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Abstract

Learning curves plot the performance of a machine
learning model against the size of the dataset used
for training. Curve fitting is a process that attempts
to optimize algorithm parameters by minimizing
the error in its loss function, thereby achieving the
best possible fit to the data. We apply various sam-
ple weighting techniques to the curve fitting pro-
cess and evaluate whether the resulting weighted
curves can significantly improve the performance
of the model. We explore whether adjusting the
magnitudes of these weights can further improve
the fit of the curve. The results demonstrate that
each sample weighting method, as well as larger
weight magnitudes, can significantly improve error
rate prediction for anchors beyond the range of the
observed data.

1 Introduction

An important aspect of the development of a machine learn-
ing model is its ability to improve its performance in var-
ious tasks, such as classification, regression and clustering.
The performance of a machine learning model is heavily de-
pendent on the number of data samples used when training
said model[1]. Understanding the relationship between the
amount of data available to train a model and its performance
is essential, particularly for optimizing training data alloca-
tion and improving the accuracy of test set error rate predic-
tion. The demand for efficient machine learning models con-
tinues to grow, further emphasizing the importance of under-
standing and optimizing learning curves to develop models
that balance accuracy and computational cost.

Learning curves are functions that plot the amount of data
used to train a machine learning model against its perfor-
mance when labeling the data reserved for testing it. In other
words, they offer a visual representation of how a model’s
performance changes as the amount of available training data
increases. In order to obtain learning curves from these
measurements, the process of curve fitting is applied, which
involves optimizing the parameters of a chosen paramet-
ric function to closely approximate the relationship between
training data size and model performance.

Sample weighting plays an important role in data analy-
sis by addressing imbalances within a dataset, allowing for
a more equal representation of all data points. For example,
sample weighting can address class frequency imbalances by
assigning higher weights to sparse classes, allowing these
points to have more influence during machine learning model
training and preventing bias towards the more prevalent class.
Sample weighting is common in supervised machine learning
practices such as classification tasks [2] and latent variable
modeling [3]. However, this practice remains relatively un-
explored within the field of learning curve fitting. This paper
aims to answer the following question: what is the effect of
a number of sample weighting methods on the learning curve
fitting process? The goal is to discover whether these ap-
proaches can significantly improve the accuracy of fit.

2 Related Work

This paper builds upon various previous relevant academic
works. Predominantly, a review on learning curve shapes by
Viering & Loog (2023) remarks that a great number of stud-
ies that compare various parametric models with the goal of
finding the overall best one for a set of learners reach contra-
dicting conclusions when compared to each other [4]. They
mention some of the most common pitfalls they have ob-
served such as only fitting to linear curves, not including a
bias term in the parametric model, not performing extrap-
olation to unseen data and no metric to measure statistical
significance of the results. They also mention that extrapola-
tion should be used in addition to interpolation for more ac-
curate measurements [4]. Mohr ez al. (2023) also provide the
LCDB database [5], an extensive database containing learn-
ing curves trained on a large number of datasets, which we
use for our learning curve analysis.

Furthermore, one of the most extensive learning curve
studies was performed by Brumen er al. (2014), who at-
tempted to investigate which curve function mathematically
best fits the C4.5 algorithm, which can generate decision
trees. They compare a power, linear, logarithmic and expo-
nential function [6] on a large number of datasets. They find
the exponential function to outperform the other three in 64
out of 86 cases on well-behaved curves. Well-behaved learn-
ing curves show decreasing error rates as training set size in-
creases. However, they only analyze a single learner and they
occasionally reduce the number of samples selected from the
anchor data in order to keep this data from being ill-behaved,
thus potentially masking inferior results if the entire dataset
was used. We aim to investigate multiple learners and utilize
the full range of data for each dataset used for analysis.

