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ABSTRACT 
HVDC cables start playing a more and more important role in interconnecting national grids. 
This paper deals with the calculation of electric fields in HVDC cables. The calculation of fields 
in an HVDC cable is far more complex than the equivalent case in HV ac cables. This is due to 
the fact that the conductivity of the cable insulation is temperature and field dependent and due 
to the fact that the electric fields under dc voltage may be time-dependent. The field distribu- 
tion in an HVDC cable may be of a capacitive, intermediate (and time-dependent) or resistive 
nature. The kind of field depends on the stage the cable finds itself in: for instance, whether 
the voltage has just been applied, whether a polarity reversal has occurred or whether the field 
distribution has become stable. For each stage, the method of calculating, together with the 
computed results on a real HVDC cable are discussed. Usually, the effect of heating of the in- 
sulation by the leakage current may be disregarded. However, in certain cases, i.e. the cable 
temperature and applied voltage are high enough, the field distribution is influenced by these 
insulation losses. They even may lead to an instability that causes breakdown of the cable. A 
cable in service may be subjected to impulses superimposed on the dc voltage. The most severe 
case is that of an impulse superimposed on a dc voltage of opposite polarity. The calculation of 
the field distribution in this situation also is carried out. 

1 INTRODUCTION 

ITH common energy resources becoming more and more scarce 
arid with nuclear energy still in a position of social disadvan- 

tage, green energy becomes an important issue nowadays. In Europe 
green energy resources like hydro-electric energy can be found in huge 
amounts in Scandinavian countries. In a growing number of cases it 
is preferable to import this type of energy from a Scandinavian coun- 
try to the EIuropean mainland, instead of building new coal or nuclear 
power stations. The electric energy is transported mostly by subma- 
rine power cables at dc voltage. The reason for using dc is the extreme 
length over which the energy has to be transported; the length can be 
hundreds of kilometers. The capacitive loading current would be too 
high when using ac voltage [l]. Another reason for introducing elec- 
tric links between different countries is the reduction of the necessary 
number of power plants in Europe by interconnecting the different sub- 
international grids. Fewer installed power plants can be preferable for 
economical and environmental reasons. It must be noted that an HVDC 
cable is not always necessary to reach this latter goal. In several cases a 
so-called back-to-back connection can do the job. However, in all cases 
where a large sea has to be crossed, the HvDC cable is the only alter- 
native for interconnecting countries. So far, the paper-insulated HVDC 
cable is the only type that is in commercial use, due to the high avail- 
ability of a link that uses such a cable. The paper cables that are used 
for dc energy transport are mass-impregnated, oil-filled and, very rarely, 

gas-pressure cables. The polymeric HVDC cable is still in development. 
This paper deals with the paper insulated cable only. There is a backlog 
of knowledge concerning the HVDC cable when compared with ac ca- 
bles. A possible explanation of this backlog is given in [1,2]. In 1993 
a project was started in Delft in order to reduce this lack of knowl- 
edge. The project consists of three parts: electric field calculation, space 
charge measurements and partial discharge measurements [l]. This ar- 
ticle deals with the electric field calculation in paper insulated cables. 
Quantitative knowledge of the electric field is desirable, because the 
magnitude of the electric field is an important design parameter of a ca- 
ble. A dc cable can not only experience dc voltages but also ac voltages, 
impulse and switching surges. All these voltage types may occur su- 
perimposed on a dc voltage as well. Therefore, calculation of the electric 
field in an HVDC cable involves more than just determining the stable dc 
field. Special attention is given in this paper to the case where the heat- 
ing of the insulation by the leakage current no longer can be ignored. 
The new aspect is that it presents calculation methods and results for 
all possible voltage stages that an HVDC cable may experience. 

2 DIFFERENCE BETWEEN ac 
AND dc FIELD CALCULATION 

IN CABLES 
The calculation of electric fields in ac cables is relatively easy The 

field distribution depends on the permittivity E~ of the insulation ma- 
terial, the geometry of the cable and the applied voltage. The geometry 
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is in most cases cylindrical. The permittivity to a high extent is indepen- 
dent of external parameters like for instance temperature, at least within 
the service range (0 to 90°C). In most cases the insulation of an ac cable 
consists of one material, and the permittivity drops out of the equation 
determining the field distribution 

U 
E(T) = - 

r 1 n a  R, 

in which U stands for the applied voltage, T the radius in the insulation, 
R, the external radius of the insulation and R, is the internal radius 
of the insulation. See also Figure 1. The calculation of electric fields in 
cables under dc voltage is more complex. The field distribution now 
depends on the permittivity E ~ ,  the conductivity g, the geometry of the 
cable and the applied voltage U .  The conductivity depends highly on 
temperature T and electric field E. Many researchers over the world [3- 
101 came to the conclusion that the conductivity o of impregnated paper 
insulation can be described by an empirical formula, which is given by 

= 00 exp(aT)  e x p ( y E )  (2) 

in which CTO stands for the conductivity at a temperature of 0°C and a 
field strength of 0 kV/mm, Q is the temperature dependency coefficient 
and y denotes the field dependency coefficient. For mass-impregnated 
paper the temperature coefficient Q normally has a value -0.1"c and 
the field dependency coefficient y normally has a value -0.03 mm/kY 
In a cylindrical structure like a cable, the highest field strength without 
a load is found near the conductor. The effect of the temperature depen- 
dency of the insulation when the cable is loaded is an inversion of the 
field: the highest field strength is now found near the lead sheath of the 
cable (see Figure 2). The effect of the field dependency of the insulation 
is a leveling of the field strength as can be seen in Figure 2. 

conductor 

E 

Ri r RI 
Figure 2. Stable dc fields under load and no-load conditions. The solid 

lines represent the fields if the field dependency of c is disregarded, the 
dotted lines represent the fields when taking this effect into account as well. 

