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INTRODUCTION
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1.1. The Light Field

All visual information available to the viewer, whether a human observer or a photo-
camera, is nothing but a pattern of light, either emitted by primary light sources or re-
flected off the materials in the scene. The physical processes which underly the interac-
tions between light and scene are extremely complex, which makes the structure of the
luminous environment very hard to parse. In order to describe the plenoptics (E. H. Adel-
son and J. Bergen, ‘The plenoptic function and the elements of early vision’, 1991) of
the scene one has to know the primary illumination, the structure of the scene and the
scattering properties of the materials.

The focus of this thesis will be directed to the structure of the light field in natural
scenes. More specifically I will address the issue of the structure of light fields in common
indoor and outdoor environments and the consequences for object appearance. The theory
of the light field (A. Gershun, ‘The light field’, 1939) has not been extended essentially
since 1939 and there is definitely room for improvement.

One of the goals of this thesis is to bridge the gap between the artistic intuition of
the notion of the ‘quality of light’ and formal scientific descriptions of illumination. I
will derive intuitive descriptions of the qualitative, form-revealing effect of light that at
the same time have well defined physical meanings. Another important aspect of my re-
search is the spatial structure of the light field in 3D space. Illumination changes spatially
from point to point and its behavior depends on many factors. The scattered part of the
light is determined by the structure of the scene and the reflective properties of materials,
therefore the structure of the light field depends critically on the structure of the scene.

Current light measurement techniques in the area of illumination engineering do not
provide sufficient information about the quality of light in 3D spaces. In this thesis we
develop a method to measure the lower order properties of light fields and a method to
calculate these for the entire space of the scene. We also address the question of the
possible generic topological structures of the light field in the empty space in a scene.

1.1 The Light Field

The issue of interaction between the light and the scene first emerged in the area of art. In
order to predict the appearance of a scene due to certain illumination conditions painters
had to understand the form-revealing effect of light very well. Leonardo was one of
the pioneers who started to scientifically study the formation of shading and shadows
on objects’ surfaces (see Figure 1.1) and other optical effects such as translucency and
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Chapter 1. Introduction

Figure 1.1: A schematic drawing of a human head by Leonardo. The letters indicate
regions of qualitatively different types of shading and shadows due to a point light source.

glossiness. Leonardo’s ideas about the nature of light have been fully understood and
rediscovered only long after his time.

M. Faraday was the first to suggest that light should be considered as a field (‘Thoughts
on Ray Vibrations’, 1846) much like the magnetic field. However these ideas did not re-
ceive much attention of scientists for a long time. The beginning of the era of electricity
and incandescent light brought the possibility to manipulate the light flexibly and various
engineering applications emerged. The typical problems engineers faced were to calcu-
late the amount of light incident on surfaces and to design lighting setups which provide
the most efficient illumination of the scenes. Those problems could be solved without
sophisticated formal theory. The first systematical physical theory of the light field was
developed by Gershun in 1936. He defined new physical objects representing the light
field and introduced a novel terminology. Gershun’s work was driven by applications in
illumination engineering. He was mostly interested in deriving illumination patterns due
to light sources of various shapes. The light field according to Gershun is a 5-dimensional
function that describes the light traveling in every direction through any point in space
which is the definition that I use through the entire thesis. In modern terminology it is
essentially the radiance arriving at the point (x,y,z) from all directions (ϑ ,ϕ).

Knowledge of the light field is important for various applications, however for a long
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1.2. Overview

period of time Gershun’s theory was sufficient for most applications and consequently
was not improved much. With the advent of computer graphics and computer vision the
subject of the light field gained a lot of attention again. Recent achievements in the area of
digital photography allow to measure light fields precisely by recording all rays passing
through the scene photographically. In the computer vision community the light field is
known as Lumigraph which is essentially the collection of all light rays passing through
the scene. These measurements may be used for instance for rendering tasks in computer
graphics. Image based rendering allows to render an artificial object indistinguishably
from a real one, which is mostly because correct illumination is used in the process of
rendering. The recorded light fields may be used not only for virtual applications but also
for real illuminations in a studio. For instance a face of an actor may be illuminated due to
recorded light such that the quality of shadows matches with the appearance of the scene
where the light was recorded.

A better understanding of the light field is also needed for applications in illumination
engineering. In the field of illumination engineering the light field is studied with respect
to the visual appearance of the scene. The quality of light is estimated from various pa-
rameters such as the illumination on horizontal surfaces, the cylindrical illumination, the
scale of light, etc (which are frequently difficult to interpret). Typically only the light inci-
dent on the surfaces is considered to be important and the light field in 3D space ignored.
These conventional light measuring techniques fail to describe the quality of illumina-
tion in its form-revealing sense and therefore new methods to measure and describe the
illumination are needed.

In this thesis I consider the light field as a stationary, quasy-monochromatic Plenoptic
function and study its structure by means of spherical harmonics decomposition. The
measurements are performed by means of a custom made device named ‘Plenopter’ which
is capable to measure basic low order properties of light fields in empty 3D spaces.

1.2 Overview

The main goal of this thesis is to improve existing theories of the light field by means of
theoretical and empirical analysis. We address the subject of the quality of light and try
to bridge the gap between scientific and artistic understandings of this concept by intro-
ducing physical parameters which describe form-revealing characteristics of light and at
the same time have very intuitive interpretations which lead directly to an understanding
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Chapter 1. Introduction

of object appearance. One of the main subjects in the thesis will be the global structure
of the light field and its relation to the structure of the scene. We are mostly interested
in the low order properties of the light field and study them both theoretically and via
measurements in natural scenes. We also introduce a new measuring device capable of
such measurements and describe a technique with which the low order components may
be calculated for the entire scene. The core part of the thesis consists of four chapters
which are independent papers and presented as they will appear in scientific journals.

In chapter 2 we study the spatial distribution of low order properties of light field in
several types of natural scenes. On the basis of measurements which were done by means
of a panoramic imaging technique we showed that the low order components of the light
field remain practically constant along a scene as long as the geometry of the scene is
fixed and the light sources remain similar. In that chapter we also address the subject of
the quality of light and present an intuitive and easy interpretation of the structure of the
local light field up to the second order in terms of spherical harmonics.

In chapter 3 we further pursue the empirical investigation of the structure of the light
field in natural scenes conducting measurements across the axes of symmetry of the scenes
such that the geometries vary from point to point. We show that the low order components
of light behave similarly over scenes of similar geometries which demonstrates that the
light field may be considered as a property of the geometry and material composition of
the scene. This fact may be useful for modeling in computer graphics. In this chapter
we present our custom made measurement device the ‘Plenopter’ which is capable of
measuring the light field up the second order spherical harmonics approximation.

In the fourth chapter we describe a technique to recover the second order light field
for the entire three-dimensional scene on the basis of discrete measurements. We also
present a new way of visualizing the light field by means of light tubes, which were
originally introduced by Gershun.

The fifth chapter is mostly theoretical and devoted to the possible topological struc-
tures of light fields. We provide models which show that basically all generic topological
structures which occur in two-dimensional vector fields may also occur in light fields. For
instance, we show a model which demonstrates that flux lines may even be closed.

In the Appendix we give additional examples which illustrate the usefulness of the
results presented in this thesis and also describe methods which have not been shown in
previous chapters.

In the Summary the main results of the thesis are summarized.
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LIGHT FIELD CONSTANCY

WITHIN NATURAL SCENES
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Abstract

The structure of light fields of natural scenes is highly complex due to high frequen-
cies in the radiance distribution function. However it is the low order properties of
light that determine the appearance of common matte materials. We describe the lo-
cal light field in terms of spherical harmonics and analyze the qualitative properties
and physical meaning of the low order components. We take a first step in the further
development of Gershun’s classical work on the light field by extending his descrip-
tion beyond the three-dimentional vector field, towards a more complete description
of the illumination using tensors. We show that the three first components, namely
the monopole (density of light), the dipole (light vector) and the quadrupole (squash
tensor) suffice to describe a wide range of qualitatively different light fields.

In the article we address a related issue, namely the spatial properties of light fields
within natural scenes. We want to find out to what extent local light fields change from
point to point and how different orders behave. We found experimentally that the low
order components of the light field are rather constant over the scenes whereas high
order components are not. Using very simple models, we found a strong relation
between the low order components and the geometrical layouts of the scenes.

Published as: A.A. Mury, S.C. Pont, and J.J. Koenderink, ‘Light field constancy
within natural scenes,’ Applied Optics 46(29), pp. 7308-7316, 2007
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Chapter 2. Light field constancy within natural scenes

2.1 Introduction

Photographers, painters, designers and architects acknowledge that the quality of the light
in scenes is one of the main determinants for the visual appearance of these scenes.[1, 2,
3, 4] In order to make materials look convincing one should use ‘natural complex light
fields’ in the rendering process [5]. However, few studies [6, 7] describe the fundamental
regularities of natural light fields empirically. The meaning of the term ‘quality of light’
and its properties in natural scenes remain unclear.

The purpose of our work is to investigate the optical properties of natural scenes. More
specifically, our aim is to describe theoretically the quality of the illumination, which is
a rather artistic concept, in terms of physical measures. Furthermore, we experimentally
analyze the spatial properties of light fields within natural scenes. There is no common
language to describe the quality of light and its effect on the appearance of an object.
Different approaches are used in different fields depending on the goals. For instance,
lighting engineers and designers adopt an integral approach using a wide range of param-
eters (luminance levels, diffuseness, uniformity, glare index and many others). On the
other hand, in computer graphics the illumination is frequently simplified as much as pos-
sible; in most cases the combination of ambient and direct components does the trick. A
similar approach is adopted in photographers’ studios and ‘movie shooting stages’ where
the combination of diffuse and direct light sources produces convincing results for most
objects.

Light fields of natural scenes are highly complex containing low and high frequencies.
Due to (inter-)reflections within scenes the light comes from every direction and therefore
in general the light field cannot be determined completely solely by primary light sources.
However, despite the complexity of illumination, even with the naked eye it is often possi-
ble to distinguish some basic properties of light such as the overall brightness, the primary
illumination direction and the diffuseness.

The first part of the article is devoted to a theoretical analysis of second order light-
ing. It is convenient to analyze the properties of light fields using spherical harmonics
decompositions because this allows us to represent complex lighting as a combination
of components of different orders. We investigate the qualitative properties of the first
three components (monopole, dipole and quadrupole) and describe their physical mean-
ings through the development of a theoretical framework in which Gershun’s classical
work on the radiometric properties of the light field is related to, and extended by these
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2.2. Previous work

current techniques. We also develop a graphical representation of the low orders that gives
a simple and intuitive description of the radiance distribution.

Another goal of our study is to investigate the dependency of the light field on the
geometrical layout of the scenes. A particular question that we are addressing here is
how much the illumination varies from location to location within a scene and how the
different orders of the light field behave as a function of location within a scene. Taking
into account that natural scenes usually have few primary light sources and that most
materials scatter light in a diffuse way, we hypothesized that the low order components of
the illumination should be more or less constant within a scene and depend systematically
on the geometrical layout of the scene. In order to test these hypotheses we empirically
investigated the light field of several scenes by measuring local light fields at several
points of each scene using the panoramic image technique.

2.2 Previous work

The light field is a function that describes the amount of light traveling in every direction
through every point in space. The term light field and the first systematic theory on this
subject were introduced by Gershun in a paper on the radiometric properties of light in
3D space [8].

At a typical point in a natural scene light comes from all directions simultaneously.
Gershun’s ‘light field’ is essentially the radiance distribution over all space and all direc-
tions. For instance, for uniformly diffuse illumination, where the radiance is the same
for all directions, the radiance distribution function at a point is a sphere. For a parallel
beam of light the radiance distribution function degenerates into a single direction in the
direction of the beam.

Gershun’s primary goal was to describe the net transfer of radiant power through
space. He defined the ‘radiant flux density’ as the net flux that passes through any given
surface element from either side. Gershun introduced the notion of ‘light vector’ such
that the component of the light vector in the direction of the surface normal represents the
net flux density. The direction of the light vector can be found directly from the radiance
as the average direction, weighted by radiance, over all directions. This concept allowed
Gershun to describe the light field as a classical three-dimentional vector field. Moon and
Timoshenko, who translated his work, already mentioned that ‘the physically important
quantity is actually the illumination, which is a function of five independent variables,
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Chapter 2. Light field constancy within natural scenes

not three’. The light vector defines directly the transfer of radiant power, but does not
define the full radiant structure (i.e. the lighting condition). Two light vectors may be
identical whereas the radiance functions that underlie them may be quite different. In our
work we introduce the quadrupole or squash tensor of the light field, to complement the
light vector such as to describe the radiance distribution function in more detail. This may
be considered as a small step towards the development that Moon and Timoshenko were
aiming for in their foreword: ‘Is it not possible that a more satisfactory theory of theory
of the light field could be evolved by use of modern tensor methods in a five-dimensional
manifold?’.

Gershun’s theory was further developed and broadened by Parry Moon in his work on
the Photic Field [9]. In different areas the concept of radiance distribution has different
names: in computer vision it is known as plenoptic function [10], in the realm of computer
graphics it was introduced as the Lumigraph [11] or Light Field [12] and became very
popular in applications for image-based modeling and rendering. Since then, several
techniques of parametrizing and capturing light fields have been developed.

The analysis of light field properties in natural scenes started from the statistical anal-
ysis of intensity distributions in conventional images of natural scenes. [13, 14] Due to the
limited field of view and low dynamic range of conventional images, that approach was
limited. Later Dror adopted a similar approach to high dynamic range panoramic images
of the scenes, so-called ‘illumination maps’ (one of the ways of capturing the incoming
light field at a point). He performed a statistical analysis on several illumination maps
which were photographed in different scenes and found some regularities in the intensity
distributions in those images. The scenes were independent of each other which leaves
unanswered the questions: Is there a relation between the intensity distribution in illumi-
nation maps and the geometrical envelopes of the scenes or illumination conditions of the
scenes? If there is a relation how much does the light field vary within a scene?

The spherical harmonics [15, 16] representation of the light fields appeared to be use-
ful in many applications ranging from computer graphics rendering techniques to recog-
nition algorithms in computer vision. It was shown theoretically [17, 18] for convex
Lambertian objects that the light field can be successfully replaced by its second spheri-
cal harmonics approximation without changing the objects’ appearance much.
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2.3. Theory

2.3 Theory

In this section we look into the low order properties of lighting. When spherical harmonics
decomposition is applied the radiance distribution function at a point can be represented
as a sum of its frequency components. We give a qualitative, physical description of the
components up to the second order in terms of spherical harmonics. We show that the
second order component, the quadrupole or squash tensor, represents specific cases of
lighting such as a ‘clamp’ and a ‘ring’ of light.

2.3.1 Spherical harmonics definitions

In order to describe the structure of light fields we utilize real spherical harmonics de-
composition [15]. Any spherical function f (ϑ ,ϕ) can be represented as the sum of its
harmonics:

f (ϑ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

flmYlm(ϑ ,ϕ), (2.1)

the basis functions being defined as

Ylm(ϑ ,ϕ) = Klmeimϕ Plm(cosϑ), l ∈ N, −l ≤ m≤ l, (2.2)

where Plm are the associated Legendre polynomials and Klm are the normalization con-
stants

Klm =

√
(2l +1)

4π
(l−m)!
(l +m)!

, (2.3)

and the real value basis is defined as

Ylm(ϑ ,ϕ) =






√
2Klm cos(mϕ)Plm(cosϑ), m > 0,√
2Kl|m| sin(|m|ϕ)Pl|m|(cosϑ), m < 0,

Kl0Pl0(cosϑ), m = 0.

(2.4)

Spherical harmonics form an orthonormal basis on the unit sphere. Coefficients flm

can be calculated as

flm =
∫ 2π

ϕ=0

∫ π

ϑ=0
f (ϑ ,ϕ)Ylm(ϑ ,ϕ)sin(ϑ)dϑdϕ, (2.5)

The indices obey l ≥ 0 and −l ≤ m ≤ l. Thus, order l consists of 2l + 1 basis func-
tions. Therefore the function can be represented as a sum of its components, i.e. dif-
ferent orders. Any order l can be represented as a vector of corresponding coefficients
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Chapter 2. Light field constancy within natural scenes

Figure 2.1: Spherical harmonics basis functions. The first row (the sphere) represents the
zeros order, the second row shows the basis functions of the dipole, the third row shows
the basis functions of the quadrupole.

