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ABSTRACT

This work shows how the probability density function (PDF) of the turbulentvelocity fluctuation can be estimated from the deconvolution
of ensemble averaged cross-correlation and auto-correlation functions of PIV recordings. Once the PDF is known, the mean displacement,
the Reynolds stresses as well as higher order moments can reliable be estimated. The approach was tested on synthetic PIV images
and the results are compared to those obtained by standard window correlation as well as by deconvolution of Gaussian fit functions.
The effect of the number of images pairs, the digital particle image size, and the shape of the PDF on the random error of the estimated
moments was investigated. It was found that the developed method can also handle complex shaped PDF’s like an asymmetric peak or
two separated peaks. The new approach is also applied to evaluate an experimental data set in order to demonstrate its suitability for
real flows.

1. INTRODUCTION

PIV has become a well established measurement technique for non-intrusive determination of velocity distributions in transparent
fluids. Due to the two-dimensional or three-dimensional results, this measurement technique reveals fundamental information about
turbulent structures which could not be analyzed with point-wise methods like hot wire anemometers or laser Doppler anemometers.
Besides instantaneous velocity fields, PIV also allows for the determination of flow statistics like the mean velocity distribution or
Reynolds stress distributions. Such flow statistics are very important for the comparison of different experiments or for the validation
of numerical methods. For a sufficient number of statistically independent velocity fields the mean velocity components〈ui〉, the
Reynolds stresses〈u′i ·u

′
j〉 and higher order moments, such as〈u′i ·u

′
j ·u

′
k〉, can be determined from the individual velocity fields~un (~x):

〈

u′i ·u
′
j · . . .

〉

=
1
N

N

∑
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(

ui,n−〈ui〉
)

·
(

uj,n−〈uj〉
)

· . . . (1)

Where the mean velocity components〈ui〉 are computed as follows:

〈ui〉=
1
N

N

∑
n=1

ui,n (2)

N andn are the total number of vector fields and the corresponding control variable, respectively. All statistics computed from Eq. 1
have the same spatial resolution as the original vector fields. Thus, in the case of strong gradients combined with insufficient spatial
resolution, the results are biased. Furthermore, the results are spatially low-pass filtered due to the finite interrogation-window size,
as discussed in detail in [4] and [8]. In order to improve the spatial resolution and to overcome the fundamental problem of low-pass
filtering, ensemble-correlation PIV evaluation [6, 11] combined with correlation-peak analysis methods [1, 2, 8, 10] can be applied to
determine the velocity’s PDF. The authors have shown that the mean velocity and Reynolds stresses can be more precisely estimated
from the PDF rather than from an ensemble of velocity vector fields [8]:

〈

u′i ·u
′
j · . . .

〉

=
∫

PDF·
(

u′i ·u
′
j · . . .

)

d~u (3)

The question, which is in the focus of this work, is: How can the PDF reliably be determined from the correlation function in order to
estimate higher order moments? To answer this question, two different methods for estimating the PDF are discussed in Sec. 2. Sections
3 illustrate the application of these methods for the evaluation of synthetic PIV data and compares the results with those of standard
window correlation methods based on Eq. 1. It will be shown that the direct deconvolution of the cross-correlation function with the
auto-correlation function results in reliable values for higher order moments. Section 4 analyzes the effect of different parameters on the
accuracy of the estimated moments and Sec. 5 demonstrates the suitability ofthe developed approach for the evaluation of experimental
PIV data.



2. ESTIMATING THE VELOCITY’S PROBABILITY DENSITY FUNCTION

Ensemble-correlation PIV evaluation methods, like averaged window-correlation [6] or single-pixel ensemble-correlation [11] are well
suited to determine the two-dimensional mean velocity distribution with high spatial resolution. On the other hand, these techniques
do not yield instantaneous vector fields, from which statistics can be estimated. Thus, Eq. 1 and 2 cannot be applied. Several works,
including [1, 2, 8, 10], showed that the velocity’s probability density function is trapped in the ensemble-averaged correlation function.
Since the correlation functionC is the convolution (indicated by⊗) of the PDF and the auto-correlation functionR

C = R⊗PDF (4)

the deconvolution ofC with R yields the PDF, theoretically.