3 DEFINITION OF STAGES 

The different stages are described using Figure 3, following the pro- 
posal of Kreuger [ 2 ] .  Focusing on the upper part of the Figure, we see 
that in stage I, the external voltage U is raised. At the beginning of this 
stage, the cable contains no space charge and there is no temperature 
drop across the insulation. The electric field is determined by the geom- 
etry and the permittivity E only We speak of a capacitive field distribu- 
tion. During stage 11, the voltage U has already reached its final value. 
The electric field, however, is changing from a capacitive distribution to 
a resistive distribution. The field during this stage is time-dependent. A 
pure resistive field exists in stage ITT. In all these three stages a load cur- 
rent I may be present, that heats the conductor of the cable. If a load 
current is present in stage 111, it is switched off in stage TIP, which is 
a special case of stage ITI. The voltage is lowered to zero in stage IV. A 
field still exists after the voltage has been removed. The lower part of 
Figure 3 shows the stages during (V) and after (VI) a polarity reversal. 
During stage VII, the field after a polarity reversal has become stable. 
Software has been written that calculates the field distributions in each 
of the defined stages for different ambient temperatures, temperature 
drops, applied voltages, cable geometries, permittivities, conductivities 
and the dependency coefficients. The distributions are determined as a 
function of time where appropriate. 

, I  IT 111 I f  IV 

Figure 1. Simplified representation of the cable as it is used to calculate 
the different electric fields. 

VI VI1 
Another important fact is that after voltage application there is no dc 

field distribution in the cable yet. The distribution is at first a capacitive 
one. Via an intermediate time-dependent field, the distribution changes 
from the purely capacitive distribution to a purely resistive distribution. 
To be exact: the purely resistive stage will be reached only after an infi- 
nite time! After for instance a polarity reversal, yet another field distri- 
bution is found in the cable. Therefore, because the field distributions 
differ per stage, different computational schemes must be used for every 
stage that a cable finds itself in. 

\ - - __ .  
. c m  I 

Figure 3. The different stages when switching on and off a dc voltage 
(top) and after a polarity reversal (bottom). The dotted lines represent the 
growth and decay of space charges in the insulation. 
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4 FIELDS PER STAGE 

In the following sections the field distributions and their method of 
calculation will be discussed per stage. The calculations will be per- 
formed on a 450 kV, 1600 mm2 cable with an inner insulation radius 
Ri = 19.2 mm, an outer insulation radius R, = 42.4 mm, a con- 
ductivity 00 = 1 ~ 1 0 ~ ~ ~  R-lm-l, a relative permittivity E~ = 3.5 
and values of the dependency coefficients a and y as stated earlier. This 
cable will be named the 'standard' cable. In all calculations the quasi- 
static approximation will be used, i.e. V x E  = 0. 

4.1 STAGE I RAISING THE VOLTAGE 

In stage I, the external voltage U is raised to its desired value. This 
takes a short time, usually -1 s. This time is much shorter than the 
time constant of the insulation, which is determined by the permittiv- 
ity E and the conductivity o of the insulation. For this reason the field 
that is present in stage I is a capacitive field. The field may be calculated 
using Equation (1). This is the same formula as used for ac cables. The 
field for the standard cable is drawn in Figure 4. It can be seen that the 
highest field strength is found near the conductor, as known from the 
ac cables. Equation (1) may be used only if the cable contains no space 
charge. 

17.7 k V l m  

4.2 STAGE It AFTER RAISING THE 
VOLTAGE 

After having raised the voltage (stage I), the field changes from a 
purely capacitive stage to a purely resistive stage. This Section describes 
the field between these stages; the field is therefore named an interme- 
diate field. 

The field cannot be calculated using an equation in a closed mathe- 
matical form. It has to be calculated numerically, The field can be com- 
puted using the Gauss law, the continuity equation and Ohms law 

(3) V . E =  P - 
E 

aP 
at V . J + - = O  (4) 

J = c E  (5) 
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in which J is the current density, Suitable boundary conditions have to 
be chosen in order to calculate the actual situation: (1) the field disfri- 
bution E at t = 0, (2)  the voltage across the insulation is U and the 
voltage at the lead sheath is 0 V, and (3) a function describing the tem- 
perature as a function of radius and time T(r ,  t ) ,  Remember that the 
conductivity as used in Equation (5) is temperature dependent. 

