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Abstract

Live-cell imaging captures dynamic cellular behaviors and aims to maximize both spatial and temporal
resolution while minimizing sample damage, enabling advancements in fundamental cell biology. How-
ever, spatial resolution is limited by the diffraction barrier of optical lenses, which prevents the visualiza-
tion of many subcellular structures. Single-molecule localization microscopy (SMLM) overcomes this
barrier, achieving resolutions as fine as 10 nm, but it typically requires millions of frames and higher
illumination, which reduces temporal resolution and can damage the sample. Super-resolution Opti-
cal Fluctuation Imaging (SOFI) operates at lower illumination levels and requires hundreds of frames,
leveraging the statistical relationships of blinking fluorophores to achieve n-fold spatial resolution based
on the nth-order SOFI calculation. Despite its benefits, SOFI still demands too many frames and in-
volves extensive post-processing, making it impractical for real-time live-cell imaging. Without real-time
imaging, researchers are unable to make immediate decisions, ultimately costing valuable time for the
researchers.

To address this limitation, we introduce a supervised deep learning model designed to accelerate
second-order SOFI. Our model reconstructs super-resolved second-order SOFI images using just 20
frames, compared to the hundreds typically required, while maintaining a 2-fold improvement in spa-
tial resolution and showing minimal background artifacts. We demonstrate that after being trained on
real fixed-cell (static) mitochondria data, the model is able to reconstruct super-resolved images in a
dynamic environment by moving the microscope stage. The model achieves real-time temporal reso-
lutions of up to 4.85 fps, unlocking new possibilities for real-time studies of live-cell dynamics.
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1
Introduction

Live-cell imaging captures dynamic cellular behaviors and aims to maximize both spatial and temporal
resolution while minimizing sample damage [1], enabling advancements in fundamental cell biology.
To visualize the structures, fluorescent molecules, called fluorophores, are first used to label the speci-
men. They bind to target proteins or structures and emit light upon excitation. A sequence of frames is
then captured, with molecules randomly blinking across the frames. Fluorophores can blink sparsely
for precise localization or densely. However, visualizing these cellular dynamics is constrained by the
diffraction limit of optical lenses, which restricts spatial resolution to around 200-300 nm (half the wave-
length of visible light).

Super-resolution (SR) techniques can overcome this barrier and achieve higher spatial resolutions.
Well-known techniques include Stimulated Emission Depletion (STED) microscopy [2], Structured Illu-
mination Microscopy (SIM) [3], and Single Molecule Localization Microscopy (SMLM)[4, 5], which can
achieve spatial resolution down to 10 nm. However, these methods either require complex microscope
setups, higher signal-to-noise ratio (SNR) conditions (higher illumination), or even millions of frames to
reconstruct an SR image, which can limit temporal resolution and can damage the sample[6, 7]. Other
techniques, like Super-resolution Optical Fluctuation Imaging (SOFI)[8] and Super-Resolution Radial
Fluctuations (SRRF) microscopy[9] do not require a complex microscope setups and typically use hun-
dreds of frames to reconstruct an SR image as they can handle very dense blinking fluorophores.

Only SOFI generates SR images based on statistical theory by leveraging the correlation of blinking
from a fluorophore over time and space (cross-cumulant). The resolution improvement arises from the
independence of different fluorophores [10, 11]. Because noise does not correlate over time, SOFI can
operate under low SNR conditions, making it suitable for live-cell imaging. For n-order SOFI, an n-fold
improvement in spatial resolution is achieved; however, it still requires hundreds of frames, limiting its
ability to capture dynamic cellular processes and making real-time imaging impractical. Without real-
time capabilities, researchers cannot make immediate decisions, wasting valuable time. Deep learning
could help reduce the number of frames needed for SR image reconstruction while maintaining spatial
resolution improvements.

We propose an end-to-end deep learning model that accelerates cross-cumulant SOFI by reconstruct-
ing a second-order SR image from just 20 frames, compared to the hundreds typically required by
SOFI, while still achieving a 2-fold spatial resolution improvement. Unlike U-Net methods that use
only spatial information, our model leverages spatiotemporal data to extract correlated blinking fluo-
rophores. It operates in three stages: encoding input frames into feature maps, fusing them with a
recurrent structure to capture blinking correlations, and upsampling the result into a second-order SR
image. The model is trained in a supervised manner, using the pre-trained weights from synthetic data,
we can train the model on real fixed-cell microscopy data using at least four different measurements of
the same cell type. By applying random cropping and rotations, the dataset expands to around 2000
samples. This approach enables the model to be used in live-cell experiments, making it a practical
method for real-world applications.

1



1.1. Outline 2

1.1. Outline
In the following chapters, the theory behind fluorescent microscopy and deep learning is presented
in chapter 2, with an in-depth explanation of SOFI in chapter 3. Chapter 4 presents our proposed
architecture, followed by chapter 5, which explains how the datasets used in this research were created.
Finally, the main findings of this research are provided in a manuscript in chapter 6.



2
Background

2.1. Fluorescence Microscopy
In the early 20th century, the fluorescence microscope was invented to better understand underlying
intricacy in cellular biology. It made it possible capture the spatial and temporal details from both intrin-
sically fluorescent objects and those labeled with extrinsic fluorescent molecules. These observations
extend to entities that are so minuscule they elude detection by the unaided eye[12].

One of the most commonly used fluorescence microscopes is the widefield microscope (see figure 2.1),
which illuminates the entire field of view simultaneously. Widefield microscopy[12] is not only a simple
and fast imaging modality but is also crucial for single-molecule detection. The ability to see individual
molecules relies on a fundamental property of fluorescence: the emission of light at a longer wave-
length (lower energy) than the excitation light. Dichroic filters play a key role by reflecting the excitation
light and transmitting the emitted fluorescence. This separation allows the emitted fluorescence from
single molecules to be captured on the camera, enabling detailed imaging at the molecular level.

We further discuss the theoretical foundations of this research, discussing the diffraction limit, point-
spread-function (PSF), super-resolution techniques, and live cell imaging, aiming to provide a clear
and detailed explanation.

Figure 2.1: Widefield microscope.

2.1.1. Diffraction Limit
The spatial resolution of the fluorescence microscope is intrinsically constrained by its optics, as fun-
damental physical laws govern the upper limit achievable in fluorescence microscopy. These inherent
barriers, dictated by diffraction limitations, pose challenges that cannot be surpassed through physical

3



2.1. Fluorescence Microscopy 4

means. Consequently, the optical instrument faces difficulties in distinguishing closely positioned ob-
jects.

Lord Rayleigh, established a standard formula to describe the spatial resolution of an optical device.
According to this theory, the resolution limit is defined by the minimum distance between two distin-
guishable point sources. These two sources are considered just resolved when the highest point of
one diffraction pattern aligns with the first minimum of the the other, determining the achievable reso-
lution [12], see figure 2.2. The standard formula is given by:

dx,y = 0.61
λ

NA
(2.1)

where λ is the wavelength of light and NA the numerical aperture of the objective which is given by
NA = n sin θ and is dependent on the refractive index n of the objective immersion medium and the
half-angle θ of the cone of light collected by the lens.

Figure 2.2: The Rayleigh criterion: Two points are deemed to be resolved when the peak of one diffraction pattern aligns with
the initial minimum point of the other.

2.1.2. Point Spread Function
The microscope’s ability to capture minuscule objects, like a single fluorescent protein, is explained by
the Point Spread Function (PSF). In an ideal scenario, this function forms an Airy disk pattern in the
focal plane, see figure 2.3. The size and shape of the Airy disk depend on factors like the numerical
aperture of the lens and the wavelength of light. The PSF, fundamentally, describes how a point source
of light is spread out or blurred in an image. It represents the response of an optical system to a single
point source:

Y = H ⊗X (2.2)

In the given equation,H represents the PSF of the system,X denotes the true image, and Y represents
the blurred image resulting from the convolution with the PSF.

Figure 2.3: Airy disk, the most ideal scenario as a PSF.
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2.1.3. The Inherent Deconvolution Problem
To see the smaller details, one needs to obtain an image with a spatial resolution that goes beyond
the diffraction limit. To obtain such images, the images need to be deconvolved with the estimated
PSF of the optical system. While this may sound straightforward, in reality, it is more complicated as it
involves an ill-posed inverse problem. To enhance our understanding, in this subsection, we model the
acquisition process of the fluorescencemicroscopy to formulate the complexity of the deconvolution[11].

Let us assume a continuous framework to represent the fluorescence imaging model. Where in the
sample there exist K independent blinking/fluctuating emitters, where K > 1. Each emitter is posi-
tioned at rk ∈ RN , where N represents the spatial dimensions. The emitter exhibits intensity over time,
denoted as t = 1, ..., T , and this temporal information is collected in the vector sk ∈ RT , where ϵk is the
constant molecular brightness. The true image intensity at a given position r and time t is expressed
as follows:

x(r, t) =

K∑
k=1

δ(r − rk) · ϵk · sk(t) (2.3)

where δ(·) is the Dirac delta.
Assuming that the microscope has a spatial-and time-invariant PSF denoted as v(r), the diffraction-
limited image y(r, t) at position r and time t is obtained through the convolution of the system’s PSF
with x(r, t):

y(r, t) = x(r, t) ∗ v(r) =
K∑

k=1

v(r − rk) · ϵk · sk(t) (2.4)

To discretize the model from equation 2.4, the location of the emitters must be localized with great ac-
curacy. Therefore, a finer grid is used in the discrete model. Additionally, a Gaussian noise component
is added to the equation to represent the inherent noise of the system. The model for all t = 1, ..., T
with T > 0, is expressed as follows:

yt = Mq (U (xt)) + nt (2.5)

This model establishes a connection between the acquired image yt ∈ RM and the true image xt ∈ RL,
which cannot be directly observed. Instead, the true image xt is accessed only through the model
and lies on a grid L that is qN -times finer than the acquisition space M . This relationship holds when
L = qNM . Additionally, the model consist of a convolution operator U : RL 7→ RL, which represents the
PSF of the system, and a downsampling operator Mq : RL 7→ RM which returns the sum of every qN

non-overlapping sequential pixel blocks. Finally, the noise component nt describes the inherent noise
of signal-independent measure noise with the additional model errors. This is represented as vector of
identical distributed (i.i.d.) Gaussian random variables with zero mean and a constant variance.

Going one step further, in the context of a real microscopy setting, we introduce a background repre-
sented by the vector b ∈ RM to the model. This background represents the contributions from out-of-
focus (and ambient) fluorescent molecules and coexists with signal-dependent photon noise. Thus, a
more accurate model is given by:

yt = P (Mq (U (xt)) + bt) + nt (2.6)

where, w ∈ RM , P(w) represents the realization of a multivariate Poisson variable with parameter w.
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2.1.4. Super-Resolution Techniques
The spatial resolution of fluorescence microscopes is inherently limited by diffraction. Overcoming this
barrier is crucial since many biological structures are smaller than the diffraction limit (see figure 2.4).
Super-resolution (SR) techniques have been developed to surpass this limit and achieve higher spatial
resolutions, each with its own strengths and weaknesses. In this thesis, we classify these techniques
into two categories:

1. Illumination- and Single-Molecule-based Methods: require specific microscope configurations.
2. Fluctuation-based Methods: work with standard microscope setups.

Specific configurations refer to setups needing complex hardware or specialized fluorophores (single-
molecule techniques typically use a widefield microscope). In contrast, standard setups involve simple
hardware and standard fluorophores. In this subsection, we will explore these SR methods in more
detail.

Figure 2.4: Beyond the diffraction limit, numerous important biological entities exist, representing the intricacies of life.

Illumination- and Single-Molecule-based Super-Resolution Methods
The first SR technique, Stimulated Emission Depletion (STED) microscopy[2], was introduced in the
late 20th century, overcoming the diffraction limit by using a depletion light beam to shrink the PSF. This
minimizes the illumination area, improving the spatial resolution to less than 50 nm laterally. However,
STED techniques have drawbacks, including a slow acquisition process and the need for an expensive
setup and special fluorophores.

Following STED, Structured Illumination Microscopy (SIM) emerged[3], utilizing patterned illumination
for high temporal resolution with fast acquisitions. Despite sacrificing spatial resolution and requiring
a specific illumination setup, SIM proved valuable. Random Illumination Microscopy (RIM)[13] is pro-
posed as a robust alternative to SIM but provides a similar SR gain[14].

Single Molecule Localization Microscopy (SMLM) techniques, including Photo-Activated Localization
Microscopy (PALM) [4] and Stochastic Optical Reconstruction Microscopy (STORM) [5], provide nano-
metric resolution, achieving spatial resolution up to 10 nm using a widefield microscope. These meth-
ods generate SR images by sequentially activating and accurately localizing individual molecules over
typically millions of frames. While advanced software enables precise detection and localization, these
techniques require specialized fluorophores, higher laser power, and rely on capturing a vast number
of frames. This leads to limitations in temporal resolution and increases the risk of sample damage [15]

Fluctuation-based Super-Resolution Methods
Fluctuation-based super-resolution methods utilize the independent fluctuations of fluorophores (see
figure 2.6) to generate a super-resolution (SR) image, typically using hundreds of frames. These meth-
ods can also operate in lower illumination environments with reduced laser power, thereby minimizing
the risk of sample damage.

