic instances for a
Partial Order Schedule (POS) affects the expected actual profit. Since we con-
struct a POS offline before execution begins, its structure can influence the order
in which products are scheduled. This scheduling order can lead to either frequent
infeasibilities or a smooth execution. As a result, the choice of job durations and
constraints used in the deterministic instance can have a direct impact on the actual
execution and, consequently, on the overall expected profit.

We conduct the experiments on seven specific instances of average size, poten-
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Figure 6.2: CP vs MILP execution times for infeasible instances

tially representing the factory’s needs. Each instance contains ten orders, each
consisting of five products. The instances differ in their job duration standard devi-
ations, explained in Equation 6.1. Each instance contains exactly seven mandatory
and three optional orders. This setup ensures that mandatory orders remain a pri-
ority. At the same time, the system retains the flexibility to reject optional orders
if the deterministic job durations are too long, thus preserving feasibility by guar-
anteeing the completion of the most critical orders. Note that the current models
do not support partial fulfillment of orders — if an order is rejected, all associated
products are canceled.

Our proposed PSTN-based method involves solving a deterministic instance to
obtain a Partial Order Schedule (POS). We address the following research question:

Sub-question 4: Optimization: How can the construction of a POS
influence the expected actual profit?

We approach this sub-question in two parts:

1. Using original constraints: we construct a POS using the original problem
constraints while varying deterministic job durations.

2. Introducing flexible constraints: we modify the original constraints to incor-
porate soft deadlines (see the model introduced in Appendix D).

We construct deterministic instances using the state-of-art proactive method SORU-H
for the RCPSP/max (see Section 2.2.1).

We modify the deterministic job durations as outlined in Section 5.2, varying the
quantile parameter:
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q ∈ 0.5, 0.75, 0.9 (6.2)

Each q represents a quantile of the distribution. For example, for q = 0.5, the
deterministic durations correspond to the median of the job duration distributions.

Altering the job durations in deterministic instances allows us to analyze how
increasing conservatism during offline scheduling impacts the expected profit.

We simulate real-time execution by sampling each job’s specified distribution.
100 samples are generated for the RTE* per instance. We report the probability
mass that Dynamically Controllable (DC) Simple Temporal Network with Uncer-
tainty (STNU) captures and the expected profit obtained for each quantile q. The
expected profit is computed for each instance and averaged across all samples us-
ing Sample Average Approximation (SAA). We apply the SAA method to simulate
multiple possible scenarios for the actual job durations.

In the second part of the experiment, we also relax the original strict deadline
constraint by introducing soft deadlines. Instead of requiring the deterministic
model to meet each order’s deadline strictly, we allow for violations and penal-
ize large lateness in the objective. The motivation behind this approach is that it
can lead to more resource-efficient schedules and fewer disruptions when executing
the schedule online. With soft deadlines, the schedule cannot fail due to deadline
violations, leading to smoother execution. When using conservative deterministic
job durations, actual execution times may be shorter in practice, allowing the sys-
tem to still meet the original deadlines during the real-time execution. Moreover,
late products can be used for inventory and future orders.

6.3.1 Results: Using original constraints while varying deterministic
job durations

We solve each instance using different quantile values. Since some products in the
optional orders may be rejected by the deterministic schedule, Table 6.1 reports
the number of products accepted under this schedule. The table also includes the
mean job durations computed using each quantile value (Mean Quantile Duration).
When the standard deviation scales by ϵ = 0.05, 0.10, 0.20, the resulting quantile
durations are similar and become identical when rounded to integers. This suggests
that the quantile value has almost no impact on the POS and the expected profit for
these instances. However, for larger scales in standard deviation (ϵ > 0.20), the
quantile-based durations begin to diverge. This indicates that the choice of the
quantile parameter may influence the expected profit in these cases.

We present the detailed real-time execution experiment results in Tables B.2.
Figure 6.3 illustrates the relationship between the quantile parameter q and the

standard deviation in job durations. The highest expected profit is achieved at q =
0.5, where the deterministic durations match the median of the expected durations
for the instances with the standard deviation factor ϵ < 0.7. In these instances, most
of the products accepted in the deterministic scenario are also accepted during the
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Table 6.1: Summary of Quantile-Based Duration Sampling

Epsilon Quantile
Mean Duration
(initial instance)