SHl( f ) = { fl−l , fl−l+1, ..., fll} and the representation of the entire function is a combina-
tion of the orders, i.e. SH( f ) = {SH0( f ),SH1( f ),SH2( f ), ...}.

The spherical harmonics representation depends on the orientation of the function,
i.e. if R is an arbitrary rotation over S, then SH( f ) '= SH(R( f )). Therefore, in general the
vector of SH coefficients cannot be used as an unique descriptor of the 3D shape defined
by that function. Although a rotation will change the coefficients, it does not change
the energy of the orders. This property was used by Kazhdan et al. [19] to construct
rotationally invariant descriptors

dl =

√√√√
l

∑
m=−l

f 2
lm. (2.6)

Siegel [20] used a similar approach to characterize radiance distributions of different light
sources. Physically, parameters dl represent the power of the angular mode l. Siegel
referred to dl as the ‘strength of the angular mode l’. The drawback of these coefficients
is that they do not describe the function completely. For instance, if we rotated different
components of a function arbitrarily and independently then the dl profile of the resulting
function would be the same, whereas the shape would be different. Therefore in general
it is important to take into account the mutual orientation of different components as well
as their strength.
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2.3. Theory

2.3.2 Meaning of the low order components and their schematic graph-
ical representation

For the zeroth and first order components the analogy between the spherical harmonics
description and Gershun’s theory is straightforward. The zero order term, the monopole
M = { f0}, corresponds to Gershun’s ‘density of light’, which is an integration of the
radiance over the sphere. The monopole term is a fundamental property of the light field
that describes the overall illumination at a point, i.e. how much radiance arrives at a point
from all directions. From a computer graphics point of view the zero order term can be
thought of as an ‘ambient component’.

The first order term D = { f1−1, f10, f11} can be thought of as a dipole, in view of the
fact that in terms of spherical harmonics it consists of a positive and a negative mode.
The orientation of the dipole corresponds to Gershun’s ‘light vector’ - the direction of
maximum energy transfer at the point under consideration. The concept of the light vector
allows us to represent light fields as vector fields.

The second order term is the quadrupole Q = { f2−2, f2−1, f20, f21, f22} which con-
sists of five basis functions. The angular distribution according to a quadrupole is given
by Q(ϑ ,ϕ) = ∑2

m=−2 f2mY2m(ϑ ,ϕ). Any order term with l ≥ 1 consists of positive and
negative components, and in the case of the quadrupole these components are orthogonal
to each other. The orientation of the components can be found from the maximum (mini-
mum) of Q(ϑ ,ϕ). When proper rotation is applied any quadrupole can be represented as
Qrot = {0,0,q+,0,q−} by aligning the axes of the quadrupole along the coordinate axes
- positive component along Z and the negative along Y (see Figure 2.2). This rotation
provides the simplest representation of the quadrupole - just two parameters q+ and q−

are enough to describe its shape (in other words: the quality).
Thus, the second order approximation of the radiance distribution function can be

determined by a small set of meaningful parameters: the density of light d0; the direction
of the light vector (ϑD,ϕD) and its strength d1; the orientations of the quadrupole’s axes
(ϑQ+,ϕQ+) and (ϑQ−,ϕQ−) and parameters q+ and q−. See Figure 2.3(a) for a schematic
representation in which the arrows indicate the orientations of the light vector and axes
of the quadrupole, and the lengths of the arrows are proportional to their strength: the
values of d1,q+,q−. This graphic representation together with the value d0 completely
determines the second order lighting. Parameters d0,d1,d2,q+ and q− can be used as a
rotationally independent characterization of the light field.

The second order representation can be further simplified by rotating the function in
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Figure 2.2: Second order representation of a light field in the (a) original arbitrary orien-
tation and (b) orientation with regard to the quadrupole. On the left side the first nine co-
efficients are presented (note the change after rotation); on the right side the quadrupoles
are presented graphically. Note that the shape of the quadrupole does not change after
rotation whereas the mathematical description is simplified and depends only on two co-
efficients q+ = 0.093 and q− =−0.020. The coefficients that make up the quadrupole are
framed.

such a way that the components are aligned according to the coordinate’s frame. Since the
dipole is the strongest component in most cases (except for the monopole, which does not
have an orientation), it might be more convenient to orient the light field according to the
dipole such that the light vector is parallel to Z. Then the second order representation of
the light field will be SHD

2 (LF)= {MD,DD,QD}= {{d0},{0,d1,0},{ f D
2−1, f D

2−1, f D
20, f D

21, f D
22}}

(see Figure 2.3(b)). A rotation does not change the structure of the radiance distribution
function, but it changes its orientation in global coordinates. The mutual orientation of
the dipole and quadrupole remains the same under rotation. Because the light vector is
fixed, the second order description will now consist of eight parameters: d0,d1,ϑQ+ ,ϕQ+ ,

ϑQ− ,ϕQ− ,q+,q−.
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Figure 2.3: Schematic graphical representations of the second order light field in (a) the
original orientation and (b) the orientation aligned according to the light vector (c) the
orientation aligned according to the quadrupole. The SH coefficients are presented on the
left side. The mutual orientation of the components D, q+ and q− is shown on the right
side. The length of the light gray arrow corresponds to the value d1 (strength of the light
vector), the lengths of the dark gray and black arrows correspond to values q+ and q−.

In a similar way we can rotate the function in such a way that the axes of the quadrupole,
which are orthogonal to each other, are oriented according to the coordinate axes Z and Y
(see Figure 2.3(c)). Then the second order lighting is given by

SHQ
2 (LF) = {MQ,DQ,QQ} = {{d0},{ f Q

1−1, f Q
10, f Q

11},{0,0,q+,0,q−}}. (2.7)

So here the structure of second order light field, which is independent of orientation, is
given by six parameters: d0,d1,ϑD,ϕD,q+,q−.

In all three cases (Figure 2.3 a, b, c) the structure of the light field is the same. The
rotation only changes its orientation in the global coordinate frame, whereas the mutual
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orientation of the components, their quality and strength are the same. The representation
in Figure 2.3(a), shows the original orientation of a light field in the global coordinate
frame, is useful when, for instance, we want to couple the radiance distribution function
to the scene geometry. On the other hand, if we are interested only in the structure of the
light field then representation (7) is more convenient because it restricts the coordinate
frame and consists of fewer parameters.

The qualitative properties of the quadrupole are described in the next section.

2.3.3 Qualitative properties of the quadrupole

The quadrupole has two components: one positive and one negative, which are orthog-
onal to each other and symmetric around the intersection point. As was shown in the
previous section, the structure (quality) of a quadrupole can be described completely by
two scalar parameters q+ and q−. Therefore keeping the strength of the quadrupole con-
stant (d2 constant) and varying q+ and q− such that

√
(q+)2 +(q−)2 = d2 we can achieve

all possible structures of the quadrupole. The most extreme cases of light fields due to
a quadrupole alone (light vector is assumed to be zero, the monopole component chosen
as small as possible such that the resulting function is nonnegative) appear to be a light
clamp q+ = 1,q− = 0 and a light ring q+ = 0.5,q− =

√
3/2, see Figure 2.4.

Figure 2.4(a) physically corresponds to two equal diffuse light sources positioned
opposite to each other, we call this a ‘light clamp’. Figure 2.4(b) corresponds to a diffuse
‘ring light source’. Roughly speaking, from the coefficients q+ and q− we can assess how
close the quadrupole is to one of those extreme cases.

By adding a light vector and changing the strengths and mutual orientations of the
three components we can achieve a wide range of topologically different light fields.

2.3.4 Models for simple geometries: Street, Wall, Forest scenes

In order to provide a more intuitive explanation of the light vector and quadrupole we
will consider some very simple models of the light fields in several basic geometries. The
geometrical layouts of the scenes are depicted schematically in Figure 2.5.

The model of the open field scene consists of a uniformly bright sky (upper hemi-
sphere) and uniformly bright ground (lower hemisphere) which is darker than the sky.
The second order representation of a light field in such a scene will contain only the light
vector and the monopole. The quadrupole vanishes due to the symmetry of the brightness
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(a) (b)

Figure 2.4: Qualitative properties of the quadrupole. Extreme cases of light fields due to
the quadrupole: (a) a light clamp, q+ = 1,q− = 0, (b) a light ring, q+ = 0.5, q− =

√
3/2.

The light vector is assumed to be zero, the monopole d0 is chosen as small as possible
such that the resulting function is nonnegative everywhere.

distribution function in the scene (in fact, all even components vanish). The light vector is
oriented vertically to the middle of the sky opening and in this case indicates the symmetry
of the light field. Due to the non-uniformity of materials and geometry in natural scenes
(the sky is not uniformly bright, the ground is not Lambertian, the geometrical layout
is not symmetrical), the brightness distribution function cannot be absolutely symmetri-
cal and therefore in natural scenes the quadrupole generally does not vanish completely.
However, in the scenes which are close to our assumptions (heavily overcast sky, uniform
ground close to Lambertian, open space up to horizon) the quadrupole should become
negligibly small in comparison with the light vector.

Figure 2.6(a) shows the model of the light field across a street scene. Again, the sky
is assumed to be uniformly bright, the ground and the walls are uniform and Lambertian
(the ground is brighter than the walls), interreflections were not taken into account. We
calculated the local light fields in five points across the scene. The light vector tends to
be oriented approximately in the direction of the middle of the sky opening (direction of
maximum energy transfer) and its orientation changes gradually from location to location;
q+ is oriented primarily vertically according to the ‘clamp’ composed of the brightest
areas in the scene - sky and ground; q− is oriented according to the darkest areas in the
scene (walls), which can be thought of as a negative clamp. Note that the orientation of
light field components changes smoothly as the geometrical layout changes.
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(a) (b) (c) (d)  

Figure 2.5: Geometrical layouts of the measured scenes (a) open field (b) wall (c) street
(d) forest.

Figure 2.6(b) depicts the wall scene, which is essentially the same as the street scene
but without one wall. Note that the strength of the quadrupole decreases as the distance
to the wall increases and the closer the situation gets to the open field scene.

In order to investigate a scene in which the geometry varies more stochastically than
in man-made scenes, we considered a forest scene. The illumination in a forest is due to
the light scattering through the foliage and the gaps in the foliage. The upper hemisphere
of the scene was modeled as a random distribution of 30◦ patches each of different bright-
ness. The lower hemisphere was modeled in the same way but the mean brightness value
was lowered. We calculated the local light fields at three points of this scene. The results
are shown in Figure 2.6(c); the orientation of the light vector is vertical and varies a little
from location to location, whereas the orientation of the quadrupole is random.

It was not our purpose to develop sophisticated detailed models of natural scenes; on
the contrary, we tried to simplify them as much as possible. However, as it will be shown
in the section on empirical studies, the light fields of corresponding real natural scenes
show similar patterns to those of our much oversimplified models.

2.4 Empirical studies

In the empirical study we considered three types of scenes, namely a city street, a forest
and a wall (see Figure 2.5). These scenes were chosen because they are common, simple
(also to model), and possess different properties: the street and wall scenes have very
distinct geometries; the geometry of the forest scene, on the other hand, is rather stochastic
and does not have a clear envelope. Each type of scene was measured under two types of
natural daylight illumination conditions: clear sky (close to collimated) and overcast sky
(rather diffuse).
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(a) 

(b) 

(c) 

 

Figure 2.6: The simplest models of light field in the following geometries a) street scene
(b) wall scene (c) forest scene.

2.4.1 Data acquisition

In order to estimate how the light field changes within each scene, we took three samples
per scene at different locations. The samples were taken along a straight line, approxi-
mately 10 meters apart and at a height of 1.5 meters. The orientation of the line, along
which the measurements were taken, was chosen in such a way that the geometrical layout
of a scene remained approximately the same as viewed from the measurement locations.
In the case of the city-street scene the measurements were taken along the street; for the
forest the direction of measurements was not important due to the isotropic character of
the geometry of that scene (though of course it was kept constant with relation to the
primary illumination). The ‘wall’ scene was measured in two directions: along the wall,
such that the geometry remained the same, and across the scene, orthogonally to the wall
such that the geometrical layout varied systematically with distance.

At every point the local light field was measured as an illumination map: a high
dynamic range panoramic image covering a whole sphere. To produce the panoramic
image we used an Olympus E-20 digital camera with a fish-eye lens, attached to a rotation
frame and mounted on a leveled tripod. We used a fish-eye lens with a 124◦ horizontal
field of view. Each panorama consisted of 14 images made in different directions (the
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pictures overlapped by 30% to achieve a better result). In order to increase the dynamic
range the pictures were taken with three different exposure values. The pixel-by-pixel
correspondence between the pictures of different exposures was achieved by using remote
control and by making the pictures in the automatic bracketing mode.

The whole procedure of taking the pictures for three panoramas (126 pictures) took
about 40 minutes. The time for making measurements was chosen around noon, so that
the sun did not move much during measurements and therefore illumination was relatively
constant.

2.4.2 Data processing

The images were corrected for radial brightness fall-off and stitched together in a rect-
angular panoramic image. For this purpose we used commercially available software
PTMac 3.00. The stitching procedure was applied separately for different exposures and
three resulting panoramas were combined together into one high dynamic range illumi-
nation map according to the radiance response curve of the camera. The response curve
was estimated using a technique described by Debevec and Malik [21]. The high dy-
namic range pictures were stored as arrays of floating-point values. The resolution was
downsampled to 250×500.

2.5 Results

The panoramic images of the scenes considered are shown in Figure 2.7 in a light probe
format [22] (angular map). For each image we calculated spherical harmonic coefficients
up to the 6th order. To the right of the panoramic images we depicted the cross-sections
through the SH6 approximations of the corresponding local light fields, the directions
of the cross-sections being indicated by black circles in the panoramic images. The
panoramic images show the actual scenes, whereas the cross-sections give an impres-
sion of how the 6th order approximation of light field varies within scenes. For instance,
in the panoramic images of the street scene under clear sky illumination condition (Fig-
ure 2.7(a)) there are two bright areas due to the sun (top right; note: the sun itself is not
present in either of the panoramas) and due to strong scattering from the building on the
left side of the street. These two brightest areas are distinguishable in the cross-sections
as modes in the corresponding directions. Note that the mode that corresponds to the
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

 

Figure 2.7: The light probes of (a) a street scene under a clear sky, (b) a street scene under
an overcast sky, (c) a forest under clear sky (d) a forest under an overcast sky (e) a ‘wall’
scene measured along the wall (f) a wall measured across. Tho the right of the panoramic
images the cross-sections through the SH6 approximations of the corresponding local light
fields are depicted; the directions of the cross-sections are indicated by black circles in
the panoramic images.
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bright sky area is stronger and the same in all three locations, whereas the second mode
is hardly distinguishable in the third location (this is because the cross-section line runs
through the relatively dark spot on the left building).

A similar situation exists in the ‘wall along’ scene (Figure 2.7(e)) in which one mode
is due to the large opening in the sky on the left side of panoramas, and the second one is
due to bright halo around the sun (the sun is hidden behind the trees). Note how similar the
profiles are for all three locations of this scene. In the ‘wall across’ scene the geometrical
layout of the scene varies from location to location and you can see (Figure 2.7(f)) how
the cross-sections of the light fields transform from one mode at the first location into two
modes at the third location.

In the forest scenes (Figures 2.7(c,d)) the primary sources of light are patches of open
sky from the gaps in the foliage which are distributed rather stochastically over the upper
hemisphere [23]. Therefore the radiance distribution function varies considerably. How-
ever, from the cross-sections we can see that for each location there is only one strong
mode which is oriented approximately vertically (light comes from above) but is slanted
slightly in the direction of the largest opening in the foliage.

Note that because the panoramic images were photographed in equal orientations at all
three measurement points of each scene, we can use the spherical harmonics coefficients
and the cross-section profiles (which are calculated from spherical harmonics coefficients)
to compare the local light fields straightaway without a having to calculate the rotationally
independent parameters.

Figure 2.8 shows the schematic representation of the second order approximation of
the samples. As was explained in section 3, this kind of representation gives the complete
description of the second order approximation of the local light fields. Comparing differ-
ent samples you can see how the light vector changes its orientation and magnitude, how
the quality and orientation of the quadrupole change from point to point. This kind of rep-
resentation enables us to judge qualitatively the behavior of the low order components of
the light fields. The spherical harmonic coefficients for each sample were normalized by
the zero order component in order to give equal footing comparisons (here we are mainly
interested in the structure of light fields, not in the absolute values).

