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Abstract

The growing population of satellites, rocket bodies, debris and other objects in orbit around
the Earth calls for robust space cataloguing methods that can characterise this environment, to
support continued and safe space operations.

Traditional approaches maintain such a catalogue by first combining consecutive measurements
into tracklets, then associating these tracklets definitively to known objects or to other tracklets
and finally updating the orbit estimates accordingly. In contrast, multi-object tracking (MOT)
methods consider the weighted contributions of multiple measurement association hypotheses,
but typically discard the pre-formed tracklets and do not draw deterministic conclusions as to
which measurements belong to which objects.

This work explores the properties of the relatively new labelled multi-Bernoulli (LMB) filter and
introduces a way to extract tracklet association probabilities directly from the filtering recursion,
enabling more specific single-object post-processing. In addition, a modified filter is proposed
that accepts complete tracklets instead of individual measurements, taking full advantage of all
prior information.

In low-clutter environments, the tracklet filter is shown to be less sensitive to field-of-view edge
effects, allows for more efficient propagation in periods without detection, and reduces the overall
association complexity compared to the original LMB filter.

After integrating two types of initial orbit determination, it is demonstrated that this tracklet
filter can discover and maintain state estimates for objects in low Earth orbit (LEO) and
geosynchronous Earth orbit (GEO), using sparse optical measurements from both ground-based
and space-based observers with various pointing strategies.

All methods are implemented in BASIL, a general-purpose Bayesian estimation library developed
for this work to support flexible, modular, and scalable multi-object tracking in astrodynamic
contexts.
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Ψ Random finite set (RFS) on some hyperspace ℱ(𝔜)
Ψ̊ Labelled random finite set (LRFS) on some hyperspace 𝕃 × ℱ(𝔜)
𝜌Ψ Cardinality distribution of RFS Ψ
𝜋Ψ Multi-object (belief/FISST) density of the RFS Ψ
̊𝜋Ψ̊ Multi-object density of the LRFS Ψ̊
̊𝜋𝑘(𝑋̊𝑘) Multi-object filtering density at 𝑋𝑘

𝑤Ψ̊(𝐿) Joint existence probability. Pr(𝐿 ⊆ ℒ(Ψ̊))
𝑣Ψ PHD or intensity of RFS Ψ
̊𝑣Ψ̊ PHD or intensity of LRFS Ψ̊
̊𝑝(⋅, ℓ) Attribute density for label ℓ

𝑟(ℓ) Probability of existence for label ℓ in an LMB density
𝑞(ℓ) ≜ 1 − 𝑟(ℓ). Probability of non-existence for label ℓ in an LMB density
ℋ+ ≜ ℋ𝑘|𝑘−1 ≜ {(𝜉, 𝐿)}. Set of hypotheses in the predicted GLMB density
ℋ𝑘 ≜ {(𝜉𝜃, 𝐿)}. Set of hypotheses in the corrected GLMB density
(𝜉, 𝐿) GLMB hypothesis with label set 𝐿 and association history 𝜉
𝑤(𝜉)(𝐿) Joint existence probability of all labels in 𝐿 under association history 𝜉 -- also

referred to the weight of the hypothesis (𝜉, 𝐿) in a GLMB density
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Nomenclature

Symbol Description
Functions and operators
|𝑌 | Cardinality of a set Y
⟨𝑓, 𝑔⟩ ≜ ∫ 𝑓(𝒚)𝑔(𝒚)𝑑𝒚. Inner product of functions 𝑓 and 𝑔
⟨𝒂, 𝒃⟩ ≜ 𝒂𝑇 𝒃. Inner product of vectors 𝒂 and 𝒃√

𝑴 Lower-triangular Cholesky factorisation matrix, such that 
√

𝑴
√

𝑴
𝑇

= 𝑴
𝟏𝑆(𝒚) Indicator function for a set 𝑆. 𝟏𝑆(𝒚) = 1 if 𝒚 ∈ 𝑆, else 0
𝛿𝑎[𝑏] ≜ 1 if 𝑎 = 𝑏 else 0. Kronecker-delta
ℎ𝑌 Multi-object exponential. ℎ𝑌 ≜ ∏𝒚∈𝑌 ℎ(𝒚), with ℎ∅ = 1
ℒ( ̊𝑌 ) Labels of set ̊𝑌  with projection ℒ : (𝒚, ℓ) ↦ ℓ
𝒜( ̊𝑌 ) Attributes of set ̊𝑌  with projection 𝒜 : (𝒚, ℓ) ↦ 𝑥
̇𝒚 ≜ 𝜕

𝜕𝑡𝒚. First time-derivative of variable 𝒚

Association probability
𝛼(ℓ,𝓂)

𝑘 Time-marginal association probability between target ℓ and measurement 𝓂
𝛼(𝓂)

𝑘 Time-marginal probability that 𝓂 is clutter or unknown a time 𝑡𝑘
𝛼(𝓂)

1:𝑘 (ℓ) Probability that measurement 𝓂 is associated to ℓ, accumulated up to 𝑡𝑘
𝛼(𝓂)

1:𝑘 Probability that 𝓂 is clutter or unknown a time 𝑡𝑘
ℳ(ℓ) set of measurement labels assigned to target ℓ.

Fundamental astrodynamics
ℰ Specific orbital energy
𝒉 Angular momentum vector
𝑅𝐸 Equatorial radius of the Earth
𝑎GEO Semi-major axis for equatorial GEO orbit around a point mass Earth

Orbital state parameters
𝒓 ≜ (𝑥, 𝑦, 𝑧). Cartesian position
𝒗 ≜ ̇𝒓 ≜ ( ̇𝑥, ̇𝑦, ̇𝑧). Cartesian velocity
𝑎 Semi-major axis
𝑒 Eccentricity
𝑖 Orbital inclination w.r.t. the equatorial plane
Ω right ascension of the ascending node (RAAN)
𝜔 Argument of pericentre/perigee
𝜃 True anomaly

Optical measurements and attributable IOD
𝛼 right ascension in the topocentric frame parallel to ECI
𝛿 declination in the topocentric frame parallel to ECI
𝒂 ≜ (𝛼, 𝛿, ̇𝛼, ̇𝛿). Attributable measurement
𝝆 Slant range vector

Tracklets as measurements
𝔗(𝓂)

𝑎,𝑏 Tracklet with label 𝓂 and measurements at times between 𝑡(𝓂)
𝑎  and 𝑡(𝓂)

𝑏
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Symbol Description
ℨ𝑘 ≜ {𝔗} Tracklet group for filter update at time 𝑡𝑘
𝜆𝔗

𝑐 Tracklet clutter rate
𝜅𝔗

𝑐 Tracklet clutter intensity
Δ𝑡valid Tracklet validity padding

Sub/superscripts
(⋅)𝑘 at time 𝑡𝑘
(⋅)𝑘|𝑘−1 filtering prediction at 𝑡𝑘, based on measurements up to 𝑡𝑘−1

(⋅)𝑘|𝑘 filtering correction at time 𝑡𝑘, based on measurements up to 𝑡𝑘
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Acronyms

AEGIS Adaptive Entropy-Based Gaussian-Mixture Information Synthesis
BASIL Bayesian Association and State Inference Library
BVP Boundary Value Problem
CAR Constrained Admissible Region
COE Classical Orbital Elements
CPHD Cardinalised Probability Hypothesis Density
CS Cauchy-Schwarz
ECEF Earth-Centred Earth-Fixed
ECI Earth-Centred Inertial
EKF Extended Kalman Filter
EME2000 Earth Mean Equinox Reference Frame at Julian Epoch J2000
FISST Finite Set Statistics
FN False Negative
FOV Field of View
FP False Positive
GEO Geosynchronous Earth Orbit
GLMB Generalised Labelled Multi-Bernoulli
GM Gaussian Mixture
GNN Global Nearest Neighbour
GNSS Global Navigation Satellite System
GOSPA Generalised Optimal Sub-Pattern Assignment Metric
HMM Hidden Markov Model
i.i.d. Independent and Identically Distributed
IERS2010 International Earth Rotation Service 2010
IOD Initial Orbit Determination
ITRF International Terrestrial Reference Frame
JoM Joint Multi-Object Estimate
JPDA Joint Probabilistic Data Association
KL Kullback--Leibler
LEO Low Earth Orbit
LMB Labelled Multi-Bernoulli
LOS Line of Sight
LRFS Labelled Random Finite Set
LS Least Squares
M2TA Measurement-to-Track Association
MaM Marginal Multi-Object Estimate
MAP Maximum a-Posteriori
MB Multi-Bernoulli Random Finite Set
MBM Multi-Bernoulli Mixture
MEE Modified Equinoctial Elements
MEO Medium Earth Orbit
METIS Multitarget Estimation, Tracking and Information Synthesis
MHT Multiple Hypothesis Tracking
MO Multi-Object
MOT Multi-Object Tracking
OD Orbit Determination
OMAT Optimal Mass Transfer Metric
Orekit ORbits Extrapolation KIT
OSPA Optimal Sub-Pattern Assignment Metric
PAR Probabilistic Admissible Region
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PDA Probabilistic Data Association
PDF Probability Density Function
PF Particle Filter
PGF Probability Generating Function
PGFl Probability Generating Functional
PHD Probability Hypothesis Density
PLMB Poisson Labelled Multi-Bernoulli
PMBM Poisson Multi-Bernoulli Mixture
PMF Probability Mass Function
PPP Poisson Point Process
PPV Positive Predictive Value
RAAN Right Ascension of the Ascending Node
RFS Random Finite Set
RMS Root Mean Square
RSO Resident Space Object
RTN Radial, Transverse, Normal
RV Random Variable
SBO Space-Based Observer
SMC Sequential Monte Carlo
SNR Signal-to-Noise Ratio
SO Single-Object
SRP Solar Radiation Pressure
SSA Space Situational Awareness
SSM State Space Model
SSN Space Surveillance Network
TFRM Telescope Fabra ROA Montsec
TLE Two-Line Element
TO Track-Oriented
TOSPA Temporal Generalisation of Optimal Sub-Pattern Assignment Metric
TP True Positive
TPR True Positive Rate
UCT Uncorrelated Tracklet
UKF Unscented Kalman Filter
δGLMB δ-generalised Labelled Multi-Bernoulli

Definitions

object An existing item with unknown state, which is partially observable by measurements
and can be estimated in a tracking process

target A hypothesised object, as part of a multi-object filter
track The history of estimated states for a particular target. This is synonymous to the

estimated trajectory
tracking The process of estimating the state trajectory over time for one or more objects of

interest, based on measurements
tracklet A short group of measurements, certainly originating from a single object
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Chapter 1

Introduction

Over the last several decades, the number of artificial satellites in Earth’s orbit has increased
drastically. Certain orbital regimes are of particular interest for specific applications, leading to
rapidly increasing satellite densities in those regions. Low Earth orbit (LEO) is often attractive
because of the relatively low energy to orbit. The low latency is useful for communication
purposes, and the short orbital period and broad surface coverage make low orbits ideal for
imaging and other Earth observation missions. Meanwhile, the geosynchronous Earth orbit
(GEO) regime is very suitable for applications like telecommunication, weather monitoring and
global navigation satellite system (GNSS) augmentation.