One notable technique is Super-resolution Optical Fluctuation Imaging (SOFI) [8]. This method reduces
the size of the point spread function (PSF), thereby improving spatial resolution almost proportionally
to the order of cumulants used, with an improvement factor of

√
n [16]. Additionally, through decon-

volution or Fourier reweighting, resolution can be improved up to n-fold. However, using higher-order



2.1. Fluorescence Microscopy 7

Figure 2.5: (a) Highlighting variations in the outcomes of SIM, STED, and SMLM microscopy through illustrated boxes
delineating the areas of interest, accompanied by a 5µm scale bar. (b) Close-up view of a specific sample region, indicated by

a scale bar of 0.5µm. (c) Additional region of interest, presented with the same scale bar.

cumulants in SOFI is limited because they can amplify variations in molecular brightness and blinking
behavior, which can adversely affect resolution. The theoretical model underlying SOFI is based on the
statistical properties of a fluorophore that blinks both temporally and spatially in a correlated manner,
which we discuss in detail in Section 3. An extension of SOFI, known as balanced SOFI (bSOFI) [17],
combines multiple cumulant orders to achieve better resolution compared to SOFI. While bSOFI has
demonstrated a 4.6-fold resolution improvement (64 nm), it still falls short of the levels achieved by
SMLM methods such as PALM and STORM.

Another method, Super-Resolution Radial Fluctuations (SRRF) microscopy[9], achieves SR by assess-
ing local symmetry in each frame of a temporal stack of diffraction-limited frames. Using the symmetry
of the microscope’s PSF, SRRF calculates the degree of local gradient convergence, termed ’radiality’,
on a sub-pixel basis across the entire frame. Close to a fluorescent molecule, this results in high radi-
ality, while a displaced sub-pixel exhibits low convergence due to the absence of a nearby molecule.
Generating a single SR image involves temporal analysis through estimating a time average or higher-
order statistical analysis, similar to SOFI. It can achieve a 5-fold spatial resolution improvement (60
nm) with a temporal rate of 1 second. An extension of SRRF is enhanced SRRF (eSRRF)[18], which
uses automated data-driven parameter optimization, including indicating how many frames one needs
for optimal reconstruction. This enables an ease of use over a wide range of microscope techniques.
However, SRRF often introduces reconstruction artifacts and is not based on any theoretical statis-
tics.[11].

Figure 2.6: (a) The temporal characteristics of a pixel expressed in fluorescence intensity, acquired at a frequency of 40
frames per second (fps). (b) The various states of a fluorescent molecule.
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2.1.5. Live-cell Imaging
Live-cell imaging within the realm of SR techniques aims to capture detailed spatio-temporal information
while minimizing sample damage. This imaging can be conducted through post-processing methods,
such as SOFI or SRRF, or in real-time [1]. SOFI requires simple hardware, such as a widefield micro-
scope, and has the potential to achieve more than a 2-fold resolution improvement when using higher
cumulant orders. Additionally, users can switch between SOFI and single molecule localization mi-
croscopy (SMLM), allowing for enhanced resolution in both live and fixed samples. Real-time imaging
significantly shortens the feedback loop, facilitating quicker adjustments and seamless transitions be-
tween modalities. Figure 2.7 illustrates the balance between sample health, temporal resolution, and
spatial resolution in live-cell imaging.

Figure 2.7: Live-cell imaging in fluorescent microscopy poses distinct challenges that demand a delicate balance between
sample health, temporal resolution, and spatial resolution to accurately measure the biological sample.
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2.2. Deep Learning
In 1957, the perceptron was developed by Frank Rosenblatt, and it became the fundamental build-
ing block in the field of machine learning and artificial neural networks today. It is a discriminative
model, meaning that it directly models the decision boundary between the different classes in the input
space[19]. As an example, assume we have two linear separable classes w1 and w2 such that there
exist a decision boundary f(x) = 0 that separates these classes, as given by:

wT x+ w0 > 0 if f(x) = +1

wT x+ w0 < 0 if f(x) = −1
(2.7)

The perceptron itself is given by the equation:

f(x) = σ(wT x+ w0) (2.8)

Here, σ is the sigmoid activation function, mapping real numbers between 0 and 1. This non-linear
activation function plays a crucial role in the perception as it enables the algorithm to learn complex
non-convex relations in the data. To learn these patterns, the weights w need to be updated according
to the data, and therefore, a cost function is established, namely the perceptron cost, defined as:

J(w) =
∑
x∈Y

δx(wT x+ w0) (2.9)

where Y is the subset of training vectors that are misclassified by the perceptron defined by the weights.
The variable δx is chosen so that δx = −1 if x ∈ w1 and δx = +1 if x ∈ w2. The goal is to minimize
the cost function J(w) to achieve a good fit with our training data; in machine learning terms, this is
equivalent to achieving generalization. To update our weights, gradient descent is used, see equation
2.10, where η is the learning parameter that determines the step size in weight updates. This procedure
is done iteratively, where the gradient goes down the slope until convergence is achieved, leading to
the effective separation of the two classes.

w← w− η · ∂J(w)
∂w

(2.10)

Figure 2.8: The basic perceptron model: a linear combination of input features and their respected weights, summed up with
the bias, followed by the activation function sigma.

However, a single perceptron is limited in its learning capabilities. For example, it cannot learn the
XOR problem, but if multiple connected perceptrons are used, a so-called multi-layer perceptron, it
is possible to learn the XOR problem[20]. Here, we briefly introduced the fundamental building block
of neural networks, namely the perceptron. In this section, we will further discuss the artificial neural
networks (ANN), convolution neural networks (CNN), and recurrent neural networks (RNN), which lay
the foundation of deep learning in the context of this thesis.
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Input Layer ∈ ℝ⁸ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ⁶ Output Layer ∈ ℝ¹

Figure 2.9: Example of a feedforward neural network with 2 hidden layers and its corresponding input and output layers.

2.2.1. Artificial Neural Networks
Solving complex non-convex problems using just a single perceptron is not feasible. However, with fully
connected perceptrons, it becomes possible. These networks are known as multilayer perceptron, or,
in modern-day terminology, feedforward neural networks[20]. They are universal learning algorithms
where the goal is to learn f(x) from f∗(x). In practice, the algorithm learns an approximation, f̂(x),
of the true function f∗(x). By introducing deeper connections in the network, known as hidden layers,
the algorithm can achieve a better approximation of f∗(x). Yet, this improvement comes with the risk
of overfitting, especially when there is insufficient training data. To train the network, the training data
is parsed through the network in process called the forward step, where the loss of the network is cal-
culated. Based on this loss function, the weights and biases are updated to minimize it, a procedure
known as back-propagation. Back-propagation involves applying the chain rule from calculus to com-
pute the gradients in all the neurons. For example, assume that x ∈ RM , y ∈ RN , g maps from RM to
RN , and f maps from RN to R. Given that y = g(x) and z = f(y), the procedure becomes

∂z

∂xi
=
∑
j

∂z

∂yj
· ∂yj
∂xi

(2.11)

It is assumed here that the whole training set can fit in the memory of the system, but more often than
not, this is not the case. Therefore, minibatches are used, which are drawn i.i.d. from the dataset.
Then, again, the forward pass and backpropagation are applied to this minibatch and the weights and
biases are updated according to the batchgradient. This procedure is called stochastic gradient descent
(SGD). However, due to the i.i.d. drawn mini-batches, the learning process is not very stable; namely,
it has a more stochastic character. SGD has a fixed learning rate, which might lead to suboptimal
convergence or slow learning in certain parts of the parameter space. Therefore, other techniques
exist, such as RMSProp or Adam, which attempt to overcome this issue by dynamically changing the
learning rate and applying momentum to the gradient, thus enabling a faster and more stable learning
process. However, it does not guarantee you have better generalization performances[21].

2.2.2. Convolutional Neural Networks
Convolutional neural networks (CNNs) are a special kind of neural networks used to process images,
making use of the mathematical operation convolution, which blends two functions together. In CNNs,
this involves convolving the first argument, referred to as the input, with a kernel where the weights
are learned, and the output of this convolution is referred to as the feature map[20]. CNNs typically
exhibit sparse connectivity because the kernel is smaller than the input. This implies that for process-
ing images, it requires less memory and fewer computational operations compared to a feedforward
network, where every pixel is considered a dimension. The procedure of convolution involves sliding a
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kernel over the input tensor, performing element-wise multiplication with kernel weights and summing
the results to procure the output feature map, figure 2.10 illustrates this principle.

Figure 2.10: An example of a 2D convolution showcasing the transformation of the input tensor through the kernel.

A CNN usually consists of multiple layers, where each layer typically having three stages. The fist stage
is the convolution stage. The second stage is the activation stage, where the feature maps are run
trough a nonlinear activation function, such as the rectified linear activation function. The third stage is
the pooling layer, which serves as a form of downsampling. For example, in max pooling, it partitions the
input into a set of non-overlapping rectangles and, for each such sub-region, outputs a maximum value.
Thereby, reducing the spatial dimensions, hence downsampling. This helps in reducing computational
complexity and also provides a degree of translation invariance, meaning small translations of the input
have no effect on most of the pooled outputs.

Max-Pool Convolution + ReLU Max-Pool Dense

8@128x128

8@64x64

24@48x48
24@16x16

1x256

1x128

Figure 2.11: Here’s an example of a CNN: the first layer is the max pooling layer, which reduces the spatial dimensions by half.
The second layer is the convolution layer, where 8 convolution filters with a kernel size of 16x16 are used with an additional

non-linearity function of type ReLU. This is followed by another max pooling layer to decrease the spatial dimensions again by
half. The output can then be used in a feedforward network for tasks such as image recognition.

2.2.3. Recurrent Neural Networks
For some machine learning problems, there is a need to process sequential information to understand
the underlying patterns. For example, this can involve sequences of words, where the model attempts
to predict the next word, or weather predictions, where the model processes a sequence of weather
data to forecast whether it will rain in the next hour. A recurrent neural network (RNN) is a type of neural
network specialized in processing sequences of values x1, ..., xτ [20]. In RNNs, there are primarily three
design patterns: one-to-many, many-to-one, and many-to-many, as depicted in Figure 2.12. These
networks are challenging to train not only because they need to process sequences sequentially but
also due to the issues of exploding or vanishing gradients during backpropagation. These problems
can make the training process unstable and may result in the network being unable to effectively learn
long-term dependencies. To mitigate these issues, different architectures have been proposed, such
as LSTM and GRU, although they are not completely immune to these problems. They are similar to
each other, but the GRU uses fewer parameters and only two gates: the update gate ut and the reset
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Figure 2.12: The rectangles represent the vectors, and arrows depict a linear transformation, i.e., matrix multiplication. The
corresponding colors for the vectors are as follows: the input vector is red, the output vectors are blue, and the green vectors

represent the RNN’s state.

gate rt. The gate ut determines the update speed of the hidden state, while the gate rt decides how
much information to forget by resetting parts of the memory. In contrast, the LSTM includes three gates:
the forget gate ft, the input gate it, and the output gate ot. The gate ft determines how much of the
previous information to forget, the gate it determines how much information to write into memory, and
the gate ot decides the output based on the current information [22].

Figure 2.13: Architecture of the LSTM (left) and GRU (right).

2.2.4. Autoencoders
The goal of an autoencoder is to learn how to copy the message from the input to the output. It consists
of two main parts: an encoder that maps the message from the input to the hidden layer, h, which
represents a code, which is a representation of the input, and a decoder that maps the code to the
output, attempting to reconstruct the original message [20]. In formal terms, the encoder function
b = f(x) and a decoder that produces r = g(h). The architecture is visualized in figure 2.15.

Figure 2.14: Architecture of an autoencoder, representing the two main parts of encoder and a decoder.

The goal of an autoencoder is not simply to learn g(f(x)) = x everywhere, but rather to approximate
it. This is achieved by reducing the dimensionality of the hidden layer h relative to the input and output
layers, a process referred to as the bottleneck. This constraint forces the network to learn only the most
useful representations of the data, discarding noise or irrelevant features. Autoencoders come in vari-
ous types, such as denoising autoencoders, which are designed to reconstruct clean input from noisy
ones, and variational autoencoders, which introduce a probabilistic framework. These architectures
are widely used in applications like dimensionality reduction, anomaly detection, and image denoising.
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2.2.5. U-Net
The U-Net architecture [23] was developed to meet the demand for efficient and accurate image seg-
mentation in biomedical applications, especially when dealing with small datasets, such as those found
in cell tracking and tissue analysis. This architecture is composed of a contracting path on the left and
an expansive path on the right. The contracting path consists of a series of convolutional operations
that gradually reduce the size of the feature space. It employs the repeated use of two unpadded 3×3
convolutions, each followed by a rectified linear unit (ReLU), and includes a 2×2 max pooling operation
with a stride of 2 for downsampling. At each step of downsampling, the number of feature channels
is doubled, and skip connections pass features from the contracting path to the corresponding layer in
the expansive path, preserving crucial spatial information.

Conversely, the expansive path upsamples the feature maps at each step using a 2×2 transposed con-
volution (upsampling) that reduces the number of feature channels by half, followed by a concatenation
with the corresponding cropped feature map from the contracting path. This process is followed by two
3×3 convolutions, each accompanied by a ReLU activation. Cropping is necessary to account for the
loss of border pixels that occurs during the convolution operations. In the final layer, a 1×1 convolution
is applied to map each 64-dimensional feature vector to the specified number of classes. In total, the
network comprises 23 convolutional layers.

Originally, the U-Net architecture was designed for biomedical tasks. Due to its simplicity and flexibility,
it has been extensively used in various domains, including super-resolution microscopy [24, 25].

Figure 2.15: The U-Net architecture, illustrated for a 32×32 pixel resolution at the the lowest level. Each blue box in the
diagram represents a feature map with multiple channels, which is given above the each box. The dimensions (width and

height) of the feature maps are displayed at the bottom left corner of the box. The white boxes indicate feature maps that have
been copied from the previous layers. The arrows in the diagram illustrate the various operations, such as convolutions,

pooling, and upsampling.



3
Understanding Super-resolution

Optical Fluctuation Imaging (SOFI)

SOFI (Stochastic Optical Fluctuation Imaging) is a super-resolution technique that leverages the sta-
tistical relationship between blinking emitters over space and time. This technique effectively reduces
the convolved PSF in the image by a factor of

√
n for a given order of SOFI, thereby enhancing the

spatial resolution of the image[26].

