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Abstract— This article presents the first keyword spotting
(KWS) IC that uses a ring-oscillator-based time-domain process-
ing technique for its analog feature extractor (FEx). Its extensive
usage of time-encoding schemes allows the analog audio signal
to be processed in a fully time-domain manner except for the
voltage-to-time conversion stage of the analog front end. Benefit-
ing from fundamental building blocks based on digital logic gates,
it offers better technology scalability compared to conventional
voltage-domain designs. Fabricated in a 65-nm CMOS process,
the prototyped KWS IC occupies 2.03 mm2 and dissipates
23-µW power consumption, including analog FEx and digi-
tal neural network classifier. The 16-channel time-domain FEx
achieves a 54.89-dB dynamic range for 16-ms frame shift size
while consuming 9.3 µW. The measurement result verifies that
the proposed IC performs a 12-class KWS task on the Google
Speech Command dataset (GSCD) with >86% accuracy and
12.4-ms latency.

Index Terms— Analog, bandpass filter (BPF), classifier, feature
extractor (FEx), Google Speech Command dataset (GSCD), key-
word spotting (KWS), rectifier, recurrent neural network (RNN),
ring oscillator, time domain.

I. INTRODUCTION

W ITH incredible advances in artificial intelligence (AI)
fields, there is an increasing demand for low-power

audio Internet of Things (IoT) devices that process human
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Fig. 1. Processing stages for KWS in an audio IoT device.

speech on the device without data transmission to the cloud.
These smart devices are required to ensure always-on opera-
tion, real-time response, small form factor, and longer battery
lifetime. As such, an ultra-low-power wake-up functionality
is being highlighted with rapidly growing popularity because
it allows hierarchical power gating of increasingly complex
tasks for audio IoT nodes. The keyword spotting (KWS) and
voice activity detection (VAD) are widely used user-interactive
methods to wake up smart devices. The KWS is used to detect
predefined keywords in an audio stream, while VAD detects
when a human voice is present.

Fig. 1 shows the typical processing stages for KWS. The
user says a keyword into the microphone of an edge device,
such as a remote control or wireless earbud. The microphone
output is further processed by a feature extractor (FEx), which
generates frequency-selective feature vectors (FVs) that are
continuously streamed to a deep neural network (DNN)-based
classifier. The classifier outputs the probability scores of dif-
ferent keywords. The IoT devices benefit from a tiny form
factor and the use of a small battery, such as a coin cell, e.g.,
for smart tags. Generally, a <100-μW system-level power is
desirable, including not only the KWS IC itself but also the
microphone and other system components. Moreover, a low-
latency response is desired considering a KWS-driven hierar-
chical processing system used in an interactive environment.
For example, a study on the perception of the self-generated
speech showed that a delay exceeding 20 ms becomes disturb-
ing for users [1].

A 12-class KWS IC that includes the whole processing
chain starting from the analog-to-digital converter (ADC) to
the DNN classifier [2] reported that the FEx is the most
power-hungry stage accounting for 40% of the power dissi-
pation in the entire IC. To reduce the power budget of edge
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Fig. 2. Architecture of the KWS software model (left) and simulated KWS accuracy (right).

devices, thereby facilitating longer battery lifetime or smaller
battery size, various circuit design techniques have been
proposed for both KWS and VAD ICs. However, most of them
traded off between power and latency. In [3], a 142-nW VAD
IC using sequential mixer-based FEx was proposed where the
operational principle is similar to that used for bio-impedance
sensors [4], [5]. However, this sequential frequency scanning
is too undersampled for the KWS and results in a 512-ms
latency for VAD. In [6], a serialized digital FEx was used
in the KWS IC where the processing stages are pipelined.
Although this IC consumed only 510 nW, its latency was
limited to 64 ms, and it needed an off-chip 16-bit ADC and
had only 2-KB memory for binary convolutional neural net-
work (CNN); thereby, its accuracy was only reported for five
keywords.

Another approach is the use of an analog voltage-domain
FEx, which exploits low-power analog circuits to achieve
both low-power and low-latency responses. The processing
chain of the analog FEx typically consists of a multi-channel
bandpass filter (BPF), a half-wave rectifier (HWR) or a full-
wave rectifier (FWR), and an ADC. Here, the speed require-
ment of ADC is highly relaxed to 10–100 ms (10–100 Hz),
which corresponds to the size of frame shift in audio signal
processing. This is possible because the output of the recti-
fier represents the magnitude response of the input speech,
and thus, it is a low-frequency signal. Previous works that
used a voltage-domain analog FEx and a back-end classi-
fier to implement VAD [7], [8] and KWS [9] tasks reported
205-nW-to-1-μW power dissipation and 10–100-ms latency.
However, voltage-domain analog FEx is unfriendly for CMOS
technology scaling; thereby, the power efficiency of analog
approaches is predicted to be degraded in advanced nanometer-
scale processes. This is because VDD is scaling down faster
than VTH; thus, voltage-domain signals have less headroom.
Reduced headroom results in reduced maximal signal swing,
which, in turn, reduces the dynamic range (DR) that is critical
for keeping KWS accuracy high across a range of audio
amplitude levels. Furthermore, the intrinsic gain (gmro) of the
transistors is also degraded, leading to the dc gain reduction
in analog feedback loops. This issue can be mitigated with a
larger transistor length, gain boosting, or multistage amplifiers;
however, these approaches come with costs in the area, power,
and bandwidth.

