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i

No man needs sympathy because he has to work,
because he has a burden to carry.

Far and away the best prize that life offers is
the chance to work hard at work worth doing.

Theodore Roosevelt



Abstract

An analytical model for stiffness degradation of composite laminates with damage under static or cyclic load-
ing is proposed. For static loading, two different modelling approaches have been created. Both account
for shear-induced microscopic matrix damage and matrix cracking within each ply orientation of a lami-
nate.

In one approach the residual transverse tensile and shear moduli of a ply are determined by equating the
strain energy density of the undamaged ply to that of the ply with damage, for a same applied load. Pre-
dictions show excellent agreement with test results for cross-ply laminates, while stiffness degradation is
overestimated for shear dominated layups.

The other static approach applies energy equivalence only to the transverse tensile behavior of a ply. For shear
behavior, it predicts the residual shear modulus by accounting for the creation of permanent shear strains.
Agreement with test results is excellent for cross-ply laminates, and excellent to good for shear dominated
layups. The physical foundation behind this model is not as rigorous as the previous one, and as such needs
more work.

The proposed fatigue model assumes the matrix strength of a ply to be randomly distributed. Kassapoglou’s
residual strength model for fatigue loading is used to express fatigue life as a function of matrix strength. The
static model is then used to estimate stiffness degradation as a function the same matrix strength. Connecting
the two, stiffness degradation as a function of fatigue cycles is obtained. Validation was performed on cross-
ply laminates and agreement with results is excellent.
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1
Introduction

The purpose of this research was to create a stiffness degradation model for laminates with damage, under
static or fatigue loading. Particular care was put into making sure that the model would be suitable for pre-
liminary design optimization, which requires models to be fast, reasonably accurate, and applicable to a va-
riety of design configurations (meaning little experimental data should be required, and minimal restrictions
should be placed on the type of layups being analyzed).

In both industry and academia, there is no shortage of phenomenological models which can predict stiffness
degradation for static and fatigue loading, assuming that test data is available for static and fatigue exper-
iments similar in nature to the case they want to predict, as shown in chapter 2. These models might be
useful for scenarios like stiffness based structural health monitoring, where the laminate’s layup and service
spectrum are known in advance and not subject to change. Most of them however may not be suitable for
preliminary design, due to the specificity of the experimental data they require to work.

Likewise, there are also many mechanistic models which can predict stiffness degradation for static and fa-
tigue loading extremely accurately, possibly with little need for experimental data. However, it often happens
that their computational times are prohibitive for the purposes of preliminary design, or that the model, while
fast, is restricted to very specific layups and load-cases.

To fill the gap, static and fatigue models for stiffness degradation are proposed which try to adopt the simplic-
ity and computational speed of phenomenological models without relying on modeling constants or curve
fitting parameters. The proposed models also try to follow the mechanistic philosophy of including physics
based considerations in the model (eg. for damage initiation), but without modeling damage instances ex-
plicitly or undertaking detailed continuum mechanics approaches. Reliance on experimental data is kept
to a minimum, with only static tests on ply material and/or standard laminates (eg. [±45]) being needed.
Since the models are fully analytical (and acting at the meso-scale), their computational time is also negligi-
ble.

The structure of the report is as follows: a short summary of existing models for stiffness degradation is given
in chapter 2. The review is divided into a static and fatigue section. Next, the static models are presented in
chapter 3, which ends with extensive validation of the proposed models. Chapter 4 follows with the fatigue
model, which is also validated at the end of the chapter. Finally, conclusions and recommendations for future
work are given in chapter 5 and chapter 6 respectively.

1



2
Introduction to stiffness degradation in

composite laminates under static or cyclic
loading

This chapter serves to provide a brief summary of the literature relevant to this thesis. Since this research
investigated stiffness degradation in composite laminates under static or cyclic loading, two sections are
present: section 2.1 deals with modeling stiffness degradation under static loading, while section 2.2 cov-
ers stiffness degradation under fatigue loading.

2.1. Static Loading
Composite laminates are characterized by the combination of two distinct phases: the fibers and the ma-
trix. The resulting material shows better overall performance (both mechanically and strength-wise) than its
constituents alone. Thanks to their directionality (anisotropy), composite materials can also outclass several
other (isotropic) materials in terms of strength and stiffness. However, said combination of considerably dif-
ferent materials also results in more complex damage initiation and evolution behavior, which manifests itself
in the form of several different types of damage, as opposed to the singular damage type affecting isotropic
materials (cracks).

Some of the most common damage types affecting composite laminates are matrix cracking, fiber fractures
and delaminations. Unlike the last two, matrix cracking can occur at relatively low loads, well within a struc-
ture’s “design envelope” [39]. Matrix cracking can significantly reduce a ply’s transverse and shear stiffnesses,
which in turn can cause degradation of the laminate’s overall stiffness and Poisson’s ratio [5, 50].

As aircraft manufacturers keep pushing for more efficient designs, stiffness tailoring is likely to become more
relevant within the design process, allowing for passive load alleviation, lighter structures, and even wing-
morphing in the more distant future. Aircraft operators on the other hand wish to maximize their fleet’s
useful life. It is therefore likely that future designs will have to account for the interaction of stiffness tailoring
and fatigue degradation.

There is no shortage of highly detailed and flexible finite element models, capable of accurately predicting
damage propagation and the consequent decay in mechanical properties. The following are examples of fi-
nite element models for: matrix cracks [18, 47, 55], delaminations [2, 63], impacts [12, 42, 56] and fatigue
[14, 15, 48]. These models are however characterized by long computational times, making them unsuit-
able for preliminary design and optimization. Likewise, there is no shortage of fast analytical models which
can accurately predict specific types of damage, for specific laminate configurations, subject to specific load
cases. The following are examples of analytical models for: holes [43, 72], cracks [44], delaminations [49],
impacts [16, 17] and fatigue [32, 33, 36]. The obvious downside of such models is that they lack in flexibility,
making them once again unsuitable for purposes of design and optimization, which require computational
speed just as much as they need flexibility and generality. Additionally, only a portion of the existing stiffness
degradation models can account for fatigue. The proposed model is an attempt at closing the gap between
flexible but slow FE methods and fast but less accurate analytical ones.

Highsmith and Reifsnider [25] were among the first who tried to rigorously model stiffness degradation due
to matrix cracking in off-axis plies. Through a 1D shear lag analysis, the deformation of cracked plies is tied

2



2.1. Static Loading 3

Figure 2.1: Stiffness degradation and matrix crack density as a function of applied stress for a [0,903]S laminate. Taken from [25]

to matrix crack density, which is defined as the number of cracks per unit area within a ply (on the plane per-
pendicular to fiber direction and aligned with the load). Since only cracks parallel to the fibers are modelled,
comparison with experimental results is good for cross-ply laminates under uniaxial tension, but less so for
laminates where shear is relevant. A typical stiffness degradation curve for a cross-ply laminate under static
tensile loading is shown in fig. 2.1. It can be seen that there is a direct and very close relation between stiffness
degradation and matrix crack density. It is typical of cross-ply laminates to show a steep initial drop in stiff-
ness, caused by the rapid appearance of matrix cracks. As the load increases, and with all the weaker regions
of the matrix having failed, crack spacing starts stabilizing. Once the distance between matrix cracks is small
enough, the stress between them can never be high enough to generate new cracks, causing crack density
and stiffness degradation to reach a plateau. This saturation state is known as the characteristic damage state
(CDS) [53]

Laws, Dvorak and Hejazi [13, 39] quickly followed. Their model is based on a variant of the self-consistent
method, which models cracked ply material as a two-phase medium. The ply’s stiffness matrix is expressed
as a function of matrix crack density. Unfortunately, according to Hashin [23], the self-consistent scheme
assumes the material to be infinite in all directions, negating the possibility of implementing crack opening
constraints imposed by adjacent plies, which play an important role in stiffness degradation.

Stiffness degradation due to matrix cracking in cross-ply laminates was treated by Hashin [23, 24]. In the for-
mer, Hashin derives the full stress state within cracked off-axis plies by minimizing complementary energy
through a variational approach. The laminate’s longitudinal stiffness degradation is expressed as a function
of matrix crack density, and agreement with experimental stiffness degradation data is excellent. Unfortu-
nately, the model is only applicable to cross-ply laminates under uniaxial tension. In [24] Hashin extends his
previous method by allowing cracking (always parallel to the fibers) within the 0° plies. Comparing with the
results in [23], the addition of cracks in the 0° plies has almost no effect on the longitudinal stiffness, and a
strong effect on the major Poisson’s ratio.

Caslini, Zanotti and O’Brien also did interesting work on matrix cracking and stiffness degradation [5]. Their
model is much simpler than everything mentioned so far. It is based on a shear lag analysis derived by Ogin
et al. in [50], and it relates stiffness degradation to matrix crack density through a closed form expression.
Similarly to [23], cracks are only allowed to occur within 90 degree plies embedded in 0° plies. Comparison
of predictions with experimental results shows a good match for [0/90]s laminates (predictions are within
experimental scatter, but slightly higher than the FEM analysis) and a reasonable match for [±45/0/90]S
(where only the 90 degree plies are allowed to crack). While the match is worse than Hashin’s, this method is
considerably simpler, thus proving that large improvements in simplicity can be obtained with minor com-
promise in accuracy

Varna, Joffe et al. have also done considerable work in the field [69, 70], based heavily on research by Tal-
reja [59, 61, 62], who developed a synergistic approach to damage modelling combining micromechanics
with continuum damage mechanics. The models in [69, 70] rely on material constants which need to be de-
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termined from experimental data. Said data should be obtained from a laminate similar to the one being
modeled, where all off-axis plies have been substituted with 90 degree plies. For example, validation in [69]
was performed on test data from [0/±θ4/01/2]S laminates, where data from a [0/908/01/2]S laminate was
used to determine the model’s material constants. The model from [69] gives good predictions for any angle
theta where shear stress (and consequently shear damage) is not prevalent, which corresponds to θ = 90,70
degrees. For θ = 55,40,25 degrees predictions are good only when a correction is applied in order to account
for unspecified shear damage (assumed by the authors to be of microscopic nature), which requires addi-
tional test data from a [±θ] laminate. Hence, aside from the laminate’s longitudinal stiffness and Poisson’s
ratio, the model also tries to predict shear stiffness degradation, albeit in a much more phenomenological
fashion. Varna et al. emphasize that shear degradation must be caused by damage modes other than ma-
trix cracking, possibly damage at the fiber-matrix interface [69]. Unlike previous models, [70] also attempts
to predict matrix crack density as a function of the applied strains, thus directly linking the decay in lami-
nate’s mechanical properties with the applied load. Similarly to what was seen in [69], the match between
test data and predictions for the [±θ/904]S laminates analyzed in [70] worsens with the presence of shear
stresses, with predictions for θ = 40 degrees being the worst of the group. This emphasizes the presence of
damage phenomena (non-linearities) which are exclusive to shear behavior and are absent from 90 degree
plies, which experience pure transverse tension (no shear).

Finally, in more recent times, Van Paepegem, De Baere and Degriek modelled the nonlinear shear stress-
strain response of GFRP laminates [66, 68]. Their approach, while still making use of continuum damage
mechanics, is more phenomenological than the methods presented so far. As such, it requires experimental
data from the shear stress-strain response of a [±45]2S laminate under tension. The model can predict, for
each separate ply, the shear modulus degradation and permanent shear strain due to static loads, regardless
of ply orientation. As long as damage is shear dominated, the match with experimental data is excellent.
This serves to prove that, with the right choice of experimental data and damage law, it is possible to create a
model which is simple, accurate, and reasonably flexible.

From the above literature review, three trends can be discerned. First of all, with the exception of [66, 68,
70], no other work mentioned here makes a direct attempt at linking stiffness degradation to the applied
stresses or strains. Instead, stiffness degradation is defined as a function of matrix crack density, which is
then left as an independent variable. Obviously, within a design framework, it is desirable to express stiffness
degradation as a function of applied stresses or strains. To do that, it would be necessary to perform the
extra step of translating the applied loads into matrix crack densities. Apart from being an additional source
of error, the extra step could also result in a loss of flexibility. It is pointless to use a flexible and accurate
stiffness degradation model if it must be tied to a matrix crack model which is too specific, too inaccurate or
too computationally intensive. Secondly, models which require little to no experimental data have to make
a tradeoff among accuracy, flexibility and simplicity. Hashin [23, 24] for example sacrifices flexibility and
simplicity for the sake of extreme accuracy. Caslini et al. [5] sacrifice some accuracy and some flexibility
for the sake of simplicity. Models which require more experimental data can be considerably accurate and
simple, like Varna et al. [69, 70] and Van Paepegem et al. [66, 68]. The selection of damage law and type of
experimental data can make an enormous difference in the method’s flexibility, with Van Paepegem’s model
being more flexible than Varna’s (it is of course noted that they have different scopes).

Finally, relating shear stiffness degradation exclusively to matrix cracking caused by transverse stresses results
in poor predictions [25]. When shear stresses are significant, stiffness degradation is more easily associated
with other forms of damage, such as fiber matrix debonding [69], driven by shear stresses rather than trans-
verse ones.

The model proposed in this thesis tries to avoid the aforementioned pitfalls, as illustrated in section 3.1, where
the model’s principles are presented. What is proposed is a "lamina-to-laminate" [51] continuum damage
model which, aside from the ply material’s mechanical properties, only needs the transverse tensile in situ
strength of the ply material (which can be determined from tensile tests of a laminate with 90° plies) and the
ply’s shear stress-strain curve (monotonic loading up to failure). The model predicts stiffness degradation due
to matrix damage caused by static loads, as detailed in chapter 3. For each separate ply, the transverse and
shear stiffnesses are modified, according to the ply’s stress state and consequent damage level, as discussed
in section 3.3 and section 3.4. This makes the model flexible, as it can technically be used for any layup.
Moreover, stiffness degradation and applied loads are linked directly, thus avoiding the additional step of
having to predict matrix crack density. The updated laminate’s stiffness and Poisson’s ratios are then derived
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through classical laminated-plate theory, as covered in section 3.5. Validation is covered in section 3.6.

2.2. Cyclic Loading
The literature study performed in section 2.1 for stiffness degradation under static loading is now expanded
in this section to fatigue loading. The focus remains on stiffness degradation due to matrix damage, and all
considerations made in the previous section should be kept in mind.

As stated by Degrieck and Van Paepegem in their extensive review paper on fatigue damage modeling of com-
posite materials [11], fatigue models for composite laminates can be broken down into three main categories:
fatigue life models, phenomenological models and mechanistic progressive damage models. The above cat-
egories can be defined as follows:

• Fatigue life models only aim to predict fatigue life, usually by means of S-N curves or any other form
of diagram which correlates an input parameter (eg. max cyclic stress and stress ratio) to fatigue life by
means of extensive experimental data.

• Phenomenological models aim to establish a relation between the degradation of mechanical proper-
ties (strength or stiffness) and the application of cyclic loading. They are phenomenological because
the model connects fatigue loading to mechanical property degradation without rigorously modeling
the actual mechanism (various types of damage) that connects the two.

• Mechanistic progressive damage models aim to rigorously predict the onset and evolution of specific
damage (eg. fiber breakage, matrix cracking, delamination...) due to fatigue loading. The degradation
in mechanical properties is then associated to the predicted damage state, essentially closing the gap
that exists in phenomenological models. These models are usually based on continuum mechanics
and micromechanics approaches.

Passipoularidis and Brøndsted [51], who also wrote a detailed review of fatigue evaluation algorithms, broke
down existing fatigue models in the same categories. Each of the aforementioned categories has its own ben-
efits and drawbacks. Fatigue life models are clearly the simplest and fastest to implement, but they need for
extensive experimental data, which would only be valid for the specific ply material and layup being tested,
potentially making the use of fatigue life models prohibitively expensive and time consuming for fatigue ori-
ented preliminary design.

Phenomenological models have the potential of delivering reasonably accurate predictions (especially for
preliminary design) while allowing for the fast computation of different design configurations (in terms of
load, ply material and layup). A drawback of such models is that there is no clear knowledge of the extent (and
possibly type) of damage, only its effect on the modeled properties is known. Moreover, the experimental data
needed by the model can often be of the same nature as the data the model is trying to predict (eg. fatigue
data is needed, with the same layup and stress-level as the desired prediction). This can be problematic for
preliminary design.

Finally, mechanistic progressive damage models can deliver extremely accurate solutions, provided that the
material has been properly characterized, and that the layup and load-case are covered by the model. The
main downside is the computational time, which is usually too long for such models to be used in preliminary
design.

As explained at the end of this section, the proposed fatigue model tries to incorporate the simplicity of phe-
nomenological models with the "physics based approach" of the mechanistic ones. Hence, the remainder of
this section will present a representative sample of phenomenological and mechanistic stiffness degradation
models.