This increased local concentration of objects in space inevitably increases collision risks. In 2009,
Iridium 33 and Cosmos 2251 were involved in the first impact between intact satellites [1].
This generated two clouds with thousands of debris fragments, which quickly distributed across
their respective orbits and later migrated even further away under the influence of dynamic
perturbations. Before that, there had already been several collisions with mission-related debris,
in-orbit break-ups, anti-satellite tests and other events that spiked the number of debris objects
in space. New debris is still being generated on a daily basis because of normal launch operations,
material ageing, leaks in thermal control systems and further fragmentation effects [76]. In 2016,
a debris particle with a characteristic length of 1 cm hit a solar panel of Sentinel-1A, causing a
change in its orbit and partial power loss [71]. Incidents like this one demonstrate that even tiny
pieces of debris can have destructive consequences for operational satellites, underlining the need
for improved, up-to-date and accurate understanding of the space environment. This objective
is often referred to as space situational awareness (SSA).

According to ESA Space Debris Office [34], there are almost 1 million resident space objects
(RSOs) in Earth’s orbit larger than 1 cm, but only 29 568 of those are actively tracked and
catalogued by the space surveillance network (SSN) as of March 2025 [94]. To improve the safety
of the space environment, this portion of catalogued objects should increase significantly, which
brings about all sorts of challenges. Observing and tracking this many objects in space, usually
with very short measurement arcs, dense target clusters, long intervals between detections and
imperfect dynamical models leads to very challenging measurement association problems. Since
most SSA tracking measurements are angles-only optical streaks or radar observations [20][65]
with no direct way to infer the source object, increasingly sophisticated methods are required to
deduce their originators.

Traditional approaches start by collecting observations into tracklets -- short sequences of closely
spaced measurements from the same tracked object. Since single passes through the observer field
of view (FOV) are usually orders of magnitude shorter than a single orbital period, this tracklet
formation process is nearly linear in 2 or 3 dimensions (for optical and radar, respectively) and
does not require full orbital dynamics. After this, various track-to-orbit association methods are
used to determine to which object in the catalogue each tracklet belongs. If this fails, track-to-
track methods (often based on initial and boundary value formulations [87][98][116][117]) can
also be employed. Every time an object is assigned a tracklet, its estimate is updated in the
catalogue and the process continues. However, in case of densely packed target orbits, very short
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tracklets or outdated catalogue states with large uncertainties, these algorithms can result in
ambiguous associations, where a single tracklet might belong to multiple objects and a final
decision cannot be obtained.

Instead of aiming for a deterministic association before updating the catalogue, multi-object
tracking (MOT) methods use a statistical approach and consider the contributions of multiple
association hypotheses, weighted by some measure of likelihood. MOT algorithms that were
successfully applied in SSA include joint probabilistic data association (JPDA) [120] and multiple
hypothesis tracking (MHT) [3][10][118], but the more recent suite of methods based on finite set
statistics (FISST) [81][84] has sparked particular interest. Modelling the multi-object state and
measurements using random finite sets (RFSs), the framework extends the concepts of Bayesian
estimation and rigorously integrates data association in the filtering process [123]. A thorough
review of the literature on this topic is provided in Appendix A.

Although RFS-based methods are becoming more prevalent in the SSA literature, they are not
yet used in an operational catalogue and still leave much room for research. Three elements
further motivate the objectives of this work.
(i) First of all, most MOT filters consider the measurements from a single image or scan at

each filtering step. Individual observations are thus treated as independent and correlations
obtained from reliable tracklet formation methods are discarded. Although some efforts exist
in the literature to introduce tracklets in the FISST framework, they typically reconstruct
the tracklets from scratch and use fixed time intervals to do so. In reality, however, the length
of a tracklet depends on how long an object is inside the observer’s FOV, and objects rarely
enter and exit the FOV simultaneously. As a result, fixed-interval approaches fragment
tracklets into multiple segments, limiting the effectiveness of measurement association. An
approach that preserves complete pre-formed tracklets and dynamically adapts the time
interval for each step of the multi-object (MO) recursion could reduce sensitivity to outliers
and improve filtering performance.

(ii) The second shortcoming of MOT approaches is that their probabilistic nature prevents
definitive conclusions on which measurements belong to the same object. In MOT filters,
measurements contribute to the state updates of multiple objects, and there is often no
single “final decision” on the most probable measurement association. In the cataloguing
context, however, it is often necessary to collect all measurements that confidently belong
to a specific object for tasks such as precise orbit determination, conjunction assessment,
and further post-processing. A consistent way to extract such definitive measurement-to-
object associations from MO filters is not readily available in the literature.

(iii) Finally, space cataloguing research usually focuses on measurements from ground-based
observers. Now that the German company Vyoma is launching the first European surveil-
lance and tracking satellite [31], in-situ observations are more relevant than ever, and their
behaviour in MOT algorithms warrants further investigation.

These three points lead to the main research question for this work, which is further divided into
three sub-questions below.

page 2



1 Introduction

Main research question
How can multi-object tracking methods be employed for orbit cataloguing and tracklet associ-
ation using space-based optical observations?

Sub-questions
(i) Which available MOT methods are suitable for tracking and data association with space-

based optical observations?
(ii) How can the optimal measurement association with catalogued RSOs be extracted from

MOT methods, independent of the state estimation?
(iii) How can the MOT methods be adapted to leverage complete pre-formed optical

tracklets?

In the process of addressing these research questions, this work focuses on the relatively new
generalised labelled multi-Bernoulli (GLMB) filter [133][135] and its LMB approximation [104].
The main contributions are summarised in Table 1.1.

Table 1.1:  Overview of contributions

Contribution Section
A flexible Java library named BASIL is created. It provides model-agnostic MO
filtering functionality which can be implemented for specific tracking scenarios.
Orbital tracking capabilities are further developed based on the widely used
Orekit [85] toolbox.

2, 3, 5

A robust method is proposed to extract measurement-to-object assignment
probabilities from the GLMB filter, using both unlabelled and labelled obser-
vations.

4

The model for detection probability with an optical sensor is improved to be
less sensitive to discontinuous boundaries in the telescope FOV.

5.2.2

The labelled multi-Bernoulli (LMB) filter is reformulated to directly use com-
plete tracklets instead of individual observations.

6

The thesis is structured as follows. Chapter 2 first introduces fundamental background on
probability density and single-object Bayesian estimation, and Chapter 3 reviews the theory of
multi-object tracking using the RFS framework with a focus on the implementation of the LMB
filter. These background chapters also serve as technical specification for most core functionality
of BASIL, the Java library developed for this thesis. A method to robustly extract association
results from GLMB/LMB filters is developed in Chapter 4. After that, Chapter 5 describes the
relevant models for MOT with angles-only observations of resident space objects and Chapter 6
proposes an extension of the LMB filter that accepts multi-scan tracklets as measurements. The
methods are tested and discussed based on numerical simulations in Chapter 7 and the main
conclusions are summarised in Chapter 8, along with limitations and suggestions for future work.
A thorough review of the literature on single-object and multi-object Bayesian estimation is
provided in Appendix A.
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Chapter 2

Fundamental background

This section introduces several core concepts and algorithms that are heavily used in multi-object
tracking and form the basis for the methods in this work. Section 2.1 focuses on representing and
approximating probability distributions, as well as quantifying the “difference” between them.
Then, Section 2.2 provides an overview of single-object Bayesian estimation, forming a consistent
background to extend to multiple objects in Chapter 3.

Additionally, these theory chapters serve as technical specification for the core algorithms in the
Bayesian Association and State Inference Library (BASIL), an extensible Java toolbox that was
implemented from scratch in the context of this thesis.

2.1 Probability density
For a continuous random variable in a Euclidean space 𝕏, the probability density function
(PDF) 𝑝(𝒙; 𝜽) describes the relative likelihood that the variable has value 𝒙, conditioned on the
distribution parameters 𝜽 and on the assumption that it exists. As a result:

∀𝑆 ⊂ 𝕏 : Pr(𝒙 ∈ 𝑆) = ∫
𝝃∈𝑆

𝑝(𝝃; 𝜽)𝑑𝝃, (2.1a)

and Pr(𝒙 ∈ 𝕏) = 1 (2.1b)

Similarly, if a random variable can only take values in a countable sample space Ω, it is said to
be discrete and the probability of sampling each value 𝑥 ∈ Ω is defined by its probability mass
function (PMF) Pr(𝑥; 𝜽).