Start with initial distributions of 
E(r, t) - el. field T(r,t)- temperature 
p(r, t) - space charge J(r, t) - current 
c(r, t) - conductivity density 

.1 
Increase time step: t=t+dt 

Calculate new T(r, t) . 
Calculate new p(r, t) : 

v. J + apta PO 

1 
Calculate new E(r,t) : 

V E E = P  
lE *U 

I I 
I c 

Calculate new o(r, t) : 
o=oo exp(aT)exp(yE) 

Calculate new j(r,t) : 
J= DE 

Figure 5. Flow-chart of field-calculating software. 

The software calculates the electric field and the charge density by 
solving these equations in place and time as shown in Figure 5. With 
regard to the load of the cable, we may calculate three different situa- 
tions in stage I1 (see Figure 6). 

1. The intermediate field E while the cable is not loaded, I = 0. 
2. The intermediate field E after the cable has just been loaded. 
3. The intermediate field E of a stable loaded cable. The current has been 

raised long before and the temperature distribution in the cable is stable. 

Situation 1 is not very interesting as the field is hardly changing. 
There is no temperature drop across the insulation, so there will be 
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Figure 6. The different situations in stage I1 as explained in the text. 

no field inversion. The field will change slightly due to the field de- 
pendency of the conductivity only (compare the lines 'no load, y = 
0.03 mm/kV' and 'no load, y = 0' in Figure 1). Situations 2 and 3 are 
more interesting because of the field inversion. The intermediate fields 
in these two situations are almost the same and change from a purely 
capacitive field to the inverted resistive field. They differ in the rate of 
change only 

4o 1 29.2 kV/mm 1 . * 
30 

20 w 

R, r IL 
Figure 7. Field distributions in stage I1 with U = 450 kV, T, = 
TR, = 35°C and AT : TR, - T, = 15°C. 

For further explanation we limit ourselves to situation 3. 
Figure 7 shows the field distribution in the standard cable at different 

times. The lead sheath at R, has a stable temperature T, = 35°C and a 
temperature drop AT = 15°C across the insulation. At t = 0 the volt- 
age was switched on and resulted in a capacitive field distribution: stage 
I. The intermediate field is shown for 10 min intervals. The purely re- 
sistive field is represented by the line at t = m. The intermediate fields 
show that there is a point in the cable, roughly in the middle, where the 
field is hardly changing. The field at the conductor is decreasing more 
quickly than the field at the lead sheath is increasing. This is explained 
by the fact that the insulation near the conductor is 15°C warmer than 
the insulation near the lead sheath and has therefore a higher conduc- 
tivity; the time constant near the conductor is then smaller. 

The time constant of a dielectric that consists of two materials with 
different permittivities E or conductivities CT is relatively easy to deter- 
mine [I, 2,111. The case of an actual cable is more complex, because the 
conductivity depends on place and time. 

To get an idea of the time constants, the time t 6 3  at which the field 
has changed by 63% is considered. This time is calculated for the change 
in the field at a point in the insulation adjacent to the conductor and for 

10000 
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10 

Figure 8. Calculated time spans at which the field has changed for 63% 
for the model cable. 

a point adjacent to the lead sheath. The temperature drop across the in- 
sulation was 15°C and the external voltage was 450 kV. The calculation 
was performed using different lead sheath temperatures T, , The results 
are represented by the straight line in Figure 8. It is concluded that the 
time t 6 3  is lower for the insulation near the conductor. This is under- 
standable, as the temperature and therefore the conductivity is higher 
near the conductor. Further, the time constant is exponentially inversely 
proportional to the temperature of the cable. The higher the tempera- 
ture, the shorter the time constant. Observe that the calculations of the 
time constant have to do with the electric time constant of the cable only, 
because a stable temperature distribution was taken as starting-point. If 
the temperature is changing (for instance during heating or cooling of 
the cable) the thermal time constant of the cable and its environment 
takes part in the process as well. 

4.3 STAGE Ill STABLE FIELD 

In stage 111, the field distribution has become a stable resistive distri- 
bution; the field is not time dependent. Due to the temperature depen- 
dency and the field dependency, there is a gradient in the conductivity. If 
such a gradient in the insulation occurs, a space charge is present as may 
be derived from the Maxwell equations [2,11]. The space charge gen- 
erates a field, commonly named the charge-induced field. This charge- 
induced field causes field inversion and the effect of leveling which have 
been shown in Figure 1. 

First, we start with the calculation of the field, second, we calculate 
the total insulation resistance of the cable and third, we calculate the 
space charge distribution. 

4.3.1 FIELD 

The exact electric field including the effect of temperature and field 
dependence is given by [1] 

in which k is 
aAT 

(7) 
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A conductor 

This equation can be calculated in a numerical way only, because the 
electric field strength appears at both sides of the equation. In Figure 9, 
the electric field is calculated for different temperature drops AT. With 
no temperature drop, the highest field strength is found near the con- 
ductor: 29 kV/mm (calculated with the data of the standard cable). For 
large temperature drops (>15"C), the field near the lead sheath may be- 
come higher than the highest possible field strength near the conductor. 
In the middle of the insulation, a point is found where the field is not 
influenced by the temperature drop. 

