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Abstract. Federated learning (FL) enables collaborative learning between par-
ties, called clients, without sharing the original and potentially sensitive data.
To ensure fast convergence in the presence of such heterogeneous clients, it is
imperative to timely select clients who can effectively contribute to learning. A
realistic but overlooked case of heterogeneous clients areMavericks, who monop-
olize the possession of certain data types, e.g., children hospitals possess most of
the data on pediatric cardiology. In this paper, we address the importance and
tackle the challenges of Mavericks by exploring two types of client selection
strategies. First, we show theoretically and through simulations that the common
contribution-based approach, Shapley Value, underestimates the contribution of
Mavericks and is hence not effective as a measure to select clients. Then, we
propose FEDEMD, an adaptive strategy with competitive overhead based on the
Wasserstein distance, supported by a proven convergence bound. As FEDEMD
adapts the selection probability such that Mavericks are preferably selected when
the model benefits from improvement on rare classes, it consistently ensures the
fast convergence in the presence of different types of Mavericks. Compared to
existing strategies, including Shapley Value-based ones, FEDEMD improves the
convergence speed of neural network classifiers with FedAvg aggregation by
26.9% and its performance is consistent across various levels of heterogeneity.

Keywords: Federated learning · data heterogeneity · client selection · shapley
value · wasserstein distance

1 Introduction

Federated Learning (FL) enables clients (either individuals or institutes who own data)
to collaboratively train a global machine learning models by exchanging locally trained
models instead of data [16,18]. Thus, Federated Learning allows the training of mod-
els when data cannot be transferred to a central server and is hence often a suitable
alternative for medical research and other domains, such as finance, with high privacy
requirements. The effectiveness of FL, in terms of accuracy and convergence, highly
depends on how the local models are selected and aggregated.
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In FL, clients tend to own heterogeneous datasets [14] rather than identically and
independent distributed (i.i.d.) ones. The prior art has recently addressed the challenge
of heterogeneity from either the perspective of skewed distribution [28] or skewed quan-
tity [23] among all clients. However, a common real-world scenario, where one or a
small group of clients monopolize the possession of a certain class, is universally over-
looked. For example, in the widely used image classification benchmark, Cifar-10 [12],
most people can contribute images of cats and dogs. However, deer images are bound to
be owned by comparably few clients. We call these types of clientsMavericks. Another
relevant example, shown in Fig. 1, arises from learning predictive medicine from clinics
who specialize in different conditions, e.g., AIDS and Amyotrophic Lateral Sclerosis,
and own data of exclusive disease types. Without involving Mavericks into the training,
it is impossible to achieve high accuracy on the classes for which they own the majority
of all training data, e.g., rare diseases.

Fig. 1. Illustration of Mavericks.

Given its importance, it is not well
understood when to best involve Maver-
icks in FL training, because the effective-
ness of FL, in terms of accuracy and con-
vergence, highly depends on how those
local models are selected and aggre-
gated. The existing client selection1 con-
siders either the contribution of local
models [3] or difference of data dis-
tributions [19]. The contribution-based
approaches select clients based on contribution scores preferring clients with higher
scores [7], whereas the distance-based methods choose clients based on the pairwise
feature distance. Both types of selection methodologies have their suitable application
scenarios and it is hard to weigh the benefits of one over the other in general.

In this paper, we aim to effectively select Mavericks in FL so that users are able
to collaboratively train an accurate model in a low number of communication rounds.
We first explore Shapley Value as a contribution metric for client selection. Although
Shapley Value is shown to be effective in measuring contribution for the i.i.d. case,
it is unknown if it can assess the contribution of Mavericks and effectively involve
them via the selection strategy. Moreover, we propose FEDEMD, which selects clients
based on Wasserstein distance [2] of the global distribution and current distribution. As
FEDEMD adapts the selection probability such that Mavericks are preferably selected
when the model benefits from improvement on rare classes, it consistently ensures the
fast convergence in the presence of different types of Mavericks.

Our main contributions for this work can be summarized as follows. i)We explore
the effectiveness of both contribution-based and distance-based selection strategies for
Mavericks. ii) Both our theoretical and empirical results show that the contribution
of clients with skewed data or very large data quantity is measured below average by
Shapley Value. iii) We propose FEDEMD, a novel adaptive client selection based on
the Wasserstein distance, derive a convergence bound, and show that it significantly
outperforms SOTA selection methods in terms of convergence speed across different
scenarios of Mavericks.

