<]
TUDelft

Delft University of Technology

Crafted vs. Learned Representations in Predictive Models - A Case Study on Cyclist Path
Prediction

Pool, Ewoud; Kooij, Julian F.P.; Gavrila, Dariu M.

DOI
10.1109/T1V.2021.3064253

Publication date
2021

Document Version
Accepted author manuscript

Published in
IEEE Transactions on Intelligent Vehicles

Citation (APA)

Pool, E., Kooij, J. F. P., & Gavrila, D. M. (2021). Crafted vs. Learned Representations in Predictive Models -
A Case Study on Cyclist Path Prediction. IEEE Transactions on Intelligent Vehicles, 6(4), 747-759.
https://doi.org/10.1109/TIV.2021.3064253

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TIV.2021.3064253
https://doi.org/10.1109/TIV.2021.3064253

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1V.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 1

Crafted vs. Learned Representations

in Predictive Models
A Case Study on Cyclist Path Prediction

Ewoud A. I. Pool !, Julian F. P. Kooij! and Dariu M. Gavrila !

Abstract—This paper compares two models for context-based
path prediction of objects with switching dynamics: a Dynamic
Bayesian Network (DBN) and a Recurrent Neural Network
(RNN). These models are instances of two larger model cate-
gories, distinguished by whether expert knowledge is explicitly
crafted into the state representation (and thus is interpretable)
or whether the representation is learned from data, respectively.
They have shown state-of-the-art performance in previous work.

In order to provide a fair comparison, we ensure that both
models are treated similarly with respect to the use of context
cues and parameter estimation. Specifically, we describe (1) how
to integrate the context cues (used previously by the DBN)
into the RNN, and (2) how to optimize the DBN with back-
propagation similar to the RNN, while keeping an interpretable
state representation.

Experiments are performed on a scenario where a cyclist might
turn left at an intersection in front of the ego-vehicle. Results
show that the RNN successfully leverages the context cues, and
that optimizing the DBN improves its performance with respect
to existing work. While the RNN outperforms the optimized DBN
in predictive log-likelihood by a significant margin, both models
attain similar average Euclidean distance errors (23-39 cm for
DBN and 31-34 cm for RNN, predicting 1 s ahead).

Index Terms—Active safety, vulnerable road users (VRUs),
motion prediction

I. INTRODUCTION

Vehicle environment perception has made great strides over
the past years, largely thanks to advances in neural networks
such as Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs). These data-driven approaches learn
an optimized state representation, rather than requiring a
(hand) crafted state representation. At the core of all neural
network methods is gradient descent-based optimization.

The prediction of the future path of Vulnerable Road
Users (VRUs) (e.g. pedestrians, cyclists, and other riders)
is a challenging remaining problem for vehicle environment
perception, due to their high manoeuvrability. Context infor-
mation, such as body gestures, road lay-out or the vicinity of
other road users have been shown to improve the accuracy of
path prediction compared to only using point target kinematics
(e.g. [1]). Methods with learned representations have shown
state of the art performance in specific scenarios.

The downside of purely data-driven approaches is they
do not provide an intuitive explanation of their output: the
learned state representation essentially renders them black-box
models. The lack of interpretability complicates understand-
ing why they fail when they do, which is disadvantageous

1) Intelligent Vehicles group, TU Delft, The Netherlands

Static context |Dynamic context|| Object context

p (Z‘t-‘rn ‘yO:t) l

o

y-J
O
oo
o-°

P (Te4nlyo:t)

Position z;

.o
i, ..0°
.0
....._._.._._g...o...o--o~-°‘"°

Lateral

Longitudinal

Fig. 1: Context-based cyclist path prediction with a RNN
(“black box”, i.e. learned representation) and a DBN (“white
box”, i.e. crafted representation). The context cues are: dis-
tance to the intersection (static context), time until the ego-
vehicle overtakes (dynamic context), and a possible arm
gesture (object context). Predictions involve distributions over
future cyclist positions.

for safety-critical domains such as intelligent vehicles. To
counter this, a field of study emerged to make the reasoning
of neural networks explicit (e.g. [2]), but this remains an
open challenge [3]. The lack of interpretability is especially
noticeable with path prediction, where the temporal aspect
implies causality: a cyclist is predicted to turn left because
of the outstretched arm, a pedestrian is predicted to cross the
street because he failed to see the approaching vehicle, etc.
On the other hand, models with (hand) crafted state repre-
sentations such as Dynamic Bayesian Networks (DBNs) [1]
can capture causal relationships explicitly and are popular
for interpretable probabilistic VRU path prediction. However,
as their crafted representations are an abstraction of the real
world, they might not encode all the useful information that is
available in the data. Additionally, the parameters for these

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 2

methods are often not optimized, but instead individually
estimated from ground truth annotations (e.g. [1]) or tuned
manually (e.g. [4]). Estimating parameters individually does
not necessarily optimize the predictive performance of the
complete model directly. Next to that, the additional context
ground truth labeling is a timely investment that is not required
for a learned state representation.

In this paper, we compare the context-based path prediction
performance of a model with a learned state representation, an
RNN, to that of a model with a crafted state representation, a
DBN (fig. 1). For the comparison, we level the playing field in
two ways with respect to the state of the art. First, we provide
an RNN which can incorporate the context cues effectively,
similar to the DBN. Second, we show that we can employ
the same optimization strategy on the DBN as we employ for
the RNN, namely gradient descent, while ensuring that the
meaning of its crafted state representation is not lost.

II. PREVIOUS WORK

VRU path prediction has attracted great attention in the
previous decade, see recent surveys [5], [6]. Path prediction
methods require VRU positions as input. Ground plane posi-
tions relative to a vehicle reference frame can be obtained
from detections in various sensors (camera [7], radar [8],
LiDAR [9]). If ground plane positions relative to a global
reference frame are needed (e.g. this paper), then vehicle
ego-motion compensation is necessary, as an additional pre-
processing step. Following sub-sections describe various as-
pects of prediction methods.

A. Motion models

Two main categories of motion models are physics- and
pattern-based [6]. In physics-based methods, motion is pre-
dicted by forward propagation of a set of explicit dynamics
equations with a physical interpretation. This category contains
the single-motion model case, as in Linear Dynamical Systems
(e.g. plain Kalman filter) and extensions to the non-linear case
(e.g. unscented/extended Kalman filter or particle filtering).
This category also contains more advanced approaches with
multiple motion models, either as a mixture [10] or with
switching dynamics, e.g. Interacting Multiple Models (IMM).
Context cues can guide the switch in dynamics, leading to a
more general DBN [1], [11], [12].

Pattern-based methods instead derive predictions from pre-
viously seen data. One way of doing this is to match the
current (partial) track to previously seen (complete) tracks in
a database, and use the best matching exemplar for extrapola-
tion [13]. An alternative is to perform non-linear regression by
means of Gaussian Process Dynamic Models (GPDMs) [13],
[14], Quantile Regression [15] or RNNs [16], [17], [18], [19],
[19], [20], [21], [22], [23]. Popular instantiations of RNNs
are Long Short Term Memory networks (LSTMs) and Gated
Recurrent Units (GRUs). The latter uses fewer parameters as
the former while it may keep a similar performance [24]. An
RNN can predict not only a future state but also its uncertainty
(e.g. Gaussian distribution [17], or similarly to an IMM filter,
a mixture of Gaussians [18]). RNNs cannot inherently handle

missing data (e.g. a frame where a VRU was not detected),
and methods have been proposed to overcome this (e.g. [19]).

Some approaches blur the line between pure physics-based
and pattern-based methods. Fraccaro et al. [20] model the
dynamic latent state of an RNN with a Kalman filter, allowing
them to use the exact inference, prediction, and smoothing of
a Kalman filter for the dynamics. Li er al. [21] propose to
make separate predictions with both a DBN and RNN, and
fuse these afterwards in an online adaptive weighting scheme.

B. Context Cues

Object context cues are those that are directly linked to
the object of interest, in addition to point target kinematics
(positions, velocities). For example, Keller and Gavrila [13]
use dense optical flow features to improve pedestrian path
prediction. Xiong et al. [25] incorporate a learned feature
representation of the VRU related cues, either through the
feature representation of a re-identification network or through
the last layer feature representation of the YOLO object
detector [26]. Quintero et al. [14] recover a full 3D articulated
pose of a pedestrian.