∀𝑆 ⊂ Ω : Pr(𝒙 ∈ 𝑆) = ∑
𝜉∈𝑆

Pr(𝜉; 𝜽) (2.2a)

Pr(𝒙 ∈ Ω) = 1 (2.2b)

Note that these two are similar, but not equivalent. The probability density function (PDF) of
a continuous random variable has units [∏𝑥∈𝒙 𝑥]

−1
 and can take any value ≥ 0 as long as the

integral over some region of the domain represents a probability ∈ [0, 1]. Conversely, a discrete
PMF directly provides probabilities for every 𝑥 ∈ Ω.

2.1.1 Relevant probability distributions
A selection of the probability distributions with relevance in MO tracking algorithms are
discussed below. Note that a distribution is completely described by its PDF. For brevity, the
phrases distribution f and distribution with probability density function f are therefore used
interchangeably in the context of this work.

A. Binomial distribution (discrete)
If a scalar random variable 𝑘 ∼ Bin(𝑛, 𝑟) follows a binomial distribution with parameters 𝑟 ∈
[0, 1] and 𝑛 ∈ ℕ, its PMF is described as

∀𝑘 ∈ {0, …, 𝑛} : Bin(𝑘; 𝑛, 𝑟) = (𝑛
𝑘

)𝑟𝑘(1 − 𝑟)𝑛−𝑘, (2.3a)
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2 Fundamental background

where (𝑛
𝑘

) = 𝑛!
𝑘!(𝑛 − 𝑘)!

. (2.3b)

This can be interpreted as the probability of observing a success result 𝑘 times in a series of
𝑛 independent and identically distributed (i.i.d.) trials, each with exactly two discrete possible
outcomes: Pr(success) = 𝑟 and Pr(fail) = 1 − 𝑟.

B. Bernoulli distribution (discrete)
A special case of the binomial distribution occurs when only a single trial is evaluated (𝑛 = 1),

∀𝑘 ∈ {0, 1} : Ber(𝑘; 𝑟) = 𝑟𝑘(1 − 𝑟)1−𝑘. (2.4)

In the context of MOT, the Bernoulli distribution is often used to represent the probability
of existence for a certain object, where 𝑘 = 1 represents existence and 𝑘 = 0 represents non-
existence.

C. Poisson distribution (discrete)
If 𝑘 ∼ Po(𝜆) follows a Poisson distribution, this can be interpreted intuitively as representing
the number of events, given an average of 𝜆 and the assumption that the events are independent.
This results in the PMF

Po(𝑘; 𝜆) = 𝜆𝑘𝑒−𝜆

𝑘!
. (2.5)

This distribution is often used to model clutter measurements in tracking scenarios, where the
number of clutter observations in a given scan is Poisson-distributed.

D. Uniform distribution (continuous)
A vector random variable 𝑦 ∼ 𝒰(𝑆) is uniformly distributed over some region 𝑆 if its probability
density is equal at all points in 𝑆 and zero elsewhere:

𝒰(𝒚; 𝑆) = 𝟏𝑆(𝒚) 1
∫

𝑆
𝑑𝒚

, (2.6)

where ∫
𝑆

𝑑𝒚 is the hypervolume of 𝑆 and 𝟏𝑆 is its indicator function

𝟏𝑆(𝒚) = {1 if 𝒚 ∈ 𝑆
0 otherwise. (2.7)

E. Normal/Gaussian distribution (continuous)
If a continuous vector random variable 𝒚 ∈ ℝ𝑛 follows a Gaussian distribution 𝒩(𝝁, 𝑷 ) with
mean 𝝁 ∈ ℝ𝑛 and covariance matrix 𝑷 ∈ ℝ𝑛×𝑛, then the PDF is described as

𝒩(𝒚; 𝝁, 𝑷 ) = 1
√det(2𝜋𝑷 )

⋅ exp[−1
2
(𝒚 − 𝝁)𝑇 𝑃−1(𝒚 − 𝝁)], (2.8)

where the term in the exponent is negative one half of the squared Mahalanobis distance (see
Eq. (2.19)).
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2025 2.1 Probability density

One particularly useful property of this distribution is referred to by Mahler [82, App. D] as
the fundamental Gaussian identity and is the basis for linearised Kalman filter formulations in
Section 2.2.4. For any 𝒙 ∈ ℝ𝑛, 𝒛 ∈ ℝ𝑚, 𝑷 ∈ ℝ𝑛×𝑛, 𝑯 ∈ ℝ𝑚×𝑛 and 𝑹 ∈ ℝ𝑚×𝑚,

𝒩(𝒛; 𝑯𝒙, 𝑹) 𝒩(𝒙; 𝝁, 𝑷 ) = 𝒩(𝒛; 𝑯𝝁, 𝑹 + 𝑯𝑷𝑯𝑇 ) 𝒩(𝒙; 𝒄, 𝑪), (2.9a)

where

{{
{
{{𝒄 = 𝝁 + 𝑲(𝒛 − 𝑯𝝁)

𝑪 = (𝑰𝑚×𝑚 − 𝑲𝑯𝑷)
𝑲 = 𝑷𝑯𝑇 (𝑯𝑷𝑯𝑇 + 𝑹)−1

. (2.9b)

F. Chi-squared distribution (continuous)
If a continuous vector random variable 𝒙 ∈ ℝ𝑛 follows a standard Gaussian distribution 𝒩(𝟎, 𝑰)
as described above, then its norm is chi-squared (𝜒2) distributed¹ with 𝑛 degrees of freedom
[140]. The PDF of this scalar quantity is then

𝜒2(𝑥; 𝑛) =
𝑥𝑛

2 −1 exp(−𝑥
2 )

2𝑛
2 Γ(𝑛

2 )
, (2.10)

where Γ is the gamma function. This distribution is very commonly used in statistical tests
and particularly useful in the context of measurement association techniques like gating (see
Section 3.3.3) or to represent confidence intervals.

2.1.2 Gaussian mixtures
Given the properties of Gaussian distributions, it is often useful to formulate more complex
distributions as a weighted mixture of Gaussian components.

𝒢(𝑤1:𝑛, 𝝁1:𝑛, 𝑷1:𝑛) ≜ {(𝑤𝑖, 𝝁𝑖, 𝑷𝑖)}
𝑛
𝑖=1 (2.11)

The probability intensity² of a variable following a Gaussian mixture (GM) distribution is simply
the weighted sum of the components in the mixture

𝑝(𝒙) = ∑
𝑛

𝑖=1
𝑤𝑖𝒩(𝒙; 𝝁𝑖, 𝑷𝑖). (2.12)

In the context of MO filters, Gaussian mixture (GM) representations often end up with many
components as a consequence of multiple association hypotheses. To limit the computational
complexity, it is usually desirable to remove components with very low weights (pruning),
combine components that are close enough together (merging) or even set a hard limit on the
number of components in the GM (capping). These three techniques are described below and
illustrated for a two-dimensional case in Figure 2.1.

¹This is not the only occurrence of the Chi-squared distribution, but the most relevant in MOT.
²In the general GM formulation Eq. (2.11), there are no restrictions on the weights 𝑤1:𝑛 of the components, so

𝒢 does not necessarily meet the requirements of a PDF (Eq. (2.1)). This broader kind of probability function is
referred to as intensity and will be used in the multi-object context (see Section 3.2.1--E).
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2 Fundamental background

Figure 2.1:  Simple 2D illustration of GM reduction methods. Every component
is represented by its weight and 𝑑2

𝑀 = 1 covariance ellipsoid (see Eq. (2.19)). The
original mixture has 5 components and 𝜌𝒢 = 1. Pruning with 𝜗𝑃 = 0.05 removes one
component and its weight is distributed over the others to maintain the cardinality.
Merging with 𝜗𝑀 = 3 combines two components and capping with 𝑛max = 2 limits the

size of the mixture.

Note that a Gaussian mixture in this definition does not enforce that all the weights sum to
1, which is why Eq. (2.12) was referred to as the GM intensity instead of density or PDF. For
MOT, the sum of weights in GM often represents the (expected) number of objects 𝜌𝒢 that the
mixture contains:

𝜌𝒢 = ∑
|𝒢|

𝑖=1
𝑤𝑖. (2.13)

It follows that 𝒢 is only a PDF if its weights are normalised such that 𝜌𝒢 = 1.

A. Normalisation
Normalising a GM refers to adjusting the weights so that they sum to the desired value. This is
often required after applying the GM reduction methods pruning and capping, described below.
If an original GM 𝒢𝑜 is reduced to 𝒢𝑟, it should be normalised to ensure that 𝜌𝒢𝑟

= 𝜌𝒢𝑜
:

∀𝑖 ∈ {1, …, |𝒢𝑟|} : 𝑤̃𝑖 = 𝑤𝑖
𝜌𝒢𝑜

𝜌𝒢𝑟

. (2.14)
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2025 2.1 Probability density

B. Pruning
Given a pruning threshold 𝜗𝑃 , the reduced GM 𝒢𝑟 contains all components of the original mixture
𝒢𝑜 with a weight above the threshold.

𝒢𝑟 = prune(𝒢𝑜; 𝜗𝑃 ) = {(𝑤𝑖, 𝝁𝑖, 𝑷𝑖) ∈ 𝒢𝑜|𝑤𝑖 ≥ 𝜗𝑃 } (2.15)

C. Merging
Merging components in a GM model is usually done through a processes called moment matching.
Merging collapses multiple components of a mixture to a single Gaussian distribution with an
associated weight.

Let 𝒢𝑜 be a GM with sum of weights 𝜌𝒢𝑜
. The merged mixture has a single component with

weight 𝜌𝒢𝑜
 and the first and second moments are matched so as to minimise the Kullback--Leibler

(KL) divergence Eq. (2.20) [73] between 𝒢𝑜 and 𝒢𝑟 [123]:

𝒢𝑟 = merge(𝒢𝑜) = {(𝜌𝒢𝑜
, 𝝁𝑟, 𝑷𝑟)}, (2.16a)

with 𝝁𝑟 = 1
𝜌𝒢𝑜

∑
|𝒢𝑜|

𝑖=1
𝑤𝑖𝝁𝑖 (2.16b)

𝑷𝑟 = 1
𝜌𝒢𝑜

∑
|𝒢𝑜|

𝑖=1
𝑤𝑖𝑷𝑖⏟

average cov.