1 Note that here we only discuss selection on statistical challenges, the selections considering
system resources, e.g., unreliable networks are left for other works.
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2 Related Studies

Contribution Measurement. Although the self-reported contribution evaluation [7] is
easy to implement, it is fragile too dishonest parties. Besides, existing work on con-
tribution measurement can be categorized into two classes: i) local approach: clients
exchange the local updates, i.e., model weights or gradients, and measure the contribu-
tion of each other, e.g., by creating a reputation system [11], and ii) global approach:
all clients send all their model updates to the federator who in turn aggregates and
computes the contribution via the marginal loss [1,25]. Prevailing examples of glob-
ally measuring contribution are Influence [1] and Shapley Value [22,25]. The prior art
demonstrates that Shapley Value can effectively measure the client’s contribution for
the case when client data is i.i.d. or of biased quantity [22]. A work [24] has proposed
federated Shapley Value to capture the effect of participation order on data value. The
experimental results indicate that Shapley Value is less accurate in estimating the con-
tribution of heterogeneous clients than for i.i.d. cases. However, there is no rigorous
analysis on whether Shapley Value can effectively evaluate the contribution from het-
erogeneous users with skewed data distributions.

Client Selection. Selecting clients within a heterogeneous group of potential clients
is key to enabling fast and accurate learning based on high data quality. The state-of-
the-art client selection strategies focus on the resource heterogeneity [10,21] or data
heterogeneity [3,4,14]. In case of data heterogeneity, which is the focus of our work,
selection strategies [3,4,8] gain insights on the distribution of clients’ data and then
select them in specific manners. Goetz et. al [8] apply active sampling and Cho et. al
[4] use Power-of-Choice to favor clients with higher local loss. TiFL [3] considers both
resource and data heterogeneity to mitigate the impact of stragglers and skewed distri-
butions. TiFL applies a contribution-based client selection by evaluating the accuracy
of selected participants each round and chooses clients of higher accuracy. FedFast [19]
chooses classes based on clustering and achieves fast convergence for recommendation
systems. One recently work [17] focuses on reduce wall-clock time for convergence
under high degrees of system and statistical heterogeneity. However, there is no selec-
tion strategy that addresses the Maverick scenario.

3 Federated Learning with Mavericks

In this section, we first formalize a Federated Learning framework withMavericks. Then
we rigorously analyze the contribution of clients based on Shapley Value and argue that
the contribution of Mavericks is underestimated by the Shapley Value, which leads to a
severe selection bias and a suboptimal integration ofMavericks into the learning process.

Suppose there are a total of N clients in a federated learning system. We denote
the set of possible inputs as X and the set of L class labels as Y = {1, 2, ..., L}.
Let f : X −→ P be a prediction function and ω be the learnable weights of the
machine learning tasks, the objective is then defined as:minL(ω) = min

∑L
l=1 p(y =

l)Ex|y=l [log fl(x,ω)].
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The training process of a FL system has the following steps2: i) INITIALIZATION.
Initialize global model ω0 and distribute it to the available clients, i.e., a set C of N
clients. ii) CLIENT SELECTION. Enumerate the K clients C(π,ωr), selected in round
r with selection strategy π, by C1, . . . , CK . iii) UPDATE AND UPLOAD. Each client
Ck selected in round r computes local updates ωk

r and the federator aggregates the
results. Concretely, with η being the learning rate, Ck updates their weights in the r-
th global round by: ωk

r = ωr−1 − η
∑L

l=1 pk(y = l)∇ωEx|y=l [log fl(x,ωr−1)] . iv)
AGGREGATION. Client updates are aggregated to one global update. The most common
aggregation method is quantity-aware FedAvg, defined as follows with nk indicating
the data quantity of Ck: ωr =

∑K
k=1

nk
∑K

k=1 nk ωk
r . To facilitate our discussions, we also

define the following:

Local Distribution: The array of all L class quantitiesDi(y = l), l ∈ {1, .., L} owned
by client Ci.