Static context cues refer to the influence of the world
surrounding the VRU on their path. These are static effects
such as an expectation on where VRUs plan to walk to [4], or
the VRU’s preference to traverse certain kinds of semantic
areas (sidewalks, grass, zebra crossings, etc.). One way of
implementing this is through Inverse Reinforcement Learning
(IRL) [27], [28], or with neural networks [29]. Ballan et
al. [30] learn preferred routes directly on top-down image
data rather than on a semantic map and show that the learned
knowledge is transferable to new locations. Saleh er al. [31]
forego the need for a goal by using IRL only to learn the
reward map of a static scene. Another approach is to directly
encode the structure of the road ahead to limit the possible
paths that the VRU can take [10], [32], or to predict the
trajectory along the curvature of the road [33].

Dynamic context cues include whether the VRU is aware
of his or her surroundings. Kooij et al. [1] incorporate both
whether the vehicle and the pedestrian are on a collision course
as well as the pedestrian’s awareness thereof into a DBN to
predict the future position of a pedestrian who might cross the
road. Additionally, they show the same DBN structure can also
be used to predict the future position of a cyclist who might
turn left at a coming intersection. Neogi et al. [34] leverage
the interaction between ego-vehicle and pedestrian for path
prediction near an intersection as well. Other dynamic objects
or VRUs can also influence the future path of VRUs. Social
Force Models [22], [23] model the influence that nearby VRUs
have on each other.

C. Parameter Estimation

Methods with learned state representations can optimize
their parameters directly by performing gradient descent of
an objective loss using training data. The main requirement
is that this loss is differentiable. For example, it is possible
to directly optimize the entire predicted trajectory [16] and
all parameters at once [15]. The downside is that while the

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 3

learned representation fits the data, it is not necessarily possi-
ble to interpret the hidden state of the learned representation.
Being able to interpret why such a model predicts what it
does is an active field, both in path prediction [19] as well as
in detection [2]. Attentive neural networks [35] improve the
interpretability of a neural network by forcing the network to
make predictions on only a subset of all available information,
such that the “attention” of the network points to specific areas
or moments in time.

Methods with a crafted state representation on the other
hand often explicitly fix certain parameters a priori which
ensures that the latent state is interpretable. Kooij et al. [1] fix
the dynamic models in a DBN to a constant-velocity model
as well and estimate the other parameters for the context
cues by annotating all context variables at each frame. A
similar approach can be found in [21]. Hashimoto ef al. [12]
use a DBN and fix its dynamic model to be a constant-
velocity model while optimizing the other parameters through
maximum likelihood estimation. Batkovic et al. [4] specifically
structure their model so the few parameters can be tuned by
hand. If the goal is to optimize the DBN for estimating the
current state (i.e. filtering) and the DBN only has discrete
hidden variables, both the optimal parameters and structure can
be computed [36]. If it has both discrete and continuous hidden
variables, parameter optimization can be done by Expectation-
Maximization (EM) [37] or gradient descent [38, p. 169].

D. Contributions

Our main contribution in this paper is a comparison of two
state of the art models for context-based path prediction: one
with a learned state representation, an RNN, and one with a
crafted state representation, a DBN, at a level playing field. To
ensure that both models are treated similarly with respect to
the use of context cues and parameter estimation, we describe

« how to integrate the context cues (used previously by the
DBN [1]) into an RNN [16]', and conversely,

o how to optimize the DBN [1] with gradient descent by
utilizing back-propagation (similarly to the RNN [16]),
while keeping its state representation interpretable.

The comparison is made on a cyclist scenario. All relevant ex-
perimental data is made available to the scientific community
for non-commercial benchmarking.?

III. METHODOLOGY

For the path prediction task, we consider models that predict
at every time step ¢ a probability distribution over the top-
down 2D position z, n steps into the future, given all previous
measurements yo.;. A measurement y; = [x¢, ¢;] contains the
position x; as well as multiple context cue measurements
¢ = leiy,...,cn,,], where ¢ € RNe. In general, the
prediction task can be written as p (z¢4n|yo:¢). This section
covers the structure of the two approaches used to determine
P (Tt4n|yo.t): one RNN-based (section III-A) and its training
scheme (section III-B), and one DBN-based (section III-C)
and its training scheme (section III-D).

! [16] is our earlier conference paper that this article builds upon.
2For the dataset, follow the links at www.intelligent-vehicles.org.

.
<
S

e
<
=

.
<
N

hO,dec hl,dec h2,dec

[[
))])]]

R R RU-~
GRU GRU GRU

Fig. 2: The processesing of measurements over time by the
RNN. This figure shows the incorporation of inputs over three
time steps.

p (xt+n|y0:t)

Fig. 3: The prediction of p (z¢yn|yo.t) at time step ¢ by the
RNN. The layers W, and Wy, are shared with the temporal
update process (see fig. 2). The block labeled Comb is the
combination of egs. (4) to (9).

A. Recurrent Neural Network Model

For the RNN, the position is supplied as the difference in
position between two time steps, x; —z¢—1, as is done in [17].
The input for the RNN is then §; = [z;—2—1,¢1,, - . -, cht]T
At ty the position difference is taken as zero. The architecture
of the RNN can be split up into two parts: the first incorporates
inputs ¥, into the hidden state over time (i.e. inference), and the
second predicts a Gaussian distribution as the future trajectory
based on the hidden state at a certain time step.

The first part, the inference architecture, is laid out schemat-
ically in fig. 2. The main component is a Gated Recurrent Unit
(GRU), which is used because of its relatively low number of
parameters. The hidden layer h;, a vector with N} elements,
is decoded into an expected input, which is subtracted from
the actual input, and the result u; is fed into the GRU:

Uy = Wenc (gt - Wdec(ht)) (1)

_ Ty — 21| _ | Whos(he)
= Wenc (|: Cy :l l:Wcues(ht):|> ’ (2)

where Wepe(ht) = Wenchi+bene, a linear layer with we,. and
benc as trainable parameters. All other functions W(_)() are
linear layers as well, with parameters w(.y and b(.). The goal
of the linear layers is solely to scale the internal representation
of the GRU, and as such no nonlinear functions are added.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

www.intelligent-vehicles.org

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1V.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 4

For prediction, the signal that is fed into the GRU is
computed as:

U = Wene (0) . 3

All future hidden states hyyo, ..., hit, are then computed as
shown in fig. 3. The predicted Gaussian distribution over the
future position N (Z44n, X¢1rn) is computed as in [17]:

jt+n =x; + Z Wpos<ht+i) (4)

i=1
[0 0 ﬂm]T': Wooo (htn) (5)
01 = exp (l[o]) (6)
oy = exp (I11) @)
p = tanh ({12 8)

2
_| 91 po102

Yign = l:p0102 J%] . 9)

B. Recurrent Neural Network Training

The RNN is trained by minimizing the negative log-
likelihood of the predicted Gaussian distribution on the known
future position. To ensure that the output of each model is a
consistent path the loss is averaged over each time step and
the entire range of 1 time step up to and including n time steps
ahead. The optimized parameters in the RNN are those of the
GRU, the layers Wene, Wposs Weuess Weow, and hg. Each
of these parameters is initialized randomly using the default
PyTorch strategy for such layers.

Two training strategies will be considered to reduce overfit-
ting and improve convergence. Firstly, data normalization: The
mean and variance of ¢, in the training data are computed. The
input g, is scaled and translated accordingly before it is fed to
the RNN. The inverse of the scaling and translation is applied
to the output of each prediction step in eq. (4), i.e. Wpos(hii)-
The covariance matrix predicted by the RNN is not scaled
in any way. Secondly, during training, we reset the hidden
state h; back to the initial hidden state hy with a probability
of 5% at every time step. This is to prevent the RNN from
overfitting by recognizing a specific trajectory from just the
first few measurements. Experiments showing the importance
of these training strategies are given in section V-A2.

C. Dynamic Bayesian Network Model

This paper discusses the specific version of a DBN as
described in [1], although the methodology can be used for
alternative scenarios as well, e.g. [11]. At any time step ¢, the
entire state of the DBN is defined by a partially observable
continuous hidden state h; and discrete hidden state D;. The
discrete hidden state D, = [My,C4,,Cy, ... Cn.:] specifies
the current dynamic mode M, as well as N discrete variables
representing the state of the context cues. For a single time
step, there are in total |D| = |M|x |Cy| X - - x |Cn, | possible
combinations for the discrete state.