+ 𝑤𝑖(𝝁𝑖 − 𝝁𝑟)(𝝁𝑖 − 𝝁𝑟)
𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
spread of the mean

. (2.16c)

Note that, if 𝜌𝒢𝑜
= 1, merge(𝒢0) = 𝒩(𝝁𝑟, 𝑷𝑟).

In many cases, however, it is useful to reduce a GM by merging only components that are
relatively close together. Given a merging threshold 𝜗𝑀 , Algorithm 2.1 can be used to combine
components where the means are close enough together. This procedure will iteratively select
the component with the highest weight as reference and merge it with all components in the
mixture for which the squared Mahalanobis distance from the reference to the mean is smaller
than 𝜗𝑀 .

Algorithm 2.1:  Gaussian mixture merging with threshold 𝜗𝑀  (adapted from [128])

merge(𝒢𝑜, 𝜗𝑀):
1 Given 𝒢𝑜 = {ℰ𝑖 ≜ (𝑤𝑖, 𝝁𝑖, 𝑷𝑖)}

|𝒢𝑜|
𝑖=1

2 Create index set 𝐼 = {1, …, |𝒢𝑜|}
3 Initialise 𝒢𝑟 = ∅
4 while 𝐼 ≠ ∅
5 𝑗 ≔ arg max

𝑖∈𝐼
(𝑤𝑖)

6 𝐿 ≔ {𝑖 ∈ 𝐼|(𝝁𝑖 − 𝝁𝑗)𝑷 −1
𝑖 (𝝁𝑖 − 𝝁𝑗)

𝑇 ≤ 𝜗𝑀}
7 𝒢𝑟 ≔ 𝒢𝑟 ∪ merge({ℰ𝑖 ∈ 𝒢𝑜|𝑖 ∈ 𝐿}) ▷ Eq. (2.16)
8 𝐼 ≔ 𝐼 ∖ 𝐿
9 return 𝒢𝑟

D. Capping
Finally, the most straightforward GM reduction method is capping. Given a maximum number of
components 𝑛max, the updated mixture will keep the min(|𝒢𝑖|, 𝑛max) components with the highest
weight values. All other components are deleted from the set and the remaining weights are
normalised per Eq. (2.14). The term capping will be applied to other sets with similar meaning.
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2 Fundamental background

2.1.3 Distance and information divergence
It is often desirable to evaluate the similarity between elements of tracking algorithms. This
could be to evaluate performance compared to a ground truth or other solutions, but also within
the algorithm to gauge convergence, measurement association likelihood or the influence between
parameters.

When comparing vectors to each other or to some probability distribution, the (dis)similarity
is usually referred to as distance. Alternatively, one can also express the agreement between
distributions, in which case the term (information) divergence is preferred as these quantities do
not satisfy the formal requirements of a metric [24]. Several such measures for single objects are
discussed below, and Section 3.3.6 extends the notion to the multi-object context.

A. Euclidean distance
The Euclidean miss distance between two vectors is one of the most straightforward similarity
metrics:

𝑑𝐸(𝒚1, 𝒚2) = ‖𝒚1 − 𝒚2‖. (2.17)

It can be used to measure the absolute performance of a tracking result 𝒙1:𝑘 as compared to a
ground truth 𝒙(𝑔)

1:𝑘 using an appropriate accumulation over all the time steps. One example is the
root mean square (RMS) Euclidean distance

𝑑RMS
𝐸 (𝒙1:𝑘, 𝒙(𝑔)

1:𝑘) = √1
𝑘

∑
𝑘

𝑖=1
‖𝒙𝑖 − 𝒙(𝑔)

𝑖 ‖
2
. (2.18)

Note that this can only be used if all state dimensions have the same units, or some form of
normalisation is applied. This can cause RMS miss distances to be hard to interpret. In many
cases, sub-distances can be useful, where only parts of the vectors are compared. A good example
is comparing position and velocity errors separately.

B. Mahalanobis distance
Given an arbitrary reference distribution with first and second moments 𝝁 and 𝑷 , the Maha-
lanobis distance [80] from that distribution to a vector 𝒚 is

𝑑𝑀(𝒚; 𝝁, 𝑷 ) = √(𝒚 − 𝝁)𝑇 𝑷 −1(𝒚 − 𝝁). (2.19)

This can be interpreted as a multivariate generalisation of the standard deviation, so that the
region 𝑑2

𝑀(𝒚) < 1 defines the 1𝜎 uncertainty of the distribution, accounting for the (co)variances
of all variables [82]. For MOT, this concept is often applied in the context of measurement
association and gating (see Section 3.3.3).

C. Kullback-Leibler divergence
The Kullback--Leibler (KL) divergence [73] between a distribution 𝑓1 and a reference 𝑓0 is

𝐷KL(𝑓1; 𝑓0) = ∫ 𝑓1(𝒙) ⋅ log(𝑓1(𝒙)
𝑓0(𝒙)

)𝑑𝒙. (2.20)

Note that 𝐷KL is always larger than 0, unless 𝑓0(𝒙) = 𝑓1(𝒙) for all values of 𝒙. A divergence of
0 thus indicates equality between the distributions. Recall that the moment matching approach
used in GM merging minimises 𝐷KL between the original and reduced GM. As discussed later,
similar methods are common in the theoretical derivation of tractable MO filters.
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2025 2.1 Probability density

Other similarity measures between distributions exist, such as the chi-squared (𝜒2) divergence,
Rényi divergence [112] and Cauchy-Schwarz (CS) divergence [56]. Although these are often used
in the literature, they are not implemented for this thesis and therefore not discussed here.

2.2 Single-object Bayesian estimation
This section is included to provide the relevant background in single object Bayesian estimation.
The purpose is not to give a complete and rigorous overview, but rather to introduce the relevant
concepts, terminology and notation, and detail the algorithms as implemented in the BASIL.
The reader is referred to e.g. [82, Ch. 2][123] for more details.

2.2.1 State space representation
Let 𝒙𝑘 ∈ 𝕏 describe the n-dimensional state of an object or target at time 𝑡𝑘, where 𝕏 = ℝ𝑛 is
the set of all possible states. Similarly, let 𝒛𝑘 ∈ ℤ = ℝ𝑚 be a measurement or observation of that
object, provided that there exists a mapping 𝒙𝑘 ↦ 𝒛𝑘. In other words, the state space 𝕏 must
be (partially) observable for the available sensor.

In order to track the object over time, a notion of state dynamics is needed. The dynamics of
the state 𝒙 are represented by a motion model

𝒙̇ = 𝐹𝑘(𝒙𝑘, 𝒖𝑘, 𝝂𝑘), (2.21)

where 𝒖𝑘 is a control vector, 𝝂𝑘 represents some noise process and the subscript (⋅)𝑘 indicates
dependency on time, evaluated at 𝑡𝑘. For the purpose of this work, the control vector 𝒖 is ignored,
assuming that any control forces can be incorporated in the dynamics of 𝐹 . For sequential
estimation methods, it is often useful to formulate the motion model in its integrated form,
describing how a state transitions from 𝑡𝑘−1 to 𝑡𝑘, under the influence of noise:

𝒙𝑘 = 𝜑𝑘,𝑘−1(𝒙𝑘−1, 𝝂𝑘). (2.22)

Similarly, the observation model describes how a measurement vector 𝒛𝑘 is generated from 𝒙𝑘,
under the influence of another noise process 𝜺

𝒛𝑘 = ℎ𝑘(𝒙𝑘, 𝜺𝑘), (2.23)

2.2.2 Single-object Bayesian filter
Consider an object with some prior state density 𝑝0(𝒙0) at time 𝑡0 and a single-sensor measure-
ment sequence 𝑍1:𝑘 = {𝒛0, …, 𝒛𝑘}, originating from that object at times 𝑡1, …, 𝑡𝑘. The single-
object Bayesian filter is an estimation method that chronologically evaluates the measurements
to update the state estimate and its uncertainty accordingly. Since each update depends only on
the previous state density and a single measurement, the filter can be formulated recursively in
two steps, often referred to as the predictor and corrector [5][81][125].
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2 Fundamental background

Example

In this chapter and the next, a very simple
one-dimensional (1D) example will be used to
visualise the steps in Bayesian filtering. Con-
sider a train on a straight track. It’s state 𝒙 =
(𝑠, 𝑣)𝑇  consists of a position 𝑠 along that track
as well as a velocity 𝑣. Assume the train is not
accelerating and its dynamics are determinis-
tic, such that 𝒙̇ = (𝑣, 0)𝑇 . Figure 2.3 shows an
arbitrary state distribution for 𝒙. The observa-
tions 𝒛 = (𝑠 + 𝜀𝑠) are position-only to reduce
the measurement space to a single dimension
for simplicity.

(cont. on p. 13)

Figure 2.2:  1D linear example -- scenario

Figure 2.3:  1D linear example -- Gauss-
ian state distribution. The red line indi-

cates the 𝑑𝑀 = 1 uncertainty bound.

A. Predictor
The motion model from Eq. (2.21) and Eq. (2.22) gives rise to the Markov transition density
𝑓𝑘(𝒙𝑘|𝒙𝑘−1), which describes the (probability) density that an initial state 𝒙𝑘−1 will transition
to 𝒙𝑘 between 𝑡𝑘−1 and 𝑡𝑘. If this is multiplied by the distribution of that initial state and
integrated over all possible values of 𝒙𝑘−1, one obtains the predicted density at time 𝑡𝑘 based on
all the measurements up to time 𝑡𝑘−1:

𝑝+(𝒙𝑘) ≜ 𝑝𝑘|𝑘−1(𝒙𝑘|𝑍1:𝑘−1) = ∫ 𝑓𝑘(𝒙𝑘|𝒙′
𝑘−1)𝑝𝑘−1(𝒙′

𝑘−1)𝑑𝒙′
𝑘−1, (2.24)

which is also called the Chapman Kolmogorov equation [122][134].