Additionally, Figureoa et al. (2012) analyzed curve fitting
with sample weights by assigning larger weights to points
with a larger index. More specifically, each point is assigned
a weight equal to ¢/, where i is the index of the point and j
is the anchor of the dataset containing it. They found that in
nearly all cases, their weighted algorithm outperformed the
non-weighted alternative[7]. Although the experiments per-
formed with these sample weights are plentiful, there are a
number of problems. They randomly split the data for fit-
ting and evaluating, instead of extrapolating it. This limits
the confidence with which can be claimed that the results
show improved error rate prediction for larger anchors. Ad-
ditionally, they perform a paired t-test, which assumes the
differences between paired samples are normally distributed.
This assumption is not supported by any evidence, however,
questioning the robustness of their conclusions. The paper
also has some limitations. It only includes a single sample
weighting method and a single set of weights, thus limiting
the broadness covered by the results. This paper aims to ad-
dress these limitations by exploring various sample weighting
methods, adjusting their magnitudes to measure their impact,
performing extrapolation alongside interpolation and measur-
ing significance with Wilcoxon signed rank test.

Finally, many meta-analysis papers perform inverse-
variance weighting on the data based on various precision
metrics, such as sample size variability between different



studies [8] or measurement error [9]. Assigning weights
based on the variance allows these studies to ensure that
more precise data points exert more influence on the analy-
sis. Specifically, Marin-Martinez and Sanchez-Meca (2010)
demonstrate that the estimator found by Hedges and Vevea
(1998), which uses inverse variance weighting, performs bet-
ter in terms of mean-squared error compared to alternative
methods in their meta-analysis [10]. However, despite its
widespread use in meta-analysis, inverse-variance weighting
has not yet been widely studied in the field of learning curve
fitting. Our aim is to investigate whether inverse-variance
weighting could provide utility in our research when apply-
ing sample weights to curve fitting on the mean of multiple
curve splits by using the standard deviation of the set of cor-
responding points across those splits.

3 Background

This section provides formal definitions and mathematical ex-
planations for learning curve fitting, learning curve evaluation
and sample weighting.

3.1 Learning Curve Fitting

Learning curves map the size of the training dataset used on
a machine learning model to the error rate of their test data
label prediction after training, as defined by Mohr & van Rijn
(2022) [11]. They can take various forms, but many have the
shape of an exponential or power curve. Figure 1 shows an
example of a learning curve with an exponential shape. Here,
the training dataset size (anchor) is plotted on the x-axis and
the error rate of the test data label prediction (error rate) on
the y-axis.
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Figure 1: Example of a learning curve

Curve fitting is the process of finding some mathematical
function that accurately represents the relationship between
a set of input data points and its corresponding output val-
ues. In the context of learning curves, this involves selecting
a parametric function, such as an exponential or power-law
function, and optimizing its parameters to minimize the dif-
ference between the observed error rates and the error rates

predicted by the curve for the same anchors. This error is typ-
ically quantified using a loss function, such as mean squared
error (MSE). MSE measures the average squared differences
between predicted and observed values. Let Y denote the set

of observed output values for the set of input values, Y the
set of predicted output values for the set of input values and
n the total number of data points in the dataset. The MSE is
defined as follows:

1 N
MSE = - ) (V; -Y;)?
n;( )

Let X denote the set of input values, 6 the set of param-
eters of the model that should be optimized and f(X,6) the
curve function that predicts the output for the given input and
set of parameters. The following formula describes curve fit-
ting with mean-squared error as the loss function, where we
attempt to minimize its outcome:

mgnfj (F(X30) = Y)?
i=1

3.2 Learning Curve Evaluation

After data is used to fit a curve to a set of points, its accuracy
must be evaluated by measuring how well the fitted curve or
model predicts output variables given a set of unseen data
points. In order to do this, we exclude a subset of the data
from fitting and reserve it for evaluation, so as to not over-fit
to the fitting data. Common approaches for splitting in this
manner are extrapolation and interpolation. “’Interpolation is
a method to find the value between the known data points”
[12]. Tt helps us answer questions about the immediate data
and allows us to evaluate data of specific sizes that have al-
ready been observed. Mathematically, this involves splitting
the data such that the evaluation points, denoted as Xeyq, fall
within the range of the fitting data points xg; without overlap.