In the DBN, the discrete state at time ¢ = O follows a
categorical distribution Dy ~ Cat (PO) with parameters P°,

and can stochastically transition at subsequent time steps to a
new value:
Dy ~ Cat (PP, (10)

Here, P(Pi-1) is a |D|-dimensional parameter vector condi-
tioned on the past discrete state D;_;, i.e. the row from a
|D| x |D| transition table. Of the N¢ discrete variables C,,,,
N, have corresponding measurements c,,, and their probability
distribution p (¢, |Ch,) is specific for that context cue.

The propagation of the continuous state h; over time and
the relation between the measurement z; and the continuous
state h; are as follows:

he =AYby e, e~ N(th),Q(M‘)) (11)

zy = Chy + e, ne~N(0,R). (12)

Similar to eq. (10), the superscript (*+) indicates that there
is a separate matrix/vector for each of the Ny, models M. The
matrices A and C are model parameters. Both the measure-
ment and the state are perturbed by Gaussian noise that is not
directly measurable, 7 and e, respectively, with parameters i,
@, and R. Finally, the prior on the continuous state is normally
distributed, p (hg) ~ N (hg, Py) with parameters hy and Pp.

Inference and prediction with this model only apply matrix
multiplications, inversions, and additions, so their gradient can
be computed analytically (see appendix).

D. Dynamic Bayesian Network Training

The DBN is trained just as the RNN: by minimizing the
negative log-likelihood of the predicted Gaussian distribution.
The loss is again averaged over the entire range of 1 to n time
steps ahead. During optimization, certain parameters are fixed
such that the interpretability of the state is guaranteed. For
example, assume the continuous measurements are the top-
down 2D positions. If the first two items in the continuous
state vector of length 4 should represent the 2D position, then
fixing C = [§999] during optimization ensures a correct
state representation. Exact details for our case-study are given
in section I'V-B.

Additionally, to ensure that the covariance matrices are
positive definite, they are reparameterized as upper-triangular
matrices U during optimization, e.g. Q = U TU [38, p. 169].
To improve numerical stability, all covariance matrices have a
small epsilon 10~ added to their diagonal.

The initial state distribution and the transition matrices
for the discrete variables are also re-parameterized, using
softmax functions [38, p. 169], since optimizing the values in
the probability tables directly could result in invalid values.
For example, a row P(P?) from a probability table is re-
parameterized with |D| learnable parameters P(P*) as follows:

o)
L ‘jzll exp (ﬁ;Dt)) .

Each parameter of the context measurement distributions
p (¢n,|Cp,) that has a limited domain can be re-parameterized
as well. For example, the variance o of a Gaussian can be
kept positive by re-parameterizing it as o = exp (7).

(13)

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 5

For the initial value of all parameters, we can select a
more reasonable initial estimate than random values specif-
ically because each parameter and state variable has a certain
interpretation assigned to it, unlike the RNN. For certain
parameters this is done by defining them explicitly, such as
the motion models A™*) and measurement model C. For the
noise parameters of eqs. (11) and (12), the discrete measure-
ment likelihoods p (¢, |Ch,), and the discrete state transition
probability P(P+), there are two options. The first option,
annotation-based initialization (as in [1]), is to estimate these
using additional ground truth annotations for the discrete
variables. Those annotations, together with the context mea-
surements ¢, are used to fit the p (¢, |Cy,) distributions. The
transition probability 7(P*) is estimated from the discrete state
annotations as well. A downside is that annotating ground truth
for these latent variables is laborious and often ambiguous.
The second option, annotation-free initialization, is to forego
the annotations and select initial values for the variables based
on expert knowledge. This has become possible thanks to the
optimization step afterward. The two options are described for
our use case in sections IV-B2 and IV-B3.

IV. CASE STUDY

We now describe the case study used to compare the RNN
and DBN models. We first give an overview of the dataset,
along with a description of the relevant context cues and
their related measurements. We thereafter define the scenario-
specific parts of the DBN: its crafted state representation, how
it is trained and finally the two initial estimate strategies.

A. Dataset

The RNN and DBN from section III are trained and
evaluated on the tracks from the cyclist scenario used for
the original DBN [1]. This dataset contains 51 tracks of a
cyclist approaching an intersection at a steady pace. These are
recorded with a stereo-camera setup at 16 fps from a moving
vehicle that drives behind the cyclist, resulting in 5744 frames
total. There are no other traffic participants nearby. The cyclist
is instructed beforehand to either raise their arm or not, and
then either turn left or continue straight at the intersection.

The dataset contains the longitudinal and lateral position
of the cyclist in a global reference frame, as well as mea-
surements on the three context cues shown schematically in
fig. 1. The first is distance to intersection (DT']), the distance
between the cyclist and the intersection along the longitudinal
axis of the road. The second, 7™, is the time it takes for
the vehicle to overtake the cyclist if they would both keep
moving with the same velocity. The third, Arm Detector (AD),
indicates whether the arm of the cyclist is raised. This is given
as a confidence score as computed by a Naive Bayes classifier.

The tracks are divided into several sub-scenarios, based on
whether the cyclist turned left or went straight, whether the
arm was raised or not, and on how critical the situation was.
These sub-scenarios are divided into two categories, based on
whether the overall combination of context cues refers to a
typical (“normal”) scene in real traffic or not. For instance,
raising an arm in a critical situation before turning left is

TABLE I: Breakdown of the number of tracks in the cyclist
dataset for the sub-scenarios with normal (above the line) and
anomalous contextual behavior (below the line) [1].

Sub-scenario Occurrences
non-critical ~ arm not raised straight 6
non-critical ~ arm not raised turn 6
non-critical arm raised turn 6
critical ~ arm not raised straight 10
critical arm raised turn 7
non-critical arm raised straight 5
critical arm raised straight 4
critical ~ arm not raised turn 7

[5G }-f---1-
I

Fig. 4: The graph representation of the DBN from [1]. Rect-
angular nodes are discrete, round nodes are continuous. Gray
nodes indicate measured values.

considered a typical combination of context cues in such a
scenario, whereas not raising an arm in a critical situation is
not. The number of tracks per sub-scenario is given in table I.

Each track involving turning has the frame where the
cyclist first visibly starts to turn manually labeled as Time
To Event (TTE) = 0. Frames before and after the labeled
frame have negative and positive TTE values, respectively.
In the experiments TTE is used to temporally align tracks
in a meaningful way [13]. For the straight tracks, TTE = 0
is defined as the first frame on which the cyclist is past the
point on the intersection where 25% of the turning tracks have
already started their turn, according to the annotations.

Some of the tracks from the dataset contain frames without
position information. Because the proposed RNN has no
inherent way to handle missing data, we use the smoothed
tracks as described in [1] for both training and evaluating the
RNN and DBN.

B. DBN Scenario-specific Crafting

We first explain the DBN state representation from [1],
together with what parts of the model we fix during training to
keep the model interpretable. Next, we describe the annotation-
based method from [1] to find the initial estimate for the
remaining parameters. Finally, we explain the annotation-free
method for selecting initial parameters. The training of this
method is identical to the annotation-based method.

1) Model definition and training: The model has two
constant-velocity models as dynamic modes: one for when
the cyclist moves straight and one for when the cyclist turns

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 6

left. Its graph representation is given in fig. 4. The elements in
the continuous hidden state vector h; € R are the lateral and
longitudinal position (referred to as x and y in this section), the
x and y velocity of the cyclist if turning left, and the x and y
velocity of the cyclist if moving straight. The discrete hidden
state D; = [My, AUy, HAUy, Al;, SCy| contains the current
model M; and four context-related binary variables: whether
the cyclist’s arm is raised, AU;, whether the cyclist’s arm has
been raised, H AU;, whether the cyclist is at the intersection,
AI, and whether the situation is critical, SC4.

For the discrete state, fig. 4 shows that each variable in
the discrete state is assumed to only depend on parts of the
previous discrete state. This leads to 5 separate transition
tables, one for each discrete state: Pay, Prav, Par, Psc,
and Pys. For Py av, to represent the notion whether the cyclist
has had an arm up, it encodes the following rule:

true if HAUtfl \Y AUt

p(HAUHAU, -1, AUY) { false otl(lerwise. :
(14)
Prau 1is fixed during optimization, the others are optimized.