B. Corrector
Similarly, the measurement likelihood function³ 𝑔𝑘(𝒛𝑘|𝒙𝑘) can be derived from the measurement
model Eq. (2.23) and describes the likelihood of observing the measurement 𝒛𝑘, assuming the
object state is 𝒙𝑘. The Bayes posterior filtering density, updated by the observation 𝒛𝑘, is then
formulated as

𝑝𝑘(𝒙𝑘) ≜ 𝑝𝑘|𝑘(𝒙𝑘|𝑍1:𝑘) =
𝑔𝑘(𝒛𝑘|𝒙𝑘)𝑝+(𝒙𝑘)

∫ 𝑔𝑘(𝒛𝑘|𝒙′
𝑘)𝑝+(𝒙′

𝑘)𝑑𝒙′
𝑘

, (2.25)

where the denominator is commonly referred to as the Bayes normalisation factor and represents
the complete probability density of observing the measurement 𝒛𝑘, for any value of the state 𝒙𝑘.

2.2.3 Conjugate prior
Since the Bayes’ filter described by Eq. (2.24) and Eq. (2.25) is intractable for general distrib-
utions, it is necessary to approximate the filtering density. One way to do that without losing
the mathematical properties of Bayes optimality is to choose a state distribution for which
the predictor and corrector steps result in a distribution of the same family with the relevant
measurement model. A distribution that is closed under the Bayes update is called conjugate prior

³Note that, in the case of single-object, single-sensor filtering where the object always generates exactly one
measurement, the measurement likelihood function is a PDF. In the general case, however, this is not necessarily
the case.
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2025 2.2 Single-object Bayesian estimation

[121]. Similarly, one can informally call the prediction “conjugate”, if the Chapman-Kolmogorov
equation Eq. (2.24) conserves the family of the state density.

Conjugate Prior [121]
Let 𝔊 be a class of likelihood functions 𝑔(𝒛|𝒙), and 𝔉 a class of prior distributions for 𝒙,
then the class 𝔉 is conjugate for 𝔊 if

∀𝑔(𝒛|𝒙) ∈ 𝔊, 𝑝+(𝒙) ∈ 𝔉 :  𝑝(𝒙|𝒛) ∈ 𝔉. (2.26)

2.2.4 Gaussian model simplification
One particularly useful conjugate prior is the Gaussian distribution (see Section 2.1.1), which is
closed under both prediction and correction if 𝑓𝑘(𝒙𝑘|𝒙𝑘−1) and 𝑔𝑘(𝒛𝑘|𝒙𝑘) are Gaussian too.

First of all, assume the previous state density is Gaussian with mean 𝒙𝑘−1|𝑘−1 and covariance
𝑷𝑘−1|𝑘−1. In addition, the noise processes in the motion model Eq. (2.22) and observation model
Eq. (2.23) are assumed to be additive white noise [124], such that the models can be simplified as

𝒙𝑘 = 𝜑𝑘(𝒙𝑘−1) + 𝝂𝑘,  with 𝝂𝑘 ∼ 𝒩(𝟎, 𝑸𝑘), (2.27a)
𝒛𝑘 = ℎ𝑘(𝒙𝑘) + 𝜺𝑘,  with 𝜺𝑘 ∼ 𝒩(𝟎, 𝑹𝑘). (2.27b)

Here, 𝜑𝑘 ≜ 𝜑𝑘,𝑘−1(⋅, 𝟎) and ℎ𝑘 ≜ ℎ𝑘(⋅, 𝟎) represent the noiseless versions of Eq. (2.21) and
Eq. (2.23).

A. Extended Kalman filter
If it is further assumed that the (non-linear) mappings 𝜑𝑘 and ℎ𝑘 can be reasonably linearised
around the filter estimate 𝒙𝑘−1|𝑘−1, then the transition density and measurement likelihood
simplify to

𝑓𝑘(𝒙𝑘|𝒙𝑘−1) = 𝒩(𝒙𝑘; 𝜑𝑘(𝒙𝑘−1), 𝑸𝑘), (2.28a)
𝑔𝑘(𝒛𝑘|𝒙𝑘) = 𝒩(𝒛𝑘; ℎ𝑘(𝒙𝑘), 𝑹𝑘), (2.28b)

along with the respective Jacobian matrices (first-order Taylor approximation)

𝚽𝑘 ≜ 𝚽𝑘,𝑘−1 = 𝜕𝜑𝑘
𝜕𝒙𝑘−1

|
𝒙𝑘−1|𝑘−1

, (2.29a)

and 𝑯𝑘 ≜ 𝑯𝑘|𝑘−1 = 𝜕ℎ𝑘
𝜕𝒙𝑘

|
𝒙𝑘|𝑘−1

. (2.29b)

This set of assumptions leads to the well-known and widely used extended Kalman filter (EKF)
formulation [5][21][82]. Derivations for Algorithm 2.2 are omitted here but rely mostly on the
fundamental identity in Eq. (2.9).
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Algorithm 2.2:  Extended Kalman Filter

ekf(𝒙0|0, 𝑷0|0, 𝑍1:𝐾):
1 for 𝑘 in 1, …, 𝐾
2 𝒙𝑘|𝑘−1 = 𝜑𝑘(𝒙𝑘−1|𝑘−1) ▷ noiseless prediction
3 𝑷𝑘|𝑘−1 = 𝚽𝑘𝑷𝑘−1|𝑘−1𝚽𝑇

𝑘 + 𝑸𝑘

4 𝑝+(𝒙𝑘) = 𝒩(𝒙𝑘; 𝒙𝑘|𝑘−1, 𝑷𝑘|𝑘−1) ▷ predicted density
5
6 Δ𝒛𝑘 = 𝒛𝑘 − ℎ𝑘(𝒙𝑘|𝑘−1) ▷ mean innovation
7 𝑷Δ𝑧𝑘

= 𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑇
𝑘 + 𝑹𝑘 ▷ innovation covariance

8 𝑲𝑘 = 𝑷𝑘|𝑘−1𝑯𝑇
𝑘 𝑷 −1

Δ𝑧𝑘
▷ Kalman gain

9 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝑲𝑘Δ𝒛𝑘

10 𝑷𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘|𝑘−1

11 𝑝𝑘(𝒙𝑘) = 𝒩(𝒙𝑘; 𝒙𝑘|𝑘, 𝑷𝑘|𝑘) ▷ corrected density
12 end for

Example (cont. from p. 11)

Figure 2.4:  Kalman filter step for 1D
linear example. upper left: prior PDF,
upper right: predicted and corrected PDF,
lower right: predicted measurement ℎ(𝒙)
with variance 𝑯𝑷𝑯𝑇  and observed mea-
surement 𝒩(𝒛, 𝑹). The ellipses indicate
the 𝑑𝑀 = 1 Mahalanobis distance bounds.

Figure 2.4 shows a single EKF step for the
1D linear example, introduced before. Recall-
ing that the motion model assumes constant
velocity and the measurements are position-
only, the Jacobian matrices (recall Eq. (2.29))
for this problem are

𝚽𝑘,𝑘−1 = (1
0

1
1), 𝑯𝑘 = (1 0).

At time 𝑡𝑘−1, there is a prior density 𝑝𝑘−1|𝑘−1
for the state of the train. The upper left image
shows it is expected at 𝑠 = 1 with a velocity
of 𝑣 = 1 and the state uncertainty is uncorre-
lated Gaussian with 𝜎𝑠 = 𝜎𝑣 = 1. Predicting
this state PDF 1 second later increases the
uncertainty and also correlates 𝑠 and 𝑣. This is
apparent from the non-circular uncertainty el-
lipse for 𝑝𝑘|𝑘−1 in the upper-right image. Then
mapping 𝑝𝑘|𝑘−1 to measurement space (lower
right) and comparing to the observed measure-
ment 𝒛 allows computing the innovation. The
Kalman gain incorporates the uncertainties in
measurement and predicted state to compute
the corrected PDF (red in upper right image),
which is always smaller than the predicted
density.

(cont. on p. 35)
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B. Unscented Kalman filter
However, if the assumptions leading to Eq. (2.28) do not hold, the linearisation around 𝒙𝑘−1|𝑘−1
may not be valid and the Jacobians 𝑯𝑘 and 𝚽𝒌,𝒌−𝟏 Eq. (2.29) are not constant in a sufficiently
large region. In such case, the EKF loses information on the higher-order terms of the uncertainty
evolution.

To address this issue, Julier and Uhlmann [68] introduced an improved method which guarantees
at least second-order accuracy on the mean and covariance for any type of non-linear mappings
[139]: the unscented Kalman filter (UKF).