In Figure 2.9 we depict the strengths of the different orders, i.e. coefficients dl up to
the 10th order. The parameter d0 is equal to 1 for all samples in all scenes, because the
spherical harmonics coefficients were normalized by the zero order component. Coeffi-
cients dl provide rotationally independent descriptors and physically represent the power
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(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

Figure 2.8: A schematic representation of the second order approximations of the local
light field measurements. The letters represent the same scenes as in Fgure 7.

of the corresponding angular mode l. Note that strengths of low orders are higher than
those of high orders. Starting from the 4th to 5th order the dl values fade away and
level off at a value which is significantly smaller (approximately 5 times smaller) than the
strengths of low orders.

2.6 Conclusion and discussion

From Figures 2.7 and 2.8 we can conclude that in the case of overcast diffuse illumination
the light field varies less than in the case of clear sky. That is easy to explain from
the properties of the scenes considered. As we can see from the panoramic images, in
the ‘street’ scenes the primary illuminations and geometrical layouts of the scenes are
reasonably constant in the locations where the samples were made. Light field variation
is mainly due to the secondary light sources, which vary within a scene due to the variation
of the reflectance properties of materials that make up the scene, from location to location
in that scene. The effect of these secondary light sources is much stronger in collimated
illumination (clear sky) than in diffuse lighting (overcast sky) due to the directedness
of the primary illumination. In the case of ‘forest’ scenes, the light field variation is
due to two factors - the geometrical layout of the scenes varies (the gaps in the foliage
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Figure 2.9: The strengths dl of the light field components up to 10th order. The letters
represent the same scenes as in Figure 7; the bars of different gray levels represent three
samples within scene.

are stochastic) and secondary light sources are more significant in the case of clear sky
illumination (note bright patches on the ground in the scene ‘c’).

From Figures 2.7 and 2.8 we can also say that the low order components of light
field are more constant within a scene than are the high orders. Note in Figure 2.8 that
as long as the geometry of a scene remains reasonably constant, the low orders are very
similar in different locations. However, if the position with regard to the geometry varies
systematically, the low order components vary systematically as well. The simple model
of the wall scene (Figure 2.6(b)) corresponds well to real measurements (Figure 2.8(f));
notice a similar tendency in component orientations and observe how the quadrupole
decreases as the distance to the wall increases.

Figure 2.9 shows that the low order components of the light fields within the scenes
considered are the strongest. Low order components define the main shape of the light
field, whereas the higher orders have a more stochastic nature. We believe this fact can be
used in modeling - the main properties of the light field (shape of the radiance distribution
function) can be defined by low orders (density of light, light vector, quadrupole), whereas
the high orders can be taken as stochastic values that do not change the main properties
of the light field, but add naturalness to it.
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Abstract

Light fields [1, 2] of natural scenes are highly complex and vary within a scene from
point to point. However, in many applications complex lighting can be successfully
replaced by its low order approximation [3, 4]. The purpose of this research is to
investigate the structure of light fields in natural scenes. We describe the structure of
light fields in terms of spherical harmonics and analyze their spatial variation and
qualitative properties over scenes.

We consider several types of natural scene geometries. Empirically and via modeling
we study the typical behavior of the first and second order approximation of the local
light field in those scenes. The first order term is generally known as the ‘light vector’
and has an immediate physical meaning. The quadrupole component which we named
‘squash tensor’ is a useful addition as we show in this paper. The measurements
were done with a custom-made device of novel design, called ‘Plenopter’, that was
constructed for measuring the light field in terms of spherical harmonics up to the
second order.

In different scenes of similar geometries we found structurally similar light fields,
which suggests that in some way the light field can be thought of as a property of the
geometry. Furthermore, the smooth variation of the light field’s low order components
suggests that instead of specifying the complete light field of the scene it is often
sufficient to measure the light field only in a few points and rely on interpolation to
recover the light field at arbitrary points of the scene.

Submitted to Applied Optics as: A.A. Mury, S.C. Pont, and J.J. Koenderink, ‘The
structure of light fields in natural scenes’.
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Chapter 3. The structure of light fields in natural scenes

3.1 Introduction

The quality of the light field, i.e. the directional properties of the illumination, strongly
affects the appearance of an object positioned at that point [5, 6, 7, 8, 9, 10]. For instance,
in fully diffuse illumination even a specular metallic object looks rather matte. Diffuse
illumination can very well have directional properties, for instance, the illumination from
an overcast sky is directed vertically downwards. However, the properties of diffuse and
highly directional (collimated) illumination are very different. In collimated illumination
the shading is dominated by the presence of body and cast shadows, whereas in diffuse
illumination shading gradients are much more gradual and much of the shading is actually
due to vignetting. The surface structure of rough surfaces gives rise to texture in the case
of collimated illumination, whereas it is hardly evident in the case of diffuse illumination.
The light fields of natural scenes are often highly complicated functions, in general the
angular variations can be almost arbitrary, ranging from smooth (such as under an overcast
sky) to very spiky (such as on a sunny day on the beach or the light patches in a forest)
[11, 12, 13, 14, 15].

Because surface elements of a convex object are illuminated from half spaces, the
surface irradiance is typically fairly smooth, even if the angular distribution of the radi-
ance is spiky [5, 6]. If the primary and secondary light sources are relatively distant from
the region of interest, the spatial variations of the angular distribution will be minor over
that region. Indeed, we have shown that although high order properties of the light field
vary rapidly over the scene (due to specularities, albedo variations and so on), the low
order properties of the light field (ambient light, degree of diffuseness, primary direction
of light, or what some artists call the ‘quality of light’) stay rather constant as long as the
geometry of the scene does not change much [4].

Gershun has introduced the very useful and intuitive notion of ‘light field’ [1]. The
light field is just the radiance as a function of location and direction. In computer graphics
it is known as the plenoptic function [16]. At any point in space the light field is a function
of direction (spherical function). The radiance can be an almost arbitrary function of
location and direction. Of course, it is non-negative throughout. Another constraint is
that in empty space the radiance in a certain direction does not change as one moves in
that direction. In this paper we are primarily interested in the illumination of diffusely
scattering surfaces. The implication is that only the low-pass structure of the radiance
is of importance[3]. This suggests that the Fourier description might be useful. For a
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spherical function such as the light field this comes down to spherical harmonics. A
simple demonstration shows that the low orders of light fields in natural scenes change
rather smoothly and systematically over the scene: if we take a matte convex object and
move it around the scene its appearance changes very slowly except for points which are
close to large objects (like a wall) or that occlude a large part of the primary illumination.
In this article we address the question of how the structure of the light field varies over
the scene and what is the relation between the scene geometry and the quality of light in
that scene.

We analyze the structure of light fields in terms of spherical harmonics and consider
the structural properties up to the second order. It has been shown that this allows suf-
ficiently accurate quantitative description of the shading of Lambertian surfaces[3]. For
heuristic purposes it is useful to consider the qualitative structure of the zeroth, first and
second order terms in the spherical harmonic development individually. The spherical
harmonic development is usually known as a multipole development in physical context.
The zeroth order is represented by the monopole (a scalar) and describes the ‘ambient
light’ of computer graphics. The first order is represented by the dipole contribution. The
dipole transforms as a vector, it is the light vector as defined by Gershun. The light vector
describes the transportation of radiant energy through surface elements. The second order
describes the quadrupole contribution. Gershun does not explicitly discuss this order of
approximation. The translators of Gershun’s classical paper, Moon and Timoshenko, al-
ready mentioned ‘The light field considered in this book is a classical three-dimensional
vector field. But the physically important quantity is actually the illumination, which is
a function of five independent variables, not three. Is it not possible that a more satis-
factory theory of the light field could be evolved by use of modern tensor methods in a
five-dimensional manifold? We must look to the mathematician for any such develop-
ment’. In this paper we develop an intuitive notion of the quadrupole field as the ‘squash
tensor’.

The monopole contribution describes a constant illumination from all directions. This
is usually known as ambient illumination in computer graphics [17], or Ganzfeld illumi-
nation in psychology [18]. Formally, the monopole contribution at a given point is simply
the average radiance over all directions. From a physical perspective, it describes the local
volume density of radiation, measured in terms of photon density or total ray length per
unit volume. An operational definition simply uses a spherical photocell or a translucent
spherical shell with a photosensor in its interior [1]. Light fields in which the monopole
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contribution dominates are rare in nature. An example is an overcast sky over a snow
cover, giving rise to ‘polar white-out’.

The dipole contribution describes a unidirectional light field. Because the radiance is
non-negative, pure dipole fields cannot be implemented. The combination of a monopole
and a dipole term yields what is known as the ‘point source at infinity with ambient term’
of computer graphics [17]. Formally, the light vector describes the net transport of radiant
power [1]. Thus, the transport of radiant power can be visualized by way of the field lines
of the ‘light vector’. These field lines do not coincide with the light rays, for instance, they
can be curved and even closed. In empty space, the light field has zero divergence. The
light vector can be measured by way of a back-to-back sandwich of two planar photocells.
Their difference signal yields the component of the light vector in the direction of the
surface normal. A natural light field that approximates a dipole dominated light field is
the overcast sky. A simple approximation that is often useful is the hemispherical diffuse
source.

The quadrupole contribution transforms as a symmetric traceless tensor. An opera-
tional definition similar to the photocell sandwich suggested by Gershun for the dipole
component can be based on a cube with flat photocells as faces. In order to measure the
quadrupole one has to search for the canonical orientation (see below). A simpler way
to measure the quadrupole tensor involves radiance measurements for a larger number of
directions. In that case the instrument can be used in any orientation. We describe such
a instrument in this paper. Quadrupole dominated light fields occur in the case of ring
sources or two point sources at opposite sides of the region of interest [19, 20]. We refer
to the quadrupole field as the squash tensor [4], which describes the geometry of these
configurations.

The light field at a certain location in a scene depends both on the location, magnitude
and directional properties of the primary light sources and on the geometry and scattering
properties of the environment (for examples see Figure 3.1). The influence of the geom-
etry is two-fold. One important effect is the obstruction of the primary illumination. In
highly directional light fields one speaks of body and cast shadows, in more general cases,
in which sources can be partially occluded, the effect is known as vignetting. The other
effect is due to multiple scattering between different, even remote, parts of the scene.
This effect is sometimes known as ‘interreflection’ or ‘reflexes’. Both vignetting and in-
terreflections depend strongly on the geometry of the scene. Since the radiation balance
is described by a linear integral equation of the Fredholm type [21] the variance effects
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Figure 3.1: From left to right a matte convex object under a collimated source from above
on a black, absorbing ground (vertically oriented dipole) and on a white ground causing a
secundary source from below (combination of vertically oriented dipole and quadrupole).
Next the object was illuminated by collimated sunlight from the left plus ambient light
(monopole plus almost horizontally oriented dipole) and with a white screen at the right
causing a secundary source from the right (dipole plus almost horizontall oriented dipole
and quadrupole).

can be decoupled. The so-called pseudo-facets depend only on the scene, not on the pri-
mary sources. In some cases the resulting light field is almost purely due to the geometry.
An example of a geometry-dominated effect due to vignetting is the general low irradi-
ance of surfaces inside concavities, for instance the eye sockets in a face illuminated by
an overcast sky are usually dark. An example of a geometry-dominated effect due to
interreflection is the integrating sphere. The light field in the interior will be monopole-
dominated irrespective of the primary sources. The contribution of the reflected light to
the global light field is usually less significant than the primary illumination (due to the
fact that albedo in natural scenes is rather low, and besides, the materials in natural scenes
are mostly matte, therefore the reflected light is rather diffuse), but still yield a noticeable
effect.

The global layouts of the scenes can vary a lot depending on the environment. A
generic example is an open landscape, which is also the simplest one - the light field
consists of the primary illumination which is coming from the upper hemisphere and
constant everywhere over the scene (due to the absence of objects that may occlude the
primary light) and a diffuse reflected beam from the ground which can vary over the scene
due to albedo variation. The light field in such a scene is almost constant everywhere. A
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more complex type is the forest scene - here the primary illumination is due to the light
that comes through openings in the foliage and therefore the local light fields are very
‘spiky’. The high orders vary a lot over such a scene, however the low order properties
are rather stable (these properties of course depend on the weather condition and the
density of the foliage) - the dominant illumination direction is primarily from above, and
the ambient component does not change much either. Urban scenes in general are more
structured. However one can distinguish certain patterns of geometrical layouts which
are very typical, for instance a ‘wall’, ‘street’ and, for indoor scenes, ‘room’ profiles. In
these cases the primary illumination is due to the visible part of sky, which varies very
systematically with the location in the scene. The regularity in geometry suggests that the
low order components of the light field would vary in a systematic manner as well. The
reflective properties of materials present in the scene define scattering and interreflections.
The exact angular distributions of the material reflectances are less important (though the
albedos are). Taking into account the major role of scene geometry and smooth variation
of the low orders we expect that in scenes of similar geometrical layouts one should
expect to find qualitatively similar low order light fields. In that sense the light field can
be thought of as a property of the geometry.

In order to test our hypothesis we measured low order components (light density, light
vector and the squash tensor) of light fields in natural scenes. We considered simple and
frequently found in nature ‘street’, ‘wall’ and ‘room’ geometries in different illumina-
tion conditions. We also developed simple models of these scenes and found a strong
correspondence between real measurements and our simplified models.

For measurements we used a custom made device which we named ‘Plenopter’ which
is designed to measure light fields up to the second order in terms of spherical harmonics.
Up to our knowledge the light measuring devices currently available on the market are
capable of measuring the structure of local light fields only up to the first order. Measuring
light fields up to the second order is a useful addition in the analysis of the structure of
light fields, because the squash tensor is a significant characteristic of natural light fields.
Therefore we believe that our measurement device forms a major innovation in this field.
Additional to the main goal of this investigation we summarize the technical details of the
design of our measurement system.
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3.2 Theory

The concept of ‘the light field’ was introduced by Gershun in the nineteenthirtees. Ger-
shun considers the scalar field of radiation volume density and the vector field of net
flux propagation. Gershun’s ‘light vector’ D is defined such that for any oriented surface
element dA the net flux dΦ = D ·dA where the sign indicates the direction of net flux prop-
agation. The formal properties of Gershun’s light field were further developed by Moon
and Spencer. In this paper we extend the formalism to include second order properties of
the light field.

The light field is defined by Gershun as essentially a low order approximation to the
radiance. The radiance is a function of position and direction that completely describes
the luminous environment. Gershun’s scalar field is the zeroth order and Gershun’s vector
field the first order approximation to the radiance. This is essentially the initial part of a
development of the radiance in terms of spherical harmonics.

3.2.1 Second order properties of the light field

The local light field at a fixed point in space is a spherical function (radiance as a function
of direction) f (ϑ ,ϕ) and can be represented as the sum of its harmonics:

f (ϑ ,ϕ) =
∞

∑
l=0

l

∑
m=−l

flmYlm(ϑ ,ϕ), (3.1)

the real valued basis functions are defined as

Ylm(ϑ ,ϕ) =






√
2Klm cos(mϕ)Plm(cosϑ), m > 0,√
2Kl−m sin(−mϕ)Pl−m(cosϑ), m < 0,

Kl0Pl0(cosϑ), m = 0.

(3.2)

where the Plm are the associated Legendre polynomials and Klm are normalization
factors

Spherical harmonics form an orthonormal basis on the unit sphere. Coefficients flm

can be calculated as

flm =
∫ 2π

ϕ=0

∫ π

ϑ=0
f (ϑ ,ϕ)Ylm(ϑ ,ϕ)sin(ϑ)dϑdϕ, (3.3)

One has l ≥ 0 and −l ≤ m ≤ l. Thus, order l consists of 2l + 1 basis functions. In the
rotations of the coordinate system the coefficients transform for each order individually,
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that is to say, the orders don’t ‘mix’. Therefore the radiance can be represented as a
sum of its components of different orders. The zeroth order represents Gershun’s scalar
field and the first order Gershun’s vector field. Any order l can be represented as a list
of corresponding coefficients SHl( f ) = { fl−l , fl−l+1, ..., fll} and the representation of the
entire function is a combination of the orders, i.e. SH( f ) = {SH0( f ),SH1( f ),SH2( f ), ...}.

The monopole component, that is the zeroth order term M = {2
√

π f0}, corresponds to
Gershun’s ‘density of light’ or ‘space illumination’. It is essentially the average radiance.
The monopole term is a fundamental property of the light field that describes the overall
illumination at a point, i.e. how much radiance arrives at a point from all directions. From
a computer graphics point of view the zero order term can be thought of as an ‘ambient
component’.