To this end, we propose a time-domain analog FEx that
exploits the scaling-friendly nature of the ring oscillator.
It is the first silicon-verified ring-oscillator-based audio FEx
reported to date. When integrated with an on-chip recurrent
neural network (RNN) classifier, the resulting IC demon-
strates power-efficient KWS capability. The FEx circuits
extensively use time-domain signal representation techniques,
including pulsewidth modulation (PWM) and pulse-frequency

modulation (PFM); therefore, it does not suffer from headroom
degradation and its associated signal swing loss issue. In other
words, it is more suitable for low-supply implementation than
voltage-domain designs. The ring-oscillator-based circuit uti-
lizes its infinite dc gain characteristic when configured as a
time-domain integrator [10]. As such, the transfer function
of time-domain FEx circuits, such as BPF, is not affected
by the degradation of the intrinsic gain of transistors. Over-
all, the proposed KWS IC consumes 23 μW and has only
12.4-ms inference latency on a 12-class Google Speech Com-
mand dataset (GSCD) [11].

There have been similar approaches to implement the
oscillator-based BPFs for audio IoT applications [12], [13].
However, none of them proposed a clear design strategy to
implement a time-domain rectifier or demonstrated an audio
classification task using the fabricated oscillator-based BPFs.

This article is an extension of a previous work presented
in [14]. The integrated chip also includes a switched-capacitor
energy harvester circuit, a voltage reference, and a low-dropout
regulator. However, in this article, we focus on the new circuit
techniques of the KWS core. This article is organized as
follows. Section II presents the software modeling of the KWS
modules in this work. Section III covers the description of
the overall architecture and design details of the implemented
circuits. Section IV presents measurement results and a per-
formance summary of the prototype chip. Section V concludes
this work.

II. SOFTWARE MODELING

The architecture of our KWS IC was developed based on
prior silicon cochlea and edge audio-inference ICs [7]–[9],
[15], [16]. We implemented a Python model of the KWS IC,
including the analog FEx, as shown in Fig. 2. Our model
implements a bank of BPFs (second-order Butterworth filter)
inspired by modeling of biological cochlea [16], an FWR (|x |),
an averaging block (low-pass filter), a subsampler, and a quan-
tizer. The subsampler was added to realize the relaxed speed
requirement of the quantizer, as discussed in Section I. As the
GSCD samples have a 16-kHz sampling rate, the number of
averaged samples and the rate of subsampling operation were
selected to match the target frame shift size (16 ms in our
work) of the audio feature vector (FV). In contrast to prior
analog FExs [7], [8], we added additional FV processing stages
before the FV is fed to the classifier. These stages consist of:
1) a logarithmic compression stage inspired by the adaptive
gain compression mechanism of biological cochleas and 2) an
input normalization stage that is widely used in DNN models,
both of which help to improve the KWS accuracy on GSCD.
We chose a gated recurrent unit (GRU)-based RNN classifier
for the last stage of our KWS, as it has been frequently used
in automatic speech recognition tasks [17].
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Fig. 3. Overall architecture of the proposed KWS IC.

Fig. 4. Timing diagram of the GRU-FC classifier computation according to
the input feature vectors.

Fig. 2 shows the accuracy of the software simulation starting
from the baseline model, which does not include the com-
pressor and normalizer stages. As seen on the right graph of
Fig. 2, the baseline model achieved 77.89%, which increases
to 91.35% KWS accuracy on the 12-class GSCD test set with
the addition of the two stages. The following design parame-
ters were chosen for our software model. First, we used a
16-channel BPF that was also used in previous works [7]–[9]
and a Q-factor of 2 for the BPFs. Second, the center fre-
quencies of the bank of BPFs are distributed according to the
Mel scale (from 100 Hz to 8 kHz). The 8-kHz value is also
the bandwidth of the analog front end presented in [2]. Note
that we oversampled the input speech 2× (from 16- to 32-kHz
sampling rate) to avoid the 8-kHz center frequency overlapping
with Nyquist frequency (8 kHz with a 16-kHz sampling rate).
The third is a 12-bit quantizer (before logarithmic compres-
sion in Fig. 2). The fourth is a 16-ms frame shift; the same
value was used in [2] and [6]. The fifth is a 10-bit output
logarithmic compressor and a 14-bit normalized feature vector
(FVNorm) that is fed to a two-layer 48-hidden-unit GRU and an
fully connected (FC) layer. Sixth, 14- and 8-bit quantizations
were applied to the activations and weights, respectively. The
baseline model accuracy shown in Fig. 2 would be higher
if using floating-point activations because the 14-bit quan-
tization (6-bit integral part and 8-bit fractional part) cannot
cover the dynamic range of the 12-bit unsigned quantizer
output.

III. KWS IC WITH TIME-DOMAIN ANALOG FEX

The overall architecture of our KWS IC is shown in Fig. 3.
It is composed of an analog front end and a digital back
end. The analog front end is designed to match our soft-
ware model. The first stage of the analog front end is a

frequency-locked loop (FLL)-based voltage-to-time converter
(VTC) (see Section III-A). It features a nested analog FLL
circuit that linearizes the voltage-to-frequency response of the
voltage-controlled oscillator (VCO). A voltage-domain audio
input from a single-ended (SE) microphone (Mic) is converted
into a time-domain multi-phase PWM output through the
VTC. The second stage of the analog front end is a 16-channel
rectifying BPF (Rec-BPF). Each channel has a time-domain
second-order BPF (see Section III-B) featuring an inherent
FWR functionality. The output of each BPF channel is the
PWM signals, and they are further converted into PFM signals
through a switched-ring oscillator (SRO)-based rate encoder.