One approach to determine the PDF is to approximateR andC by fit functions and to perform the deconvolution analytically. Using
Gaussian functions forR andC with circular and elliptical cross sections, respectively, allows for the reconstruction of the PDF with
relatively low mathematical effort. This approach is well suited to estimate Reynolds stresses, as outlined in [8]. For a Gaussian PDF
with an elliptical cross section (major axisPX , minor axisPY) and an angle of rotationα

PDF =
8

π ·PX ·PY
· exp

[

−
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cosα · (X −∆X)−sinα · (Y −∆Y )
PX

)2

·8−

(
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)2

·8

]

(5)

the Reynolds stresses can be calculated from
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as discussed in detail in [8]. WherePX,Y andpx,y are the PDF’s cross section parameters on the image plane and on the measurement
plane, respectively. The major difficulty of this method is that it requires prior knowledge about the PDF. Using complex fit functions
can lead to a good representation of the correlation functions, but it mightalso result in mathematically challenges for the analytical
deconvolution or even in ill-posed problems. The Gaussian with elliptical cross section is a compromise between complexity and
suitability, which works well for the estimation of Reynolds stresses.

Another approach to extract the PDF is the direct deconvolution of the discrete correlation functionsR andC. In order to find the best
approximation for the discrete PDF, the sum of squared errors (SSE)

SSE= ∑
∆X

∑
∆Y

(R⊗PDF−C)2 (9)

must be minimized. Since the probability is larger or equal zero for all velocities,

PDF≥ 0 forall ∆X ,∆Y (10)

this physical condition is used in the optimization procedure. Figure 1 showsan example for the cross-correlation function, the
corresponding auto-correlation function and the estimated PDF. From thediscrete PDF higher order moments can be extracted as
follows:
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Figure 1 : Example of a cross-correlation function (a) and a corresponding auto-correlation function (b) computed from synthetic PIV
images using ensemble-averaged window correlation. The PDF is estimated via direct deconvolution of the discrete functions (c).



The major advantage of this approach is that any shape of the PDF can bereconstructed without previous knowledge about it. The
method works for an unsymmetrical PDF as well as for a PDF with separated peaks, as will be demonstrated in the following sections.

3. SYNTHETIC EXAMPLE

The estimation of the mean displacement, the Reynolds stresses and highermoments is now applied to synthetic PIV images. Only
synthetic data gives full control of all relevant parameters, as discussed in detail in [5]. Therefore, this examination is a necessary step
for the validation of the developed approach.

In order to analyze the capability to estimate higher order moments an asymmetric PDF was simulated. 10,000 PIV image pairs,
1024×1024 px in size, were generated. The maximum intensity of individual particle images and the signal to noise ration were 214

and 100 : 1, respectively. The simulated digital particle image diameterD, which is defined as the full width at 1/e2 of the maximum
intensity (4 times the standard deviation), varies from left to right while the shape of the PDF changes from top to bottom. The fraction
of illuminated area was set to 25%, corresponding to 0.08 or 0.02 particle images per pixel forD = 2 or 4 px, respectively. To account
for the discrete nature of digital images, the intensity for each pixel of the particle images was computed from an integral over the pixel
size, as discussed in [9]. The pixel size, on the other hand, was assumed to be equal to the pixel grid spacing, simulating a sensor fill
factor of 1.

A PDF consisting of two Gaussian was simulated. Both have a circular crosssection and a diameter (4 times the standard deviation)
of p = 2.5 px, one Gaussian is centered at(∆X ,∆Y ) = (0,0) and the second one is located at(∆X ,∆Y ) = (s,s/2). The probability of
the first Gaussian is twice as high as for the second one. The parameters varies from−5 at the top of the images to+5 at the bottom
of the images, whildeD changes from 1 px at the left side to 5 px at the right side of the images. Figure 2 shows different simulated
PDF’s and the corresponding cross-correlation functions for two different digital particle image diameters. The correlation functions
were computed from averaged window-correlation using a commercialsoftware (DaVis by LaVision) with a interrogation window size
of 16×16 px and 50% overlap.
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Figure 2 : Synthetic test case with varying PDF and particle image size. Top row: different simulated PDF’s. Middle and bottom row:
cross-correlation function for a digital particle image diameter ofD = 2 px andD = 4 px, respectively.