The optimizable continuous state parameters are shown
in table II. When initialized, the A matrices encode two
constant-velocity models. During optimization, the A matrices
are constrained in such a way that the hidden state keeps
the representation of position and velocity, but the constant-
velocity assumption is removed. Instead, the velocity at the
next time step can be any linear combination of the previous
x and y velocity. In the initial parameter estimation, the process
noise N (jie, Q) is assumed to only affect the position and is
assumed to be zero-mean. During optimization, N (ji, Q) can
affect both the position and the velocity, and is not assumed
to be zero-mean. The measurement noise covariance R is not
constrained. Finally, the continuous initial state distribution
N (hg, Py) is defined with the assumption that the initial state
of the cyclist is moving straight. Therefore, the position should
initially not affect the mean and covariance of the latent
turning speed when moving straight. As such, N'(hg, Py) is
set up so that the position only correlates with the velocity
of the cyclist moving straight. During optimization, the same
structure is kept.

2) Annotation-based initial estimate: The parameters from
table II that require an initial estimate are @), R, hg, and Pj.
In [1], these are found by running a Kalman smoother over
the tracks, which gives a ground truth position and velocity
at each time step. The transition tables for Pay, Par, Psco,
and Py, are estimated by first annotating their related discrete
variables (i.e. arm up, at intersection, situation critical, and
current model) for each frame. Then, the transition tables are
computed by counting the number of occurrences where the
discrete ground truth annotations relevant for that transition ta-
ble switch from one discrete state another. Finally, p (¢, |Ch,),
the distribution for each context feature measurement given
their respective discrete variable, is fitted using either Mixtures
of Gaussians (MoGs) or beta distributions, equal to [1].

3) Annotation-free initial estimate: For the initial state hg,
the initial position is taken from the mean position of all
initial positions. The cyclist straight velocity is assumed to
be 18 km/h. We assume the same velocity when turning left,

TABLE II: The initial estimation and optimization for all
parameters in the DBN that relate to its continuous state. The
state vector is, in order: the x and y position, the x and y
velocity if turning left, and the x and y velocity if moving
straight. O indicates that part is fixed to be zeros, I indicates
that part is fixed to be identity. In the left column, (-) indicates
values retrieved from the initial estimation step [1]. In the
right column, it indicates which values are altered during
optimization. The size of each (-), 0 or I is 2 x 2, except
for the vectors p and hg where it is 2 x 1.

Initial estimate Optimization
Kinematic parameters:
(110 (110
A= 1010 AM=10 ()0
001 0 01
(101 (1o 1
A®= 1010 A®=101 0
001 100)
c =[1oo c =[too]
Noise parameters:)
Y ¢) ¢)
pe = |0 pV =101 =10
|0 |0 ()
() oo [() 00 ()0 0
Q =|000 QW=1]0 Ho0[,®=|000
|0 00 |10 00 00 ()
-] w=[o)
Initial state parameters:)
¢) ¢)
ho = () ho = |()
©)
() 0 () () 0o ()
Pp=(0 ()0l PR =|0()O
() o () () 0 ()

albeit at a 45-degree angle. The initial covariance P, is esti-
mated as a diagonal matrix. The initial position variance is set
to the variance of the lateral and longitudinal initial position.
The initial covariance of the velocity in both directions and
both modes is one-tenth of the initial velocity. The observation
noise R is set to identity in meters. The process noise @) acting
on the position is set to one-tenth of the initial velocity.

For the context parameters, the context transition matrices
have a 0.01 probability of transitioning to another binary state,

0.99 0.01}

0.01 0.99 (15)

Pav =Par =Psc = [
The model transition matrix Pj; is set to have a transition
probability from straight to turning of 0.01 when the con-
ditions of a normal turning subscenario are met, as given
in table I, otherwise it is 0. Finally, the parameters for the
conditional probabilities p (¢,,,|Ch,,) are selected in an intuitive
sense: for example, the “at intersection” normal distribution is
centered at the intersection, with the “not at intersection” MoG
before and after the intersection. The same distributions types

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1V.2021.3064253, IEEE
Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 7

TABLE III: The log-likelihood of the predictions 16 steps (one second) in the future, averaged over the period TTE € [—15, 15].
The models are only trained on tracks from the normal sub-scenarios. For the RNNs, the letters indicate which context cues
were available to the RNN: I if the RNN used the distance to Intersection, a T if the RNN used the Time until the vehicle
could overtake, and an A if it used the probability that the Arm was up.

Evaluated on RNN RNNI RNNT RNNA RNNIT RNNIA RNNTA RNNITA
All normal subscenarios —0.42 0.68 0.40 0.51 0.47 0.57 0.36 0.81
Normal turning subscenarios ~ —1.21 0.06 —-0.58 —-0.32 —-0.28 —0.17 —-0.70 0.34
Normal straight subscenarios 0.79 1.63 1.90 1.79 1.64 1.73 2.00 1.55
All anomalous subscenarios —9.47 0.42 —-5.54 —5.07 —1.22 —9.72 —8.76 —11.48

Time To Event [frames]

(a) Normal turning sub-scenarios

8 24 g 2

S] =)]

s 4 = 4

o | G _

2 0 a o 0 N

© ®

B 2 B 21

o)] o)]

= R b=l -

g 44 — RNNjms — RNNjp £ —4-4 —RNNjy — RNNjp

éﬁ E L cond —RNNIA —RNNTA éﬁ E —RNNIA —RNNTA

_0—6 L e O B O B "O_G L e I B B B O
Etj -20 —-15 —-10 -5 0) 10 15 E -20 —-15 —-10 -5 0 5} 10 15

Time To Event [frames]

(b) Normal straight sub-scenarios

Fig. 5: One second ahead prediction log-likelihood mean (thick line) and one-sigma standard deviation (shaded area) of RNNs
over time. When turning (fig. 5a), the RNN with all three context cues (RNNjra, blue line) performs the best.

from the annotation-based method are used for the annotation-
free method.

V. EXPERIMENTS

In section V-A, we evaluate the performance of the RNN
and investigate whether incorporating context cues improves
its predictive accuracy. In section V-B, we evaluate the per-
formance impact of gradient-based optimization of the DBN
parameters in comparison to the previously used annotation-
based parameter estimation method. After having assured that
both the RNN and DBN models can be trained on the same
context cues with the same optimization strategy, we compare
their performances in section V-C.

Given the measurements up to time step ¢, each model
computes a distribution of the future position x4, at time
step t+n: p (Tin|yot). As in [1], we evaluate this predictive
distribution n = 16 steps (one second) into the future,
around the point where the cyclist may turn left: the range
TTE € [-15,15]. Let T4, be the actual future position in
the data. Following [1], we use two different performance
metrics to evaluate a sequence, namely, the log-likelihood of
this future position under the predictive distribution (higher is
better) and the Euclidean distance between predicted expected
position and this actual future position (lower is better):

(16)
a7

I(t+n|t) =logp(Ttin = Ttynlyo:t)

error (t +nlt) = |Ext+n [P (zt4nlyo)] — E,H_n’ .

The predictive distribution for the DBN is a mixture of N3,
Gaussians (N = 2) [1]. It is a single Gaussian for the RNN.
All models are implemented in PyTorch [39] and evaluated
using leave-one-out cross-validation on a Titan X Pascal GPU.
For the RNN, after a preliminary hyperparameter search we
select a hidden layer size of N, = 32, and train using the
Amsgrad [40] algorithm for 2000 iterations with a learning
rate of 0.0015, taking 50 minutes per cross-validation fold.
The DBN is trained for 1000 iterations with a learning rate of
0.0001 using the same algorithm, taking 130 minutes per fold.
Both models run in real-time: 4 ms per frame for the RNN,
and 10 ms per frame for the DBN.

A. RNN Evaluation

We analyze how well the RNN incorporates context cues
in its prediction by looking at the performance of the RNN
with every combination of context cues as input values. Next,
we analyze the effectiveness of the training strategies of
section III-B through an ablation study.

