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Self-Calibration of Acoustic Scalar and Vector
Sensor Arrays

Krishnaprasad Nambur Ramamohan, Student Member, Sundeep Prabhakar Chepuri, Member, IEEE, Daniel
Fernandez Comesana, and Geert Leus, Fellow, IEEE

Abstract—In this work, we consider the self-calibration prob-
lem of joint calibration and direction-of-arrival (DOA) estimation
using acoustic sensor arrays. Unlike many previous iterative
approaches, we propose solvers that can be readily used for both
linear and non-linear arrays for jointly estimating the sensor
gain, phase errors, and the source DOAs. We derive these algo-
rithms for both the conventional element-space and covariance
data models. We focus on sparse and regular arrays formed
using scalar sensors as well as vector sensors. The developed
algorithms are obtained by transforming the underlying non-
linear calibration model into a linear model, and subsequently
by using convex relaxation techniques to estimate the unknown
parameters. We also derive identifiability conditions for the
existence of a unique solution to the self-calibration problem.
To demonstrate the effectiveness of the developed techniques,
numerical experiments, and comparisons to the state-of-the-art
methods are provided. Finally, the results from an experiment
that was performed in an anechoic chamber using an acoustic
vector sensor array are presented to demonstrate the usefulness
of the proposed self-calibration techniques.

I. INTRODUCTION

The problem of estimating the direction-of-arrival (DOA)
of multiple far-field events impinging on an array of spatially
distributed sensors has received considerable interest in various
fields including communications, radio astronomy, acoustics,
and seismology. Usually scalar sensor arrays, such as acoustic
pressure sensor (APS) arrays, are used for DOA estimation.
In recent times, transducers that measure vector quantities are
becoming practically feasible [1], enabling new processing
capabilities. An acoustic vector sensor (AVS) is such a device
that is capable of measuring both the acoustic pressure and
particle velocity. Unlike an APS, a single AVS can measure
the DOA of a far-field event [2] and arrays of such AVSs have
proven to have distinct advantages compared to conventional
microphone arrays [3]. In practice, all sensors and their arrays
are highly sensitive to model errors [4]. Among those model
errors, the gain and phase mismatches between sensors, known
as calibration errors are the dominant ones that degrade the
DOA estimation results. Those are the focus of this work.

Many advanced subspace based algorithms, e.g., multiple
signal classification (MUSIC) [5], minimum variance distor-
tionless response (MVDR) [6], and estimation of signal param-
eters via rotational invariance technique (ESPRIT) [7], have
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been developed for DOA estimation. Further sparse recovery
techniques have also been widely used, whenever only a few
sources are present [8]. These traditional algorithms require
more physical sensors than the number of sources and use the
data acquired in the element-space domain (i.e., at the output
of the sensor elements) or in the covariance (or co-array)
domain. Also nowadays, to reduce sensing and data processing
costs, sparse sensing methods are gaining attention [9]. One
can resolve and estimate DOAs of as many as O(M2) sources
using only M physical elements by smartly and irregularly
placing the sensor elements. Such sensor placements are
generally referred to as sparse arrays [10]–[12]. Most of the
discussed algorithms developed for APS arrays can be used
directly or adapted for equivalent AVS arrays as well [2], [3].

DOA estimates obtained from these aforementioned stan-
dard algorithms in the presence of calibration errors are
severely degraded [4]. These errors originate from the variabil-
ity in the analog electronics and the manufacturing technology
across sensors in the array. They affect both the signal-of-
interest and the noise part of the measurement data [4], [13].
On the other hand, it is also possible to have calibration
errors that only affect the signal part of the measurements [4],
whenever there are position or orientation errors of the sen-
sors (channels) in the array for instance or perturbations in
the sensors’ gain and phase patterns. Usually labor intensive
and expensive calibration procedures are applied to correct for
these mismatches [14]–[16], which are impractical for large
number of sensors. Furthermore, such calibration errors vary
with time and changes in the environment, and as a result,
the deployed sensors require periodic re-calibration. In such
scenarios, self-calibration methods are inevitable. The term
self-calibration refers to using the information collected by
the array to simultaneously estimate the calibration errors
and source DOAs without any reference sources with known
direction and/or pre-defined waveform.

A. Self-calibration methods

Self-calibration techniques for scalar sensor arrays in the
presence of gain and phase uncertainties between sensors have
been widely studied [13], [17]–[21]. It is a non-linear estima-
tion problem with unknown calibration and array manifold
matrix. Specific conditions should be satisfied such that they
are independently identifiable [17], [19]. In some cases it is
impossible to independently resolve both of them [17], [22].

Maximum likelihood (ML) and maximum a posteri-
ori (MAP) based gain and phase estimation algorithms have
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been proposed in [23], [24] to solve the self-calibration
problem. Although both ML and MAP based estimators are
asymptotically efficient, they are computationally expensive
and not suitable for practical applications. In contrast, there
are also computationally friendly self-calibration techniques
which can be broadly classified into two categories: geometry-
dependent and geometry-independent approaches.

The first kind of self-calibration techniques are developed
for specific/regular array geometries, where spatial redundan-
cies are used to eliminate the array manifold information in
order to estimate the calibration errors. Specifically, in [13],
a self-calibration procedure for scalar sensor arrays arranged
in a uniform linear array (ULA) configuration was presented,
where the Toeplitz structure of the data covariance matrix
was utilized. Extensions and adaptations of this self-calibration
approach are presented in [18], [25]–[27]. A self-calibration
technique based on ESPRIT for an APS ULA is derived
in [17].

The second kind of self-calibration approaches are appli-
cable to arbitrary array geometries where the array manifold
and calibration matrices are estimated mostly with iterative
techniques [19], [20], [28]. However, these approaches suffer
from the choice of the initial estimate of the calibration errors
and the algorithm might only converge to a local minimum
leading to a sub-optimal solution.

Aforementioned two categories of self-calibration ap-
proaches are developed specifically for scenarios with more
sensors than sources. Nonetheless, with the increased attention
on sparse sensing, a self-calibration algorithm for sparse arrays
was proposed in [29], where a sub-optimal method was used
to estimate the phase errors.

On the other hand, apart from the DOA estimation tech-
niques proposed in [30]–[34], not much attention is given
to the self-calibration problem for AVS arrays. It may seem
possible to adapt the second category of aforementioned self-
calibration techniques for vector sensor arrays. However, due
to the dissimilarities in the array manifold, the conditions
for independently identifying the calibration errors and source
DOAs are different and are not yet available.

In summary, we can observe that existing self-calibration
approaches either require specific sensor placement to obtain
an optimal solution or converge to a sub-optimal solution
without geometry constrains. So in this work we try to address
the issues associated with existing techniques by proposing
two non-iterative one-step self-calibration algorithms that are
array geometry independent, and applicable to both APS
and AVS arrays. Furthermore, the proposed self-calibration
technique using the co-array measurement model is also
applicable to sparse arrays, whose preliminary results are
presented in [35]. In our work, we leverage tools from sparse
recovery techniques and draw inspiration from [21], which
deals with the self-calibration problem for linear models, to
decouple the calibration parameters from the other unknowns.
However, the model we deal with is not linear anymore as the
source directions are not known. In essence, the main problem
of interest in this work is self-calibration with a non-linear
measurement model, where we assume that the calibration
errors are mainly originating from uncertainties in the analog

electronics and sensor elements. Additionally, we also derive
the identifiablity conditions for a unique solution to exist while
using AVS and sparse APS arrays.

B. Our contributions

This work introduces novel self-calibration methodologies
combining traditional array processing theory with sparse re-
covery techniques. The validity of the proposed self-calibration
algorithms is studied by considering the measurement model
where the calibration errors affect both the signal-of-interest
and noise. Further the adaptation of the proposed approaches
to the measurement model where the calibration errors affect
only the signal component of the data is also discussed. The
main contributions can be summarized as follows:

• We develop non-iterative novel self-calibration algorithms
that are applicable for both linear and non-linear arrays
based on both the element-space and co-array data mod-
els, where the latter data model is even useful when there
are more sources than sparsely placed sensors.

• We derive conditions to ensure a unique solution for
estimating the DOAs and calibration errors for both AVS
and sparse APS arrays. This important aspect is still not
considered in the existing literature.