Global Distribution: The quantity of all clients’ data by class asDg =
∑N

i=1 D
i(y =

l), l ∈ {1, .., L}.
Current Distribution at R: By summing up the class quantity of all clients’ data
reported, which have been chosen up to round R as: Dc

R =
∑R

t=1

∑
Ck∈Kt DCk .

Definition 1 (Maverick). Let YMav be the set of class labels that are primarily owned
by Mavericks. An exclusive Maverick is one client that owns one or more classes exclu-
sively. A shared Maverick is a small group of clients who jointly own one class exclu-
sively. That is:

Di =

{
{{xl, yl}i

l∈YMav
, {xl, yl}i

l/∈YMav
}, if Ci is a Maverick

{xl, yl}i
l/∈YMav

, if Ci is not a Maverick,
(1)

where Di denotes the dataset for Ci, {xl, yl}i denotes the dataset in Ci with label l.

In the rest of the paper, we assume the global distribution organized by the server’s
preprocessing has high similarity with the real-world (test dataset) distribution, which is
balanced, so that data {xl, yl}l/∈YMav

are evenly distributed across all parties, whereas
{xl, yl}l∈YMav

either belong to one exclusive Maverick or are evenly distributed across
all shared Maverick parties. We focus our analysis on exclusive Mavericks since shared
Maverick are a straightforward extension. Based on the assumptions above, we obtain
the following properties for Mavericks.

Property 1. Because the data distribution is balanced, Mavericks have a larger data
quantity than non-Mavericks. Concretely, let nn be the data quantity of a non-Maverick.
Let nm be the quantity for Mavericks, then nm = ((N/m − 1) × YMav + L) × nn,
where m is the number of Mavericks.

Property 2. Assume N > 2, the KL divergence of a Maverick’s data to the normal-
ized global distribution is expected to be larger than for a non-Maverick due to their

2 Here we assume all the clients are honest. Since we focus on the statistical challenge, the
impact of unreliable networking and insufficient computation resources is ignored.
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specific distribution, i.e., DKL(Pg||Pm) ¿ DKL(Pg||Pn), where Pm, Pn are the data
distribution with class labels for Maverick and non-Maverick, where Pg denotes for
global distribution.

3.1 Shapley Value for Mavericks

Definition 2 (Shapley Value). Let K = C(π,ωr) denote the set of clients selected in
a round including Ck,K \ {Ck} denote the setK without Ck. Shapley Value of Ck is:

SV (Ck) =
∑

S⊆K\{Ck}

|S|!(|K| − |S| − 1)!
|K|! δCk(S). (2)

Here we let δCk(S) be the Influence [1]. Influence can be defined on loss, accuracy,
etc., here we apply the most commonly used loss-based Influence written as InfS(Ck)
for set Ck.

Lemma 1. Based on Shapley Value in Eq. 2, the difference of Maverick Cm’s and non-
Maverick Cn’s Shapley Value is:

SV (Cm) − SV (Cn) =
1

|K|!
(

(|K| − 1)!(L(Cm) − L(Cn))

+
∑

S⊆S−

|S|!(|K| − |S| − 1)!(InfS(Cm) − InfS(Cn))

+
∑

S⊆S+

|S|!(|K| − |S| − 1)!(InfS(Cm) − InfS(Cn))
)

,

(3)

with S− = K \ {Cn, Cm}, S+ = K \ {Cn, Cm} ∪ CM , CM ∈ {Cn, Cm}. Note that
we simplify InfS∪Ci

(Ci) as InfS(Ci) for readability.

Comparison of Shapley Value and Influence: Rather than considering Influence for
the complete set of K clients, Eq. 3 only considers Influence on a subset S. However,
our derivations for Influence are independent from the number of selected clients and
remain applicable for subsets S, meaning that indeed the second and the third term of
Eq. 3 are negative. Similarly, the first term is negative as the loss for clients only owning
one class is higher. However, Shapley Value obtains higher values for i.i.d. clients with
large data sets than Influence sinceL(Cm) − L(Cn) increases if the distance between
Cm’s distribution and the global distribution is small, in line with a previous work [9].

Property 3. Shapley Value and Influence share the same trend in contribution measure-
ment for Mavericks.