AT 

40 A AT 

~ ,200c 
, 
y 15°C 
8 10°C - 5°C 
\l, 0°C 

1 3o 
20 tc, 

* i o  

Rl r -  Ri 
Figure 9. Electric field in the cable insulation in stage I11 for different 

temperature drops. The voltage U = 450 kV. 

From Equations (6) and (7) it is derived that the field distribution does 
not depend on the absolute temperature but on the temperature drop 
only (This holds only if the small influence of ohmic losses due to the 
leakage current is not taken into account, see Section 5). If we disregard 
the field dependency y of the conductivity, the field may be calculated 
analytically Starting from Equation (6) and setting y = 0 we find 

which may be written as 

From Equation (9) it is seen that the stress distribution varies with rk-'. 
It means that for k = 0 (i.e. no temperature drop), the distribution 
is a hyperbolic function like in the capacitive stage. For k = 1, the 
stress distribution is linear and does not depend on the radius. For val- 
ues of ,k ;> 1, the stress is inverted. Equation (9) is the approxima- 
tion used to calculate the dc field taking into account the temperature 
dependency, but disregarding the field dependency This approxima- 
tion is commonly used and is also found in literature [3,5,7]. However, 
care must be taken if the approximation gives large errors for high field 
strengths and for high temperature drops. In these cases, the leveling 
effect of the field dependency can no longer be ignored. The error made 
when using the approximation on the standard cable is shown in Fig- 
ure 10. The absolute value of the error is calculated for the field near the 
conductor, and near the lead sheath for different voltages and temper- 
ature drops. The error at the conductor is always larger than the error 

- 4 0 -  w leadsheath 

h 3 0 -  
g 

20 - 

10 

- 4 0 4  w leadsheath -1::: 10°C 

0 )  I I I I 

0 200 400 600 1000 

Figure 10. Error in field calculation when using the approximation, 
Equation (9), instead of Equation (6). 

4.3.2 RESISTANCE 
As the conductivity of the insulation is temperature and field depen- 

dent, the total resistance of the cable depends on temperature and field 
as well. The total resistance per meter cable, taking into account both 
temperature and field dependency is given by [l] 

in which T, is the temperature of the lead sheath. From this Equation, 
it is seen that the total resistance of the cable depends exponentially on 
the absolute temperature of the cable. This Equation can only be calcu- 
lated numerically Disregarding the effect of the field dependency by 
setting y = 0, we can write the equation in a closed analytical form. 
The resistance per meter cable then becomes 

1000 
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Figure 1 1. Total resistance per meter cable for different voltages U and 
lead sheath temperatures T,. 

But remember that this equation is an approximation! The resistance 
per meter standard cable using Equation (10) are shown in Figure 11. 
From these results we conclude that the total resistance of an HVDC cable 
can be calculated easily The total resistance depends exponentially on 
temperature and linearly on the applied voltage. The higher the applied 
voltage, the lower the total insulation resistance of the cable. 
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The error in the calculated total charge Qp using Equation (16) may 
now go up to 200%. Anyhow, from Equation (16), we learn that the to- 
tal charge in the insulation due to the temperature difference is propor- 
tional to the voltage U and to the temperature drop AT (k is a function 
of AT). 

It is concluded that the charge accumulation due to temperature and 
field dependencies in an HVDC cable may be calculated easily The 
higher the voltage, the higher the total charge per length of cable. The 
accumulated charge can easily amount to 500 to 1000 pC/m, which is a 
considerable amount of charge. 

5oc 

4.3.4 STAGE Illa AFTER SWITCHING 
OFF THE LOAD 

Figure 12. Charge distribution in the standard cable during stage I11 for 
different temperature drops AT. The voltage U = 450 kV. 

4.3.3 CHARGE 

Space charge will be present in the insulation due to the temperature 
and field dependencies. This type of charge is not trapped charge, but 
charge that accumulates at discontinuities of permittivity and conduc- 
tivity In that case, it must be possible to calculate the charge distribu- 
tion in the insulation. The space charge distribution in a cable may be 
calculated using [2] 

and 

in which J is the current density This equation can be calculated using 
numerical methods only The software as described under stage I1 has 
been used. Charge distributions in the standard cable at different tem- 
perature drops and at 450 kV are given in Figure 12. For the lower tem- 
perature drops A T ,  the highest charge densities are found near the con- 
ductor. However, the higher the temperature drop, the more the charge 
will be pushed towards the lead sheath. The charge distribution in the 
case that AT = 0°C is due to the field dependency of the insulation 
only Observe that the polarity of the charge is of one sign only. The to- 
tal charge Qp per meter cable is indicated in this Figure as well. It has 
been calculated using 

RO 

(12) 

J = f f E  (13) 

E 

ff 
p =  J - V -  

Qp = 12 . i r rpd r  (14) 
R, 

When the field dependency is disregarded, an approximation in calcu- 
lating the space charge p can be made. The calculation may be found in 
[2], the final result is written as 

E 
r p = &k- (15) 