Xeval € (Min(Xg), max(Xge)) and  Teyy Nzg = 0

Interpolation alone provides limited insight into how the
curve performs on data outside the observed range. “Extrap-
olation is a method that estimates a value beyond the range
of a given set of data” [12]. It aids in predicting whether the
performance of a model continues to improve with increas-
ing (or decreasing) data, or starts to plateau. Extrapolation is
particularly useful in the context of learning curves, as per-
formance tends to become a greater concern when datasets
grow larger. Extrapolation is, in fact, a popular evaluation
technique within the medical field as well, as exemplified by
Mukherjee et al., (2021), where dataset size requirements for
DNA microarray data classification were extrapolated [13].
In mathematical terms, extrapolation involves splitting the
data such that the evaluation points, Xev, fall outside the
range of the fitting data points xg.. This means the evalua-
tion points follow these rules:

Xeyal < MIN(X[) OF  Xeyy > max(Xe)



A visual example of how the fitting and evaluation data
might be divided is shown in figure 2.
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Figure 2: Example of fitting and evaluation data division.

3.3 Sample Weighting

Sample weights skew the importance of individual data points
in proportion to others in model training by assigning differ-
ent weights to each point. This is achieved by multiplying
each data point’s contribution to the loss function by its cor-
responding weight, adjusting their relative influence on the
model’s optimization process based on the weighted sum.
Let N denote the total number of data points in the dataset,
X = {x1,...,z,} the input data points, Y = {y1,...,yn}
the output data points, W = {wy,...,w,} the weights,
0(Y;, f(X;)) the loss function, which measures the difference
between the observed output value and the predicted output
value for a given input value X, f(X) is the model’s predic-
tion for the input X and L the sum of every product of the
weights and the loss for all data points in the dataset. The
mathematical notation is as follows:

N
L= w - U(Yi, (X))
i=1

4 Methodology

This section outlines the methodological framework of the
paper, covering the parametric model, data splitting for fitting
and evaluation, curve fitting inputs, and the resulting outputs.

4.1 Parametric Model

We use an exponential curve with three terms for learning
curve fitting. This curve is equivalent to the EXP3 function
defined in the LCDB paper [5] by Mohr ef al. (2023), found
to be effective by Brumen ef al. (2014) for learning curve
fitting on well-behaved curves, as mentioned previously [6].
The terms of this exponential function consist of the scaling
factor a, which determines the function value when z = 0.
The decay constant b controls how quickly the function grows

or shrinks. Finally, the bias term c is the asymptotic value that
the function approaches as x becomes very large.

EXP3:y=a-e "% 4¢

4.2 Data Splitting: Fitting and Evaluation

To evaluate the curves, we split the dataset D = {z1,...,2,}
into a fitting set F' and an evaluation set I, such that FUE =
D and F N E = (. Let ng and neyy represent the sizes of
and F, respectively, with neya = n — ng.

The evaluation set F is further divided into two equal parts:
the extrapolation set Eeyyap and the interpolation set Eiperp.
The extrapolation set consists of the last k points of D, while
the interpolation set is selected evenly from the first n — k
points of D, where k = neyy/2. The sets are defined as fol-
lows:

Eexlrap = {xnkarl, cee 7‘rn}7
Einlerp = {CEj.S ‘ j =1,.. .,k‘, j s < nﬁl},
where s = ng/k is the step size for interpolation.
The fitting set F' contains all points not included in E.

4.3 Curve Fitting Inputs

Based on a suggestion from D. Darie, a collaborator on this
research project and author of a related study (D.Darie, per-
sonal communication, January 09, 2025), we utilized the
Levenberg-Marquardt (LM) algorithm for curve fitting. LM
is a nonlinear least-squares optimization technique used for
solving regression problems. It dynamically adjusts a con-
trol parameter )\ to interpolate between the stability of gradi-
ent descent and the speed of the Gauss-Newton method, bal-
ancing efficiency and robustness in curve fitting applications
[14]. Furthermore, each anchor point represents the mean
of corresponding points across every training, validation, and
test split. The validation set is defined as “’the set of exam-
ples used for model selection” by Tennenholtz et al. (2018),
who used the validation set after training various models for
model selection [15].