• We demonstrate the validity of the proposed approaches
via numerical simulations as well as an experimental
study. The latter shows the effectiveness of the introduced
self-calibration techniques for an array of 4 AVSs mea-
sured in an anechoic chamber.

C. Notation and outline

Upper (lower) bold face letters are used for matrices (col-
umn vectors); (·)∗ denotes conjugate, (·)T denotes transpose
and (·)H denotes conjugate transpose; ⊗ denotes the Kro-
necker product, ◦ denotes the Khatri-Rao product and ⊙
denotes the Schur-Hadamard (element-wise) product; E{·} de-
notes the expectation operator; tr(·) denotes the trace operator
and In is the identity matrix of dimension n.

The detailed outline for this paper is as follows. In Sec-
tion II, we present the measurement model with calibration
errors, and the problem statement of estimating both the
calibration errors and the DOAs. In Section III, we present the
identifiability conditions for uniquely estimating the calibra-
tion errors and the source DOAs. In Section IV and Section V,
the proposed calibration algorithms based on the element-
space and the co-array domain measurement data model
are presented, respectively. The simulation and experimental
results of the proposed calibration algorithms are discussed in
Section VI and Section VII, respectively.

II. PROBLEM STATEMENT

Consider a linear array of M sensors with Q channels,
where Q = M for APS arrays and Q = 3M for AVS arrays.
We are interested in estimating the azimuth directions of N
narrow-band sources, denoted by θ = [θ1, θ2, . . . , θN ]T with
θn ∈ [0, π] for n = 1, . . . , N , where the azimuth directions
are measured with respect to the phase reference of the array.
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Each of the considered Q channels has a different receiver
gain and phase response, which are not known. We refer to
the unknown receiver gains and phases as calibration errors,
and for the ith channel it is denoted as gi = αie

jϕi with αi

and ϕi being the gain and phase mismatch, respectively. We
collect the calibration errors in the diagonal matrix diag(g)
with g = [g1, g2, . . . , gQ]

T . Let us also define the vectors
α = [α1, α2, . . . , αQ]

T and ϕ = [ϕ1, ϕ2, . . . , ϕQ]
T .

Under the narrow-band assumption [5], the element-space
signal, x(t), can be modeled as [13]

x(t) = diag(g) [A(θ) s(t) + n(t)] ∈ CQ×1, (1)

where

A(θ) = [a(θ1) · · · a(θN )] ∈ CQ×N

is the array manifold matrix, the source signals of wavelength
λ are stacked in the vector s(t) ∈ CN×1 and the receiver
noise vector is given by n(t) ∈ CQ×1. Here, we assume
that both s(t) and n(t) are derived from an independent
and identically distributed (i.i.d.) Gaussian distribution. Let us
define p = [pT

1 ,p
T
2 , . . . ,p

T
M ]T , where pm = [pm1, pm2]

T

is the position of the mth sensor in the array defined in
terms of wavelength (λ) of the observed signal. In particular
for a linear array the position vector of the mth sensor is
modified as pm = [pm1, 0]

T . For the sake of simplicity, we
refer the mth sensor position within a linear array just as pm.
Further Without loss of generality (w.l.o.g.), we consider the
first sensor with p11 = p12 = 0 as the phase reference of
the array. The spatial signature (or the array steering vector)
for the nth source in the direction described by the vector
u(θn) = [cos(θn) sin(θn)]

T with respect to the first sensor of
the APS array with M sensors is given by

aAPS(θn) =
[
ej2π(pT

1 u(θ1)), . . . , ej2π(pT
Mu(θn))

]T
∈ CM×1,

(2)
whereas the related array steering vector of the AVS array is
given by

aAVS(θn) =
[
1 uT (θn)

]T ⊗ aAPS(θn),

= h(θn)⊗ aAPS(θn) ∈ C3M×1. (3)

For the APS array, we have Q = M with a(θn) = aAPS(θn)
and for the AVS array we have Q = 3M channels with
a(θn) = aAVS(θn).

Usually the signal x(t) is uniformly sampled and
L snapshots are collected in the data matrix X =
[x(1),x(2), . . . ,x(L)] ∈ CQ×L to obtain

X = diag(g) [A(θ)S+N] . (4)

Here, S = [s(1), s(2), . . . , s(L)] ∈ CN×L and N =
[n(1),n(2), . . . ,n(L)] ∈ CQ×L. The covariance matrix of the
signal x(t) is Rx = E{x(t)xH(t)} ∈ CQ×Q. We assume that
the source signals s(t) are uncorrelated and have a diagonal
covariance matrix E{s(t)sH(t)} = diag(σs), which is not
known. Similarly, the noise vector has a diagonal covariance
matrix E{n(t)nH(t)} = diag(σn), which is assumed to be

known or can be estimated. Then, the covariance domain
model can be written as

Rx = diag(g)
[
A(θ)diag(σs)A

H(θ) + diag(σn)
]
diagH(g).

(5)
Here, it is assumed that s(t) and n(t) are mutually uncorre-
lated. It is also useful to express (5) in vectorized form as:

rx = diag(g∗ ⊗ g) [Aco(θ)σs + σn] , (6)

where vec(Rx) = rx and Aco(θ) = A∗(θ) ◦ A(θ) with the
subscript “co” indicating the co-array manifold. In practice,
the data matrix X is used to compute the sample data covari-
ance matrix R̂x = L−1XXH . For the sake of convenience,
henceforth, we use Rx instead of R̂x with the knowledge that
only an estimate of the covariance matrix is available.

Based on the co-array model in (6), the sensor elements
can be smartly placed irregularly along the linear axis, such
that Aco has full column rank. Usually such configuration
of linear arrays leads to sparse array design [12] allowing
one to resolve as many as O(M2) sources using M sensors.
As seen in (1) and (6), both g and θ are unknowns, and
additionally it is a non-linear estimation problem as θ exists
in the exponential terms of the array manifold matrix.

The main goal of this paper is to jointly estimate the Q
complex (i.e., 2Q real) receiver gains g and N directions θ
given X or rx. To do so uniquely, as will be discussed in
Section III, we will require a few reference sensors with known
complex receiver gains in the array.

III. AMBIGUITY AND IDENTIFIABILITY

Before presenting the calibration algorithms, in this section,
we discuss identifiability conditions under which a unique
solution for both the calibration parameters and the source
DOAs exists. The identifiability conditions for the APS arrays
by considering the element-space model (4) is presented
in [19]. We take inspiration from [19] and derive identifiability
conditions for all the remaining measurement models relevant
for both APS and AVS arrays. It should be immediately clear
that, as both diag(g)A(θ) and S (or σs) are not known
a priori, they cannot be computed uniquely as there will
be a complex (or real) scaling ambiguity. Therefore, to fix
the scaling ambiguity we perform calibration with respect to
sensor 1 at location p1 = 0, i.e., we use g1 = 1 for the
element-space data model and |g1| = α1 = 1 for the co-array
data model.

After establishing the fact that the elements of g can
only be estimated relative to the reference sensor, the next
important question that needs to be addressed is to establish
the well posedness of the self-calibration problem given the
measurement data. From the element-space data model (4), we
have 2QL nonlinear equations in N unknown DOAs, 2(Q−1)
unknown calibration parameters, and 2NL unknown source
signals. Hence, for well posedness of the calibration problem,
we require

2QL ≥ N + 2Q− 2 + 2NL ⇒ N + 2(Q− 1)

2(Q−N)
≤ L,

which is meaningful only for Q > N . Furthermore, from the
co-array data model (6), we have 2QN − N2 + 1 nonlinear
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equations1 in N unknown DOAs, 2(Q− 1) unknown calibra-
tion parameters, and N unknown source powers. Hence, for
well posedness, we require

2QN −N2 + 1 ≥ 2N + 2Q− 2 ⇒ Q ≥ N2 + 2N − 3

2(N − 1)
.

Finally, we study under which conditions we can uniquely
estimate g and θ given the measurement data. However due
to the non-linear nature of the estimation problem, it is not
straightforward to derive the identifiability conditions based on
the element-space data model (4) or co-array data model (6).
Therefore, to begin with, for linear arrays we derive sufficient
conditions for uniquely estimating g and θ based on the
assumption that diag(g)A(θ) (diag(g∗⊗g)Aco(θ)) is given,
with the knowledge that in practice only the column span of
it is available from the measurement data.