Just as in the case of the field approximations, care has to be taken be- 
cause the error may go up to %%, especially for higher temperature 
drops and higher field strengths. Starting from Equation (15), which is 
an approximation, the total charge per meter cable may also be written 
in a closed analytical form. Using Equation (14) and approximation (15) 
we find 

RO 

A special stage is introduced here: in stage 111" in which the voltage 
U remains constant but in which the load current 1 is switched off. The 
cable will cool down and the temperature drop will decrease to 0°C. As 
a result, the field distribution will gradually change from the inverted 
field back to the usual field where the highest field strength is found 
near the conductor. The field in stage 111" is an intermediate field and is 
time-dependent. The theory as described under Stage I1 is applicable. 
For this reason, we do not go into detail concerning the fields during 
this stage. The reason for introducing this special stage is that the cable 
is vulnerable during the cooling down. Partial discharges with an en- 
hanced repetition rate will occur with a possible harmful effect on the 
cable. An elaborate description of these phenomena during stage 111" 
can be found in [1, 121. 

4.3.5 STAGE IV AFTER SWITCHING OFF 
THE VOLTAGE 

In stage Iv, the voltage is switched off. After a short time, determined 
by the cable capacitance and internal resistance of the voltage source, the 
external voltage is reduced to zero. The field inside the cable, however, 
may be present for a far longer time, due to the slow decrease of the 
space charge. The field remaining after switching off the voltage is a 
purely charge-induced field. Three situations can be distinguished (see 
Figure 13). 

1. The cable was not loaded before switching the voltage off. 
2. The cable was loaded before switching off the voltage. The load is not 

3. The cable was loaded before switching off the voltage. The load is 
switched off. 

switched off as well. 

Figure 13. Different situations in stage IV as defined in the text 
(16) If the cable was not loaded earlier (situation l), the remaining field is 

not so high because the insulation contained hardly any space charge. 

Q p  = 2 m k J  Edr = 2 m k U  
R, 
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Figure 14. Field distributions after switching off the voltage (stage IV). 
The voltage before switching it off was 450 kV. 

Therefore, situation 1 is not considered here. Situations 2 and 3 give sim- 
ilar decays of the field. In situation 3, the field takes more time to dimin- 
ish than it does in situation 2, when the temperature is decreasing due to 
switching off the load. In the following, situation 2 is considered. A ca- 
ble loaded previously may keep a considerable charge-induced field. As 
an example, the field distributions of the standard cable after switching 
off the voltage are shown in Figure 14. The voltage before switching off 
was 450 kV, whereas the cable is constantly loaded with a current such 
that the temperature drop AT = 15°C. The software introduced un- 
der Stage I1 was used. The field marked with t = 0- is the field just 
before switching off the voltage, whereas the field marked with t = O+ 
is the field just after switching off the voltage. The other lines represent 
the field as it decreases in the course of time. The field at t = O+ just 
after the voltage has been switched off can be calculated according to 

E(t  = O f )  = E(t  = 0-) - E,, (17) 

in which E,, is the capacitive field given by Equation (1) and E(t  = 
OW) is the dc field just before switching off the voltage. The field E(t  = 

O f )  is then the field which is induced by the remaining space charge 
[I, 21. Hereafter, the charge-induced field distribution gradually decays 
until, at t + -, the field is 0 kV/mm at every location in the cable. 

AT 
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Figure 15. Field distributions before and immediately after a polarity 
reversal from t450 kV to -450 kV. 
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Figure 16. The field at the conductor and the lead sheath immediately 
after a polarity reversal at different temperature drops AT. 

4.3.6 STAGE V AT POLARITY 

It is known that high stresses may occur at the conductor immedi- 
ately after reversing the polarity of an external voltage source [13]. This 
is especially the case if the cable is loaded and there is a temperature 
gradient. This is caused by the space charge of the loaded cable. The 
field just after the polarity reversal may be calculated in analogy with 
the theory under Stage IV, with Equation (17) in which E,, is now twice 
as large as the field strength as calculated with Equation (1) 

REVERSAL 

(18) 
2u 

E a ,  = 
r l n  (2) 

E(t  = OW) is the field just prior to polarity reversal and E(t  = O+) 
the field just after. As the voltage is quickly changed from +U to -U, a 
swing E,, in the electric field according to (18) occurs. This field is sub- 
tracted from the initial field. Two examples are given in Figure 15: one 
in which the cable is not loaded and one in which the cable is loaded, 
thus resulting in a temperature drop of 15°C. The initial voltage was 
450 kV. After the reversal it was -450 kV. The field at the conductor is 
the highest after a polarity reversal, whether the cable is loaded or not. 
The field at the conductor after a polarity reversal of a loaded cable is 
high (47.1 kV/mm in this case) compared to the usual field strengths in 
service. Obviously, the field at the conductor just after the reversal is 
largely affected by the temperature drop AT. This has been calculated 
and is shown in Figure 16. Here the voltage was also reversed from t450 
to -450 kV. It can be concluded from this Figure that the field strength 
at the conductor, immediately after the reversal, increases linearly with 
the temperature drop, whereas the field at the lead sheath decreases lin- 
early 

