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a b s t r a c t

Given a finite poset P , we say that a family F of subsets of [n]
is P-saturated if F does not contain an induced copy of P , but
adding any other set to F creates an induced copy of P . The
induced saturation number of P , denoted by sat∗(n,P), is the
size of the smallest P-saturated family with ground set [n]. In
this paper we prove that the saturation number for any given
poset grows at worst polynomially. More precisely, we show that
sat∗(n,P) = O(nc ), where c ≤ |P|

2/4+1 is a constant depending
on P only. We obtain this result by bounding the VC-dimension
of our family.

© 2024 Published by Elsevier Ltd.

1. Introduction

We say that a poset (Q, ⪯) contains an induced copy of a poset (P, ⪯′) if there exists an injective
rder-preserving function f : P → Q such that (f (P), ⪯) is isomorphic to (P, ⪯′). We denote by

2[n] the power set of [n] = {1, 2, . . . , n}. We define the n-hypercube, denoted by Qn to be the poset
formed by equipping 2[n] with the partial order induced by inclusion.

If P is a finite poset and F is a family of subsets of [n], we say that F is P-saturated if F does
not contain an induced copy of P , and for any S /∈ F , the family F ∪ S contains an induced copy of
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Fig. 1. The butterfly poset B and the diamond poset D2 .

P . The smallest size of a P-saturated family of subsets of [n] is called the induced saturated number,
nd denoted by sat∗(n,P).
It has been shown that the growth of sat∗(n,P) has a dichotomy. Keszegh, Lemons, Martin,

álvölgyi and Patkós [1] proved that for any poset the induced saturated number is either bounded
r at least log2(n). They also conjectured that in fact sat∗(n,P) is either bounded, or at least n + 1.
ecently, Freschi, Piga, Sharifzadeh and Treglown [2] improved this result by replacing log2(n) with√
n − 2. There is no known poset P for which sat∗(n,P) = ω(n), and it is in fact believed that for

ny poset, the saturation number is either constant or grows linearly.
Whilst, as summarised above, some general lower bounds have been established, no non-trivial

eneral upper bounds have yet been found. Given a general poset P , what can we say about upper
ounds on its saturation number? How fast can it grow? Is it possible to have an intricate partial
elation that forces the saturation number to grow faster than any polynomial? The aim of this
aper is to show that the answer is no: the saturation numbers have at worst polynomial growth.
ur main result is the following.

heorem 1. Let P be a finite poset, and let |P| denote the size of the poset. Then sat∗(n,P) = O(nc),
here c ≤ |P|

2/4 + 1 is a constant depending on P only.

Induced and non-induced poset saturation numbers are a growing area of study in combinatorics.
aturation for posets was introduced by Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi and Patkós [3],
lthough this was not for induced saturation. Induced poset saturation was first introduced in 2017
y Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan [4]. We briefly summarise some of the
ecent developments below, and also refer the reader to the textbook of Gerbner and Patkós [5] for
nice introduction to the area.
Determining the saturation number, even for small posets, has proven to be a difficult question.

he exact saturation number is known for only a precious few posets such as the X and Y posets [2],
hains with at most 6 sets [6], and the fork [4]. The only class of large posets for which exact
aturation numbers are known are the k-antichains, denoted by Ak. It is easy to see that a collection
f k − 1 full chains (chains of order n + 1) that intersect only at ∅ and [n] form a k-antichain
aturated family. Thus, for n large enough, we certainly have sat∗(n,Ak) ≤ (k − 1)(n − 1) + 2.
n the other direction, Martin, Smith and Walker [7] showed that for k ≥ 4 and n large enough
at∗(n,Ak) ≥

(
1 −

1
log2(k−1)

)
(k−1)n

log2(k−1) . Recently, Bastide, Groenland, Jacob and Johnston [8] showed
that sat∗(n,Ak) = (k − 1)n − Θ(k log k), and gave the exact value for n sufficiently large compared
o k.