As detailed earlier, sample weights influence a data point’s
contribution to the loss function, so we apply them during
curve fitting. We explore three different sample weighting
methods. These include sample weighting based on the an-
chor, the error rate, and the standard deviation of the error
rate on the mean curve (SD-Error). This parameter represents
the standard deviation of the corresponding points across
multiple splits of that dataset, effectively using the variabil-
ity of each point’s value across these splits as its weight.
Define X = {x1,x2,...,x,} as the set of anchors, ¥ =
{y1, Y2, ..., Yn} the set of error rates, ¥ = {o1,02,...,0n}
the set of SD-Error values, W = {w1, wa, ..., w, } the set of
weights and s the scale of the weight. The scale s adjusts
the influence of each data point by applying an exponentia-
tion to the values, raising each weight to the power of s. A
positive scale assigns weights to a dataset that increase with
their value, a negative scale assigns decreasing weights in-
stead. The weights are obtained as follows:

S
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Wi = DN
Zj:l x;



4.4 Curve Fitting Outputs

The effectiveness of each sample weighting method and
weight scale combination is measured by the average MSE
over all datasets for interpolation and extrapolation. Subse-
quently, a significance test over the MSE values obtained by
evaluating a weighted curve and those from a non-weighted
curve is performed. Both sets are paired, as the same model
has been fitted to the same dataset but with different weight-
ing strategies, and not normally distributed. We use the
Wilcoxon signed-rank test, a non-parametric rank test, fre-
quently utilized for comparison between two paired sets of
data, exemplified by Neumann et al. (2003) where the
Wilcoxon signed rank test was used to assess the significance
of improvements in endoscopic performance parameters dur-
ing a training course [16]. The null hypothesis Hy states:
there is no significant difference in the MSE between curve
fitting with uniform weighting and curve fitting with sample
weighting at the specified weight scales.

S Experimental Setup
5.1 Data Collection

We use the learners and datasets from the LCDB database
[51, which was provided to us by our supervisors. A total
of 24 learners were trained on 72 datasets from the OpenML
database [17]. In other words, each learner comes with a pre-
modeled set of mean anchor data over various train, validation
and test splits. As mentioned previously, we prioritize more
monotonic datasets as the exponential function performs best
on monotonic and convex data. We were provided with a ta-
ble that indicates how monotonic and convex each learner is
(C. Yan, personal communication, December 05, 2024). This
table can be found in Appendix A. We hypothesize it to be
important to use as many datasets as possible to get a good
representation of the behaviour of a learner. Due to process-
ing constraints, we therefore decide to use every dataset but
limit the set of learners used to five only. These learners are
shown in table 1.

Learner Monotonic & Convex
ens.GradientBoosting 100.00%
Decision Trees 97.22%
SGDClassifier 97.22%
ExtraTrees 95.83%
Perceptron 95.83%

Table 1: Monotonicity and convexity percentage of the anchor data
points for each of the learners used

5.2 Pipeline

We split our data into a fitting set and an evaluation set using
an 80/20 split, meaning 80% for fitting and 20% for evalua-
tion. This has been found to be a relatively computationally
efficient, as well as considerably stable approach to splitting
data by Brumen et al. (2021) [18]. The final 10% of the
dataset is used for extrapolation. We hypothesize this extrap-
olation set to perform very effectively for sample weighting
methods that emphasize points toward the end of the learning
curve, as such we reserve another 10% of the dataset, between
the first 90% of the dataset, for interpolation. The remaining
data is used for fitting. This approach is common, as exem-
plified by the work of Kolachine et al., who apply extrapola-
tion on inferred learning curve data for error rate prediction
on unseen data [19]. The function we use for curve fitting is
exclusively the EXP3 function mentioned before.