1) Incorporating context cues in an RNN: Table III shows
the predictive log-likelihood of RNNs incorporating different
combinations of context cues (the caption defines the naming
convention). From left to right, the table shows RNNs with in-
creasingly more information available to them. On the normal
sub-scenarios, the addition of one cue (columns RNNj, RNNr,
and RNN,) improves the likelihood over the model without
any context cues. We observe that using two cues does not

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 8

improve performance over using a single cue. Apparently, the
additional information does not outweigh the disadvantage of
increasing the input dimensionality. Utilizing all three context
cues (RNNyra), however, does result in the best performance.

All models perform better on the straight sub-scenarios than
on the turning sub-scenarios, likely due to the more complex
dynamics in the turning scenario.

The full model also attains the lowest log-likelihood of
all models on the anomalous data. This further shows that it
leverages the context information to inform on its predictions,
as the only difference between the normal and anomalous
sub-scenarios is the validity of the context cues. The full
RNN model thus successfully discriminates between such sub-
scenarios and has shifted the mass of its predictive distribution
away from the anomalous cases.

For a more in-depth analysis, fig. 5 shows the log-likelihood
over time, using the annotated TTE to temporally align the
tracks. These graphs show the log-likelihood of a prediction
made at that specific TTE, e.g. the point at TTE = —10 shows
the likelihood of the prediction for TTE = 6. Figure 5a shows
that the RNNs increase in accuracy starting around TTE =
—10, a moment where the RNN predicts what happens after
the turn. That means that the RNN detects that the cyclist will
turn over half a second before the annotated point of turning,
TTE = 0.

For the normal sub-scenarios where the cyclist continues
straight (fig. 5b), all models perform relatively similar. The
performance of the full model does decrease slightly over time.
This is in line with the results of table III: the main reason
for the overall better performance of the full model is the
improved performance on the tracks of the normal turning
sub-scenarios, without losing too much performance on the
normal straight sub-scenarios.

When comparing the average Euclidean distance error of
the predictions, the full model outperforms the other models
as well, albeit only slightly: the average Euclidean distance
error is 33 cm when evaluated on the tracks from the normal
sub-scenarios (34 cm/31 cm on normal turning/straight sub-
scenarios, respectively). The other RNNs with one or two
context cues have an error between 34 cm and 35 cm, the
RNN with no context cues has an error of 49 cm.

Overall, we find that the RNN exploits the additional context
cues. This mirrors the results for the DBN found in [1]: both
approaches benefit most from combining all distinct types of
context in the normal sub-scenarios, while as expected both
also assign a low probability to the designed anomalous cyclist
responses to these context cues. We thus conclude that both

TABLE IV: The categorization of all DBN parameters into
distinct groups, to study the effect of optimizing related param-
eters. The superscript (~)(Mt‘1) indicates that the parameter is
distinct for each dynamic mode. The letter in brackets is used
to specify what has been optimized in a DBN.

Name of group Content of group

Pauv, Par, Pscs Pus PO, p(eny|Cny)

Qo) MY R Py, ho
A(Mz)

Context parameters (C)
Noise parameters (N)
Kinematic parameters (K)

models have homogenized context input.

2) RNN training strategies: Next we demonstrate the im-
portance of the training strategies discussed in section III-B
through an ablation study. The RNN is trained with all three
context cues as additional input and evaluated on all tracks
from the normal sub-scenarios. As shown before, the proposed
RNNita achieves an average prediction log-likelihood of 0.81.
Without normalization, the prediction log-likelihood drops to
—5.85. Without resetting the hidden layer during training, it
drops to —0.61. This shows that both training strategies help
improve the accuracy of the RNN.

B. DBN Evaluation

Turning to the DBN, we first verify that the optimiza-
tion increases the performance compared to the annotation-
based initial parameter estimation. Secondly, we show that
the optimization improves the alignment of the latent turning
probability with the annotated moment of turning. Finally,
we compare the performance of the annotation-based initial
estimate with the annotation-free initial estimate.

To better understand the effects of the optimization, we
categorize the relevant parameters into three groups, see
table IV. Various combinations of these groups are either
fixed to their initial estimate or optimized. The letter within
brackets in the table is used to specify what has been optimized
in a DBN. For example, DBN®N has both the Context and
Noise parameters optimized. DBN (no superscript) refers to
the original, unoptimized DBN from [1]. When optimized,
constraints as mentioned in section III-D apply.

1) Optimizing the DBN: Table V shows the performance
of the original and optimized DBNs. Every optimized DBN
improves overall performance compared to the original DBN.
Optimizing all parameters (DBN“NK) results in the best overall
performance.

The Euclidean distance error improves for each optimized
model, save one. The unoptimized DBN has an error of 64 cm

TABLE V: The log-likelihood the DBNs on their predictions 16 steps (one second) in the future, averaged over the period
TTE € [—15, 15]. The models are only trained on tracks from the normal sub-scenarios. The names indicate which parameter

groups were further optimized (see table IV).

Evaluated on DBN DBN®¢ DBNN DBNCN DBNNK DBNCNK
All normal subscenarios —1.53 —1.38 —0.22 —0.20 —0.14 —0.12
Normal turning subscenarios —2.95 —2.63 —1.08 —1.04 —1.02 —1.00
Normal straight subscenarios 0.84 0.69 1.15 1.14 1.25 1.28
All anomalous subscenarios —2.40 -2.13 -—1.10 —1.12 —1.11 —1.14

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1V.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 9

g 24 — DBN®K — DBNMK
§ 1 —DBN®Y —DBN
El -

e 07

©

B 21

=} 4

= i

g 1]

éﬁ E 1 second

'6_6 rrrryrrrrr[rrrrryrrrr[rrrrr [Tt Tt
2 -2 -15 -10 -5 0 5 10 15

Time To Event [frames]

(a) Normal turning sub-scenarios

g 24

£ 1 /

& =

e 07

AR

B 21

=] i

= i

L 4 — DBNNK — DBNNK
&] — DBN“N — DBN
;_6 rrrr[rrrrryrrrryrrrrr[rrrrrprr o 1T
£ -2 -15 -10 -5 0 5 10 15

Time To Event [frames]

(b) Normal straight sub-scenarios

Fig. 6: One second ahead prediction log-likelihood mean (thick line) and one-sigma standard deviation (shaded area) of DBNs
over time. In the turning sub-scenarios (fig. 6a), the performance of the DBN with no additional parameter optimization (DBN,
red line) deteriorates after TTE = 5. The optimized DBNs do not see this deterioration. In the straight scenario (fig. 6b),

optimization improves performance.

for the turning sub-scenarios, and 25 cm when moving straight.
All optimized DBNs except DBNC attain an error of 39-42 cm
when turning, and 22-24 cm when moving straight. For DBNC,
the error increases to 67 cm when turning, and decreases to
19 cm when going straight.

To understand the performance over time, fig. 6 shows the
prediction log-likelihood of the three best performing opti-
mized DBNs alongside the unoptimized DBN. For the turning
case (fig. 6a), the main improvement in performance stems
from better modeling of the turning dynamics. Because the
context cues only inform on the likelihood of switching rather
than the likelihood of the current dynamic mode, the DBN can
only infer the cyclist is turning from position information. For
the sub-scenarios where the cyclist continues straight (fig. 6b),
optimizing consistently improves the performance.

2) Detection of dynamics change: The probability of being
in the turning dynamic mode should remain close to zero
when the cyclist moves straight. This is indeed the case:
our experimental records show that the average probability of
turning on straight scenarios is less than 0.5% for all models.

Conversely, the turning probability should go up for the
normal turning tracks around TTE = 0, the annotated moment
of turning. Figure 7 shows how this probability changes over
time for the turning scenario. The graph shows that optimizing
the context group has no discernible effect on when the model
switches to turning: DBN™K coincides with DBNNK, DBNN
with DBNY, and DBN€ with DBN. This is because the context
cues inform the model on when the switch from straight
to turning is more likely to occur. Whether the cyclist is
actually turning is determined by the likelihood of the position
measurements and therefore by the dynamics.

The other parameter groups do affect the model’s reaction
to turning. Optimizing the noise parameter group moves the
moment of turning closer to TTE = 0. Optimizing the
kinematic parameter group moves it even closer.