A good example of a phenomenological model for stiffness degradation is given by Hwang and Han [26, 27].
They devised the concept of fatigue modulus, defined as the secant modulus connecting the origin with the
point of applied stress (and resulting strain) at a cycle n. Its degradation rate as a function of cycles was as-
sumed to follow a power law, and the stress-strain relation within a cycle n was assumed to be linear. The
last assumption obviously breaks down for materials which experience non-linear behavior upon static load-
ing. While the model gives good predictions for both residual stiffness and fatigue life, it requires the esti-
mation of two material constants through experimental data in order to work. The necessary experimental
data is of the same nature (fatigue loading) as the model’s predictions, possibly making the model less useful
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for preliminary design (since significant changes in layup or materials would require new batches of fatigue
tests).

Whitworth [73, 74] proposed stiffness degradation and cumulative damage models for composite laminates,
based on the assumption that the stiffness degradation rate is inversely proportional to a power of the resid-
ual modulus. The model has three parameters which need to be determined through experimental data, two
of which are material dependent, while one is related to the applied cyclic stress. As with many other phe-
nomenological models, the experimental data needed to determine modeling constants is essentially of the
same nature as the model’s prediction. In this particular case, since one of the constants is stress-dependent,
the fatigue data needed for the modeling constants must be obtained at the same applied cyclic stress that
the model is trying to predict. The match with experimental data is good, and interestingly the model can
also predict the residual strength distribution associated with a specific residual stiffness.

Another phenomenological stiffness degradation proposed by Whitworth [75] follows a degradation law simi-
lar in nature to the one shown in his previous work [74], where the rate of degradation of the residual modulus
is related to a power of the residual modulus itself. Through the strain failure criterion, Whitworth defined
the residual modulus as a function of the ultimate tensile strength and its statistical distribution. This in turn
allows to determine the statistical distribution of the residual modulus at any point in fatigue life. Predictions
for residual modulus throughout life and its statistical distribution at specific points in life show a good match
with experimental data. Similarly to [73, 74], several modeling constants need to be determined through ex-
perimental data, under both static and fatigue loading. Some of these constants depend on the applied cyclic
stress.

Yang, Jones et al. [76] proposed a phenomenological stiffness degradation model for fiber-dominated com-
posite laminates (exhibiting a linear stress-strain curve). The degradation rate of the residual modulus is as-
sumed to be a function of the pristine modulus and a power function of the number of applied cycles, as well
as several modeling constants dependent on environment, stress-ratio, applied stress and frequency. Said
constants must be determined through experimental data. The model essentially uses a linear regression to
estimate said parameters based on test data from the particular sample being analyzed, covering a portion of
its fatigue life. The remaining fatigue life is then predicted by the model. Agreement with a particular sample
is good if the experimental data used to determine the model parameters reaches at least the first quarter
of the sample’s fatigue life. Predictions are otherwise acceptable. The model can also predict the statistical
distribution of the residual stiffness at a particular point in fatigue life.

Yang, Lee and Sheu [77] expanded upon the previous model [76] by making it applicable to matrix domi-
nated laminates, which exhibit non-linear stress strain behavior. This was essentially done by substituting
the residual modulus in the governing equations of [76] with the fatigue modulus defined in [26, 27]. The
same modeling constants used in [76] are present, plus some additional ones to account for the non-linear
stress-strain relation of matrix dominated laminates. Similarly to the previous model, stiffness degradation
predictions are good if the sample’s experiential data covers one fourth of its fatigue life, and acceptable oth-
erwise.

While there are many more phenomenological stiffness degradation models, summarized in [11, 51], they
are not going to be discussed here. The ones mentioned so far are already enough to paint a picture of the
typical phenomenological stiffness degradation model, since they all share the same benefits and downsides.
The main advantage of all models presented so far is their simplicity. Since they do not model the actual
damage itself (and its stress-state and growth), only one or two equations are needed to relate the mechan-
ical properties of interest with the independent variable of choice (usually applied load/stress). The direct
connection between the residual mechanical properties and the independent variable is particularly conve-
nient for design and optimization purposes. The main downside of all models presented so far is that they
always need experimental fatigue data to estimate some modeling constants. The models need to somehow
be "grounded in reality", and since that is not done by modeling the damage continuum, it must be done
through experimental data. For most models, the necessary fatigue data must be very similar in nature to
the very scenario (layup, load-case) that the model is trying to predict. While the fatigue model proposed in
this thesis aims to be as simple as the phenomenological ones, all of the test data it requires can be measured
experimentally from static tests, none of which need to be carried out on the exact layup being analyzed (al-
though doing so for the transverse tensile in situ strength could benefit accuracy to some extent). No curve
fitting or semi-empirical approaches are needed.



2.2. Cyclic Loading 7

A selection of mechanistic models for stiffness degradation will now be presented, followed by a short discus-
sion of their advantages and disadvantages, especially in comparisons with their phenomenological counter-
parts.

Ogin et al. [50] proposed a mechanistic stiffness degradation model for cross-ply laminates, pointing out that
stiffness degradation of such laminates is driven by matrix cracking in the off-axis plies. Through a shear lag
analysis, residual stiffness of a cross-ply laminate was expressed as a linear function of matrix crack density
(in the off-axis plies). The rate of matrix crack density growth with applied cycles was assumed to depend
on the maximum applied cyclic stress and the current crack density. An exact expression for the damage rate
was found by incorporating the stored elastic energy between two cracks in the aforementioned assumptions.
The linear relation between stiffness degradation and damage (matrix cracks) is then used to define residual
stiffness as a function of the applied cycles. Some modeling constants are present, proving that mechanistic
methods are not immune to them. They are however much less "aggressive" than their phenomenological
counterparts, since (in this case) all constants are load-independent.

Caron and Ehrlacher [4] proposed a micromechanical model for cross-ply laminates where the matrix in the
90 degree plies is discretized into several "cells". The residual strength of each cell is assumed to decay at a
rate dependent on the current residual strength, the applied stress range and two modeling constants, which
need to be determined through fatigue testing. The initial strength of each cell is assumed to Weibull dis-
tributed, with the distribution having to be determined experimentally. The model then starts an iterative
process where all cells are loaded. Ff their strength is exceeded, a crack develops, breaking the cell into two
sub-cells and redistributing the stresses. If the strength is not exceeded, the strength degradation law is ap-
plied. Predictions for the number of matrix cracks as a function of the number of cycles were in excellent
agreement with test data. Any existing model relating matrix crack density to stiffness degradation can then
be used to find stiffness degradation as a function of the applied cycles (eg. [40]).

Talreja [59, 60] developed a continuum mechanics-based representation of intralaminar (matrix cracks) and
interlaminar (delamination) damage, which are represented as vectorial entities, based on their geometrical
properties. Some material constants must be determined through experimental data relating residual stiff-
ness properties of a given laminate with its crack density. Stiffness degradation can then be predicted as a
function of intralaminar and interlaminar damage, showing an excellent match with test data. Bonora et al.
[1] used the continuum approach shown in Talreja’s work [59, 60] to predict stiffness degradation due to ma-
trix cracking in a cross-ply laminate under fatigue loads. To do this, matrix crack density (in the 90 degree
plies) had to be estimated as a function of applied cycles. Bonora et al. assumed matrix crack density to be
related to the applied cycles, the maximum cyclic stress, specimen geometry and some modeling constants,
one of which depends on the applied load level. Stiffness degradation of a cross-ply laminate can then be
predicted for fatigue loading.

While the match of [1] with experimental data is good, this model shows one of the weaknesses of mechanistic
approaches: rather than predicting stiffness degradation directly as a function of the applied load and cycles
(like phenomenological models), mechanistic models predict damage (usually crack density) as a function of
the applied load and cycles, and then relate said damage to degradation in the laminate’s mechanical proper-
ties. The extra step (compared to phenomenological models) could introduce "additional points of failure",
and could make the less apt to preliminary design optimization, which is usually based on applied loads and
displacements, rather than damage states.

While there are a multitude of additional mechanistic stiffness degradation models, they are not presented
here (a good review can be found in [11, 51]), since the fatigue model proposed in this research does not base
itself on any of them. The goal was to show the advantages and disadvantages inherent of mechanistic mod-
els. They all tend to have good accuracy, and if they posses any modeling constants, they are generally less
"aggressive" than their phenomenological counterparts (eg. they do not depend on the applied stress level,
meaning one batch of test data can be used to predict stiffness degradation at different stress levels). Their
main downside is the higher complexity of the method itself, which often needs to dwell into micromechan-
ical, since damage is usually modeled explicitly. Said complexity can results in computationally intensive
models, especially when discretization of finite element approaches are necessary.

The proposed fatigue model was created with preliminary design in mind and falls between phenomenolog-
ical and progressive damage models, similarly to the "lamina to laminate" approaches described in [51]. This
is further reinforced by the fact that the fatigue model shown in chapter 4 is based on the proposed static
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Figure 2.2: Normalized stiffness degradation as a function of normalized fatigue life for [0,902]S graphite/epoxy laminate, according to
predictions from [8]. The percentages next to the curves indicate the maximum cyclic stress as a function of static strength.

model from chapter 3, which has been extended to fatigue loading through Kassapoglou’s model for residual
strength prediction under fatigue loading [30, 32–35]. Both models happen to also be a mix of phenomeno-
logical and progressive damage ones. While the proposed fatigue model does not directly predict the precise
extent of damage (matrix crack density), or the stress state around said damage, it does base its prediction
for the onset of damage and the assumed post-damage behavior on the specific damage type being modeled.
Unlike most mechanistic models, the proposed model draws a direct relation between stiffness degradation,
applied cycles and cyclic stress level, thus bypassing the additional step of having to predict matrix crack
density. Differently from phenomenological models, the proposed fatigue model only needs data which can
be measured experimentally from static tests, none of which need to be carried out on the exact layup being
analyzed (although doing so for the transverse tensile in situ strength could benefit accuracy to some extent).
No curve fitting or semi-empirical approaches are needed. Since the proposed model is fully analytical, and
acts at the mesoscale (like the static model) it is also extremely fast.

Finally, it is appropriate to quickly mention literature covering interesting aspects of stiffness degradation
during fatigue. Daniel, Lee and Yaniv [8] found that the stiffness degradation curves of cross-ply laminates
under uniaxial tensile fatigue loading usually follow a same pattern fig. 2.2. An extremely steep initial drop
takes place within the first cycle, due to the formation of transverse matrix cracks (assuming the load is high
enough). Then, if the characteristic damage state [53] (CDS) has not been reached within the first cycle, resid-
ual stiffness will decrease very gradually with the applied cycles, as the number of matrix cracks slowly in-
crease. If on the other hand the first-cycle load was high enough to reach the CDS, little to no damage (matrix
cracks) growth will occur, and the residual stiffness will essentially plateau. At 80% fatigue life point, damage
modes other than transverse matrix cracking will kick in, such as longitudinal matrix cracking, delaminations
and fiber fractures, causing residual stiffness to degrade quickly, and ultimately resulting in failure.

Another example of typical damage development in a laminate throughout fatigue life is shown in fig. 2.3, [52].
Three phases can be clearly distinguished: a steep initial drop, caused by matrix cracking, which plateaus into
a linear more gradual section once the CDS [53] is reached, which ultimately culminates into another steep
drop, leading to failure.

Van Paepegem, De Baere et al. [67] took the unusual approach of monitoring the effect of fatigue damage
on the Poisson’s ratio rather than stiffness. They found that fatigue loading clearly causes the Poisson’s ratio
to degrade, and that the degradation is clear enough to allow for fatigue damage monitoring through the
Poisson’s ratio. More interestingly, Van Paepegem, De Baere et al. mention that cross-ply carbon fiber samples
with thermoplastic matrix experienced Poisson’s ratio degradation under fatigue loading without showing
any stiffness degradation, hinting that Poisson’s ratio degradation in fatigue may not be exclusively dependent
on stiffness degradation. Finally, they also found the Poisson’s ratio to be stress dependent, meaning that its
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Figure 2.3: Typical damage development phases throughout the fatigue life of a laminate. Residual stiffness is proportional to damage
parameter D . Taken from [52]

value during a fatigue cycle will constantly change with the applied load.

Finally, extensive experimental data and observations regarding stiffness degradation and damage develop-
ment for a wide variety of composite laminates under static or cyclic loading can be found in [28, 54].



3
Static model

Two models are presented in this chapter, both of which aim to predict stiffness degradation caused by matrix
damage under static tensile loading. The models were designed to work with any layup, to be fully analytical,
and to require as little experimental input data as possible.

The model’s fundamental unit are the unidirectional plies which make up an infinite laminate. Classical
laminated plate theory [31] is used to derive laminate properties through the mechanical properties of each
single ply.

Stiffness degradation is modeled exclusively through the decay of each ply’s transverse and shear moduli
(E22 and G12), which is assumed to occur due to matrix damage. The residual minor Poisson’s ratio ν21 is
also predicted through its dependence on E22. In brief, the model’s inputs are the ply material’s mechan-
ical properties (E11, E22, G12, ν12), the ply material’s transverse tensile in situ strength (Y T

i s ) and its shear
stress-strain curve, up to failure. Once the desired layup and longitudinal tensile laminate load NX have
been defined by the user, the chosen model will calculate the residual E22 and G12 for each ply. Classical lam-
inated plate theory is then used to derive the laminate’s new stiffness and Poisson’s ratio from the updated
ply properties.

The principles behind the design of both models are illustrated in section 3.1, together with a brief intro-
duction. Two different stiffness degradation models have been developed for static loading. While they both
handle transverse tension in essentially the same way, they treat shear differently. The first model, presented
in section 3.3 allows the matrix to yield due to shear, and to develop matrix cracks due to the combined action
of shear and tension. Damage evolution and stiffness degradation is then handled through apportioning of
strain energy densities. The second model, shown in section 3.4 takes a more generic approach based on
the concept of recoverable and unrecoverable damage, unidentified microscopic shear damage and matrix
cracking. Section 3.5 illustrates how the mechanical properties of each single ply are translated into lami-
nate’s properties, and also gives a small summary on how the model works in practice. Finally, section 3.6
shows the extensive validation process carried out for both static models.

3.1. Model principles and introduction
The model was created with two goals in mind: preliminary design optimization and cycle-by-cycle fatigue
analysis. The former is characterized by the iteration of numerous design configurations. Said configurations
could be extremely different from each other, meaning that models used within preliminary design should
capitalize on computational speed and generality. Computational speed is also essentially for cycle-by-cycle
fatigue analysis, where material properties need to be updated at every cycle to reflect the instantaneous
damage state of the structure. The principles below were devised to ensure that the proposed model would
be simple enough to be both computationally fast and applicable to a large variety of layups and materi-
als.

• Rapid evaluation. The method should be analytical, in order to maximize computational speed and
ease of use/implementation.

• No restrictions to specific layups. A considerable number of stiffness degradation models constrain
the layup to specific configurations (eg. [0/90] cross-ply [5, 23, 24]). While this is done to simplify
the damage states being modeled (and provide a stepping stone for future models), it severely limits
the spectrum of design configurations that preliminary design optimization can analyze. It should be

10
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noted that while the model can technically be applied to any layup, it has only been validated on bal-
anced symmetric laminates. This should not be an issue since most layups used in practical designs
are balanced and symmetric.

• The model should focus on stiffness degradation only. As a first step, the model focuses on the ef-
fects of matrix damage on ply stiffness, since matrix damage is the first type of damage to occur upon
loading, and since degradation upon static or fatigue loading is driven by matrix damage (and possibly
fiber-matrix interface damage) [5, 8, 25, 50, 54, 69, 70].

Since plies are the fundamental unit of the model, and since the model should work for any layup and ply
material, stiffness degradation needed to be somehow tied to ply quantities which reflected the "mechanical
state" of the ply after loading. In this thesis, damage initiation and evolution was tied to Hashin’s failure
criterion [22], which only requires ply strength and stresses to function. This does not preclude the usage of
other failure criteria, stress based or not. Since matrix damage is the first type of damage to occur (at least at
ply level), and since it has been shown to have a strong influence on stiffness degradation [5, 8, 25, 50, 54, 69,
70], the proposed method will start with that as a first step.

To minimize the model’s complexity, as well as making validation easier, the only load case to be applied to
the laminate is uniaxial tension. Because of this requirement, it is convenient to define matrix Tply, which
allows to relate local ply stresses to the in plane distributed load applied to the laminate.

Tply =
t11 t12 t13

t21 t22 t23
t31 t32 t33

= Qply ·Nply ·Slam (3.1)

with

σ = Tply ·N or

σ11
σ22
τ12

= Qply •Nply ·Slam ·
 Nx

Ny
Nx y

 (3.2)

Where Qply is the ply stiffness matrix in the ply coordinate system, Nply is the ply strain rotation matrix, Slam
is the laminate compliance matrix, σ is the ply stress vector and N is the laminate load vector. Note that
matrix Tply is not symmetric, and has to be defined for each ply orientation. The definitions of Qply, Slam and
Nply are shown in eq. (3.3), eq. (3.5) and eq. (3.6) respectively.

Qply =


E11

1−ν12ν21

ν21E11

1−ν12ν21
0

ν12E22

1−ν12ν21

E22

1−ν12ν21
0

0 0 G12

 (3.3)

The lack of out-of-plane components in Qply is due to the plane stress assumption. Moreover, the spe-
cial orthotropy of the ply material and Maxwell symmetry make it so that Q12 = Q21, as shown below in
eq. (3.4).