As mentioned previously, each learner in the LCDB
database was trained on the training split of the corresponding
dataset. However, it was evaluated on every split separately.
Preferably, we want to measure the performance of a learner
by measuring how well it fits to unseen data, as is typical,
namely the validation or test set. Measuring performance on
the same data that was used for training likely causes over-
fitting. Due to the high similarity between the mean curves of
the learner-dataset combinations for validation and test sets,
it is redundant to evaluate both. We deem both to be equally
suited, therefore, we focus solely on the test set.

We generate three sets of sample weights, each based on
specific data-driven characteristics. We generate a set of
weights based on the anchors (z), another based on the er-
ror rates (y) and finally one based on the SD-Error (o) of
the mean curve. The weights are always equal to the values
before normalizing; for example, if the anchors are equal to
{1,2, 3}, the weights equal {1/6,2/6,3/6}.

We generate a set of weight scales, raising each set of
weights to the power of a scale in order to influence the mag-
nitude of the weights. We define the magnitude of the weight
to be the absolute value of the weight. Due to time and pro-
cessing constraints, we resort to a set of 14 manually selected
weight scales S, as seen in table 2.

NS. | 40| -30|-20]-1.0 | -0.75 | -0.5 | -0.25
PS. | 40 | 3.0 | 20 | 1.0 | 075 | 0.5 | 0.25

Table 2: Table of positive and negative weight scales

S is selected such that we evaluate weights that both in-
crease and decrease with the original data at both amplified
and reduced magnitudes. For clarification, let us assume a
set of weights W = {1,2,3} and a scale s. If s = 0.0,
then we raise each weight to the power of 0. This gives us
W, = {1,1, 1}. This is equal to uniform weights and thus re-
dundant, so we do not include it in S. If s = 1.0, the weights
remain the same and if s = —1.0, W, = {1,1/2,1/3}. If
s > 1.0, we increase the magnitude of the original values on
the weights, and if 0.0 < s < 1.0 we decrease it. This also
goes for negative weights, the difference being that negative
weights decrease when the original data increases.



We chose scales between -4.0 and 4.0, again due to pro-
cessing limitations. We hypothesize that this will have min-
imal impact on the conclusions, as the focus of this paper is
on determining whether weight scaling can enhance sample
weighting in general, rather than identifying an optimal scale
value per sample weighting method.

We randomly generate the three terms for the exponen-
tial function from a uniform distribution, as it was found
by D. Darie that uniformly generating parameters is typi-
cally superior to generating them based on a normal distribu-
tion on well-behaved curves, which include monotonic curves
(D.Darie, personal communication, January 09, 2025). We
run the curve_fit method from the scipy optimize library
[20] with these terms, the exponential function using the LM
algorithm. We generate 100 curves by running curve_fit
100 times, measuring the MSE on the evaluation points each
time, which consist of both interpolation and extrapolation
points. Finally, we pick the curve that achieves the low-
est combined MSE across the interpolation and extrapolation
evaluation points. This allows us to prevent outliers influ-
encing the results. We generate 43 curves total. One with-
out sample weighting (uniform weights) and then 14 for each
of the sample weighting methods mentioned above at every
scale.

6 Results

We present the MSE values for the Gradient Boosting learner
curve fitting with uniform weights and scaled sample weights
in detail by plotting them in a box plot, highlighting their
mean, median and variance. Figure 3 shows the MSE val-
ues obtained through interpolation, figure 4 the MSE val-
ues obtained through extrapolation. These box plots clearly
show that each sample weighting method performs at least
marginally worse than uniform weighting at even the optimal
scale for interpolation. Meanwhile, they clearly outperform
uniform weighting for extrapolation, showing smaller means
and medians, and significantly smaller variances.