Consider a Gaussian distribution 𝒩(𝒙, 𝑷 ) with 𝒙 ∈ ℝ𝑛. It is possible to describe this distribution
using (2𝑛 + 1) well chosen sigma points 𝑿 = (𝑿1 … 𝑿2𝑛+1)4, along with appropriate weights
to reconstruct a Gaussian distribution. This allows performing the true non-linear mappings
on each sigma point, without the need for linearisation. The (inverse) unscented transform is
formulated as

UT : 𝒩(𝒙, 𝑷𝑥) ↦ 𝑿 = (𝒙 𝒙 + √𝜂𝑷𝑥 𝒙 − √𝜂𝑷𝑥) (2.30a)

UT−1 : (𝑿, 𝑸) ↦ 𝒩(𝒙, 𝑷𝑥) (2.30b)

with
{{
{
{{𝒙 = ∑2𝑛

𝑖=0 𝑤mean
𝑖 𝑿𝑖

𝑷𝑥 = ∑2𝑛
𝑖=0 𝑤cov

𝑖 (𝑿𝑖 − 𝒙)(𝑿 − 𝒙)𝑇 + 𝑸
, (2.30c)

{{
{{
{{
{𝑤mean

0 = 𝜆
𝜂

𝑤cov
0 = 𝜆

𝜂 + 1 − 𝛼2 + 𝛽
𝑤mean

𝑖 = 𝑤cov
𝑖 = 1

2𝜂 if 𝑖 > 0
, (2.30d)

𝜂 = 𝑛 + 𝜆, and 𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛. (2.30e)

Here, 𝜆 is a scaling parameter and the notation 
√

𝑴  refers to the lower-triangular Cholesky
factorisation of a matrix 𝑴 . The meaning of 𝛼, 𝛽 and 𝜅 is addressed by Wan and Merwe [139,
p. 229].

Additionally, the cross-covariance between two distributions can be computed from their sigma
point representation as

𝑷𝑥𝑧 = ∑
2𝑛

𝑖=0
𝑤cov

𝑖 (𝑿𝑖 − 𝒙)(𝒁𝑖 − 𝒛)𝑇 , (2.31)

provided that 𝑿 and 𝒁 both have 2𝑛 + 1 sigma points (i.e. equal number of columns). Based on
Eq. (2.30) and Eq. (2.31), the unscented Kalman filter (UKF) is formulated in Algorithm 2.3.

4Note that 𝑿 ∈ ℝ𝑛×(2𝑛+1) where every column is one of the sigma point vectors
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Algorithm 2.3:  Unscented Kalman filter [139, Tab. 7.3]

ukf(𝒙0|0, 𝑷0|0, 𝑍1:𝐾):
1 for 𝑘 in 1, …, 𝐾
2 𝑿𝑘−1|𝑘−1 ←←←←←←←←←

UT (2.30)
𝒩(𝒙𝑘−1|𝑘−1, 𝑷𝑘−1|𝑘−1) ▷ draw sigma points

3 𝑿∗
𝑘|𝑘−1 = 𝜑𝑘(𝑿𝑘−1|𝑘−1) ▷ noiseless predictions

4 Compute 𝑸𝑘 ▷ process noise
5 𝒩(𝒙𝑘|𝑘−1, 𝑷𝑘|𝑘−1) ←←←←←←←←←←←

UT−1 (2.30)
(𝑿∗

𝑘|𝑘−1, 𝑸𝑘) ▷ collapse sigma points
6 𝑝+(𝒙𝑘) = 𝒩(𝒙𝑘; 𝒙𝑘|𝑘−1, 𝑷𝑘|𝑘−1) ▷ predicted density
7
8 𝑿𝑘|𝑘−1 ←←←←←←←←←

UT (2.30)
𝒩(𝒙𝑘|𝑘−1, 𝑷𝑘|𝑘−1) ▷ redraw sigma-points5

9 𝒁∗
𝑘 = ℎ𝑘(𝑿𝑘|𝑘−1) ▷ noiseless meas. prediction

10 Compute 𝑹𝑘 ▷ measurement noise
11 𝒩(𝒛𝑘|𝑘−1, 𝑷Δ𝑧𝑘

) ←←←←←←←←←←←
UT−1 (2.30)

(𝒁∗
𝑘, 𝑹𝑘) ▷ predicted meas. distribution

12 𝑷𝑥𝑧∗
𝑘

←←←←←←←←←
Eq. (2.31)

(𝑿𝑘|𝑘−1, 𝒁∗
𝑘) ▷ cross-covariance

13 𝑲𝑘 = 𝑷𝑥𝑧𝑘
𝑷 −1

𝑧𝑘
▷ Kalman gain

14
15 Δ𝒛𝑘 = 𝒛𝑘 − 𝒛𝑘|𝑘−1 ▷ innovation
16 𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + 𝑲𝑘(Δ𝒛𝑘)
17 𝑷𝑘|𝑘 = 𝑷𝑘|𝑘−1 + 𝑲𝑘𝑷Δ𝑧𝑘

𝑲𝑇
𝑘

18 𝑝𝑘(𝒙𝑘) = 𝒩(𝒙𝑘; 𝒙𝑘|𝑘, 𝑷𝑘|𝑘) ▷ corrected density
19 end for

C. Gaussian mixture as filtering density
As will become clear, it is often convenient in MOT algorithms to represent complex distributions
as Gaussian mixtures. When faced with a new measurement, the mixture must be predicted and
updated accordingly. Algorithm 2.4 outlines the prediction step from 𝑡𝑘−1 to 𝑡𝑘.

Algorithm 2.4:  Gaussian mixture prediction

gm-pred(𝒢𝑘−1|𝑘−1, 𝑡𝑘):

1 define 𝒢𝑘|𝑘−1 ≜ {ℰ(𝑖)
𝑘|𝑘−1}

|𝒢𝑘−1|𝑘−1|

𝑖=1
2 for (𝑤(𝑖)

𝑘−1|𝑘−1, 𝒙
(𝑖)
𝑘−1|𝑘−1, 𝑷

(𝑖)
𝑘−1|𝑘−1) in 𝒢𝑘−1|𝑘−1

3 (𝒙(𝑖)
𝑘|𝑘−1, 𝑷

(𝑖)
𝑘|𝑘−1) ←←←←←←←←←←←←←

EKF/UKF/...
(𝒙(𝑖)

𝑘−1|𝑘−1, 𝑷
(𝑖)

𝑘−1|𝑘−1) ▷ prediction
4 ℰ(𝑖)

𝑘|𝑘−1 = (𝑤(𝑖)
𝑘−1|𝑘−1, 𝒙

(𝑖)
𝑘|𝑘−1, 𝑷

(𝑖)
𝑘|𝑘−1)

5 end for
6 return 𝒢𝑘|𝑘−1

In turn, Algorithm 2.5 details the update step for a GM density based on a single measurement
𝒛𝑘. Note that the sum of weights before normalisation 𝑞𝑧 is the measurement likelihood for the
measurement on the entire GM. Normalisation is required to ensure the mixture is still a PDF,

5Wan and Merwe [139, p. 233] note that redrawing sigma points discards odd-moment uncertainty information
and suggest an alternative augmenting approach. However, under the additive noise assumptions of Eq. (2.27),
this gives the same result.
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2025 2.2 Single-object Bayesian estimation

so it might be omitted in case the GM represents something else (such as a multi-object intensity
function; see Section 3.2.1--E).

Algorithm 2.5:  Gaussian mixture single-measurement Bayes update

gm-corr(𝒢𝑘|𝑘−1, 𝒛𝑘):

1 define 𝒢𝑘|𝑘 ≜ {ℰ(𝑖)
𝑘|𝑘}

|𝒢𝑘|𝑘−1|

𝑖=1
2 for (𝑤(𝑖)

𝑘−1|𝑘−1, 𝒙
(𝑖)
𝑘−1|𝑘−1, 𝑷

(𝑖)
𝑘−1|𝑘−1) in 𝒢𝑘−1|𝑘−1

3 (𝒙(𝑖)
𝑘|𝑘, 𝑷 (𝑖)

𝑘|𝑘) ←←←←←←←←←←←←←
EKF/UKF/...

(𝒙(𝑖)
𝑘|𝑘−1, 𝑷

(𝑖)
𝑘|𝑘−1) ▷ component update

4
5 Extract Δ𝒛(𝑖), 𝑃 (𝑖)

Δ𝑧𝑘
 from EKF/UKF/… ▷ innovation and cov

6 𝑤(𝑖)
𝑘|𝑘 = 𝑤(𝑖)

𝑘|𝑘−1 ⋅ 𝒩(Δ𝒛(𝑖)
𝑘 , 𝟎, 𝑷 (𝑖)

Δ𝑧𝑘
) ▷ component weight

7 ℰ(𝑖)
𝑘|𝑘 = (𝑤(𝑖)

𝑘|𝑘, 𝒙(𝑖)
𝑘|𝑘, 𝑷 (𝑖)

𝑘|𝑘)
8 end for
9 𝑞𝑧𝑘

= 𝜌𝒢𝑘|𝑘 ▷ combined “likelihood”
10 normalise(𝒢𝑘|𝑘−1) ▷ Eq. (2.14)
11 return 𝒢𝑘|𝑘−1, 𝑞𝑧𝑘
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Chapter 3

Multi-object tracking with random finite sets

This section addresses the key aspects of the multi-object tracking (MOT) problem, with a focus
on its formulation and solutions based on finite set statistics (FISST), here referred to as random
finite sets (RFSs). As in Chapter 2, the theory, methods and algorithms described here serve as
technical specification for the implementations in BASIL. The Java library is briefly introduced
in Section 3.4.

3.1 Multi-object representation
At a given time 𝑡𝑘, a multi-object state 𝑋𝑘 ⊂ 𝕏 is a discrete set of target states 𝒙𝑘, belonging to
different objects. The purpose of a multi-object tracking algorithm is to estimate a multi-object
trajectory 𝑋𝑗:𝑘, consisting of an estimated multi-object state at every instant in the discrete time
window 𝕋𝑗:𝑘 = {𝑡𝑗, …, 𝑡𝑘}. However, for any practical application, this is not enough and one is
interested in extracting individual trajectories 𝜏 : 𝕋 → 𝕏 [8] for each distinct object. Vo et al.
[134] claim that “pragmatically, labelling is unavoidable in real multi-object systems” and the
notion of a target label ℓ is required to distinguish between objects.