If the cable did not suffer from inversion at all, this large field increase 
would not occur. We now consider what measures should be taken to 
keep the field inversion as low as possible. Under Stage 111, it was stated 
that parameter k describes the inversion. Keeping k as low as possible 
results in small field inversions. By using the fact that the heat losses 
W, in the conductor may be written as 

27rAT w, = 
Pth (2) 
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we rewrite parameter k 

(20) 
- awcpth k = -  

In (%) ~ 27r 

in which pth is the specific thermal resistivity of the insulation. The field 
inversion can be kept as low as possible in three ways: 

1. By choosing an insulation material that has a low temperature depen- 

2. By choosing an insulation material that has a low specific thermal resis- 

3. By reducing the losses produced by the conductor. 

The losses are ohmic losses and depend on the current I ,  the electric 
resistivity of the conductor material pc and the conductor area A. 

However, the most often used conductor material is copper, which 
already has a low resistivity The losses may be reduced by reducing 
the current I ,  which is not desirable. Increasing the conductor area A 
is a workable option that will reduce the conductor losses. The increase 
in conductor area is obviously restricted by the costs per meter cable and 
by mechanical design restrictions. 

dency coefficient CY. 

tance Pth. 

4.3.7 STAGE VI AFTER POLARITY 

In this stage, the field gradually changes from the field as calculated 
under Stage V, to a stable field gained by the reversed voltage source 
(stage VII). The field in stage VI is an intermediate field and is time- 
dependent. The field distributions that are calculated and presented 
in this Section were computed using the software as introduced under 
Stage 11. 

REVERSAL 
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Figure 18. The field distribution after a polarity reversal from 1450 kV 
to -450 kV. The temperature drop AT remained stable at 15°C. The tem- 
perature of the sheath was 35°C. 

The field strength at the conductor initially is very high, but it decreases 
quickly Polarity reversals are severe conditions which, in the recom- 
mended tests for HVDC cables, play an important role [13]. It is expected 
that the ambient temperature has an influence on the decay of the high 
field strength immediately after a polarity reversal. It is important to 
know the extent to which the temperature affects the field, as it may 
make the test more severe. First, the test as recommended by [13] is 
rewritten. Second, two possible situations are calculated and evaluated. 

The polarity reversal as defined in the official recommendations 1131 
is rephrased below: 

“The cable shall be submitted to a total of 30 daily load- 
ing cycles. One cycle consists of 8 h heating, followed 
by 16 h cooling. Starting with positive voltage, the volt- 
age polarity shall be reversed every 4 h and one rever- 
sal shall coincide with the cessation of loading current 
in every loading cycle. The test voltage shall be 1.5U0.” 

t=3;6;9; 
12;15; ... 
min 

Figure 17. The charge density after a polarity reversal from +450 kV to 
-450 kV. The temperature drop AT remained stable at 15°C. The tem- 
perature of the sheath was 35°C. 

We concentrate on the case of a loaded cable, as the highest field 
strengths occur in that case. Under Stage I11 (stable field), it was ex- 
plained that the space charge caused by the dependencies of the insula- 
tion was of one sign only: the same polarity as the external voltage. Af- 
ter a polarity reversal, the polarity of the space charge also must reverse. 
This will happen gradually as shown in Figure 17. The charge distribu- 
tions in this Figure are a result of a reversal from t450 to -450 kV. The 
load of the standard cable is not changed, the temperature of the lead 
sheath is kept constant at 35°C and the temperature drop at 15°C. In 
Figure 18, the corresponding change in the field distribution is shown. 

I I 

0 8 
I I 

24 28 
t [hl 

Figure 19. The temperature of the lead sheath and the conductor as a 
function of time as defined in the text. Situation 1. 
The two calculated situations are (see Figures 19 and 20): 
(1) A polarity reversal test as defined at an ambient temperature of 

20°C (Figure 19). The lead- sheath temperature after 8 h heating is 35“C, 
the conductor temperature is then 50°C. 

(2) The thermal time constant was set to 3 h. At the beginning of the 
test, the cable was in a stable thermal and electric situation. The voltage 
on the cable was 1 .5~450  = +675 kV and after reversal -675 kV. 

(3) A polarity reversal test as defined at an ambient temperature of 
4°C (Figure 20). The lead sheath temperature is kept constant at 4°C. 
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Figure 20. The temperature of the lead sheath and the conductor as a 
function of time as defined in the text. Situation 2. 

80 - 

The temperature of the conductor after the 8 h heating is 19°C. The 
thermal time constant was set to 3 h. At the beginning of the test, the 
cable was in a stable thermal and electric situation. The voltage on the 
cable before reversal was 1 .5~450 = +675.kV and after reversal 
-675 kY 
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Figure 21. The field at the conductor as a function of time during a po- 
larity reversal test as recommended by 1131. Situation 1: high ambient tem- 
peratures. Situation 2 low ambient temperatures. 