Mean Quantile Duration Products Accepted

0.05 0.50 4.741 5.688 50
0.05 0.75 4.741 5.766 50
0.05 0.90 4.741 5.837 50
0.10 0.50 4.741 5.685 50
0.10 0.75 4.741 5.841 50
0.10 0.90 4.741 5.985 50
0.20 0.50 4.741 5.670 50
0.20 0.75 4.741 5.985 50
0.20 0.90 4.741 6.285 45
0.25 0.50 4.741 5.659 50
0.25 0.75 4.741 6.054 50
0.25 0.90 4.741 6.436 45
0.30 0.50 4.741 5.645 50
0.30 0.75 4.741 6.121 45
0.30 0.90 4.741 6.587 45
0.40 0.50 4.741 5.612 50
0.40 0.75 4.741 6.249 45
0.40 0.90 4.741 6.890 40
0.50 0.50 4.741 5.571 50
0.50 0.75 4.741 6.368 45
0.50 0.90 4.741 7.192 40
0.70 0.50 4.741 5.466 50
0.70 0.75 4.741 6.575 45
0.70 0.90 4.741 7.783 35

real-time execution. As the quantile parameter increases, the deterministic model
becomes more conservative, accepting fewer products. Nevertheless, the PSTN
can schedule most of the accepted products deterministically, but this results in
lower profit if fewer products are accepted during planning. This suggests that,
for these instances, setting q = 0.5 is sufficient to maximize the expected profit
while maintaining feasible execution under uncertainty. We also observe that for
most cases, the expected profit is the same for all samples. This reflects that the
approximated STNUs captured most of the distribution, and the RTE* algorithm
never disrupts. For our last instance, with the standard deviation scale ϵ = 0.7,
while most products are accepted deterministically when q = 0.5 and q = 0.75,
most products fail during the real-time execution. When taking q = 0.9, we are
more conservative in planning, meaning fewer products are planned. However, that
gives enough flexibility for the real-time execution, which leads to the expected
profit increase.

Conclusion 1: The deterministic schedule significantly impacts the expected
profit in real-time execution. The choice of the quantile parameter q, which determ-
ines the level of conservatism in the schedule, plays a crucial role in this outcome.
A poorly chosen q can lead to overly optimistic or overly conservative schedules,
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Figure 6.3: Combination of Standard Deviation and Quantile versus Expected
Profit and Average Number of Accepted Products (reported for each instance)

reducing profitability. Therefore, tuning the quantile value appropriately for the
given instance characteristics is essential. Our research suggests that using the
median values when planning ensures optimal expected profit for jobs with low
standard deviation. Taking more conservative durations is required for the jobs
with higher deviation to ensure optimal expected profit. Tuning the deterministic
durations ensures that the offline plan aligns well with the uncertainties present in
the real world, ultimately leading to maximal expected profit.

6.3.2 Results: Using the soft deadline constraints while varying de-
terministic job durations

In our implementation of the real-time execution, strict adherence to hard deadlines
may lead to unnecessary disruptions, especially under uncertainty. We explore soft
deadline constraints, where lateness is penalized rather than strictly prohibited.
The key hypothesis is that soft deadlines can reduce disruptions during real-time
execution using RTE*, improving the overall schedule robustness and expected
profit.

Given that most of our benchmark instances exhibited limited disruptions (par-
ticularly when the uncertainty scale factor ϵ < 0.7), we focus this analysis on a
more uncertain scenario: the instance with standard deviation scale ϵ = 0.7. In
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Table 6.2: Expected profit and probability mass: PSTN approach with soft dead-
lines

q ϵ
Expected

Profit f(x)
Probability

mass
Makespan t

Throughput
f(x)/t

Average Accepted Lateness

0.50 0.70
601.81
±852.45 0.17

130.15
±361.36 4.62 12 105.96

0.75 0.70
670.24
±873.549 0.19

125.59
±340.45 5.3 13 95.70

0.90 0.70
2326.61
±358.59 0.99

355.54
±21.04 6.54 49 165.98

Table 6.3: Expected profit and probability mass: PSTN approach with hard dead-
lines

q ϵ
Expected

Profit f(x)
Probability

mass
Makespan t

Throughput
f(x)/t

Average Accepted

0.50 0.70
251.78
±333.78 6.89 · 10−3 78.77

±12.33 3.19 5

0.75 0.70
1217.74
±1025.17 0.39

134.64
±303.25 9.04 25

0.90 0.70
1759.74
±299.59 0.99

185.02
±96.95 9.51 35

this experiment, we solve the deterministic version of the problem using the soft-
deadline model proposed in Appendix D, incorporating different levels of conser-
vatism through job durations derived from quantile values q = 0.5, 0.75, and 0.9.

As shown in Table 6.2, increasing the quantile value q leads to notable gains in
performance across several metrics: expected profit, throughput, and the number
of accepted products all improve. At the highest quantile level (q = 0.9), the soft
deadline model accepts 49 out of 50 products and achieves a near-perfect probab-
ility mass (P = 0.99), demonstrating strong robustness under high conservatism.
This flexibility, however, comes at the cost of increased average lateness (165.98),
reflecting the trade-off inherent in relaxing strict deadline constraints.