Given an attribute state 𝒙 ∈ 𝕏 and label ℓ ∈ 𝕃, the single-object (SO) labelled state is 𝒙̊ ≜ (𝒙, ℓ).
In principle, any type of label space 𝕃 is possible as long as it ensures a unique label for all
objects, but Vo et al. [133][135] suggest a common choice is ℓ ≜ (𝑡𝐵, 𝜄), where 𝑡𝐵 is the time
where the label first occurs --birth-- and 𝜄 is an index, allowing multiple labels to be created
simultaneously. It follows that 𝑋̊𝑘 ⊂ 𝕏 × 𝕃 is a labelled MO state and 𝑋̊𝑗:𝑘 represents a labelled
MO trajectory. Note that the labelled MO trajectory satisfies the need to extract the individual
state history per object over time. For every label ℓ ∈ ℒ(𝑋̊𝑗:𝑘), one can construct a single-object
trajectory:

𝜏ℓ : 𝑡𝑖 ↦ 𝒙𝑖, ∀𝑡𝑖 ∈ 𝒟(𝜏ℓ), (3.1)

Here, ℒ : (𝒙, ℓ) ↦ ℓ maps a state to its label and the domain 𝒟(𝜏ℓ) ⊆ 𝕋 is the set of instants
where the label ℓ exists [11][134]. The remainder of this chapter addresses how these trajectories
and their uncertainties can accurately be extracted from measurements.

3.2 Random finite sets
One way to solve the MOT problem is based on RFSs, a branch of point process theory [19][27]
[63] that was specifically tailored for the context of tracking and information fusion. It provides
a generalisation of the Bayesian framework discussed in Section 2.2 by defining states as sets of
object states, along with probability distributions on those sets. This section describes some of
the fundamentals [84].

3.2.1 Definitions and finite set statistics
Integer random variables (e.g. on ℕ0) and vector random variables (on ℝ𝑛) were already briefly
addressed in Section 2.1. RFSs take this concept one step further and transform sets into random
variables. This means that the number of elements in the set -- its cardinality -- is also subject
to randomness.
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2025 3.2 Random finite sets

Let 𝔜 be some underlying space, such as the state space 𝕏 or measurement space ℤ. The
hyperspace of all finite subsets of 𝔜 is then referred to as ℱ(𝔜). The random finite set Ψ is a
random variable on such a hyperspace. This means that a realisation 𝑌  of Ψ is a set containing
a random number of elements, each randomly selected from 𝔜, according to some governing
distributions [82].

For example, 𝑋 ∈ ℱ(𝕏) is a random target set, where each of the targets 𝒙 ∈ 𝑋 is drawn from
a distribution on 𝕏. Similarly, 𝑍 ∈ ℱ(ℤ), is a random measurement set, where each of the
measurements 𝒛 ∈ 𝑍 is a realisation of some random variable on ℤ.

The value of set distributions for MOT algorithms is that they allow extending the rigorous
principles of single-object Bayesian estimation (recall Section 2.2) to multi-object scenarios with
an unknown number of targets.

A. Set integral
For a function 𝑓 : ℱ(𝔜) → ℝ that maps any set of values 𝒚𝑗 ∈ 𝔜 to a real number, the set
integral over a region 𝑆 ⊆ 𝔜 is defined by Goodman et al. [54] as

∫
𝑆

𝑓(𝑌 )𝛿𝑌 = 𝑓(∅) + ∑
∞

𝑖=1

1
𝑖!

∫
𝑆 × ⋯ × 𝑆⏟⏟⏟⏟⏟

𝑖

𝑓({𝒚1, …, 𝒚𝑖})𝑑𝒚1⋯𝑑𝒚𝑖, (3.2)

where the component 𝑖! can be understood intuitively as a normalisation factor to account for
all the permutations to order the elements in the set {𝒚1, …, 𝒚𝑖}. By definition, they should all
give the same result [82, p. 361].

B. Multi-object probability density
Very similar to a single-object density function, FISST offers the notion of a belief density. This
is a non-negative real-valued function 𝜋Ψ : ℱ(𝔜) → ℝ+

0 , for which the set integral over a region
𝑆 is the probability that a realisation of Ψ is a subset of 𝑆. This so-called (FISST) belief mass
becomes unity if 𝑆 = 𝔜:

∀𝑆 ⊆ 𝔜 : ∫
𝑆

𝜋Ψ(𝑌 )𝛿𝑌 = Pr(Ψ ⊆ 𝑆)  and ∫
𝔜

𝜋Ψ(𝑌 )𝛿𝑌 = 1. (3.3)

For the purpose of MOT, this is often referred to as the multi-object probability density function,
even though various other notions of set probability density exist [63][134]. Note that, if 𝒚 ∈ 𝔜
has units 𝑢, then the units of 𝜋Ψ(𝑌 ) must be 𝑢−|𝑌 | to cancel out the dimensions of 𝑑𝒚1⋯𝑑𝒚|𝑌 | in
Eq. (3.2) [82]. For this reason, it is hard to meaningfully compare values of multi-object density.
Vo et al. [130, Sec. 1][134, Sec. II-C] illustrate this intuitively with a clear example, reproduced
here for reference.
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3 Multi-object tracking with random finite sets

Example [130]

Imagine collecting apples in a 1D forest. Every day,
the number of apples is uniformly distributed between
0 and 9, and each apple falls i.i.d. following the PDF
in Figure 3.1. On day one, the set of apples is 𝑋1 =
{𝑎, 𝑏} and on day two, 𝑋2 = {𝑐}. Which of these has
a higher likelihood? Noting that there is a 1

10  chance
of observing any number of apples 𝑚 < 10, the joint
density 𝜋({𝑥1, …, 𝑥𝑚}) = 1

10 ∏𝑚
𝑖=1 𝑝(𝑥𝑖). So, 𝜋(𝑋1) =

3.6 × 10−2 m−2 and 𝜋(𝑋2) = 2 × 10−2 m−1. At first
glance 𝑋1 might appear more likely, but since the den-
sities have different units, they cannot be meaningfully
compared. If we would measure in mm instead, the
PDF would be scaled accordingly and the joint density
values would become 𝜋(𝑋1) = 3.6 × 10−8 mm−2 and
𝜋(𝑋2) = 2 × 10−4 mm−1, respectively. [134]

Figure 3.1:  Why multi-object
densities are hard to compare.
The MO densities of events {a,b}

and {c} have different units6

C. Convolution of RFS densities
If Ψ = ⨄𝑛

𝑖=1 Ψ𝑖 is the union of 𝑛 disjoint and independent RFSs, then its multi-object density
follows from the RFS convolution [84, p. 86][134]

𝜋Ψ(𝑌 ) = ∑
⨄𝑛

𝑖=1 𝑌𝑖=𝑌

[∏
𝑛

𝑖=1
𝜋Ψ𝑖

(𝑌𝑖)]. (3.4)

D. Cardinality distribution
The cardinality distribution of a random finite set is a discrete distribution defined by [19]
[82][134]

𝜌Ψ(𝑛) ≜ Pr(|Ψ| = 𝑛) = 1
𝑛!

∫
𝔜×⋯×𝔜⏟⏟⏟⏟⏟

𝑛

𝜋Ψ({𝒚1:𝑛})𝑑𝒚1:𝑛. (3.5)

So, 𝜌Ψ(𝑛) is the probability that a realisation of the RFS Ψ contains exactly 𝑛 elements.

E. Probability hypothesis density – intensity
A commonly used RFS statistic is the probability hypothesis density (PHD) or probability intensity
𝑣Ψ. It is the first moment approximation of an RFS [81], and can be seen intuitively as the the
equivalent of “expected value” in the single-object case. More specifically, the integral of the
probability hypothesis density (PHD) over some region 𝑆 ⊆ 𝔜 results in the expected cardinality
of the RFS inside that region,

∫
𝑆

𝑣Ψ(𝒚)𝑑𝒚 = 𝔼[|Ψ ∩ 𝑆|]. (3.6)

Notice that, if the cardinality is certainly 1 (i.e. 𝜌Ψ(𝑛) = 1 if 𝑛 = 1 and 0 otherwise), then
Eq. (3.6) reduces to Eq. (2.1) and 𝑣Ψ becomes equivalent to a single-object PDF.

6Pictogram from Flaticon.com
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2025 3.2 Random finite sets

3.2.2 Labelled random finite set
As discussed in Section 3.1, labels are essential to model, estimate and extract MO states and
trajectories. Vo et al. [133][135] introduced this notion into the RFS framework, by defining the
labelled random finite set (LRFS) Ψ̊ as a RFS on 𝕏 × 𝕃 such that its realisations (labelled MO
states) are of the form

𝑋̊ ≜ {(𝒙𝑖, ℓ𝑖)}
|𝑋̊|
𝑖=1. (3.7)

For convenience, we define ℒ(𝑋̊) as the set of labels and attributes in 𝑋̊, respectively. The MO
density of Ψ̊ is denoted ̊𝜋Ψ.

In addition, LRFS theory uses the so-called joint existence probability 𝑤Ψ̊(𝐿) to indicate the
probability that a realisation of Ψ̊ contains each of the labels in 𝐿 ⊆ 𝕃 [134]. Clearly, this
joint existence probability can be used to determine the cardinality distribution by summing all
possible 𝑤Ψ̊(𝐿) with the same number of existing labels:

𝜌Ψ̊(𝑛) = ∑
𝐿⊆𝕃

𝛿𝑛[|𝐿|]𝑤Ψ̊(𝐿), (3.8)

where 𝛿𝑎[𝑏] is the Kronecker delta and evaluates to 1 if 𝑎 = 𝑏 and 0 otherwise. Read Eq. (3.8)
as “take all possible label sets with exactly 𝑛 elements, compute the probability that all labels
in these subsets exist at the same time and then sum those probabilities”. Based on the labelled
PHD/intensity ̊𝑣(𝒙, ℓ), one can also infer the existence probability of a single label and the
attribute distribution for a given label provided that it exists.