The results of the calculations of situations 1 and 2 are represented 
in Figure 21. The Figure shows the field strength at the conductor as a 
function of time. The high field strength, which is present immediately 
after the polarity reversal, decays more slowly for the cable in cold envi- 
ronment (situation 2) than for the cable in warm environment (situation 
1). It is concluded that, regarding the field strength, testing a cable with 
polarity reversals and subjection to a low ambient temperature is a more 
severe test than that of a cable subjected to a high ambient temperature. 

4.3.8 STAGE VI1 STABLE AFTER 
POLARITY REVERSAL 

After the intermediate field of stage VI, the field becomes stable in 
stage VII. The field is of opposite polarity to the field in stage 111. All 
calculations made in stage I11 are valid for stage VII, but with an opposite 
sign 

EVII = -EIII (21) 

5 FIELDS TAKING INTO 
ACCOUNT OHMIC INSULATION 

LOSSES 

The leakage current IO in the insulation heats the insulation; this is 
caused by ohmic losses which are of the form 

(22) w=- 1: 
(27i-r) o 

in which w is the power generated per unit volume and Io is the leakage 
current per meter cable [l]. Normally, the power generated throughout 
the whole insulation per meter of cable is in the order of 1 mW, which 
is small compared to the 25 W per meter of cable which is generated 
by the conductor. These values are rough figures calculated at a mod- 
erate stress and ambient temperature. However, the effect of the ohmic 
insulation losses may be greater at higher stresses and ambient temper- 
atures. Consider the following. The leakage current will heat the in- 
sulation due to the ohmic insulation losses. Therefore, the temperature 
of the insulation will rise. The higher temperature will lead to an in- 
crease in the electrical conductivity. This higher conductivity causes a 
higher leakage current. However, the higher leakage current will in its 
turn heat the insulation. The process continues until either a balance is 
reached or an instable situation occurs [l, 141. 

Thus, the electric field may be influenced to a larger extent than one 
would expect. In the following, the electric field distribution is calcu- 
lated, taking into account the effect of the ohmic insulation losses. It can 
be calculated [ l ]  that the temperature drop T,. - T, at location r inside 
the insulation due to the heating by the leakage current IO is given by 

in which T,. is the temperature of the insulation at location F ,  T, is the 
temperature of the conductor, f&h is the specific thermal resistance of 
the insulation which is thought to be independent of temperature, and 
o is the electric conductivity which depends on the location in the in- 
sulation. This temperature drop comes in addition to the well-known 
temperature drop AT which is the result of the conductor losses. Equa- 
tion (22) may be used to calculate the electric field. The electric field dis- 
tribution is calculated in an iterative way: 

1. Calculate an initial field (this may be the field calculated with the equa- 

2. Calculate the temperature distribution using Equation (22). 
3. Calculate the distribution of the electric conductivity. 
4. Calculate the electric field distribution. 
5. Calculate the leakage current IO. 

Repeat steps 2 to 5 until the field distribution does not change more 
than lop2 kV/mm. It is possible that this equilibrium situation will not 
occur and the changes in field of following iterations become larger and 
larger. This is the instability as mentioned earlier. 

The fields were calculated for the cable at 2Uo = 900 kV with a cur- 
rent of 1500 A flowing through the conductor of the standard cable. The 
calculations were done using different lead sheath temperatures T, to 
investigate the effect of the ambient temperature. The thermal conduc- 
tivity oth = 0.17 Wm-IK-'. The results are shown in Figure 22. 

tions under Stage 111). 
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Figure 22. Stable field distributions taking into account ohmic insula- 
tion loss for different temperatures of the lead sheath T,. U = 900 kV. 
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Figure 23. Field E, at the lead sheath taking into account ohmic insu- 
lation loss as a function of the temperature of the lead sheath T,. U = 
900 kV. 

It is seen that the field is pushed still more towards the conductor, 
but for very high temperatures, >70T only. This is shown in Figure 23 
where the field E, at the lead sheath is shown as a function of the tem- 
perature T, of the lead sheath. For temperatures of the lead sheath 
higher than 83"C, no solution exists and instability sets in. As the leak- 
age current IO is the parameter which causes the deformation of the 
field, we have a closer look at Figure 24. The relation between the leak- 
age current 10 and the temperature of the lead sheath T, is exponential. 
This was expected, as the electric conductivity is exponentially propor- 
tional to the temperature. However, several degrees below instability, 
the leakage current IO is increasing more than exponentially (indicated 
by the curved arrow). The power W, generated by the insulation losses 
and the power We generated by the conductor losses are shown in the 
same Figure. It is seen that W, has the same exponential shape as the 
leakage current IO. For the higher temperatures, the power W, takes 
values just as high as the average conductor losses We or even more. 

Figure 24 shows that at a temperature of the lead sheath T, = 70"C, 
the power generated by the insulation is N 5 of the power generated by 
a fully loaded conductor (W, = 0.3We). The electric field distortion 
caused by the leakage current becomes important starting at this tem- 
perature of 70°C. The conclusions are twofold. 