The dipole component, that is the first order term D = { f1−1, f10, f11} transforms as
a vector. This vector corresponds to Gershun’s ‘light vector’ - the direction of maximum
energy transfer at the point under consideration. The projection of the light vector on
any direction results in flux density in that direction. Rotating the dipole in such a way
that it is aligned with the z-axis it can be represented as Drotd = {0,0,v}, where v =
2
√

π
3

√
f 2
1−1 + f 2

10 + f 2
11 is the magnitude of the light vector. From a computer graphics

point of view the first order term can be thought of as a diffuse directional beam.
The quadrupole component, that is the second order term Q = { f2−2, f2−1, f20, f21, f22}

consists of five basis functions. Under rotations these components transform as a sym-
metric tensor of trace zero. We refer to it as the ‘squash tensor’. By a suitable rotation any
quadrupole can be represented as Qrotq = {0,0,q+,0,q−}. The two coefficients q+ and
q− represent basis functions f20 and f22 and completely describe the structure (quality)
of the squash tensor.

By a suitable rotation of the axis, the spherical harmonic development can be reduced
to a convenient canonical form. We consider two possibilities. In case the dipole domi-
nates the squash tensor (the generic case) a convenient canonical form is

SHrotd
2 (LF) = {Md ,Dd ,Qd} = {{d0},{0,0,v},{ f d

2−2, f d
2−1, f d

20, f d
21, f d

22}}. (3.4)

In this case we require 7 coefficients. The remaining two degrees of freedom are absorbed
by the rotation of the axes. In case the squash tensor dominates the dipole (at singular
points of the vector field) it is more convenient to use the canonical representation

SHrotq
2 (LF) = {Mq,Dq,Qq} = {{d0},{ f q

1−1, f q
10, f q

11},{0,0,q+,0,q−}}. (3.5)
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Figure 3.2: Schematic graphical representation of the second order light field. The SH
coefficients are presented on the left side. The mutual orientation of the components D,
q+ and q− is shown on the right side. The length of the light gray arrow corresponds to
the value d1 (strength of the light vector), the lengths of the dark gray and black arrows
correspond to values q+ and q−.

In this case we need only 6 coefficients, the remaining three degrees of freedom being
absorbed by the rotation of the axes. Of these 6 coefficients only the 3 that define the
monopole and squash tensor will be significant and f q

1−1, f q
10, and f q

11 will be close to
zero. The structure can be represented graphically as shown in Figure 3.2.

3.2.2 Physical interpretation of the squash tensor

The monopole component d0, the dipole component v = { f q
1−1, f q

10, f q
11}, and the squash

tensor component specified by q+ and q− are rotationally invariant descriptors of the
structure of the light field. The physical meaning of the squash tensor component is most
easily grasped in the case that the light vector vanishes. Because the radiance is a non-
negative function of direction the monopole component is always necessary. There are
two qualitatively different configurations for such a pure quadrupole field. One is the
‘light clamp’ (therefore ‘squash tensor’), which corresponds to the light field between
two identical light sources opposite to each other. The other configuration is that of a
‘light ring’ (Figure 3.3).
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(a) (b)

Figure 3.3: Special cases of light fields due to the squash tensor: (a) a light clamp, (b) a
light ring. The light vector is assumed to be zero.

3.3 The Plenopter

We have constructed a device that makes it possible to measure the light field up to (and
including) the second order as a single observation. The device is roughly spherical with
a diameter of 20 centimeters. It can easily be taken outdoors to do measurements in a
natural environment. Instead of using cameras with fish-eye lenses we used a number of
photo-diodes. This greatly expands the dynamic range at the cost of spatial resolution. We
took our inspiration from number of devices proposed by Gershun. Gershun’s device for
the observation of the light vector consists of a sandwich of photocells in a back-to-back
configuration. This device is very similar to ours except for the fact that Gershun divides
the sphere into two, we in twelve congruent apertures.

3.3.1 Short description

The second order development in spherical harmonics contains nine free parameters. The
simplest regular polyhedron with nine or more faces is the dodecahedron, which has
twelve faces. The sphere of directions was divided into twelve mutually congruent pen-
tagonal solid angles. The photocells collect radiation from these apertures, which have
a diameter of 2× 74.75◦. Diaphragms and a diffuser were placed so as to uniformly
integrate over the aperture. The photocells were Siemens BPW21 silicon photodiodes
(sensitive from 350 nm to 820 nm) connected to logarithmic amplifiers followed by an
AD converter. We obtain a dynamic range of about seven decades. A single observa-
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Figure 3.4: Our custom made light measuring device which we named ‘Plenopter’.

tion thus yields twelve radiance samples. From this overdetermined sample we find the
coefficients of the spherical harmonic development by means of a least squares method.
Currently the remaining 3 degrees of freedom are discarded.

3.3.2 The basic data conversion

A single plenopter measurement yields 12 values corresponding to the 12 photocells. The
photocells have a certain angular sensitivity profile S j(θ ,φ) as a function of the direction
of the incident light LFj(θ ,φ).

Thus,

Pj =
∫

S j(θ ,φ) ·LF(θ ,φ)dΩ, j = 1, ...,12, (3.6)

where Pj is the output value corresponding to cell j.
The photocells’ angular sensitivity profile was measured and decomposed to spherical

harmonics, so it can be represented as

S j(θ ,φ) = ∑
lm

s j
lmϒlm(θ ,φ)+ ε j (3.7)

The shape of the sensitivity profile is the same for all photocells (but may differ by a
scaling factor), so once the profile for one of the cells has been measured, all the others
can be achieved by rotation and scaling. Furthermore, we can describe the radiance in
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terms of spherical harmonics as:

LF(θ ,φ) = ∑
lm

clmϒlm(θ ,φ)+ ε (3.8)

In the sequel we neglect the errors ε . Then, altogether, this results in

Pj =
∫

[∑
lm

s j
lmϒlm(θ ,φ)][∑

l′m′
cl′m′ϒl′m′(θ ,φ)]dΩ = ∑

ll′mm′
s j

lmcl′m′

∫
ϒlm(θ ,φ)ϒl′m′(θ ,φ)dΩ

(3.9)
and due to orthonormality of spherical harmonics basis functions

∫
ϒlm(θ ,φ)ϒl′m′(θ ,φ) = δll′δmm′ (3.10)

we finally end up with
Pj = ∑

lm
s j

lmvlm = (!s j,!c). (3.11)

If we renumber the coefficients and limit the spherical harmonics approximations to
the second order (i.e. l = 0, ..,2,m =−l, ..l altogether 9 coefficients), we get a system of
12 equations with 9 unknowns ck:

Pj =
9

∑
k=1

s j
kck. (3.12)

The system is overdetermined, and an approximate solution can be found by means
of a least squares technique [22]. The plenopter is 120◦ rotation symmetric, therefore
we can get more data for that system rotating the plenopter around its vertical axis. The
angular sensitivity profiles for the cells in their new orientations can be achieved rotating
the spherical harmonics description S j(θ ,φ). Each rotation adds 12 more equations to the
system providing more data.

3.3.3 Calibration and tolerances

The basic photo-electric calibration was done in a calibrated solar simulator using a set of
calibrated neutral density filters.

There are many processes that lead to systematic and random errors. We investigated
the following:

— thermal properties, drift, offset, etcetera of the twelve photo-electric subsystems
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— deviations from a curved logarithmic response for the individual subsystems

— the spectral sensitivities of the subsystems

— the precise geometry of the apertures of the subsystems

— possible issues of optical and electrical cross-talk

We used standard methods to investigate these possible issues. We find a mixture of
minor systematic and random errors. In the final analysis the instrument can be said to
yield correct results within about 5 percents if no special corrections are applied. This
was judged to be sufficient for the current application.

The sample frequency is at least 100 Hz. The experiments reported here were essen-
tially static though.

3.4 Empirical light field studies

In the general introduction we hypothesized that the light field can be thought of as a
property of the scene geometry. In the present section we describe empirical studies in
which we tested this hypothesis by modeling and measuring light fields of a few canoni-
cal scene geometries. For negative edge (a long street) and step (a long wall adjacent to a
large square) geometries we compared measurements at several points along and accross
the streets and walls. We did measurements in three typical narrow streets and one square
in the old part of Utrecht. The streets were about 10 meters wide and the buildings along-
side the street and square were about 10 meters high. Measurements were taken with a
step size of approximately 1m at a height of 1.5m. We tested under clear sky and under
overcast sky conditions, so the primary light sources were the sun (if not occluded) and
the visible part of sky (which forms a stripe). If our hypothesis is right, the measurements
along the streets and walls should be constant up to minor non-systematical differences,
while those accross the streets and walls should change systematically and smoothly. Sec-
ondly, we modeled these qualitative aspects of the second order approximations.

In order to demonstrate the influence of albedo we also compared measurements and
models for an indoor scene with a black and with a white wall. For this purpose we used a
laboratory room 6×5 meters with a window on the wide side and matte black side walls
and ceiling, facing North. So, here the primary light source was only the part of the sky
that was visible through the window. We considered two situations: the wall opposite the
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window was covered by white or black paper. Measurements were taken over an array
of 9 points at a height of 1.5m, 1.5m apart in one direction and 1.25m apart in the other
direction.

A complete set of measurements took about 15 minutes per scene. The coefficients of
the second order spherical harmonic approximations (SH2) were estimated by the over-
determined system described in the Plenopter section, via least squares optimization.

3.4.1 Models

For the street and wall scenes we made schematic representations, see Figure 3.5. The
width of the street and the height of the walls were measured in the real scenes where the
measurements were taken. The walls were assumed to be uniform and infinitely long. The
position of the sun and the orientation of the street with respect to the sun were looked up
on the basis of the geographical coordinates and measurements times and dates.

The primary illumination in our scenes was due to the sun and sky. For the description
of the radiance distribution from the sky and sun we used CIE standard models [23], in the
case of a clear sky we used the ‘CIE standard clear sky, low illuminance turbidity’, and in
the case of an overcast sky model the ‘overcast, moderately graded and slight brightening
towards the sun’ model.

Taking into account the low spatial resolution of the second order light field [4] we
assume that their properties can be sufficiently captured by very simple models. A second
order approximation can be thought of as a low frequency filter which filters out high
frequencies introduced by specularities and small albedo variations. Therefore the ma-
terial properties do not have to be specified in detail. For simplicity we assume them to
be Lambertian and uniform with albedo 0.1, which is an average albedo for urban scenes
[24].

The models were implemented in Mathematica 5.2. We took into account up to two
interreflections.

3.4.2 Results

The second order light fields for the street geometries are shown in Figure 3.6. On the left
side we show the predictions from the models, on the right side the actual measurements.
The spherical harmonics coefficients for each point were normalized (scaled) by the DC
component at that point to allow comparisons between points and between models and
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(a) (b) (c)

window

black/wite wall

Figure 3.5: Schematic descriptions of the scenes: a) wall, b) street, c) room.

measurements. The results for the three streets a, b and c in clear sky (1) and overcast sky
(2) conditions are depicted in different rows. In Figure 3.6(b,1) the sun was directly visible
from points 6-9, in all other cases the sun was occluded either by clouds or by buildings.
In Figure 3.6 we clearly see that, firstly, the measurements change very smoothly and
systematically as a function of position in the scene; secondly, the global structures of the
light fields are very similar for the measurements and simple models; thirdly, the global
structures of the light fields are very similar for the different streets.

Figure 3.7 shows the measurements for the wall geometry. The top row shows results
for a clear sky, the bottom row for an overcast sky. The sun was not directly visible
in neither cases. Here we also see very smooth and systematical behavior of the light
field. In Figures 3.6 and 7 we can see a clear difference between overcast and clear sky
conditions. Under a clear sky the light vector is stronger and aligned with the positive
component of the quadruple, whereas the negative component of the squash tensor is
quite small. However in the case of an overcast sky the negative component of the squash
tensor becomes larger (the light field is more diffuse).

Figure 3.8 shows the measurements for the room scene of which the wall opposite to
the window was matte white (a-b), or matte black (c-d). In the left half we depicted views
from above (a and c), and in the right half side views (b and d) of individual measurements.
The window was located near points 1-3. The results for the white and black walls look
very similar, however the magnitudes of the light vectors and the squash tensors show
clear and systematic differences, especially at the points which are closer to the back
wall, see Figure 3.9: the absorbtion of the black wall results in a relatively stronger dipole
component.
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Figure 3.6: Comparison between models (left) and measurements (right) for ‘street
scene’ configurations. The vectors represent the light field up to the second order (see
Figure 3.2). We considered from 7 to 9 points per scene (depending on the scene dimen-
sions).

3.5 Discussion

The measurements clearly indicate that in scenes of similar geometry the light fields
demonstrate characteristic variations of the light vector and the squash tensor over the
scene. This happened despite the fact that the streets possessed different reflective prop-
erties and even were differently oriented with regard to the primary light sources (the
sun). So these results are in line with our hypothesis that in scenes of similar geometrical
layouts one should expect to find qualitatively similar low order light fields and in that
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(a)

(b)

Figure 3.7: Measurements of second order light fields for the ‘wall’ scene (a) in the case
of a clear sky, and (b) in the case of an overcast sky. The sun was not visible in neither
cases.

sense the light field can be thought of as a property of the geometry.

Although there are some deviations between our simple model predictions and the
actual measurements, the correspondence between them is evident. The main difference
concerns the negative components of the –approximately horizontally oriented– quadru-
ples which tend to be larger in the theoretical predictions than in the measurements for
the wall and street scenes. This may be due to the fact that in the models we assumed the
materials to be Lambertian and uniform, while real materials may scatter light in differ-
ent ways. For example, backscattering of rough surfaces [25] or (off-)specular scattering
tend to result in angular distributions of the scattered radiance which are centered around
the illumination direction and specular direction, respectively. In combination with a pri-
mary light source from above, this may result in a relatively smaller contribution from
reflections of the walls and therefore smaller quadruples.

The measurements in the room scene (Figure 3.8) confirm that the secondary light
sources are much less significant than the primary illumination and geometry. The main
differences between the white and black wall conditions concern the points which are just
next to the wall. Note that in real scenes albedo variations usually are much less extreme.
Thus, the smooth and systematic behavior of the low orders over the scene suggests that
similar patterns may be found in any other scene with a similar geometry (assuming the
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Figure 3.8: Measurements for the ‘room’ scene. (a)-(b) white wall, (c)-(d) black wall, (a)
and (c) view from above, (b) and (d) view from a side.

light comes only from the window).
In this paper we presented a new technique to capture the global structure of the

light field in terms of spherical harmonical functions. Existing techniques to capture
the light field, the photic field, the plenoptic function, or the Lumigraph [26] result in
representations with a much higher angular resolution. These techniques are very useful
for high quality renderings of scenes which include small and glossy objects. However,
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Figure 3.9: Room scene. At the left we show the vector representations for the points
near the wall for the white and the black cases. At the right we show the ratios of the
magnitudes of the mono-, di- and quadruples with the monopole.

our technique is sufficient for scenes with large matte objects and provides a potentially
very high spatial resolution (the number of points at which plenopter measurements are
taken may be very high - individual measurements including placement of the apparatus
just take a minute) in combination with an extreme high dynamic range up to 7 decades
(note that simple photographic techniques can never cover this dynamic range). Moreover,
our technique provides insight into the global structure of light fields. This may help to
understand what, for instance, a ‘natural complex light field’ [11, 12, 13, 14] actually
means and check whether the hypotheses about it ([27, 28, 29, 30]) are true. These insights
into the global structure of natural light fields are important for fields which involve the
perceptual qualities of the illuminance environment, such as architecture, interior design
and illumination engineering.
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Abstract

We present a method for measurement and reconstruction of light fields in finite
spaces. Using a custom made device called Plenopter we can measure spatially and
directionally varying radiance distribution functions from a real-world scene up to
their second order spherical harmonics approximations. Interpolating between mea-
surement points we can recover this function for arbitrary points of a scene. We visu-
alized the global structure of the light field using light tubes which gives an intuitive
description of the flux propagation throughout 3D scenes and provides information
about the quality of light in the scenes. Our second order reconstructions are suffi-
cient to render convex matte objects and therefore have a direct interest for computer
graphics applications.