In contrast, the results from the hard deadline model (Table 6.3) exhibit a more
restrictive profile. At lower quantiles (q = 0.5, 0.75), significantly fewer products
are accepted and disruptions occur more frequently, leading to reduced expected
profit and throughput. While both models achieve high probability mass at q = 0.9,
the deterministic schedule under hard deadlines accepts fewer products overall.
This leads to lower expected profit, albeit with better adherence to deadlines.

These results underscore a key trade-off: soft deadlines promote higher profits,
but result in deadline violations. Hard deadlines enforce stricter conditions during
the real-time execution, but satisfy all initial constraints.

Conclusion 2: Incorporating soft deadlines into the scheduling framework leads
to higher expected profits by allowing more products to be completed under uncer-
tainty. However, this comes at the cost of increased average lateness, which may
negatively impact customer satisfaction and potentially incur penalty costs. There-
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fore, a nuanced strategy is required: manufacturers should differentiate between
orders with strict contractual deadlines and those with more temporal flexibility,
and integrate this distinction into the planning model to balance profitability with
service-level commitments.

6.4 Evaluation of PSTN-based approach

The main research question of this work is:

Research question: How can Probabilistic Simple Temporal Networks
(PSTNs) be effectively utilized to maximize expected profit in the defined
integrated production planning problem?

We answer this research question by introducing the novel methodology in Chapter
5. We want to evaluate the proposed method by comparing it to a proactive baseline
– the SORU-H method. This evaluation is essential for understanding the practical
potential of the PSTN-based approach within real-world factory settings.

The results for the PSTN-based method are drawn from Table B.2, while detailed
results for the SORU-H baseline are presented in Table B.1.

We present a comparative analysis in Figure 6.4, where each instance is rep-
resented by two bars indicating the best expected profit obtained across all tested
quantile values. The PSTN-based method consistently outperforms the proact-
ive SORU-H baseline in terms of expected profit across all instances. In terms of
makespan, both approaches yield comparable results for most instances, with a not-
able divergence in the final instance. There, the PSTN-based approach results in a
longer makespan, which is accompanied by a higher number of accepted products.
Interestingly, the PSTN-based method also achieves a shorter makespan in several
cases, highlighting the potential efficiency of the RTE* execution algorithm. How-
ever, the underlying factors contributing to the observed makespan variations in the
PSTN-based method require further investigation in future research.

Conclusion 3: The results support our central research question by demonstrat-
ing that PSTNs can effectively enhance production planning under uncertainty: the
PSTN-based approach consistently achieves higher expected profit than the proact-
ive SORU-H method.

55



Figure 6.4: Comparison of proactive SORU-H and the PSTN method based on the
expected profit and makespan
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Chapter 7

Discussion

In this chapter, we analyze the results and assess the applicability of the Probabil-
istic Simple Temporal Networks (PSTN)-based approach to the defined production
planning problem. Additionally, we discuss the limitations of our work and outline
potential directions for future research.

Research question: How can Probabilistic Simple Temporal Networks
(PSTNs) be effectively utilized to maximize expected profit in the defined
integrated production planning problem?

We propose a novel approach in Chapter 5 to address this research question, to
maximize expected profit. We model the integrated production planning problem
as a PSTN and apply the RTE* algorithm, which does not simply fail but reacts to
the failures and adapts.

This work represents a significant step toward addressing the integrated produc-
tion planning problem. While it does not capture many constraints of a real-world
factory, it establishes a solid foundation that can be extended to incorporate ad-
ditional complexities in future research. One particularly impactful constraint is
the presence of time lags between jobs. Although the current model assumes a
Resource-Constrained Project Scheduling Problem with Time Lags (RCPSP/max)
setting, some jobs may also require constraints between their finish times or their
start and finish times. For example, machine cleaning tasks often need to begin
only after the completion of a specific job. Such requirements can be modeled
as time lags between the end of one job and the start of another. However, since
job finish times correspond to contingent nodes in the PSTN, introducing time-lag
constraints involving finish times could increase the risk of execution-time disrup-
tions. Currently, start-to-start time lags affect only activation nodes, which are
deterministic and not subject to temporal uncertainty. These constraints are al-
ways satisfiable within PSTNs. In contrast, adding start-to-finish or finish-to-finish
constraints could introduce potential infeasibilities, making it more challenging to
maintain temporal consistency during execution. This issue similarly affects the
proactive SORU-H approach. In this method, job start times are fixed in advance,
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while job end times are subject to stochastic variability. Introducing additional
time-lag constraints involving uncertain finish times may also lead to infeasible
schedules under this approach. This raises the question of whether the PSTN-based
methods can be effectively extended to accommodate more complex time-lag con-
straints while maintaining their advantages over proactive approaches.