One might wonder why we do not simply deconvolve the PSF directly from the image. While this ap-
proach might seem straightforward, it is actually quite complex due to the ill-posed nature of the inverse
problem, as discussed in Chapter 2.

Other techniques, such as Lucy–Richardson deconvolution[27], use iterative procedures to recover
the underlying structure. However, determining the optimal number of iterations needed is challenging,
and there is no guarantee that the resulting image accurately represents the true structure.

This chapter delves into the theoretical framework of SOFI, exploring the functioning of auto-cumulant,
their extension to cross-cumulants, and the processes of flattening and linearizing the cumulants.

3.1. Auto-cumulant
Let us assume a continuous two-dimensional framework with a sample that consists of N independent
emitters whose brightness is time-dependent (figure 3.1(b)). The resulting time-dependent fluores-
cence image at position r, which is convolved with the system’s PSF, is given by equation 2.4. It is
important to note that it is assumed here that the positions of the emitters remain static throughout the
entire measurement, and any temporal changes are only caused by blinking (figure 3.1(c)).

Given that a measurement is taken by a widefield microscope, it involves a time average over the y(r, t)
image. This image is the sum of averaged contributions from each emitter, convolved with the PSF. On
the other hand, SOFI derives the image from correlations of time-dependent signal (figure 3.1(d)). The
second order of SOFI performs auto-correlation on the fluorescence intensity and is given by:

G2(r, τ) = 〈δy(r, t+ τ) · δy(r, t)〉 =
N∑

k=1

U2(r − rk) · ϵ2k · 〈δsk(t) · δsk(t+ τ)〉 (3.1)

Where rk is the emitter location, ϵk is the constant molecular brightness, sk(t) is the time-dependent
component with values between 0 and 1. Furthermore, 〈·〉 denotes time averaging, and δy(t) = y(t)−
〈y〉 describes the fluctuations, i.e., the difference with respect to the average intensity at a given time.
The assumption here is that the emitters fluctuate independently from each other, meaning that the
emissions of the emitters are uncorrelated in time. As a result, cross terms proportional to the product

14



3.2. Cross-cumulant 15

of two independent emitters intensities 〈δsi(t) · δsj(t+ τ)〉, for i 6= j, average to zero, and equation 3.1
contains only a single sum over emitters.

Figure 3.1: (a) Sample measurement with a widefield fluorescence microscope. (b-e) Principle of SOFI. (b) Emitter distribution
in the object plane, which blink independently over time from each other. (c) A time laps of images, where each emitter in the
image is convolved with the PSF of the system. (d) Each pixel has an intensity time trace of the sum of individual emitter signal
whose PSFs reach that pixel. Auto correlation is then performed (second-order) from the fluctuations at each pixel. (e) At last,
the SOFI intensity value is assigned for each pixel, which is given by the integral over the second-order correlation function.

The resulting SOFI image has resolution improvement of a
√
2.

In equation 3.1, it can already be observed that a squared PSF results in a
√
2 improvement in spatial-

resolution making the appearance of sharper features in the image (figure 3.1(e)). Hence, we have
super-resolution.

In more generalize terms, for the n-th order SOFI is given by:

kn(r, τ1, ..., τn−1) = Un(r − rk) · ϵnk · wn,k(τ1, ...τn−1) (3.2)

where wn,k(τ1, ...τn−1) is the single-emitter cumulant of the n-th order. Ultimately, achieving a spatial
resolution improvement of a

√
n.

3.2. Cross-cumulant
We can also extend to cross-cumulant-based resolution enhancement obtained from spatio-temporal
correlations for SOFI. Consider a second-order cross-cumulant between the positions r1 and r2 for a
Gaussian-shaped PSF[26]:

k2(r1, r2, τ) =

N∑
k=1

U(r1 − rk) ·U(r2 − rk) ·wk(τ) = U

(
r1 − r2√

2

) N∑
k=1

U2

(
r1 + r2

2
− rk

)
·w2,k(τ) (3.3)

where w2,k(τ) is the single-emitter cumulant of the second-order.

What is interesting about the expression above is that it shows a cross-cumulant between r1 and r2, re-
sulting in a signal at the geometric center of the points

(
r1−r2

2

)
. Secondly, the expression is weighted by

a distance factor U
(

r1−r2√
2

)
. This is because emitters fluctuate independently, and only points within

the same emission PSF can contribute to the same emitter, resulting in non-zero correlation. The
significance of this geometric centered signal becomes apparent when considering a camera sensor
with a set of a finite-sized pixels. Performing cross-cumulant on neighboring pixels creates additional
”virtual pixels”, thereby increasing the pixel density[10], as can be seen in figure 3.4. Unlike simple
interpolation, these pixels carry additional information. However, if auto-cumulants are performed in in-
creasing orders, the resolution improvements will eventually be limited by the pixel size. This limitation
is why cross-cumulants are preferred for reconstructing the super-resolved SOFI image, avoiding the
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constraints imposed by auto-cumulants.

In general, calculating cross-cumulants involves a computationally intensive formula, requiring sums
over partitions. This complexity arises from combining various pixel to derive a new value, rendering
fast recursive methods impractical. The equation utilized for cross-cumulant calculation is given by[10]:

Kn =

(
−→r =

1

n

n∑
i=1

−→ri

)
=
∑
P

(−1)|P |−1(|P | − 1)!
∏
p∈P

〈∏
i∈p

F (−→r )i

〉
t

(3.4)

Where P represents the total number of possible partitions, while p signifies the individual parts within
each partition. Furthermore, i serves as the index for various pixel positions considered during the
computation, where F represents the stack of images comprising the contributing pixels. The cross-
cumulant methods enables the creation of virtual pixels based on the cumulant order. These virtual
pixels can be generated in a specific pattern from the original pixels, either be combinations with rep-
etitions or without repetitions[28]. In figure 3.2, the key differences between using repetitions and not
using them are discussed. Additionally, figure 3.5 outlines the necessary steps to calculate the n-th
order SOFI cross-cumulant, providing insight into how equation 3.4 is performed step by step.

Figure 3.2: Fourth-order cross-cumulant combinations for a pixel i with or without repetitions. Various combinations within the
pixel’s neighborhood matrix can generate 15 inter-pixels between the original pixel matrix (ABCD). Combinations leading to the

same inter-pixel are averaged. (a) For a 2× 2 neighborhood, starting with A and allowing repetitions, all combinations are
computed and easily expandable to any order (n). However, shot noise suppression is limited without non-zero time lags due to
autocumulants. (b) In a 4× 4 neighborhood of pixel i, combinations can generate inter-pixels in a circular arrangement, leading

to better shot noise suppression by excluding repetitions (autocumulants). Only combinations with the shortest sum of
distances to their corresponding inter-pixels are considered for computational efficiency.

3.3. Flattening and Linearization
Up until now, the single-emitter cumulant of the n-th order, wn,k, has not been discussed in greater
detail. To understand it better, consider a sample composed of M independently emitter fluctuations
and assuming a simple two-state blinking model with τon and τoff. The cumulant order n without time-
lags can be interpreted as follows[17]:

kn(r⃗) ∝
M∑
k=1

ϵnkU
n(r⃗ − r⃗k)fn(ρon, k)

≈ ϵnfn(ρon)

M∑
k=1

Un(r⃗ − r⃗k)

(3.5)
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where ϵn represents spatial distribution of the molecular brightness and ρ = τon
τon+τoff

is the on-time
ratio. U(r⃗) is the system’s PSF and fn(ρon) is the n-th order cumulant of a Bernoulli distribution with
probability ρon. Note that in equation 3.3, wn,k has become fn(ρon). The n-th order cumulant of a
Bernoulli distribution can be written as:

f1(ρon) = ρon

f2(ρon) = ρon(1− ρon)

...

fn(ρon) = ρon(1− ρon)
∂fn−1

∂ρon

(3.6)

It can be observed that for higher-order cumulants, there is a non-linear response to the molecular
brightness levels, as shown in figure 3.3.

Figure 3.3: Second to sixth order polynomials of the on-time ratio as a function of the on-time ratio.

These amplified brightness levels can be corrected without compromising resolution[17]. To perform
this correction, the cumulants must be deconvolved, allowing high-frequency components to be re-
covered. This is typically done using Lucy–Richardson deconvolution or Fourier reweighting, which
enables an n-fold resolution improvement when the PSF is raised to the n-th power. In this case, Lucy–
Richardson deconvolution is used, as it provides the most likely object representation given an image
with a known PSF and assuming Poisson-distributed noise, typically requiring 10-100 iterations.

The standard way to linearize the brightness response[29] is to take the n-th root of the deconvolved
n-th order cumulant image ĝn.

ḡ = ĝ
1
n (3.7)

where ḡ is the linearized cumulant image.

An other method to linearize is based on the on-time ratio[17], where the correction factor for decon-
volved n-th order cumulant image ĝn is 1/fn(ρon), which can be written as:

ĝn
fn(ρon)

= ĝ
log10(ĝn/fn(ρon))

log10(ĝn)
n (3.8)

Here, instead of taking the n-th root, the adaptively linearized cumulant image is:

ḡn = ĝ
1
n

log10(ĝn/fn(ρon))
log10(ĝn)

n (3.9)

In both methods, to reduce amplified noise and the creation of deconvolution artifacts, small values
(typically 1-5% of the maximum value) are truncated and the image is reconvolved with U(n−→r ), where
U(−→r ) is the systems PSF and n the cumulant order. This results in an SR image with an approximate
n-fold improvement in spatial resolution compared to the diffraction-limited image.

Adaptive linearization requires a good estimation of molecular parameters, thus only making sense if
a reliable fourth-order SOFI is available.
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Figure 3.4: The principle of SOFI with cross-cumulants in a one-dimensional example. (a) One-dimensional profile extracted
from the a series of images featuring two blinking emitters. (b) Corresponding one-dimensional intensity time trace. (c) Second
order cross-cumulant are computed from these traces, primarily focusing on zero-time lag (τ = 0). Interleaving pixels are also
determined through this process. (d) The resulting widefield image shows the temporal average of intensity traces. (e) The 2nd
order cross-cumulants for τ = 0. (f) the resulting 2D SOFI images up to the 4th order cumulant order, following flattening and

linearization.
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Figure 3.5: The process of SOFI for cross-cumulant calculation. The n-th order cross-cumulant Kn for pixel i is determined by
summing weighted contributions from all possible combinations of n pixels within a set G. The location of pixel i is determined
by the geometric mean of the n pixels in set G. This method allows the calculation of the n-th order cross-cumulant for any

large grid of pixels by varying the sets of n pixels used.



4
SOFI Architecture

The aim is to reconstruct a SOFI-based SR image while using the least amount of LR images to achieve
similar spatial resolutions and gain temporal resolution. The network we use is mostly inspired from
the work of [30] due to its simple design, which has fewer trainable parameters compared to the U-
Net architecture[23] and incorporates both spatial and temporal information. We modified this network
and used it to accelerate cross-cumulant version of SOFI. This section introduces our SOFI model
architecture and the used loss function. Different parts of the architecture, namely the encoder, fusion,
and decoder stage are presented in a 3D representation.

4.1. Architecture
To learn a mapping from low-resolution (LR) images to a single SR image is called multi-image super-
resolution (MISR). We define the LR image of a scene li ∈ RC×H×W , where C, H, and W represent
depth, height, and width, respectively. The high-resolution (HR) image is defined as Y ∈ RC×γH×γW ,
where γ represents the up-sampling factor, approximately 1.984 for 2nd order. The channel depth C
is 1 within the context of this research, as it represents gray scale images. The model is formulated as
Ŷ = fγ

θ,α,β ({l1, ..., lN}), where Ŷ is the predicted SR image, N represents the number of LR images,
and θ, α, and β represents the parameters of the encoder, fusion, and decoder stages within the
architecture. An overview of the architecture can be seen in figure 4.1, which depicts the different
stages. The main reasoning behind them is as follows:

1. Encoder : Encodes relevant latent representations from the LR images.
2. Fusion: Extracts correlated blinking information across the latent representations and averages

the feature maps.
3. Decoder : Reconstructs the HR image.

In the following sub-sections, the stages are explained in detail.

4.1.1. Encoder
The encoder consist of two convolutional layers and two residual blocks[31]. Each block combines
the two convolution layers, similar to [32], with Parametric ReLU activation functions[33]. Furthermore,
3 × 3 kernels are used for the convolution layers with 24 filters producing 24 feature maps for each
frame at the input. The output of the encoder is given by ri = Encoder (li), where ri ∈ R24×H×W

represents the latent representation of the input frame li. With a total of N LR frames to process, the
encoder stage becomes:

(ri)
N
i=1 = Encoder

(
(li)

N
i=1

)
. (4.1)

4.1.2. Fusion
The LR frames contain blinking emitters, and leveraging these blinking statistics requires information
flow between these frames within the model. This process resembles how RNNs process sequential

20
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Figure 4.1: Overview of the architecture which depicts the encoder, fusion, and decoder stages.

data, but in the context of CNNs. An example of such a model designed for processing these frames
is the ConvGRU model[34], which incorporates a GRU architecture[20]. In the ConvGRU, the fully-
connected layers are replaced with convolutional layers in both the input-to-state and state-to-state
connections. The hidden state, ht, within the ConvGRU is recurrently connected to its adjacent se-
quential states. Updating the hidden state involves a convolutional operation with the input feature
map, xt, and the previous hidden state, ht−1, according to the following procedure:

ut = σ (Wi ∗ [xt, ht−1 + bi]) (4.2a)

rt = σ (Wj ∗ [xt, ht−1 + bj ]) (4.2b)

ct = tanh (Wh ∗ [xt, rt � ht−1] + bh) (4.2c)

ht = (1− ut)� ht−1 + ut � ct (4.2d)

Where W and b represents the weights and biases of the convolutions kernels, respectively. The
symbols ∗ and � denote the mathematical operations of convolution and element-wise multiplication,
respectively.