Other posets that have received special attention are the butterfly (Fig. 1(a)), which we denote
y B, and the diamond (Fig. 1(b)), which we denote by D2. The butterfly poset is at least known

to be linear, but the upper and lower bounds differ by a constant factor. Indeed, the best known
lower bound is sat*(n,B) ≥ n + 1 as shown by Ivan in [9], while the best upper bound is currently
sat*(n,B) ≤ 6n − 10, as shown by Keszegh, Lemons, Martin, Pálvölgyi and Patkós in [1]. Even less
s known about the diamond. Martin, Smith and Walker [7] proved that

√
n ≤ sat∗(n,D2) ≤ n + 1.

he lower bound was later improved by Ivan [10] and now stands at sat∗(n,D2) ≥ (2
√
2−o(1))

√
n.

espite the simple structure of the diamond, whether its saturation number is linear is still
nknown.
2
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The proof of Theorem 1 uses the following two new key notions, ‘cube-height’ and ‘cube-width’.
or a poset P , the ‘cube-height’ is the least k such that, for some n, we can embed P into the first k+1

layers of Qn, while the ‘cube-width’ is the smallest n that makes such a ‘small height’ embedding
possible. We give formal definitions and bounds on these two notions in Section 2. The cube-height
and cube-width are designed to build a P-saturated family with bounded VC-dimension. This is
done in Section 3, where we prove Theorem 1.

Our construction could be viewed as the result of a greedy algorithm where the sets are ordered
according to size (and then arbitrarily within the layers), and an element is added to the family
as long as it does not create a copy of P in the family. Greedy algorithms have been used before
for studying poset saturation; most notably, a greedy colex algorithm was used to show a linear
upper bound for the butterfly [1]. Our result shows that ‘layer-by-layer’ greedy algorithms result in
a saturated family of size at most n|P|

2/4+1, and we note that such an algorithm has a near-linear
time complexity of OP (|Qn|(log2 |Qn|)|P|

3
) = OP (2nn|P|

3
). This follows from the fact that for any

family F , it can be decided if it is P-free in OP (|F|
|P|) time.

We end the introduction by reminding the reader about the VC-dimension of a family of sets.
We say that a family F of subsets of [n] shatters a set S ⊆ [n] if, for all F ⊆ S, there exists A ∈ F
such that A∩ S = F . In other words, {A∩ S : A ∈ F} is the power set of S. The VC-dimension of F is
the largest cardinality of a set shattered by F . The size of a family F with bounded VC-dimension
rows at worst polynomially, as shown by the following well-known result.

emma 2 (Sauer-Shelah Lemma [11,12]). If F ⊆ 2[n] has VC-dimension d, then |F| ≤

d∑
i=0

(
n
i

)
.

. Cube-height and cube-width

In this section we discuss how to ‘fit’ a given poset P into a hypercube. We do this with the
elp of cube-height and cube-width, the two new quantities mentioned above, which we bound in
erms of |P|. Given two integers h ≤ w, we denote by

(
[w]

≤h

)
the induced subposet of the hypercube

Qw consisting of all the sets of size at most h, i.e the poset Qw restricted to the first h + 1 layers,
0, 1, . . . , h.

Definition 1. For a poset P , we define the cube-height h∗(P) to be the minimum h∗
∈ N for which

there exists n ∈ N such that
(

[n]
≤h∗

)
contains an induced copy of P .

Definition 2. For a poset P , we define the cube-width w∗(P) to be the minimum w∗
∈ N such that

there exists an induced copy of P in
(

[w∗
]

≤h∗(P)

)
.