We use eight exact instances that mimic factory conditions to simulate real-world
scenarios. For these instances, the proposed PSTN-based method outperforms the
proactive approach. While the proposed approach demonstrates promising results
on the instances considered, real-world factory environments may present struc-
tural and operational variations. They may not reflect the tested instances. The
PSTN-based method resulted in capturing 99% of the distribution when converting
PSTNs into Simple Temporal Networks with Uncertainty (STNUs) in many scen-
arios. However, this probability might be lower for other instances with higher
standard deviations. This can cause more failures in the Real-Time Execution
(RTE*), potentially lowering profit. As one of the causes of failure is violating
a deadline, we propose a new model with soft deadlines, which penalizes lateness
in Appendix D. This approach increases the expected profit while sacrificing the
deadline constraint. For future research, we suggest tuning the importance of the
lateness objective to meet the real factory needs.

Furthermore, in the RTE* recovery mechanism, we disrupt jobs in the execu-
tion process. We assume that resources are immediately available. However, in
the DSM-Firmenich case, some machines require cleaning/idle time and cannot
be used immediately. Deterministically, such disruptions can be included as ad-
ditional jobs or time-lags. However, in real-time, such pauses can lead to longer
makespan, as they were not encountered during planning, as the RTE* was disrup-
ted unexpectedly. The factory would then need to fully re-plan with remodeling to
achieve the optimal objective or sacrifice on the makespan.

The proposed RTE* algorithm is also strict, as we remove all products executing
at the timestamp when the RTE* failed. This means we remove all partially pro-
duced products. Referring back to the proposed RTE* (see Section 5.5), if some
jobs of the product are completed and some are pending, the product is still re-
moved, although no jobs are ongoing. We propose removing only the products
with ongoing jobs in Appendix C. A better alternative is to find specific jobs that
caused RTE* disruptions and remove only products associated with those jobs.
However, as the RTE* is rather novel, we could not find the literature around this
issue. While finding the jobs that are disrupted is straightforward, future research
can look into finding the job that caused disruptions.

Moreover, we chose not to resolve the deterministic schedule after the RTE*
alterations due to the goal of making real-time execution fast. However, by resolv-
ing the deterministic model again with only products left in the schedule, we can
further optimize the solution and reduce the total makespan, thus utilizing the re-
sources more effectively. This alteration can be explored in future work to evaluate
the trade-off between the time it takes to solve real-time execution with reschedul-
ing and the expected profit with makespan.
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Additionally, we calculate the expected total profit by summing up the individual
earnings of the produced products. However, profits are typically tied to complete
order fulfillment in a factory setting. Partial completion of an order may lead to
reduced profit due to lower client satisfaction. Furthermore, the current model
assumes constant product profits, whereas, in reality, profits can be dynamic and
may vary depending on factors such as deadlines. Such aspects warrant further
investigation in future work to understand their influence on the expected profit
and make the problem reflect a real factory instance.

Beyond evaluating the methodology within the studied test instances, the pro-
posed research also offers value across the broader decision-making hierarchy in
manufacturing:

1. Tactical planning: By constructing a deterministic schedule before execu-
tion, planners gain valuable insights into short-term factory capacity and re-
source allocation. The framework also accommodates optional orders, which
can be strategically used for inventory replenishment or demand smoothing.
Unlike manual planning, in the current setup, planners only need to input
the instance with the relevant parameters, and the model generates the op-
timal schedule. This approach offers a more optimal solution than manual
scheduling (as the problem is NP-hard) and alleviates the time burden on
planners by automating the scheduling process.

2. Operational decision-making: The RTE* mechanism enables rapid, on-the-
fly adaptation of schedules in response to execution-time disruptions, with
computational complexity bounded in polynomial time. This allows the sys-
tem to proceed with job execution without waiting for pre-defined start times
or initiating a rescheduling process.

These observations suggest that probabilistic temporal reasoning can be a power-
ful enabler across planning levels, provided that future work continues to bridge the
gap between theoretical scheduling models and real-world operational constraints.
Lastly, for the factory to fully leverage these techniques, the system needs to be
developed into a user-friendly tool that creates an interface that allows planners to
interact easily and use these advanced scheduling techniques in their daily opera-
tions.