In the digital back end, the PFM signals are fed into a
digital differentiator (1 − z−1). Here, the signal path from
the SRO to the digital differentiator builds a first-order ��
time-to-digital converter (TDC) [18], which corresponds to the
quantizer in our software model. The output of the digital
differentiator is further processed through subsequent stages,
including a decimation filter, which performs the averaging
and subsampling operation in our software model. It also
includes an offset subtractor (β) that removes the free-running
frequency component of the SRO, a per-channel gain calibrator
(α) that corrects the inter-channel gain mismatch, a logarithmic
lookup table (LUT), and an input normalizer. Both μ and σ
shown in Fig. 3 are, respectively, the mean and the standard
deviation of the output of logarithmic LUT (FVLog in Fig. 3)
from our chip with the GSCD training set. With the normalizer,
μ is subtracted from the FVLog, and the resulting subtracted
output is multiplied by a value 1/σ . The resulting output of the
FVNorm is a 16-channel signed 14-bit FV, which is generated
every 16 ms of a frame shift, as shown in Fig. 4. For each FV,
a two-layer GRU RNN and a one-layer FC digital accelerator
output the most probable keyword over 12 classes with a
12.4-ms latency (see Fig. 4).

A. Voltage-to-Time Converter

Previous VAD and KWS ICs have used mainly a differential
output microphone interface [2], [8], [9]. However, commer-
cial off-the-shelf differential output micro-electromechanical
systems (MEMS) microphones typically consume >100 μW.
To realize a system-level low-power audio IoT device, a low-
power SE-interface MEMS microphone is preferred because
it consumes as little as ∼10 μW (e.g., InvenSense ICS-
40310 [19]). However, this approach makes it difficult to
obtain good linearity because SE signals do not reject even-
order harmonics. In general, a linear FEx is preferred as
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Fig. 5. 0.5-V supply SE input FLL-based VTC.

it makes training the back-end DNN classifier easier and
enhances the spectral purity of an audio signal with mini-
mal harmonics and intermodulation distortions. Particularly,
the design of an SE-input ring-oscillator-based VTC circuit
becomes even more difficult because VCOs exhibit poor lin-
earity compared to a conventional voltage-domain operational
transconductance amplifier (OTA).

In this work, we propose to use a nested analog FLL
around the ring-VCO to enhance the linearity of the VTC.
Fig. 5 shows the architecture and transistor-level schematic
of the FLL-based VTC. The fundamental design principle is
adopted from the ring-oscillator-based low-pass filter (LPF)
presented in [10]; however, capacitive coupling is used with
CIN to isolate the dc bias of the VTC from the microphone.
Therefore, its core operation is similar to the capacitively
coupled voltage amplifier [20], but the VTC circuit converts
the input voltage into the multi-phase PWM output instead
of voltage. A pseudo-differential architecture is implemented
using a dual-VCO structure along with the phase detector [10].
One input port of the VTC is connected to the SE microphone,
and the other input port is tied to the ground. The 15-array
phase detector receives a 15-phase frequency-modulated signal
out of the VCOs and generates a 15-phase PWM output,
which represents the phase difference of the VCOs. Note
that exploiting the multi-phase PWM scheme pushes spurious
PWM tones to a higher frequency range without necessitating
a higher running frequency of the VCO [10]. The outputs of
the phase detector are buffered with two inverters and used
to close the feedback loop through a 15-array thermometer-
coded capacitive digital-to-analog converter (DAC). Since the
input node of the VCO acts as a virtual ground, the generated
multi-phase PWM signal becomes a time-domain approxi-
mated input voltage where the amplitude is encoded into the
duty-cycle of PWM. A variation-tolerant pseudo-resistor [21]
with a voltage reference VB sets the common-mode dc bias
voltage of the VCOs.

The FLL-based VCO includes a single-branch current com-
parator [22] to operate the analog FLL. As shown in the
schematic of the FLL-VCO in Fig. 5, an input current genera-
tor drives the input voltage to RREF to generate a low-side cur-
rent signal IIN = VIN/RREF, where A2 amplifier is designed to
have a 34-dB gain. A high-side current ISC = 15VXCREF fFLL

flows through a 15-phase switched-capacitor operation. Here,
the multi-phase nature of a ring oscillator is fully utilized to
apply the multi-phase interleaving technique at the VX node to
minimize the voltage ripple caused by the switched-capacitor
operation [22]. The low-VTH devices are used to facilitate
0.5-V low-supply operation for the implementation of the
switched-capacitor circuit. The FLL feedback formed through
the A1 amplifier with a 27-dB gain, sub-oscillator (OSC), and
switched-capacitor circuit ensures that VX equals the reference
voltage VREF while also ensuring that IIN equals ISC. As a
result, the output frequency of the FLL-based VCO is set as
in (1)

fFLL = VIN

15RREFCREFVREF
(1)

KFLL-VCO = ∂ fFLL

∂VIN
= 1

15RREFCREFVREF
. (2)

Since fFLL is represented by the input voltage VIN and refer-
ence parameters, such as RREF, CREF, and VREF, it leads to an
FLL-aided linearization of the VCO, as derived in (2), where
KFLL-VCO corresponds to the voltage-to-frequency tuning gain.
This is because the value of passive elements (RREF, CREF, and
VREF) has no dependence on the input signal amplitude (VIN).

The 3-dB bandwidth of the VTC circuit is given in the
following, which is similar to the equation of resistive-input
and current-feedback ring-oscillator-based filter [10]:

f3 dB,VTC = 1

2π
KFLL-VCO KPDβDAC (3)

βDAC = 15CDAC

CIN + 15CDAC
VDD (4)
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Fig. 6. Simulation result of the supply temperature compensation in sub-
OSC.