1) The element-space data model: For deriving the suffi-
cient conditions, let us define the phase of diag(g)A(θ) as

ρq(n) =
1

2π
angle

(
gq [A(θ)]qn

)
= pq cos(θn) + ϕq, (7)

for q = 1, . . . , Q and n = 1, . . . , N. Introducing ρn =
[ρ1(n), . . . , ρQ(n)]

T and defining pext := p for the APS array
and pext := 13⊗p for the AVS array, we can write the above
equation compactly as

ρn = pext cos(θn) + ϕ =
[
pext IQ

] [
cos(θn)

ϕ

]
(8)

for n = 1, 2, . . . , N . This is an under-determined system of
Q equations, which has rank Q − 1 (with ϕ1 = 0), and Q
unknowns. When N = 1, it is possible to solve (8), if another
sensor/channel’s phase error is known in the array (say w.l.o.g.
ϕ2 = 0 in addition to ϕ1 = 0). However, when N ≥ 2, we
can eliminate ϕ by considering

ρn − ρ1 = pext [cos(θn)− cos(θ1)] ,

to obtain N−1 linearly independent equations in N unknown
DOAs of the form

p†
ext (ρn − ρ1) = cos(θn)− cos(θ1); n = 2, · · · , N. (9)

The system in (9) is still underdetermined. Nonetheless, if
one of the DOAs is known (say w.l.o.g. θ1 is known) then
we can identify the remaining DOAs. This result for a scalar
sensor array (Q =M ) was presented in [19].

However, for an AVS array (Q = 3M ), the need of knowing
the direction of one calibrator source θ1 can be relaxed as
the direction information is available in the magnitude of the
element-space data model. This is a novel observation that
is not presented in the existing literature. It can be seen by
explicitly considering only the magnitude of diag(g)A(θ),
resulting in

νq(n) =
∣∣∣gq [A(θ)]qn

∣∣∣ = αq |hq(θn)| (10)

1The covariance matrix Rx is completely characterized by N + 1 real
eigenvalues and 2QN −N2 −N real parameters related to the orthonormal
eigenvectors associated to the signal subspace.

for q = 1, . . . , 3M . Here,

hq(θn) =


1, 1 ≤ q ≤M.

cos(θn), M + 1 ≤ q ≤ 2M.

sin(θn), 2M + 1 ≤ q ≤ 3M.

(11)

Let us consider the equations related to q =M +1, which are
given by

νM+1(n) = αq+1 cos(θn).

If we assume N ≥ 2, we can eliminate the unknown αq+1 to
obtain

cos(θ1) =
νM+1(1)

νM+1(n)
cos(θn).

Thus we can compute θ1 as

θ1 = arccos

(
νM+1(n)

νM+1(n)
cos(θn)

)
.

This value of θ1 can be used in (9), which eliminates the need
of knowing one of the DOAs for uniquely identifying all the
N DOAs for the AVS linear array. The array manifold matrix
A(θ) is known once all the N DOAs are computed. Then
using (7) and (10), respectively, the phase and gain errors can
be computed.

Now to check if the derived sufficient condition for the
APS linear array is also necessary, we need to show that
the solution of g and θ is not unique if we do not consider
the calibrator source. To do so, assume an M -element
APS array, and N far-field sources. For such configuration,
due to the structure of A(θ) and the nature of g, we can
have diag(g)A(θ) = diag(g ⊙ a(θ0))(A(θ) ⊙ a∗(θ0)) =
diag(g̃)A(θ̃), where generally g ̸= g̃ and θ ̸= θ̃ indicating
the non-uniqueness of the solution.

In summary, with the element-space model for a linear APS
array, irrespective of the array geometry, given N ≥ 2 and
diag(g)A(θ), the requirement of a calibrator source is a
sufficient and necessary condition for a unique solution of g
and θ to exist. In contrast, a calibrator source is not needed
for a linear AVS array.

2) The co-array data model: In contrast to the element-
space formulation, there are many self-calibration approaches
that are developed using the co-array model [13], [19], [20].
However, the conditions for the solution to exist are still not
explored. So in this section, we derive the conditions using
the co-array data model in (6) for uniquely estimating g and
θ, given diag(g∗ ⊗ g)Aco(θ). To do so, consider the phase
of diag(g∗ ⊗ g)Aco(θ) that is given by

ρpq(n) =
1

2π
angle

(
g∗pgq

(
[A∗(θ)]pn ◦ [A(θ)]qn

))
= (pp − pq) cos(θn)− (ϕp − ϕq) , (12)

for p, q = 1, · · · , Q with p ̸= q and n = 1, · · · , N.
If N = 1, we require two sensors/channels with known

phase errors. Suppose w.l.o.g. that ϕ1 = ϕ2 = 0, then we can
compute the DOA as

θ1 = arccos

(
ρ12(1)

p1 − p2

)
, (13)
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with no specific requirements for p1 ̸= 0 or p2 ̸= 0. Defin-
ing ρn = [ρ11(n), ρ12(n), . . . , ρQQ(n)]

T , we can compactly
write (12) as

ρn = Dpext cos(θn)−Dϕ =
[
Dpext −D

] [cos(θn)
ϕ

]
,

(14)
where D ∈ RQ2−Q is the difference matrix that we use
to compute the pairwise differences in (12). If N ≥ 2,
irrespective of the array geometry, the phase errors ϕ can be
eliminated by considering

ρn − ρ1 = Dpext [cos(θn)− cos(θ1)] ; ∀n = 2, . . . , N,

which can be equivalently expressed as

θn = arccos
(
(Dpext)

†
[ρn − ρ1] + cos(θ1)

)
. (15)

This is similar to the element-space version as seen in (9)
and it is underdetermined. Nonetheless for APS linear arrays,
similar to the element-space model, if one of the source DOAs
is known (say w.l.o.g. θ1 is known) then we can identify the
remaining DOAs.

For an AVS array, similar to the element-space model, the
magnitude of diag(g∗ ⊗ g)Aco(θ) also contains the direction
information. Specifically,

νpq(n) =
∣∣∣gpgq ([A∗(θ)]pn ◦ [A(θ)]qn

)∣∣∣ ,
= ψpψqhp(θn)hq(θn) (16)

for p, q = 1, · · · , 3M and n = 1, . . . , N , where we recall that
hp(θn) is as in (11). Consider w.l.o.g. the equation related to
p =M + 1 and q =M + 2, i.e.,

νM+1M+2(n) = ψM+1ψM+2 cos
2(θn).

When N ≥ 2, we can eliminate the unknown gain errors
ψM+1 and ψM+2 in the above equation by computing

cos(θ1) =

[
νM+1M+2(1)

νM+1M+2(n)
cos2(θn)

]1/2
,

which can now be used in (15) to compute the DOAs.
Once the DOAs are computed, the phase errors can be
computed from (14), with respect to one of the reference
sensors/channels in the array as the rank of D is always Q−1.
The gain errors can be computed from the amplitude relations
in (16).
Thus it can be concluded that irrespective of the array

geometry of the linear array with the co-array data model, it
is sufficient to have one phase reference sensor and one (no)
calibrator source for a linear APS (respectively, AVS) array,
for uniquely estimating g and θ when N ≥ 2 and diag(g∗⊗
g)Aco(θ) is given.

Unlike for the element-space approach, the derived suffi-
cient condition for the APS linear array using the co-array
model is not necessary. This aspect is showcased in the
subsequent discussion, with certain assumptions on the array
geometry, where we will see that using the co-array model the
solution of g and θ can be unique even if we do not consider
the calibrator source.

3) Sparse APS array based on co-array data model: In
comparison to (8), which is an under-determined system, it can
be observed that (14) is a tall system with (Q2−Q) equations
and (Q + 1) unknowns. APS linear arrays with a particular
structure in the array geometry, such as specific sparse arrays
or uniform linear arrays (ULAs) result in redundant relations
that are part of (14). Those redundancies in the structured APS
linear array allow for estimating g and subsequently θ without
the knowledge of a known calibrator source leading to another
set of sufficient conditions. This is discussed in the following
part.

From the co-array perspective of scalar sensor arrays, the
distinct elements of Dpext, as seen in (14), behave like virtual
sensor locations given by the difference set {pi − pj , 1 ≤
i, j ≤M}. Those virtual sensor locations increase the degrees-
of-freedom (DOF) of the array allowing for estimating more
sources than physical sensors, if they are placed strategically.
In order to look at the self-calibration problem for such array
configurations, let us reuse some definitions from [11].