The code and reproducibility instructions can be found in Appendix E.
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Chapter 8

Conclusion

In this research, we tackled the challenges of optimizing production planning under
uncertainty within the biomanufacturing context of DSM-Firmenich. Our focus
was on enhancing decision-making at both tactical and operational levels through
computational methods capable of handling complex scheduling constraints and
variability in job durations.

To this end, we introduced the Integrated Production Planning Problem, which
incorporates multiple production dimensions: order deadlines, inventory require-
ments, time-lag constraints, uncertain job durations, and resource limitations. We
developed and compared Mixed-Integer Linear Programming (MILP) and Con-
straint Programming (CP) models to solve deterministic instances of this problem
and proposed a novel probabilistic framework using Probabilistic Simple Temporal
Networks (PSTNs) to address uncertainty.

Our approach consists of both offline optimization and online execution. In the
offline phase, we convert schedules generated by MILP or CP into Partial Order
Schedules (POS), which serve as the basis for constructing PSTNs. In the on-
line phase, we introduced a real-time execution algorithm that extends the existing
RTE* method with a recovery mechanism, enabling the system to adapt dynamic-
ally to deviations caused by uncertainty rather than failing outright.

Despite their clear suitability in addressing the uncertainty commonly faced in
production environments, we could not find any prior application of PSTNs spe-
cifically in production planning. Furthermore, we found that the initial RTE* al-
gorithm was not designed to account for real-world scenarios and required adjust-
ments. Thus, our work fills a significant gap in the literature by introducing prac-
tical applications of PSTNs in production planning and addressing the limitations
of existing real-time execution algorithms.

We demonstrated that both MILP and CP can effectively model the deterministic
version of the integrated planning problem. When evaluating the models, we found
that the CP model outperformed the MILP model regarding computational time for
feasible scenarios. Both models produced identical feasible solutions. However, in
cases where the problem was infeasible, the MILP model showed better perform-
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ance, as the CP model failed to deliver solutions within the time limits, resulting in
timeouts.

Additionally, we developed a method to transform a POS derived from a de-
terministic model into a PSTN that encapsulates all specified constraints. Our find-
ings revealed that the quality of the POS significantly impacts the expected profit,
emphasizing the importance of fine-tuning the deterministic problem to enhance
outcomes. Job durations can be fine-tuned depending on the uncertainty level of
the jobs. If the jobs are less uncertain, their predicted durations can lead to optimal
schedules. Taking more conservative durations may result in higher expected profit
if the job durations deviate. Constraints also impact the derived POS. For example,
incorporating soft deadlines may lead to higher expected profits. Depending on cli-
ent agreements and specific order requirements, the factory can strategically apply
soft deadlines to some orders while using hard deadlines for others.

We utilized existing CSTNU tools to convert PSTNs into Dynamically Con-
trollable (DC) Simple Temporal Networks with Uncertainty (STNUs) to enable
real-time, uncertainty-aware scheduling. We then designed a reactive execution
strategy that tolerates failures and adapts to changing conditions to maintain profit-
ability. While our algorithm currently cancels all partially produced products at the
moment of failure, we observed that it may be overly conservative. This can lead
to unnecessary product cancellations and should be addressed in future research.

By combining deterministic optimization with probabilistic execution, our con-
tributions provide both practical tools and theoretical insights for production plan-
ners. This approach reduces manual workload, improves resource utilization, and
sustains high service levels — even amid unpredictable operational conditions. Ul-
timately, this research lays the groundwork for more adaptive and robust systems
in uncertain production environments.
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Appendix A

Advanced algorithms

Algorithm 3: Generating PSTN from the RCPSP/max instance
1 Function parse instance to pstn(instance, schedule):
2 pstn← PSTN()
3 horizon← pstn.add node(”execution start”)
4 foreach i ∈ instance.orders do

// Only iterate through accepted orders
5 if i ∈ schedule then
6 foreach j ∈ i.products do
7 foreach k ∈ j.jobs do

// Add start of the job
8 job start← pstn.add node(i.id j.id k.id START)

// Add finish of the job
9 job finish← pstn.add node(i.id j.id k.id END)

// Add job duration contingent edge
10 pstn.add contingent link(job start, job finish, k.location, k.sigma)

// Add deadline ordinary edge
11 pstn.set ordinary edge(horizon, job finish, i.deadline)
12 pstn.set ordinary edge(job start, horizon, 0)

// Add time lag ordinary edge
13 foreach k ∈ j.jobs do
14 foreach succ ∈ k.successors do
15 i idx← pstn.find(i.id product.id k.id START)
16 j idx← pstn.find(i.id j.id succ.id START)
17 pstn.set ordinary edge(j idx, i idx,−succ.lag)