Submitted to Applied Optics as: A.A. Mury, S.C. Pont, and J.J. Koenderink, ”Repre-
senting the Light Field in Finite 3D Spaces from Sparse Discrete Samples”
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4.1 Introduction

The radiance distribution throughout the empty space of a 3D scene is a complicated func-
tion and therefore rarely mapped out empirically. However, knowing the light field [1],
[2] of a real scene (or at least some of its qualitative properties) is important for many
applications: an interior designer can predict the appearance of an object placed at some
arbitrary point in that scene, an architect can make a decision whether the building satis-
fies the standards. In computer graphics the light field is important for rendering purposes
- imagine an object moving through a scene, its appearance changes due to illumination
variations along its trajectory. The complexity of the light field makes it difficult to mea-
sure and analyze it even at a point. Recovering this function for every point of a finite
3D space is a challenging and tedious (but not impossible!) task. However, the complete
description is overkill for most applications. Instead, we limit the description of the struc-
ture of the light field to components which are the most qualitatively important for object
appearance and which suffice to represent the flux distribution throughout the scene. This
simplification allows us to develop a description which gives a clear understanding of the
structure of the light fields in 3D scenes.

Quantitative assessment of the visual quality of the luminous environment is typically
concerned with measuring illumination incident on surfaces [3], [4]. The radiance distri-
bution in the empty space of a scene is rarely taken into account. The empirical analysis
of the structure of light fields in empty space is usually limited to measuring the space il-
lumination of radiation and the light vector at a point [3], [4], [5], [7]. In general, radiant
flux propagates from light sources to light absorbing surfaces (however in some special
cases, which rarely occur in real scenes, flux lines can be closed). Although it does not
produce any visual effect in empty space, the distribution of radiance explains the “spa-
tial and form-giving character” of light. Knowing the radiance distribution one could
predict the appearance of a hypothetical object placed somewhere in space and calculate
irradiance patterns over its surface.

In this paper we present a new way of measuring and analyzing the structure of light
fields in finite 3D spaces. Our custom made device called the Plenopter is capable of
measuring local light fields up to the second order in terms of spherical harmonics. This
extends the conventional description by a new parameter - the squash tensor (the second
order harmonic, [8]). Taking into account that the low order components of light fields
in natural scenes typically vary slowly and rather systematically with location [8], the
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second order approximation of the radiance distribution function can be estimated rea-
sonably well for all points of the scene using interpolation between a limited number of
observations. In order to describe the global structure of the light field of a scene we uti-
lize the concept of light tubes, which provides an easy and intuitive understanding of the
propagation of radiant flux throughout the scene. Although this concept is not new [1], it
has never been used for applications before.

We applied this method to several simple and complicated light fields. We rendered
objects in those scenes in order to make a connection between our formal description and
object appearance.

4.2 Previous works

The first theory about the light field was developed by Gershun[1]. In this classical work
on photometry he considered the light field in empty space. The complete description of
the local light field at a certain point in space is given by the radiance distribution R(ϑ ,ϕ)
(brightness-distribution solid, according to Gershun) which is a spherical function repre-
senting the radiance arriving at the point from all directions. Gershun considered the light
field as a vector field in 3D space. The most basic property of the local light field is a
scalar parameter, namely the space illumination d =

∫
4π R(ϑ ,ϕ)dω . The vector charac-

teristic of the light field is called the light vector and is given by v =
∫

4π R(ϑ ,ϕ)dω . The
direction of the light vector coincides with the direction of maximum flux transfer and the
magnitude is the flux density in that direction (i.e. the difference in irradiance of the two
sides of a hypothetical infinitesimal diaphragm). Knowing the light vector at any point
in space one can describe the structure of flux transfer throughout space by constructing
flux lines which are tangential to the light vector. Flux lines are curved lines in 3D, they
typically originate on light sources and end on light absorbing surfaces. Figure 4.1 shows
the flux lines calculated for an artificial street scene with buildings on both sides, under
uniform overcast illumination; the walls were assumed to be Lambertian with constant
albedo, the flux lines in the areas which are not exposed to the primary light source are
due to inter-reflections. Such a diagram gives an immediate impression of the flux distri-
bution throughout the scene and also provides indirect information about the illumination
on surfaces - the denser the flux lines the stronger the illumination. Gershun [1] consid-
ered several cases of light fields theoretically and using calculus he derived light fields for
generic light sources like an infinite luminous stripe and a wall. But he never applied the
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Figure 4.1: An example of flux lines - the distribution of the flux lines inside two three-
story buildings opposite to each other (shown as cross-sections) under an overcast sky.
The flux lines start at the overcast sky and enter the buildings through the windows. The
inter-reflections are taken into account.

concepts of light vector and flux lines to describe lighting conditions in real scenes - at
his time such empirical analysis was difficult to realize practically.

In computer science the light field is known as the Plenoptic function [9] which is a
function L(x,y,z,ϑ ,ϕ,λ , t) of 7 parameters which are position, direction, frequency and
time. A recently developed technique [10] allows to photographically capture a simplified
5D plenoptic function L(x,y,z,ϑ ,ϕ) over a certain region of space by recording intensities
of all rays passing through the scene. The resulting light field is used in computer graph-
ics for rendering applications [11]. This method exploits the idea that the radiance of a
ray is constant along its direction. The disadvantage of this so-called Lumigraph method
is that the measurement procedure is rather complicated and that the post-processing in-
volves analysis of huge amounts of data. However, up to now this is the only method of
measuring global light fields within finite spaces of real 3D scenes.

A local light field at a point in empty space can also be acquired by means of high
dynamic range panoramic imaging [12], [13]. Unger et. al.[14] suggested to use an array
of mirror balls in order to capture spatially and directionally varying incident light fields
over 2D areas and then extrapolate these data to a volume above the area. These methods
are used for modeling light fields for image based rendering applications in computer
graphics.

Practically, detailed descriptions of light fields are needed only for rendering highly
reflective mirror-like materials. However for most materials high frequency lighting is
not necessary because it will be blurred by diffuse scattering of the illuminated object
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Figure 4.2: The first 9 spherical harmonics basis functions.

(a smooth BRDF works as a low pass filter). This effect has been shown empirically
[15],[16] and has been derived theoretically - the second order spherical harmonics ap-
proximation of local light fields suffices to render convex Lambertian objects [17],[18].
Moreover, such low order approximations allow to derive the most salient qualitative fea-
tures of the light field, such as the overall levels and directions of the illumination. The 0th

and 1st order components have direct physical meanings, namely the space illumination
and the light vector. The 2nd order contribution is more complicated and can correspond
to different shapes of brightness distribution solids from a ‘light clamp’ to a ‘light ring’.
It is referred to as a ‘squash tensor’ [8]. In natural scenes the low order contributions to
light fields show very systematic and smooth behavior varying very slowly from one point
of the scene to another [8],[19].

The field of knowledge that deals with the formal quantifiable assessment of the vi-
sual quality of the environment is lighting engineering. A large number of measurable
parameters are being used to judge the suitability of the illumination for visual tasks the
observer may encounter, e.g. illuminance values, cylindrical illuminance, daylight factor
etc [4], [3]. However, lighting engineers are mostly concerned with the illumination inci-
dent on surfaces and rarely interested in the radiance distribution in empty space, which is
an important factor in the visual assessment of the environment [6]. Up to our knowledge
there is only one commercially available device which can be used for measurements of
the light vector and space illumination [7].

Light fields in empty space are also important in architecture and interior design. In
this field a more artistic approach is used to estimate “spatial and form giving effects” of
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lighting. Sample objects are frequently used and the quality of light is judged from the
effects that light field cast upon those objects. Cuttle [4] suggested to use three kinds of
sample objects - a matte sphere, a black shiny sphere and a disk with a peg in order to
reveal shading, highlights and shadow patterns.

Another way of analyzing illumination is via computer modeling. Physically based
rendering systems [20] provide tools to calculate and analyze any parameter of the light
field. For instance one can calculate the light vectors at points of a regular grid. Visualiza-
tion of those vectors provides a quantitative description of the flux transfer throughout the
scene [21], however this method has certain drawbacks. Light vectors at discrete points
do not reveal a global description of the flux transport. Besides, an image consisting of
projections of 3D vectors on a 2D image plain is visually ambiguous and therefore it is
difficult to grasp correct orientations and magnitudes of the light vectors from such a rep-
resentation unless all the vectors are coplanar and lay in the image plane. We suggest
another method of depicting flux through a 3D scene by visualization of light tubes. This
not only gives continuous (along a flux line) information about the light vector, but also
makes it easier to see variation of its orientation and strength in 3D.

The irradiance volume [22] is a method of recovering the irradiance distribution solid
for any point within a virtual scene by means of interpolation. It exploits the idea that
the irradiance distribution function (a spherical function representing the irradiance on a
hypothetical plane for all possible orientations of that plane) is smooth and therefore easy
to interpolate. We use a similar approach and apply interpolation to recover second order
approximations of the radiance distribution functions at all points within a certain volume.

4.3 Empirical studies

The goal of our empirical studies is to reconstruct the light field up to the second order
approximation at any point inside a 3D space of a scene and to provide insight into the
global structure of the light field. We considered several light fields and provide a detailed
description of the second order approximations of those light fields. We use a custom
made device called Plenopter (Figure 4.3). The plenopter contains 12 high dynamic range
sensors in a regular dodecahedron configuration. Each sensor has a large field of view of
74◦ such that altogether they cover the entire sphere, capturing light which is coming
to its center point from all directions. Each sensor provides one value representing an
average intensity over the field of view. The sensors are radiometrically calibrated. The
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Figure 4.3: The Plenopter, a light measuring device capable of capturing local light fields
up to the second order. 12 photocells with wide apertures of 74◦ cover the entire sphere
capturing light from all directions.

Plenopter is capable of measuring the structure of the local light field up to the second
order in terms of spherical harmonics. From a single plenopter sample (12 values) we
can calculate 9 spherical harmonic coefficients representing the zeroth, the first and the
second order contributions at the measurement point.

The empirical studies were conveyed in the Light Lab (Philips Research) which is a
typical empty office room 4 by 6 by 3 meters, equipped with a large number of different
kinds of light sources that could be controlled remotely. The equipment of the Light Lab
allowed to generate 24 qualitatively different light fields. We applied our analyses to all
of them but here show only four which represent the most extreme cases. Schematic
outlines of the scenes and photographs of a mirror ball taken in the middle of the room
are shown in Figure 4.4. The light sources of the first scene (a) were three square area
light sources on the ceiling close to the left wall (Figure 4.4(a)). In scene (b) there was
one large diffuse circular light source in the middle of the ceiling (Figure 4.4(b)). The
illumination of scene (c) consisted of four spot light sources positioned at the corners of
the room and directed downwards (Figure 4.4(c), notice large bright areas on the walls
and floor which are directly illuminated). In scene (d) we used three area light sources of
the same kind as in the first scene, but in a triangular instead of a linear configuration (see
Figure 4.4(d)).

The measurement procedure was as following. We took 45 plenopter measurements
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Figure 4.4: Schematic description of the light sources (view from above) and panoramic
photographs of the Light Lab for different lighting installations (a) - three diffuse area
light sources on the ceiling along the left wall; (b) - large circular diffuse area light source
in the middle of the ceiling; (c) - four small spotlights (close to collimated) at the corners
on the ceiling directed straight downwards; (d) - 3 diffuse area light sources on the ceiling
in a triangular configuration.

over a regular grid at three height levels (100cm, 155cm and 210cm). At each level there
were 15 points (array 3 by 5 points) 1m apart. For scenes (a) and (d) the middle level was
again measured a few months later, on a finer grid, in order to check the repeatability of
the measurements and to find out how good the interpolation is by comparing interpolated
data with real measurements at extra points. For any point inside the space enveloped by
the measurement points the light field was calculated by means of linear interpolation of
the coefficients between the neighbour measurement points.

4.4 Results

Figure 4.5 shows contour plots representing the magnitudes of the first three harmonics
(space illumination, light vector and squash tensor) over the plain at a height of 155 cm
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(middle level) for all four scenes. The white circles indicate the 15 measurement points
taken on this level. Notice that the values of space illumination nicely correspond to
the layouts of the scenes (Figure 4.4), the closer to the light source the stronger it gets.
Typically, the distributions of the magnitudes for the vectors are similar to those of the
space illumination (Figure 4.5). However, in general that does not always have to be true.

The light vector may vanish in points where the local light fields are symmetrical, for
instance in the middle between two identical light sources. The structure of the squash
tensor and its behavior is more difficult to interpret than the previous two, in fact the
higher the order the more complicated it gets. However, there are two canonical cases of
the squash tensor which could be named “light clamp” and “light ring” that have simple
geometrical interpretations and can help to understand the behavior of the squash tensor.
For instance, in the middle of scenes (a) and (d) the squash tensor has local maximums
which, as we can judge from the geometrical layouts of the scenes are due to a strong
“light clamp” in those points.

In order to test how good the interpolation is we took eight extra measurements in
between the grid points for scenes (a) and (d). The locations of extra measurements are
indicated by black crosses in Figure 4.5(a) and 4.5(d). Figure 4.6 shows the comparison
of the 9 spherical harmonics coefficients calculated from real measurements (light gray
bars) at those extra points against coefficients calculated by using interpolation (dark gray
bars) on the basis of the 45 original samples. As we can see the measured and interpolated
coefficients correspond rather well even for scene (d) which is structurally complicated;
mean correlations between the vectors of interpolated and measured SH coefficients were
0.89 for scene (a) and 0.92 for scene (d). The errors can be partially explained by the large
step-size of the grid - we used 3×5×3 grids with a step of 1m. Obviously, complicated
light fields which consist of rather collimated light sources with beam widths of tens of
centimeters (like scene (c)) would require a finer grid. There are also errors due to the
misplacement of the device, the accuracy of the plenopter’s location was ±5cm in 3D. At
special points of the light field, for instance on the light-dark edge in the case of collimated
light, such misplacement of the device could lead to significant errors.

It is rather difficult to understand the shapes of the light fields purely from the coeffi-
cients and therefore Figure 4.7 shows panoramic pictures (360◦ ×180◦) which represent
the spherical radiance distribution functions up to the second order approximations, cor-
responding to the coefficients shown in Figure 4.6. Figure 4.7 demonstrates that the inter-
polated spherical functions capture the qualitative structure of local light fields very well,
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(a) (b)

(c) (d)

Figure 4.5: Logarithmic contour plots representing the magnitudes of space illumination
(left), light vector (middle) and squash tensor (right) over the middle level (155 cm) for
scenes depicted in Figure 4.4. The magnitudes were scaled individually such that the
maximum range of gray values is used. White crosses indicate the measurement points
which were used for interpolation, black crosses indicate the extra measurements taken in
scenes (a) and (d).

notice that bright and dark patches on contour-plots corresponding to measured and inter-
polated coefficients coincide. So, although the errors in the individual spherical harmonic
coefficients sometimes are large (Figure 4.6), they hardly ever lead to serious errors in the
global structure of the second order approximation of the spherical function, which is the
summation of all 9 spherical harmonics basis functions weighted by the coefficients.

Figure 4.8 shows the light tubes for all four scenes. The light tubes are constructed in
such a way that they are always tangential to the light vector and the radius of the tubes
is inversely proportional to the magnitude of the light vector r = 1/

√
π‖v‖, meaning that

the flux through orthogonal cros-sections of the tube is constant. It is useful to think of
the light flux through the light tube as of incompressible fluid flow through a tube - the
amount of flux through an element of the tube is constant independently of the width of
that element, however the speed varies inversely proportional to the radius of the tube.
In this case the magnitude of the light vector is analogous to the flow velocity. In Figure
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Figure 4.6: Spherical harmonics coefficients calculated in scenes (a) (left) and (d) (right)
at extra points indicated by crosses on Figure 4.5. Light gray bars represent spherical
harmonics calculated from real measurements and dark gray from interpolated values.

4.8 drawn squares and circles on the ceiling indicate the light sources, notice that the
light tubes correspond very well to the schematics in Figure 4.4. The overall qualitative
descriptions of the flux transfer by light tubes are captured correctly for all scenes, as we
can judge from the geometrical layouts of the scenes.

In order to capture all flow features a seed placement strategy for the flux lines should
be chosen wisely [23]. The resulting image of the light tubes depends on this choice. For
instance, if for scene (c) we would have chosen starting points on the left or right walls
then perhaps none of the constructed light tubes would have passed through the middle of
the room (notice that there are almost no tubes ending on the walls) and therefore the flow
pattern in that area would be missing in such visualization. This problem usually occurs
around critical points of the field. We have chosen a 5×9 array of points on the ceiling for
all the scenes because the flux lines typically originate at the light sources (on the ceiling
in our case).