ConvGRU can be described as fα : RN×24×H×W 7→ RN×ChGRU ×H×W , which converts the N input rep-
resentation (ri)

N
i=1 to N hidden representations (hGRU

i )Ni=1. After which, global average pooling (AVG)
is applied on the first dimension to return havg ∈ RChGRU ×H×W .

To extract more complex features across larger areas in the frames, the fusion stage fα can be stacked,
denoted as hGRU l with l = 1, ..., L, where L is the number of layers. The fusion stage is defined as
follows:

(hi)
N
i=1 =

(
hGRUL

i

)N
i=1

= fα (r1, ..., rN ) (4.3a)

havg = GAP (h1, ..., hN ) (4.3b)

In the context of this research, L is 2 and ChGRU equals 24.

4.1.3. Decoder
In this stage, the combined representations havg are upsampled and averaged into a tensor Ŷ of the
same shape as the SOFI image Y . The decoder stage is defined as:

Ŷ = decoderγβ (Havg) ∈ Rc×γH×γW (4.4)

It consists of a deconvolution layer [35], followed by two convolution layers with Parametric ReLU ac-
tivation functions for minor adjustments. Subsequently, a 1 × 1 convolution layer projects the output
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feature map R24×γH×γW into the SOFI image space of dimension R1×γH×γW . The two convolution
layers use 3× 3 kernels. The deconvolution layer is set according to the SOFI order experiment.

4.2. Loss Function
TheMean Absolute Error (MAE) and theMean Squared Error (MSE) are popular loss functions in image
SR reconstruction[36], which primarily focuses on the spatial domain, promoting pixel-wise estimates
during training. However, SR is closely associated with the frequency domain; in our case, HF content
above the Nyquist-frequency ηc must be recovered from a set of LR frames li ∈ R1×H×W to recon-
struct the HR SOFI image Ŷ ∈ R1×γH×γW . Unlike the spatial domain, where these missing frequency
cannot be fully separated, they can be in the Fourier domain. Therefore, we adopted the loss function
proposed in [37], with the exception that we do not normalize the frequency components. Frequency
normalization could downweight HF components relative to LF ones, which would be detrimental to
preserving fine details in the SR task. Our loss function is defined as follows:

LF = LFA
+ LF∠ (4.5a)

LFA =
2

UV

U/2−1∑
u=0

V−1∑
v=0

∣∣∣|Ŷ |u,v − |Y |u,v∣∣∣ (4.5b)

LF∠ =
2

UV

U/2−1∑
u=0

V−1∑
v=0

∣∣∣∠Ŷu,v − ∠Yu,v

∣∣∣ (4.5c)

Here, both SR images Ŷ and Y are transformed into the Fourier space by applying fast Fourier trans-
form (FFT), where the absolute amplitude difference LFA and absolute phase difference LF∠ are cal-
culated. Due to symmetry in the Fourier space (Hertimitian symmetry), only half of the spectral com-
ponents is considered. The amplitude and phase component in the transformed image Xu,v can be
determined as follows:

|F{x}u,v| = |Xu,v| =
√
R{Xu,v}2 + I{Xu,v}2 (4.6a)

∠F{x}u,v = ∠Xu,v = arctan

(
I{Xu,v}
R{Xu,v}

)
(4.6b)

The discrete Fourier transform of the image is calculated as follows. Note that we do not normalize the
frequency components:

F{x}u,v = Xu,v =

H−1∑
h=0

W−1∑
w=0

xh,w · e−i2π(u h
H +v w

W ) (4.7)

Where the image x ∈ RC×H×W is transformed into the Fourier space X ∈ CC×U×V .



5
Datasets

In this chapter, we discuss how the datasets were created, as there are no publicly available datasets
for SOFI. First, we explain how the synthetic microtubules dataset was generated. Finally, we describe
how we created a dataset from real microscope images.

5.1. Synthetic Data
To create the synthetic dataset, the SOFI simulation tool1 and the SOFI package2 are used to generate
the low-resolution (LR) frames and the corresponding high-resolution (HR) SOFI images in Matlab. The
pipeline used to generate this dataset is shown in figure 5.1. Note that from the set of 100 frames, only
the first 25, 20, etc., are used as input for our model and the SOFI image as target.

Raw Frames

100

Target

SOFI second-order

Lore um Lore um

Figure 5.1: Pipeline on how the synthetic dataset was generated using the SOFI simulation tool and SOFI package.

5.1.1. Simulation
The uniqueness of the SOFI simulation tool lies in its use of the real physical properties of an sCMOS
camera [38], combined with a fluorescent microscope model. With this tool, one can generate movies
that are more realistic compared to other simulations, which simply add Gaussian or Poisson noise.
A real sCMOS-based noise map can be established from measurements [39], consisting of an offset
map, variance map, and photon response map. These maps introduce noise to the frames generated
by our fluorescent microscope model, in accordance with the physical characteristics of the sCMOS
camera. By combining these with a fluorescence emitter model and an optics model, we can create
more realistic simulations.

The camera model we use is called theWilly FPS_100, and the following general simulation parameters
are applied:

1https://github.com/GrussmayerLab/Sofi_Simulations.git
2https://github.com/GrussmayerLab/sofipackage.git
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Table 5.1: General parameters of the SOFI simulation tool.

fps rectime [s] fwhm_psf [nm] sbr

100 1 220 [15, 15, 15, 15]

Here, fps stands for frames per second, rectime is measurement duration, fwhm_psf represents the
system’s point spread function (PSF) in nanometers, and sbr is the signal-to-background ratio.

For the fluorescence emitter model, the following parameters are used:

Table 5.2: Parameters settings of the fluorescence emitter model of the SOFI simulation tool.

dens [emitter/µm2] ontime [ms] offtime [ms] avbleach [s] Ion [signal/emitter/frame]

5000 [10, 10, 10] [600 1200 2400] 500 [100, 80, 60, 40]

Where dens represents the density of the emitters, ontime signifies the on-time duration of the emitters,
offtime refers to the off-time duration of the emitters, avbleach denotes the average bleaching, and Ion
represents ionization, contributing to the average signal per emitter per frame.

With these settings, the microtubules dataset was simulated based on the physical microtubule model
from [40]. The model simulates the random growth and distribution of microtubules within a 2D binary
grid, where ones represent the microtubule structure and zeros represent the background. It gener-
ates a random number of microtubules, each starting from a random position and extending in random
directions while following physical constraints such as bending stiffness and length. The growth con-
tinues step-by-step until the microtubule reaches a predetermined length or hits the edge of the field of
view. The output is a collection of paths representing the trajectories of individual microtubules in the
2D binary grid.

For the 2D binary grid, a grid size of 2560 by 2560 pixels with a pixel size of 10 nm was used, and
the number of microtubules was randomly set between 20 and 100. Emitters were then randomly
distributed over the grid, but only where the grid indicated a microtubule structure (a one in the grid).
These emitters exhibit the blinking characteristics outlined in table 5.2. A one-second movie with a
frame rate of 100 frames per second was captured using these blinking emitters. The movie was then
convolved with the PSF, 10× downsampled, and further corrupted by the sCMOS noise map, resulting
in a simulated microtubule structure of 100 frames.

For the dataset, we simulated a range of emitter densities and signal-to-noise ratios (SNR) to mimic
real-world conditions. To achieve different emitter densities, the off time was adjusted: longer off times
resulted in sparser densities, while shorter off times resulted in denser distributions. Three different
emitter densities were generated, each with varying Ion values to produce different SNR levels. An Ion
value of 40 results in the worst SNR, while an Ion value of 100 provides the best SNR level. In total,
12 different sets of 100 frames with a size of 256×256 pixels were generated for one dataset, out of a
total of 212 datasets3, which includes a training set and test set.

5.1.2. SOFI
With the frames in place, the SOFI tool can be used to generate the second order SOFI SR images.
The following main settings were used in the SOFI tool:

Table 5.3: Parameters settings of SOFI tool.

blcor dcor orders subseqlength [frames] fwhm [µm] iter psfmodel pxy[nm]

0 0 [1:3] 100 1.1 10 ’gaussian’ 100

3More details of the script and settings can be found at https://github.com/GrussmayerLab/Sofi_Simulations.git

https://github.com/GrussmayerLab/Sofi_Simulations.git
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Here, blcor refers to bleach correction, which accounts for photobleaching, while dcor refers to drift
correction. Orders represents the SOFI orders, and fwhm stands for full width at half maximum, which
defines the PSF (point spread function) and is halved after second-order SOFI. Iter denotes the number
of iterations used during the flattening and linearization steps, where Richardson-Lucy deconvolution
is applied to deconvolve the PSF. Psfmodel specifies the type of PSF model. Finally, pxy indicates the
pixel size.

In the end, the training set consisted of 2000 samples, while the test and evaluation sets each con-
tained 500 samples. The frames were cropped to a size of 128×128 pixels, and the target images to
249×249 pixels. All images were normalized by dividing by the maximum value of the 16-bit range. An
example of simulated microtubules is provided in figure 5.2.
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Figure 5.2: Left to right: single diffraction-limited frame of a simulated microtubule at different emitter densities and SNR levels.
Here, the emitter density is 5000 emitters/µm2 with on times of 10 ms and off times of 600 ms, 1200 ms, and 2400 ms,

respectively, to simulate different densities. The SNR level is additionally set by the Ion value, which in this case is 100, 60, and
40, respectively. Each row represents different emitter densities and SNR levels of a microtubule structure; default linearized

SOFI SR image based on 100 frames; adaptive linearized SOFI SR image based on 100 frames. Scale bar: 1000 nm.

5.2. Microscopy Data
As real SOFI data is scarce, we applied random cropping of 128×128 patches and 90° or 270° rotations
to match the dataset size to that of the synthetic data. The dataset we used had the following minimum
requirements:

1. At least 4 fixed-cell datasets of the same cell type.
2. 3,000 or more frames.
3. High-density fluctuation data.
4. A field of view (FOV) of approximately 350×350 pixels or larger.

After which the SOFI tool is used to create the corresponding target images. Again, all images were
normalized by dividing by the maximum value of the 16-bit range. The following settings were used for
the microtubules and mitochondria. Additionally, background subtraction by Tekpinar et al. [41], was
applied for mitochondria data to reduce background artifacts in the SR reconstruction for SOFI.
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Table 5.4: Parameters settings of SOFI tool microtubules.

blcor dcor orders subseqlength [frames] fwhm [µm] iter psfmodel pxy[nm]

0 1 [1:3] 1000 4.2 10 ’gaussian’ 105

Figure 5.3: This dataset consists of fixed-cell microtubules in six sets. Three of the sets have a relatively high signal-to-noise
ratio (SNR) and dense fluorophores, while the other three have a relatively lower SNR and sparser fluorophores. The blue box

represents the area for random cropping, generating 128×128 fields of view (FOV). The upper three sets contain 10,000
frames, and the lower three sets contain 3,387 frames. All images have a resolution of 782×804 pixels. Scale bar: 1000 nm.

Table 5.5: Parameters settings of SOFI tool mitochondria.

blcor dcor orders subseqlength [frames] fwhm [µm] iter psfmodel pxy[nm]

1 1 [1:3] 5000 3.8 10 ’gaussian’ 105

Figure 5.4: This dataset consists of four sets of fixed-cell mitochondria, characterized by a relatively lower signal-to-noise ratio
(SNR) compared to the microtubules dataset, but with very dense fluorophores. Each set contains 10,000 frames. The image
resolutions, from top left to bottom right, are 441×413, 313×342, 372×338, and 330×424 pixels, respectively. Random cropping

is applied across the entire image. Scale bar: 1000 nm.
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Figure 5.5: The background subtraction algorithm significantly reduces the number of background artifacts. However, finer
mitochondrial structures are lost, making the remaining structure appear somewhat averaged compared to the original

diffraction-limited frame. Diffraction-limited frame bilinearly interpolated to match the resolution of SOFI. Scale bar: 1000 nm.
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Accelerating SOFI for Live-cell

Imaging

The main results are presented in a manuscript following the guidelines of Nature Methods.
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Abstract

Live-cell imaging captures dynamic cellular behaviors, but many structures are beyond the diffraction
limit. Super-resolution Optical Fluctuation Imaging (SOFI) overcomes this by using the statistical
relationship of the blinking fluorophores, achieving n-fold spatial resolution for nth order SOFI cumu-
lant calculations. However, SOFI requires hundreds of frames and extensive post-processing, making
it unsuitable for real-time live-cell imaging of fast processes in live-cells. We introduce a deep learning
model to accelerate SOFI, enhancing temporal resolution while maintaining spatial improvements. The
model exchanges temporal information to extract correlated blinking information across latent repre-
sentations. Using synthetic and real fixed-cell microtubule data, our model generates super-resolved
SOFI images from just 20 diffraction-limited frames, eliminating background artifacts and achieving a
2-fold spatial resolution. After training on static mitochondria data, it can reconstruct super-resolved
images in dynamic environments, enabling real-time live-cell studies up to 4.85 fps.

Keywords: Fluorescence microscopy, Deep Learning, Super Resolution, Live-cell imaging

1 Introduction

Live-cell imaging captures dynamic cellular
behaviors and aims to maximize both spatial
and temporal resolution while minimizing sample
damage [1], enabling advancements in fundamen-
tal cell biology. To visualize the structures, flu-
orescent molecules, called fluorophores, are first
used to label the specimen. They bind to tar-
get proteins or structures and emit light upon
excitation. A sequence of frames is then cap-
tured, with molecules randomly blinking across
the frames. Fluorophores can blink sparsely for

precise localization or densely. However, visualiz-
ing these cellular dynamics is constrained by the
diffraction limit of optical lenses, which restricts
spatial resolution to around 200-300 nm (half the
wavelength of visible light).