18 return pstn

Algorithm 6 is designed to classify products into completed and ongoing cat-
egories based on the completed jobs JC and pending jobs JP . We initialize the
profit (set to zero) to track the profit from PC , along with empty lists for completed
products, ongoing products, and a visited set to track processed products (lines 2-
3). In line 4, the algorithm then iterates through the set of JC , where each job is
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Algorithm 4: Add resource chains to a PSTN
1 Function add resource chains(pstn, resource chains):
2 foreach pred, succ ∈ resource chains do
3 pred idx← pstn.find(pred START) ;
4 succ idx← pstn.find(succ START) ;
5 pstn.set ordinary edge(succ idx, pred idx, 0) ;

Algorithm 5: Find completed and ongoing products from the execution
schedule
1 Function find current jobs(all scheduled jobs, estnu):
2 if all scheduled jobs == None then
3 return False

4 start jobs, finish jobs←
get start and finish jobs(all scheduled jobs, estnu)

5 JC ← start jobs ∩ finish jobs
6 JO ← start jobs− finish jobs
7 return JC , JO

8 Function get start and finish jobs(all scheduled jobs):
9 start jobs, finish jobs← set(), set()

10 foreach job ∈ all scheduled jobs do
// If job corresponds to START

11 if job includes "start" then
// Append name of the job in the format of i j k

leaving "start" or "end"
12 start jobs.append(job name)

// If job corresponds to END
13 if job includes "end" then
14 finish jobs.append(job name)

15 return start jobs, finish jobs

represented in the format (i, j, k) (line 4), which are extracted as integers in line
5 for further processing. In this setup, i corresponds to the order, j indicates the
product, and k represents the job.

In line 6, the algorithm checks if (i, j) has already been visited to avoid redundant
processing of the same product. If not, it marks the product as visited and retrieves
the actual product information from the instance (line 8).

Next, in lines 9-14, the algorithm determines whether all jobs required for the
product have been completed. If every job associated with the product belongs
to JC , the product is marked as completed and added to the completed products
list (line 16). Additionally, the product’s value (profit contribution) is added to the
total profit on line 17. Otherwise, if some jobs remain unfinished, the product is
classified as ongoing and added to the ongoing products list (line 18).

After processing JC , the algorithm then iterates through JO. Using the same
procedure as for JC , in lines 24-27 the algorithm retrieves the product information,
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marks the product as ongoing (line 28), and adds it to the visited set (line 29).
Finally, in line 32, the algorithm returns the total profit, the list of PC , and the

list of ongoing products PO.

Algorithm 6: Extract profit, completed and ongoing products based on
completed and ongoing jobs
1 Function find corresponding products(JC , JO, instance):
2 profit← 0;
3 completed products← [] ongoing products← [] visited← [];
4 foreach job ∈ JC do
5 i, j, k = map(job, int);
6 if (i, j) /∈ visited then
7 visited.append((i, j));

// finds actual product based on (i, j)
8 product = find product in instance(i, j, instance);
9 all jobs in JC = True;

10 for jp ∈ product.jobs do
11 if jp /∈ JC then
12 all jobs in JC = False
13 end
14 end
15 if all jobs in JC then
16 completed products.append(product);
17 profit← profit+ product.value;
18 end
19 else
20 ongoing products.append(product);
21 end
22 end
23 end
24 foreach job ∈ JO do
25 i, j, k = map(job, int);
26 if (i, j) /∈ visited then
27 product = find product in instance(i, j, instance);
28 ongoing products.append(product);
29 visited.append((i, j));
30 end
31 end
32 return profit, completed products, ongoing products

71



72



Appendix B

Detailed experiment results

Table B.1: Expected profit and probability mass: SORU-H approach

q ϵ Expected Profit (f(x)) Makespan t
Throughput
f(x)/t

0.50 0.05 2409.00± 0.00 95.06(±0.09) 25.34
0.50 0.10 2264.46± 572.11 95.12(±0.17) 23.80
0.50 0.20 144.54± 572.11 95.30(±0.43) 1.52
0.50 0.25 0.00± 0.00 0 –
0.50 0.30 0.00± 0.00 0 –
0.50 0.40 0.00± 0.00 0 –
0.50 0.50 0.00± 0.00 0 –
0.50 0.70 0.00± 0.00 0 –
0.75 0.05 2409.00± 0.00 95.05(±0.09) 25.34
0.75 0.10 2312.64± 472.07 95.12(±0.18) 24.31
0.75 0.20 337.26± 835.89 97.22(±0.29) 3.47
0.75 0.25 24.09± 239.69 98.35(±0.44) 0.24
0.75 0.30 561.75± 972.98 91.32(±0.53) 6.15
0.75 0.40 426.93± 881.50 93.84(±0.85) 4.55
0.75 0.50 696.57± 1039.22 96.95(±0.97) 7.19
0.75 0.70 89.88± 440.32 96.95(±0.97) 0.91