Q12 =Q21 ⇒ E11ν21 = E22ν12 (3.4)

Slam = [Clam]−1 with Clam = 1

T

n∑
k=1

MkQkMT
k tk (3.5)

In the equation for Slam, Clam is the stiffness matrix of the laminate. The subscript k in the equation for Clam
indicates the current ply number, tk represents the thickness of the current ply, while T is the thickness of
the entire laminate. The stress rotation matrix Mply is given in eq. (3.6). The laminate’s compliance matrix is
limited to its in-plane components since the proposed model has been developed for in-plane loads.

Mply =
 cos2θ sin2θ 2cosθ sinθ

sin2θ cos2θ −2cosθ sinθ
−cosθ sinθ cosθ sinθ cos2θ− sin2θ



Nply =
 cos2θ sin2θ cosθ sinθ

sin2θ cos2θ −cosθ sinθ
−2cosθ sinθ 2cosθ sinθ cos2θ− sin2θ


(3.6)
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Where θ is the orientation angle of the ply being analyzed.

3.2. Approximating shear stress-strain behavior
Before diving into the models, it is useful to quickly show how some of the non-linearities associated with
shear stress-strain behavior [19, 21] have been simplified. The experimental shear stress-strain curve was
approximated by two straight lines (see section 3.6), one representing the "pristine" elastic response, and the
other covering plastic behavior.

An example of said approximation is shown in fig. 3.1, where it is possible to see that the stress-strain curve
will start out linear (with modulus G12) and then turn plastic when the shear stress equals Sk , following the
plastic approximation with slope k until the ultimate stress-strain is reached. The approximation illustrated
in this chapter is denoted from hereon as "bilinear approximation".

To find the slope k , some experimental data is required, namely the typical shear stress-strain curve of the
material, up to failure. Said experimental data is used to obtain the ultimate shear stress (Sult), ultimate strain
γ12ult and strain energy density to failure (Ud12 f

), defined in eq. (3.7).

Ud12 f
=

γ12ult∫
0

τ12(γ)dγ (3.7)

Slope k should be such that strain energy density to failure for the experimental and approximated shear
curves are the same. To restrict all possible solutions of k to a single value, it is imposed that the approximated
curve should have the same Sult and γ12ult as the experimental one. Plastic slope k is therefore dependent on
a single variable: the damage initiation stress Sk , which should be chosen to comply with the aforementioned
energy equivalence. Slope k is defined in eq. (3.8), while an expression for Sk is shown in eq. (3.9)

k = Sult −Sk

γ12ult − Sk

G12

(3.8)

Sk =
2Ud12 f

−Sultγ12ult

γ12ult − Sult

G12

(3.9)

Where Sk represents the shear stress (in the ply) at which shear damage will be initiated. For the energy
equivalence model introduced in section 3.3, Sk is associated with shear strength τ12y , which denotes the
onset of microscopic matrix damage, illustrated in section 3.3.1. For the recoverable energy model presented
in section 3.4, Sk will represent the shear in situ strength S I S , which for that particular model is used to
denote the onset of microscopic shear damage. The reason why microscopic shear damage was associated
(for the recoverable damage model) with the shear in situ strength S I S and not some other quantity will be
made clear at the beginning of section 3.4. Calculating a realistic value for the bilinear approximation’s knee
is extremely important, since it drives the model’s accuracy for scenarios where shear is dominant.

3.3. Energy equivalence model
This is the first of the two proposed models. Two damage phenomena are modeled at ply level: inelastic
behavior possibly caused by microscopic damage and matrix cracking. The former is assumed to only occur
due to shear, while matrix cracking occurs due to a combination of shear and transverse tensile stresses [37,
69]. All stresses mentioned in this chapter refer ply stresses in the ply’s local coordinate system, while "load"
refers to the longitudinal tensile load applied to the laminate, unless stated otherwise. The aim of the model

is to relate the residual transverse and shear ply moduli (E 22 and G12) to the applied load (NX ). The initiation
and evolution of microscopic matrix damage, as well as its effect on ply stiffness, are covered in section 3.3.1.
The same is done for matrix cracking in section 3.3.2. The model is validated in section 3.6.
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Figure 3.1: Schematic representation of the bilinear shear stress-strain approximation procedure. If the highlighted areas are equal, the
experimental and approximated stress-strain curves will have the same strain energy density to failure (area under each curve).

3.3.1. Inelastic matrix behavior in shear
The departure of a ply from linear behavior is postulated to occur when the shear stress exceeds the apparent
yield strength τ12y , as shown in eq. (3.10), where shear stress is calculated according to the ply’s pristine
moduli (no other damage has occurred yet) and yield strength τ12y is assumed to be the knee of the bilinear
shear approximation shown in fig. 3.2, since that is the first instance where shear stress-strain behavior will
depart linearity.

τ12a = γ12aG12 = NX t31 ≥ τ12y (3.10)

Where τ12a is the applied shear stress, γ12a is the applied shear strain, NX is the laminate load correspond-
ing to said shear strain assuming the laminate to be pristine and t31 was defined in eq. (3.1). At this point, it
is convenient to mention a couple of assumptions behind the expected post-damage behavior. For reasons
that will be explained in section 3.3.2, matrix cracking is assumed to turn the shear and transverse tensile
stress-strain curves perfectly plastic. There exists however an unspecified form of microscopic matrix dam-
age which occurs when shear stresses are dominant. In [37], shear dominated laminates subject to tensile
loading exhibited stiffness degradation long before matrix cracks were developed, indicating that non-visible
(microscopic) damage must be present. In [69], stiffness degradation of shear dominated laminates occurred
without any visible damage, pointing once again at the presence of microscopic damage associated exclu-
sively with shear stresses. It is therefore assumed that the microscopic damage can only be induced by shear
stresses, and can only affect shear stress-strain behavior in return. Finally, since microscopic in [37, 69] ap-
peared before matrix cracking (if any), it can be assumed that the first departure of the shear response from
elastic behavior must be caused by microscopic damage, which in turn means that the plastic portion of the
bilinear shear approximation from section 3.2 can be associated with the microscopic damage.

The evolution of shear damage with the applied load is modeled by imposing an equality between the shear
strain energy density that would have been stored had the material stayed intact and the one actually stored
in the damaged material.

Looking at fig. 3.2, this is essentially equivalent to stating that areas O ABC and O ADE should be equal. To

derive an equation for the residual shear modulus G12 it is necessary to find expressions for τ12a and γ12a ,
which are the shear stress and strain actually applied to the material.

G12 = τ12a

γ12a
(3.11)

Referring to fig. 3.2, it is easy to derive from geometry an expression relating the applied stress and strain,
shown below.

τ12a = τ12y +k

(
γ12a −

τ12y

G12

)
(3.12)
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Figure 3.2: Ply material’s shear behavior upon appearance of microscopic matrix damage, according to the energy equivalence model.

Enforcing the equality of areas O ABC and O ADE it is possible to obtain an additional equation containing
τ12a and γ12a .

τ2
12el

2G12
=
τ2

12y

2G12
+

(
τ12a +τ12y

)
2

(
γ12a −

τ12y

G12

)
(3.13)

It is obvious that eq. (3.12) and eq. (3.13) constitute a system of two equations in two unknowns, namely τ12a
and γ12a . Solving said system yields the following definitions of applied stress and strain:

τ12a =
√
τ2

12y +
k

G12

(
τ2

12el −τ2
12y

)
and γ12a = τ12y

(
1

G12
− 1

k

)
+ 1

k

√
τ2

12y +
k

G12

(
τ2

12el −τ2
12y

)
(3.14)

Where all variables are known apart from τ12el , which is the independent variable, defined as:

τ12el = NX t31 (3.15)

Where NX is the uniaxial longitudinal tensile load currently applied to the entire laminate, thus representing
the model’s only input and independent variable.

Using eq. (3.14), it is possible to finally write a proper definition for the residual shear modulus under micro-
scopic matrix damage, starting from eq. (3.11):

G12 = τ12

γ12a
=

√√√√1+ k

G12

(
τ2

12el

τ2
12y

−1

)

1

G12
− 1

k
+ 1

k

√√√√1+ k

G12

(
τ2

12el

τ2
12y

−1

) (3.16)
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3.3.2. Matrix cracking
Unlike microscopic damage, matrix cracking can be caused by both transverse tension and shear [3, 22],
and will consequently affect both the transverse tensile and shear moduli. To predict the onset of matrix
cracking, Hashin’s criterion for matrix material under transverse tension and shear was used [22], shown in
eq. (3.17).

(
σ22

Y T
I S

)2

+
(
τ12

S I S

)2

= 1 (3.17)

Where YI S and S I S are the transverse tensile and shear in situ strengths respectively. If the in situ strengths are
not available, ultimate stresses can also be used, possibly at the expense of modeling accuracy. It should be
noted that for particular ply orientations and layups, a small transverse compressive stress might be present,
meaning that t21 < 0. It is known from [10] that, if a unidirectional Glass-Epoxy ply subject is to transverse
compression and in-plane shear, small compressive stresses will actually have a beneficial effect on the fail-
ure envelope. Since the proposed models are being validated (for now) in uniaxial tension, the compressive
stresses will be very small, if any. To be conservative, and to keep the model simple, it is therefore assumed
that the effect of transverse compression can be neglected, meaning that whenever t21 < 0, t21 will be set to
zero, and the ply will be loaded in pure shear. This applies to all equations within this research where Hashin’s
criterion is applied, including matrix cracking equations in section 3.4.1 and section 4.3.

Since the presence of microscopic damage affects the shear stress τ12, equations associated with the onset
and evolution of matrix cracking are derived for two different cases: one where microscopic damage has
occurred before matrix cracking, and one where it has not.

To determine whether microscopic damage will occur before matrix cracking, the critical load for the former
should be compared with the cracking one (NX cr ) defined in eq. (3.19). This is shown in eq. (3.18), where t31
was used to associate the apparent yield stress with the corresponding laminate load NX .

τ12y

t31
< NX cr (3.18)

If the above condition is true, it means that the load NX necessary for the shear stress τ12a to exceed τ12y is
lower than the load NX cr necessary to induce cracking, which in turn means that microscopic damage will
occur before cracking.

Matrix cracking without microscopic damage
In absence of microscopic damage, the ply material will follow linear elastic behavior for both shear and
transverse tension until cracking occurs, meaning that the critical cracking load can be easily found through
Hashin’s criterion by expressing τ12 andσ22 as a function of NX cr , setting the criterion equal to one and then
solving for NX cr , as shown in eq. (3.19)(

σ22

Y T
I S

)2

+
(
τ12

S I S

)2

= 1 ⇒ N 2
X cr

[(
t21

Y T
I S

)2

+
(

t31

S I S

)2
]
= 1 ⇒ NX cr = 1√√√√(

t21

Y T
I S

)2

+
(

t31

S I S

)2

(3.19)

Once matrix cracking is initiated, ply material behavior is postulated to turn perfectly plastic in both shear
and transverse tension. If microscopic damage has not occurred (eq. (3.18) is false), the stress-strain curves
for transverse tension and shear will look like fig. 3.3a and fig. 3.3b respectively.

The assumption that the post-cracking stress strain behavior should be perfectly plastic can be justified
through the characteristic damage state concept [45, 53]. In brief, once matrix cracking is initiated, the crack
pattern (and consequently distance between cracks) will be such that the peak matrix stress between two con-
secutive cracks will be infinitesimally smaller than the stress which initiated cracking. To make an example:
there exists a laminate with 90 degree plies and additional plies in other directions. The laminate is loaded in
tension up to the point where matrix cracks appear in the 90 degree plies. The stress in the matrix, between
matrix cracks, is infinitesimally smaller than the "critical stress" which induced cracks. Any further increase
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in laminate load will induce additional cracks, which will ensure that the stress between them remains in-
finitesimally smaller than the critical one. It follows that once matrix cracks are initiated, the matrix stress
in the cracked ply will stay fixed at its critical value, despite increasing strains, thus justifying the assump-
tion that ply stress-strain behavior turns perfectly plastic right upon matrix cracking. Naturally, this concept
does not apply to laminates made exclusively of 90 degree plies, since matrix cracking would be immediately
accompanied by failure.

To proceed, the excess strain energy density in a ply associated with the creation of matrix cracks is intro-
duced. The strain energy densities associated with transverse and shear stresses are Ud22 and Ud12 respec-
tively:

Ud22 =
σ2

22el

2E22
Ud12 =

τ2
12el

2G12
(3.20)

Where the "el" subscript stands for elastic, and indicates that both σ22el and τ12el assume the continuation
of elastic behavior. It is acknowledged that in addition to the two expressions in eq. (3.20), there is one more
term in the strain energy density which involves σ22. That term, −ν12σ11σ22/E11 is neglected at this point.
Excess strain energy density is defined here as the difference between the strain energy density corresponding
to the applied load (assuming the continuation of linear elastic behavior after damage) and the strain energy
density corresponding to the load at which, according to the Hashin failure criterion, damage is initiated.
Excess strain energy density expressions for the transverse tension and shear portions of the energy density
of a ply are given in eq. (3.21)

∆Ud22 =Ud22 −Ud22cr =
σ2

22 −σ2
22cr

2E22
∆Ud12 =Ud12 −Ud12cr =

τ2
12 −τ2

12cr

2G12
(3.21)

Since the model assumes the laminate to be loaded in uniaxial tension, elastic stresses (σ22el , τ12el ) and
critical stresses (σ22cr , τ12cr ) in eq. (3.21) can be written as a function of t21, t31,NX , NX cr and the in situ
strengths:

σ22el = NX t21, σ22cr = NX cr t21 = t21√√√√(
t21

Y T
i s

)2

+
(

t31

Si s

)2

(3.22)
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τ12el = NX t31, τ12cr = NX cr t31 = t31√√√√(
t21

Y T
i s

)2

+
(

t31

Si s

)2

(3.23)

Using eq. (3.22) and eq. (3.23) it is possible to rewrite∆Ud22 and∆Ud12 in eq. (3.21) as follows.

∆Ud22 = 1

2E22
· t 2

21(
t21

Y T
i s

)2

+
(

t31

Si s

)2
∆H = σ2

22cr ∆H

2E22
(3.24)

∆Ud12 = 1

2G12
· t 2

31(
t21

Y T
i s

)2

+
(

t31

Si s

)2
∆H = τ2

12cr ∆H

2G12
(3.25)

where∆H could be described as the "Hashin failure index", defined in the eq. below:

∆H =

N 2
X

[(
t21

Y T
i s

)2

+
(

t31

Si s

)2
]
−1, if NX ≥ NX cr

0, if NX < NX cr

(3.26)

With∆H being equal to zero upon the very first instance of failure (NX = NX cr ). To enforce the equivalence
between strain energy density accumulated in the perfectly plastic regime and excess strain energy, it is sim-
ply necessary to set the areas OABC and OADE from fig. 3.3b and fig. 3.3a to be equal to each other. By doing
so, it is possible to derive the following equation for the residual moduli:

E 22 = σ22cr

σ22cr

E22
+ ∆Ud22

σ22cr

G12 = τ12cr

τ12cr

G12
+ ∆Ud12

τ12cr

(3.27)

Using the expressions for the excess strain energy derived in eq. (3.24) and eq. (3.25), it is possible to write the
above definitions of the residual moduli in a simpler form, shown below.

E 22 = 2E22

2+∆H
G12 = 2G12

2+∆H
(3.28)

Matrix cracking after microscopic damage
If eq. (3.18) is true, microscopic damage will occur before matrix cracking, which means that the τ12 used in
Hashin’s criterion (eq. (3.17)) to determine the onset of cracking is not elastic anymore, and will instead fol-
low the plastic behavior shown in section 3.3.1. An expression for the critical cracking load NX cry accounting
for the presence of microscopic damage can therefore be found by taking the post-microscopic damage ap-
plied shear stress τ12a , as defined in eq. (3.14), plugging it into Hashin’s criterion (eq. (3.17)) and solving for
NX . Since microscopic damage does not affect the traverse tensile response, σ22 remain elastic until crack
initiation. The final result is shown below:

NX cry =

√√√√√√√√√
1−

(
τ12y

S I S

)2 (
1− k

G12

)
(

t21

Y T
I S

)2

+ k

G12

(
t31

S I S

)2
(3.29)

Similarly to the approach followed in the previous section, it is postulated that the excess strain energy gen-
erated after matrix cracking (had the material stayed pristine) must be stored within the perfectly plastic
portion of the stress-strain curve.
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For transverse tension, microscopic damage only affects matrix cracking behavior by changing the critical
load at which cracking will occur. This means that fig. 3.3a is still representative of post-microscopic damage
matrix cracking for transverse tension, with the caveat that the new critical load will be NX cr = NX cry . This

naturally means that the residual modulus E 22 is given by eq. (3.30), which relies on the same derivation
shown for eq. (3.31).