Super-resolution (SR) techniques can over-
come this barrier and achieve higher spatial resolu-
tions. Well-known techniques include Stimulated
Emission Depletion (STED) microscopy [2], Struc-
tured Illumination Microscopy (SIM) [3], and Sin-
gle Molecule Localization Microscopy (SMLM)[4,
5], which can achieve spatial resolution down to
10 nm. However, these methods either require

1



complex microscope setups, higher signal-to-noise
ratio (SNR) conditions (higher illumination), or
even millions of frames to reconstruct an SR
image, which can limit temporal resolution and
can damage the sample[6, 7]. Other techniques,
like Super-resolution Optical Fluctuation Imaging
(SOFI)[8] and Super-Resolution Radial Fluctu-
ations (SRRF) microscopy[9] do not require a
complex microscope setups and typically use hun-
dreds of frames to reconstruct an SR image as they
can handle very dense blinking fluorophores.

Only SOFI generates SR images based on
statistical theory by leveraging the correlation
of blinking from a fluorophore over time and
space (cross-cumulant). The resolution improve-
ment arises from the independence of different
fluorophores [10, 11]. Because noise does not cor-
relate over time, SOFI can operate under low SNR
conditions, making it suitable for live-cell imag-
ing. For n-order SOFI, an n-fold improvement
in spatial resolution is achieved; however, it still
requires hundreds of frames, limiting its ability
to capture dynamic cellular processes and making
real-time imaging impractical. Without real-time
capabilities, researchers cannot make immediate
decisions, wasting valuable time. Deep learning
could help reduce the number of frames needed for
SR image reconstruction while maintaining spatial
resolution improvements.

Deep learning for SR methods has been exten-
sively explored like SIM[12–14] and SMLM [15–
18]. These networks aim to enhance both spa-
tial and temporal resolution for live-cell imaging.
Most methods employ the U-Net architecture[12,
14, 15, 19], while others utilize an encoder-decoder
network[20] or uniquely leverage spatial and tem-
poral information[13, 16, 17]. A notable example
is the study named DBlink by Saguy et al.[17],
achieving 15 ms temporal resolution with 30 nm
spatial resolution. However, it post-process based,
meaning it still requires millions of frames, thus
compromising the health of the sample.

For SOFI, a study by a study by Qu et al.[19]
introduced a self-supervised denoising model to
address artifacts in second-order auto-cumulant
SOFI images caused by using fewer frames [21].
This approach allows for the use of 20 frames while
achieving a 130 nm spatial resolution improve-
ment compared to the 140 nm by SOFI, enabling
live-cell imaging. However, its multiple processing

stages render it unsuitable for real-time applica-
tions.

We propose an end-to-end deep learning model
that accelerates cross-cumulant SOFI by recon-
structing a second-order SR image from just
20 frames, compared to the hundreds typically
required by SOFI, while still achieving a 2-
fold spatial resolution improvement. Unlike U-Net
methods that use only spatial information, our
model leverages spatiotemporal data to extract
correlated blinking fluorophores. It operates in
three stages: encoding input frames into feature
maps, fusing them with a recurrent structure
to capture blinking correlations, and upsampling
the result into a second-order SR image. The
model is trained in a supervised manner, using
the pre-trained weights from synthetic data, we
can train the model on real fixed-cell microscopy
data using at least four different measurements
of the same cell type. By applying random crop-
ping and rotations, the dataset expands to around
2000 samples. This approach enables the model
to be used in live-cell experiments, making it a
practical method for real-world applications. My
contributions are as follows:

1. Propose a SOFI model, tailored from the
framework of [22] (see Chapter 4).

2. Our model reconstructs second-order SR
images from 20 frames of real microscopy
data, enabling capturing dynamic movements
in live-cell experiments, while SOFI requires
thousands of frames.

3. The model effectively works with motion-
controlled real mitochondria data, validating
its potential for live-cell imaging, which for
SOFI is not possible in these temporal resolu-
tions.

4. Optimized the model’s latency and bench-
marked it against SOFI and the U-Net architec-
ture, achieving real-time temporal resolution of
up to 4.85 fps.

Additional contribution:

1. Integrated a microtubule physics model from
[23] into the SOFI simulation tools [10] by
Tekpinar et al. to create synthetic datasets
which includes more realistic noise and back-
ground models. This can be used for future
research for higher-order SOFI datasets.

2
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Fig. 1 Experimental setup for accelerating second-order SOFI, using 100 frames. The model is trained with input sizes of
8, 10, 15, 20, and 25 frames. Green represents the encoders, purple the fusion layer, blue the global average pooling, and
yellow the decoder, which upsamples the combined representation into a second-order SR image. For details, see chapter 4
and supplementary material, chapter A. The scale bar for frames, input, and target is 1000 nm.

2 Results

2.1 SOFI Acceleration

In this section, we use synthetic fixed-cell (static
scene) microtubules, including ground-truth (GT)
representing the ideal SOFI SR reconstruction, as
a static scene (see chapter 5) to determine the
minimal numbers of frames required for our SOFI
model to reconstruct an SR image while maintain-
ing spatial resolution improvement. Additionally,
we asses the preservation of the microtubule struc-
ture, as spatial resolution alone does not guaran-
tee accurate structural integrity. Specifically, this
involves:

1. Assessing the spatial resolution of the predicted
SR image using decorrelation analysis[24],
which is commonly used in SR microscopy.

2. Evaluating the correlation between the pre-
dicted image and the GT image using Pearson
correlation, a standard measure of similarity in
bioimaging and SR microscopy.

3. Assessing the True Positive Rate (TPR), True
Negative Rate (TNR), and confusion matrix of
the SR reconstruction by binarizing the images
(see supplementary material, chapter B). These
are commonly used metrics in machine learn-
ing.

The dataset includes various SNR levels and
fluorophore densities simulating real-world condi-
tions with a diffraction-limit resolution of 220 nm.
It is divided into training (2,000 samples), evalua-
tion, and test sets (480 samples each). The model

is trained on pairs of adaptively linearized second-
order SOFI images from 100 frames. Although
adaptively linearized SOFI images show lower
brightness and more structural loss, they avoid
artifacts in SR reconstruction, leading to bet-
ter generalization than using default lineariza-
tion (see supplementary material, chapter E).
In supplementary material, chapter F, a com-
parison between models trained on adaptively
linearized and default SOFI images is provided,
showing almost no background artifacts (see TNR
in E.2(d) and F.2(d)). This section focuses on
adaptive linearization for conciseness.

We trained models using 8, 10, 15, 20, and 25
frames to reconstruct SR images, as in [25]. Figure
1 illustrates the experimental setup.

In figure F.2(a), the models with 25 and 20
frames come closest to the theoretical spatial res-
olution of 110 nm, deviating by about 5 nm, while
SOFI also approaches this limit. In contrast, the
Pearson correlation in figure F.2(b) shows that all
model sizes score higher than SOFI, likely due to
the fact that adaptively linearized SOFI is not
typically used for second-order SOFI (see chapter
3.3). Lower brightness levels and structural loss in
adaptively linearized SOFI are reflected not only
in figure F.2(b) but also in the TPR (figure F.2(e))
and the confusion matrices (figure B.3).

Despite these issues, the models generalized
well, successfully reconstructing filaments as SOFI
target images lost structure at lower SNR levels
and fluorophore densities (see figure 2). As this
only affected a subset of the dataset, the model
was able to generalize during training, resulting

3
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Fig. 2 Comparison of SR reconstructions between the GT, adaptive linearized SOFI, and model. Left to right: single
diffraction-limited frame of a simulated microtubule at different fluorophores densities and SNR levels. Here, the fluorophores
density is 5000 fluorophores/µm2 with on times of 10 ms and off times of 600 ms, 1200 ms, and 2400 ms, respectively, to
simulate different densities. The SNR level is additionally set by the Ion value, representing illumination intensity, which in
this case is 100, 60, and 40, respectively. Each row represents different fluorophores densities and SNR levels of a microtubule
structure; SR ground truth; SOFI SR image based on 25 frames; SOFI SR image based on 100 frames; model-based SR
image based on 20 frames. Region of interest (ROI) marked by a blue dashed line, showing better filament reconstructions
for the model based SR reconstructions. Scale bar: 1000 nm.

in better filament reconstruction (figure 2c). The
ability to operate in lower SNR conditions allows
for reduced laser power, beneficial for samples, or
longer measurements. The model’s use of tempo-
ral information further enhances filament recon-
struction, as demonstrated in figure F.3, where
closely located but disconnected filaments are con-
nected if the trajectory is correct. In contrast, the
U-Net architecture, which lacks temporal infor-
mation, struggled with filament reconstruction, as
evidenced in figure D.3. This limitation is also
reflected in the TPR (figure D.1(d)) and confusion
matrix (figure D.2), despite U-Net being a larger
model (see supplementary material, chapter D).

Finally, a more detailed assessment of the
Pearson correlation in figure F.2b reveals a signif-
icant downward trend starting at model size 15.

This pattern is echoed in the TPR (figure F.2(e)),
where models with 10 and 8 frames score lower.
Confusion matrices in figures B.3(e) and B.3(f)
show that models using 25 and 20 frames per-
form similarly, with only a 0.05% difference in
true positives (TP) and false negatives (FN). Ulti-
mately, the model trained on 20 frames strikes the
best balance between spatial resolution, structural
preservation, and temporal resolution.

2.2 Fixed-Cell Microtubules

The model based on 20 frames, which has demon-
strated to work with synthetic data, is fur-
ther evaluated using real fixed-cell microtubules
obtained from a microscope (see methods) to val-
idate its performance on real data and assess
whether the results align with those from the first

4
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Fig. 3 (a-b) From left to right: single diffraction-limited frame of a microtubule; average widefield image based on 20
frames which is up-sampled using bilinear interpolation to match the SOFI and model resolutions. The white arrows depict
the location where the model connect the disconnected filaments while there is a gap between the emitters in the average
widefield image; SR reconstruction of SOFI based on 500 frames; SR reconstruction of SOFI based on 10k frames; SR
reconstruction of the model based on 20 frames. Scale bar: 1000 nm.

experiment. Since no GT image is available in this
scenario, we utilize the SQUIRREL algorithm [26]
to assess structural integrity. SQUIRREL enables
the comparison of the SR prediction with the stan-
dard deviation (STD) widefield image, which is
computed from the total number of frames. It
achieves this by degrading the SR image using an
estimated point-spread function (PSF), a mathe-
matical representation of how a microscope blurs
a point of light and limits spatial resolution,
derived from the STD widefield image until the
convolved SR image matches the STD widefield
image. This process facilitates a direct compari-
son of both images and allows us to calculate the
re-scaled Pearson correlation (RSP) coefficient to
evaluate the accuracy of the SR reconstruction for
both synthetic and real data. Again, decorrelation
analysis [24] is used to asses the spatial resolution.

Using pre-trained weights from synthetic data
allows us to leverage learned features and pat-
terns, potentially speeding up the training pro-
cess and improving generalization, especially when
constrained by limited microscope data [27] [17,
28]. We train the model on a dataset consist-
ing of fixed-cell microtubules organized into six
sets. Three of these sets have relatively high SNR
and dense fluorophores, while the other three have

lower SNR and sparser fluorophores. The first
three sets consist of 10k frames each, while the sec-
ond set contains 3,387 frames, with a resolution of
782 × 804 pixels.

By randomly cropping to 128 × 128 pixels in
a field of view (FOV) (see chapter 5) and apply-
ing data augmentation techniques—including 90-
degree and 180-degree rotations—the dataset is
expanded to include 2,250 samples. The evalu-
ation and test sets each contain 480 samples.
The second-order default linearization SOFI tar-
get images are based on either all 10k or 3,387
frames. The dataset features an asymmetrical PSF
with an approximate diffraction limit of 420 nm.

The results are presented in supplementary
material, chapter G, figure G.1, and figure 3. Sim-
ilar properties are observed: the model-based SR
reconstructions show almost no background arti-
facts and effectively approximate the filaments
again. However, the model is more aggressive in
connecting the filaments compared to the first
experiment (see figure F.3), where larger gaps
between fluorophores were filled in, given the cor-
rect trajectory (see figure 3(a-b)). This behavior
can be attributed to the fact that half of the
dataset consists of sparse fluorophore distribution,
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Fig. 4 Reconstruction of a 1.2-minute video of mitochondria in a motion-controlled environment. Using a rolling window,
we can output SR images equal to the camera’s frame rate. (a) Reconstruction of the model, showing almost no background
artifacts. (b) Diffraction-limited frame bilinearly interpolated to match the resolution of the model. The ROI, marked by
a white dashed line, illustrates the model’s ability to detect structural changes over time. The white arrow highlights the
model’s capability to capture the forming of a ”bubble”. Scale bar: 1000 nm.

while the other half consists of very dense flu-
orophore distribution. This mix encourages the
model to make more aggressive approximations
during training to minimize loss, particularly
when using only 20 frames, where some fluo-
rophores are ultimately lost. As a result, there are
more filament approximations, even though there
are larger gaps between disconnected filaments
(see average widefield in figure 3(a-b)).

From the decorrelation analysis in figure
G.1(d), the model achieves spatial resolutions
closer to the theoretical limit, deviating by around
9 nm compared to SOFI’s 20 nm. This is likely
because decorrelation analysis is sensitive to back-
ground artifacts[24], which the model exhibits
minimally. Comparing the models trained on
real and synthetic data, they achieve a 1.90-fold
and 1.91-fold improvement in spatial resolution,
respectively, demonstrating similar levels of spa-
tial resolution enhancement.