Definition 1. (Difference co-array) For an M -element sensor
array, with pi denoting the position of the ith sensor, define
the set

D = {pi − pj}, ∀i, j = 1, 2, . . . ,M,

which allows for a repetition of its elements. We also define
the set DU , which consists of the distinct elements of the set
D. Then, the difference co-array of the given array is defined
as the array which has sensors located at positions given by
the set DU .

Definition 2. (Weight function) An integer valued weight
function w : DU → N+ is defined as

w(p) = no. of occurances of p inD, p ∈ DU ,

where N+ is the set of positive integers. The weight function
w(p) denotes the number of times p occurs in D.

The cardinality of the set DU for a given array gives the
degrees of freedom (DOF) that can be obtained from the
difference co-array associated with that array. The motivation
of sparse array design, such as the minimum redundancy
array (MRA), sparse ruler array or nested array, is to max-
imize the number of DOF of the co-array for a fixed M ,
which in other words means the value of the weight function
w(p), ∀p ∈ DU \ {0} has to be minimized. However, from
the self-calibration perspective, a value of the weight function
w(p), ∀p ∈ DU \{0} greater than 1 is beneficial as this results
in redundancies in (14). By exploiting redundancies in those
relations for the nth source and each p, the directional terms
can be eliminated resulting in an equation with only phase
terms, i.e.,

ρpq(n)− ρkl(n) = ρpqkl(n) = ϕp − ϕq − ϕk + ϕl, (17)

where pp − pq = pk − pl for p, q, k, l = 1, . . . ,M and n =
1, . . . , N . Such relations for all p, q, k, l can be expressed as
a system of equations, i.e.,[

. . . ρpqkl(n) . . .
]T

= T
[
ϕ1 . . . ϕM

]T
, (18)
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where T is a deterministic matrix, which depends on the
chosen array geometry and the phase errors can be estimated
by inverting it. The maximum amount of redundancies can be
found in a uniform linear array (ULA), where for M elements,
w(±d) = M − d, for d = 0, 1, . . . ,M − 1. The rank of T
is then always M − 2, indicating that the phase errors can be
estimated with respect to an arbitrary reference and within an
arbitrary progressive phase factor [13], [17]. We now look into
the rank of the T matrix for different structured sparse linear
arrays and summarize how the phase errors can be estimated
for each of those scenarios,

• To design an M -element sparse array, taking self cali-
bration into consideration, there is a trade-off between
DOF and redundancies. The maximum rank of T for an
M -element APS array is upper bounded by M − 2. The
rank of T for structured sparse arrays including the nested
array [11] and super nested array [36] is always M − 3,
whereas for the co-prime arrays [12], which enjoy more
redundancies, it is M − 2.

• If there is a provision to introduce additional sensors
within a sparse array to allow for sufficient redundan-
cies, then the rank of T can be increased to M − 2.
For example, for an MRA [10], with M = 5 and
p = [0, 1, 4, 7, 9]T , the rank of T is 1. However, if
we introduce two phase reference sensors with p =
[0, 1, 2, 3, 4, 7, 9]T , then the rank of T is 5.

On the other hand, the gain errors can be estimated by
considering the redundancies in the amplitude relations of
diag(g∗ ⊗ g)Aco(θ). Irrespective of the array geometry, the
rank of the equivalent T matrix obtained by considering
|diag(g∗⊗g)Aco(θ)| is always M−1, indicating that the gain
errors can be estimated with respect to the chosen reference
sensor.

Using redundancies present in the co-array data model of
an APS array with N ≥ 1 and diag(g∗⊗g)Aco(θ) is given,
we can conclude that for a ULA, with two phase reference
sensors in the array, while for sparse arrays, with at least
two or more phase reference sensors in the array, it is also
possible for uniquely estimating the calibration errors and
source DOAs.

Remark 1 (On the identifiability analysis of non-linear arrays).
The identifiability conditions for non-linear AVS arrays can
be derived along similar lines of non-linear APS arrays as
presented in [19]. It can be shown that for both APS and AVS
arrays with N ≥ 2, it is sufficient to have one reference sensor
with a known gain and phase error for uniquely estimating
both the calibration parameters and the source DOAs. In
particular for APS non-linear arrays, the need for a reference
source can be relaxed for the purpose of self-calibration
due to the presence of extra degrees-of-freedom in its spatial
frequencies.

Remark 2 (On the choices to resolve the identifiability issues).
To derive the sufficient conditions based on the redundancy-
based calibration technique, we choose to have reference
sensors with known phase errors in the array to improve
the rank of the G matrix such that the phase errors can be

estimated. However, we can also have other a priori conditions
on the phase errors, such as

∑Q
q=1 ϕq = 0, that improve the

rank of G, leading to another set of sufficient conditions to
estimate the phase errors and subsequently the source DOAs
uniquely.

IV. SELF CALIBRATION WITH THE ELEMENT-SPACE MODEL

In this section, we focus on estimating the complex-valued
receiver gains and the source DOAs, when only a few snap-
shots are available. In such cases, the sample data covariance
matrix will be a very poor estimate of Rx and hence we focus
on the element-space data model. The algorithms provided
in this section, do not make any assumptions on the array
geometry or on the structure of the covariance matrix Rx.

Assuming that the true directions are from a uniform grid of
D ≫ N points, i.e., assuming that θn ∈

{
0, π

D · · · , π(D−1)
D

}
,

for n = 1, 2, . . . , N , we can approximate (1) as

x(t) = diag(g)[AD z(t) + n(t)], (19)

where AD is a Q×D dictionary matrix with column vectors
of the form a(θ̄d), where θ̄d is the dth point of the uniform
grid of directions, i.e., θ̄d = πd

D , d = 0, 1, . . . , D − 1, and
z(t) is a length-Q vector containing the source signal related
to the corresponding discretized directions. We emphasize
here that finding the columns of AD that correspond to non-
zero elements of z(t) amounts to finding the DOAs. As seen
in (19), by assuming that the source DOAs lie on a pre-defined
uniform grid, we transform a non-linear estimation problem
into a bilinear estimation problem with c and z(t) being the
unknowns (from which we can derive g and θ, respectively).

Defining the calibration matrix diag(c) = diag−1(g), we
can express the “calibrated” signal y(t) as

y(t) = diag(c)x(t) = diag(x(t))c = ADz(t) + n(t). (20)

Exploiting the nature of the calibration errors, which combined
with simple algebraic manipulation, the bilinear estimation
problem in (19) is further transformed into a linear estimation
problem in (20).

Leveraging the fact that the calibration parameters remain
unchanged during an observation window where we collect L
snapshots, we can obtain more equations, i.e.,

 diag(x(1)) −AD
...

. . .
diag(x(L)) −AD


︸ ︷︷ ︸

G

[
c
z

]
︸ ︷︷ ︸

γ

=

 n(1)
...

n(L)


︸ ︷︷ ︸

n

,

(21)
where z = vec(Z) ∈ CDL with Z = [z(1), z(2), · · · , z(L)] =
[z1, z2, . . . , zD]T . Here, z(l) ∈ CD and zd ∈ CL.

Although at the outset, it seems as if there are Q + DL
unknowns in (21), the vector z is structured. Specifically, the
vectors z(l), l = 1, . . . , L are sparse, and more importantly,
they have the same sparsity pattern with the indices of the
nonzero pattern indicating the source directions. The prior
knowledge of having sparsity along the spatial domain can
be incorporated by initially considering the l2 norm of all
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the time samples corresponding to a particular spatial index
of Z, i.e., by defining z

(ℓ2)
d = ∥zd∥2 for d = 1, 2, . . . , D,

and then by using the sparsity promoting l1 norm penalty

on the vector z(ℓ2) =
[
z
(ℓ2)
1 , z

(ℓ2)
2 , . . . , z

(ℓ2)
D

]T
as f(z) =

∥z(l2)∥ℓ1 =
D∑

d=1

z
(ℓ2)
d .