E 22 = 2E22

2+∆H
with ∆H =

N 2
X

[(
t21

Y T
i s

)2

+
(

t31

Si s

)2
]
−1, if NX ≥ NX cry

0, if NX < NX cry

(3.30)

For shear, the predicted stress-strain curve for post-microscopic damage matrix cracking is shown in fig. 3.4.
The main difference from the case without microscopic damage is the presence of a plastic portion with slope
k , following the bilinear approximation, starting at NX = τ12y /t31 and ending at NX = NX cry . As before, it is
postulated that the strain energy density stored after cracking if the material were to be elastic must be equal
to its equivalent stored under the perfectly plastic regime. Looking at fig. 3.4, this is equivalent to stating at
areas LBCI and HDEG must be equal. From geometry, said equality has been derived in eq. (3.31).

LBCI = HDEG ⇒

(
N 2

X −N 2
X cry

)
t 2

31

2G12
= (

γ12a −γ12cr
)
τ12cr (3.31)

Where γ12a is the actual shear strain that the ply will experience (accounting for stiffness degradation), γ12cr
is the actual shear strain at which matrix cracking was initiated (accounting for stiffness degradation due to
microscopic damage) and τ12cr is the shear stress at which matrix cracking was initiated, which naturally cor-
responds to τ12a shown in fig. 3.4, since stress-strain becomes perfectly plastic upon matrix cracking.

It follows that τ12cr and γ12cr can be found by evaluating eq. (3.14) at NX cry , which is shown below.

τ12cr = τ12y

√√√√1+ k

G12

[( NX cry t31

τ12y

)2

−1

]

γ12cr = τ12y

(
1

G12
− 1

k

)
+ τ12y

k

√√√√1+ k

G12

[( NX cry t31

τ12y

)2

−1

] (3.32)

Looking at fig. 3.4, it is obvious that the residual modulus G12 is given by:

G12 = τ12a

γ12a
(3.33)

For perfectly plastic behavior due to matrix cracking, it is possible to set τ12a = τ12cr . Moreover, eq. (3.31)
can be used to obtain γ12a , which means the residual shear modulus for post-microscopic damage matrix
cracking from eq. (3.33) can finally be defined as:

G12 = τ12a

γ12a
= τ12cr(

N 2
X −N 2

X cry

)
t 2

31

2G12τ12cr
+γ12cr

=

=
τ12y

√√√√1+ k

G12

[( NX cry t31

τ12y

)2

−1

]
(
N 2

X −N 2
X cry

)
t 2

31

2G12τ12y

√√√√1+ k

G12

[( NX cry t31

τ12y

)2

−1

] +τ12y

(
1

G12
− 1

k

)
+ τ12y

k

√√√√1+ k

G12

[( NX cry t31

τ12y

)2

−1

]

(3.34)
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Figure 3.4: Ply material’s shear behavior upon matrix cracking according to the energy equivalence model, assuming that microscopic
damage has already occurred.

Where τ12cr and γ12cr were filled in from eq. (3.32). While the final definition of the residual shear modulus

G12 shown in eq. (3.34) is unwieldy, it cannot be simplified in any meaningful way (to the author’s knowl-
edge).

3.4. Recoverable damage model
This static model differs from the model of section 3.3 mainly in the way shear is handled. It is postulated
that transverse tension can only experience matrix cracks, while shear can only experience some unspecified
microscopic damage [69]. It is assumed that shear and transverse tensile stresses both contribute towards
damage initiation, which is predicted through Hashin’s criterion, shown below:(

σ22

Y T
I S

)2

+
(
τ12

S I S

)2

= 1 ⇒ N 2
X cr

[(
t21

Y T
I S

)2

+
(

t31

S I S

)2
]
= 1 ⇒ NX cr = 1√√√√(

t21

Y T
I S

)2

+
(

t31

S I S

)2

(3.35)

Where the critical load NX cr is the laminate’s longitudinal tensile load at which damage will be initiated,
and the in situ shear strength S I S is the knee of the bilinear approximation for shear, as defined in eq. (3.9).
Damage evolution and residual modulus prediction is discussed for transverse tension in section 3.4.1 and
for shear in section 3.4.2. The model is then validated in section 3.6.

3.4.1. Transverse tensile behavior
Similarly to section 3.3, it is postulated that transverse tension is affected by one damage type: matrix cracks.
Again following section 3.3.2, matrix cracking will cause the transverse tensile response to turn perfectly plas-
tic, which means that transverse tension will answer to the same principle of strain energy apportioning used
in the aforementioned section. As a result, the final equation predicting the residual transverse tensile mod-
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Figure 3.5: Shear stress-strain curve for two [±45◦]2s GFRP laminates, one tested under monotonic tension, the other under several
loading/unloading cycles. The small differences between the monotonic and cyclic test are due to fact that two separate samples were

used. Taken from [68]

ulus E 22 will also be identical to eq. (3.28). The equation is repeated below for convenience.

E 22 = 2E22

2+∆H

with ∆H =

N 2
X

[(
t21

Y T
i s

)2

+
(

t31

Si s

)2
]
−1, if NX ≥ Nxcr

0, if NX < Nxcr

(3.36)

Note that in this case the critical matrix cracking load NX cr is the one calculated in eq. (3.35), which assumes
linear behavior until damage onset.

3.4.2. Shear behavior
Before dwelling into shear behavior under the recoverable damage model, a few points must be mentioned.
The "governing equations" provided in this section were based on qualitative assumptions and consideration
derived from literature. Several attempts were made to rigorously derive a set of governing equations for the
recoverable damage model. Unfortunately, none of them were considered mature enough to be inserted into
this text.

What is presented here is therefore one of the "qualitative approaches" that was set up. Before showing any
equations, it is useful to mention some important observations derived from literature [37, 38, 66, 68] regard-
ing shear post-damage shear behavior.

1. When a ply is loaded monotonically in shear up to a specific point and then unloaded, the unloading
stress strain curve will stop at a specific permanent shear strainγ12p , associated with a specific residual
shear modulus G12p . This is the secant modulus between the permanent strain and unloading point,
as shown by the straight lines in fig. 3.5.

2. Whenever the ply is reloaded/unloaded, as long as the original unloading load is not exceeded, the
stress-strain curve will move along a hysteresis cycle connecting the point of permanent strain with the
unloading point.

3. When the unloading point is exceeded, the stress-strain curve will rejoin the monotonic curve as if
nothing happened. Hence, the portion of the stress-strain curve past the unloading point follows the
same path that the monotonic curve would have followed, had unloading never happened. This is
clearly visible in fig. 3.6.

It follows from the first observation that there must be a 1-to-1 correspondence between unloading point and
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Figure 3.6: Shear stress-strain curve for a [±30◦]2s AS1/3501-6 laminate, loaded up to 0.5% strain, unloaded, then reloaded up to failure.
Taken from [38]

each permanent strain - residual modulus couple. This means that each unloading point must be associated
with a particular damage state.

It is postulated that said damage state is characterized by the presence of two damage types: unrecoverable
damage, and recoverable damage. Unrecoverable damage manifests itself in the form of permanent shear
strain γ12p , and depends exclusively on the maximum load ever applied in the material’s loading history so
far (which coincides with the current unloading point). Unrecoverable damage is by definition permanent,
since no change in loading condition can decrease the amount of damage.

Recoverable damage on the other hand is exclusively dependent on the load or strain being currently applied,
and is associated with the residual modulus G12p , which the model is trying to predict.

Damage associated with the secant modulus of the hysteresis cycle (G12p ) must be recoverable since as long
as the unloading point is not exceeded, the stress-strain curve will always travel along the hysteresis cycle
(observation nr.2). Moreover, once the hysteresis cycle is departed the monotonic curve will be rejoined
and continued as if the hysteresis cycle never occurred (observation nr.3), thus proving that no permanent
damage was induced within it, and that all of the damage associated with it must be recoverable.

It is recognized here that, while the secant modulus of the hysteresis cycle has just been associated with
recoverable damage, there is path dependence within the hysteresis cycle (likely due to viscoelastic effects
in the matrix under shear loading) which may or may not be associated with recoverable damage. Since the
model is concerned with the secant modulus of the hysteresis cycle, and since the secant modulus is defined
exclusively by the only two points on the hysteresis cycle which are path independent, it is assumed that the
path dependence of the hysteresis cycle does not preclude the secant modulus G12p from being associated
with recoverable damage (for the purposes of this model).

For the proposed model, shear behavior is only affected by unspecified microscopic damage [69], which
means that before damage initiation the shear response is elastic, while after damage initiation it will turn
plastic (with slope k , according to section 3.2). Damage initiation occurs when NX = NX cr , as detailed at the
beginning of section 3.4. It is now convenient to derive an equation for the secant modulus of a pristine ma-
terial (no permanent strains) experiencing recoverable damage. The secant modulus G12d must be given by
the line connecting the origin (zero stress-strain) with the point of applied stress-strain τ12a-γ12a , as shown
in fig. 3.7.

Looking at fig. 3.7, it is apparent that the secant modulus G12d is similar in nature to the residual shear mod-

ulus G12 under microscopic matrix damage from eq. (3.14). The main difference lays in the knee of the
bilinear shear approximation. Rather than the apparent yield strength τ12y , in this case it represents the
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shear strength NX cr t31, since microscopic shear damage is assumed to contribute towards damage initiation
through Hashin’s criterion, given in eq. (3.35).

Similarly to what was done for G12 in section 3.3.1, the residual modulus G12d can be found by equating
the excess strain energy density with its counterpart stored within plastic deformation, or in other words,
by equating areas O ABC and O ADE from fig. 3.7. By doing so, and remembering that τ12el = NX t31, an
expression for G12d is obtained:

G12d =

G12 + k∆H

1+
√

1+ k

G12
∆H

1+ ∆H

1+
√

1+ k

G12
∆H

(3.37)

Where∆H is the Hashin failure index, defined in eq. (3.36).The modulus G12d defined in eq. (3.37) thus rep-
resents recoverable damage occurring in a pristine material (no permanent strains). Naturally, the equation
for G12d that was just derived assumes the entirety of the applied strain to be recoverable. In other words,
eq. (3.37) can predict the secant modulus G12d due to recoverable damage under recoverable strains.

In reality, since the ply material will develop permanent strains once NX > NXcr , the recoverable strain will
only be a portion of the applied one. Looking at figs. 3.5 and 3.6, it can be seen that only the recoverable por-
tion of the applied strain contributes to the load/stress experienced by the ply material within the hysteresis
cycle (unloading/reloading). Since the hysteresis cycle was considered to be characterized only by recover-
able damage (and some negligible viscoelastic effects), and since the entirety of the recoverable strain (upon
unloading/reloading) is contained within the hysteresis cycle, it is assumed that eq. (3.37) should be able to
represent the secant modulus of the hysteresis cycle, since the hysteresis cycle itself contains only recoverable
damage and recoverable strains, similarly to the pristine material that eq. (3.37) was derived for. The secant
modulus of an hysteresis cycle is denoted with G12p , as shown in fig. 3.7.

It has been found in [37] that the ratio of permanent shear strain to applied shear strain increases monoton-
ically with the applied strain. It follows that, as the applied load increases, the percentage of applied strain
which is recoverable shrinks. This does not mean that the absolute amount of recoverable strain diminishes
with increasing applied load, but only that its percentage compared to the total applied strain does.

To incorporate this observation into eq. (3.37), the load NX which constitutes ∆H is scaled with the ratio of
residual modulus G12p to pristine modulus G12, as shown below:

NXs = NX
G12p

G12
⇒ ∆Hs =

(
NX

NX cr

)2 (
G12p

G12

)2

−1 (3.38)

Where the s subscript indicates that the quantities account for the aforementioned effects associated with
shear. It is then postulated that an expression for G12p can be created, shown in eq. (3.39) and based on
eq. (3.37) for G12d .

G12p =

G12 + k∆Hs

1+
√

1+ k

G12
∆Hs

1+ ∆Hs

1+
√

1+ k

G12
∆Hs

=

G12 +
k

[(
NX

NX cr

)2 (G12p
G12

)2
−1

]

1+
√

1+ k

G12

[(
NX

NX cr

)2 (G12p
G12

)2
−1

]

1+

[(
NX

NX cr

)2 (G12p
G12

)2
−1

]

1+
√

1+ k

G12

[(
NX

NX cr

)2 (G12p
G12

)2
−1

]
(3.39)

To the author’s knowledge, the expression in eq. (3.39) cannot be solved analytically with respect to G12p .
However, since it represents a root finding problem in a single variable, it can solved numerically extremely
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Figure 3.7: Ply material’s shear behavior upon appearance of microscopic matrix damage, according to the recoverable damage model.

quickly. Looking at eq. (3.39), it can be seen that the scaling performed through eq. (3.38) produced the
desired effect. For a same applied NX , the predicted G12p will be larger than the predicted G12d , since for the
former only a portion of NX is working towards creating recoverable strains. Moreover, as NX increases, the

ratio of recoverable to total applied strain decreases, since the factor
G12p
G12

will be even lower.

To summarize, an expression relating applied load NX to recoverable strains and modulus G12d was defined
in eq. (3.37). The expression was then expanded to account for the presence of permanent strains within the
total applied strain, allowing for the prediction of the secant modulus G12p associated with a hysteresis cycle
of unloading/reloading. The fact that only a portion of the applied strain was recoverable was represented

by a scaling factor
G12p
G12

being applied to load NX , which could also be seen as a measure of the extent of

damage.

Finally, from geometry of fig. 3.7, permanent strain γ12p can be defined as:

G12p
(
γ12a −γ12p

)= γ12aG12d ⇒ γ12p = γ12a

(
1− G12d

G12p

)
(3.40)

The proposed model presents two main issues:

• It is implicitly assumed that eq. (3.37), which was derived to estimate the secant modulus G12d due to
recoverable damage under recoverable strain in a pristine material, can also predict the secant modulus
G12p due to recoverable damage under recoverable strain in a damaged material (γ12p > 0), as long
as the applied load NX has been scaled to reflect the fact that only a portion of the applied strain is
recoverable. There is no hard evidence that the only effect caused by the presence of permanent strains
should be a reduction in recoverable strain. The introduction of unrecoverable damage might have
other effects that are presently not accounted by eq. (3.39).

• The scaling factor of
G12p
G12

is arbitrary. It was chosen to represent the fact that the ratio of recoverable

strain to total applied strain is directly proportional to damage. There is no particular reason why the

scaling factor should not have another form, such as a more generic power law
(G12p

G12

)c
, where c is

some constant.
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Unfortunately, at the time of writing, no definitive answer has been reached regarding these issues. The
model and ideas proposed in this section should not be seen as definitive or final As seen later in section 3.6.4,
where validation is performed, the model proposed in this section achieves a good match with experimental
data, better than the energy equivalence method, which is largely based on a similar modeling philosophy
(eg. microscopic damage in shear, excess strain energy apportioning). This means that incorporating some
of the observations and remarks made here into the energy equivalence model might actually bring drastic
improvements to it.

3.5. Ply and laminate level
All theory discussed in section 3.3 and section 3.4 concerned the matrix within individual plies of a laminate.
Since the model is designed to be used on laminates with any desired layup, it is necessary to express laminate
properties as a function of ply properties. This can be easily done through Classical Laminated Plate Theory
[31]. The local stiffness matrix of a pristine ply was defined in eq. (3.3), while an expression for its damaged
counterpart is shown in eq. (3.41) below.

Qpl y =
Q11 Q12 0

Q21 Q22 0
0 0 Q66

=


E11

1−ν12ν21

ν12E 22

1−ν12ν21
0

ν21E11

1−ν12ν21

E 22

1−ν12ν21
0

0 0 G12

 (3.41)

Where E11 and ν12 are the pristine longitudinal stiffness modulus and major Poisson’s ratio respectively. E 22

and G12 (or G12p for the recoverable damage model) are the residual transverse and shear stiffness moduli,
while ν21 is the residual minor Poisson’s ratio, defined in eq. (3.42).

ν21 = ν12E 22

E11
(3.42)

Compliance ofν21 with eq. (3.42) preserves each ply’s special orthotropy, by enforcing Q12 =Q21. To evaluate

a laminate’s residual stiffness for a specific load NX , moduli E 22 and G12 should be evaluated for each ply
using the appropriate equations. After enforcing special orthotropy with eq. (3.42), it is possible to assemble
the local stiffness matrix of each ply, which can then be assembled into the laminate’s ABD stiffness matrix,
shown in eq. (3.43).

ABD =
[

A3x3 B3x3

B3x3 D3x3

]
with: A =

n∑
k=1

Ck (zk − zk−1) ; B = 1

2

n∑
k=1

Ck
(
z2

k − z2
k−1

)
; D = 1

3

n∑
k=1

Ck
(
z3

k − z3
k−1

)
(3.43)

The laminate’s longitudinal stiffness can be easily obtained through eq. (3.44).

Ex = 1

h

A11 A22 − A2
12

A22
(3.44)

Where h is the laminate’s thickness. The laminate’s major Poisson’s ratio can be found through eq. (3.45).

νx y = A12

A22
(3.45)

To summarize, the procedure to determine the laminate stiffness properties in the presence of matrix damage
in any of its plies is as follows:
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1. Obtain the required material properties, which include: the ply material’s mechanical properties (E11,
E22, G12 and ν12), its transverse tensile in situ strength (or alternatively just the standard transverse
tensile strength) and the ply material’s shear stress-strain curve, up to failure (needed for the bilinear
approximation in section 3.2)

2. Use classical laminated-plate theory with pristine material properties to determine the stress-load re-
lations (t31 and t21) for shear and transverse stresses in each ply in the local (ply) axis system.