Notice that in scene (c) some light tubes are curved as parabolas starting at the ceiling
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Scene (a)

Scene (d)

Measured Interpolated

Measured Interpolated

Figure 4.7: Panoramic 180◦ × 360◦ plots representing second order approximations of
the light fields corresponding to the coefficients in Figure 4.6 (left - real measurements,
right - interpolated) for scenes (a) and (d).

and ending on the ceiling, meaning that the light vector changed its direction almost
180◦. In the middle of that scene the direction of flux transfer is upwards due to strong
reflections from the ground. The flux in the upper middle part of scene (c) is very low
(light tubes are thick) because the light field there is mostly due to secondary light sources,
the strong narrow beams of the primary light sources do not reach that part of the room.
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(a) (b)

(c) (d)

Figure 4.8: Light tubes for the scenes which were schematically depicted in Figure 4.4.
The light sources are indicated by squares and circles. The tubes describe radiant flux
transfer - flux through any section of any light tube within a scene is constant, the light
vectors are tangential to the tubes and their magnitudes are counter proportional to the
square areas of tubes sections.

The light tubes provide an intuitive visualization of the light field behavior over the
scene and of how the flux propagates through the scene, however they do not provide di-
rect information about the space illumination and the squash tensor. Figure 4.9 shows how
the full second order approximation of the light field varies along a tube. We have cho-
sen one light tube from scene (c) (Figure 4.9(a)) and considered 3 points along that tube.
Figure 4.9(b) shows the corresponding radiance distribution functions up to the second
order approximations and images of a Lambertian object (the Stanford Bunny) rendered
using those second order light fields. From the appearance of the rendered objects we can
clearly see how the primary direction of light changes along the tube. In the lowest part
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1
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(a) (b)

Figure 4.9: Object’s appearance along a light tube, (a) - one of the light tubes selected
from scene (c); (b) - pictures of Lambertian 3D object (Stanford Bunny) rendered us-
ing light fields at points indicated on the tube, the contour plots represent 180◦ × 360◦

panoramic images of the second order light fields at those points.

of the tube there is a clear “light clamp” structure - notice that the light field at that point
has two maximums which are opposite to each other. The clamp is also visually apparent
from the object’s appearance.

4.5 Discussion and conclusions

We presented a new technique of measuring light fields and recovering the second order
approximation over a finite region of 3D space. Our second order spherical harmon-
ics approximations provide quantitative mathematical descriptions of important structural
features of the light field which allow to approach the “spatial and form giving effects” of
lighting formally. The major contribution is the possibility to estimate the light field not
only locally at a point of space, but globally over the entire space.

We can think of many applications for our technique. Since the light tubes describe
the flux propagation throughout a 3D scene it is a useful addition to the tools of lighting
engineers. Light tubes provide a qualitative description of the global structure of light
fields and also contain quantitative information about the strength of the light vectors.
Although light tubes do not give direct information about the space illumination, some
information about the space illumination can be retrieved from the light tubes indirectly.
Typically there is a correlation between the density of the flux lines and local maximums
of space illumination (this does not hold for singular points, for instance where the light
vector vanishes). In addition to measuring these well known structural features of the
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light field, our method also allows to estimate the squash tensor. Up to our knowledge the
available light measuring devices are capable of measuring only light vector and space
illumination locally, therefore the possibility of recovering the higher order structural
component (squash tensor) takes us a one step further in understanding the quality of
light.

Architects and interior designers may also find this technique useful for evaluating the
quality of light in a scene globally. Our method allows to find special points in the light
field, for instance where the light vector vanishes and the structure of the local light field
is dominated by squash tensor. This is a formal scientific approach to express the quality
of light in the scene numerically, whereas the ‘flow of light’ [24], [4], which is based
on object appearance, provides only a qualitative description. Besides, the second order
spherical harmonics description can be used as lighting input for rendering systems.

In computer graphics our technique could be used as a cheap and quick alternative
to the Lumigraph. The angular resolution of the Plenopter is low, however our method
provides the global structure of the 5D light field in a finite space on the basis of just tens
of measurements of 12 numbers, which can be done in less than an hour, without a need
for much memory space and heavy computations. Moreover, our methods provide direct
intuitive insights into the global structure of light fields - which is not the case for high
resolution methods such as the Lumigraph.

Our measurements showed that even the structure of the first order component of the
light field, which is given by the light tubes, can be rather complicated. Notice that the
light vector changes its direction almost 180 degrees (Figure 4.8(c)) starting at the ceiling
and ending up on the ceiling as well. Theoretically the flux lines can even be closed! In
future research we will investigate possible topological structures of the light field and
analyze its singular points. Furthermore, we will study the intriguing relations between
human perception of the luminous environment and structural features of the light fields.
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Abstract

In this paper we study the topological structure of light fields. Using the notion of the
light vector the light field can be considered as a 3D vector field. We revisit existing
theories of the light field and extend it by considering possible generic topological
structures of the flux lines in empty space. We investigate singular points of the light
field, show which kinds of generic topological configurations are possible and illus-
trate them by modeling. Our analysis shows that all types of critical points of 2D
vector fields actually occur in light fields with only minor restrictions. We also con-
sider the global structure of the light field. One of the striking results (in view of the
fact that the light ‘rays’ are straight) is that the flux lines of the light fields can even
be closed.

Submitted to JOSA A as: A.A. Mury, S.C. Pont, and J.J. Koenderink, ‘Topological
structures of light fields’.
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Chapter 5. Topological structures of light fields

5.1 Introduction

Understanding the structure of the radiant power transfer through the environment pro-
vides insights into the quality of the illumination and the effect that it makes on the visual
appearance of the scene. Scientists and illumination engineers are mostly concerned with
light incident on surfaces rather than radiant flux traveling through the scene, because
the incident illumination is of immediate practical importance (like in interior design and
photography). However before the incident illumination is scattered by a surface of an
object the radiant power travels from the light source through the medium. If one desires
to predict how an object would be illuminated when introduced in an originally empty
space, one needs to consider the light field.

The idea that radiant flux flow can be represented as a vector field has been known for a
long time [1, 2], but the structural properties of such flow have never been studied in depth.
In this paper we revisit existing theories of the light field as a vector field and investigate
the structural properties of the light field by studying the behavior of the flux lines. The
primary goal of our study is to investigate what kinds of generic topological structures
are possible in light fields and to illustrate the nature of singular points. Qualitatively the
vector field can be classified by means of the singular points and by describing the flux
lines in their vicinity. We show that all critical points typical for general 2D flow fields
also occur in light fields and provide models which illustrate those cases.

5.2 Radiometric preliminaries

The fundamental parameter by means of which all other radiometric quantities may be
defined is the radiance - the amount of radiant power emitted from or passing through a
unit area in a certain direction per unit solid angle. The luminous environment can be
considered as being filled with beams carrying radiant power. Infinitely many rays enter
every point in space from all possible directions. A formal description of the luminous
environment involves the radiance distribution function R(x,y,z,ϑ ,ϕ) which describes the
radiance coming at a point given in Cartesian coordinates (x,y,z) from directions given
in spherical coordinates (ϑ ,ϕ). This nonnegative function contains rays of light traveling
through all points in the space in all directions and completely defines the distribution of
radiant power in the medium. Here we consider stationary, quasi-monochromatic beams
(the ‘plenoptic function’ [3] contains two additional variables, namely the frequency λ
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5.2. Radiometric preliminaries

and the time t). We consider incoherent beams throughout the paper.
For applications the amount of radiant power per unit area incident on a surface is

generally considered to be an important measure. This quantity is given by the irradiance
I(x,y,z,!n) where the orientation of the plane is given by its surface normal!n = (ϑ ,ϕ). In
empty space we can consider the irradiance on a hypothetical plane. Rotating the plane
around a point and spanning all directions we can construct the irradiance distribution
function at that point. In the computer graphics community this spherical function is
known as the irradiance volume [4]; the pre-calculated irradiance volume can be used for
rendering a matte object placed at the point, this technique is useful for rendering dynamic
scenes.

In order to characterize radiant flux propagation in space let us consider a transparent
aperture instead of opaque plane. The flow of radiant power through the aperture is given
by the difference of irradiances on both sides of the aperture. This quantity is known as
the flux density [1]

Dn(x,y,z,!n) = I(x,y,z,!n)− I(x,y,z, !−n). (5.1)

Knowing the radiance distribution function at any point of space we can construct a
vector

D(x,y,z) =
∫

4π
R(x,y,z,ϑ ,ϕ)dω, (5.2)

at any point of space. The vector field D is known as the ‘light field’ and the quantity
D(x,y,z) is referred to as the ‘light vector’. It is important to point out the difference
between a single ‘ray’ and the light vector - the light vector is the average at a point over all
directions of the entire sphere and therefore it characterizes not the radiance distribution
but the net radiant flux flow through that point. The physical meaning of the light vector
is that it indicates the direction of maximum transfer of net radiant flux and the magnitude
gives the flux density in that direction.

The projection of the light vector on a certain direction gives the flux density through a
hypothetical aperture orthogonal to that direction. Thus for area elements that contain the
light vector the flux density is zero, irradiances on both sides of an aperture are equal and
cancel each other out. Therefore there is no flux through apertures which are coplanar with
the light vector. The concept of the light vector finds many applications in illumination
engineering - knowing the light field one can calculate the amount of light traveling in
space. Solutions of the light vector field due to certain canonical light sources such as
an infinite luminous strip, a polyhedral aperture (for instance a door or window) and so
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on have been developed by many authors [1, 2, 5]. The fact that the light field is a true
vector field simplifies the calculations - a light field due to multiple light sources may be
obtained as a superposition of light fields due to the individual sources.

5.3 The structure of light fields

The global structure of the light field can be investigated by means of generic mathemati-
cal tools designed for vector fields. Knowing the light vector at all points of space we can
construct the flux lines which are tangential to the light vector. In general for translucent
media without any occluders the flux lines are smooth 3D curves. These curves typically
originate at light sources and end on light absorbing surfaces. The radiant flux propagates
through space along the flux lines, in the direction of the light vector. For instance for a
single point light source the flux lines are straight radial lines diverging from the source.

In order to complete the flux lines with the information about the magnitude of the
light vectors, one can construct a ‘light tube’ of variable radius over the flux line such that
the flux through the surfaces of orthogonal sections is the same everywhere along the tube
[1, 6]. The radiant flux through a surface is a projection of the light vector on that surface
multiplied with the surface area, so the width of the light tube is inversely proportional to
the magnitude of the light vector at that point. Notice the similarity between radiant flux
transfer and fluid dynamics of incompressible liquid, the magnitude of the light vector
is analogical to the speed of the liquid in a tube - the narrower the tube the higher the
speed. The boundary of the flux tubes is made of field lines, thus there is no net transport
of radiant flux over flux tube boundaries, radiant power is effectively transported by way
of the flux tubes. Although the resulting global structure may be rather complicated,
visualizations of the light tubes help to understand the flux transfer in 3D space [7].

In this paper we will be primarily concerned with light fields with an axis of transla-
tional symmetry which can be easily visualized by flat 2D flux lines. Figure 5.1 shows
flux lines of several light fields due to different configurations of point light sources (in
3D they are line sources indeed). The contour plots underneath indicate the magnitudes
of the light vectors at corresponding points. Figure 5.1(a) shows the structure of a light
field due to five point light sources of equal intensity. Notice that between the middle and
the four other sources there are four special (singular) points in empty space where the
light vector vanishes - due to the symmetry of the flux density at those points there are
no primary directions for radiant power transfer and therefore the light vector is zero. In
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(a) (b) (c)

Figure 5.1: Light fields due to point light sources. The upper images show the flux lines,
the contour plots underneath indicate the magnitudes of the light vectors

Figure 5.1(b) the light sources have the same geometric configuration but the middle one
is much stronger than the others, so the light field of the middle source dominates and
‘washes away’ the flux lines of the other light sources. However qualitatively the struc-
tures of the light fields in Fig 1(a) and Figure 5.1(b) are the same - in both cases there are
four singular points of the same type (saddle points) and the flux lines behave similarly. In
Figure 5.1(c) we removed the middle light source which added one extra singular point.
The qualitative structure of the fields is conveniently characterized by a description of the
singular points (light sources or sinks and saddle point) - their locations and qualitative
properties. There exists only a limited number of generic qualitatively (topologically)
different singular points in vector fields and we will consider which of them may happen
in light fields and show examples.

Notice the similarity between the behavior of the light field and the electrostatic field.
Flux lines of point light sources are the same as of positive electric charges. These analo-
gies motivated scientists to develop a field theory of the light field in terms of the light
vector on the basis of partial differential equations describing a potential [1, 2]. However
it must be noted that the physical processes which define light transfer lay in electro-
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magnetism and strictly speaking the light field in terms of the light vector (i.e. on the
macroscale) does not typically possess a potential. Radiant power transfer is different
from electrostatics, liquid flow and other kinds of energy or substance transfer. The major
difference is the screening effect - beams may be occluded by an object creating shadow
or penumbras. This introduces discontinuities for flux lines on the borders of lit and unlit
regions. Although the analogies with other physical processes help to understand the be-
havior of the light field, they should be treated carefully. Scientists and lighting engineers
(who used to think of the light field analogously to fluid dynamics) have drawn flux lines
on the basis of limited computations and intuition and frequently made mistakes con-
sidering flux lines to be continuous (for instance several mistakes in Gershun’s classical
book were pointed out recently in [8]). The flux lines are continuous only for unoccluded
regions.

There are different ways of measuring the light vector - for instance by calculating
the flux density in three orthogonal directions (from measured irradiances of six sides of
a cube) and these values give the coordinates of the light vector [9]. The most simple, but
quite possibly the most intuitive method is so-called ‘grease photometer’ [6].

In some sense the light vector is analogous to the Poynting vector which represents
the energy flux of an electromagnetic field. It also indicates the direction of maximum
energy transfer. The Poynting vector is defined in terms of the electromagnetic field and
thus describes all details down to diffraction and interference effects. In contradistinction
the light vector is defined as a statistical average over an incoherent field and glosses over
details at the scale of the wavelength.

5.4 Two-dimensional topology of the light field

5.4.1 Singular points in 2D vector fields

The critical points in a vector field are the points at which the vector vanishes and thus its
direction is not defined. Critical points analysis is a powerful tool to describe the structure
of a vector field - knowing the critical points and the behavior of the flux lines connecting
them it is an easy matter to reconstruct the qualitative structure of the entire vector field
(at least in a qualitative, topological sense) [10]. Thus the configuration of critical point
is a powerful tool for the intuitive understanding of the structure. There is only a limited
number of qualitatively different critical points. Following the known theory [11, 12, 13],
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center source sink

saddleattracting-spiralrepelling-spiral

Figure 5.2: Different types of critical points possible in 2D flows

the formal classification of the critical points of a 2D vector field is given by means of
eigenvalues of the Jacobian of the vector at the critical point:

∂ (u,v)
∂ (x,y) x0,y0

=

[
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

]

x0,y0

. (5.3)

Figure 5.2 shows all possible critical points of a 2D vector field. On the basis of
eigenvalues they can be classified as center λ1 = λ2, i1 = −i2, source λ1 > 0, λ2 > 0,
i1 = i2 = 0, sink λ1 < 0, λ2 < 0, i1 = i2 = 0, repelling focus λ1 = λ2 > 0, i1 = −i2 '= 0,
attracting focus λ1 = λ2 < 0, i1 = −i2 '= 0 and saddle point λ1 < 0, λ2 > 0, i1 = i2 = 0
(where λ1, λ2, i1, i2 are the real and imaginary parts of the eigenvalues). Unfortunately
the terminology is not standard in mathematical theory, here we use terms from [14]. The
signs of the real parts of the eigenvalues define the attractive or repelling character and
the imaginary parts denote the circulation around the point.

5.4.2 Singular points in the light field

All types of critical points typical for a general 2D vector field occur in the light field. Here
we present several simple models illustrating how these critical points can be created and
showing the distributions of the flux lines. We assume the light fields to be translationally
symmetric (with respect to the axis perpendicular to the plane of the paper) and therefore
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the light fields can be represented by planar flux lines in the 2D plane. The flux lines for
the models were calculated by means of iterative computer simulations.

The ‘source’ critical point is the easiest case, it appears for instance in the case of a
point light source placed in empty dark space. The flux lines are straight lines radiating
from the source. The ‘sink’ may be found for instance at a small black (light absorb-
ing) sphere placed in Ganzfeld (fully diffuse) illumination. In this case the flux lines are
straight lines coming from the Ganzfeld and ending on the surface of the sphere. These
two examples of the sink and the source are completely opposite each other and the one
can be modified into another by replacing light and darkness. The primary difference
is that while the point light source may (if physically possible) be infinitesimally small
and of arbitrarily high intensities, the black sphere must be of certain dimension and the
amount of light it absorbs is proportional to and thus limited by its surface area. An in-
finitesimally small black sphere does not not absorb any light and therefore is no sink.
There is no such thing as negative radiance, but the effect the black sphere produces on
the flux lines in a Ganzfeld is analogous to a negative electrical charge in electrostatic
field.