We stress that the two notions defined above are different from the usual height and width of
, that is, from the size of the biggest chain and antichain, respectively. It is easy to see that the
eight of P is always at most h∗(P) + 1, and that equality can happen (e.g. for a chain), but that is
ot always the case. Indeed, if P is the butterfly poset (Fig. 1(a)), then the height of P is 2 and its

cube-height is 3: in any hypercube, the first 3 layers are butterfly-free.
Similarly, the width and the cube-width can be very different. For example, if P is a chain of size

k, then its width is 1, but its cube-width is k− 1. Cube-width is not even a monotone property. For
example, the antichain of size

( k
k/2

)
has cube-height 1 and cube-width

( k
k/2

)
, but adding a chain of

ength k/2 which is less than all elements of the antichain gives a poset with cube-height k/2 and
ube-width k.
It is important to remark that the cube-width is not the minimal n for which the poset can be

embedded in Qn. Indeed, the cube-width of an antichain of size 20 is 20, but Q6 contains an antichain
of size 20, namely the middle layer.

We now bound the cube-height and cube-width in terms of the size of the poset.

Lemma 3. For any poset P , we have that h∗(P) ≤ |P| − 1.
We remark that the inequality in this lemma is tight, since a chain on k elements has cube-height

k − 1.
3
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Proof of Lemma 3. We prove that any poset P on k elements embeds in
(

[n]
≤k−1

)
for all n ≥ k by

nduction on k.
The base case k = 1 is trivially true since the cube-height of a poset with 1 element is 0. Let

≥ 2 and assume the claim is true for all posets of size less than k.
Let P = ({p1, . . . , pk}, ⪯), and suppose that n ≥ k. We show that P appears as an induced poset

n
(

[n]
≤k−1

)
.

Suppose first that P has a unique maximal element. After renumbering the elements as neces-
ary, we may assume that pk is the unique maximal element of P . In this case, using the induction
ypothesis, we find sets A1, . . . , Ak−1 ∈

(
[k−1]
≤k−2

)
such that they induce a copy of the poset P \ {pk}.

ow let Ak = [k − 1] and observe that A1, . . . , Ak induce a copy of P in
(

[n]
≤k−1

)
. Indeed, Ai ⊊ Ak for

ll i ≤ k − 1 since Ak has size k − 1, while |Ai| ≤ k − 2 for all i ≤ k.
Suppose now that P does not contain a unique maximal element. We construct the sets

1, . . . , Ak as follows: for any i, j ∈ [k], i ∈ Aj if and only if pi ⪯ pj. We observe that all constructed
ets are subsets of [k] ⊆ [n] and the size of each Ai is the number elements less than or equal to pi
including pi), which is at most k − 1 since P has no unique maximal element. It remains to argue
hat {A1, . . . , Ak} induces a copy of P in Qn.

If pi ̸⪯ pj, then Ai ̸⊆ Aj since i ∈ Ai \ Aj. On the other hand, if pi ⪯ pj, then ℓ ∈ Ai implies pℓ ⪯ pi,
which implies pℓ ⪯ pj by transitivity. Therefore, ℓ ∈ Aj, which shows that Ai ⊆ Aj, as required. □

Note that the proof above gives a simple algorithm for constructing an embedding.
In the lemma above, we embedded P into Q|P|. This cannot be improved in general, as seen in

the following example. Let Pt be the poset consisting of t antichains A1, . . . ,At of size 2, where we
further impose that any element of Ai is less than any element of Aj for all i < j. Now, 2t = |Pt | and
by induction on t it follows that Pt does not embed into Q2t−1. Indeed, since everything below one
of these antichains is a subset of both of its elements, each Ai must use at least two new elements
of the ground set. Thus, this poset can be embedded in Q2t , but not in Q2t−1.

We say that a collection of sets A1, . . . , Ak ⊆ [n] forms an optimal cube-height embedding of P
if they are pairwise distinct and induce a copy of P in

(
[n]

≤h∗(P)

)
. By the definition of h∗(P) such

an embedding exists, and its ground set is A1 ∪ · · · ∪ Ak, which has size at most h∗(P)k, thus we
immediately get the following corollary.

Corollary 4. For any poset P , w∗(P) ≤ h∗(P)|P| ≤ |P|
2.

This corollary can immediately be strengthened by noting that we only need to take the union
over the maximal elements in the embedding, so w∗(P) is bounded by h∗(P) times the number of
maximal elements. Since the number of maximal elements is bounded by the size of the largest
antichain in P , denoted by w(P), this gives the following bound

w∗(P) ≤ h∗(P)w(P).