Evaluation of various sample weighting methods obtained through interpolation of MSE
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Figure 3: Boxplot comparing Gradient Boosting learner MSE values
for uniform weights and scaled sample weights obtained through
interpolation.
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Figure 4: Boxplot comparing Gradient Boosting learner MSE values
for uniform weights and scaled sample weights obtained through
extrapolation.

We then present the results more precisely by giving two
tables, one for interpolation and one for extrapolation, that
contains relevant data for each sample weighting method.
More specifically, we show the mean MSE over all curve
MSE values of the sample weighting method and the optimal
weight scale. Table 3 shows the interpolation results, table
4 the extrapolation results. From the results we can see that
none of the sample weights performed better than the uni-
form weights when evaluated through interpolation. The op-
timal scales indicate that on these datasets, curve fitting with
sample weights that are decreasing on anchor, increasing on
error rate and increasing on SD-Error performs best, with rel-
atively low magnitudes being better. Evaluation through ex-
trapolation performed much better, however. Every sample
weighting method outperforms uniform weighting. The opti-
mal scales indicate that sample weights increasing on anchor,
decreasing on error rate and decreasing on o outperform uni-
form weights, with relatively high magnitude weights being
better.

Method (Interpolation) MSE Mean Optimal Scale
Uniform Weighting 1.94e-04 0.0
Anchor Weighting 2.35e-04 -0.25
Error Rate Weighting 1.98e-04 0.25
SD-Error Weighting 1.98e-04 0.25

Table 3: Comparison of Gradient Boosting learner learning curve
fit MSE means and optimal scales across sample weighting methods
obtained through interpolation

Finally, we present the P-values obtained from performing
Wilcoxon signed rank test on the curve fits obtained with uni-
form weights and one of the scaled sample weights, along
with whether the difference is significant. We reject the null
hypothesis for P<.05. Because no sample weighting method
outperformed uniform weighting for interpolation, we only
present the results for the Wilcoxon signed rank test for ex-



Method (Extrapolation) MSE Mean Optimal Scale

Uniform Weighting 7.23e-04 0.0
Anchor Weighting 4.89e-05 4.0
Error Rate Weighting 1.26e-04 -4.0
SD-Error Weighting 2.18e-04 -4.0

Table 4: Comparison of Gradient Boosting learner learning curve fit
MSE means and optimal scales across sameple weighting methods
obtained through extrapolation.

trapolation in table 5.

Method (Extrapolation) P-value Is Significant
Anchor Weighting <.001 Yes
Error Rate Weighting <.001 Yes
SD-Error Weighting <.001 Yes

Table 5: Comparison of Gradient Boosting learner P-values and sig-
nificance across methods evaluated with extrapolation (excluding
Uniform Weighting).

The results for the other learners are only summarized,
their boxplots can be found in appendix B to get an overview
of the MSE values. For each learner and sample weighting
method, the significance test resulted in a P-value of P<.001,
as such a table of these results would be redundant. Every
learner outperformed uniform weighting with each sample
weighting method when evaluated using extrapolation. None
of the learners did so when evaluated using interpolation.
Every learner showed optimal performance with weights in-
creasing on anchor, decreasing on error rate and decreasing
on SD-Error. SGD classifier and Perceptron showed inter-
esting results, finding smaller optimal weight magnitudes for
extrapolation, notably Perceptron with a weight scale of -0.33
for sample weighting based on SD-Error.

7 Discussion

These results show that sample weighting on high magnitude
weights increasing on anchor, decreasing on error rate and
decreasing on SD-Error can result in significantly more accu-
rate estimation of error rate at higher, future unseen anchor
values.

The results show a vast and clear difference between eval-
uation on extrapolation and interpolation. None of the five
learners performed better with any of the sample weighting
methods at any weight scale than with uniform weighting for
interpolation. This indicates that sample weighting does not
improve the performance of a learning curve for predicting
error rate for anchor values within the observed data. Con-
versely, as we hypothesized, every learner performed signif-
icantly better with every sample weighting method than uni-
form weighting for extrapolation. Lower MSE means and re-
duced variances were found, particularly at weights with high
magnitudes. Notably, sample weights increasing on anchors
and sample weights decreasing on error rates or SD-Errors
performed quite well, especially when using large weight

scales. These results highlight the potential of sample weight-
ing for providing improved predictions about error rate for
anchors beyond the observed range, although these do com-
promise interpolation performance.