In contrast to the ‘source’ and ‘sink’ the saddle point occurs in empty space. Figure
5.3 shows models in which the saddle occurs. In Figure 5.3(a) there are two point light
sources of equal intensity. At the point in the middle of them the irradiance is a symmet-
rical function, so the flux density at that point is zero for all orientations and therefore the
light vector vanishes. A similar situation can be constructed by using diffuse area light
sources. In Figure 5.3(b) the model consists of two uniformly bright disks opposite to
each other, at the point right in the middle between them the light vector is zero and the
flux lines form a saddle point.

Figure 5.4(a) shows a model for the ‘center’ critical point. The model consists of four
equal area light sources (indicated by thick lines) located at the periphery of the square,
one at each side and separated by gaps of the same size. The shapes of the light sources
are infinitely long stripes in the plane orthogonal to the plane of the illustration. We
consider the light field in the space enveloped by the square. The space is not occluded
and therefore the flux lines should be smooth and continuous. At the periphery the flux
lines originate on the light sources and continue their way to the gaps. However, closer
to the middle the flux lines are closed, rotating counterclockwise. Right in the middle
the light vector vanishes due to the symmetry of the radiance distribution function. The
behavior of the flux lines around this critical point clearly indicates that this is a ‘center’.
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(a) (b)

Figure 5.3: Saddle points due to point light sources (left) and diffuse area light sources
(right)

Notice that there are also four saddle points, which can easily be found from the contour
plots that represent the magnitude of the light vector.

A ‘repelling-spiral’ critical point can be constructed by adding a point light source
in the middle of the previous model (see Figure 5.4(b)). In this case in the center of the
space the flux lines originate from the point light source and diverge to the gaps, due the
influence of the peripheral light sources the flux lines are twisted into a spirals.

Figure 5.4(c) shows the ‘attracting-spiral’ critical point. The model consists of the ba-
sis model shown in Figure 5.4(a) and a black sphere put in the middle. The light absorbing
object in the center works as a ‘sink’ - it attracts the flux lines from the peripheral light
sources. It is important to point out here that an opaque object in a light field occludes
light, therefore there are areas where individual light sources are completely occluded
(notice the little black star in the middle of the contour plot). The screening effect causes
discontinuities of the flux lines, however this problem occurs only in a small area very
close to the sphere.
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(a) (b) (c)

Figure 5.4: Examples of a center (left), repelling-spiral (point light source in the middle)
and attractive spiral (black sphere in the middle) critical points.

5.5 Discussion and conclusions

In this article we analyzed topological aspects of light fields. We have shown that all
generic topological structures typical for 2D vector fields may also occur in light fields
and illustrated the possible configurations by modeling. The models provide intuitive and
simple examples of what kind of qualitative structures may occur. In order to describe
the qualitative structure of the light field we don’t have to know the light vector at all
points of space, but instead it may be given merely by pointing out the singular points and
describing the behavior of the flux lines in their vicinity. We considered only 2D cases for
simplicity, but in a similar way the analysis can be extended to 3D.

Considering the light field as a vector field gives us a description of radiant flux trans-
fer through space, which may be used for practical purposes in architecture, interior de-
sign, etc. In fact photographers and designers do simple manipulations with the flux in
order to achieve the desirable effects by placing black and white sheets (e.g. screens or
umbrellas) next to the illuminated object.

The light vector gives a very rough approximation (only first order) of the radiance
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distribution function, nevertheless it contains information which is important for object
appearance since the projection of the light vector on a surface gives the irradiance. The
light field depends not only on the primary light sources. The contribution of light scat-
tered from the objects is also important. For instance flux lines would bend around (with-
out touching) a white sphere placed into diffuse illumination and would end on a black
object. Knowing the structure of the light field one can predict the shading patterns of ob-
jects in a scene and one can manipulate the structure of the light field by putting additional
objects into the scene (screens, photographer’s umbrella). Optical interactions between
light fields and objects in it are of special importance because it is directly related to ap-
plications. Computer graphics algorithms frequently sacrifice physical laws and precision
in order to achieve greater speed. However only physically based approaches [6] can be
correct.

The screening effect does not allow to develop a general theory of the light field in
terms of differential equations, but for unoccluded areas this can be done [2]. It would be
interesting to consider special cases of light fields such as, for instance, ‘center’ critical
point.

In order to make the illustrations as intuitive as possible the models which we con-
structed in this article were constructed in the most simple way by considering ‘point
light sources’ and uniformly diffuse area light sources. However more complicated mod-
els could be constructed by means of nonuniform light sources.

We believe that understanding the singular points of light fields provides fundamental
insights into the global structure of natural light fields. This approach can be used in
practice for the needs of lighting engineers. Singular points of light fields in a region of
space can be found in practice by measuring light vectors and analyzing the behavior of
flux tubes in that region.
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APPENDIX.
ON VISUALIZATION OF LIGHT

FIELDS

The ‘quality of light’ for a long time used to be a term from the lexicon of artists. For
instance painters, designers and architects used to describe illumination conditions in po-
etic terms such as light ‘creeping around’ and ‘washing’ objects, ‘oceans of light’ and
so on. Which indeed makes the language of artists beautiful and poetic, but neverthe-
less ambiguous and difficult to understand for engineers. The applications in illumination
engineering, architecture and interior design require formal, technical descriptions of the
quality of light in terms of quantifiable parameters. Such descriptions should also be
meaningful. In this Appendix we summarize existing techniques for the visualization of
light fields, give additional examples which illustrate the usefulness of the results pre-
sented in this thesis and also describe methods which have not been shown in previous
chapters.

For a local light field, which is essentially a spherical function describing the radi-
ance distribution at a point in three-dimensional space, the most important qualitative
properties for an object’s appearance are the primary direction of light and degree of
diffuseness. In this way one can define three so called ‘canonical’ cases of light fields:
collimated illumination (like direct sunlight), hemispherically diffuse illumination (for in-
stance an overcast sky) and Ganzfeld illumination (uniformly diffuse illumination such as
a polar white out). Collimated and Ganzfeld cases are completely opposite to each other
in terms of diffuseness, one being extremely directional (point light source at infinity, in
the terminology of computer graphics) and the other absolutely diffuse (ambient light in
computer graphics). Hemispherically diffuse illumination is an intermediate condition
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(a) (b) (c)

Figure A-1: Top row shows the schematics of three canonical cases of light field: col-
limated (left), hemispherically diffuse (middle) and Ganzfeld (right) illuminations. The
photographs of simple convex objects (orange, apple and kiwi) demonstrate different form
revealing effects of light.

and possesses properties of both extreme cases - it is diffuse but at the same time direc-
tional (directionally diffuse). Figure A-1 shows the schematics of canonical light fields
and photographs of different objects in these cases. Notice that these light fields produce
qualitatively different effects on object appearance. For instance, collimated light reveals
the texture very well due to strong contrast between lit and unlit areas. In this case there
is all-or-none vignetting but no partial occlusion of the light source. In the case of a
hemispherically diffuse source the vignetting is gradual. In the case of Ganzfeld illumi-
nation the form revealing effect is only due to vignetting and therefore convex Lambertian
objects of a uniform smooth material would appear flat.

The diffuseness of light is not restricted to three canonical cases. In order to describe
the diffuseness of illumination Frandsen (‘The scale of light’, 1987) introduced the no-
tion of the ‘scale of light’. He varied the size of a spherical aperture from narrow (1◦,
almost collimated) to hemispherically diffuse (180◦) in a systematic way such that the
illumination incident on a horizontal plane varied exponentially. Figure A-2 shows the 11
scales of light according to Frandsen. Thus, the degree of diffuseness can be approached
in a formal way. Figure A-3 shows how an object’s appearance changes as we vary the
diffuseness of light by changing the size of the aperture from 90◦ to 270◦.
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Figure A-2: The scale of light (Frandsen, 1987). Changing the size of the aperture
through which the light comes from 1 to 180 degrees, one can achieve qualitatively differ-
ent shadings varying from sharp (in the case of collimated light) to smooth (hemispheri-
cally diffuse). The schematics on the right show the apertures for 11 scales of light, the
picture on the left shows the shading variations over the surface of a sphere for those
scales of light.

In general the light field is a rather complicated function and usually it cannot be
described only by giving the primary direction of the light and its diffuseness. In some
cases there is no primary direction, or there are more than one light source and light
comes from multiple directions with similar intensities and therefore all directions should
be considered. For instance Figure A-4 shows a head illuminated from above by a directed
light source, however there is a white screen under the object and diffuse light reflected
by the screen illuminates the object from below. The contribution of the upper lobe is
stronger, however the diffuse lower lobe cannot be ignored - the effects are clearly visible
at the object. More complex cases can be constructed easily.

Properties of the light field are easily defined theoretically, but rather difficult to esti-
mate empirically. For instance, there is no measurement device that can estimate the scale
of light. Some characteristics of light can be revealed from the appearance of objects.
Architects and interior designers typically use special reference objects for that purpose.



Figure A-3: Diffuseness variation. Photographs of an object (a Lambertian sphere with
rough texture) in light fields of different diffuseness. The size of the aperture varies from
90◦ to 270◦ in equal steps of 20◦, the schematics show the 90◦, 180◦ and 270◦ cases.

Figure A-4: A light clamp. The head is illuminated from above by a directed light source
and light scattered by a white screen illuminates the head from below. Light comes to the
object from two opposite directions resulting in a ‘clamp’.

For instance from an image of a white sphere the direction of the flow of light can be
judged, and from the shading gradient over the surface of the sphere the diffuseness of
illumination can be inferred. In the case of collimated light the border that separates lit
and unlit areas is very sharp and clear, while in the case of diffuse illumination the termi-



nator is smoothed out. Carrying an object over a scene one can judge from its appearance
how illumination changes over the scene. Cuttle (‘Lighting by design’, 2003) suggested
to use three reference objects to reveal different aspects of light fields - a white matte
sphere, a shiny black sphere and a white disk with a stem. These three objects were cho-
sen to assess different lighting effects. According to Cuttle, the white sphere indicated
the primary direction of light, the shiny black sphere revealed the primary light sources
which are clearly visible in the image of the black sphere as highlights, and the ‘peg-on-a-
disc’ object revealed the shadow quality (the peg casts shadows on the disc, and from the
sharpness of cast shadows the diffuseness of illumination can be judged). These reference
objects are useful for making quick intuitive estimations of the quality of the light. How-
ever, in some illumination conditions the images of reference objects are ambiguous. For
instance, in diffuse illumination the white sphere appears almost uniformly bright since
the shading gradient is not strong. Furthermore, psychophysical research has shown that
simultaneous judgments of illumination direction and diffuseness from the appearance of
a matte white sphere interact with each other. So, the conclusions made on the basis of
these objects are very subjective.

We developed several other models of light probes. Figure A-5 shows Radiance ren-
derings of three models: a polyhedron (subdivided icosahedron) (a), a ‘bubbled sphere’
(b) and a cube with radial patterns of corrugations on its sides (c). We rendered these ob-
jects in Frandsen’s 11 scales of light (from collimated to hemispherically diffuse) and in
Ganzfeld illumination in order to demonstrate that these objects might be useful additions
to describe properties of diffuse light. For instance, it is easier to visually judge the shad-
ing pattern from a faceted surface with distinct brightnesses than from a smooth white
sphere where the shading gradient is smooth. The ‘bubbled sphere’ provides information
about the light field on two levels - a global (overall object) and a local level. The cube
helps to estimate the light direction. It is easy to judge which sides of the ridges on the
cube’s sides are brighter and thus infer the primary illumination direction even in diffuse
illumination (except for Ganzfeld, of course).

Figure A-6 shows real probes that we developed and used to probe diffuse light fields.
The bubbled sphere is similar to the model. The sphere, the icosahedron (20 faces, lower
right object) and dodecahedron (12 faces, lower center object) reveal that the light is com-
ing from the upper left quadrant, and that it is directionally diffuse. These objects reveal
the quality of light in a more salient way than a matte white sphere due to the meso-scale
‘texture’ and non-smooth shading gradients. Knowing the orientation of the facets and



their luminance the illumination distribution solid at that point could be reconstructed.
The concave icosahedron (lower left object) has 60 internal facets (which are affected by
inter-reflections) and 20 outer ‘facets’. The cast shadows in the concavities allow for an
even more accurate judgment of the illumination direction. However, a single photograph
of a matte light probe cannot completely describe the local light field (a spherical radi-
ance distribution function). Several photographs from different viewing points would be
needed to describe the local light field. Therefore, although these reference objects are
useful for quick semi-quantitative estimates of the lighting conditions and may replen-
ish the toolkit of architects and interior designers, they are not very suitable for formal
scientific measurements.

Common techniques to capture an entire radiance distribution function at a point are
panoramic imaging or photography of a mirror sphere which reflects light incident from
all directions. Another possibility is to use more advanced light measuring devices. Our
custom-made light measuring device Plenopter is capable of measuring local light fields
up to the second order (9 basis functions) in terms of spherical harmonics (see Chapter 2
for details). Basically we get 9 coefficients which are the shape descriptors (the device and
the procedure are described in Chapter 3). The coefficient values are not very informative
in themselves, so a visualization method is needed. The nature of spherical harmonics
allows us to represent the first order contribution as a vector, and the second order contri-
bution (which is a symmetry function with axes of symmetry orthogonal to each other) as
two orthogonal vectors describing its positive and negative components. The first order
component is the light vector which describes the primary direction of radiant flux. The
second order term is the quadruple (or ‘squash tensor’) which can capture a wide variety
of shapes from a ‘clamp’ to a ‘ring’ (see Chapter 2). Figure A-7 shows the results of
two Plenopter measurements in the same scene but in different illumination conditions -
under an overcast sky (the upper one) and in direct sunlight (lower one). The fish-eye
lense photographs of sky and ground (left side of the figure) provide a description of the
environment. Notice that in the case of diffuse overcast illumination there is primarily one
direction of light - from above. However in the case of direct sunlight there is also strong
scattering from the ground. These details are clearly shown by the measurements: in the
overcast sky case the structure of the light field is dominated by the light vector, while in
the direct sun-light condition the squash tensor dominates, indicating a ‘light clamp’.

Other examples of Plenopter measurements are shown in Figure A-8. We considered
a room scene in four different illumination conditions (see Chapter 4 for details). The
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Figure A-5: Radiance renderings of the models of light probes for diffuse light. A poly-
hedron (a), a bubbled sphere (b) and a cube with radial patterns of corrugations on its sides
(c) rendered in Frandsen’s 11 scales of light and in Ganzfeld illumination (low right).



Figure A-6: Real light probes which we used for estimating the quality of diffuse light
fields. A bubbled sphere, icosahedron, dodecahedron and concave icosahedron (upper,
right, lower middle and left objects).

measurements were taken in the center of the room, the illumination conditions were the
following: diffuse light from the upper-left (a), a diffuse circular area light source in the
center of the ceiling right above the measurement point (b), four strongly directed light
sources in the corners of the ceiling pointing downwards (c), three area light sources
positioned in chess-order on the ceiling (d). The upper row in Figure A-8 shows the
photographs of mirror balls positioned at the measurements points. The geometry of the
scene and the distributions of the light sources are clearly visible on these images. The
second row shows the vector representations of the Plenopter measurements. Notice that
the vector representations correspond very well to the scenes. In case (a) the light vector
and the positive part of the squash tensor are oriented in the direction of the upper-left
wall, where the light comes from. In case (b) the light vector and the squash tensor are
aligned together almost vertically pointing at the circular area light source on the ceiling.
In case (c) the primary light sources are close to collimated and their beams don’t extend
to the center of the room, where the measurements were taken. The strongest component
of the light field at the center of the room in this case is due to scattering from the ground
and therefore the light field should be very diffuse at that point. The illumination direction
is indicated by the light vector which is pointing downwards, clearly showing that indeed
the strongest contribution to the light field at that point is due to scattering from the floor.
In case (d) the light vector and squash tensor point towards the closest of the three sources.
The third row shows the shape of the approximation of the spherical radiance distribution.



Figure A-7: An example of Plenopter measurements, for overcast versus direct sunlight
conditions. On the left we show fish-eye lense photographs of the sky and ground which
describe the scenes. On the right the vector representations of Plenopter measurements
are shown. The upper row describes the overcast sky condition, the lower row shows the
same scene in direct sun light. Notice that in the case of direct sunlight there is strong
scattering from the ground and therefore the squash tensor dominates in the structure of
the light field.