Whilst Corollary 4 is enough for us to prove that sat*(n,P) = O(n|P|
2
−1), proving Theorem 1

requires a stronger bound on w∗(P), which is given by the following lemma.

Lemma 5. For any poset P , we have that w∗(P) ≤ |P|
2/4 + 2.

In order to prove Lemma 5 we will make use of Lemma 2.2 from [2], which we state below for
completeness.

Lemma 6 ([2], Lemma 2.2). Let F ⊆ 2[n] be such that for every i ∈ [n] there exist two elements
A, B ∈ F such that A \ B = {i}. Then |F| ≥ 2

√
n − 2.

The next proposition tells us that any optimal cube-height embedding has the property stated
n Lemma 6. We remark that this property in itself may be of independent interest, as explained in
he final section.

roposition 7. Let P be a poset and let A1, . . . , Ak ∈
(
[w∗(P)]
≤h∗(P)

)
be distinct sets that induce a copy of

P . Then for all a ∈ [w∗(P)], there exist i, j ∈ [k] such that A \ A = {a}.
i j

4
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Proof. Suppose there exists a ∈ [w∗(P)] such that there does not exist i, j ∈ [k] with Ai \ Aj = {a}.
By relabelling as necessary, we may assume that a = w∗(P), which we denote by w∗ for clarity.
We now replace Ai by Ai \ {w∗

} for all i ≤ k. This new family lives in
(
[w∗

−1]
≤h∗(P)

)
and we claim it still

forms a copy of P . First, notice that we do not decrease the size of the family: for that to happen
there would have to be distinct Ai, Aj such that Aj = Ai ∪ {w∗

}, but that would immediately imply
Aj \Ai = {w∗

}, a contradiction. We are left to show that comparability and incomparability relations
are preserved. Let Ai, Aj be such that Ai ⊆ Aj. Then Ai \ {w∗

} ⊆ Aj \ {w∗
}, as required. Finally, let Ai

and Aj be incomparable, and assume that Ai\{w∗
} ⊆ Aj\{w∗

}. This implies that w∗
∈ Ai and w∗ /∈ Aj,

and consequently Ai \Aj = {w∗
}, a contradiction. Therefore, Ai \{w∗

} and Aj \{w∗
} are incomparable,

and we have indeed shown that the new family forms an induced copy of P . However, this new
family lives in

(
[w∗

−1]
≤h∗(P)

)
, contradicting the definition of w∗. □

We are now ready to prove the stronger upper bound on w∗(P).

Proof of Lemma 5. Suppose F = {A1, . . . , Ak} forms an optimal cube-height embedding of P in
Qw∗(P). By Proposition 7, F ⊆ 2[w∗(P)] is a family of sets such that, for every a ∈ [w∗(P)], there exist
two sets Ai, Aj ∈ F with Aj \ Ai = {a}. Lemma 6 then implies that |P| = |F| ≥ 2

√
w∗(P) − 2, and

earranging w∗(P) ≤ |P|
2/4 + 2. □

. Proof of the main result

In this section we prove our main result, Theorem 1. Given a poset P and n large enough, we
ill construct a P-saturated family in Qn of size at most 2nw∗(P)−1 which, combined with the bound
n the cube-width from the previous section, achieves the claimed result.

roof of Theorem 1. Let h∗
= h∗(P), w∗

= w∗(P), and assume n ≥ 2w∗. Let F0 be the family
onsisting of the first h∗ layers, or in other words, all the elements of size at most h∗

− 1. By the
efinition of the cube-height, the family F0 does not contain an induced copy of P . We now extend
his family to a P-saturated family in an arbitrary fashion. Let F be this resulting family. The crucial
roperty of this family is the following.

laim 8. The VC-dimension of F is less than w∗.

roof. Suppose towards a contradiction that F shatters a set S of size w∗. By definition, this means
hat L = {A∩S : A ∈ F} is the power set of S, and it is isomorphic to Qw∗ . Since w∗ is the cube-width
of P , we can find a copy of P in L such that all sets have size at most h∗. For simplicity, we call
this copy P .