3. For every desired applied load NX , find the residual E22 and G12 for each ply, using the appropriate
equations from either section 3.3 or section 3.4. All governing equations are closed-form expressions,
which means that for each NX it is possible to immediately calculate the resulting stiffness degradation,
without any need to calculate or account for previous loads and without any iteration.

4. With the updated stiffness properties from the previous step, calculate the residual ν12 necessary to
preserve special orthotropy within each ply, then use classical laminated-plate theory to obtain the
laminate’s residual axial modulus EX and residual major Poisson’s ratio νx y .

3.6. Validation
Model validation was performed through experimental data available in literature. All tests involved quasi-
static uniaxial tensile loading of laminate coupons and recorded at least one of the following: stiffness degra-
dation (at ply or laminate level), residual Poisson’s ratio (at ply or laminate level) and permanent shear strain
(at ply level).

To demonstrate the versatility of the model with different materials and layups, test data was selected to cover
5 different ply materials and 13 different layups. Said layup variety is important, since the proposed model
predicts damage induced by transverse tension and shear, meaning that there are fundamentally three pos-
sible damage scenarios: tension dominated (eg. [0,902]S ), shear dominated (eg. [±45]2S ), and a scenario
where the two are comparable (eg. [±40,904]S). All experimental data was obtained from existing literature,
namely [25], [70], [69], [65], [66] and [37]. Section 3.6.1 contains an introduction to each separate "batch"
of validation data. Validation for cross-ply laminates is illustrated in section 3.6.2, while validation for non-
cross-ply laminates is covered in section 3.6.3 and section 3.6.4, with the former using the model from sec-
tion 3.3 and the latter using the model from section 3.4.

3.6.1. List of sources and ply material data
Comparisons with [0/903]S and [903/0]S glass/epoxy laminates [25]
Data on the glass fiber epoxy unidirectional material used by Highsmith and Reifsnider [25] is summarized
in table 3.1. Note that two different transverse in-situ strength values are used here, one for each laminate.
These values were obtained by extrapolating data in [25] at the point where the first matrix cracks appeared.
As mentioned in [3], in situ strength is dependent on the thickness of the off-axis plies and on the orientation
and stiffness of their neighboring plies. The in situ strength is higher when the neighboring plies are stiffer
and this would be the case of 90 degree plies embedded in 0 degree plies, as in laminate [0/903]S . Outer plies
with matrix cracks, as in the [903/0]S laminate, can be seen as an extreme case where one of the adjacent
plies has zero stiffness, causing the in situ strength to drop considerably. As a result, the in-situ strength of
the [903/0]S laminate is 35% lower than its counterpart with embedded off-axis plies [0/903]S .

Laminates were loaded in longitudinal tension. Measurements of the laminate’s residual longitudinal stiff-
ness were performed by unloading the laminate and associating the recorded modulus with the stress at
which unloading started. The laminate would then be reloaded monotonically until the next (higher) un-
loading point.

Comparisons between predictions and test data for the laminate’s residual longitudinal stiffness can be found
in fig. 3.10 for both the [903/0]S and [0/903]S glass/epoxy laminates.
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Table 3.1: Required input data Highsmith and Reifsnider 1982 [25]

Property Value Source

E11 (GPa) 41.70 [25]
E22 (GPa) 13.00 [25]
G12 (GPa) 3.40 [25]
ν12 (-) 0.300 [25]
Y T

i s
∗[0,903]s (MPa) 34.05 [25]

Y T
i s

∗[903,0]s (MPa) 22.04 [25]
Sk (MPa) [-] [-]
k (GPa) [-] [-]

* Value derived from data within
source.

Comparisons with [±θ/904]S glass/epoxy laminates [70]
Varna, Joffe et al. [70] have carried out tests on [±θ,904]s laminates, with θ = 0, 15, 30 and 40 degrees. The
material properties used for the predictions are listed in table 3.2 and were taken from [29] and [58]. The
in situ transverse tensile strength and in situ shear strength are also shown in table 3.2. Since they were not
explicitly given by the authors, they had to be estimated.

Table 3.2: Required input data for Varna, Joffe et al. 2001 [70]

Property Value Source

E11 (GPa) 44.73 [29]
E22 (GPa) 12.76 [29]
G12 (GPa) 5.8 [29]
ν12 (-) 0.297 [29]
Y T

i s
∗ (MPa) 70.96 [70]

Sk
∗ (MPa) 56.08 [58]

k∗ (GPa) 0.56 [58]

* Value derived from data
within source.

Before estimating the in situ strengths, it should be noted that Varna, Joffe et al. did not include a mono-
tonic shear stress-strain curve (necessary for the bilinear approximation shown in section 3.2) in any of their
papers. Since it was impossible to find the aforementioned data for the material they used (HyE 9082Af,
Fiberite), the shear stress-strain curve of a similar material was used instead, namely E-Glass/MY750 from
[58]. The shear moduli of the two materials are the same, and other (known) shear properties are also similar.
Moreover, Vyas and Pinho [71] use E-Glass/MY750 from [58] to "fill-in" some mechanical properties (includ-
ing shear ones) missing from HyE 9082Af/Fiberite from Varna, Joffe et al.[69], explicitly stating that the two
materials are similar.

Hence, the knee of the bilinear shear approximation is found through the procedure described in section 3.2,
eq. (3.9), applied to E-Glass/MY750 test data from [58]. The knee Sk of the curve will then represent the
apparent yield strength τ12y for the energy equivalence model in section 3.3 and the shear in situ strength
S I S for the model in section 3.4.

The transverse in situ strength can be found by calculating the magnitude of the transverse stress in the 90
plies corresponding to the first instance of stiffness degradation in [70]. Using fig. 3.8 as reference, taken
from [70], the first occurrence of matrix cracks can be defined as the intersection between the horizontal line
indicating a pristine modulus (EX /EX 0 = 1) and a second order polynomial fit, based on all experimental
data points with residual stiffness lower than one. The applied mechanical strain found at the intersection
of the fit and the "horizontal pristine line" is then used to load the laminate. The resulting stress in the 90
plies found through classical laminated-plate theory, represents the transverse tensile in situ strength, listed
in Table table 3.2.



3.6. Validation 27

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Applied Mechanical Strain [-]

0.50

0.60

0.70

0.80

0.90

1.00

No
rm

al
ize

d 
M

od
ul

us
 E

x/E
x0

Fit (R2 = 0.976)
Test

Figure 3.8: Finding transverse tensile in situ strength through first instance of damage within [02,904]s laminate. Test data from [70]

The in situ shear strength for the energy equivalence model can be found through a procedure similar to the
one followed for the transverse tensile in situ strength. First, the strain at which damage is initiated is found
through experimental data for the [0,±704,01/2]S laminate from [69], which uses the same material being
covered here (as will be seen in the next section). The axial load corresponding to said strain (for a pristine
laminate) is set to be the critical load used in Hashin’s failure criterion for matrix cracking, shown in eq. (3.19).
Since Y T

I S is known, it is then possible to solve for the shear in situ strength S I S (for the energy equivalence
model).

Table 3.3 contains an index associating all tested layups and monitored properties to a specific figure. All
four laminates have been tested under quasi-static longitudinal loads. The sample would be loaded up to a
specific point, partially unloaded to measure Young’s modulus and Poisson’s ratio, and then reloaded up to a
higher point. The measured residual properties were associated to the axial strain corresponding to the load
from which unloading started.

Table 3.3: Index of comparisons for Varna, Joffe et al. 2001 [70]

Layup Ex /Ex0 νx y /νx y0

[02,904]s fig. 3.11 fig. 3.11
[±15,904]s fig. 3.17 fig. 3.17
[±30,904]s fig. 3.18 fig. 3.18
[±40,904]s fig. 3.19 fig. 3.19

Comparisons with [0/±θ4/01/2]S glass/epoxy laminates [69]
The ply material used in Varna, Joffe et al. 1999 [69] for [0/±θ4/01/2]S laminates is identical to the one de-
scribed in the previous section and used on [±θ/904]S laminates, meaning that all properties listed table 3.2
and all considerations made on both in situ strengths apply to this section as well. Table 3.4 shows which lam-
inates were tested, what properties were monitored, and where to find them. All laminates below have been
tested under the same unloading/reloading cyclic loading pattern mentioned in the previous section.
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Table 3.4: Index of comparisons for Varna, Joffe et al. 1999 [69]

Layup Ex /Ex0 νx y /νx y0

[0,908,01/2]s fig. 3.12 fig. 3.12
[0,±254,01/2] fig. 3.20 fig. 3.20
[0,±404,01/2]s fig. 3.21 fig. 3.21
[0,±554,01/2]s fig. 3.22 fig. 3.22
[0,±704,01/2]s fig. 3.23 fig. 3.23

Comparisons with [0/902]S [65] and [±452]S [66] glass/epoxy laminates
Van Papegem made use of the same glass fiber epoxy material in both [65] and [66], for [0/902]S and [±452]S
laminates respectively. The ply’s stiffness moduli, Poisson’s ratio and transverse tensile strength can all be
found in [68]. An experimental shear stress-strain curve for the material in question can also be found in
figure 3 of [68], which allows to calculate the knee and slope of the bilinear shear approximation by means
of eq. (3.9) and eq. (3.8) respectively, both defined in section 3.2. All aforementioned properties are listed in
table 3.5.

Table 3.5: Required input data for Van Paepegem 2010 [65] and Van Paepegem et al. 2006 [66]

Property Value Source

E11 (GPa) 38.90 [68]
E22 (GPa) 13.30 [68]
G12 (GPa) 5.13 [68]
ν12 (-) 0.258 [68]
Y T

i s
∗ (MPa) 36.5 [68]

Sk
∗ (MPa) 45.18 [66]

k∗ (GPa) 0.1271 [66]

* Value derived from data
within source.
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Figure 3.9: Finding in situ shear strength through bilinear approximation of shear stress-strain curve derived from [66]

Looking at the shear bilinear approximation in fig. 3.9, one can see that the experimental curve stops much
sooner than its approximation. As stated in [68], the strain gauges used during the test were saturated around
7% strain, meaning that strain at ultimate failure was not recorded. Ultimate shear stress was recorded to be
around 70MPa (extrapolated from the sample’s failure load). In order to estimate the ultimate shear strain,
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a linear fit was run through the last available data points, which show a decidedly linear trend. The ultimate
shear strain was then assumed to have the value necessary to reach the ultimate shear stress, resulting an
the ultimate shear strain being a little over 20%. While this strain value may seem high, it does yield real-
istic results, and failure strains around 20% have been observed before for laminates dominated by shear
[37].

The [0,902]S samples were loaded monotonically in longitudinal tension, while the [±452]S samples were
subject to quasi-static longitudinal tensile loading, where the residual shear modulus was reported as the
secant one during one full unloading/reloading cycle, as shown in ??.

Comparisons between the model and test data for the [0,902]S samples’ residual Poisson’s ratio can be seen
in fig. 3.13, while for [±452]S samples predictions of the residual shear modulus and permanent shear strain
are shown in fig. 3.24.

3.6.2. Validation of both models for cross-ply laminates
This section contains comparisons between the model’s predictions and experimental data for all cross-ply
laminates associated with the "batches" of validation data introduced in section 3.6.1. The order of the sub-
sections is the same as section 3.6.1. The last batch of data is not covered since it did not contain any cross-ply
laminates.

It should be noted that for cross-ply laminates, due to the complete lack of shear, both static models will
give the exact same predictions, since all differences between them are induced by shear. To be precise, the
model from section 3.3 will predict the residual transverse modulus through eq. (3.28), while the one from
section 3.4 will use eq. (3.36). Since for t31 = 0 the critical cracking load NX cr must be identical for both
models, it follows that their predictions for cross-ply laminates will be identical.

Comparisons with [0/903]S and [903/0]S glass/epoxy laminates [25]
Plots of normalized stiffness as a function of applied axial stress for the two laminates are shown in fig. 3.10.
Very good to excellent agreement with test results is observed with less than 8% discrepancy between tests
and predictions. Note that the y axis scale starts from 0.5 instead of 0 in order to magnify the differences. It
should be noted that the small horizontal section at prediction’s start in fig. 3.10 (left) is due to the choice
of in situ strength. When interpolating crack density data from [25] to find the in situ strength for [0,903]S ,
the very first crack density data-point was excluded, since it occurred at extremely low stresses and was likely
caused by material imperfections. If said value is included, the prediction’s start will match the test perfectly,
at the cost of accuracy closer to failure. This demonstrates that the effect of imperfections on in situ strength
evaluation should be minimized. While accounting for them may improve the results for lower loads, it re-
duces accuracy for higher ones, which are more interesting (from a design perspective) since they are closer
to failure.
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Figure 3.10: Normalized stiffness as a function of applied stress for [0,903]S (left) and [903,0]S (right) glass/epoxy laminates. Test data
from [25]
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Comparisons with [02/904]S glass/epoxy laminates [70]
The model’s predictions can be found in fig. 3.11. The model shows an excellent match with experimental
data for the normalized residual laminate stiffness EX /EX 0. The match with the residual laminate’s Poisson’s
ratio νx y /νx y0 is also good, although for strains higher than 1.2% the prediction departs the test’s mean,
while still falling somewhat within experimental scatter. This might be due to additional damage types /
non-linearities that appear at higher strains, which the model does not account for.
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Figure 3.11: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [02,904]s laminate under
quasi-static uniaxial tensile loading. Test data from [70]

Comparisons with [0/908/01/2]S glass/epoxy laminates [69]
The model’s predictions can be found in fig. 3.12. Results are excellent for both residual laminate’s stiffness
and Poisson’s ratio. Unlike the previous case, the Poisson’s ratio prediction is still excellent for axial strains
well above 1.2%.
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Figure 3.12: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [0,908,01/2]s laminate under
quasi-static uniaxial tensile loading. Test data from [69]

Comparisons with [0/902]S glass/epoxy laminates [67]
The comparison between the model’s prediction and experimental data is shown in fig. 3.13. Excellent agree-
ment with tests is observed up to a strain of 0.017, after which the prediction departs from experimental data.
It should be noted that one of the two test samples from [67] failed at a strain of 0.020 (shown in the figure),
and while the strain gauge on the other sample was lost at 0.010 due to debonding, its failure stress was ex-
tremely close to the former sample. This indicates that predictions only depart from experimental data close
to failure. It is likely that additional damage modes appear close to failure (eg. fiber fracture, delamination)
which are not included in the model, thus explaining the discrepancy.
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Finally, it should be noted that normalization of test data was performed with the second point of each test
curve, corresponding to a Poisson’s ratio of around 0.15. The first points can be regarded as outliers, and Van
Paepegem himself states that the initial Poisson’s ratio can be taken to be ≈ 0.15 [67].
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Figure 3.13: Residual Poisson’s ratio predictions for [0,902]s laminate under quasi-static uniaxial tensile loading. Test data from [67]

3.6.3. Validation of the energy equivalence model for selected non-cross-ply laminates
This section contains comparisons between the predictions made with the model from section 3.3 and ex-
perimental data for selected non-cross-ply laminates associated with the "batches" of validation data intro-
duced in section 3.6.1. The validation shown here is limited to selected data because the model is known to
be (at the moment of writing) too conservative. Since changes will surely be made to the formulas behind
the model, it was decided to only show some selected results, representative of the model’s strengths and
weaknesses.

As stated in section 3.6.2, both models from section 3.3 and section 3.4 achieve the same results when dealing
with cross-ply laminates, which are characterized exclusively by transverse tensile damage. All laminates
covered here are therefore non-cross-ply.

Comparisons with three laminates will be presented here, starting with the [±30,904]S GFRP laminate from
[70], for which the residual axial modulus and residual Poisson’s ratio predictions are shown in fig. 3.14. The
match with experimental data is very good in both cases. While the model is slightly conservative compared
to the test mean, both predictions are within experimental scatter. In both plots, two kinks can be identified:
a major one when the strain is equal to 0.006, and a minor one around 0.009. The former is caused by the
onset of cracking the 90 degree plies, while the latter is caused by cracking in the 30 degree plies.

Comparisons for the [0,±704,01/2]S GFRP laminate from [69] are shown in fig. 3.15, which contains pre-
dictions of the residual axial modulus and residual Poisson’s ratio. The modulus predictions are excellent,
with the model matching the test data’s mean up to a strain of 0.013, at which point the predictions becomes
slightly conservative, falling just short of the experimental scatter. Predictions for the residual Poisson’s ratio
are completely off the mark, although at the very least damage initiation is predicted appropriately. It is very
interesting to see that, for the same laminate, the recoverable damage model from section 3.4 obtains similar
results for the modulus degradation, while also matching the Poisson’s ratio fairly well.