The optimization problem to jointly estimate the calibration
parameters and DOAs with a sparsity constraint along the
spatial domain of the matrix Z can then be expressed as:

min
c, z

∥Gγ∥22 + η f(z) s. t. (c, z) ∈ C (22)

where γ = [cT zT ]T and η is the regularization parameter that
allows for a trade off between the goodness of fit of the solu-
tion to the given data and the sparsity prior on z. The constraint
set for APS linear arrays is C := {(c, z) | c1 = 1, z1 = 1}
while for AVS linear arrays it is C := {(c, z) | c1 = 1}. Recall
that for APS arrays, we need one reference sensor and we need
to know one of the DOAs to avoid ambiguities. This is done
by setting c1 = 1 and z1 = 1, which is equivalent to having
a calibrator source at θ̄1 (w.l.o.g.). Since for AVS arrays, we
do not need any calibrator source, we only need a reference
sensor in that case. Furthermore, the constraint set for both
the APS and AVS non-linear arrays is C := {(c, z) | c1 = 1}.
Recall that for non-linear arrays, we only need a reference
sensor to avoid ambiguities. The optimization problem (22)
is a convex optimization problem, which can be solved using
any off-the-shelf solver. For large L, if the number of sources
can be estimated, the complexity of the formulation in (22)
can be reduced by using the ℓ1-SVD technique [8] on the
measurement data matrix X. Furthermore, for the choice of
the regularization parameter η, we follow the discrepancy
principle discussed in [8].

Remark 3. In contrast to the considered measurement model,
the calibration errors affect only the signal component of the
data, when the errors originate due to the perturbation of the
sensors, gain and phase patterns or due to the position or
orientation errors of the sensors in the array [34], [37]. In
such case, (1) and (20) can be modified, respectively as,

x(t) = diag(g)A(θ) s(t) + n(t).

y(t) = diag(c)x(t) = diag(x(t))c = ADz(t) + diag(c)n(t).

The proposed calibration approach in (22) is still applicable
here with the additive noise term being modified as n̂(t) =
diag(c)n(t).

V. SELF CALIBRATION WITH THE CO-ARRAY DATA MODEL

In this approach both the calibration errors and the source
DOAs will be estimated jointly based on the covariance matrix
of the measurement data. Similar to (19), the directions are
assumed to be on a uniform grid of D ≫ N points. Then (6)
can be approximated as

rx = diag(g∗ ⊗ g)[AcoDσz + σn], (23)

where AcoD is a Q2 ×D dictionary matrix that consists of
column vectors of the form a∗(θ̄d)⊗a(θ̄d), with θ̄d as defined

before. Again similar to (20), defining the calibration matrix
diag(c∗ ⊗ c) = diag−1(g∗ ⊗ g), we can express (23) as

diag(c∗ ⊗ c)rx = diag(rx)(c
∗ ⊗ c) = Aco(θ)σs +σn. (24)

Since (c∗ ⊗ c) = vec(C), with C = ccH , (23) can be
compactly rewritten as[

diag(rx) −AcoD
]︸ ︷︷ ︸

Gco

[
vec(C)
σz

]
︸ ︷︷ ︸

γco

= σn. (25)

Similar to the element-space formulation, we have transformed
the non-linear estimation problem in (6) to a linear estima-
tion problem in (25). The above system is underdetermined
with Q2 + D unknowns in Q2 equations (note that some
equations might even be redundant). However, as vec(C)
has a Kronecker structure, the actual number of unknowns
reduces to Q and σz is a sparse vector with non-zero elements
at the location of the source DOAs. By considering the
aforementioned constraints on the calibration errors and source
DOAs, the estimation problem can be cast as

min
C,σz

∥Gcoγco − σn∥22 + η ∥σz∥0 s. t. (C, σz) ∈ Cco
(26)

where γco = [vecT (C), σT
z ]

T , η is the regularization param-
eter, for N ≥ 2 the constraint set Cco = {(C, σz) |σz ⪰
0, C = ccH , c1 = 1,σz(1) = 1} for APS linear arrays
and Cco = {(C, σz) |σz ⪰ 0, C = ccH , c1 = 1} for
AVS linear arrays. For APS linear arrays, the requirement of
knowing one of the DOAs is expressed as σz(1) = 1 (w.l.o.g.).
Further for APS ULAs and some APS sparse linear arrays,
the redundancies in the co-array measurements can be used
for the estimation of the source DOAs and the calibration
errors with two phase reference sensors in the array. In
such cases the constraint set even with N ≥ 1 is Cco =
{(C, σz) |σz ⪰ 0, C = ccH , c1 = c2 = 1}. Furthermore,
the constraint set for both the APS and AVS non-linear arrays
with N ≥ 2 is Cco = {(C, σz) |σz ⪰ 0, C = ccH , c1 = 1}.
Again we can recall that for non-linear arrays, we only need
a reference sensor to avoid ambiguities. The optimization
problem in (26) is non-convex due to the l0 norm (cardinality)
constraint and the rank-one equality constraint on C. We
can relax (26) by replacing the cardinality constraint with
its convex approximation ∥σz∥1 and by replacing the rank-
one equality constraint (i.e., C = ccH ) in the set Cco with
a convex inequality constraint (i.e., C ⪰ ccH ). The new set
which is same as Cco except for the rank-one convex inequality
constraint is denoted as C̃co. The relaxed optimization problem
can be expressed as,

min
C,σz

∥Gcoγco − σn∥22 + η∥σz∥1 s. t. (C, σz) ∈ C̃co.
(27)

The convex inequality constraint, C ⪰ ccH , is equivalent to[
C c
cH 1

]
⪰ 0 from Schur’s lemma. The resulting problem is

a semi-definite programming problem that can be solved with
any off-the-shelf solver. For the choice of the regularization
parameter η, we can use any standard method adopted in
sparse signal recovery [38]. In practice, for the finite snapshot
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scenario, C obtained after solving (27) might not be rank
one and the closest estimates of the calibration parameters
can be obtained from the first dominant singular vector of C.
The formulation in (27) is also applicable to sparse arrays for
estimating DOAs (when there are more sources than sensors)
and calibration parameters jointly as presented in [35].

Remark 4. If calibration errors affect only the signal compo-
nent of the data, then (6) can be modified as

rx = diag(g∗ ⊗ g)Aco(θ)σs + σn.

The proposed calibration approach in (27) is still applicable
here with a slight modification. More specifically, (25) and (26)
can then be modified, respectively as,

[
diag(rx − σn) −AcoD

]︸ ︷︷ ︸
Gco

[
vec(C)
σz

]
︸ ︷︷ ︸

γco

= 0,

min
C,σz

∥Gcoγco∥22 + η∥σz∥0 s. t. (C, σz) ∈ Cco.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical simulations to illustrate
the performance of all the proposed solvers for the joint
estimation of the source DOAs and calibration parameters.
Firstly we consider the element-space model based solver
in (22) only for AVS linear arrays. Recall that AVS arrays do
not require the presence of a reference source (see Section III).
Then the covariance model in (27) is considered for both
the APS and AVS linear array. Finally, we analyze the root
mean square error (RMSE) of the DOA estimates obtained
from the presented algorithms and compare them with existing
calibration methods. The RMSE results for scenarios with
more sensors than sources are also compared with the Cramér-
Rao lower bound (CRLB) on the DOA estimates.

A. Element-space model

We consider a scenario with M = 8 AVSs arranged in a
uniform linear array (ULA) configuration where the spacing
between the consecutive sensors is half a wavelength of the
considered narrowband source signals. Further, we consider a
scenario with N = 6 narrowband far-field signals impinging
on the array from distinct DOAs with an observation period
consisting of L = 50 snapshots. The grid is chosen to be
uniform between [0◦ 180◦] with 1◦ resolution. Without loss
of generality, we assume the first channel of the first AVS in
the array as the reference channel whose gain is 1 and phase
is 0◦. The gain and phase errors are chosen from a uniform
distribution over the interval [-3; 3] dB and [−20◦; 20◦],
respectively.

Based on the optimization problem in (22), the results of
DOA estimation post calibration are presented in Fig. 1. In
order to verify the correctness of the formulation in (22),
we initially considered an ideal scenario without measure-
ment noise. The DOA spectra based on (22) are presented
in Fig. 1(a). It is seen in Fig. 1(a), that we recover the
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(a) l1-SVD spectra without measurement noise.
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(b) l1-SVD spectra with SNR = 10 dB.
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(c) MUSIC spectra with an SNR = 10 dB.