Figure G.1(a) shows the RSP distributions of
SR reconstructions compared to the STD wide-
field images from either 10k or 3,387 frames, as

evaluated using SQUIRREL. For reference, var-
ious SOFI-based images illustrate the increasing
number of frames required to match the RSP
performance of the model based on 20 frames.
Notably, SOFI with 500 frames achieves similar
RSP performance. In figure G.1(b-c), RSP dis-
tributions are compared between the model and
SOFI for both real and synthetic data. Both mod-
els demonstrate similar RSP scores, with 0.85 on
real data and 0.84 on synthetic data. Ultimately,
this demonstrates that the results are consistent
with those from the first experiment. However,
due to half of the dataset consisting of sparser flu-
orophore distributions, the model becomes more
aggressive in approximating filaments. To mini-
mize this behavior, future datasets should focus
on very dense fluorophore distributions including a
range of SNR conditions, so the model can be used
in lower SNR conditions. This is advantageous, as
it allows the use of fewer frames with lower illumi-
nation (lower laser power) to visualize the sample,
thereby reducing sample damage—a benefit not
achievable with other SR methods[2–4].
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2.3 Motion-controlled Mitochondria

To validate the model’s ability to capture dynamic
changes and its potential for live-cell imaging, it
was tested on synthetic (see supplementary mate-
rial, chapter J) and motion-controlled, fixed-cell
mitochondria by moving the microscope stage in
the x-direction. This setup simulates real-time cel-
lular movement, bringing the experiment closer to
live-cell conditions. The model was trained on four
datasets of fixed-cell mitochondria with a diffrac-
tion limit of 380 nm, following the same pipeline
as before (see Chapter 5), using 2,250 samples
for training and 500 for evaluation and testing,
derived from either 10k or 8,198 frames. Due to
the microscope setup penetrating less deeply into
the sample (see methods), the SOFI images had
more background artifacts compared to the fixed-
cell experiment. To address this, a pre-processing
step was applied to subtract the background[29],
which significantly reduced artifacts (see chapter
5, figure 5.5). As observed in the first experi-
ment (see supplementary material, chapter E),
the model is sensitive to background artifacts,
and without background subtraction, it resulted in
no SR improvement(see supplementary material,
chapter H, figure H.3). However, this subtraction
also resulted in the loss of finer structures, making
the remaining features appear somewhat averaged
compared to the original diffraction-limited frame.

Nevertheless, the model was able to capture
dynamic structural changes (see figure 4), where
as SOFI could not (see figure H.2). By using a
rolling window, we can produce SR images at
the camera’s frame rate, N . However, the tem-
poral resolution remains limited by a window of
20
N . The white arrows highlight the model’s abil-
ity to capture the formation of a ”bubble,” which
evolves over time. This bubble formation can also
be observed in the diffraction-limited frame, where
it forms and shifts over time. Through decorre-
lation analysis, we measured an average spatial
resolution of 221.41 nm, and using the SQUIR-
REL algorithm, we obtained an average RSP of
0.66, closely matching the test set average results
of 214.9 nm in spatial resolution and a RSP value
of 0.63 (see table H.1).

Ultimately, this demonstrates that the model
is capable of reconstructing SR images in a
dynamic environment. Conducting a live-cell
experiment, as in [17, 18], would further validate
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model, SOFI of 20 frames as input size. The avarage laten-
cies are based on 500 repetitions.

the model’s capabilities. Comparing the struc-
tural changes observed in a live-cell experiment
to previously published work, such as studies
on mitochondrial dynamics, including fusion and
fission events [30], would provide valuable insights.

2.4 Latency

For real-time imaging, the latency to calculate
the SR image is crucial, as lower latency means
higher temporal resolution. Initially, for our pro-
posed model, the number of hidden layers was set
to 24. Generally, more hidden layers enable the
model to learn more complex features [27], but
this comes at the cost of increased latency. Hence,
for the model based on 20 frames, the first experi-
ment was redone with a reduced number of hidden
layers, ranging from 8 to 22 in steps of 2. The
results can be found in the supplementary mate-
rial, chapter H. Ultimately, 20 hidden layers were
found to be the most optimal, as it came closest to
the theoretical spatial resolution of 110 nm, even
retaining more structure compared to 24 hidden
layers and improving the latency. Therefore, 20
hidden layers were chosen as the optimal balance
between latency and spatial performance.

For further optimizations, PyTorch TensorRT
[31] was used to perform model optimization, such
as layer fusion and precision calibration (e.g.,
using fixed-point floating points). The results can
be found in figure 5, where the average latency
is provided for different image sizes based on 500
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repetitions. Additionally, the latency of the U-
Net model (see supplementary material, chapter:
E), as well as SOFI based on 20 frames, are pre-
sented for reference. Ultimately, the optimized
model achieves real-time temporal resolutions of
4.85 fps, 4.53 fps, and 3.14 fps for frame sizes
of 128×128, 256×256, and 512×512, respectively,
assuming N is 100 fps. Despite the relatively
low latencies, the model’s input size of 20 frames
remains a bottleneck for achieving higher real-
time temporal resolutions. This limitation can
be addressed by transitioning the architecture
from a many-to-one configuration to a many-to-
many configuration, like in [17], which would allow
temporal resolutions of N .

3 Discussion

Live-cell imaging aims to maximize both spatial
and temporal resolution while minimizing sample
damage. While SMLM is widely used in fixed-cell
imaging for its spatial resolutions up to 10 nm, it
sacrifices temporal resolution and sample health.
SOFI offers a more suitable alternative for live-
cell imaging, as it manages denser fluorophores,
operates under lower SNR conditions, and requires
hundreds frames instead of millions like SMLM,
though it still compromises temporal resolution.
To address this, we developed a model that uses
just 20 frames to reconstruct second-order SOFI
images, minimizing background artifacts while
approaching theoretical spatial resolutions.

Our model leverages temporal information
to capture correlated fluorophore blinking across
latent representations. Using synthetic micro-
tubules, we found that 20 frames strike an opti-
mal balance between spatial resolution, structural
preservation, and temporal resolution, outper-
forming U-Net-based SR reconstructions. It also
delivers superior SR performance in low SNR
conditions compared to SOFI, reducing sample
damage, or enables longer measurements. The
model, pre-trained and further trained on six sets
of real fixed-cell microtubule data, showed sim-
ilar performance in Pearson correlation, spatial
resolution, and minimal background artifacts as
with synthetic data. However, sparser fluorophore
distributions in half of the dataset led to fila-
ment over-approximation. To improve this, future
datasets should focus on dense fluorophore distri-
butions across varying SNR conditions, allowing

for lower illumination and reduced sample dam-
age.

When trained on real fixed-cell mitochondria
data and tested in a motion-controlled environ-
ment, the model successfully generated SR images
in dynamic settings, which SOFI was not able to
do. Using a rolling window, it produced SR images
for each frame, capturing dynamic mitochondrial
changes. Optimization with PyTorch TensorRT
enabled real-time temporal resolutions of up to
4.85 fps, demonstrating potential for real-time
live-cell imaging.

A drawback emerged: the model appears sen-
sitive to background artifacts. In the first experi-
ment, SOFI target images with more background
artifacts led to poorer generalization compared to
those without artifacts. This phenomenon was also
observed in the mitochondria experiment, where,
without background subtraction, SOFI images
contained more artifacts, resulting in no SR
improvement. This is problematic because clean
SOFI images are not always easily obtainable, and
the background subtraction pre-processing step
was less than ideal, producing in what appears
averaged structures.

Future work should involve live-cell experi-
ments to validate structural changes against pub-
lished results and using SMLM as ground truth
to confirm the model’s SR reconstruction. Explor-
ing transfer learning effects and revisiting the
initial experiment with only dense fluorophores
could improve temporal resolution. Switching the
network to a many-to-many configuration would
enable temporal resolution to a single frame.
Exploring alternative SOFI linearization methods
that produce fewer background artifacts is also
important. Additionally, using higher-order SOFI
could enhance spatial resolution.

Our proposed method demonstrates that, with
just 20 frames, we can reconstruct SR images
with minimal background artifacts, achieving a
two-fold improvement in near-theoretical spatial
resolution. By leveraging pre-trained weights from
synthetic data, the model can be trained on
real fixed-cell microscopy data using four distinct
measurements of the same cell type, using very
dense fluorophores, for it to be used in a live-
cell experiment. It makes a practical method for
real-time live-cell imaging with temporal resolu-
tions of up to 4.85 fps—surpassing state-of-the-art
single-molecule-based SR methods.
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Methods

3.1 Training Scheme

The Adam optimizer is employed with a learn-
ing rate (η) of 0.001 and beta values (β1, β2) set
to 0.9 and 0.999, respectively. Model weights are
initialized with Xavier Initialization[32] because
of the sigmoid activation functions in our model.
Additionally, an early stopping procedure with
400 epochs and a patience of 10 is implemented to
prevent overfitting. A batch size of 10 is utilized
based on memory constraints and computational
efficiency. Training and testing is conducted on an
NVIDA GeForce RTX 3090 of 24 GB of memory.

3.2 Loss Function

The high frequency (HF) content above the
Nyquist-frequency ηc must be recovered from a
set of low-resolution frames li ∈ R1×H×W to
reconstruct the high-resolution SOFI image Ŷ ∈
R1×γH×γW . Unlike the spatial domain, where
these missing frequency cannot be fully separated,
they can be in the Fourier domain. Therefore, we
opted to the loss function proposed in the works
of [33], which is defined as follows:

LF = LFA
+ LF∠ (1a)

LFA =
2

UV

U/2−1∑
u=0

V−1∑
v=0

∣∣∣|Ŷ |u,v − |Y |u,v
∣∣∣ (1b)

LF∠ =
2

UV

U/2−1∑
u=0

V−1∑
v=0

∣∣∣∠Ŷu,v − ∠Yu,v

∣∣∣ (1c)

Here, both SR images Ŷ and Y are trans-
formed into the Fourier space by applying fast

Fourier transform (FFT), where the absolute
amplitude difference LFA and absolute phase dif-
ference LF∠ are calculated. Due to symmetry in
the Fourier space (Hertimitian symmetry), only
half of the spectral components is considered.

3.3 Microtubules

Obtained with Total Internal Reflection Fluo-
rescence (TIRF) microscopy and DNA-PAINT
(Points Accumulation for Imaging in Nanoscale
Topography) which are advanced imaging tech-
niques. TIRF selectively illuminates molecules
near the glass surface, reducing background noise,
while DNA-PAINT uses transient binding of dye-
labeled DNA probes for high-resolution imag-
ing. Together, they enhance signal-to-noise ratio
(SNR), providing sharper and more accurate visu-
alization at the nanoscale.

3.4 Mitochondria

Obtained with widefield microscopy of COS-
7 cells, using DNA-PAINT probes targeting
TOMM20, reveals detailed mitochondrial struc-
tures. COS-7 cells, derived from monkey kid-
ney tissue, are widely used in research, while
TOMM20 is a key protein in mitochondrial pro-
tein transport. Although DNA-PAINT enhances
resolution, widefield imaging results in lower SNR
compared to TIRF but reduces phototoxicity,
minimizing sample damage.

3.5 Real-time temporal resolution

To compute the real-time temporal resolution
depends on the both the camera frame rate and
the latency of the model. The formula is:

Rreal−time =
1

W
N + Tlatency

(2)

Where W is the number of input frames used
by the model, N is the frame rate of the camera,
and Tlatency is the models latency to compute a
SR image.

Code availability

Code is available online at
https://github.com/GrussmayerLab/SOFI-
MISRGRU
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A
SOFI Architecture Parts
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Figure A.1: The encoder stage, where the number of encoders depends on the number of frames used in the architecture,
resulting in N encoders. Furthermore, each convolution layer consists of a 3× 3 kernel with a stride of 1 with 24 filters

producing 24 feature maps for one input frame li.
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Figure A.2: The fusion stage consisting of the convGRU architecture stacked upon each other to process the sequential
information between the latent representations ri. After which, global average pooling is used on the first dimension to return

havg ∈ RCGRU×H×W , which in our experiment CGRU is set to 24.
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Figure A.3: In the decoder stage, the havg feature map is up-sampled to the size of the SOFI image using a deconvolutional
layer. Following this, it undergoes processing by two convolutional layers with PReLU activation functions for minor

adjustments. Finally, the feature maps are projected into the predicted SOFI image Ŷ ∈ R1×H×W .



B
Reconstruction Quality Quantification

Spatial resolution alone does not necessarily indicate a high-quality super-resolution (SR) reconstruc-
tion. Several metrics are used to assess the quality of SR reconstructions, such as Mean Squared
Error (MSE), Structural Similarity Index Measure (SSIM), and Peak Signal to Noise Ratio (PSNR)[42]
[43]. However, as noted by [40], these metrics don’t effectively describe the reconstruction in this con-
text. Some FOVs have more the background pixels, often values close to zero, compared to the signal,
leading to an overly optimistic assessment when evaluating matrices dominated by near-zero values.
Additionally, these metrics don’t fully communicate which parts of the prediction image are incorrect.
Ideally, one wants to measure if the model is missing structures or if there are any artifacts in the SR
reconstruction. In [40], they tried to resolve this by binarizing the predication with a threshold. From
there, one can calculate the True Positive Rate (TPR) and the True Negative Rate (TNR). However,
using the same threshold value across different SR images is less than ideal in our case as different
signal-to-noise (SNR) conditions yield different intensity rates in the super-resolved images. If set too
high, structures are considered background; if too low, backgrounds with a relative higher intensity
value become a signal. This can even be problematic for ground truth images, as the background can
have relatively higher intensity values if it has denser structures.