The residual axial modulus and residual Poisson’s ratio of the [0,±404,01/2]S GFRP laminate from [69] are
predicted in fig. 3.16. There is a large discrepancy between predictions and test results. The matrix develops
microscopic damage at a strain of around 0.006, as witnessed by the main kink in the residual laminate stiff-
ness curve, and then proceeds to develop cracks around 0.011, as proven by the minor kink in the stiffness
degradation curve. This means that shear modulus degradation for the model is too aggressive not only for
matrix cracking, but also for microscopic damage, as shown by the poor match with experimental data during
the microscopic damage regime.
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Figure 3.14: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [±30,904]S laminate under
quasi-static uniaxial tensile loading, using the model from section 3.3. Test data from [70]
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Figure 3.15: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [0,±704,01/2]S laminate under
quasi-static uniaxial tensile loading, using the model from section 3.3. Test data from [69]
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Figure 3.16: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [0,±404,01/2]S laminate under
quasi-static uniaxial tensile loading, using the model from section 3.3. Test data from [69]
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3.6.4. Validation of recoverable damage model for non-cross-ply laminates
This section contains comparisons between the predictions made with the model from section 3.4 and exper-
imental data for all non-cross-ply laminates associated with the "batches" of validation data introduced in
section 3.6.1. The order of the sub-sections is the same as section 3.6.1. The first batch of data is not covered
since it did not contain any non-cross-ply laminates.

Comparisons with [±θ/904]S glass/epoxy laminates [70]
Before discussing each comparison in detail, some general remarks can be made. First of all, the model’s
predictions show excellent to good match with experimental data. For all residual stiffness comparisons,
the model’s prediction is always accurate, falling within experimental scatter. For cases with both shear and
tensile damage ([±30,904]s fig. 3.18 and [±40,904]s fig. 3.19) residual stiffness predictions tend to be a lit-
tle conservative compared to the experimental data’s mean, but they always fall within experimental scatter.
Predictions of the residual Poisson’s ratio are good to acceptable. Unlike the stiffness ones, they do fall just
outside of experimental scatter (on the lower side), especially for laminates with a stronger presence of shear
damage ([±30,904]s and [±40,904]s ) Overall, the results can be regarded as very good, especially when con-
sidering the small amount of experimental data required, the model’s simplicity and its fast computational
speed.

It is interesting to remark that, while in situ tensile strength was predicted using exclusively data from [02,904]s ,
damage onset (kink in the prediction curve) is accurately predicted for every single laminate. This goes to
show that the in situ strength’s variation over different laminates may not be as drastic as implied in [3].

Looking at all results where θ > 0, it can be seen that the model also accounts for damage in the angle-plies
(θ). In all cases the 90 degree plies are the first ones to fail, as can be seen by the strong departure from the
horizontal line in all plots. Smaller kinks appear around 1.4%, 0.825% and 0.7% strain forθ equal 15, 30 and 40
degrees respectively. The aforementioned smaller kinks represent the onset of damage within non-90 degree
plies. As expected, when θ = 0 in fig. 3.11 there are no "secondary" kinks, as matrix stresses are too low to
induce any failure in the 0 plies. As θ increases, the strain location of the smaller kink decreases, which is
expected since a larger θ means that the matrix is experiencing higher stresses (both transverse tensile and
shear).
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Figure 3.17: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [±15,904]s laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [70]
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Figure 3.18: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [±30,904]s laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [70]
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Figure 3.19: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [±40,904]s laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [70]

Comparisons with [0/±θ4/01/2]S glass/epoxy laminates [69]
Compared to the previous section, it is harder to make general remarks on the quality of this batch of com-
parisons, due to a wider spectrum of model accuracy. Stiffness degradation and residual Poisson’s ratio pre-
dictions for [0,±704,01/2]s are very good, as shown in fig. 3.23.

Residual stiffness predictions for the [0,±404,01/2]s and [0,±254,01/2]s laminates (fig. 3.21 and fig. 3.20 re-
spectively) are very good. It should be noted that the large scatter associated with the [0,±254,01/2]s data
makes it hard to estimate the quality of the prediction, although the match with the residual Poisson’s ratio of
the same laminate is good, despite apparently predicting the onset of damage at higher strains than test data.
Finally, predictions for the residual Poisson’s ratio of [0,±404,01/2]s are acceptable for lower strains.

For the [0,±554,01/2]s laminate, shown in fig. 3.22, match with residual stiffness test data is acceptable, while
the Poisson’s ratio prediction is completely off. It should be noted that Varna, Joffe et al [69] also had some
issues matching test data for the [0,±554,01/2]s laminate, mentioning that plots of crack density VS applied
strain for two samples of said laminate showed two distinct parallel lines, rather than a single one with a
common trend-line. Moreover, residual Poisson’s data provided has fewer data points than all other laminates
and does not show the sample in its pristine form. All of the above considerations hint at the fact that there
might be irregularities with the test data of this particular sample.

Overall, comparisons with test data were good. Considering that the match with data for the [0,908,01/2]s
(fig. 3.12) laminate of this same batch was excellent, and considering that results for the [0,±704,01/2]s lam-
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inate are also the best in this section, it follows that the loss of model accuracy might be tied to its shear com-
ponent. Comparisons with [0,±404,01/2]s and [0,±254,01/2]s have indeed shown that the model is currently
overshooting the point of damage onset. Using a lower in situ shear strength might considerably improve pre-
dictions, but there is no way to justify such a reduction at this point. It is important to keep in mind that the
in situ strengths used here, as mentioned in section 3.6.1, were not obtained directly from the [0,±θ,01/2]s
laminates, which means some (small) level of mismatch for damage initiation is to be expected.
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Figure 3.20: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [0,±254,01/2]S laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [69]
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Figure 3.21: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [0,±404,01/2]S laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [69]
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Figure 3.22: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [0,±554,01/2]S laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [69]
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Figure 3.23: Longitudinal stiffness degradation (left) and residual Poisson’s ratio (right) predictions for [0,±704,01/2]S laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [69]

Comparisons with [±452]S glass/epoxy laminates [66]
The match between the model’s prediction and experimental data for [±452]S glass/epoxy laminates [66] is
good. The normalized residual shear modulus reported in fig. 3.24 refers to the ply’s shear modulus, specif-
ically the secant one connecting permanent strain and unloading point, as shown in fig. 3.5. Predictions for
the shear modulus fit test data well, falling just outside fo experimental scatter. The predicted permanent
strain is higher than the test data’s mean, which might be due to the slight overestimation of stiffness degra-
dation.
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Figure 3.24: Ply’s shear modulus degradation (left) and ply’s permanent shear strain (right) predictions for [±452]S laminate under
quasi-static uniaxial tensile loading, using the recoverable damage model from section 3.4. Test data from [66]



4
Fatigue Model

The model presented in this chapter aims to predict stiffness degradation caused by matrix damage under
cyclic tensile loading in cross-ply laminates. The model is based on the static models shown in chapter 3.
The proposed fatigue model and its principles are introduced in section 4.1. The model draws a relation
between stiffness degradation and applied fatigue cycles by integrating the static models with Kassapoglou’s
model for cycles to failure and residual strength under fatigue loading [30, 32–35], which is introduced in
section 4.2. The actual manner in which the residual strength model for fatigue and the residual stiffness
model for static loading are related to each other is illustrated in section 4.3. Finally, validation is performed
in section 4.4.

4.1. Model principles and introduction
Since the fatigue model is based on its static counterparts, it follows that the same exact modeling principles
illustrated in section 3.1 apply to the fatigue one as well, with two caveats:

• Application to cross-ply laminates. The static models predicted stiffness degradation cross-ply lam-
inates excellently, while some issues were encountered with shear dominated laminates, which have
been detailed in sections 3.3 and 3.4.2 and chapter 5. Since the fatigue model is based on the static one,
it was decided, as a first step, to apply it exclusively to cross-ply laminates. This will ensure that results
are reliable, which in turn will allow to truly verify whether the methodology used to extend the static
model to fatigue is effective. As mentioned in chapters 5 and 6, as soon as the issues with shear in the
static model are addressed, the fatigue model will be updated to work with all laminates.

• No experimental fatigue data required. The proposed fatigue model is based on integrating the static
models from chapter 3 with Kassapoglou’s model for cycles to failure and residual strength under fa-
tigue loading [30, 32–35]. The aforementioned residual strength model predicts the initiation and evo-
lution of damage due to fatigue loading, and has the added benefit not needing any experimental fa-
tigue data to do so. For cross-ply layups under uniaxial tension, the only experimental data needed
is the coefficient of variation of the ply material’s transverse tensile strength distribution, under static
loading. Since the static and fatigue models were designed with preliminary design optimization in
mind, not needing fatigue experimental data is particularly convenient, since fatigue data is harder to
obtain.

The other principles listed in section 3.1 still apply (namely, the need for simplicity while minimizing loss of
accuracy, and the model’s focus on stiffness degradation only).

Similarly to the static model, the fatigue model’s fundamental scale are the unidirectional ply which compose
an infinite laminate, with classical laminated plate theory being used to draw mechanical relations between
the single plies and the laminate. It is assumed that only longitudinal tensile cyclic loads are applied 0 ≤ R < 1
and that the amplitude is kept constant.

4.2. Summary of Kassapoglou’s [30, 32–35] model for cycles to failure and
residual strength under fatigue loading

The stiffness degradation model for fatigue loads proposed here is based on Kassapoglou’s model for cycles
to failure and residual strength under fatigue loading, which has been illustrated in great detail in [30, 32–35],
and which from here on will be referred to as the "residual strength model". This section provides a summary

38
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of the elements of the residual strength model which are relevant to the proposed fatigue model for stiffness
degradation.

The model analytically predicts the strength degradation of a laminate under fatigue loading starting with
static test data and updating the prediction of cycles to failure as the scatter of the residual strength distribu-
tion changes. For example, prediction of strength degradation under cyclic uniaxial tension will require as a
starting point the statistical distribution of failure under quasi-static uniaxial tension.

According to the residual strength model, for a maximum (in magnitude) applied stressσwith a correspond-
ing fatigue life of N cycles, the residual strength σr of a sample after n cycles can be written as:

σr =σ
n

N−1 σ
N−n−1

N−1
s f (4.1)

Whereσs f is the static failure strength of the pristine sample. The above equation was obtained by assuming
that the residual strength must change non-linearly with the amount of applied cycles.

Assuming thatσs f follows a two parameter Weibull distribution with scale parameterβ and shape parameter
α, and assuming that the residual strength σr is decaying nonlinearly as shown in eq. (4.1), it can be shown
that the residual strengthσr is also a two parameter Weibull distribution, with scale parameterβr and shape
parameter αr defined as:

βr =β
N−n−1

N−1 σ
n

N−1

αr =α
N −1

N −n −1

(4.2)

The probability of failure under stress σ at cycle n can be expressed as:

p(σ,n) = 1−e
−

(
σ

βr

)αr

(4.3)

Where βr and αr refer to the residual strength Weibull distribution, and are given in eq. (4.2). It can be
demonstrated that, for a residual strength which is Weibull distributed and decays non-linearly (eq. (4.1)),
the cycle-by-cycle probability of failure is constant. This means that for a certain maximum applied stress σ,
the probability of failure in eq. (4.3) should be independent of n (which ranges between 0 and N ). It is easy
to see that the final expression of the cycle-by-cycle failure probability is given by

p = 1−e
−

(
σ
β

)α
(4.4)

which is independent of the number of cycles n. This will turn out to be very useful later on. It can then be
shown [30, 35] that fatigue life N for an applied cyclic stress σ is then given by:

N =− 1

ln
(
1−p

) , R = 0 (4.5)

Where p is the static probability of failure for an applied maximum cyclic stressσ, given by eq. (4.3). It should
be noted that until now the stress-ratio R has been assumed to be equal to zero. A method to use eq. (4.5)
for cases where 0 < R < 1 is covered at the end of this section. For eq. (4.5) to be valid, the damage must
not to change with cycles. If the damage changes, the value of p must be calculated again through eq. (4.4)
and the cycles to failure N are updated with eq. (4.5). In the limiting case, this should be done every cycle.
Thanks to the way the residual strength model is integrated with the static one, it will not be necessary to
update p at every cycle. In fact, it will be possible to predict stiffness degradation after any arbitrary number
of cycles n without ever needing to update p , and without any loss in accuracy, as explained at the end of
section 4.3

To use eq. (4.5), loading has to be restricted to a single type: either tension or compression. This is due to the
fact that eq. (4.5) accepts a single value of p , while mixed tension-compression would result in two separate
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values of p : one for the tension and one for compression. This assumption can be relaxed to allow mixed
tension-compression (R < 0), as shown in [35].

Finally, it is necessary to account for the fact that for increasing values of the stress-ratio R , the predictions
should be less conservative, since the load excursion that the material experiences is diminishing, which in
turn means that any damage that should have developed between zero load and the minimum stress does
not occur [35].

According to [35], the above can be done by shifting the 1% value of the static failure distribution closer to the
mean, while keeping the 99% fixed. The resulting skewed distribution is assumed to be a Weibull distribution.
If the original static strength distribution is a normal one, the 1% and 99% values (x1 and x2 respectively) are
defined as:

x1 = Xm −2.326s

x2 = Xm +2.326s
(4.6)

Where Xm and s are the normal distribution’s mean and standard deviation respectively. The new location of
the 1% (x∗

1 ) can be found through:
x∗

1 = Xm − r (Xm −x1) (4.7)

Where r is a factor dependent on the stress ratio R , defined below:

r = 1−R, 0 < R < 1

r = 1− 1

R
, R > 1

(4.8)

Since the skewed distribution is assumed to be a Weibull one, and since its 1% and 99% CDF values should
correspond to x∗

1 and x2 respectively, the following system of two equations in two variables must be en-
forced: 1−e

(
x∗1
β

)α
= 0.01

1−e

(
x2
β

)α
= 0.99

(4.9)

Solving the system of equations in eq. (4.9) forα andβwill give the shape and scale parameters (respectively)
of the skewed Weibull distribution. Hence, to predict fatigue life for a maximum cyclic stress σ with R > 0,
the cycle-by-cycle probability of failure p should be calculated through eq. (4.4), where α and β have been
obtained from eq. (4.9), which assumes the starting (unskewed) distribution to be normal.

4.3. Stiffness degradation model for cyclic loading
Fundamental assumptions
To integrate the static stiffness degradation model with the residual strength model, it is necessary to enforce
four assumptions regarding matrix strength within each ply:

1. The static strength of a region of matrix material is randomly distributed, signifying that while the re-
gion will have a specific mean strength, some of the material may fail at a static stress below or above
said mean. It follows that the residual strength model (section 4.2) can be used to predict the fatigue
life of said matrix region under cyclic loading, where the end of fatigue life denotes the appearance of
matrix cracks.

2. The mean strength of matrix material is inhomogenous and changes across the matrix. It follows that
different matrix regions will have different mean strengths. However, for any chosen matrix region,
the scatter of randomly distributed matrix strength with respect to the mean must be constant across
the entire material. For example, if matrix strength were to be normally distributed, n matrix regions
will have n different mean strengths, but their standard deviations must be such that the coefficient of
variation is the same for all regions.

3. Mean matrix strength has a lower limit, meaning there is a tensile laminate load NX below which matrix
cracking will never occur.
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4. Matrix strength is continuous, meaning that there are infinite matrix strength values between two arbi-
trarily chosen limits.

To summarize the above assumptions, any particular matrix region will have randomly distributed strength,
with a specific mean strength characteristic of that particular region. The mean strength must be higher than
(or equal to) the minimum one, which will be defined later, and a scatter such that the distribution’s coeffi-
cient of variation is equal to the material’s (hence the coefficient of variation is a material constant).

Foundation for damage initiation, evolution, and stiffness degradation
It is now necessary to define matrix strength for the fatigue model, and associate it with a particular load type
and damage mode. For now, the application will be to cross-ply laminates under uniaxial tension.

It follows that the fatigue model is based on any of the two static models presented in section 3.3 and sec-
tion 3.4 respectively, since in the absence of shear they both behave identically. Referring to section 3.3.2
(subsection: Matrix Cracking without Yielding, specifically eq. (3.19)), it follows that for pure transverse ten-
sion (t21 > 0 and t31 = 0) Hashin’s criterion for matrix damage under transverse tension and shear will degen-
erate to a maximum stress one, which in turn means that the critical laminate load NX cr which will induce
matrix cracking can be defined as:

NX cr =
Y T

I S

t21
(4.10)

Which in turn makes the "Hashin failure index", originally defined in eq. (3.26), equal to:

∆H =

N 2
X

(
t21

Y T
i s

)2

−1, if NX ≥ NX cr

0, if NX < NX cr

(4.11)

It should be noted that the Hashin failure index can still be used, since the maximum stress criterion can
be seen as a special case of Hashin’s criterion. The resulting expressions for the residual transverse (E 22) and

shear (G12) moduli after matrix cracking are be identical to those shown in eq. (3.28), which is repeated below
for convenience.

E 22 = 2E22

2+∆H
G12 = 2G12

2+∆H
(4.12)

While an expression for G12 is provided for the sake of completion, its value will not affect any of the pre-
dictions, since the longitudinal modulus of a cross-ply laminate is unaffected by the shear moduli of its plies
(according to CLPT, and assuming that the load is aligned with the zero degree plies).