Theorem 1. Let Cm and Cn be a Maverick and a non-Maverick client, respectively,
and denote by SVt(Ck) the Shapley value ofCk in round r. Then SV1(Cm) < SV1(Cn)
and SVt(Cm) converges towards SVt(Cn).
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(a) FMNIST-Maverick (b) Cifar-10-Maverick

Fig. 2. Relative Shapley Value during training under multiple exclusive and shared Mavericks.

We present the empirical evidences of how one or multiple Mavericks are measured
by Shapley Value. We here focus on single exclusive Mavericks and leave multiple
Mavericks, shared and exclusive, for our in-depth experimental evaluation in the supple-
mentary material. We use Fashion-MNIST (Fig. 2a) and Cifar-10 (Fig. 2b) as learning
scenarios and use random client selection with FedAvg.

Figure 2 shows the global accuracy and the relative Shapley Value during training,
with the average relative Shapley Value of the 5 selected clients out of 50 indicated by
the dotted line. The contribution is only evaluated when a Maverick is selected. Look-
ing at Fig.(2a, b), The Shapley Value of the Maverick indeed increases over time but
remains below average until round 160, providing concrete evidence of Theorem 1.
Furthermore, the accuracy increases when a Maverick is selected, indicating that Mav-
ericks contribute highly to improving the model. Thus, assigning Mavericks a lower
contribution measure is unreasonable, especially in the early stage of the learning pro-
cess. All of the empirical results are consistent with our theoretical analysis.

4 FedEMD

In this section, we propose a novel adaptive client selection algorithm FEDEMD, which
enables FL systems with Mavericks to achieve faster convergence compared with SOTA
methods, including Shapley Value-based ones. The key idea is to assign a higher proba-
bility for selecting Maverick clients initially to accelerate convergence; later we reduce
the selection probability to avoid skewing the distribution towards Maverick classes. To
measure the differences in data distributions, we adopt Wasserstein distance (EMD) [2],
which is used to characterize weight divergence in FL [27]. The Wasserstein distance
(EMD) is defined as:

EMD(Pr, Pθ) = inf
γ∈Π

∑

x,y

‖x − y‖γ(x, y) = inf
γ∈Π

E(x,y)∼γ‖x − y‖, (4)

where Π(Pr, Pθ) represents the set of all possible joint probability distributions of
Pr, Pθ. γ(x, y) represents the probability that x appears in Pr and y appears in Pθ.
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Algorithm 1: FEDEMD Clients
Selection
Data: Di for i ∈ 1, 2, ..., N .
Result: K: selected participants.

1 Set: distance coefficient β > 0;
2 initialize probability Proba1;
3 initialize current distribution D1

c ;

4 Dg ← ∑N
i=1 D

i;

5 calculate ẽmdg by Eq. 6;
6 for round r = 1, 2, ..., R do
7 Kr = rand(K,C, P robar)
8 Dr+1

c ← Dr
c +

∑r
Ck∈K DCk ;

9 calculate ẽmd
r

c by Eq. 7;
10 for client i = 1, ..., N do
11 update Probar+1 by Eq. 5

Overview. The complete algorithm is
shown in Algorithm 1, we here summa-
rize the different components that make
up the algorithm. i) Data Reporting
and Initialization (Line 1–3): Clients
report their data quantity so that the
federator is able to compute the global
data size arrayDg and initialize the cur-
rent size array D1

c .
ii) Dynamic Weights Calculation (Line
4–11): In this key step, we utilize a
light-weight measure based on EMD
to calculate dynamic selection proba-
bilities over time, which achieve faster
convergence, yet avoid overfitting, con-
cretely we compute

Probar = softmax(ẽmdg−tβẽmd
r

c)
(5)

where Probar
i is the probability for selecting Ci in round r. β is a coefficient to weigh

the global and current distance and shall be adapted for different initial distributions,
i.e., different dataset and distribution rules. ẽmdg and ẽmd

r

c are the normalized EMDs
between the global/current and local distributions (Line 5, 9), namely

ẽmdg = Norm([EMD(Dg,D
i)

∣
∣
i∈{1,...,N}]), (6)

which is constant through the learning process as long as the local distribution of clients
stays the same. The larger ẽmdg is, the higher the probability Probar

i that a client Ci is
selected to increase model accuracy (Line 11), since Ci brings more distribution infor-
mation to train ωr. However, for convergence, a smaller ẽmdc is preferred in selection,
so that ẽmdc depends on the round r:

ẽmd
r

c = Norm([EMD(Dr
c ,Di)

∣
∣
i∈{1,...,N}]), (7)

where Dr
c is the accumulated Di of selected clients over rounds (Line 8). Let l denote

one class randomly chosen by the federator except for the Maverick class fromD, here
we apply normalization: Norm(emd,D) = emd∑N

i=1 Di(y=l)/N
.

iii) Weighted Random Client Selection (Line 7): At each round r, we select clients
based on a probability distribution characterized by the dynamic weights [6] Probar:

Kr = rand(K,C, P robar). (8)

Sampling K out of N clients based on Probar has a complexity of O(K log(N/K)),
so comparably low. Thus, Mavericks with larger global distance and smaller current
distance initially are preferred to be selected. The decrease of probability for selecting
Mavericks elaborates based on the global and current distances changes over the learn-
ing procedure. As r increases, so does the impact of the current distance based on Eq. 5,
reducing the probability to select a Maverick, as intended.
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Convergence Analysis: To derive the convergence bound, we follow the set-
ting of [15]. We let Fk be the local objective of client Ck and define F (ω) �
∑N

k=1 pkFk(ω), where pk is the weight of client Ck when doing the aggregation. We
have the FL optimization framework minω F (x) = minω

∑N
k=1 pkFk(ω). We make

the L-smooth and μ-strongly convex assumptions on the functions F1, ..., FN [15,20].
Let T be the total number of SGDs in a client, E be the number of local iterations of
each client in each round. t is used to index the SGDs in each client. Thus, the relation-
ship between E, t and global round r is r = �t/E	. F ∗ and F ∗

k are the minimum values
of F and Fk. Γ = F ∗ − ∑N

k=1 pkF ∗
k is used to represent the degree of heterogeneity.

We obtain:

Theorem 2. Let ξk
t be a sample chosen from the local data of each client. For k ∈ [N ],

assume that:
E

∥
∥
Fk(ωk

t , ξk
t ) − Fk(ωk

t )
∥
∥2

2
≤ σ2

k, (9)

and
E

∥
∥Fk(ωk

t , ξk
t )

∥
∥2

2
≤ G2. (10)

Then let ε = L
μ , γ = max{8ε, E} and the learning rate ηt = 2

μ(γ+t) . We have the
following convergence guarantee for Algorithm 1.

E[F (ωT )] − F ∗ ≤ ε

γ + T − 1

(
2(Ψ + Φ)

μ
+

μγ

2
E ‖ω1 − ω∗‖22

)

,

where Ψ =
∑N

k=1 (Proba
�T/E	
k )2σk

2 + 6LΓ + 8(E − 1)2G2 and Φ = 4
K E2G2.

Since all the notations except T in Expression (2) are constants, we have O( 1
T )

convergence rate for the algorithm where limT→∞ E[F (ωT )] − F ∗ = 0.

5 Experimental Evaluation

In this section, we comprehensively evaluate the effectiveness and convergence of
FEDEMD in comparison to Shapley Value-based selection and SOTA baselines. The
evaluation considers both exclusive and shared Mavericks.

Datasets and Classifier Networks. We use public image datasets: i) Fashion-
MNIST [26] for bi-level image classification; ii) MNIST [13] for simple and fast tasks
that require a low amount of data; iii) Cifar-10 [12] for more complex task such as
colored image classification; iv) STL-10 [5] for applications with small amounts of
local data for all clients. We note that light-weight neural networks are more applicable
for FL scenarios, where clients typically have limited computation and communication
resources [19]. Thus, here we apply light-weight CNNs for all datasets.

Federated Learning System. The system considered has 50 participants with homo-
geneous computation and communication resources and 1 federator. At each round, the
federator selects 10% of clients using different client selection algorithms. The federa-
tor uses average or quantity-aware aggregation to aggregate local models from selected
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clients. We set one local epoch for both aggregations to enable a fair comparison of
the two aggregation approaches. Two types of Mavericks are considered: exclusive and
shared Mavericks with up to 3 Mavericks. We demonstrate the case of single Maverick
owning an entire class of data in most of our experiments.