0.90 0.05 2409.00± 0.00 95.08(±0.09) 25.33
0.90 0.10 2384.91± 239.69 97.10(±0.14) 24.57
0.90 0.20 2224.53± 223.57 95.44(±0.35) 23.31
0.90 0.25 2089.71± 573.32 95.36(±0.49) 21.91
0.90 0.30 1572.90± 1029.70 98.57(±0.57) 15.96
0.90 0.40 2012.92± 287.56 91.79(±0.78) 21.93
0.90 0.50 780.52± 996.98 95.14(±0.94) 8.20
0.90 0.70 1200.54± 861.67 94.52(±1.28) 12.77
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Table B.2: Expected profit and probability mass: PSTN approach

q ϵ Expected Profit (f(x)) Makespan t
Throughput
f(x)/t

0.50 0.05 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.50 0.10 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.50 0.20 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.50 0.25 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.50 0.30 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.50 0.40 2397.37± 116.30 0.99 94.51(±15.69) 25.37
0.50 0.50 2409.00± 0.00 0.99 94.81(±0.54) 25.41
0.50 0.70 251.78± 333.78 6.89 · 10−3 78.77(±12.33) 3.19

0.75 0.05 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.75 0.10 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.75 0.20 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.75 0.25 2384.91± 240.90 0.99 94.11(±44.28) 25.34
0.75 0.30 2247.00± 0.00 0.99 94.91(±1.20) 23.67
0.75 0.40 2241.51± 54.90 0.99 94.92(±3.98) 23.61
0.75 0.50 2247.00± 0.00 0.99 94.96(±0.39) 23.66
0.75 0.70 1217.74± 1025.17 0.39 134.64(±303.25) 9.04

0.90 0.05 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.90 0.10 2409.00± 0.00 0.99 95.00(±0.0) 25.36
0.90 0.20 2247.00± 0.00 0.99 95.00(±0.0) 23.65
0.90 0.25 2247.00± 0.00 0.99 95.00(±0.0) 23.65
0.90 0.30 2247.00± 0.00 0.99 95.00(±0.0) 23.65
0.90 0.40 2048.34± 97.40 0.99 94.83(±15.72) 21.59
0.90 0.50 2051.49± 56.04 0.99 94.80(±6.74) 21.64
0.90 0.70 1759.74± 299.59 0.99 185.02(±96.95) 9.51
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Appendix C

Future RTE* Recovery
Algorithm

All completed jobs (JC) can be eliminated from the DC STNU, as they do not re-
quire further rescheduling. However, nodes corresponding to completed jobs may
still have edges connecting them to nodes corresponding to pending jobs (JP ).
These edges cannot simply be removed, as doing so would result in the loss of
critical time lag constraints between jobs. Instead, they must be modified appro-
priately.

An example case of this scenario is illustrated in Figure C.1. At timestamp t, the
RTE* algorithm fails. Here, start1 belongs to JC , while start2 belongs to JP . If
we were to delete the ordinary edge from start1 to start2, we would eliminate the
time constraint that governs the sequence of these jobs. To preserve the structure
of the scheduling constraints, we need to modify this edge instead of removing it
entirely.

In the PSTN, the EXECUTION START initially represents the beginning of the
planning. Since the new execution of RTE* will begin from the moment of its
failure, the HORIZON must now correspond to timestamp t. All constraints must
be updated relative to t.

We need to calculate the minimal and maximal time that should elapse before
it begins to determine the updated constraints for start2. Since job1 has already
been observed, its exact duration, duration1, is known. Thus, the distance between
start1 and t can be computed using the following equation:

time past = t− finish1 + duration1 = t− start1 (C.1)

To get the remaining lag after timestamp t, the following equation is followed:

remaining lag = lag − time past (C.2)

This means that there must be at least/most remaining lag after t before executing
job2.
To resemble such modification on the network, we add the following edge, where
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STARTsuc represents the start of the job that was connected to the job in JC by a
time lag:

STARTsuc
−remaining lag−−−−−−−−−−→ HORIZON (C.3)

This introduces the following equation:

STARTsuc − HORIZON ≤ −remaining lag (C.4)

Figure C.1: Critical case for time lag edges

After adding new time lag edges, completed jobs can be safely removed from
the network with edges involving their nodes.
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Appendix D

CP model with soft deadlines

Sets and indices

• O = {1, 2, . . . , no}: Set of no orders.