The results for the estimated horizontal mean displacement, the in plane Reynolds stresses and exemplary higher order moments are
shown in Fig. 3. The sub-figures show the comparison between the deconvolution of the discrete functionsR andC, the deconvolution
of Gaussian fit functions as well as the results of standard window correlation. Since individual particle images in the synthetic PIV
images were uncorrelated, the simulated turbulent structures are infinitelysmall in size. Due to this, the window correlation approach
acts as a low-pass filter and leads to an underestimation of the velocity fluctuations, as discussed in [8]. Furthermore, since only the
highest correlation value is cosidered even the mean displacement is biased for a peak separation|s|> 1 px.

The Gaussian fit function combined with the analytical deconvolution is well suited to estimate the mean displacement and the Reynolds
stresses in the case of small peak separation (s < 3 px). However, as soon as the peaks in the cross-correlation functionstart to separate,
the estimation of all statistics is strongly biased. Furthermore, due to the symetry of the fit function some moments (

〈

u′3
〉

,
〈

u′2 · v′
〉

, ...)
are always estimated to be zero.



The deconvolution of the discrete cross-correltation and auto-correlation function is the only tested approach that can handle a PDF
with separated peaks. The mean displacement, the Reynolds stresses aswell as higher order moments are estimated without significant
bias errors, as can be seen from the results in Fig. 3.
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Figure 3 : Moments of different orders estimated with the proposed deconvolutionmethod, from the deconvolution of Gaussian fit
functions, and from instantaneous velocity fields. The simulated values are indicated by the red solid line.

4. PARAMETERS THAT EFFECT THE UNCERTAINTY OF THE PDF ESTIMATION

In the previous section it was shown that the direct deconvolution of the cross-correlation function and the auto-correlation function
allows for the estimation of the PDF and thus, for higher order moments. Inorder to analyze the sensitivity of this new approach, more
synthetic PIV images with varying properties were generated and evaluated.

The first parameter which was altered is the number of image pairs. A totalnumber of 100,000 image pairs, 128×128 px in size, with
a digital particle image diameter ofD = 2 px was generated. The simulated PDF consist again of two Gaussian andwas constant over
the image area. Both Gaussian have a diameter ofp = 2.5 px, one is centered at(∆X ,∆Y ) = (0,0) and the second one is located at



(∆X ,∆Y ) = (2.5px,1.25px). The probability of the first Gaussian is twice as high as for the second one. The cross correlation and the
auto correlation were computed with averaged window correlation by usingagain a commercial software (DaVis by LaVision) for a
subset of the images and the deconvolution was applied to the discrete functions. The interrogation windows were 16×16 px in size
with 50% overlap. Figure 4 shows the relative standard deviation of estimated moments (normalized with the simulated values) with
respect to the number of image pairs. As expected, the random error decreases with increasing number of images. It can be seen that
the higher the order of the estimated moment the more images are requiredin order to achieve the same accuracy. While 100 double
images are sufficient to estimate〈u′ · v′〉 with an random error of 5% for the tested interrogation-window size, morethan 1,000 image
pairs are needed to estimate

〈

u′4
〉

with 5% random error.
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Figure 4 : Effect of the number of synthetic image pairs on the rms uncertainty of the estimated moments of different orders.

The second tested parameter is the digital particle image diameterD. Another set of 10,000 synthetic images, 1024×1024 px in size,
was generated: The simulated PDF was constant over the image area andconsists of two Gaussian as before. The particle image size
was varied from left to right from 1.5 px up to 10 px. The illuminated area was constant (25%) causing a reduced number of particle
images for regions with largerD. Figure 5 shows the estimated standard deviation normalized with the simulatedvalues for different
moments. It can be seen that the random error increases with increasing particle image size. Thus,D should be between 1.5 px and 5
px in order to achieve reliable results.
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Figure 5 : Effect of the digital particle image diameterD of synthetic images on the rms uncertainty of the estimated moments of
different orders.