Looking at the three equations above, and remembering the assumptions listed at the beginning of this sec-
tion, the "matrix strength" referenced so far must be the transverse tensile in situ strength Y T

I S , and the ran-

dom distribution of matrix strength will follow whatever statistical distribution is associated with Y T
I S . It fol-

lows from these considerations that the minimum mean matrix strength mentioned in the third assumption
must necessarily be the Y T

I S derived from static testing of a pristine material, since the static model will not

predict any matrix cracking for σ22 < Y T
I S , or alternatively NX < NX cr (from eq. (4.10)).

Extension of the stiffness degradation for static model to cyclic loading
The extension of the aforementioned static foundation to cyclic loading can be conveniently explained by
showing the steps that the model will follow.

It is assumed that static test data of the ply material in transverse tension proves the transverse tensile in situ
strength to be normally distributed, with mean Xm1 = Y T

I S and coefficient of variation CVY . It follows that
the standard deviation can be defined as s1 = Xm1 ·CVY . Recalling the findings from the last paragraph of
the previous section, the aforementioned static distribution will also be the weakest one (as denoted by the
subscript "1"), meaning matrix regions with said strength distributions will be the first ones to develop cracks
under static loading, due to their shorter fatigue lives.
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According to the second assumption made at the beginning of section 4.3, there must be regions of the matrix
which will have mean Xmc and standard deviation sc defined as:{

Xmc = c ·Xm1

sc = Xmc ·CVY = c ·Xm1 ·CVY = c · s1
(4.13)

Where c > 1, since according to the third assumption, Xm1 is the lower limit for mean matrix strength. For
a same applied stress σ, the estimated fatigue life Nc of a matrix region with mean strength Xmc will grow
monotonically with the value of c . This can be proven through eqs. (4.4), (4.5) and (4.9) of the residual strength
model, and is in compliance with the equal rank assumption [20], which states that "for a given specimen its
rank in static strength is equal to its rank in fatigue life" [7].

It is reinforced here that the proposed fatigue model does not attempt to predict ultimate failure of the lami-
nate or ply. Failure here (and consequently reaching the end of fatigue life) is considered to be the appearance
of matrix cracks.

The pristine cross-ply laminate starts being loaded cyclically with longitudinal tensile load NX , with 0 <
R < 1 (eg. R = 0.1). For a generic matrix region, which has a normally distributed transverse tensile in situ
strength for static loading, with mean Xmc = Y T

I S · c and standard deviation CVY (known from test data),
fatigue life Nc can be calculated through the following steps. The procedure below applies to 0 < R < 1.
Alternate steps in for cases where R = 0 are provided after the procedure.

1. Turn the normal distribution with mean Xmc and standard deviation sc into a Weibull one with shape
and scale parameters α and β, found by following equations 4.6 through 4.9.

2. Use eq. (4.4) to evaluate the cycle-by-cycle probability of failure p of the resulting Weibull distribution
for the applied maximum stress given by eq. (4.14)

σ=σ22 = NX t21 (4.14)

Where the cycle-by-cycle probability of failure p is then found through:

p (σ= NX t21) = 1−e
−

( NX t21

β

)α
(4.15)

3. Use the newfound probability of failure p with eq. (4.5) to estimate the fatigue life of the chosen matrix
region:

N =− 1

ln
(
1−p

) =− 1

ln

1−

1−e
−

( NX t21

β

)α

= 1

ln

e
−

( NX t21

β

)α
= 1(

NX t21
β

)α (4.16)

Where fatigue life of the chosen region is therefore dependent on the maximum applied cyclic transverse
tensile stress in the ply (σ22 = NX t21). Fatigue life is also dependent on the scale and shape parameters of the
adjusted Weibull distribution, which are in turn dependent on the region’s mean strength (Xmc = Xm1 · c =
Y T

I S · c) and fatigue stress ratio R .

The steps shown above are only valid for 0 < R < 1. In cases where R = 0, a similar procedure should be
followed. The only difference is that the first step can be skipped, and the cycle-by-cycle probability of failure
for the maximum applied stress can be found through the normal distribution directly. For the cycle-by-cycle
probability of failure of a normal distribution to be constant throughout the entire fatigue life, it is necessary
to assume that residual strength must degrade linearly with the amount of applied cycles, rather than non-
linearly. A detailed explanation can be found in [35].

Since the fatigue life Nc of a generic matrix region with mean strength Xmc has been defined as a function
of the applied cyclic load NX , it is now necessary to derive a relation between the initiation of damage in the
region and the resulting stiffness degradation.
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The static model gives stiffness degradation as a function of an applied static load, while the fatigue model
outputs fatigue life as a function of an applied cyclic load. If the two models are set up to "create" the same
damage state, the stiffness degradation associated with said damage state must also be equal for both models,
which in turn would establish a relation between the static model and the fatigue one.

For the generic matrix region with mean strength Xmc = c ·Y T
I S , the applied cyclic stress σ22 = NX t21 will

induce failure after Nc cycles. It was proven previously in this section that all matrix regions with mean
strength Xmh

= h ·Y T
I S where Xm1 < Xmh

≤ Xmc (consequently 1 ≤ h < c) will have already failed by the
time Xmc fails, since for a same applied stress (or load), their lives are shorter. This means that right when
n = Nc , matrix cracks will appear for the first time in all matrix regions with mean strength Xmc = c ·Y T

I S , and
they will have already appeared at 1 < n < Nc in all weaker regions.

The equivalent static damage state must then be one where the equivalent static load NXs is such that cracks
in a material with strength Xm = Xmc = c ·Y T

I S would have been initiated right at the applied NXs . Any matrix
material with strengths lower than Xmc that should have already failed at loads lower than the applied NXs .
Recalling eq. (4.10) and eq. (4.11), it can safely stated that the equivalent static load representing said damage
state should then be given by NXs t21 = c ·Y T

I S .

It follows that, for the static model, the damage state corresponding to a matrix region with mean strength
Xmc = c ·Y T

I S having just reached the end of its fatigue life n = Nc is one where the applied static load NXs is
given by:

NXs =
c ·Y T

I S

t21
(4.17)

Which means that degradation of the ply’s transverse modulus can be expressed as:

E 22 = 2E22

2+∆H
= 2E22

2+N 2
Xs

(
t21

Y T
i s

)2

−1

= 2E22

1+ c2
(4.18)

To summarize, for any ply in a cross-ply laminate under longitudinal cyclic tensile load NX , with 0 ≤ R < 1,

the residual modulus E 22 as a function of the applied cycles can be found by assuming a value of c , finding the

corresponding E 22, calculating the fatigue life Nc for a matrix region with mean Xmc = c ·Y T
I S and associating

the passage of n = Nc cycles with the previously found value of E 22.

All equations provided here are closed-form equations, meaning that no iteration is required, and that the
number of values c being sampled will not improve the solution’s accuracy (although it will give a better idea
of the stiffness degradation’s shape). Naturally, it makes sense to start with c = 1, and increase it until the
laminate’s fatigue life is reached, at which point ultimate failure would occur. The prediction of the laminate’s
fatigue life and ultimate failure is not addressed at this point.

The residual stiffness in eq. (4.18) refers to the ply material. The properties of the entire laminate can be
derived through section 3.5. Since cross-ply laminates are being analyzed in this case, it is possible to conve-
niently derive an expression for the residual stiffness of the entire laminate, shown in eq. (4.19).

E X = 1

µ (a +b)

aE11 +bE 22
µ

µ
−
ν2

12

(
aE22 +bE 22

µ

µ

)2

aE22 +bE11



where µ= 1−ν12ν21 µ= 1−ν2
12

E 22

E11

(4.19)

Where a and b are the number of 0 and 90 degree plies respectively, E11 and E22 are the longitudinal and

transverse moduli of the pristine ply material, E 22 is the residual tranverse stiffness of the damaged 90 degree
plies, as predicted in eq. (4.18), and ν12 and ν21 are the major and minor Poisson’s ratios (respectively) of the
pristine ply material.
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Table 4.1: Required input data for comparisons with test data from [8], section 4.4.1

Property Value Source

E11 (GPa) 142.0 [9, 40]
E22 (GPa) 10.3 [9, 40]
G12 (GPa) 7.6 [9, 40]
ν12 (-) 0.27 [9, 40]
Y T

I S
∗ (MPa) 49.31 [8]

CVY (-) 12.1% [64]

* Value derived from data
within source.

4.4. Validation
Unfortunately, the amount of data available for the fatigue model’s validation is considerably smaller than
its static counterpart. The main culprits are the restrictions that the model is affected by (only cross-ply
laminates, only R ≥ 0, only constant amplitude loading...) and the fact that statistical distributions of the
ply material’s transverse tensile strength are required (which have been rarely reported in papers covering
stiffness degradation due to fatigue loading). The three following sections show comparisons with test data
from three different sources. The model’s prediction quality was found to be excellent as long as the dominant
damage mode (driving stiffness degradation) is matrix cracking in the 90 degree plies.

4.4.1. Comparisons with [0/902]S AS4/3501-6 laminates from [8]
Introduction and experimental data
Daniel, Lee and Yaniv [8] performed longitudinal tensile fatigue tests on graphite epoxy [0/902] laminates,
for which they recorded (among other things) stiffness degradation as a function of the applied normalized
cycles. Three different cyclic stresses were applied: 28% of the static failure stress, 53% and 85%. A stiffness
degradation curve was generated for each loading type. Since they do not mention the R ratio at which the
tests were performed, it is assumed that R = 0. The ply’s mechanical properties are not provided in [8], and
neither is the ply material’s exact name. In other works by the same authors [9, 40, 41], the ply material is
always AS4/3501-6, and it is always used to make the exact same laminates that are shown in [8]. The lam-
inates undergo the same tests, and the stress-strain curves presented for them are identical to those shown
in [8]. It can therefore be safely assumed that AS4/3501-6 is being used in [8]. Its properties are given in
table 4.1.

The transverse in situ strength was obtained by fitting 4th order polynomials through the data points show-
ing the relation between applied longitudinal tensile stress and crack density for a [0/902]S graphite/epoxy
laminate (fig. 4.1), where all matrix cracks are contained within the off-axis plies. The intersection with the
stress axis gives the applied longitudinal stress at which matrix cracks were initiated. The data point at the
bottom was considered an outlier, since it does not follow the trend shown by all other points. It is likely due
to the presence of imperfections in the matrix. The longitudinal stress at which matrix cracks are initiated
was found to be 260.69MPa, which through CLPT was related to a transverse tensile stress in the 90 degree
plies of 49.21MPa, which is therefore selected as the in situ strength Y T

I S shown in table 4.1.

The coefficient of variation of the material’s static failure distribution under transverse tension was found in
[64], where it was obtained through tensile tests of [90]8 AS4/3501-6 laminates. Two alternative values were
available, dependent on whether the ply material had been bled or not. The CV of the bled material was
selected (12.1%), since the corresponding ply properties were closer to the ones in table 4.1 than the unbled
one.

In order to compare the model’s predictions with the published results, for which cycles have been normal-
ized with fatigue life, it is necessary to know the fatigue life of the sample Since [8] does not provide the
fatigue life of the samples under the three different loading, it had to be estimated through [41], which is a
paper by the same authors providing fatigue life predictions for [0/902]S AS/3501-6 laminate (identical to
those used in [8]). Referring to fig. 4.2, it is possible to estimate that an AS4/3501-6 [0/902]S laminates loaded
with a maximum normalized cyclic stress of 85%, 53% and 28% static failure stress will have fatigues lives of
104.6676, 1010.668 and 1.13 ·1014 cycles respectively.
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Figure 4.1: Applied longitudinal stress as a function of either
applied longitudinal strain or normalized matrix crack density

(in the off-axis plies) for a [0/902]S laminate [8]

Figure 4.2: Fatigue life as a function of the maximum applied cyclic
stress (normalized with static strength) for a [0/902]S AS4/3501-6

laminate.[41]

Finally, since the applied stress is normalized, it is necessary to know what the static failure stress is. Daniel
reports the tensile strength of an AS4/3501-6 [0/902]S laminate under tension to be 779MPa [9].

Comparison between predictions and experimental data
Knowing all of the aforementioned data, it is then possible to generate predictions for the laminate’s residual
stiffness under cyclic fatigue loading, as shown in fig. 4.3, fig. 4.4 and fig. 4.5. Since in this case R = 0, cycle-
by-cycle probability of failure can be found directly from the starting normal distribution, without any need
of conversion to Weibull distributions.

Results for the sample under 28%, shown in fig. 4.3 are very good. While the prediction does exactly match
the mean of the test data, it does follow it closely enough, and it always falls within experimental scatter.
A few interesting observations can be made: according to the predictions, stiffness degradation does not
start at the first cycle due to the stress being too low to immediately generate (statically) any matrix cracks.
While test data does show an immediate drop, it is very small (2.5%), especially for a cross-ply laminate,
and it is followed by a second steeper decline in stiffness degradation. Recalling the typical trend of stiffness
degradation in laminates under fatigue loading, it is not unreasonable to assume that the (few) matrix cracks
responsible for the first immediate drop might have originated from imperfections, due to the drop’s low
magnitude, its flatness, and the fact that it is followed by a steeper drop (starting at 10% life) with a different
slope. Test data stops at 0.4 normalized life due to the authors stopping the test before failure (the estimated
life shows a prohibitive amount of cycles needed to break the sample).

Results for the sample under 53% load, shown in fig. 4.4 are excellent. The initial stiffness drop due to static
loading is matched accurately, the predictions closely follow the test data’s mean and always falls within ex-
perimental scatter.

Predictions for the laminate under 85% load, shown in fig. 4.5, are acceptable. The initial drop in stiffness,
due to "static cracking" within the first cycle is captured quite well. The model follows the trend of the data’s
mean up to 80% normalized fatigue life, with the prediction falling just short of experimental scatter. Accord-
ing to [8], for the 85% load the sample is saturated with matrix cracks within the first cycle, with little to no
growth in the number of matrix cracks after that. At 80% normalized life new types of damage appear, namely
longitudinal cracking, delamination and fiber fracture. These damage types drive stiffness degradation be-
tween 80% normalized life and failure. Since the aforementioned damage types are not part of the proposed
model (for now), the predictions is not expected to provide a good match between 80% normalized life and
failure. The fact that the prediction is close to test data until 80% normalized life, even following the trend of
the small decay in stiffness occurring until then, should be proof of the model’s validity.
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Figure 4.3: Normalized longitudinal stiffness degradation for a
[0/902]S AS4/3501-6 laminate under a maximum cyclic stress of

28% of its static strength. Data taken from [8]
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Figure 4.4: Normalized longitudinal stiffness degradation for a
[0/902]S AS4/3501-6 laminate under a maximum cyclic stress of

53% of its static strength. Data taken from [8]
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Figure 4.5: Normalized longitudinal stiffness degradation for a [0/902]S AS4/3501-6 laminate under a maximum cyclic stress of 85% of
its static strength. Data taken from [8]
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Finally, to provide a small overview on the quality of predictions, the model has given good results as long
as matrix cracking was the main damage mode occurring in the sample. For the sample under 28% load, it
was observed that in [8] that very few matrix cracks will appear in the first cycle, and that at the millionth
cycle their number had increased but was still very far from reaching the characteristic damage state (CDS,
originally introduced in [53] and essentially representing the point where the matrix has been saturated with
cracks). This indicates that throughout the entire test matrix cracks were the main damage mode. Similar ob-
servation were made for the case of 53% load, mentioning a larger number of initial matrix cracks, but still not
reaching CDS. In the 85% case on the other hand, CDS was basically reached within the first cycle, meaning
that the matrix was almost immediately saturated with cracks, and that no additional matrix cracks (at least in
the off-axis plies) were created. This is was probably the cause of the relatively flat stiffness degradation plot
until 0.8 normalized life is reached. At that point (according to [8]) longitudinal matrix cracking will appear (in
the 0 degree plies), leading to delaminations at the intersection between longitudinal and transverse cracks,
followed by fiber fractures. From the above discussion it can be concluded that the model works very well,
since it only tries to model stiffness degradation due to matrix cracking, and it generated good predictions
whenever matrix cracks were dominant.

4.4.2. Comparisons with Charewicz and Daniel STP907 1986 [6]
Introduction and experimental data
Charewicz and Daniel [6] performed fatigue tests on several AS4/3501-6 crossply laminates. Stiffness degra-
dation data was reported only for a [0/904]S laminate, which was tested under a maximum applied longitu-
dinal stress of 345MPa, with R = 0.1.

Since the authors did not report any of the material properties other than the name, and since the same ma-
terial and layups used in this paper were also used in [8, 9, 40], which were also authored by Daniel, it was as-
sumed that the ply properties provided by the aforementioned sources, which were also used in section 4.4.1
also apply in this case. The ply’s mechanical properties can be found in table 4.1.

Since the in situ strength Y T
I S shown in table 4.1 was obtained from a [0/902]S laminate it needs to be updated

for the [0/904]S laminates covered in this comparison. As shown by Camanho, Davila et al in [3], changes in
the number of adjacent 90 degree plies (which in this case doubled) could have a very strong influence on the
in situ strength.