• P = {1, 2, . . . , np}: Set of all possible np product types.

• J = {1, 2, . . . , nj}: Set of all possible nj jobs.

• R = {1, . . . , l, . . . , nr}: Set of resources.

• T = {0, . . . , t, . . . , nt}: Set of time units (days).

• P (i): Set of products for order i.

• J(j): Set of jobs for product j.

• S(k): Set of successors of job k.

• i: standard index for order

• j: standard index for product ‘

• k: standard index for job

• l: standard index for resource

• t: standard index for time

Parameters

• deadlinei ∈ Z: Deadline for order i (day).

• profiti ∈ Z: Profit for order i.

• requiredi ∈ {0, 1}: Binary variable (1) if order i is required, (0) otherwise.

• durationk ∈ Z: Duration of job k.
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• ρk(l) ∈ Z: Amount of resource l required by job k.

• lagkm ∈ Z: Time lag between jobs k and m.

• capacityl ∈ Z: Capacity of resource l.

Decision Variables

• xijk: (optional) interval CP variable for job k for product j for order i.
It represents interval of time during which ijk happens, with a duration
durationk. The optimizer should assign a start time and end time for this
interval variable, which is notated with startOf (start time of the job) and
endOf (end time of the job). If no interval is available, it stays empty.

• yi: Binary variable, 1 if order i is completed, 0 otherwise

• latenessi: Lateness of order i

Objective Function

Maximize (
∑
i∈O

yi · profiti − c ∗
∑
i∈O

latenessi)

where c is a hyperparameter for the importance of lateness. For the purpose of the
experiment, the hyperparameter is set to c = 0.5.

Constraints

Interval Variables

xijk ∈

{
IntervalVar(i, j, k, durationk) if requiredi = 1

OptionalIntervalVar(i, j, k, durationk) if requiredi = 0
, ∀i ∈ O, j ∈ P (i), k ∈ P (j)

Task Scheduling

Presence Constraint: Order i is accepted only of all job intervals involved in order
i are present.

yi =

 ∧
j∈P (i),k∈J(j)

presenceOf(xijk)

 , ∀i ∈ O if requiredi = 0

Precedence Constraints

if yi = 1, startOf(xijk)+lagkm ≤ startOf(xijm), ∀i ∈ O, j ∈ P (i), k ∈ J(j),m ∈ S(k)
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Lateness Constraints

max end timei = maxj∈O(i),k∈J(j)(endOf(xijk)) ∀i ∈ O

latenessi ≥ max end timei − deadlinei∀i ∈ O

latenessi ≥ 0 ∀i ∈ O

Resource Capacity∑
i∈O if yi=1

∑
j∈P (i)

∑
k∈J(j)

Pulse(xijk, ρk(l)) ≤ capacityl, ∀l ∈ R
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Appendix E

Reproducibility

We have made our code publicly available to support reproducibility and encour-
age the adoption of similar temporal network methodologies. Detailed instruc-
tions regarding dependencies and experiment scripts can be found in the README
and BUILDING file of our repository PSTN for RCPSP-MAX GitHub Repository.
Note that the repository serves as an extension to already existing code in STNU
for RCPSP-MAX GitHub Repository, which utilized Simple Temporal Networks
with Uncertainty. Furthermore, we extended the CSTNU tool and uploaded our
extension to CSTNU Tool extension.

The implementation of the Python code was done in Python 3.9.6.
Java code implementation was done using Java 21.0.2. Java 21 is required to run

the project. Furthermore, MATLAB with ”Optimization Toolbox” and ”Statistics
and Machine Learning Toolbox” is needed to run PSTN algorithms.

E.1 Data Access, Randomness and Seeding

The experiments use benchmark J10 data 1.
We treat job durations from the J10 benchmark as the mean of the distributions.

We normalize these parameters using the following formulas to sample from a log-
normal distribution based on these means:

µ = ln

 mean√
1 +

( std
mean

)2


σ =

√√√√ln

(
1 +

(
std

mean

)2
)

Where:
1https://www.wiwi.tu-clausthal.de/en/ueber-uns/abteilungen/betriebswirtschaftslehre-

insbesondere-produktion-und-logistik/research/research-areas/project-generator-progen/max-
and-psp/max-library/single-mode-project-duration-problem-rcpsp/max
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1. µ is the location of the log-normal distribution.

2. σ is the sigma of the log-normal distribution

3. mean is the mean of the job durations from the J10 benchmark.

4. std is the standard deviation we set for the job durations.

Randomness plays a role in the sampling of durations from probability distribu-
tions. Fixed random seeds are used as 42 to ensure consistency across runs.
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