Another important parameter, which was investigated, is the shape of the PDF. A set of 10,000 synthetic images, 1024×1024 px in
size, was generated: The simulated PDF consists of two Gaussian separated by 2.5 px in horizontal and 1.25 px in vertical direction,
as before. However, the diameterp of the Gaussian varied from left to right between 0 px and 5 px. A particle image size ofD = 2 px
was simulated. The results are summarized in Fig. 6: The higher the orderof the estimated moment the larger is the random error, as
before. Furthermore, the accuracy is best for a PDF with small diameter p.

In summary, higher order moments can be estimated for all tested parameter variations. The best results are achieved for a PDF with
two Gaussian of small diameter (p < 1 px) and small particle images (1.5< D < 5). In the case of largerp or D, the number of image
pairs can be increased to achieve comparable accuracy.
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Figure 6 : Effect of the shape of the PDF of synthetic images on the rms uncertaintyof the estimated moments of different orders.

5. EXPERIMENTAL EXAMPLE

In order demonstrate the suitability of the developed approach for experimental PIV images, a real flow experiment over periodic hills
was analyzed. The experiments were performed in a water tunnel at TUMunich at a Reynolds number of Reh = 8,000, based on the hill
height. Details about the setup can be found in [3] and [7]. The results in Fig. 7 were estimated from the shape of sum-of-correlation
functions using a final interrogation window size of 8×8px computed from 24,000 double frame PIV images 2,560×1,100px in size.
The moments in the figure are normalized by the bulk velocity, which is the vertically averaged horizontal mean velocity component at
x = 0.

The turbulent structures in the flow are of finite size, unlike the one in the previous simulations. Furthermore, the flow is well resolved,
the PIV images are of good quality and the particle image density was relatively high. Thus, standard window correlation can capture
a large fraction of the velocity fluctuations. The window-correlation results(not shown here) have the same overall structure as those
using the deconvolution approach from Fig. 7. However, some of the higher order moments differ between the two approaches. So far
it is unclear which of both methods reveals more accurate results. To identify the source of the remaining bias error more research is
required. Two effects that are believed to be able to affect the accuracy are velocity gradients and image noise.

6. CONCLUSIONS

The developed approach, which estimates the velocity’s PDF from the deconvolution of the discrete cross-correlation function and the
auto-correlation function, was shown to be able to reliably estimate higher order moments. The comparison of the results achieved with
standard window correlation, deconvolution of analytical fit functions and of the discrete correlation functions revealed that only the
deconvolution of the discrete correlation functions can handle complex shaped PDFs with an asymmetric peak or two separated peaks.
The investigation of the effect of different parameters by using synthetic PIV images allows to find optimized conditions. It was shown
that the approach works well for a digital particle image diameter between 1.5 and 5 px. The image number has a strong impact on the
random error of the estimated stresses. Depending on the order of the moment of interest and on the desired accuracy a few hundred
up to several thousand PIV image pairs are required, which is easy to acquire and to evaluate with modern equipment.

The developed method is especially beneficial in the case of thin shear layers combined with low optical magnification, where the
turbulent structures appear small compared to the interrogation window size that can be applied. Here, standard window correlation can
only capture a fraction of the PDF due to spatial low-pass filtering, while the averaged correlation functions still contain the full PDF.
The deconvolution approach is very general and can be applied to any averaged correlation function under the following conditions: (1)
Cross-correlation and auto-correlation function must be sufficiently smooth for the deconvolution procedure, (2) cross-correlation and
auto-correlation function must be computed with the same window weighting function and (3) the size of the correlation plane must be
large enough to contain the full correlation functions, such that the full PDF can be extracted. To further increase the spatial resolution
the method can be applied as well to correlation functions computed single-pixel ensemble-correlation.

In order to develop a tool that can be used in a standard PIV software, further investigations are needed to analyze the effect of image
noise, the correlation window size, velocity gradients and other parameters on the accuracy of the estimated moments. Nevertheless, it
was demonstrated that the approach has the potential to compensate for bias errors which occur by using standard evaluation tools.
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Figure 7 : Exemplary moments of different order for a water flow over periodichills at a Reynolds number of Reh = 8,000, based on
the hill height.
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