Fig. 7. Simulation result of the FLL-based VTC.

where KPD is the gain of phase detector and βDAC is the
feedback factor (time-to-voltage). We designed f3 dB,VTC to
be 17 kHz when the nested FLL feedback has a 158-kHz
gain-bandwidth product, which contributes as a nondominant
pole to the overall negative feedback loop of the VTC circuit.
As shown in Fig. 7, the stability of the VTC is verified with
a transient simulation.

To allow 0.5-V low-supply operation for the sub-OSC,
a varactor-controlled supply temperature compensator is
proposed. This is achieved by sizing the diode-connected
transistor P1 so that VVAR becomes proportional-to-absolute-
temperature (PTAT) [23]. Therefore, the capacitance of
MOS-varactors in the delay cells [24] adaptively stabilizes the
temperature drift of the ring-oscillator frequency. For example,
if the temperature increases, then VVAR also increases; there-
fore, the MOS-varactors are further turned on. This effectively
negates the frequency increase in the ring oscillator with a
temperature increase. Low-VTH MOS capacitors are used to
further enhance the varactor effect. In addition, instead of
configuring the sub-OSC as controlled by the gate voltage of
P2 only, the N1 − P1 path is added to reduce VDD sensitivity
based on the fact that VGS, N1 is less sensitive to VDD than
VSG, P2. The simulation results in Fig. 6 show that, with the
proposed techniques, the supply temperature variation of the
sub-OSC is reduced by 19.98× in the worst case. Note that
the baseline sub-OSC refers to the OSC circuit, assuming that

Fig. 8. SRO as an ideal φ-to-φ integrator.

the added compensation circuits (marked as red in Fig. 5)
are removed. In this case, VCTRL is connected to the gate of
the P2 transistor, and therefore, the frequency tuning curve
of sub-OSC becomes decreasing function as VCTRL increases.
Fig. 7 shows the post-layout simulation result of the VTC.
The plotted graph represents the multi-phase PWM signal of
VTC output (V T CP − V T CN). The designed VTC converts a
voltage-domain input into a time-domain PWM output while
ensuring <−70-dB distortion for dominant harmonics (second
and third) even with an SE input. The PWM tones at higher
frequencies are filtered out at the following BPF stage.

B. Time-Domain Bandpass Filter

Fig. 8 shows a conceptual diagram of using the SRO [18]
as an ideal φ-to-φ integrator. The SRO switches its running
frequency between fLow and fHigh according to the incoming
input PWM signal. The averaged value of SRO frequency is
proportional to the duty-cycle of the input PWM signal. If the
input PWM signal is configured as a multi-phase format, the
possible number of running frequencies also increases. When
the dual-SRO is implemented in a pseudo-differential manner,
the output phase difference �φOUT becomes an accumulated
(or integrated) input phase difference �φIN over time. Specifi-
cally, this integral procedure flows as follows: Input Phase →
SRO Frequency → SRO Phase (+Integral) → Output Phase.
The phase mathematically represents an integral amount of the
frequency within an oscillator. This time-domain accumulation
process allows an integral of the signal without boundary as
long as the SRO oscillates, unlike voltage-domain designs that
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Fig. 9. Block diagram of a time-domain second-order BPF using SRO as a
core building block with a half-circuit representation.

Fig. 10. 0.5-V supply time-domain rectifying BPF.

saturate due to headroom. In other words, it shows an infinite
dc gain and acts as a true lossless integrator regardless of
the intrinsic gain of transistor or supply voltage level [10].
As shown in the lowermost description of Fig. 8, the φ-to-φ
transfer function is described by KSRO/s, where KSRO is the
switching gain of an SRO.

Fig. 9 shows a conceptual diagram for the implementation
of a time-domain φ-to-φ BPF. It adopts the two-integrator-
loop Tow–Thomas biquad topology [25], [26] using SRO as
a lossless integrator (ω0/s). The phase detector (PD) extracts
the phase difference between two input signals and outputs
the phase difference in a PWM signal. The output of PD is
used to close the feedback loops where the inner feedback
loop ensures the desired Q factor, and the outer feedback
loop generates the high-pass shape of the BPF. Overall, the
time-domain BPF receives the PWM input and generates
the PWM output. Note that an external clock fREF is fed to
the PD in Fig. 9 since it is represented as a simplified half-
circuit diagram. If the two BPFs are placed in parallel to work
as a pseudo-differential configuration, as shown in Fig. 8, the
external clock fREF is no longer needed, and the BPF operates
in a fully asynchronous way. The same consideration for a
pseudo-differential topology also applies to the VTC design,
as described in Section III-A.

Fig. 10 shows the block diagram of the proposed time-
domain BPF. It receives the multi-phase PWM output of the
VTC as an input signal and does not require an external

clock. It incorporates four SROs and two phase frequency
detector (PFD). The outputs of the BPF are two single-
phase PWM signals. The two PFDs implemented in the BPF
offer an inherent rectification function in the time domain,
which will be discussed in Section III-C. A local FLL-based
bias generator provides the required bias voltage, which is
shared over the four SROs. This bias voltage is different over
16-channel BPF bank to set different center frequencies. Note
that the outputs of first PFD are crossed and connected to the
SROs with opposite polarities to realize a subtraction function.