Charewicz and Daniel [6] mention that static loading of the [0/904]S laminate has a linear stress-strain re-
sponse up to an applied stress of 166MPa, with no matrix cracks appearing. Beyond said stress, there is a
rapid increase in matrix cracking, and the response turns non-linear. Through CLPT, the transverse stress
in the 90 degree plies was found to be 46.44MPa, which is very close to the value of 49.31MPa obtained
for [0/902]S in table 4.1. Finally, since the test data was plotted against normalized fatigue cycles, the sam-
ple’s fatigue life is necessary, which was estimated to be 1.22 ·107 cycles through an S-N curve provided in
[6].

Comparison between predictions and experimental data
A comparison between the proposed model’s predictions and test data is shown fig. 4.6. The [0/904]S lami-
nate was tested under a maximum applied longitudinal stress of 345MPa, with R = 0.1. The match is good
up to about 40% of the fatigue life. After that, the test data show a rapid decrease in stiffness associated with
failure modes not captured by the model in its current form, namely dispersed longitudinal cracking and local
delamination [6]. The case shown in fig. 4.6 is similar to the one covered in fig. 4.5 of section 4.4.1. The "static"
stiffness drop experienced in the first cycle is predicted very accurately, just like figs. 4.4 and 4.5. The plateau
predicted after the first couple of cycles is also to be expected, since according to Charewicz and Daniel [6] the
sample reaches its characteristic damage state (CDS) [53] practically immediately, meaning that the matrix is
saturated with cracks within the first few cycles, and that little stiffness degradation (due to matrix cracking)
is to be expected after that.
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Figure 4.6: Normalized longitudinal stiffness degradation for a [0/904]S AS4/3501-6 laminate under a maximum cyclic stress of
345MPa, R = 0.1. Data taken from [6]

4.4.3. Comparisons with Ryder and Crossman 1983 [54]
Additional comparisons for T300/5208 [02/904]S laminates from [54] are provided in appendix A. Lack of
some input data for the model meant that the CV of transverse tensile failure had to be taken from 90 degree
flexure tests, rather than a conventional monotonic static test on a [90] laminate. As such, the predictions are
not considered of sufficient quality to be included in the main text.
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Conclusions

The goal of this research was to create a stiffness degradation model for laminates under static and cyclic
loading. As mentioned in chapter 1, the models were created with preliminary design optimization in mind,
which is characterized by the iteration of numerous design configurations. It follows that the proposed mod-
els should be computationally fast and valid for any (realistic/practical) laminate. Naturally, the predictions
should also be as close to experimental data as possible. A brief discussion follows on how the models fared
in terms of computational speed, generality and accuracy.

Regarding computational speed, the models are fully analytical, making them inherently fast. Moreover,
all the static and fatigue model equations are closed-form expressions, meaning no numerical iteration is
required, with the exception of eqs. (3.39) and (4.9), which have to be solved numerically but are not com-
putationally intensive. Finally, since the damage and corresponding stiffness degradation are modeled at ply
level, and since interaction of damage between different plies is not yet included in the model, the static and
fatigue models only need to be run once per ply orientation. For example, a laminate with n plies, all being
oriented at 0, 90 or±45 degrees will require the model to run only 4 times to fully characterize stiffness degra-
dation under static or cyclic uniaxial tension (due to symmetry, results from the −45 and +45 plies would be
identical, so the model could technically run just 3 times). This makes the model even more computationally
efficient, especially since in actual structural designs there is a finite and small number of unique ply orienta-
tions being used within a same laminate. It can be concluded that the proposed models are likely fast enough
to be used for any practical optimization purpose, and that efforts to improve the models should be focused
on other areas (discussed below).

Regarding model flexibility and applicability to several design configurations, it should be mentioned that
the model was only applied to uniaxial loading in order make its development easier, and to provide a step-
ping stone for its expansion to additional load cases. The static models can technically be applied to any
laminate, and they have been validated for realistic/practical laminates (symmetric and balanced, not com-
pletely unidirectional). While there are no restrictions on the laminate’s layup, results have been shown to
worsen for layups containing shear dominated plies. This issue is minor for the recoverable damage model
(section 3.4), and more pronounced for the energy equivalence model (section 3.3). The accuracy of these
models is discussed in more detail in the next paragraph. The fatigue model was only applied to cross-ply
laminates due to the aforementioned accuracy issues with shear dominated plies. As soon as the accuracy of
the static model is improved, the fatigue model can be expanded to all layups. It can be concluded that there
is currently no indication that the model could not be expanded to account for additional loads cases, layups
and damage modes, as discussed in chapter 6. This is especially true when considering that the predictions
are based on ply stresses, that excellent to good match has been obtained for predictions based on trans-
verse and shear stresses, and that the applied load case and ply orientation are only used to determine ply
stresses, and nothing else. Finally, it should be noted that both the static and fatigue models need remarkably
little experimental data to run, especially compared to many of their counterparts mentioned in chapter 2.
All necessary data can be measured experimentally from static tests, none of which need to be carried out
on the exact layup being analyzed (although doing so for the transverse tensile in situ strength could benefit
accuracy to some extent). No curve fitting or semi-empirical approaches are needed.

Regarding the energy equivalence model in particular (from section 3.3): the model has achieved an ex-
cellent match with test data from cross-ply laminates, while it tends to overestimate stiffness degradation in
laminates with shear dominated plies. The fact that the energy equivalence method worked extremely well
with transverse tension might be an indication that the principle of energy equivalence is indeed valid, and
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that the problem with shear lays in the way strain energy is assumed to be stored within the damaged ply.
Accounting for the presence of permanent strains [37, 38, 66, 68], possibly by adopting some of the obser-
vations made in the recoverable damage model (section 3.4) might help. The damage sequence presented
by the model (microscopic matrix damage only if the ply is shear dominated, followed by matrix cracking) is
consistent with available literature [37, 38, 69], and the derivation of all equations governing shear behavior
is rigorous and "mathematically sound", unlike its recoverable damage model counterparts. It can be con-
cluded that the energy equivalence model represents a solid foundation for predicting stiffness degradation
due to matrix damage under static loading in any (realistic) layup. Its shortcomings have been identified,
and once the alleviating effect of permanent shear strain on the residual modulus is accounted for, model
accuracy should drastically improve.

Regarding the recoverable damage model (from section 3.4): The model has achieved an excellent match
with test data from cross-ply laminates, and an excellent to good match for laminates with shear dominated
plies. Unlike the energy equivalence method, the equations used to predict the residual shear modulus are
not backed by a rigorous mathematical derivation. Rather, they were established through the qualitative
assumptions and observations discussed in section 3.4.2 (based on literature [37, 38, 66, 68]). While the re-
sults shown by the recoverable damage model are very good, they cannot be backed (for now) by a rigorous
derivation. However, considering that the recoverable damage and energy equivalence models share many
modeling choices (microscopic shear damage, matrix cracking, excess strain energy apportioning...) it is not
to be excluded that taking some of the concepts used in the recoverable damage model (especially unload-
ing/reloading behavior, hysteresis), and implementing them into the energy equivalence model might result
in drastic improvements,

Finally, regarding the fatigue model (from chapter 4): The model has achieved an excellent match with test
data from cross-ply laminates, up to a point where rapid damage propagation sets in, which is not yet in-
cluded in the present model. The excellent results prove that fatigue life and residual stiffness can be suc-
cessfully related by equating the predicted damage state between the residual strength (fatigue) model and
the static stiffness degradation model. The same procedure should be followed again once the issues expe-
rienced by the static model with shear are addressed. Moreover, the excellent match with the initial stiffness
drops (in the first cycle) is further proof of the static model’s validity (for cross-ply laminates). While fatigue
predictions do diverge at some point from test data in figs. 4.5 and 4.6, it was proven in both cases that this
was caused by the presence of damage modes other than matrix cracking (eg. delamination and fiber frac-
ture). These damage modes only become relevant close to the end of fatigue life, especially for low cycle
fatigue, as discussed in chapter 6. The fatigue model was only applied to cross-ply laminates due to the is-
sues experienced by the static models with shear laminates. As soon as those are resolved, the fatigue model
can be expanded to more generic laminates. It can be concluded that the proposed fatigue model is a step in
the right direction, matching test data perfectly (as long as matrix cracks were the dominant damage mode),
and that the updated static model should be extended to fatigue in the same fashion presented in section 4.3
for cross-ply laminates.

Based on the conclusions reached in this chapter, recommendations for future work are given in chapter 6.
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Recommendations for future work

The recommendations below are arranged in descending order of priority, where priority is determined by
the impact that each new feature would have on the model’s completeness, versatility and usefulness.

• Modify the energy equivalence model from section 3.3 to reduce/eliminate overestimation of stiff-
ness degradation within shear dominated laminates. Accounting for the presence of permanent shear
strains might induce the desired alleviating effect on predictions for shear dominated laminates, as
suggested by existing literature [37, 38, 66, 68] and by the validation results of the recoverable damage
model, shown in section 3.6.4. To this end, it would beneficial to make use of the knowledge gained
from the development of the recoverable damage model (section 3.4.2).

• Devise a rigorous derivation for the residual shear modulus equations provided in section 3.4.2,
which has shown excellent predictions, but needs a solid theoretical backing. Since the energy equiv-
alence model has a stronger foundation than the recoverable damage one, this step should only be
taken if the previous one does not work.

• Expand the fatigue model to handle non-cross-ply laminates. This should preferably be done by inte-
grating the chosen static model with the residual strength model for fatigue (section 4.2), in a manner
analogous to the one shown in section 4.3, which has been proven to work excellently for cross-ply lam-
inates. This task can only be carried out once one of first two points has been successfully addressed.

• Validate the preferred static model using purely UD [0] laminates, non-symmetric laminates and
unbalanced laminates. While the static models can already be applied to such laminates, validation
did not include any of them, due to their infrequent use in actual structural designs and in published
test data. For the same reasons, if validation of such laminates does not yield positive results, there
would be no strong need to modify the model, especially since the issue might be due to the driving
damage modes not being captured by the model. This is covered in the next point.

• Introduce additional damage modes to the fatigue model (eg. fiber fracture, fiber-matrix debonding,
longitudinal splitting, delamination) to improve the match between predictions and experimental data
for the final portion of fatigue life, where such damage modes will be prevalent [8, 52, 57] and figs. 2.2
and 2.3

• Expand the fatigue model to handle spectrum (variable amplitude) loading. To this end, the ap-
proaches for spectrum loading shown in [32, 35] should be tried first, since they were successfully ap-
plied to the residual strength fatigue model that has been used in this research (section 4.2). Spectrum
loading should only be implemented after that the fatigue model has produced reliable predictions for
the entirety of fatigue life (including the final portion).

• Expand the static model to handle loads other than longitudinal tensile loading (eg. longitudinal
compression, or biaxial loading, bending). This should only be done once the model has been proven
to work reliably for any layup under uniaxial tension. It would be particularly interesting to check
the quality of predictions when different load cases are applied to the same sample in succession (eg.
uniaxial loading, followed by biaxial loading, followed by shear loading.). The new static model should
then be implemented within the fatigue one.
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A
Fatigue model validation with data from

Ryder and Crossman [54]

This appendix contains comparisons for the residual stiffness predicted by the fatigue model, and the one
measured experimentally in [54] for T300/5208 [02/904]S laminates. Lack of some input data for the model
meant that the CV of transverse tensile failure had to be taken from 90 degree flexure tests, rather than a con-
ventional monotonic static test on a [90] laminate. As such, the predictions are not considered of sufficient
quality to be included in the main text.

Introduction and experimental data
Ryder and Crossman performed extensive fatigue testing for stiffness degradation of various T300/5208 lam-
inates, as documented in [54]. The only cross-ply laminate they used is [02/904]S . Fatigue tests were per-
formed using three different maximum applied loads, corresponding to a longitudinal applied strain (on the
pristine laminate, upon the first loading) of 0.005, 0.006 and 0.0065. The ply properties of unidirectional
T300/5208 material are reported in table A.1.

Since the statistical distribution of ply material failure under transverse tensile stresses was not reported, it
had to be assumed. The distribution was assumed to be normal, with mean Y T

I S given by the transverse stress
at which matrix cracks will first appear. Said stress was found through fig. A.1, which shows that matrix cracks
will occur around 0.00475 applied longitudinal strain (sample A1).

The point was chosen to represent the onset of substantial matrix cracking. While samples A1, A2 and A3 all
exhibit matrix cracks before 0.00475 strain, the stability and high value of their crack spacing indicates that
they must be due to local phenomena (eg. imperfection) rather than the global stress-state of the laminate.
Sample A1 was the only one with enough data points to make it possible to clearly pinpoint the sudden in-
crease in matrix cracks which indicates the point where all regions in the matrix will start cracking (in order
to start attaining the characteristic damage state [53]). Through CLPT, it was possible to calculate the trans-
verse stress in the 90 degree plies corresponding to an applied longitudinal strain of 0.00475 to an [02/904]S
T300/5208 laminate, which was found to be 44.33MPa.

The coefficient of variation associated with the aforementioned normal distribution for traverse tensile failure
had to be found from additional sources. A CV of 13.3% was found for 90-degree flexure tests of T300-3K/5208
coupons, from [46]. Since Ryder and Crossman [54] did not specify the fiber grade, it is not possible to verify

Table A.1: Required input data for comparisons with test data from [54], section 4.4.3

Property Value Source

E11 (GPa) 163.40 [54]
E22 (GPa) 10.20 [54]
G12 (GPa) 6.48 [54]
ν12 (-) 0.30 [54]
Y T

I S
∗ (MPa) 44.33 [54]

CVY (-) 13.3% [46]

* Value derived from data
within source.
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Figure A.1: Crack spacing and longitudinal stress as a function of applied longitudinal strain for a [02/904]S T300/5208 laminate [54]

whether they used T300-3K, and [46] does not provide ply properties. However, since transverse tensile failure
is mostly matrix dominated, the fiber grade issue is considered to be negligible. It is recognized that ideally
the CV value should have been obtained through longitudinal tensile tests of [90]S coupons, but the value just
provided was the only one available in literature. The value of 13.3% does not seem unreasonable (AS4/3501-
6 after bleeding has a value of 12.1%). Predictions with different CV values have been plotted in fig. A.5 to
show that the accuracy of the CV is not the most critical variable for prediction accuracy (that would likely be
the mean transverse in situ strength).

Unlike in section 4.4.1, no coupon fatigue life estimate was needed to plot the comparisons with test data,
since Ryder and Crossman [54] plotted stiffness degradation against the actual number of cycles, not the
normalized one.

Comparison between predictions and experimental data
Comparisons between the model’s prediction and test data from [54] can be found in fig. A.2, fig. A.3 and
fig. A.4, which depict stiffness degradation for a maximum applied cyclic load corresponding to a longitudinal
applied strain (on the pristine laminate, upon the first loading) of 0.005, 0.006 and 0.0065 respectively.

Since the test data presents a considerable amount of scatter (Ryder and Crossman reported the fatigue life
scatter to be greater than two orders of magnitude), it is difficult to make precise statements. As a general
observation, it can be stated that the predictions are good. While they do not perfectly match the mean they
do follow its trend, laying right outside of experimental scatter.

The large plateau in the prediction curves is caused by matrix crack saturation. While the predicted stiffness
drop associated with saturation is slightly conservative for these particular predictions, the number of cycles
at which the plateau occurs is predicted fairly accurately.

The model also predicted matrix cracking in the 0 degree plies (splitting), although its effect on the laminate’s
residual longitudinal stiffness is negligible. The sample tested in [54] also underwent said splitting and found
it not to have a measurable effect on longitudinal laminate stiffness, which was also confirmed by [28].

Finally, to show the influence of the coefficient of variation on the model, the predictions from fig. A.2 were
ran again with the standard CV value of 13.3% and two additional values, chosen arbitrarily to be 10.0% and
16.6%. The results are shown in fig. A.5. While the CV does have an influence, it is not a particularly strong
one. Hence, the uncertainty surrounding the value of 13.3%, obtained from 90 degree flexural tests in [46],
should not detract from the proposed model and the quality of its predictions. If anything, the value of 13.3%
seems a little high, compared to its 12.1% and 10.0% counterparts for AS4/3501-6 (depending on bleeding)
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[64], and as seen in fig. A.5, a lower CV would actually benefit the predictions.
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Figure A.2: Normalized longitudinal stiffness degradation for a
[02/904]S laminate under a maximum cyclic stress equivalent to an
applied 0.005 longitudinal strain on the pristine laminate, R = 0.1.

Data taken from [54]
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Figure A.3: Normalized longitudinal stiffness degradation for a
[02/904]S T300/5208 laminate under a maximum cyclic stress equal

to an applied 0.006 longitudinal strain on the pristine laminate,
R = 0.1. Data taken from [54]
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Figure A.4: Normalized longitudinal stiffness degradation for a
[02/904]S T300/5208 laminate under a maximum cyclic stress equal

to an applied 0.0065 longitudinal strain on the pristine laminate,
R = 0.1. Data taken from [54]
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Figure A.5: Predictions based on the case from fig. A.2, using
different coefficients of variation for the normally distributed
transverse tensile strength. The "standard value" is 13.3%, as

reported in table A.1. Data taken from [54]
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