However, these findings also come with limitations. First,
the improved performance in extrapolation likely arises due
to the ability of sample weights to allow for skewing the fo-
cus of the curve fitting process towards specific regions of the
data. It logically follows that, given that we evaluate an entire
dataset only on its last points, any technique that shifts the fo-
cus of curve fitting towards points that occur toward the end
will perform better. Important to note is that we are only eval-
uating on well-behaved curves, where we have the guarantee
that no sudden peaks might appear, and the values tend to flat-
ten. This works very well with the obtained sample weights,
and thus suggests that we cannot apply the same conclusions
to ill-behaved curves, which might present large fluctuations
that cannot be addressed with the current approach.

Additionally, the experimental setup was limited by time
and processing constraints, as well as the high computational
demands of repeating the curve fitting process over many it-
erations to minimize the risk of outliers. These limited the
scope of certain parts of our analysis, the first of which caused
us to use a single 80/20 split for fitting and evaluation. Vari-
ability across different splits could have been accounted for
by performing cross validation, and could allow for more ro-
bustness against over-fitting.

Finally, the time constraints and hardware limitations lead
us to rely on a set of hard-coded weight scales instead of a
more adaptive approach to optimal weight scale calculation,
which further limits the scope of the analysis. Moreover, the
use of only five learners may reduce the robustness of the
findings, as the limited number of learners and the low di-
versity between them can limits the conclusions we can draw
about general learning curve behaviors.

8 Conclusion

8.1 Summary

In conclusion, this paper investigated whether applying vari-
ous sample weights during the learning curve fitting process
provides significant improvements in performance over uni-
form weighting. It compared various curves that were gen-
erated using weights based on the anchor, error rate and SD-
Error of the learning curve data. These methods were evalu-
ated based on their MSE, and promising curves were further
analyzed for significance with Wilcoxon signed rank test. The
results were provided in tables and plots, showing how curve
fitting with sample weights that increase with the anchor, de-
crease with the error rate and decrease with the SD-Error can
show significant improvements compared to uniform weights
in predicting error rate for anchors beyond the observed range
of the data. However, the small number of learners, the use
of a single fitting evaluation split and reliance on hard-coded
weight scales, caused by processing power and time con-
straints, limit the scope of the research; the absence of these
limits could enhance the robustness of the findings and make
them more generalized.



8.2 Future Improvements

Future research could expand on this study by evaluating a
broader range of learner dataset combinations, including ill-
behaved ones, in order to give more generalized conclusions.
Additionally, exploring dynamic or continuous methods for
selecting optimal weight scales could improve their applica-
bility in practice. An example of such a method would be
exploring a large set of weight scales with a more accurately
defined range, fitting a curve to the results and differentiating
it to find the smallest scale. Moreover, performing multiple
data splits, which would provide more robust evaluations for
train, validation and test splits, could make the results more
robust. Finally, access to more processing power through
large servers could expand the scope of the research analysis,
enabling the exploration of more complex models and larger
datasets.

9 Responsible Research

Our research has been conducted ethically and transparently.
The privacy of the data sources used have been integral
throughout the entirety of the project. Although our study
does not involve sensitive personal data or human subjects,
it still demands that any practices in the handling of the data
be done carefully and responsibly while also remaining suffi-
ciently reproducible.