Ideally, an algorithm should find the most optimal threshold value to separate the background from the
signal, independent of the intensity rates in the super-resolved images. One such algorithm is minimum
cross-entropy thresholding [44], also known as Li thresholding. Specifically, the iterative algorithm
proposed in [45] is used, which has been shown to effectively binarize ground truth, SOFI-based, and
prediction-based SR images. It minimizes the cross-entropy between the foreground and its mean, as
well as between the background and its mean, to obtain the optimal threshold value. This is provided
there are no more than two peaks in the histogram, which can cause the iterative procedure to get stuck
in a local optimum. From there, we can calculate the TPR, TNR, and the confusion matrices, where
the TPR and TNR are calculated as:

TPR =
TP

TP + FN
(B.1a)

TNR =
TN

TN + FP
(B.1b)

Additionally, we use Pearson correlation to evaluate the relationship between our predicted image and
the ground truth (GT). When no GT is available, the SQUIRREL algorithm [46] is employed to measure
the correlation between a standard deviation (STD) widefield image and the predicted image. Finally,
decorrelation analysis [47] is used to assess spatial resolution. First, we will discuss how we bina-
rized the images with the results, followed by an explanation of Pearson correlation, the SQUIRREL
algorithm, and decorrelation analysis.
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B.1. Theory Li Thresholding
Li thresholding minimizes the cross-entropy between the foreground and its mean, as well as between
the background and its mean. These means are defined by the zeroth and first moments of the fore-
ground and background portions of the thresholded histogram, where the histogram h is defined on the
gray level range [1, L]. The moments of the foreground and background are defined as follows:

m0a(t) =

t−1∑
i=1

h(i), m0b(t) =

L∑
i=t

h(i),

m1a(t) =

t−1∑
i=1

i · h(i), m1b(t) =

L∑
i=t

i · h(i)

(B.2)

The means are defined as:

µa(t) =
m1a(t)

m0a(t)
, µb(t) =

m1b(t)

m0b(t)
(B.3)

with a and b being the background and foreground, respectively. The minimum cross-entropy is then
defined as:

η(t) = −m1a · log (µa(t))−m1b · log (µb(t)) (B.4)
and the optimal threshold top is given by

top = argmin
t

η(t) (B.5)

Originally, this involved calculating all possible threshold values of t [44], which has been replaced by
the numerical method introduced in[45] by taking the derivative of η(t) and setting it to zero. After
simplification and assuming h(t) 6= 0, we get:

t =
µb(t)− µa(t)

log (µb(t))− log (µa(t))
(B.6)

After applying the one-point iteration method to equation B.6, we obtain the following procedure to find
the optimal threshold:

tn+1 = round
{

µb(t)− µa(t)

log (µb(t))− log (µa(t))

}
,

n ⩾ 0

(B.7)

where t0 is initialized with the mean value of the image in our case. This iterative procedure continues
until convergence, which occurs when tn+1 = tn. The round(x) rounds x to the nearest integer. Figure
B.1 illustrates an example of the minimization of the cross-entropy to obtain the optimal threshold of a
second-order SOFI image.

Figure B.1: Example of the minimization of the cross-entropy to obtain the optimal threshold of a 16 bit second-order SOFI
image. The first column represents the second-order SOFI image, the second column shows the binarized image, and the last

column illustrates the cross-entropy loss.
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B.1.1. Results Binarization
Figure B.2 shows the binarization results using Li thresholding for ground truth, SOFI-based (100
frames), and prediction-based (20 frames) SR images under different SNR conditions. The SR im-
ages are effectively binarized for all SNR conditions. However, not all structures are considered as
signal; for instance, SOFI binarization optimistically excludes most background artifacts. Binarization
is a complex task, and no method is perfect. While Li thresholding is effective in this instance, com-
parisons between the ground truth and super-resolved bit masks should not expect exact matches due
to imperfections in binarization. Rather, the focus should be on comparing the relative performance of
SOFI-based and model-based SR reconstruction methods. In figure B.3 the confusion matrices can
be found.

Ground Truth SOFI_100 model_20

Bl
in

ki
ng

: F
as

t
Io

n:
 1

00
Bl

in
ki

ng
: M

ed
iu

m
Io

n:
 8

0
Bl

in
ki

ng
: S

lo
w

Io
n:

 4
0

Figure B.2: Binarization of the SR image using Li thresholding of the ground truth, SOFI based on 100 frames, and the model
predictions based on 20 frames, given different SNR conditions.
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a) b) c)

d) e) f )

g) h) i)

Figure B.3: (a-i) Respective confusion matrices of SOFI and model-based SR reconstructions.

B.2. Pearson Correlation
The Pearson correlation is the ratio of how much two variables change together (their covariance) to
the product of their individual variability (their standard deviations). This normalization ensures that the
correlation value always falls between −1 and 1, providing a standardized measure of their relationship.
The 2D Pearson correlation is given as:

r =

∑m
j=1

∑n
i=1(Xij − X̄)(Yij − Ȳ )√∑m

j=1

∑n
i=1(Xij − X̄)2

√∑m
j=1

∑n
i=1(Yij − Ȳ )2

(B.8)

Where Xi and Yi are individual data points from variables X and Y , X̄ and Ȳ are the means of X and
Y , n is the number of data points.

B.3. SQUIRREL
The SQUIRREL algorithm [46] uses two images: a super-resolution (SR) image and a reference image.
The reference image is the raw image obtained from a microscope, which can either be the average
widefield image or the standard deviation (STD) widefield image. The principle of the algorithm can
be seen in figure B.4. Essentially, it estimates a point spread function (PSF) and convolves it with the
SR image, assuming the PSF is uniform across all pixels. The algorithm iterates until the convolved
SR image matches the reference image. This process allows us to further use Pearson correlation to
assess the correlation between the SR image and the reference image.
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Figure B.4: Workflow of the SQUIRREL algorithm: iterating and estimating the PSF until the convolved SR image matches the
reference image.

B.4. Decorrelation Analysis
The algorithm follows these steps: First, the Fourier transform of the image is normalized as In(k) =
I(k)
|I(k)| . By performing a cross-correlation between the Fourier-transformed image and the input image
I(k), values between 0 and 1 are obtained. In the second step, the process is repeated, but this time the
normalized Fourier-transformed image is further filtered using a binary circular mask of radius r ∈ [0, 1].
This operation is iterated, allowing the computation of d(r):

d (r) =
∫ ∫

Re {I (k) I∗n (k)M (k; r)}dkxdky√∫ ∫
|I (k)|2 dkxdky

∫ ∫
|In (k)M (k; r)|2 dkxdky

(B.9)

where k = [kx, ky] denotes Fourier space coordinates, I(k) is the Fourier transform of the input image,
In(k) is the normalized Fourier transform, and M(k; r) is the binary mask with radius r.

As the mask radius is reduced from 1 to 0, an attenuation peak appears at a specific radius r, indicating
the highest correlation for that spatial frequency, as shown in figure B.5 b. However, this peak repre-
sents the highest spatial correlation for the entire image. To refine this, we apply a series of high-pass
filters, ranging from weak to strong, to the input image. By repeating the procedure for each filtered
image, we can identify the frequency with the highest correlation, the attenuation peak, until the curve
flattens and no peak is observed. For each filtered image, a decorrelation function is calculated, and
the peak position ri and amplitude Ai are extracted, yielding a set of [ri, Ai] pairs (see figure A.3 c).
The resolution is then compute as:

Resolution =
2× pixel size

kc
(B.10)

where kc is the local maximum normalized highest frequency, obtained from:

kc = max
[
r0, . . . , rNg

]
(B.11)

where rNg represents the peak position for the Ng-th high-pass filter.
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Figure B.5: a) Cross-correlation of the image with its normalized version after applying a Fourier filter. b) Cross-correlation
coefficient plotted as a function of the mask radius. c) High-pass filtering applied to the input image, followed by resolution

estimation. d) Plot showing all the decorrelation functions calculated for the image along with resolution estimation. The green
line represents the decorrelation function without high-pass filtering, while the grey lines correspond to those with high-pass

filtering. The blue crosses indicate local maxima, and the black line highlights the decorrelation function at the highest
frequency peak. The vertical dashed line marks the cut-off frequency kc. Scale bar: 5 µm.



C
Spatial Domain Loss

Spatial domain loss functions, such as the Mean Absolute Error (MAE or L1) and Mean Squared Error
(MSE or L2), are popular in image SR reconstruction [36]. However, SR is closely associated with the
frequency domain. Therefore, we opted for the loss function proposed in [37]. Here, we show the dif-
ference between the Fourier and spatial domain-based loss functions. Specifically, the L1 loss function
is used, as the SR SOFI image sparsely contains outliers in the form of very bright pixels because of
the nature of the non-linear response to the molecular brightness levels in the cumulant calculation[17],
which can hinder the training process. Refer to the histogram depicted in figure C.1.

To assess the differences between the two loss functions, we trained the model on 20 frames using
these loss functions. We used a synthetic dataset containing microtubules based on the physical model
of [48]. The test set including a simulated ground truth. The training set comprises 2000 samples, while
the evaluation and test sets each contain 480 samples.

During training, the Adam optimizer is employed with a learning rate (η) of 0.001 and beta values (β1,
β2) set to 0.9 and 0.999, respectively. Model weights are initialized with Xavier Initialization[49] for
guaranteed convergence, rather than random initialization as it tend to fail in our case. Additionally, an
early stopping procedure with 400 epochs and a patience of 10 is implemented to prevent overfitting.
A batch size of 10 is utilized based on memory constraints and computational efficiency. Training is
conducted on an NVIDA GeForce RTX 3090 of 24 GB of memory.

Figure C.1: Histogram of a SOFI image, showing that there are 35 pixels with relatively higher values compared to the rest,
ranging between 43k and 65553.
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C.1. Results
Result are depicted in figure C.2. Based on the Pearson coefficient with respect to the ground truth and
RSP with respect to the STD widefield image using SQUIRREL, the L1-based loss function appears to
perform better than the Fourier-based model. However, this is because the spatial domain loss is better
at estimating the brightness levels of the pixels. These metrics consider this aspect as they reflect the
correlations between the pixels of the predicted SR image and the corresponding ground truth. This
is further confirmed by figure C.2 (d), where the Fourier-based model is better at predicting the true
structures compared to the L1-based model. Hence, the L1-based model performs better in the TNR
as shown in figure C.2 (e) because it generally predicts more background pixels as signal pixels, as
depicted in the confusion matrices in figure C.3. Ultimately, the Fourier-based model outperforms the
L1-based model as it is better at recovering the structures and achieves spatial resolution closer to the
theoretical resolution, as depicted in figure C.2 (a).

a) b) c)

d) e)

Figure C.2: (a-e) Results of the Fourier and L1-based loss functions for the model trained on 20 frames. Additionally, SOFI
results based on 100 frames are provided for comparison. (a) Decorrelation analysis shows the Fourier-based loss reaching
closer to theoretical spatial resolutions. (b) Pearson coefficient with respect to ground truth, with L1 scoring higher than the
Fourier-based loss function. (c) RSP results showing L1 scoring higher. (d) TPR results showing Fourier relatively higher. (e)

TNR results showing L1 scoring higher.
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a) b)

Figure C.3: (a-b) Confusion matrices of the model based on 20 frames trained with the L1 and Fourier-based loss functions. In
the confusion matrices, it can be observed that the model based on the Fourier loss (b) is better at predicting the structures

compared to the L1-based model (a), which predicts fewer structures and more background.



D
SOFI U-Net

The U-Net architecture is a popular choice in the field of SR microscopy[25, 50–52]. However, in
the context of fluorescence microscopy, where there are correlated distributed blinking emitters over
time[10], the U-Net architecture does not capitalize on this temporal information. Although it is used in
the cumulant calculation of SOFI[10], this highlights the need for incorporating temporal information into
the network. Here, we demonstrate this claim by comparing the results of our proposed model with the
U-Net architecture, focusing primarily on spatial resolution, Pearson coefficient, RSP from SQUIRREL,
and the TNR and TPR, while ignoring the computation time of the U-Net architecture.

To create a mapping from LR frames to a second-order SOFI image with U-Net architecture, the LR
frames need to be up-sampled by 2 times, as the network only allows sizes by the power of 2n[23].
To perform this up-sampling, spatial methods (such as bilinear interpolation) are commonly used[24].
However, these missing pixels are now based on the noisy-corrupted pixels of the LR frame. This can
hinder the learning process and potentially produce background artifacts, as these new pixels do not
conform to the randomness of noise, which is problematic in background areas where there is no flu-
orescent signal[25]. Hence, Fourier interpolation is used as it takes advantage of the finite support of
the optical transfer function (OTF) of a microscope, which is the Fourier transform of the point-spread-
function (PSF). By padding the Fourier-transformed image beyond its OTF support with zeros and then
back-transforming it, the resulting image effectively doubles its pixels in both height and width. After-
wards, the SOFI images are padded with zeros to fit in the network due to their uneven sizes.

The U-Net architecture is trained based 20 frames using the L1 loss function. We used a synthetic
dataset containing microtubules based on the physical model of [48], generated using SOFI simulation
tools (see chapter: 5). The test set including a simulated ground truth. The training set comprises 2000
samples, while the evaluation and test sets each contain 480 samples.

During training, the Adam optimizer is employed with a learning rate (η) of 0.001 and beta values (β1,
β2) set to 0.9 and 0.999, respectively. Additionally, an early stopping procedure with 400 epochs and
a patience of 10 is implemented to prevent overfitting. A batch size of 10 is utilized based on memory
constraints and computational efficiency. Training is conducted on an NVIDA GeForce RTX 3090 of
24 GB of memory.

D.1. Results
Results are depicted in figure D.1. From the decorrelation analysis, it can be observed that the U-Net
architecture reaches closer theoretical spatial resolutions compared to our model based on the Fourier
loss. This is likely due to the fact that our model has 131,510 parameters to train, whereas the U-Net
architecture has 31,041,537 parameters for an input size of 20 frames. Generally, more complexity
(more trainable parameters) results in better generalization given enough training data[20]. However,
the Pearson correlations in figure D.1 (b-c) depict that the U-Net is underperforming compared to the
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other models. This is due to the fact that the trained U-Net model is missing structures, which is further
confirmed in figure D.1 (d) and the confusion matrix in figure D.2. These missing structures are visually
depicted in figure D.3, where arrows indicate the areas of interest. Lastly, figure D.1 (e) shows that the
TNR performs slightly worse than model based on the Fourier loss. Inspecting the confusion matrix
in figure D.1 (c) for the U-Net more closely, it can be observed that it contains more artifacts, causing
for a lower TNR performance. Additionally, depicted by the red arrows in figure D.3, the U-Net shows
poorer distinction of the filaments, especially when they are close together, compared to the proposed
model.