Let M1, . . . ,Ms be the sets in this copy of P that have size exactly h∗ – they are subsets of S by
onstruction. Let P ′

= P \ {M1, . . . ,Ms}. Since we have removed all elements of P of maximal size,
he height of P ′ is less than that of P (i.e. h∗(P ′) ≤ h∗(P) − 1), and P ′ is embedded in the first h∗

layers. Hence, the subposet P ′ is contained in F0 ⊆ F .
Since each Mi is a subset of S, we can find Ai ∈ F such that Ai∩S = Mi for all i ≤ s. Note that this

implies that |Ai| ≥ h∗ for all i ≤ s, and so no Ai appears in P ′. We now show that P ′
∪ {A1, . . . , As}

is an induced copy of P in F , which will yield the desired contradiction.
First, if B ∈ P ′ is incomparable to Mi, then B is also incomparable to Ai. This is because if B is a

subset of Ai, then it is also a subset of Ai ∩ S = Mi, a contradiction. Conversely, if B ∈ P ′ is a subset
of Mi = Ai ∩ S, then it is a subset of Ai, too. We also have that Ai and Aj are incomparable for i ̸= j
as they are incomparable when restricted to S. Finally, Ai can never be a subset of B ∈ P ′, since
Ai ∩ S = Mi is not a subset of B ∩ S = B.

We conclude that P ′
∪ {A1, . . . , As} is an induced copy of P in F . This gives a contradiction,

proving that the VC-dimension of F is strictly less than w∗, as desired. □

Combining Lemma 2 and Claim 8, we conclude that, as n ≥ 2w∗,

sat∗(n,P) ≤ |F| ≤

w∗
−1∑ (

n
i

)
≤ w∗

nw∗
−1

(w∗ − 1)!
≤ 2nw∗

−1.
i=0

5
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Here we have used that m
(m−1)! ≤ 2 for all m ∈ N, and that, since n ≥ 2w∗, the largest binomial

coefficient in the above sum is
( n
w∗−1

)
. Finally, Lemma 5 tells us that w∗

≤ |P|
2/4+2, which proves

Theorem 1. □

4. Concluding remarks and further work

A first very natural question is: how small can the cube-width be? The antichain shows that
w∗(P) may be as large as |P|. However, for all the posets we have considered, the cube-width is
always at most the size of the poset. We conjecture that this has to be true in general.

Conjecture 9. For any finite poset P , w∗(P) ≤ |P|.

Since we proved that sat*(n,P) = O(nw∗(P)−1), Conjecture 9 would imply that sat∗(n,P) =

O(n|P|−1). That upper bound seems the natural threshold for our VC-dimension approach and indeed
our construction may yield families of such a size (e.g. for the chain).

To conclude the paper, we expand on perhaps one of the most surprising phenomenon we
observed in our work. We say that a family F ⊊ Qn separates [n] if for every i ∈ [n] there exist
two sets A and B in F such that A \ B = {i}. Freschi, Piga, Sharifzadeh and Treglown [2] showed
that if the saturation number of a poset P is unbounded, then any induced P-saturated family
separates [n] (and therefore is of size Ω(

√
n)). On the other hand, in Proposition 7, we proved that

every optimal cube-height embedding separates its ground set. We also note that Keszegh, Lemons,
Martin, Pálvölgyi and Patkós [1] arrived at their log2(n) lower bound via a weaker ‘separability’
roperty of P-saturated families. This allowed them to build a complete graph on n vertices covered
y complete bipartite graphs, each of these corresponding to exactly one set in the family. Their
ower bound then follows since log2(n) is the biclique cover number for the complete graph on n
ertices.
It seems that poset saturation and separability properties are in some sense deeply interlinked.

n view of this, we feel that improvements towards Conjecture 9 may yield ideas for improvements
n the general

√
n lower bound, or vice versa.
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