Fig. 11 shows a schematic of the FLL-based bias generator
and SROs used in our BPF design. The SRO receives time-
domain PWM signals as input, such as VTC and PFD. All
the PWM signals are summed at the internal node of the
SRO, and these signals drive the buffers that act as an array
of current-mode DACs. Therefore, the output frequency of
SRO is proportional to the sum of incoming PWM signals.
To realize different switching gains of PWM inputs, switching
transistors are differently sized. The unit current for current-
DAC operation is provided by a local FLL circuit. The FLL
acts as a bias generator for the realization of per-channel center
frequency designs in BPFs, using a replica biasing scheme.
As shown in Fig. 11, the bias voltage VVAR is generated from
a diode-connected pFET in the FLL-bias circuit. Therefore,
the current-DAC in SRO1-2 operates as a current mirror when
VVAR is shared over the four SROs from the FLL-bias circuit.
This means that the switching gain of each PWM input signal
is determined by fFLL and the sizing ratio of the current-
mode DAC. For example, the switching gain of VTC-port is
KIN fFLL, and the switching gain of PFD2-port fed into the
SRO2 is K2 fFLL. Note that we adopt the same circuit structure
from the sub-OSC circuit in Section III-A, which allows the
BPF to work at 0.5-V low-supply voltage. As discussed in
(1), the locking frequency of the FLL circuit is proportional to
1/CREF. To cover the target range of BPF center frequencies
ranging from 100 Hz to 8 kHz in our design, a coarse-fine
approach is used. The output of SRO is divided coarsely by
N times using D flip-flop (D-FF), and the CREF of FLL circuit
is fine controlled through proper sizing. The complete transfer
function HBPF(s) of the proposed time-domain BPF is given
in (5). Its center frequency ω0 and Q-factor are given in (6),
where the Q-factor is designed as 2 for each BPF channel by
proper sizing of the switching transistors in the SROs. The
stability of the proposed second-order time-domain BPF is
verified with a transient simulation

HBPF(s) =
sKIN fFLL KPFD

N

s2 + s
K1 fFLL KPFD

N
+ K1 K1 f 2

FLL K 2
PFD

N2

(5)

ω0 = fFLL KPFD

√
K1 K2

N
Q =

√
K2

K1
. (6)

C. Time-Domain Rectifier

Fig. 12 shows the schematic of FWR. The proposed time-
domain FWR is based on a simple PFD circuit consisting
of only two D-FFs and one NAND gate. Compared to the
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Fig. 11. Schematic of FLL-based bias generator and SRO.

Fig. 12. Proposed time-domain FWR with operational principle of the PFD.

prior voltage-domain design [8] that required several scaling-
unfriendly OTAs, references, and passive elements, this work
offers an alternative solution that is fully compatible with
standard logic gates. Fig. 12 shows a state diagram and
an input–output characteristic of the PFD. The PFD circuit
extracts the input phase difference �φIN but, at the same time,
asynchronously quantizes the phase difference using a ternary
code with UP and down (DN) signals. As shown in the state
diagram, there are three states that are activated by the rising
edges of incoming PWM signals (φINP and φINN). When both
UP and DN signals are high, the NAND gate resets two D-FFs
immediately, thereby making itself a ternary quantizer. Since
the state of PFD stays the same unless a new rising edge
arrives, the UP and DN signals represent a positively and
negatively half-wave rectified (HWR) phase difference φIN,
respectively. Interestingly, the UP signal has the same form
as the rectified linear unit (ReLU) activation function widely
used in modern DNNs. In conventional usage of such signals
like in phase-locked loop (PLL) designs, they are subtracted to
derive a linearized phase difference extractor. However, if we
add them, a time-domain FWR can be implemented. The PFD-
based FWR benefits from its fully time-domain nature, that is,
it does not exhibit a headroom-related saturation, assuming

that the input signal swing (�φIN) is within ±2π range.
As shown in Fig. 10, the proposed time-domain FWR is
seamlessly integrated within the time-domain BPF circuit, and
thus, the BPF provides an inherent rectification function. The
rectified PWM signals (BPFP/N) are summed at the subsequent
PFM stage, as described in Fig. 13.

D. Pulse-Frequency Encoder and Time-to-Digital Converter

The analog FEx designs presented in [8] and [9] used
an integrate-and-fire (IAF) circuit, which was originally pro-
posed in [27]. The circuit converts an input current into
a rate-encoded spiking PFM signal, and its spiking fre-
quency is proportional to the input current magnitude. The
IAF circuit can be interpreted as a current-controlled oscil-
lator (CCO) where the core oscillator topology is equiva-
lent to a relaxation oscillator [28]. However, the IAF circuit
is scaling-unfriendly because of its voltage-domain integral
operation and voltage-domain static amplifier, as discussed
in Section I. In this work, we propose to use the SRO as a
PFM encoder instead of the IAF circuit. As shown in Fig. 14,
the SRO exploits an inherent phase-domain 2π threshold, and
its integral operation occurs in the phase domain, which is
free from headroom issues. The proposed SRO-based design
offers a scaling-friendly implementation using only logic gates
and a bias generator without a static amplifier or passive
components.

In previous designs [8], [9], an asynchronous ripple-carry
counter associated with a multi-bit register was used to quan-
tize and sample the input PFM signal. Interestingly, given
the aforementioned interpretation of the IAF circuit as an
oscillator, the signal flow from an IAF to a counter builds
an VCO/CCO-based �� modulator [18], [29]. However, the
design approaches used in [8] and [9] had two major problems.
First, the ripple-carry counter exhibits metastability-induced
data corruption when the sampling occurs at the instant of
the multibit transition of binary codes. Second, the output
digital data from the asynchronous counter, which is �� mod-
ulated, were directly fed to the DNN classifier without filtering
of high-pass-shaped quantization noise. Our approach uses
arrayed 1-bit XOR differentiators [30] to solve the metastability
problem and an oversampling associated with a decimation
filter to filter out quantization noise.
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Fig. 13. SRO-based PFM encoder, XOR differentiator, and subsequent post-processing blocks.

Fig. 14. Proposed SRO-based PFM encoder.