15
w 1 — DBN®NK--.pDBNNK
Z 087 pBNN — pBNN
£ 06 —DBN® —DBN
o]
2 b
S 0.4
=]]
£]
£ 021
=) T
&= . 1 second
0
—-30 —20 —10 0 10 20

Time To Event [frames]

Fig. 7: The mean (lines) and one-sigma standard deviation
(shaded area) of the turning probability for the normal turning
tracks. The turning probability is most in line with the anno-
tated moment of turning when all parameters are optimized
(DBNCNK, green line, and DBNNK, dashed orange line).

3) Annotation-free initial estimation: To assess the need for
annotations, we perform the annotation-free initial estimation
scheme laid out in section IV-B3, and then optimize the model
as before, i.e. like DBN“NK. This leads to an average log-
likelihood over all scenarios of —0.2, which still outperforms
the unoptimized DBN (—1.53, see table V), but it is slightly
worse than the log-likelihood of DBNNK with annotation-
based initial estimation (—0.12). At the same time, the average
Euclidean distance error over all normal scenarios did improve
from 33 cm to 31 cm. We conclude that we can do without
the laborious manual annotation step of the latent variables of
the DBN and still obtain a competitive performance.

C. Comparison of DBN with RNN

After having established that both the RNN and the DBN
can be trained on the same context cues using the same

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 10

\]

— RNNjs — DBNNK

—4 DBNNK — DBN
1 second
—6 L I O B B
-20 —-15 —-10 -5 0 5 10 15

Pred. log-likelihood @ 16 frames [-]

Time To Event [frames]

(a) Log-likelihood of normal turning sub-scenarios

T 17

E 1 — RNNja — DBNY

£ 087 — pBN"K —DBN

£]

2 0.6

®]

5 0.4 - W
5 1 — =

2z 0.2

o]

=)]

'3 O \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

2 -20 -15 -10 -5 0 5 10 15

Time To Event [frames]

(b) Euclidean distance error of normal turning sub-cenarios

Fig. 8: The mean (lines) and one-sigma standard deviation (shaded area) of the one second ahead prediction log-likelihood
(fig. 8a) and Euclidean distance error (fig. 8b) for the normal turning sub-scenarios.

optimization strategies, we now compare both approaches to
assess the performance impact for using either a crafted or
a learned state representation. When comparing the average
log-likelihood, the best RNN in table III outperforms the
best optimized DBN in table V: 0.81 to —0.12. However,
at the same time, the average Euclidean distance error over
all normal sub-scenarios is 33 cm for both. The source of the
Euclidean distance error is not equal for both models, however.
The average Euclidean distance error made by the RNN on the
turning sub-scenarios and the straight sub-scenarios is almost
identical: 34 cm and 31 cm, respectively. Because the RNN is a
generic model, it is reasonable that it has no bias towards either
type of dynamics. In contrast, the linear models of the DBN
can directly encode a cyclist going straight with a constant
velocity model, whereas the varying radii of a cyclist turning
left cannot be represented as well. The corresponding error
values are 39 cm and 23 cm, for the best optimized DBN.

More in-depth, fig. 8a shows the predicted likelihood over
time for all tracks from the normal turning sub-scenarios,
centered around TTE = 0. The results are shown for the
best performing RNN, RNNjra, as well as the unoptimized
DBN and the two best performing optimized DBNs. From
TTE = —10, the performance of the RNN (blue line) starts
to diverge from the two optimized DBNs (green and orange
line). While the gap narrows from around TTE = 0, it never
fully closes. When comparing the Euclidean distance errors
on the same tracks (fig. 8b), we see the same divergence
between the RNN and the two optimized DBNs starting at
TTE = —10 but find that the difference in Euclidean distance
error returns to almost zero starting at TTE = 2. It seems that
the DBN, when its parameters are optimized, can predict the
average position almost as well as the RNN, thus differences
in the log-likelihood are mostly due to larger variance in
the predictive distribution required to compensate the DBN’s
linear dynamics.

As a last observation, both the RNN and the DBNs with
optimized parameters show a dip in prediction log-likelihood
(fig. 8a), but the RNN recovers around 10 frames earlier than

the DBNs: TTE = —10 versus TTE = 0. This seems to indi-
cate that the current context cues, together with the position
information, already contain additional relevant information to
predict when a cyclist will turn, but that the DBN is not yet
properly capturing this aspect.

VI. DISCUSSION

We examined two models for predicting the distribution
over the future position of a cyclist: the RNN and DBN.
They use completely different state representations for the
dynamic state of the kinematics and context information.
When performance is the only goal, the RNN is currently the
best choice, as it attained the highest average log-likelihood.
By using the right training strategies, the RNN was able to
leverage the information present in the context cues (table III).
However, because of the “black-box” nature of the RNN, it is
difficult to inspect the model and explain how the context cues
exactly affect its predictions, other than empirical validation
and statistical arguments. On the other hand, the DBN has
the benefit that we can ensure that its discrete latent state
is interpretable by appropriately specifying the structure of
the model (fig. 7) and its parameters. Interestingly, our results
show that after gradient descent based optimization similar
to the RNN, the performance gap is significantly reduced
compared to previously reported results [1]. The optimized
DBN even attains similar Euclidean distance error as the RNN
(section V-C). Moreover, one can do without the laborious
manual annotation step of all latent variables of the DBN (as
is the norm in the state-of-the-art experimentation) and still
obtain a similar performance.

An added value of investigating both an approach with a
learned representation such as an RNN and an approach with
a crafted representation such as the DBN is that they provide
complementary insights: the former shows if certain measure-
ments or context cues can help improve prediction, the latter
shows how well our assumptions on the measurements and
context cues hold. In our case, the similar Euclidean distance
error but the worse log-likelihood of the DBN compared to the

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIV.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 11

RNN lead us to conclude that the DBN at times over-estimates
the uncertainty in its predictions. This can be attributed to
the DBN using only two linear dynamical models for varying
turning behaviors. An important direction to improve the DBN
is thus to allow for more varied motion dynamics. This could
be achieved by loosening existing assumptions, e.g. that noise
is constant over time, or by incorporating non-linear motion
models with an extended or unscented Kalman filter or particle
filter. Another direction is to learn more varied and specialized
dynamic modes from the track data itself, e.g. by estimating
the number of dynamics and their context with appropriate
priors during model optimization [10], [41].

An open challenge is to create predictive methods that scale
to a more diverse set of real-life traffic conditions (i.e. multiple
scenarios, different road users) while remaining interpretable
and incorporating a rich set of context cues. For the DBN, the
computational complexity can be partially curbed by limiting
the dependencies between discrete states (fig. 4), though it
may be necessary to learn these dependencies from data
instead of designing these relations manually as was done here.
The interesting alternative is to take a learned representation
method and encode expert knowledge in specific areas of the
model, thereby making it interpretable and keeping its high
performance. Possible directions include combining learned
context representations to predict distributions over a fixed set
of predefined dynamics [42], and incorporating agent interac-
tion explicitly as a graph structure in the neural networks [23],
[43]. In contrast, attentive networks [35] provide interpretabil-
ity through inspection of node activations for specific inputs,
rather than through explicit encoding of expert knowledge.

The advent of large-scale naturalistic datasets such as Ar-
goverse [44] will be important to further these future research
directions. Even so, our current findings on the impact of
gradient-based optimization are also relevant to other sce-
narios where DBNs have already been successfully applied
without such optimization strategies, such as signalized [12]
and non-signalized [21], [45] pedestrian crossing, and in joint
pedestrian-driver awareness collision risk estimation [11]. We
also note that our approach of studying the representation in
isolation may be useful for other applications too, such as
surveillance with path prediction in crowds, where traditional
expert-designed representations [46] have been fully replaced
by learned representations [23]. Ideally, expert knowledge
and semantic concepts can be seamlessly incorporated in
the learned representation and optimized jointly, potentially
resulting in the best of both worlds.

VII. CONCLUSION

We described two models for predicting a Gaussian-based
distribution over the future position of a cyclist that incorporate
various context cues and learn distinct dynamic modes. The
main distinction between these models was their latent state
representation: crafted vs. learned. For the RNN model with a
learned state representation, we showed that it could leverage
the context cues to improve its path prediction. For the DBN
model with a crafted representation, we explained how to
optimize it while keeping its latent state interpretable.