An important consideration we made was the potential in-
troduction of bias in the choice of sample weighting methods
used. If not considered adequately, these choices could lead
to results and conclusions about the performance and appli-
cability of machine learning models that can be misleading.
To mitigate this, we considered the most common and con-
textually logical sample weighting methods appropriate for
learning curve fitting and thoroughly evaluated them on their
applicability and relevance. Using them across many differ-
ent datasets and learners in the LCDB dataset, we analyzed
their potential for improving the performances of various ma-
chine learning models. The data sets and learners provided to
us by our supervisors have been carefully evaluated to ensure
that they have been ethically sourced, do not contain personal
or sensitive information, and are appropriate for use in this
research study.

Another vital consideration for this study was the repro-
ducibility of the results. We have published our experiment
to GitHub [21]. Finally, we recognize that it is highly im-
portant to be aware of the implications this work can have on
its research field. Improving machine learning model training
efficiency has the potential to reduce computational costs and
improve the efficiency of the processes they support. How-
ever, we also acknowledge that this improvement in efficiency
might unintentionally contribute to applications of machine
learning within unethical domains. By making our research,
the tools we used and the results we acquired publicly avail-
able, there is no moderation in place to ensure these advance-
ments are used responsibly. However, they are intended to
support ethical, community-driven research efforts and are
designed to do so effectively.

A Monotonicity of Learners in the LCDB 1.0
Dataset

Learner Flat Monotone  Convex Monotone & Convex
SVC_linear 0.00% 95.83% 95.83% 94.44%
SVC_poly 19.44% 80.56% 79.17% 79.17%
SVC._rbf 19.44% 80.56% 76.39% 76.39%
SVC_sigmoid 11.11% 30.56% 56.94% 27.78%
Decision Trees 2.78% 97.22% 97.22% 97.22%
ExtraTrees 2.78% 95.83% 97.22% 95.83%
LogisticRegression 2.78% 97.22% 93.06% 93.06%
PassiveAggressive 1.39% 93.06% 98.61% 93.06%
Perceptron 0.00% 95.83% 98.61% 95.83%
RidgeClassifier 5.56% 76.39% 73.61% 73.61%
SGDClassifier 0.00% 97.22% 100.00% 97.22%
MLP 2.78% 79.17% 70.83% 68.06%
LDA 2.78% 54.17% 50.00% 48.61%
QDA 2.78%  54.17%  58.33% 15.83%
BernoulliNB 19.44% 70.83% 69.44% 65.28%
MultinomialNB 2.78% 95.83% 95.83% 94.44%
ComplementNB 2.78% 90.28% 94.44% 88.89%
GaussianNB 2.78% 79.17% 83.33% 76.39%
KNN 13.89% 84.72% 83.33% 83.33%
NearestCentroid 4.17% 91.67% 93.06% 90.28%
ens.ExtraTrees 8.33% 90.28% 91.67% 90.28%
ens.RandomForest 6.94% 91.67% 93.06% 91.67%
ens.GradientBoosting  0.00% 100.00% 100.00% 100.00%
DummyClassifier 73.61% 23.61% 20.83% 20.83%

Figure 5: Monotonicity of learners in the LCDB 1.0 dataset

B Boxplot Results

(a) Boxplot comparing inter-
polation results.

(b) Boxplot comparing extrap-
olation results.

Figure 6: Comparison of MSE values for Decision Trees using dif-
ferent sample weighting methods (SWMs) for interpolation and ex-
trapolation.

Evaluation of various sample weighting methods obtained through interpolation of MSE

|

(a) Boxplot comparing inter-
polation results.

(b) Boxplot comparing extrap-
olation results.

Figure 7: Comparison of SGD Classifier MSE values for uniform
weighting and various sample weighting methods for interpolation
and extrapolation.



(a)

(b) Boxplot comparing extrap-
olation results.

Boxplot comparing inter-
polation results.

Figure 8: Comparison of Extra Trees MSE values for uniform
weighting and various sample weighting methods for interpolation
and extrapolation.
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polation results.
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(b) Boxplot comparing extrap-
olation results.

Boxplot comparing inter-

Figure 9: Comparison of perceptron MSE values for uniform
weighting and various sample weighting methods for interpolation
and extrapolation.
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