Fig. 1. The l1-SVD and MUSIC spectra using the element-space data model
based solver in (22) for an AVS ULA with M = 8, N = 6 and L = 50.
The true DOAs are indicated by the black solid lines.

exact source DOAs after solving (22), where as for the
uncalibrated data, the source DOA estimates based on the l1-
SVD algorithm [8] are very poor. Further, we considered the
measurement data with a signal-to-noise ratio (SNR) of 10 dB
and the corresponding DOA spectra obtained from solving (22)
are presented in Fig. 1(b), where we draw a similar inference
as in Fig. 1(a).

On the other hand, the issues of a pre-defined grid on the
DOA estimates obtained after solving (22) can be minimized
by applying the MUSIC algorithm on the gain and phase
compensated covariance matrix. The gain and phase errors are
estimated from (22), and the corresponding MUSIC spectra
are presented in Fig. 1(c). It can be inferred that for the
measurement data with an SNR of 10 dB, MUSIC with
the uncalibrated data results in poor estimates, whereas the
DOA estimates after calibration in Fig. 1(c) provides similar
results as in Fig. 1(b). The two-step procedure to obtain DOA
estimates from MUSIC spectrum significantly improves results
when the sources do not lie on a pre-defined grid.

B. Co-array data model

To illustrate the effectiveness of the covariance domain
formulation provided in (27), we consider both a conventional
ULA with less sources than sensors and a sparse linear array
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with more sources than sensors, where the smallest spacing
between the consecutive sensors is half a wavelength of the
considered narrowband source signals. Here, all the far-field
source DOAs are chosen to be on the grid. In both the
scenarios, without loss of generality, for the APS arrays we
considered the first two sensors as references whereas for the
AVS arrays the first channel is considered as a reference with
gain of 1 and phase of 0◦.

1) ULA with less sources than sensors: Consider a ULA
with M = 8, N = 4 far-field sources and SNR = 10
dB. Firstly, we consider a finite sample scenario with the
observation period consisting of L = 1000 snapshots whose
l1 norm based DOA spectra upon solving (27) are plotted
in Fig. 2(a) for the APS ULA and in Fig. 2(b) for the
AVS ULA. The uncalibrated data in all the plots results in
low resolution DOA spectra and very poor DOA estimates.
In Fig. 2(a), the DOA spectra upon solving (27) show an
improvement compared to the DOA spectra computed with
the uncalibrated data. However, the resulting DOA spectra
still have low resolution, as the model considered in (27)
is not exact due to the finite sample approximation of the
covariance matrix estimation. On the other hand, in Fig. 2(b),
the DOA spectra based on (27) are significantly superior with
high resolution compared to the DOA spectra computed with
the uncalibrated data. However upon closer observation, we
can notice that the DOA estimates are slightly biased for a
couple of sources and also there are some spurious peaks in
the DOA spectra. It is observed that the model mismatches due
to the finite sample approximation of the covariance matrix
estimation, has higher impact on reducing the sparsity of the
DOA spectra for the APS ULA in comparison to an equivalent
AVS ULA.
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(a) APS ULA.
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(b) AVS ULA.

Fig. 2. The l1 norm based DOA spectra for both the APS and AVS ULA
based on the co-array data model solver in (27) with L = 1000, SNR = 10
dB, M = 8 and N = 4 far-field sources. The true DOAs are indicated by
the black solid lines.

In order to overcome the discussed issues with DOA es-
timates and the effects of a predefined grid, similar to the

element-space approach, a grid-free approach such as MUSIC
algorithm can be applied on the measurement data in (5),
which is compensated for the gain and phase errors obtained
from (27). Those MUSIC spectra based on the calibrated
data are presented in Fig. 3. The results in Fig. 3(b) for
the AVS ULA is compared with [19] (referred to as Weiss-
Friedlander approach). The results in Fig. 3(a) for the APS
ULA is compared with [13] (referred to as the Paulraj-Kailath
approach2), as the Weiss-Friedlander approach is not effective
for linear scalar sensor arrays.

In Figs. 3(a) and (b), we see that the MUSIC spectra
have a higher resolution and improved estimates compared to
the equivalent l1 norm based DOA spectra. On contrary, the
spectra based on the uncalibrated data is not able to resolve all
the sources and the resolution of the spectra is also degraded.
Further, for the APS ULA in Fig. 3(a), the proposed approach
outperforms [13], and for the AVS ULA in Fig. 3(b), it can
be observed that although [19] results in a sharper peaks
compared to the proposed approach, the estimates are highly
biased.
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(b) AVS ULA.

Fig. 3. The MUSIC spectra for both the APS and AVS ULA based on the
co-array data model solver in (27) with L = 1000, SNR = 10 dB, M = 8
and N = 4 far-field sources. The true DOAs are indicated by the black solid
lines.

It can be summarized that based on the formulation in (27),
it is possible to jointly estimate both the calibration errors
as well as the source DOAs and the estimation results are
good when the number of time snapshots are higher and
the grid-mismatches are minimal. However, when the number
of time snapshots are limited and we have a pre-defined
grid, solving (27) can be used as a pre-conditioning step to
estimate the calibration errors. Then a grid-free approach such
as MUSIC can be applied on the gain and phase errors com-
pensated measurement data to obtain improved and reliable
DOA estimates.

2During the submission of this manuscript it came to the authors’ attention
that an improved version of [13] for scalar sensor arrays that considers an
optimally-weighted least squares (OWLS) approach was proposed in [27].
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2) Sparse array with more sources than sensors: Consider
a hole-free sparse linear array with M = 6, p = [0 1 2 3 6 9]T ,
N = 8 far-field sources and SNR = 10 dB. The rank of
the T matrix [cf. (18)] for the considered sparse array is 4
(i.e., M − 2). For this scenario, we present spatial smoothing
MUSIC (SS MUSIC) spectra [11] based on the gain and phase
compensated measurement data, where the calibration errors
are estimated by evaluating the proposed formulation in (27).
We consider a finite sample scenario with the observation
period consisting of L = 500 snapshots whose SS MUSIC
spectra are shown in Fig. 4(a) for the APS array and Fig. 4(b)
for the AVS array. The results of SS MUSIC for both the
APS and AVS array are compared with the sparse total least
squares (STLS) calibration approach [29].
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(a) APS sparse array.
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(b) AVS sparse array.

Fig. 4. The spatial smoothing MUSIC (SS MUSIC) spectra for both the APS
and AVS sparse linear array based on the co-array data model solver in (27)
with L = 500, SNR = 10 dB, M = 6, p = [0 1 2 3 6 9]T and N = 8
far-field sources. The true DOAs are indicated by the black solid lines.

In both Figs. 4(a) and (b), we see that post calibration,
the SS MUSIC spectra have a higher resolution and are
comparable to the scenario with no calibration errors, whereas
the spectra based on the uncalibrated data are not able to
resolve all the sources and the resolution of the spectra is
also degraded. Furthermore, for both the APS and AVS sparse
array with 500 snapshots, the performance of our proposed
method is better than the STLS calibration approach [29].

The simulation setup for the AVS sparse linear array con-
sidered in Fig. 4(b), consists of less sources (N = 8) than
the number of channels of the AVS array, (3M = 18). The
proposed calibration approach in (27) is still applicable to an
AVS sparse linear array with more sources than channels.
However, because of the aperture limitation, when many
sources are closely spaced it will be hard to discriminate
them. To solve this issue, we can further boost the aperture
by spatially undersampling the AVS array as in [39]. Such a
setup is considered in Fig. 5, where the aperture is doubled
and the smallest spacing between consecutive sensors is unit
wavelength (instead of half a wavelength) of the considered

narrowband source signals. The SS-MUSIC spectra for an
ideal scenario with M = 6, N = 19 (> 3M), SNR = 10 dB
and L = ∞ are shown. Similar inferences as from Fig. 4(b),

26 37 46 53 60 66 73 78 84 90 96 102107 114120 127 134 143 154
10

-20
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-10
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Fig. 5. The spatial smoothing MUSIC (SS MUSIC) spectra for the AVS sparse
linear array based on the co-array data model solver in (27) with M = 6,
p = [0 1 2 3 6 9]T (with smallest inter-sensor spacing equals to λ of the
considered narrowband source signals), SNR = 10 dB, L = ∞ and N = 19
far-field sources. The true DOAs are indicated by the black solid lines.

can be made in Fig. 5, which showcases the applicability
of the proposed calibration approach in (27) with a spatially
undersampled AVS array with more sources than channels.