Evaluation Metrics. i) Global test accuracy for all classes; ii) Source recall for classes
owned by Mavericks exclusively; iii) R@99: the number of communication rounds
required to reach 99% of test accuracy of random selection results; iv) Normalized
Shapley Value ranging between [0, 1] to measure the contribution of Mavericks.

Baselines. We consider four selection strategies: Random [18], Shapley Value-based,
FedFast [19], and TiFL [3]3 under both average and quantity-aware aggregation meth-
ods. Further, in order to compare with state-of-the-art solutions for heterogeneous FL
that focus on the optimizer, we evaluate FedProx [14] as one of the baselines.

5.1 FedEMD Is Effective for Client Selection

(a) FMNIST-quantity (b) FMNIST-average

Fig. 3. Comparison on FEDEMD with baselines.

Figure (3a, b) show global accuracy over
rounds. First we focus on the comparison
between the contribution-based SVB and
our proposed distance-based FEDEMD.
FEDEMD achieves an accuracy close to
the maximum almost immediately for
FedAvg while SVB requires about 100
rounds (72 and 104 rounds for R@99 for
SVB and FEDEMD). For average aggre-
gation, both client selection methods have a slower convergence but FEDEMD still only
requires about half the number of rounds to achieve the same high accuracy as SVB.
Indeed, SVB fails in reaching R@99 within 200 rounds. The reason is that SVB rarely
selects the Maverick in the early phase, as the Maverick has a below-average Shapley
Value. We can also see the superiority of FEDEMD among results presented for the
baselines in the figures. The detailed analysis will be discussed together with Table 1
below.

(a) FMNIST-quantity (b) FMNIST-average

Fig. 4. Comparison on FEDEMD over different
β.

We evaluate the effects of the hyper-
parameter β in Fig. (4a, b). The server
can apply a preliminary client selection
simulation before training based on the
self-reported data size array. FEDEMD
works best when the average probability
of selecting Maverick is within [1/N −
ε, 1/N + ε] based on our observation
experiments, where ε > 0 is a task-aware

3 We focus on their client selection and leave out other features, e.g., communication accelera-
tion in TiFL. We apply distribution mean clustering for FedFast following the setting in their
paper.
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small value. In our example with Fashion-MNIST, we choose β equal to 0.008, 0.009
and 0.01, with the results displayed in Fig. 4. These three values all satisfy the average
probability above with ε ≥ 0.002. The results shows that all of the 3 numbers work
for Fashion-MNIST, verifying the effectiveness of FEDEMD for various values of the
hyper-parameter. However, there are also values of β that are not suitable, e.g., β = 0.1
for which the Maverick is selected too rarely.

Comparison with Baselines. We summarize the comparison with the state-of-the-
art methodologies in Table 1. The reported R@99 is averaged over three replications.
Note that we run each simulation for 200 rounds, which is mostly enough to see the
convergence statistics for these lightweight networks. The rare exceptions when 99%
maximal accuracy is not achieved for random selection are indicated by > 200.

Due to its distance-based weights, FEDEMD almost consistently achieves faster
convergence than all other algorithms. The reason for this result is that FEDEMD
enhances the participation of the Maverick during the early training period, speeding
up learning of the global distribution. For most settings, the difference in convergence
rounds is considerable and clearly visible.

Table 1. Convergence rounds of selection strategies in R@99 Accuracy, under average and
quantity-aware aggregation (Every result is averaged over three runs and is marked with stan-
dard deviation among all of the replication results).

Average Aggregation
Dataset

Random FedProx TiFL FedFast SVB FEDEMD

MNIST 133 ± 44.47 118 ± 8.50 111 ± 21.66 >200 ± NA 147 ± 52.50 99 ± 24.70

Fashion-MNIST 144 ± 51.47 135 ± 20.59 140 ± 8.62 >200 ± NA 103 ± 56.00 131 ± 37.29