Comparing the two models thus at a level playing field, we
found that the RNN attains the best predictive performance
overall (significantly outperforming the optimized DBN on
the log likelihood measure, while performing similarly on
the Euclidean distance error measure, i.e. 31-34 cm vs. 23—
39 cm for the DBN). This suggests, more broadly, that if
performance is the only relevant metric (and sufficient data
is available), a learned state representation is the preferable
choice. On the other hand, results showed that optimizing
the DBN did partially close the performance gap with the
RNN, even without a laborious manual annotation of all
latent variables. We conclude that crafted state representations
remain suitable for safety-critical applications where it is
important to understand why a model behaves the way it does,
or for cases where one wishes to further knowledge of the
underlying causalities.

Further work could focus on models that better combine
data adaptation and expert knowledge. The DBN could be
allowed more flexibility to adapt to the data by means of auto-
matic motion model discovery including extensions to higher-
order/non-linear motion models. Conversely, the RNN could
be more strongly regularized by explicitly encoding physical
models or relevant (infrastructure or otherwise) context known
to a human expert.

ACKNOWLEDGMENT

This work was supported by the Dutch Science Foundation
NWO-TTW within the SafeVRU project, nr. 14667.

APPENDIX

We provide an overview of the computational graph created
for the inference algorithm of the DBN to aid reproducibility
and to demonstrate that the inference algorithm is suitable
for gradient-based optimization. A schematic overview of the
data flow for one time step in the algorithm is shown in fig. 9.
Inference consists of three main steps: Predict, Update and
Marginalize, see [1]. The update step can only be applied when
integrating past or current measurements; it cannot be used in
future time steps. At each step, the algorithm computes a new
distribution over the DBN’s latent state. The probability of
a discrete state D, = [My, Ch,,...Cnyt] is expressed with
a scalar dEDt). The continuous state is represented by Njs
means tht) and covariances Pt(M*), one for each model M;.

The subsections below list the equations corresponding to
each step for the latent states, and the figure also refers to
these equations per step. All equations consist of basic oper-
ations such as matrix multiplications or additions, which are
differentiable and straightforward to implement in frameworks
such as PyTorch [39] and TensorFlow [47].

1) Predict: Given p(hi—1, Di—1|yo.t—1) from the previous
iteration, compute p(h¢, Dy, Di_1|yo.+—1). With the model
definitions of section III-C, prediction of the next continuous
state is done using a Kalman filter, for every N3, combination
of current and previous model:

hijit) = A M=)y (M) (18)
Pt(|ivitit71) _ A(M,,)Pt(inltfl)AT(M,,) + Q(M,,) (19)

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1V.2021.3064253, IEEE

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR

12

(Mi—1) (My,1-1) Mg t—1) My
Py Predict Ptlt*1 Update P, t(' Marginalize | £ t(:
Covariance (19) ?? Covariance (24) Covariance (29)
(M,l_) S — (Mgt 1) (]Wt,,t— M,
hy—1™" Predict }t\tfl \ Update hy J Marginalize hg :
Cont. State (18) Cont. State (23) / Cont. State (27)
(Df) (D4, D,
&y Predict Update dy / /1) Marginalize dg)
Discr. State (20) Discr. State (25) Discr. State (30)

Tt

ol

Fig. 9: A schematic overview of how the DBN incorporates contextual (c;) and positional (x;) measurements to infer the
state over time. Each block corresponds to an equation, referenced in brackets. The computations are done in joint domains
((My,4—1) and (Dy—1)) for the bold colored lines and in single domain (e.g. (D;—1)) for the thin black lines.

(Di-1)
tl

d(Dt,t—l)

tjt—1

PoVd (20)
The superscript (Mtt-1) indicates that the predicted state is
computed for each possible model combination (i.e. their joint
probability). Accordingly, the distribution of the hidden state
is defined as a mixture of N Nar Gaussians [1]. Similarly, the
tt—1) -

discrete state probability dt‘ A
joint discrete state combinations.

is computed for the |D|?

2) Update: Obtain p(hy, Dy, Di—1]yo.+) by incorporating
measurement y; = [2¢,¢1,,...,CN,,], akin to a Kalman
update:

S(]\/[t,t—l) — CPt‘tflcT + R(Mt) 1)

K(Mtt 1) = Py 1C Sy 1 (22)

My,t—1
hE wemt) - hyje—1 — Ki(zy — Cht|t—1) (23)
pMe) — (1 - K,C) Py (24)
N,
Dt t— Dt t—
d(R _dflt 1 Jp (ztlhejt—1, Prje— H (cn,|Cn,)
n=1
(25)
Where p (xt|ht|t 1 Pt|t 1) is the likelihood of the measure-
ment z; for the state htl . tlt 1) with covariance Pt(| P V. For

readability, the superscript (M+t~1) has been omitted on the
right-hand side for the variables hy;_1, Pyj;—1, St, and K.
3) Marginalize: Computing the full joint probability by it-
erating the previous steps would quickly become intractable, as
there are (Nj7)* motion model combinations after ¢ steps. To
make inference tractable, we marginalize p(h¢, Dy, Di—1|yo.¢)
over the past discrete state D;_; to obtain approximation
p(ht, Dtlyo.t). The mixture of Gaussians over joint models
(M;4—1) is therefore collapsed to a mixture over only the
current motion models (M;) through moment matching [1]:

dEMt,71) _ Z d](f’Dt,t—l) (26)
Dit—1/(Mi—1)
h(Mt) Z h(Mt t— 1)d(Mt 1) (27)
My
(Mt t—1) h(Mt t—1) hEMt) (28)

Pt(Mt) _ Z (Pt(Mmfl) +6§Mt,t71)e:(Mt,t—l)) dth—l)
M1

(29)

dEDt) — Z dEDt,tfl) (30)
Di—1

Here, in eq. (26) the notation D;,_1/(M;_1) refers to all

variables

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

in the joint discrete state D, ;1 except (M;_1).

REFERENCES

J. E. P. Kooij, F. Flohr, E. A. 1. Pool, and D. M. Gavrila, “Context-Based
Path Prediction for Targets with Switching Dynamics,” Int. Journal of
Comp. Vision (IJCV), pp. 239-262, 2019.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Int. Journal of Comp. Vision (IJCV),
2017, pp. 618-626.

T. Viering, Z. Wang, M. Loog, and E. Eisemann, “How to manipulate
CNNs to make them lie: the Grad-CAM case,” Workshop on Inter-
pretable and Explainable Machine Vision, 2019.

I. Batkovic, M. Zanon, N. Lubbe, and P. Falcone, “A computationally
efficient model for pedestrian motion prediction,” in /EEE European
Control Conf. (ECC), 2018, pp. 374-379.

D. Ridel, E. Rehder, M. Lauer, C. Stiller, and D. Wolf, “A literature
review on the prediction of pedestrian behavior in urban scenarios,”
IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), pp. 3105-3112, 2018.
A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,” Int.
Journal of Robotics Research (IJRR), vol. 39, no. 8, pp. 895-935, 2020.
M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila, “EuroCity Persons:
A novel benchmark for person detection in automotive context,” I[EEE
Trans. on Pattern Anal. and Mach. Intelligence (TPAMI), vol. 41, no. 8,
pp. 1844-1861, 2019.

A. Palffy, J. Dong, J. F. P. Kooij, and D. M. Gavrila, “CNN based road
user detection using the 3d radar cube,” IEEE Robotics and Automation
Letters (RAL), vol. 5, no. 2, pp. 1263-1270, 2020.

J. R. van der Sluis, E. A. I. Pool, and D. M. Gavrila, “An experimental
study on 3D person localization in traffic scenes,” in IEEE Intelligent
Vehicles Symposium (IV), 2020.

E. A. L Pool, J. E. P. Kooij, and D. M. Gavrila, “Using road topology to
improve cyclist path prediction,” in IEEE Intelligent Vehicles Symposium
(1v), 2017, pp. 289-296.

M. Roth, F. Flohr, and D. M. Gavrila, “Driver and pedestrian awareness-
based collision risk analysis,” in IEEE Intelligent Vehicles Symposium
(1V), 2016, pp. 454-459.

Y. Hashimoto, G. Yanlei, L.-T. Hsu, and K. Shunsuke, “A probabilistic
model for the estimation of pedestrian crossing behavior at signalized
intersections,” in IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), 2015.
C. G. Keller and D. M. Gavrila, “Will the pedestrian cross? A study on
pedestrian path prediction,” IEEE Trans. on Intelligent Transportation
Systems, vol. 15, no. 2, pp. 494-506, 2014.