Fig. 13 shows the overview of implemented 16-channel
SRO-based PFM encoder, XOR differentiator, and subsequent
post-processing stages, also with the signal flow domains at
the top. The SRO receives rectified PWM signals from the pre-
ceding BPF stage and converts it into 15-phase PFM signals.
The same design of the FLL circuit discussed in Section III-B
is reused for biasing of the SRO where the generated bias
voltage is shared over 16 channels. As the ring-OSC output
is represented in the thermometer code, the XOR differentiator
ensures the worst case error to be within 1-least significant
bit (LSB). In addition, this 1-LSB error is noise-shaped [31],
which can be eliminated through oversampling and decimation
filtering. The thermometer-coded output data are aggregated to
be represented in binary format and then filtered and decimated
through a first-order cascaded integrator-comb (CIC) filter.
We use 210 decimation size, i.e., fS,Deci = fS,Over/210, and
fS,Deci is used in the post-processing blocks, which incor-
porates a programmable offset (β) subtractor to remove the
dc offset due to a free-running component of the SRO-based
PFM encoder. A programmable per-channel gain calibrator (α)
is used to correct inter-channel gain deviations caused by a
mismatch of SROs in the PFM encoder. A logarithmic com-
pression using an LUT and a programmable input normalizer
helps to increase the classification accuracy of the following
GRU-FC neural network. The post-processing stage is clocked
at 61-Hz fS,Deci, and thus, its power dissipation is negligible.

E. Recurrent Neural Network Accelerator

Fig. 15 shows the architectures of the GRU-FC network and
accelerator. The network has two GRU layers with 48 units
per layer and a final FC layer that generates the confidence
scores of the 12 classes. The network model size is entirely

Fig. 15. Architecture of the GRU-FC classification network (upper) and
accelerator (lower).

buffered within the 24-kB weight memory (WMEM). The
accelerator computes the KWS classifier network, and its input
comes from the normalizer shown in Fig. 13. The WMEM
block is implemented by on-chip static random access mem-
ory (SRAM) compiled based on the foundry-provided six-
transistor (6T) bit cell. The classifier weights are loaded into
WMEM over the SPI interface. The accelerator has eight
heterogeneous processing elements (HPEs) controlled by a
finite-state machine (FSM). Each HPE has a 14-bit multiplier,
a 24-bit accumulator, and an LUT-based sigmoid/tanh unit.
Partial sums of the multiply-and-accumulate operations and
outputs are stored in a shared 1.3-kB SRAM output buffer.
Multiplexers before each multiplier operand select inputs
from the normalizer, the sigmoid/tanh unit, the WMEM, and
the output buffer to compute element-wise vector multipli-
cation/addition and hyperbolic functions in the GRU RNN.
The high VTH device library is used for logic synthesis to
reduce leakage current. Output scores of the classifier are
fed to the argmax decoder, which outputs the class with the
highest score. The classification result is transmitted over the
SPI interface with an interrupt flag to the external host, which
is a MiniZed board with a Xilinx Zynq-7007S SoC.
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Fig. 16. Chip photograph of the prototyped KWS IC with a block diagram
of the measurement setup.

F. Network Training

1) Dataset Preparation: Our GSCD training set is com-
posed of 38 463 samples. The number of samples in the
“Silence” class is 4044 that are randomly sampled from the
background noise tracks in the dataset. The “Unknown” class
also has 4044 samples that are randomly chosen words outside
the target 12 classes. As for the test set, we used the standard
GSCD test set,1 which has a roughly equal number of samples
(around 400) among the 12 target classes. Thus, the ratio
between the training and test sets is around 8:1. As shown
in the measurement setup of Fig. 16, the samples from our
entire training and test set were played from a laptop to
VIN, VTC through a USB sound card DAC (Sound Blaster E1).
We normalized the GSCD samples with the mean and stan-
dard deviation of the entire samples such that the amplitude
of VIN, VTC is set to ∼250 mVPP. The corresponding FVRaw

from all samples was recorded. They were then corrected for
the dc offset (β) and the inter-channel gain deviation (α).
After applying the logarithmic compression, we then normal-
ize FVRaw with the mean (μ) and standard deviation (σ ) of
the recorded feature vectors from the entire GSCD training
set. This resulting vector called FVNorm (see Fig. 3) is then
presented as inputs to the GRU-FC classifier during training.
The same μ and σ are applied to FVLog of the test set to
generate the corresponding FVNorm for KWS evaluation.

2) Training Schedule: The network is built in the PyTorch
1.8 framework and trained for 200 epochs using the AdamW
optimizer [32] with an initial learning rate of 1e − 3 and
0.01 weight decay. The ReduceLROnPlateau learning rate
scheduler is used with a decay factor of 0.8 and patience
of 3 epochs. The lowest learning rate is 5e − 4. Using
quantization-aware training, the activations and weights are
quantized to 14 and 8 bit, respectively.

IV. MEASUREMENT RESULTS

Fig. 16 shows the KWS IC, which is fabricated in TSMC
65-nm CMOS LP process with an active area of 2.03 mm2 for
the KWS core. The area occupied by the analog and digital

1http://download.tensorflow.org/data/speech_commands_test_set_
v0.02.tar.gz

Fig. 17. Measured frequency response of the FEx (a) without per-channel
correction, (b) with per-channel gain (α) correction, and (c) output spectrum
of FVRaw (after decimation filter) in channel 8, as shown in Fig. 13.

circuits is 1.6 mm2 (79%) and 0.428 mm2 (21%), respectively,
in the KWS core. The GRU-FC neural network accelerator and
the associated peripherals in the digital circuits are synthesized
from a standard auto place-and-route (P&R) flow.