C. Monte-Carlo experiments

In this section we study the statistical behavior through the
root mean square error (RMSE) of the DOA estimator based
on the proposed calibration procedure for different scenarios.
We consider both AVSs and APSs arranged in a ULA and
sparse linear array configurations.

1) Uniform linear array with less sources than sensors:
Firstly, we consider M = 8 sensors arranged in a ULA
configuration and three far-field sources, i.e., N = 3 with
θ = [78◦, 90◦, 102◦]. The gain and phase perturbations follow
a uniform distribution over the interval of [-2, 2] dB and
[−40◦, 40◦], respectively. For both the element-space formu-
lation (22) and covariance domain formulation (27), we have
chosen the pre-defined grid between 0◦ and 180◦ with 1◦

resolution. The RMSE of the DOA estimates based on the
l1 norm spectra (either by solving (22) or (27)) as well as the
MUSIC spectra are presented for the considered scenarios.

Fixed SNR and varying snapshots: The RMSE of the
DOA estimates for the source present at 90◦ based on 500
Monte-Carlo trials for both the APS and AVS ULA are
presented in Fig. 6. Here the calibration errors and SNR
of 10 dB were fixed for all the trials while the number of
snapshots are varying. The RMSE of the DOA estimates in
Fig. 6 based on the l1 norm spectra by solving (22) is referred
to as “Calibrated - Element Space” and by solving (27) is
referred to as “Calibrated - Coarray”. Further, the RMSE in
the DOA estimates in Fig. 6 based on the MUSIC spectra by
solving (22) is referred to as “Calibrated - Element Space -
MUSIC” and by solving (27) is referred to as “Calibrated -
Coarray - MUSIC”.

In Fig. 6(a), we considered the AVS ULA with an SNR of
10 dB. It is seen that as the number of snapshots increases,
the RMSE of the DOA estimates for the uncalibrated case
does not decrease, whereas after calibration based on both
the l1 norm spectra and the MUSIC spectra, the results
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(b) APS ULA.

Fig. 6. RMSE variation of the DOA estimates for the source at 90◦ using
both the APS and AVS ULA with M = 8, N = 3 and θ = [78◦, 90◦, 102◦]
for a fixed SNR of 10 dB as the number of snapshots are varying.

approach the ideal scenario with no calibration errors and
its CRLB. For a given number of snapshots, MUSIC based
DOA estimates result in lower RMSE values when compared
with the equivalent l1 norm based DOA estimates, further
emphasizing the fact that the calibration estimates are robust
to the model mismatches while solving either (22) or (27).
On the other hand, the RMSE of the DOA estimates based
on the Weiss-Friedlander approach [19] is also presented in
Fig. 6, where the calibration parameters were initialized with
a gain of 1 and a phase of 0◦. It is seen that the RMSE of the
DOA estimates decreases initially, however it tends to saturate
as the number of snapshots increases as it leads to a sub-
optimal solution depending on the initialization. Also it can be
observed that the DOA estimates based on the MUSIC spectra
with calibration parameters estimated from (27) require more
snapshots to obtain better DOA estimates with low RMSE as
the finite sample errors in the estimation of the covariance
matrix are high for a low number of snapshots and those are
not modeled in the formulation of (27). Furthermore, based
on the MUSIC spectra in Fig. 6(a), it can be observed that
the performance of the element-space approach is far superior
than the covariance domain approach.

Similarly in Fig. 6(b), we considered the APS ULA with an
SNR of 10 dB. For the APS ULA, only formulation in (27)
is considered and the results of the proposed methodology are
compared with the Paulraj-Kailath approach [13]. The RMSE
of the DOA estimates of the proposed methodology follows
same trend as seen for the AVS ULA in Fig. 6(a). On the other
hand, although the calibration approach in [13] achieves the
optimal solution, it requires more snapshots to achieve similar
performance as the proposed methodology.

Fixed number of snapshots and varying SNR: The vari-
ation of the RMSE in the DOA estimates with respect to a
change in SNR for a fixed number of snapshots is considered

in Fig. 7. The same setup as in Fig. 6 is considered with
N = 3 (θ = [78◦, 90◦, 102◦]) where the RMSE of the source
at 90◦ is presented. In Figs. 7(a) and (b), we consider the
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(b) APS ULA.

Fig. 7. RMSE variation of the DOA estimates for the source at 90◦ using
both the APS and AVS ULA with M = 8, N = 3 and θ = [78◦, 90◦, 102◦]
as the SNR varies for a fixed number of snapshots of 1000.

AVS and the APS ULA, respectively, with 1000 snapshots
and varying SNR. Similar to Fig. 6, it is seen that after
calibration using the formulation in (22) as well as in (27) the
RMSE of the DOA estimates decreases as the SNR increases
for both the l1 based spectra and the MUSIC spectra. Also
as expected we can observe that the MUSIC spectra based
DOA estimates outperform the l1 based DOA estimates for
a given SNR. Further, it can be inferred that the RMSE
of the DOA estimates based on the proposed element-space
model calibration technique asymptotically approaches the
ideal scenario with no calibration errors and its CRLB. On
the other hand, we can observe that the RMSE in the DOA
estimates using the Weiss-Friedlander approach in Fig. 7(a) for
the AVS ULA and the Paulraj-Kailath approach in Fig. 7(b)
for the APS ULA, initially decreases as the SNR increases.
However for an SNR greater than 5 dB the RMSE of the DOA
estimates tends to saturate due to the finite sample errors in
the covariance matrix estimation.

Gain and Phase RMSE estimates: Finally, the RMSE in
the gain and phase error estimates for the setup considered in
Figs. 6 and 7 is considered. In Fig. 8 the norm of the difference
between the estimates and the actual values of the gain and
phase errors is presented. In Figs. 8(a) and 8(b), RMSE related
to the phase and gain error estimates with varying snapshots is
considered, with the SNR being 10 dB. It can be observed in
Figs. 8(a) and 8(c) that the RMSE related to both the phase and
gain errors tends to approach zero as the number of snapshots
increases except for the Weiss-Friedlander approach [19] as it
produces a sub-optimal solution. This trend is consistent for
the proposed calibration approach based on both the element-
space and co-array formulation. Further, in Figs. 8(a) and 8(b)
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Fig. 8. RMSE variation of the gain and phase error estimates for both the
APS and AVS ULA setup considered in Figs. 6 and 7 as the snapshots varies
for a fixed SNR of 10 dB.

it can be observed that the RMSE related to the phase errors
based on the proposed calibration approach outperforms the
Paulraj-Kailath approach.

2) Sparse linear array with more sources than sensors:
In Fig. 9, the RMSE of the DOA estimates for APS and
AVS sparse linear array based on the SS MUSIC spectra
obtained using gain and phase compensated measurement data
for different SNRs and for different numbers of data snapshots
is presented. Here, we use M = 6, p = [0 1 2 3 6 9]T and
N = 2 with θ = [70◦, 90◦]. The RMSE is computed for the
source at 90◦ using 500 independent Monte-Carlo trials, but
with fixed gain and phase errors. In Figs. 9(a) and (b), we can
observe that as the number of snapshots increases, the RMSE
of the DOA estimate after calibration approaches the ideal
scenario without any sensor errors. Furthermore, the RMSE
for the STLS calibration saturates both when increasing the
number of snapshots, as it converges to a sub-optimal solution.

VII. EXPERIMENTAL RESULTS

An experimental study was conducted in order to demon-
strate the proposed joint DOA and calibration algorithm for
AVS arrays. As discussed, each AVS consists of a pressure
microphone and several orthogonal particle velocity transduc-
ers. A particle velocity transducer is commonly referred to as a
Microflown [1]. A reliable calibration procedure is crucial for
relating the sensor output to the physical quantity perceived.
Unlike microphone calibration, there are no standardized pro-
cedures yet defined for characterizing the broadband response
of particle velocity sensors.