Notice that in case (c) the radiance distribution function is very diffuse (roughly spherical)
as expected. The lowest row shows the contour plots which represent the second order
light fields projected to a plain.

The methods we described so far are suitable for estimation and visualization of lo-
cal light fields. However it is frequently needed to assess light fields of entire three-
dimensional scenes. This can be done semi-quantitatively by, for instance, carrying light
probes around the scene and taking photographs of the light probes at certain grid points
over the scene (the so-called ‘light-flow-meter’ approach). For quantitative measurements
we can take Plenopter samples at points of a regular grid of the scene. Figure A-9(a) shows
15 Plenopter measurements over a regular grid in the scene described in Figure A-8 (d),
with three area light sources on the ceiling positioned in chess-order. It is difficult to
judge the global light field’s structure from such a representation, except for the fact that
at points 3, 7 and 15 (the points which are closest to the light sources) the illumination
is stronger. A better visualization of the global structure could be provided by contin-
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Figure A-8: Visualization of Plenopter measurements. The upper row shows photographs
of a mirror ball placed at the measurements points. The second row shows vector repre-
sentations of Plenopter measurements. The third row shows spherical radiance distribu-
tion functions smoothed out to the second order spherical harmonic approximation. The
lower row shows contour plots which represent the second order light fields projected to
a plain.



uous data achieved by interpolation. Figures 9(b1, c, d) show the contour plots which
represent the magnitudes of the light vector, zero order component and squash tensor cor-
respondingly over the measurements plain. The contour plots were calculated by means
of interpolation on the basis of 15 measurements. Figure A-9(b,2) shows the projection
of the light vectors into the measurement plain. The light vectors clearly point in the di-
rections of the light sources. However, this kind of visualization is ambiguous in itself,
while a combination of three planar projections is very hard to integrate, and therefore not
very practical. We need a technique which provides a meaningful representation of these
three components in three-dimensional space.

Since we can calculate the light vector at any point of the scene, the light field can be
considered as a vector field and therefore we can use existing techniques for vector field
visualizations. Gershun (‘The light field’, 1936) suggested to use tangential curves (flux
lines) for visualization of the light field. Figure A-10 shows some of Gerhsun’s drawings
of light fields by means of flux lines and light tubes. At that time it was rather difficult to
calculate or measure the flux lines and therefore some of the drawings were made merely
by intuition. For instance, as it was pointed out by Bakharev (D.V. Bakharev, ‘About the
structure of light fields’, Svetotekhnika, 2005) the flux lines in Figure A-10(d) cannot be
continuous and accurate modeling may prove that.

Nowadays we can calculate precisely the flux lines, visualize the distribution of the
radiant flux by means of light tubes, and even measure those descriptors in real three-
dimensional scenes (see Chapter 4 for details). The light tubes provide a very intuitive
visualization of the flux propagation through the scene and describe the quality of light
very well. In Figure A-11(a) we show the flux tubes distribution for a room scene with
only one light source - a circular diffuse area light source on the ceiling (the model is
based on the scene showed in Figure A-8(b)). The light tubes typically originate at the
light sources and end on light absorbing surfaces diverging radially from the middle of
the ceiling as is shown in close-up in figure A-11(b). In figures 11 (c) and (d) we inserted
Lambertian black and white spheres right under the source. Notice how the light tubes
bend around the spheres - in the case of the black sphere (c) the tubes bend over it and
end up on the lower part of the sphere because it absorbs light, while the white sphere
reflects light and works as a secondary light source pushing off the light tubes. Indeed the
tubes ‘creep over’ the sphere, and thus this visualization is an example of how our method
may clarify the poetic language of artists for engineers. As we showed on Figure A-11
the global structure of the light field can be studied and visualized by means of the light
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Figure A-9: Plenopter measurements over an array of points; (a) Plenopter measurements
over a regular grid of the scene which is shown in Figure A-8(d); b1, c, d show contour
plots which represent the strengths of the light vector (b), zero order component (c) and
squash tensor (d); b2 shows a projection of the light vectors into the measurements plain
(see text for details).
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Figure A-10: Gershun’s drawings on light field visualization; (a) iterative drawing of flux
lines by calculating the light vector from point to point in small steps; (b) flux lines due to
a point light source (left) and a ‘dipole’ due to two light sources next to each other (right);
(c) slanted Lambertian screen in collimated light, the albedo of the screen changes from
0 (black screen) to 1 (notice how the flux lines bent over the screen in the last image);
(d) a light field due to a uniform luminous disc with a screen in front of it (the flux lines
bent over the screen); (e), (f) drawings of light tubes. These images were taken from
the Russian version of Gershun’s book (‘Svetovoe pole’, 1936) and do not appear in the
translated version.

tubes. We believe that these visualization and measurement techniques might be useful
for wide variety of applications.

The light field influences the appearance of objects. Conversely, the addition of ob-
jects in a scene influences the light field. The example with black and white spheres
inserted into the light field shows how optical interactions between the light field and ob-
jects in it can be understood intuitively. Typically the problem of interaction between light
and the scene is left to hard core computer graphics. However, as we have shown, if we
aim for low order, visually relevant, insightful representations this problem can be sim-
plified a lot. Describing how light fields interact with objects in scenes in a quantitative
though intuitive way is a challenging topic for future research.
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Figure A-11: Example of interaction between the light field and the objects in the scene.
The model is based on the scene shown in Figure A-8(b), a room with a circular area
light source in the center of the ceiling. (a) the light tubes show the transport of radiant
flux over the scene (notice how the light tubes diverge radially from the light source); (b)
shows a close-up of the center point of the light field; (c) a black sphere is put right under
the light source, notice that the light tubes end up on the surface of the light absorbing
black sphere; (d) a white sphere is put into the scene, the light tubes bent around it since
the reflected light ‘pushes’ them away.



SUMMARY

This thesis focuses on the properties of light fields with respect to object appearance.
More specifically, our interest was mainly directed to the structure and spatial variation
of light fields in natural scenes. We approached the structure of light fields by means
of spherical harmonics which allows one to divide the complicated spherical functions
of local light fields in frequency bands and to analyze those separately. In chapter 2
we empirically studied the variation of different frequencies of light field approximations
over natural scenes by means of panoramic photography and found that the low order
components show systematic and stable spatial variations whereas the high order com-
ponents vary rapidly and chaotically over most scenes. We showed how the ‘quality of
light’ can be expressed by means of a light vector and a squash tensor which provide a
formal mathematical but nevertheless very intuitive way of representation bridging the
gap between scientific and artistic understandings of light. In chapter 3 we continued
the study of the spatial behavior of light fields more thoroughly considering complicated
scenes and focusing on the 2nd order structures which we measured by our custom made
device. In Chapter 4 we presented a technique with which the 2nd order descriptions can
be recovered for an entire three dimensional scene on the basis of a limited number of
measurements and presented a visualization of the structure of light fields by means of
light tubes. Chapter 5 was devoted to possible topological structures of light fields. In the
Appendix we provided additional examples of methods, measurements and visualization
of light fields.

In chapter 2 we considered simple scenes such as typical ‘street’, ‘wall’ and ‘forest’
scenes and studied the spatial variation of light fields along the main axes of symmetry of
the scenes. The measurements were performed photographically by utilizing panoramic
imaging. We described the local light fields in terms of spherical harmonics up to the
10th order and analyzed the qualitative properties and physical meanings of the low order
components. We took a first step in a further development of Gershun’s classical work
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on the light field by extending his description beyond the three-dimensional vector field,
towards a more complete description of the light field using tensors. We showed that the
three first components, namely the monopole (density of light), the dipole (light vector)
and the quadrupole, which we named ‘squash tensor’, suffice to describe a wide range
of qualitatively different light fields. The empirical analysis allowed us to conclude that
the low order components dominate the structure of most light fields. The low order
components are rather constant over the scenes whereas high order components are not.
Using simple models, we found a strong relation between the low order components and
the geometrical layouts of the scenes.

In chapter 3 we presented a new technique to capture the global structure of the light
field in terms of spherical harmonics functions. Our custom made device Plenopter allows
to perform measurements of light fields up to the second order easily, quickly and with
a high dynamic range. Using that device we continued the research presented in chapter
2 by considering measurements across the scenes, along the line orthogonal to the main
axis of geometrical symmetry. The measurements clearly indicate that in scenes of similar
geometry the light fields demonstrate characteristic variations of the light vector and the
squash tensor over the scene. This happened despite the fact that the scenes possessed
different reflective properties and even were differently oriented with regard to the primary
light sources.

In chapter 4 we presented a method for measuring, reconstructing and visualizing the
global structures of light fields in finite 3D spaces. We used the Plenopter to measure sec-
ond order light fields at points over a regular grid and interpolate the spherical harmonics
coefficients to calculate the light fields at all points of a closed 3D space.

We presented a new way of visualizing the light field in 3D space by means of light
tubes which indicate the radiant flux transfer and provide intuitive insights into the global
structure of the light field through the entire space of the scene.

In chapter 5 we considered possible topological structures of light fields. We studied
singular points and showed that all generic topological structures that are possible for 2D
vector fields may also occur in the case of light fields. We provided models which showed
that light tubes can even be closed. The global structure of the light field may be described
by means of the singular points.



SAMENVATTING

Dit proefschrift richt zich op de eigenschappen van lichtvelden in relatie tot de visuele
verschijningsvorm van objecten. Onze aandacht ging hierbij specifiek uit naar de struc-
tuur en spatiele variatie van lichtvelden in natuurlijke scenes. We hebben de structuur
van lichtvelden benaderd door middel van bolfunkties, die het mogelijk maken de gecom-
pliceerde sferische funkties van lokale lichtvelden onder te verdelen in frequentiebanden
en die separaat te analyseren. In hoofdstuk 2 hebben we de variatie van verschillende fre-
quenties van lichtveld-benaderingen over natuurlijke scenes empirisch bestudeerd door
middel van panoramische fotografie en vonden dat de lage orde componenten systematis-
che en stabiele variaties lieten zien, terwijl de hoge orde componenten snel en chaotisch
varieren over de meeste scenes. We hebben laten zien hoe de ‘kwaliteit van licht’ uitge-
drukt kan worden door middel van een lichtvector en een squash tensor, wat een formele
mathematische, maar desondanks zeer intuitieve representatie biedt die het gat tussen het
wetenschappelijke en artistieke begrip van licht overbrugt. In hoofdstuk 3 hebben we onze
studie naar het spatiele gedrag van lichtvelden voortgezet door gecompliceerde scenes te
beschouwen en te focussen op de 2de orde structuren die we hebben gemeten met ons
zelf-ontworpen apparaat. In hoofdstuk 4 presenteerden we de techniek waarmee op basis
van een beperkt aantal metingen de 2de orde beschrijvingen geconstrueerd kunnen wor-
den voor een gehele drie-dimensionale scene en presenteerden we een visualisatie van
de structuur van lichtvelden door middel van lichtbuizen. Hoofdstuk 5 was gewijd aan
mogelijke topologische structuren van lichtvelden. In de appendix hebben we additionele
voorbeelden gegeven van methodes, metingen en visualisaties van lichtvelden.

In hoofdstuk 2 beschouwden we simpele scenes zoals typische ‘straat’, ‘muur’ en
‘bos’ scenes en bestudeerden de spatiele variatie van lichtvelden langs de hoofd-symmetrie-
as van die scenes. De metingen werden fotografisch gedaan door gebruik te maken van
panoramische beeldvorming. We beschreven de lokale lichtvelden in termen van bolfunk-
ties tot en met de 10de orde en analyseerden de kwalitatieve eigenschappen en fysische
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betekenissen van de lage orde eigenschappen. We namen een eerste stap naar een verdere
ontwikkeling van Gershun’s klassieke werk over het lichtveld door zijn beschrijving als
een driedimensionaal vector veld uit te breiden en meer compleet te maken met tensoren.
We lieten zien dat de eerste drie componenten, namelijk de monopool (lichtdichtheid), de
dipool (lichtvector) en de quadrapool, die we de ‘squash tensor’ hebben genoemd, vol-
doen om een groot bereik van kwalitatief verschillende lichtvelden te beschrijven. Uit de
empirische analyse konden we concluderen dat de lage orde componenten de structuur
van de meeste lichtvelden domineren. De lage orde componenten zijn relatief constant
over de scenes, terwijl de hoge orde componenten dat niet zijn. Met gebruikmaking van
simpele modellen vonden we een sterke relatie tussen de lage orde componenten en de
geometrische layout van de scenes.

In hoofdstuk 3 presenteerden we een nieuwe techniek om de globale structuur van het
lichtveld te vangen in termen van bolfunkties. Met ons zelfgemaakte apparaat Plenopter
kunnen we makkelijk, snel en met hoog dynamisch bereik metingen doen van lichtvelden
tot en met de tweede orde. Met dit apparaat hebben we ons onderzoek uit hoofdstuk
2 voortgezet door metingen te beschouwen overlangs scenes, langs de lijn loodrecht op
de hoofd-symmetrie-as. De metingen laten duidelijk zien dat in scenes met een geli-
jksoortige geometrie de lichtvelden karakteristieke variaties over de scene tonen van de
lichtvector en squash tensor. Dit resulteerde ondanks het feit dat de scenes verschillende
reflectantie-eigenschappen hebben en zelfs verschillend georienteerd waren ten opzichte
van de primaire lichtbronnen.

In hoofdstuk 4 presenteerden we een methode om de globale structuur van lichtvelden
in eindige 3D ruimtes te meten, reconstrueren en visualiseren. We gebruikten de plenopter
om tweede orde lichtvelden te meten op punten van een regelmatig rooster en interpoleer-
den de bolfunktie coefficienten om de lichtvelden op alle punten van een gesloten 3D
ruimte te berekenen. We presenteerden een nieuwe manier om het lichtveld in een 3D
ruimte te visualiseren door middel van lichtbuizen, via welke het stralingsvermogen zich
door de ruimte verspreidt en intuitieve inzichten geven in de globale structuur van het
lichtveld door de gehele ruimte van de scene.

In hoofdstuk 5 beschouwden we mogelijke topologische structuren van lichtvelden.
We bestudeerden singuliere punten en lieten zien dat alle generieke topologische struc-
turen die mogelijk zijn voor 2D vectorvelden ook kunnen voorkomen als lichtvelden.
We gaven modellen die demonstreerden dat lichtbuizen zelfs gesloten kunnen zijn. De
globale structuur van het lichtveld kan beschreven worden door middel van de singuliere



punten.





PUBLICATIONS

Mury A.A., Pont S.C., Koenderink J.J.: Spatial properties of light fields in natural scenes.
In: Proceedings APGV 2007, ACM SIGGRAPH, Spencer S.N. (Ed.), 140, 2007.

Mury A.A., Pont S.C., Koenderink J.J.: Light field constancy within natural scenes. Ap-
plied Optics, 46(29), 7308-7316, 2007.

Mury A.A., Pont S.C., Koenderink J.J.: Analysis of second order light fields in closed
3D spaces. In: Proceedings Frontiers in Optics 2008, OSA, Illumination Modeling Work-
shop, 2008.

Mury A.A., Pont S.C., Koenderink J.J.: Representing the Light Field in Finite 3D Spaces
from Sparse Discrete Samples, submitted to Applied Optics.

Mury A.A., Pont S.C., Koenderink J.J.: The structure of light fields in natural scenes,
submitted to Applied Optics.

Mury A.A., Pont S.C., Koenderink J.J.: Topological structures of light fields, submit-
ted to JOSA A.

105





CURRICULUM VITAE

Alexander Alexeevich Muryy was born in Khabarovsk (Russia) on the 9th of November
1981. After graduation from high school he went to the Far Eastern State Transportation
University (FESTU) in Khabarovsk where he studied Applied Mathematics. As a stu-
dent he pursued research in the area of Optics and studied light propagation in nonlinear
crystals. After graduation cum-laude in 2003 he started working as a research assistant
in the Optics department and as a junior teacher at the Applied Mathematics department
in FESTU. In the end of 2003 he went to do an internship at Groningen University (the
Netherlands) where he studied educational processes and logistics for 5 months. In July
2004 he got an appointment as a PhD student at the Ecological Optics group at Utrecht
University under supervision of professor Jan Koenderink and Sylvia Pont. In the end of
2008 the group was transfered to Delft University of Technology, the faculty of Industrial
Design under the supervision of professor Huib de Ridder.

107