Fig. 17(a) and (b) shows the measured frequency response
of the 16-channel FEx with and without per-channel gain
calibration. In this case, VIN, VTC was connected to a function
generator. The center frequencies of the 16 BPF channels
range from 111 Hz to 10.4 kHz. The center frequencies
are distributed according to the Mel scale; therefore, low-
frequency (<1 kHz) channels are spaced further apart than
high-frequency channels. As shown in Fig. 17(a), the measured
gain curve before the calibration shows the inter-channel gain
deviations that are caused by systematic mismatches from the
SRO-based PFM encoder. The main cause of the gain deviation
is the voltage bias (VVAR in Fig. 11), which is generated from
a single FLL circuit, and it is shared over the 16-channel SRO,
as depicted as “FLL (SRO)” in the chip photograph. We expect
that this systematic mismatch due to the distribution of the
voltage bias can be improved with a better layout floorplan,
for example, with a centralized placement of the bias circuits,
while the random mismatch can be improved with larger sizing
of the biasing transistors.

Fig. 17(c) shows the measured output spectrum of channel 8
for two different input conditions of the VTC; the black curve
is obtained with a zero input condition, while the red curve
is obtained with a 2-kHz sinusoidal input of 390 mVPP. Here,
the amplitude of the input to the VTC circuit was assumed
to be sufficiently large, and our future work will include an
additional ultra-low-power pre-amplifier [33] before the VTC
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Fig. 18. Measured audio response of the FEx with an applied sample keyword
from GSCD.

Fig. 19. Measured KWS accuracy on the GSCD test set. A confusion matrix
(left), where the magnitudes are normalized between 0 and 1, and a plot of
the true positive rates over 12 different classes (right) are shown.

Fig. 20. KWS accuracy obtained over different SNR levels.

circuit. The oversampling clock frequency that is fed into
the XOR differentiator is 62.5 kHz. It is clearly seen that
the output spectrum has a first-order noise-shaping property
with a 20-dB/dec slope for both input conditions. After the
feature data are decimated by 210, the in-band frequency is
limited to 30 Hz, which is translated into a 16-ms frame
shift or 61-frame/s throughput, and so the 16-channel FV is
generated every 16 ms. The integrated in-band noise with zero
input is calculated as 248 μVRMS, which is dominated by 1/ f
noise. When the input amplitude is increased to 390 mVPP,
the in-band noise is dominated by thermal noise. We believe
that the noise increase is caused by a higher running frequency
of the SRO since the phase noise of ring oscillators increases
with operating frequency [34].

Fig. 18 shows the measured audio response of the FEx.
A 254-mVPP “Yes” keyword sample from GSCD is selected
and applied to the VTC while measuring the FEx output.

Fig. 21. Power breakdown of the KWS core implemented in the proposed
IC (see Fig. 3).

The magnitudes of FV in this figure are normalized by sub-
tracting dc offset and dividing by the standard deviation of the
sample clip for better visualization. It is clearly seen that the
16-channel FV has a higher response at low frequencies for
the “Ye” sound and at higher frequencies for the “s” sound.

Fig. 19 shows the measured KWS accuracy of the prototype
chip obtained using the full 12-class verification flow of the
GSCDv2 [35]. The 12 classes include “Silence,” “Unknown,”
and ten target keywords. As shown in the measurement setup
in Fig. 16, the generated FVs (FVRaw in Fig. 3) from our
time-domain FEx is recorded using the GSCD training set
that is fed to the VTC of our chip (VIN, VTC in Fig. 16) to
train the classifier network. The 16-ms frame window and the
16-ms frame shift (stride) are used for recording, so there is no
overlap between two consecutive frames. The detected class
is the most active output at the end of the GSCD sample. The
prototype KWS IC achieves an overall 86.03% accuracy with
the GSCD test set. The measured true positive rates show that
“Silence” is the easiest class with 100% accuracy, and the
classifier performed the best on two keywords, “Stop” and
“Yes,” with 93% accuracy. The most challenging class is the
“Unknown” class since it includes 25 non-target keywords,
such as “Happy” and “Dog,” which requires the classifier
to train more parameters with a larger model capacity to
improve the accuracy. We expect that the detection accuracy
of “Unknown” and, thus, the overall accuracy on this KWS
dataset will improve with a larger network model but at the
expense of additional power consumption and silicon area.
The state-of-the-art accuracy on GSCD using GRU-RNNs is
94.2% [36] with a network, which has 499-kB parameters, and
running on a Cortex-M7 microcontroller. This network size
would require 21× more on-chip memory, leading to higher
power consumption and chip area.

Fig. 20 shows the dependence of the KWS classifica-
tion accuracy on added noise levels to the recorded feature
vector FVRaw (see Fig. 3). We first computed the average
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TABLE I

PERFORMANCE COMPARISON TABLE—ANALOG FEX

power PAvg, GSCD using the recorded FVRaw (see Section III-F).
Then, Gaussian noises of different standard deviation values
(σ 2 = PAvg, Noise) were added to create different SNR values
following the equation below:

SNR = 10 log10

(
PAvg, GSCD

PAvg, Noise

)
. (9)

The noise is randomly generated for each training epoch
and test evaluation. For each SNR case, our GRU-FC network
is retrained using the noisy training set, and the noisy test set
is used to evaluate the classification accuracy. The proposed
KWS IC ensures <1% accuracy drop even for noise levels up
to 432 μVRMS (input-referred to VIN, VTC) or 40-dB SNR.