Microflown sensors were originally calibrated using a sound
pressure microphone as a reference in a standing wave
tube [15], where the ratio between sound pressure and particle
velocity (i.e., acoustic impedance) is well understood. Novel
methods were later proposed for covering a wider frequency
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Fig. 9. RMSE variation in the DOA estimates for the source at 90◦ based on
the SS-MUSIC spectra using both APS and AVS sparse arrays with M = 6,
p = [0 1 2 3 6 9]T , N = 2, SNR = 10 dB and θ = [70◦, 90◦] as the number
of snapshots are varying. Here the scenario with “No Calibration Errors”
is considered as the baseline reference to compare the performance of the
proposed self-calibration solver.

range, such as the “Piston-On-a-Sphere” technique (POS) [14].
This approach relies on a sound source of known impedance
measured in free field conditions and it achieves good results
at mid and high frequencies. Thereafter, the POS technique
was extended to lower frequencies by also measuring the
acoustic pressure inside the sound source [16]. As a result,
a full-bandwidth calibration procedure is now available by
combining two measurement steps. In this section, the DOA
estimation results based on the calibrated data using the
POS technique (referred to as POS calibration), the Weiss-
Friedlander approach [19] and the proposed calibration tech-
niques (both the element-space and co-array approaches) are
presented.

A picture of the experimental setup is shown in Fig. 10,
where five AVSs are seen arranged in a linear array config-
uration along with three speakers. The smallest inter-sensor
spacing was 0.05 m with sensors located at positions p =
[0, 1, 2, 4, 6]T and the speakers were located along the cir-
cumference of a circle of radius r = 3.6 m with respect to the
reference AVS in the array (the distance to the sources is more
than 20 times the aperture of the array and therefore satisfying
the far-field condition). The measurements were carried out in
a fully anechoic chamber of the Faculty of Applied Physics
of TU Delft (Netherlands) using uncorrelated white Gaussian
excitations driving multiple 3 inch loudspeakers (resulting in
high SNRs of approximately 30 dB). An Heim DATaRec
24 channels acquisition device with a sampling frequency of
25 kHz was used to record the data. The acoustic pressure
and particle velocity information at a given frequency were
obtained by computing a short time Fourier transform (STFT).
Each recording was fragmented into segments of 1024 samples
with 50% overlap. A Hanning window was applied to each
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Fig. 10. Picture of the experimental setup considering five AVSs and three
speakers, located at a radius of r = 3.6 m.

data segment prior to the STFT.
The raw output signals from all the five AVSs at a time

instant t for a particular frequency bin were collected in a
vector x(t), similar to (1). Without loss of generality, we
have considered the first channel of the first AVS in the
array as the reference channel with known gain and phase
response which is sufficient to obtain a unique solution as
seen in the identifiability conditions for AVS arrays. The joint
DOA and calibration algorithm based on (22) and (27) were
applied on the captured measurement data x(t) consisting of
L = 1000 snapshots at a frequency of f = 2000 Hz. The
corresponding grid-free MUSIC spectra based on the post-
calibration measurement data are presented in Fig. 11.

-140 -120 -100 -80 -60 -40

Directions (°)

0

0.2

0.4

0.6

0.8

1

M
U

S
IC

 S
p
ec

tr
a

Uncalibrated

Calibrated - Coarray

Calibrated - Element Space

True DOAs

POS Calibration

Weiss-Friedlander

(a) N = 2, θ = [−45◦,−90◦]T .

20 30 40 50 60 70 80 90 100 110 120

Directions (°)

0

0.2

0.4

0.6

0.8

1

M
U

S
IC

 S
p
ec

tr
a

(b) N = 3, θ = [70◦, 90◦, 108◦]T .

Fig. 11. MUSIC spectra based DOA estimates using an AVS array with
M = 5, N = 2 and f = 2000 Hz. The true DOAs are indicated by the
black solid lines.

In Fig. 11(a) and (b), we considered two of the three
speakers with θ = [−45◦,−90◦]T and three speakers that
are closely spaced with θ = [70◦, 90◦, 108◦]T , respectively.

We can observe that for the uncalibrated data, the resolution
of MUSIC is poor. However, improved spectra with higher
resolution can be seen after compensating with the esti-
mated calibration parameters. The MUSIC spectrum obtained
from (27), results in a high resolution comparable to the
results that are obtained with the reference POS calibration
approach. However, the spectrum obtained from (22), has a
lower resolution (especially in the three source case) and
shows a small bias compared to the co-array domain based
solver. The, Weiss-Friedlander approach results in degraded
estimates compared to the proposed approach, specifically in
Fig.11(b) it can be observed that none of the sources are
resolved.

VIII. CONCLUDING REMARKS

In this paper, we proposed a self calibration technique
for both the element-space and co-array data models that is
applicable to both acoustic pressure and vector sensor arrays.
Also, we derived and discussed a number of identifiability
conditions for all the considered cases under which a unique
solution for both the calibration parameters and the source
DOAs can be obtained. It is interesting to note that for the AVS
array, irrespective of the considered geometry, it is possible
to calibrate all the sensors with respect to only one of the
channels in the array.

Based on the proposed approach, we showed that it is
indeed possible to jointly estimate calibration errors and
source directions using a one-step approach by exploiting
the underlying algebraic structure and convex optimization
techniques. It is shown that for infinite data records, we can
in fact obtain the optimal solution suggesting the feasibility
of the convex relaxations for both the element-space and
co-array data models. However, when the number of time
snapshots are limited and we have a pre-defined grid, we
stated that the proposed methodology can be used as a pre-
conditioning step to estimate the calibration errors. Then a
grid-free approach such as MUSIC/SS-MUSIC can be applied
on the gain and phase errors compensated measurement data
to obtain improved and reliable DOA estimates. Furthermore,
through simulations, we showed that even for finite data
records we are able to recover all the source DOAs and we
perform better than the existing calibration techniques for all
the considered scenarios. Finally, experimental results based
on real measurement data with an AVS linear array that are
collected in an anechoic chamber are presented to showcase
the effectiveness of the proposed calibration techniques using
both the element-space and co-array data model.

REFERENCES

[1] H.-E. De Bree, “The microflown e-book,” Microflown Technologies,
Arnhem, 2007.

[2] J. P. Kitchens, “Acoustic vector-sensor array processing,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2010.

[3] A. Nehorai and E. Paldi, “Acoustic vector-sensor array processing,”
IEEE Transactions on Signal Processing, 1994.

[4] A. L. Swindlehurst and T. Kailath, “A performance analysis of subspace-
based methods in the presence of model errors. i. the music algorithm,”
IEEE Transactions on signal processing, 1992.

[5] H. L. Van Trees, Detection, estimation, and modulation theory. Part IV.
, Optimum array processing. New York: Wiley-Interscience, 2002.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3214383

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on November 08,2022 at 12:15:39 UTC from IEEE Xplore.  Restrictions apply. 



14

[6] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proceedings of the IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[7] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rota-
tional invariance techniques,” IEEE Transactions on acoustics, speech,
and signal processing, vol. 37, no. 7, pp. 984–995, 1989.

[8] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal recon-
struction perspective for source localization with sensor arrays,” IEEE
transactions on signal processing, vol. 53, no. 8, pp. 3010–3022, 2005.

[9] S. P. Chepuri, G. Leus et al., “Sparse sensing for statistical inference,”
Foundations and Trends® in Signal Processing, 2016.

[10] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on
antennas and propagation, vol. 16, no. 2, pp. 172–175, 1968.

[11] P. Pal and P. Vaidyanathan, “Nested arrays: a novel approach to array
processing with enhanced degrees of freedom,” Signal Processing, IEEE
Transactions on, vol. 58, no. 8, pp. 4167–4181, 2010.

[12] P. Pal and P. P. Vaidyanathan, “Coprime sampling and the music
algorithm,” in Digital Signal Processing Workshop and IEEE Signal
Processing Education Workshop (DSP/SPE). IEEE, 2011.

[13] A. Paulraj and T. Kailath, “Direction of arrival estimation by eigen-
structure methods with unknown sensor gain and phase,” in Acoustics,
Speech, and Signal Processing, IEEE International Conference on
ICASSP’85., vol. 10. IEEE, 1985, pp. 640–643.

[14] F. Jacobsen and V. Jaud, “A note on the calibration of pressure-
velocity sound intensity probes,” The Journal of the Acoustical Society
of America, vol. 120, no. 2, pp. 830–837, 2006.

[15] H.-E. d. Bree, W. Druyvesteyn, and M. Elwenspoek, “Realisation and
calibration of a novel half inch pu sound intensity probe,” in Audio
Engineering Society Convention 106. Audio Engineering Society, 1999.

[16] T. G. Basten and H.-E. de Bree, “Full bandwidth calibration procedure
for acoustic probes containing a pressure and particle velocity sensor,”
The Journal of the Acoustical Society of America, 2010.
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