(1) The insulation losses can no longer be disregarded in the cases 
where W, 3 0.3We (Wc of a fully loaded conductor). This situation 

20 30 40 50 60 70 80 90 

Ts ["Cl 
Figure 24. Leakage current per meter cable 10 and power W, gener- 

ated by the leakage current as a function of the temperature of the lead 
sheath T,. W, is the power generated by the conductor. U = 900 kV. 

may occur for high lead sheath temperatures and high voltages. The 
maximum operating temperature of mass-impregnated insulation, how- 
ever, is -55°C. The insulation losses may be disregarded under nor- 
mal service conditions concerning this type of cable. Oil-filled cables, 
however, may be used at a much higher operating temperature. Conse- 
quently, the risk for a thermal breakdown during testing conditions is 
present. 

(2) In laboratory situations and when evaluating new insulation ma- 
terials at high temperatures, one should be aware of the effect. A risk of 
instability may then be present. 

6 IMPULSES SUPERIMPOSED 
ON DC VOLTAGE 

An HVDC cable may suffer from switching and lightning transients. 
A cable in service experiences these transients superimposed on its own 
dc voltage. In the following, impulses superimposed on a dc voltage 
are considered, especially the impulses superimposed on a dc voltage of 
opposite polarity, to which the cable is most vulnerable [1,15-171. First, 
the definition of symbols is given. u d c  is the dc working voltage, U, is 
the resulting peak voltage if an impulse is superimposed on the existing 
dc voltage (see Figure 25). The field at the event of an impulse can be 
calculated using 

where 
Ep = E d c  + Em 

E a ,  = 
r l n  (2) 

(24) 

(25) 
u p  - u d c  

Note that the capacitive field Eac is larger for superimposed impulses 
of opposite polarity ( 1  - U, - Udc I > 1 U, - Udc I). 

As an example, the field at the event of the impulse is calculated for 
the standard cable at t450 kV with a superimposed impulse of oppo- 
site polarity such that U, = -1000 kV. The fields are calculated for 
an unloaded cable (AT = 0) and for a loaded cable (AT = 15°C). 
The result is shown in Figure 26. The field strength at the event of a su- 
perimposed impulse is the highest near the conductor, both for a loaded 
and an unloaded cable. The loaded cable suffers from a higher total field 
strength E, than the unloaded cable. In the case of a superimposed im- 
pulse of the same polarity, the field strength at the conductor is always 
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Figure 25. Definition of voltages u d c  and U, 
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Figure 27. Field at the conductor at the event of an impulse superim- 
posed on a dc voltage of the same and of opposite polarity. 

field strengths near the conductor than to a test done with an impulse of 
the same polarity (arrow b) as the dc voltage. On top of this, the break- 
down field strength is lower in the case of an impulse superimposed on 
a dc voltage of opposite polarity than an impulse superimposed on a 
voltage of the same polarity This has been found by several authors for 
mass-impregnated paper cables 116,171 and for extruded cables [18,19]. 
This has two reasons. 

(1) The capacitive field during the impulse, described by Equa- 
tion (24) is larger for fhe impulse superimposed on a dc voltage of oppo- 
site polarity than the capacitive field during a pulse superimposed on a 
dc voltage of the same polarity. In a mass-impregnated paper the butt 
gaps are stressed mostly by this capacitive field as they have a lower 
permittivity E, than the paper. This holds for oil-filled and gas-filled 
butt gaps. The butt gaps are the weakest points in the cable and will, 
therefore, suffer more from an impulse superimposed on a dc voltage 
of opposite polarity. 

(2 )  Mass-impregnated paper cables and extruded cables may contain 
space charge. In the case of a paper cable, homocharge will be accumu- 
lated in the paper layers adjacent to the conductor and lead sheath as 
shown by Jeroense [1]. Extruded cables also may contain homocharge 
[18,19]. At the event of an superimposed impulse of opposite polarity, 
these homocharges increase the stress in the butt gaps of a paper cable 
and the interfaces of an extruded cable. 

7 CONCLUSIONS 
HE conduction of the insulation of an HVDC paper insulated cable T is time and field dependent. Therefore, the field distributions have 

to be calculated for each stage that the cable finds itself in. Seven differ- 
ent stages were defined. In each stage, the method of calculation and 
the results of the computations were discussed. Besides the calculation 
of the field distributions, the charge distributions are determined per 
stage. Only in the case of a stable capacitive stage, the field distribution 
can be calculated analytically. In the resistive stage an approximation 
can be made by disregarding the field dependency. In that case the re- 
sistive field distribution can be calculated analytically. It should be ob- 
served that the error, when disregarding the field dependency, may go 
up to 30%. The intermediate fields change slower in a cold cable than 
in a warm one. Therefore, testing a cold cable with polarity reversals 
is a more severe test than testing a warm cable with polarity reversal, 
regarding the field strength. In cases of a high cable temperature and a 
high applied voltage, the heating of the insulation by the leakage cur- 
rent cannot be ignored. The field distribution is distorted by the ohmic 
insulation losses caused by the leakage current. In severe cases this may 
lead to an instability. Impulses superimposed on a dc voltage of oppo- 
site polarity result in higher field strengths near the conductor than im- 
pulses superimposed on dc voltages of the same sign. The new points 
in this paper are found in the fact that it gives calculation methods for 
all possible voltage stages that an HVDC cable may experience. 
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