Fig. 21 shows the power breakdown of the KWS IC.
As stated in Section I, this article focuses on the KWS core;
only, therefore, the power breakdown in Fig. 21 does not
include an energy harvester, low-dropout regulator, and voltage
reference circuits. The total power consumption of the KWS
core is 23 μW when it is measured at 25 ◦C room temperature.
The GRU-FC neural network accelerator accounts for 43%
of the KWS core power. When the 16IN-48H-48H-12C
GRU-FC network is updated at 250-kHz clock frequency and
0.75-V supply voltage while performing continual inference on
random GSCD samples with 16-ms frame shift, the accelerator
consumes 9.96 μW. The accelerator power consumption can
be further decomposed into dynamic power (75%) and leakage
(or static) power (25%). The leakage power is dominated
by the SRAM block (78%), while both logic (44%) and
SRAM (56%) contributed rather evenly to the dynamic power.
We expect that leakage power can be reduced with custom
memory cells [6].

Table I compares the performance of our time-domain FEx
with the state-of-the-art voice processing analog FEx [3], [7],

[8], [37]. The proposed FEx circuit is the first that demon-
strated the ring-oscillator-based BPF topology used for the
KWS task. It supports SE microphones, thereby offering a
lower system-level power. Unlike sequential FEx, our par-
allel FEx does not lose frequency-selective information at
any time [3]. To allow a fair comparison with previously
reported designs with a variety of frame shifts, we derive
a Schreier Figure of Merit (FoM) [41] (8), widely used for
ADCs. The Schreier FoM considers the tradeoff between DR
and bandwidth, also accounting for power consumption. For
near dc input ADCs, the bandwidth is replaced with a recip-
rocal of conversion time [42]. As a bandpass filtered signal is
demodulated into baseband (dc) after the rectifier [7], [8] or
mixer [3] stage, we consider analog FEx as a dc-input ADC
with a pre-processing stage. The FoM equation (8) includes
the normalized power consumption PNorm (7) proposed in [37],
the DR, and the frame shift. The frame shift is part of the
denominator of (8) because the FVs are generated in every
frame shift. The amount of integrated in-band noise is reduced
with a larger decimation window (i.e., averaged over the
longer time interval) in our design and also in [42] where
the number of ADC cycles was used for decimation window.
The proposed FEx records the best Schreier FoM among the
state-of-the-art designs. In addition, the time-domain process-
ing circuits offer better technology scaling and will outper-
form voltage-domain designs [3], [7], [8], [37] in terms of
power and area when implemented in advanced technology
nodes.

Table II compares the performance of our KWS IC with
other state-of-the-art KWS ICs [2], [6], [9], [38], [39]. This
work uses an on-chip analog FEx, while other works needed
an off-chip high-resolution (16-bit) ADC [6], [38]. Sometimes,
even the digital FEx and ADC were implemented off-chip [39].
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TABLE II

PERFORMANCE COMPARISON TABLE—KWS

Furthermore, only this work and [2] support the essential
“Unknown” class to be detected as a distinct class, which is the
most challenging class in the GSCD test set. As such, it implies
that concessions would be made in terms of KWS accuracy
for [6], [9], and [39], or a larger model size will be required
for the classifier to uphold the accuracy, leading to additional
power and area costs. In addition, the proposed chip supports
SE microphone interface, and the KWS task is verified with an
SE input condition. This work shows competitive performance
and better system-level power efficiency by using a low-power
MEMS SE microphone instead of the differential microphone
used in [2]. Last but not least, our prototype chip is the first
silicon-verified analog FEx-based voice processing IC that
demonstrates 12-class KWS task on GSCD, using an on-chip
classifier.

Our belief is that the 5% degradation in the classifica-
tion accuracy of our KWS IC (86%) compared to the soft-
ware model accuracy (91%; see Section II) is mainly due
to the increased noise floor when the input amplitude is
high, as shown in Fig. 17(c). Advanced noise suppression
techniques, such as chopper stabilization [43] and dynamic
element matching [5] when applied to the front end, will help
mitigate the accuracy discrepancy. Our time-domain FEx still
needs to address the per-chip gain calibration requirement due
to the mismatch of analog circuits, which is not necessary
for a fully digital approach [2]. For this, as discussed in the
paragraph in Section IV describing Fig. 17(a), improved layout
floorplan and larger device sizes accompanied with mismatch-
aware DNN training [8] will be another opportunity to remove
the calibration requirement.

V. CONCLUSION

We have presented a low-power KWS chip that exploits
ring-oscillator-based time-domain processing circuits. Imple-
mented in a 65-nm CMOS process, it consumes 23-μW power
dissipation with a power supply of 0.5 V for analog cir-
cuits and 0.75 V for digital circuits. The nested analog FLL
enhances the linearity of VTC and, thus, facilitates the use

of SE microphones, as discussed in Section III-A. The usage
of PFD as a time-domain FWR shows significantly reduced
implementation cost in comparison with a voltage-domain
design. The PFM functionality is realized using an SRO,
instead of the conventional IAF circuit to obviate the need
for scaling-unfriendly voltage-domain circuits. Table I shows
that the proposed time-domain FEx achieves the state-of-the-
art DR-based Schreier FoM. The on-chip integrated GRU-FC
digital back-end circuit processes incoming audio FVs with a
16-ms frame shift using only ∼10-μW power, demonstrating
>86% classification accuracy with only 12.4-ms latency on
the 12-class GSCD KWS task. We expect that the proposed
time-domain processing techniques can be further expanded
in other domains and, thus, provide various design oppor-
tunities for power-efficient circuits, such as the fully time-
domain ReLU activation unit shown in Fig. 12 for DNNs.
The improvement directions, as discussed in Section IV, along
with DR enhancement techniques, such as front-end automatic
gain control, will enable the time-domain FEx to be applied to
more challenging real-world audio-inference tasks. A 35-class
KWS on GSCD [44] or a streaming-mode KWS can be such
examples.
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