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T1V.2021.3064253, IEEE

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]
[38]
[39]

[40]

2379-8858 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Intelligent Vehicles

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR

R. Quintero, I. Parra, D. FE. Llorca, and M. Sotelo, “Pedestrian intention
and pose prediction through dynamical models and behaviour classifi-
cation,” in IEEE Int. Conf. on Intell. Transp. Syst. (ITSC), 2015, pp.
83-88.

B. Volz, H. Mielenz, 1. Gilitschenski, R. Siegwart, and J. Nieto,
“Inferring Pedestrian Motions at Urban Crosswalks,” IEEE Trans. on
Intelligent Transportation Systems, pp. 544-555, 2018.

E. A. L. Pool, J. F. P. Kooij, and D. M. Gavrila, “Context-based cyclist
path prediction using recurrent neural networks,” in IEEE Intelligent
Vehicles Symposium (IV), 2019, pp. 824-830.

A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

S. Becker, R. Hug, W. Hiibner, and M. Arens, “An RNN-based IMM
filter surrogate,” in Scandinavian Conf. on Im. Anal., 2019, pp. 387-398.
P. Ondriska and I. Posner, “Deep tracking: Seeing beyond seeing using
recurrent neural networks,” in AAAI Conf. on Artificial Intell., 2016.
M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled
recognition and nonlinear dynamics model for unsupervised learning,” in
Conf. on Neural Information Proc. Syst. (NIPS), 2017, pp. 3601-3610.
Y. Li, X.-Y. Lu, J. Wang, and K. Li, “Pedestrian trajectory prediction
combining probabilistic reasoning and sequence learning,” IEEE Trans.
on Intelligent Vehicles, 2020.

N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker,
“DESIRE: Distant future prediction in dynamic scenes with interacting
agents,” in IEEE Conf. on Comp. Vision and Patt. Recog. (CVPR), 2017,
pp. 336-345.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in IEEE Conf. on Comp. Vision and Patt. Recog. (CVPR), 2016,
pp. 961-971.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” in Neural
Information Proc. Syst. (NIPS) Workshop on Deep Learning, 2014.

H. Xiong, F. B. Flohr, S. Wang, B. Wang, J. Wang, and K. Li, “Recurrent
neural network architectures for vulnerable road user trajectory predic-
tion,” in IEEE Intelligent Vehicles Symposium (1V), 2019, pp. 171-178.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” IEEE Conf. on Comp.
Vision and Patt. Recog. (CVPR), 2015.

K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
forecasting,” in Eur. Conf. on Comp. Vis. (ECCV), 2012, pp. 201-214.
V. Karasev, A. Ayvaci, B. Heisele, and S. Soatto, “Intent-aware long-
term prediction of pedestrian motion,” in IEEE Int. Conf. on Robotics
and Automation (ICRA), 2016, pp. 2543-2549.

S. Huang et al., “Deep learning driven visual path prediction from a
single image,” IEEE Trans. on Image Processing, vol. 25, no. 12, pp.
5892-5904, 2016.

L. Ballan, F. Castaldo, A. Alahi, F. Palmieri, and S. Savarese, “Knowl-
edge transfer for scene-specific motion prediction,” in Eur. Conf. on
Comp. Vis. (ECCV), 2016, pp. 697-713.

K. Saleh, M. Hossny, and S. Nahavandi, “Contextual recurrent predictive
model for long-term intent prediction of vulnerable road users,” IEEE
Trans. on Intelligent Transportation Systems, 2019.

, “Cyclist trajectory prediction using bidirectional recurrent neural
networks,” in Australasian Joint Conf. on A.L, 2018, pp. 284-295.

G. Raipuria, F. Gaisser, and P. P. Jonker, “Road infrastructure indicators
for trajectory prediction,” in IEEE Intelligent Vehicles Symposium (IV),
2018, pp. 537-543.

S. Neogi, M. Hoy, K. Dang, H. Yu, and J. Dauwels, “Context model for
pedestrian intention prediction using factored latent-dynamic conditional
random fields,” IEEE Trans. on Intelligent Transportation Systems, 2020.
A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and
S. Savarese, “SoPhie: An attentive GAN for predicting paths compliant
to social and physical constraints,” in IEEE Conf. on Comp. Vision and
Patt. Recog. (CVPR), June 2019.

N. X. Vinh, M. Chetty, R. Coppel, and P. P. Wangikar, “GlobalMIT:
learning globally optimal dynamic bayesian network with the mutual
information test criterion,” Bioinformatics, vol. 27, no. 19, pp. 2765-
2766, 2011.

K. P. Murphy, “Switching Kalman filters,” Technical report, Department
of Computer Science, UC Berkeley, 1998.

, “Dynamic Bayesian networks: representation, inference and learn-
ing,” Ph.D. dissertation, University of California, Berkeley, 2002.

A. Paszke et al., “Automatic differentiation in PyTorch,” in Conf. on
Neural Information Proc. Syst. (NIPS), 2017.

S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam and
beyond,” in International Conf. on Learning Representations, 2018.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

13

J. F. Kooij, G. Englebienne, and D. M. Gavrila, “Mixture of switching
linear dynamics to discover behavior patterns in object tracks,” IEEE
Trans. on Pattern Anal. and Mach. Intelligence (TPAMI), vol. 38, no. 2,
pp. 322-334, 2015.

T. Phan-Minh, E. C. Grigore, F. A. Boulton, O. Beijbom, and E. M.
Wolff, “Covernet: Multimodal behavior prediction using trajectory sets,”
in IEEE Conf. on Comp. Vision and Patt. Recog. (CVPR), 2020, pp.
14074-14 083.

Y. Huang, H. Bi, Z. Li, T. Mao, and Z. Wang, “Stgat: Modeling spatial-
temporal interactions for human trajectory prediction,” in IEEE Conf.
on Comp. Vision and Patt. Recog. (CVPR), 2019, pp. 6272-6281.

M. E. Chang et al., “Argoverse: 3D tracking and forecasting with rich
maps,” in IEEE Conf. on Comp. Vision and Patt. Recog. (CVPR), 2019.
J. E. P. Kooij, N. Schneider, F. Flohr, and D. M. Gavrila, “Context-based
Pedestrian Path Prediction,” in Eur. Conf. on Comp. Vis. (ECCV), 2014,
pp- 618-633.

M. Luber, J. A. Stork, G. D. Tipaldi, and K. O. Arras, “People tracking
with human motion predictions from social forces,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2010, pp. 464—469.

M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” USENIX Symp. on OS Design and Implement., 2016.

Ewoud Pool received the Master’s degree in System
and Control engineering at the TU Delft in 2015.
Since 2016, he works on obtaining the Ph.D. degree
at the TU Delft, focusing on path prediction of
vulnerable road users for use in automated vehicles.
His research interests include the modeling of human
dynamics, perception for automated vehicles, and
machine learning.

Julian Kooij obtained the Ph.D. degree in artificial
intelligence at the Univ. of Amsterdam in 2015,
where he worked on unsupervised machine learning
and predictive models. In 2013 he worked at Daimler
AG on path prediction of vulnerable road users for
highly-automated vehicles. In 2014 he joined the
computer vision lab of the TU Delft, and since
2016 he is an Assistant Professor in the Intelligent
Vehicles group at the same university. His research

interests include novel probabilistic models and machine learning techniques
to infer and anticipate critical traffic situations from multi-modal sensor data.

Dariu M. Gavrila received the Ph.D. degree in
computer science from Univ. of Maryland at College
Park, USA, in 1996. From 1997 until 2016, he
was with Daimler R&D, Ulm, Germany, where he
became a Distinguished Scientist. In 2016, he moved
to TU Delft, where he since heads the Intelligent
Vehicles group as a Full Professor. His research
deals with sensor-based detection of humans and
analysis of behavior, most recently in the context of

the self-driving car in complex urban traffic. He was awarded the Outstanding
Application Award 2014 and the Outstanding Researcher Award 2019, both
from the IEEE Intelligent Transportation Systems Society.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2021 at 14:16:00 UTC from IEEE Xplore. Restrictions apply.