Cifar-10 141 ± 6.11 164 ± 15.00 147 ± 10.97 >200 ± NA 184 ± 9.24 140 ± 15.13

STL-10 122 ± 49.94 186 ± 4.36 125 ± 57.50 171 ± 16.74 190 ± 3.06 96 ± 4.93

Quantity-aware Aggregation
Dataset

Random FedProx TiFL FedFast SVB FEDEMD

MNIST 72 ± 29.26 51 ± 8.19 84 ± 37.99 >200 ± NA 49 ± 2.52 40 ± 5.57

Fashion-MNIST 111 ± 37.75 92 ± 12.12 146 ± 38.18 >200 ± NA 80 ± 40.13 80 ± 10.79

Cifar-10 143 ± 26.29 144 ± 39.46 120 ± 9.45 174 ± 9.50 132 ± 26.50 107 ± 10.58

STL-10 180 ± 0.58 179 ± 6.24 >200 ± NA 153 ± 34.88 181 ± 10.97 95 ± 2.65

The only exception are easy tasks with simple averaging rather than weighted,
e.g., Fashion-MNIST with average aggregation, which indicates our distribution-based
selection method is especially useful for data size-aware aggregation and more complex
tasks. Quantity-aware aggregation nearly always outperforms plain average aggregation
as its weighted averaging assigns more impact to the Maverick. While such an increased
weight caused by larger data size can lead to a decrease in accuracy in the latter phase
of training, Mavericks are rarely selected in the latter phase by FEDEMD, which suc-
cessfully mitigates the effect and achieves a faster convergence.

In order to demonstrate the comparison of FEDEMD and SVB across multiple
datasets, here we also provide the experimental results withMNIST and Cifar-10, which
is inline with our conclusion of Fashion-MNIST in Fig. 4 for better convergence perfor-
mance of FEDEMD.
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(a) MNIST-average (b) MNIST-quantity (c) Cifar-10-average (d) Cifar-10-quantity

Fig. 5. Comparison on FEDEMD with SVB.

5.2 FedEMD Works for Multiple Mavericks

We explore the effectiveness of FEDEMD on both types of Mavericks: exclusive and
shared Mavericks.

(a) Exclusive Mavericks

(b) Shared Mavericks

Fig. 6. Convergence rounds R@99 for
multiple Mavericks.

We vary the number of Mavericks between
one and three and use the Fashion-MNIST
dataset. The Maverick classes are ‘T-shirt’,
‘Trouser’, and ‘Pullover’. Results are shown with
respect to R@99.

Figure (6a) illustrates the case of multiple
exclusive Mavericks. For exclusive Mavericks,
the data distribution becomes more skewed as
more classes are exclusively owned by Maver-
icks. FEDEMD always achieves the fastest con-
vergence, though its convergence rounds increase
slightly as the number of Mavericks increases,
reflecting the increased difficulty of learning in
the presence of skewed data distribution. Fed-
Fast’s K-mean clustering typically results in a
cluster of Mavericks and then always includes at
least one Maverick. In some initial experiments,
we found that constantly including a Maverick
hinders convergence, which is also reflected in
FedFast’s results. TiFL outperforms FedAvg with random selection for multiple Mav-
ericks. However, TiFL’s results differ drastically over runs due to the random factor in
its local computations. Thus, TiFL is not a reliable choice for Mavericks. Comparably,
FedProx tends to achieve the best performance among the SOTA algorithms but still
exhibits slower convergence than FEDEMD as higher weight divergence entails higher
penalty on the loss function.

For shared Mavericks, a higher number of Mavericks indicates a more balanced
distribution. Similar to the exclusive case, FEDEMD has the fastest convergence and
FedFast again trails the others. The improvement of FEDEMD over the other methods
is less visible due to the limited advantage of FEDEMD on balanced data. A higher
number of Mavericks resembles the case of i.i.d.. Random performs the most similar to
FEDEMD for shared Mavericks, as random selection is best for i.i.d. scenarios. Note
that the standard deviation of FEDEMD is smaller, implying a better stability.
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6 Conclusion

Client selection is key to successful FL as it enables maximizing the usefulness of
different diverse datasets. In this paper, we highlighted that existing schemes fail when
clients have heterogeneous data, in particular if one class is exclusively owned by one or
multiple Mavericks. We first explore Shapley Value-based selection, theoretically show-
ing its limitations in addressing Mavericks. We then propose FEDEMD that encourages
the selection of diverse clients at the opportune moment of the training process, with
guaranteed convergence. Evaluation results on multiple datasets across different sce-
narios of Mavericks show that FEDEMD reduces the communication rounds needed
for convergence by 26.9% compared to the state-of-the-art client selection methods.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.
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