Ultimately, using temporal information demonstrates beneficial for better filament reconstruction in syn-
thetic fixed-cell microtubule data across various blinking and density conditions. Although the U-Net
model is more complex and therefore may generalize better, it lacks the temporal information needed
for accurate filament structure prediction. In contrast, our proposed model, with significantly fewer
trainable parameters, effectively leverages temporal information for improved performance.

a) b) c)

d) e)

Figure D.1: (a-e) Results of the U-Net architecture trained on 20 frames compared with the model trained on the L1 and
Fourier loss function based on 20 frames. Additionally, SOFI results based on 100 frames are provided for comparison. (a)

Decorrelation analysis shows the U-Net architecture is reaching closer to theoretical spatial resolutions. (b) Pearson coefficient
with respect to ground truth, with L1 scoring higher than the other models. (c) RSP results showing L1 scoring higher. (d) TPR

results showing Fourier relatively higher. (e) TNR results showing L1 scoring higher.

a) b) c)

Figure D.2: (a-c) Confusion matrices of the models trained with the L1 and Fourier-based loss functions and the U-Net
architecture, all based on 20 frames. In (c), it can be observed that the U-Net architecture contains more artifacts and missing

structures in contrast with the models based on Fourier and L1 loss.
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Figure D.3: Left to right: single diffraction-limited frame of a simulated microtubule at different emitter densities and SNR levels.
Here, the emitter density is 5000 emitters/µm2 with on times of 10 ms and off times of 1200 ms and 2400 ms, respectively, to
simulate different densities. The SNR level is additionally set by the Ion value, which in this case is 60 and 40, respectively.

Each row represents different emitter densities and SNR levels of a microtubule structure; model trained on Fourier loss based
on 20 frames; model trained on L1 loss based on 20 frames; U-Net-based SR image based on 20 frames. Scale bar: 1000 nm.

The white arrows indicate missing structures in the U-Net-based SR images, which our proposed models predict more
accurately. The red arrows highlight better estimations of the filaments compared to the U-Net architecture SR images.
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b)
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Figure E.1: Comparison of SR reconstructions between the GT, default linearized SOFI, model trained on adaptive
linearization, and model trained on default linearization. Left to right: single diffraction-limited frame of a simulated microtubule
at different emitter densities and SNR levels. Here, the emitter density is 5000 emitters/µm2 with on times of 10 ms and off
times of 600 ms, 1200 ms, and 2400 ms, respectively, to simulate different densities. The SNR level is additionally set by the
Ion value, which in this case is 100, 60, and 40, respectively. Each row represents different emitter densities and SNR levels of
a microtubule structure; SR ground truth; Default linearized SOFI SR image based on 100 frames; model-based SR image
based on 20 frames trained on adaptive linearized SOFI images; model-based SR image based on 20 frames trained on

default linearized SOFI images. Region of interest (ROI) marked by a blue dashed line, showing no background artifacts for
both the models based SR reconstructions. However, the model trained on default linearized SOFI images appears to miss

structures. Scale bar: 1000 nm.
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Table E.1: Results of the model trained on adaptive and default linearized SOFI based on 20 frames, noted as the mean and
STD value. It can be clearly seen that the model performs better when it is trained on adaptive linearized SOFI compared to the
default, reaching closer to the theoretical value and missing the least amount of structure. Compared to the other metrics, they

perform similarly.

Target Type Resolution [nm] Pearson RSP TNR TPR

SOFI Adaptive Linearization 115.74 ± 4.03 0.89 ± 0.02 0.85 ± 0.03 0.99 ± 0.01 0.79 ± 0.05
SOFI Default Linearization 146.18 ± 2.06 0.91 ± 0.02 0.83 ± 0.04 0.99 ± 0.00 0.63 ± 0.06

a)

b) c)

d) e)

Figure E.2: (a) Decorrelation analysis to measure spatial resolution. The dashed line represents the theoretical spatial
resolution after second-order SOFI analysis, which is half of the diffraction limit of 220 nm. The models deviate the most from
the theoretical resolution, with deviations ranging from 38 nm for models using 20 frames to 8 frames. (b) Pearson coefficient
relative to the ground truth, measuring the similarity between SR reconstruction and the ground truth. The model based on 25
frames scores the highest with a value of 0.92. (c) Pearson coefficient relative to the standard deviation (STD) widefield using
SQUIRREL, comparing the rescaled SR image convolved with the estimated PSF of the widefield image to the STD widefield
image. The same pattern appears as with the Pearson coefficient relative to the ground truth. (d) True Negative Rate relative to

the ground truth, showing that the models and adaptive linearized SOFI score relatively the highest, indicating fewer
background artifacts in the SR reconstruction compared to default linearized SOFI. (e) True Positive Rate relative to the ground
truth, showing that the default linearized SOFI based on 100 frames misses the least amount of structure, while the models

based on 10 and 8 frames miss the most structure.
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Figure F.1: Comparison of SR reconstructions between the GT, default linearized SOFI, and model. Left to right: single
diffraction-limited frame of a simulated microtubule at different fluorophores densities and SNR levels. Here, the fluorophores
density is 5000 fluorophores/µm2 with on times of 10 ms and off times of 600 ms, 1200 ms, and 2400 ms, respectively, to

simulate different densities. The SNR level is additionally set by the Ion value, representing illumination intensity, which in this
case is 100, 60, and 40, respectively. Each row represents different fluorophores densities and SNR levels of a microtubule
structure; SR ground truth; SOFI SR image based on 25 frames; SOFI SR image based on 100 frames; model-based SR
image based on 20 frames. Region of interest (ROI) marked by a blue dashed line, showing no background artifacts for the

model based SR reconstructions. Scale bar: 1000 nm.
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a)

b)

d)

c)

e)

Figure F.2: (a)Decorrelation analysis to measure spatial resolution. The dashed line represents the theoretical spatial
resolution after second-order SOFI analysis, which is half of the diffraction limit of 220 nm. Among the models, the one based
on 25 frames comes closest to the theoretical value, deviating by around 6 nm, while the default linearized SOFI based on 100

frames performs the worst, deviating by around 25 nm. (b) Pearson coefficient relative to the ground truth, measuring the
similarity between SR reconstruction and the ground truth. The default linearized SOFI based on 100 frames has the highest
score, while the adaptive linearized SOFI based on 25 frames has the lowest score. For the models, the score worsens after
the model based on 15 frames. (c) Pearson coefficient relative to the standard deviation (STD) widefield using SQUIRREL,
comparing the rescaled SR image convolved with the estimated PSF of the widefield image to the STD widefield image. The
same pattern appears as with the Pearson coefficient relative to the ground truth, with only the model based on 10 frames

deviating from the trendline and scoring lower than the model based on 8 frames. (d) True Negative Rate relative to the ground
truth, showing that the models and adaptive linearized SOFI score relatively the highest, indicating fewer background artifacts
in the SR reconstruction compared to default linearized SOFI. (e) True Positive Rate relative to the ground truth, showing that
the default linearized SOFI based on 100 frames misses the least amount of structure, and the model based on 10 frames

misses the most structure. Models based on 25 and 20 frames score relatively equally, with the median TPR of the 25-frame
models being around 0.2 higher than that of the models based on 20 frames.
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Ground Truth Model_20 SOFI_25 STD Wide�elda)

b)

Figure F.3: (a-b) Example of the model showing better filaments reconstructions. Scale bar: 1000 nm. The average widefield
images are up-sampled using bilinear interpolation to match the SOFI and model resolutions. The white arrows in the columns
of model based on 20 frames show that the filaments are connected, whereas in the column of SOFI based on 25 frames, they
are disconnected due to an absence of signal, which can be seen in the column of the average widefield image based on 20
frames. This demonstrates that if the filaments are closely located but there is a narrow gap indicating an absence of signal,

the model will connect them. However, if the gap is too large (see red arrow), the model will leave them disconnected.
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Figures Fixed-Cell Experiment

a)

b) c)

d) e)

Figure G.1: (a) Resolution-scaled Pearson (RSP) coefficient relative to the STD widefield image based on 10k frames using
SQUIRREL analysis. The model trained on 20 frames achieves RSP levels comparable to those of SOFI based on 500 frames.
(b-c) RSP coefficient comparison for real and synthetic data using SQUIRREL, with the real data based on 10k frames of STD

widefield and the synthetic data based on 100 frames. Both SOFI-based images demonstrate superior RSP performance
compared to the models, though the models themselves exhibit similar performance, with RSP values of 0.84 for real and 0.86
for synthetic data. (d-e) Decorrelation analysis results for SOFI and the model trained on 20 frames for both real and synthetic
data. The model on real data achieves a resolution closer to the theoretical value of 210 nm, deviating by 10 nm, whereas

default linearized SOFI shows a larger deviation. For synthetic data, adaptive linearized SOFI achieves a resolution closest to
the theoretical value of 110 nm, with the model deviating by approximately 5 nm. When comparing the models trained on real

and synthetic data, they achieve a 1.90-fold and 1.91-fold spatial resolution improvement, respectively.
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Figure H.1: Reconstruction of a 1.2-minute video of mitochondria in a motion-controlled environment. Using a rolling window,
we can output SR images equal to the camera’s frame rate. (a) Reconstruction of model without using background subtraction
step using 20 frames, showing no SR improvement. (b) Diffraction-limited frame bilinearly interpolated to match the resolution
of the model. The white arrow highlights the forming of a ”bubble,” resembling the fission process of the mitochondria (splitting

into two). Scale bar: 1000 nm.

Table H.1: Comparison of the model’s super-resolution (SR) results for mitochondria in dynamic and static (motion-controlled
and fixed-cell) environments. The model’s performance in the dynamic environment shows similar results to that in the static

counterpart.

Enviroment Spatial Resolution [nm] RSP
Dynamic 221.41 ± 9.45 0.66 ± 0.02
Static 214.86 ± 7.32 0.63 ± 0.11
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Figure H.2: Reconstruction of a 1.2-minute video of mitochondria in a motion-controlled environment. Using a rolling window,
we can output SR images equal to the camera’s frame rate. (a) Reconstruction of SOFI using 20 frames, showing that it is not
able to reconstruct a SR image. (b) Reconstruction of the model, showing almost no background artifacts. (c) Diffraction-limited

frame bilinearly interpolated to match the resolution of the model. Scale bar: 1000 nm.

a) b)

Figure H.3: Results of test set. (a) Decorrelation analysis shows that the SOFI model, which was trained without the
background subtraction step, does not exhibit any spatial resolution improvement and remains approximately diffraction-limited.

(b) On the other hand, RSP indicates that the model performs slightly better compared to the version with background
subtraction. This is expected, as SQUIRREL modifies the SR image to match the widefield standard deviation image. Since
the model without background subtraction does not show SR improvement, it performs slightly better in RSP. Additionnaly,

background subtraction also resulted in the loss of finer structures, making the remaining features appear somewhat averaged
compared to the original diffraction-limited frame, resulting in lower RSP score.
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a)

b) c) d)
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Figure I.1: The model, based on 20 frames and trained on adaptive linearized SOFI images, is compared across different
numbers of hidden layers. (a) Decorrelation analysis shows the 20-layer model deviates by 2.5 nm from the theoretical value.
(b) The Pearson coefficient peaks with 24 hidden layers, with a decline after 18 layers. (d) True Negative Rate is similar for 12,
16, 20, and 24 layers. (h) The 18-layer model misses the least structure (True Positive Rate). (e-g) Latency trends upward,

with 22 hidden layers showing the longest latency across different input sizes.
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b)

c) d)

a)

Figure I.2: There is no degradation in performance when optimizing our model using PyTorch TensorRT. Note that the input
size of 512×512 is not provided here because of memory constraints when simulating the given test set. It is assumed to have

similar performance.
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Figure J.1: Comparison of SR reconstructions between the ground truth (GT) and the model for the synthetic microtubules
movie. The simulated microtubules feature high fluorophore densities and signal-to-noise ratio (SNR) levels. The fluorophore
density is set at 5000 fluorophores/µm2, with on times of 10 ms and off times of 600 ms. The SNR level is further determined
by the Ion value, representing illumination intensity, which is set to 100 in this case. (a) shows the GT SR reconstruction, (b)
displays the model’s SR reconstruction using a rolling window, and (c) presents the diffraction-limited frame, which is bilinearly

interpolated to match the resolution of the model and GT. In the movie, the bar moves one pixel every 20 frames,
demonstrating that the model can successfully reconstruct the scene in a dynamic environment.
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Table J.1: Comparison of the model’s SR results for dynamic and static environments. The model’s performance in the
dynamic environment shows similar results to that in the static counterpart. Note that the true positive rate (TPR) is higher in

the dynamic case due to the increased SNR and higher fluorophore density, which result in better predictions.

Enviroment Spatial Resolution [nm] Pearson TPR TNR
Dynamic 112 ± 3.78 0.92 ± 0.00 0.73 ± 0.00 0.99 ± 0.00
Static 115 ± 4.31 0.89 ± 0.02 0.63 ± 0.06 0.99 ± 0.00

a) b)

Figure J.2: (a-b) Confusion matrices of the models evaluated on synthetic data. (a) Confusion matrix for the synthetic dynamic
movie, characterized by high signal-to-noise ratio (SNR) and high fluorophore density. (b) Confusion matrix for static data with

a varied range. Despite the differences between the two data types, both scored similar results.
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