𝑟Ψ̊(ℓ) = ∫ ̊𝑣Ψ̊(𝒙, ℓ)𝑑𝒙, 𝑝Ψ̊(⋅, ℓ) =
̊𝑣Ψ̊(⋅, ℓ)
𝑟Ψ̊(ℓ)

(3.9)

3.2.3 Relevant RFS models
A. Independent and identically distributed Cluster RFS
An i.i.d. cluster is a type of RFS where the cardinality follows some discrete distribution 𝜌Ψ,
and each of the components has the same independent “spatial” distribution 𝑝Ψ.

B. Poisson RFS
A special case of i.i.d. cluster appears when the cardinality distribution is Poisson. This is referred
to interchangeably as a Poisson point process (PPP) or Poisson RFS and has many applications
in MOT, specifically when modelling clutter (see Section 3.3.2--B).

Notice that a Poisson point process (PPP) is completely characterised by its PHD 𝑣Ψ and the
cardinality is Poisson distributed with mean 𝜆Ψ = ⟨𝑣Ψ, 1⟩, such that

𝜋Ψ(𝑌 ) = 𝑒−𝜆Ψ ∏
𝒚∈𝑌

𝑣Ψ(𝒚), 𝜌Ψ(𝑛) = 𝑒−𝜆Ψ𝜆𝑛
Ψ

𝑛!
. (3.10)

Intuition is easily obtained from Algorithm 3.1, which describes that one can sample a set from a
PPP by sampling the number of targets 𝑛 from a discrete Poisson distribution and then sampling
𝑛 targets from the single-object PDF 𝑝Ψ = 𝑣Ψ/𝜆Ψ.
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Algorithm 3.1:  Sampling from a Poisson RFS

sample(𝑣Ψ):
1 𝜆Ψ = ⟨𝑣Ψ, 1⟩
2 𝑝Ψ = 𝑣Ψ/𝜆Ψ

3 sample 𝑛 ∼ Po(𝜆Ψ) ▷ cardinality Eq. (3.10)
4 𝑌 = {sample 𝒚𝑖 ∼ 𝑝Ψ}𝑛

𝑖=1 ▷ states
5 return 𝑌

Note that the term 𝑛! in Eq. (3.10) emerges from the integrated MO density because of the fact
that there are 𝑛! = |𝑌 |! permutations to order the elements in 𝑌  (see p. 18).

C. Bernoulli RFS
A Bernoulli (RFS) is parametrised by a single-object PDF 𝑝 and an existence probability 𝑟 ∈
[0, 1]. It is particularly appealing because of its intuitive tracking interpretation as a hypothesised
target [84, p. 100], i.e. if the target exists, Ψ = {𝒚} with 𝒚 ∼ 𝑝 and if not, the set is empty Ψ =
∅. The corresponding MO density, cardinality distribution and PHD are

𝜋Ψ(𝑌 ) = (1 − 𝑟)𝛿∅[𝑌 ] + 𝑟𝑝(𝒚)𝛿{𝒚}[𝑌 ], (3.11a)

𝜌Ψ(𝑛) = (1 − 𝑟)𝛿0[𝑛] + 𝑟𝛿1[𝑛], (3.11b)
𝑣Ψ(𝒚) = 𝑟𝑝(𝒚). (3.11c)

D. Multi-Bernoulli RFS
A union of independent Bernoullis with distinct components is called a multi-Bernoulli (RFS).
Giving the identifiers ℬ = {𝛽1, …, 𝛽|ℬ|} to those Bernoullis, the multi-Bernoulli is completely
parametrised by 𝜋Ψ = {(𝑟(𝛽), 𝑝(𝛽))}

𝛽∈ℬ
. The probability that none of the components exist is

𝜋Ψ(∅) = ∏𝛽∈ℬ(1 − 𝑟(𝛽)) and the characteristic distributions are

𝜋Ψ(𝑌 ) = ∑
ℬ𝑖⊆ℬ
|ℬ𝑖|=|𝑌 |

[
[
[
[
[ all excluded don't exist

⏞⏞⏞⏞⏞⏞⏞
∏

𝛽𝑗∈ℬ∖ℬ𝑖

(1 − 𝑟(𝛽𝑗))

all included exist and
SO probability density

⏞⏞⏞⏞⏞⏞⏞⏞⏞
∏

𝛽𝑗∈ℬ𝑖

𝑟(𝛽𝑗)𝑝(𝛽𝑗)(𝒚𝑗)

]
]
]
]
]

(3.12a)

= 𝜋Ψ(∅) ⋅ ∑
ℬ𝑖⊆ℬ
|ℬ𝑖|=|𝑌 |

[
[[ ∏

𝛽𝑗∈ℬ𝑖

𝑟(𝛽𝑗)𝑝(𝛽𝑗)(𝒚𝑗)
1 − 𝑟(𝛽𝑗)

]
]], (3.12b)

𝑣Ψ(𝒚) = ∑
𝛽∈ℬ

𝑟(𝛽)𝑝(𝛽)(𝒚). (3.12c)

The factorisation of Eq. (3.12b) is essential in many MOT implementations and particularly
to allow truncation before computation, discussed in several parts of Section 3.3.4. Notice that
𝜋Ψ(∅) cancels out all the denominators and leaves the relevant components in the numerator,
thereby modelling the non-existence probabilities implicitly.

E. Labelled multi-Bernoulli RFS
A labelled multi-Bernoulli (LMB) is an LRFS that consists of a set of Bernoullis components,
where each component has a unique label ℓ ∈ 𝕃. Since the LMB is completely characterised by
those components, the labelled MO density can be written as the set
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2025 3.2 Random finite sets

̊𝜋Ψ̊ ≜ {(𝑟(ℓ), ̊𝑝Ψ̊(⋅, ℓ))}
ℓ∈𝐿

. (3.13)

From an MOT perspective, this density has a very clear interpretation: The distribution has
labels for |𝐿| different objects. For each of those objects, there is a probability of 𝑟(ℓ) that it
exists and if it does, its state follows the attribute PDF ̊𝑝Ψ̊(⋅, ℓ) [84, p. 453].

F. Generalised labelled multi-Bernoulli RFS
A final step to incorporate even more variability is made with the generalised labelled multi-
Bernoulli (GLMB) RFS [133][135], which is parametrised by a set of hypotheses

̊𝜋Ψ̊ = {(𝑤(𝜉)(𝐿), ̊𝑝(𝜉))}
(𝜉,𝐿)∈ℋ

, (3.14)

that represent the MO density. The GLMB probability density of a labelled state 𝑋̊ can be
written in various equivalent ways, but for numerical implementations, the δGLMB form is most
convenient. The total density is then a weighted sum over all hypotheses:

̊𝜋Ψ̊(𝑋̊) =

label
uniqueness

⏞
| Δ𝑋̊

hypotheses

⏞
| ∑

(𝜉,𝐿)∈ℋ

[
[
[
[
[
[

joint existence
probability

⏞
| 𝑤(𝜉)(𝐿)

combined density
⏞⏞⏞⏞⏞⏞⏞
| ∏

(𝒙,ℓ)∈𝑋̊

̊𝑝(𝜉)(𝒙, ℓ)

]
]
]
]
]
]

, (3.15)

where Δ𝑋̊ ≜ 𝛿|𝑋̊|[|ℒ(𝑋)|] is 1 if the labels in 𝑋̊ are unique and 0 otherwise. Again, reading this
from a tracking point of view, the MO density takes into account a set of hypotheses (𝜉, 𝐿) ∈
ℋ, where 𝐿 contains all the targets (labels) that exist in that hypothesis and 𝜉 reflects the
history of measurement associations (see Eq. (3.18)). The state of these targets then follows the
distribution ̊𝑝(𝜉)(⋅, ℓ) for each ℓ ∈ 𝐿. Finally, the probability that all these targets exist together
with this particular distribution is 𝑤(𝜉)(𝐿), often called the weight of the hypothesis.

Vo and Vo [135] showed that this RFS is conjugate prior (recall Section 2.2.3) with respect to
the multi-object measurement likelihood from Eq. (3.22) and also closed under the prediction
step. As a result, the GLMB is a valid MO state density representation for Bayesian filtering.

3.3 Multi-object Bayesian filtering
As mentioned before, the entire purpose of introducing RFSs is to extend principles of single-
object Bayesian estimation (Section 2.2) to the multi-object context. The focus here is on
the elements needed to implement a Bayesian filter based on the LMB/GLMB formulation
(Section 3.2.3--E and  3.2.3--F). Given some prior LRFS distribution ̊𝜋𝑘−1 and scan of measure-
ments 𝑍𝑘, the filter must do three things:
(i) Use the system dynamics to transition the multi-object distribution to ̊𝜋𝑘|𝑘−1.
(ii) Use the measurement model to update the distribution to ̊𝜋𝑘|𝑘.
(iii) Estimate the multi-object state 𝑋̊𝑘|𝑘 = {(𝒙̊𝑘|𝑘, ℓ)} and update the trajectory 𝜏 (ℓ) for each

of the targets ℓ.

These steps are conceptually equivalent to the single-object filtering logic. However, there are
some key differences when dealing with set states, caused by the additional uncertainty as to the
number of distinct objects that are being tracked.

First of all, the number of hypothetical objects (targets) represented by the LRFS state can
vary over time. The process of introducing new labels into the MO density is commonly referred
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to as target birth. Conversely, the existence of a target that is no longer supported by any
observations can become so improbable that it is removed from the state (target death). From an
SSA perspective, recall that only a very small fraction of the RSO population is tracked by active
catalogues. In any measurement scan, it is thus possible that some of the observations belong
to previously unknown objects. A birth process inside the transition model (the first step of the
filtering recursion) will account for this possibility. This is already touched upon in Section 3.3.1,
but Section 5.3 later develops this for the orbital tracking problem.

Furthermore, there can now be multiple measurements at every observation epoch (a single
image can capture light reflected from multiple satellites) and the MO filter must deal with
the consistent assignment of these measurements to the available tracklets. This means that the
joint measurement likelihood not only depends on how well the observations fit the assigned
objects, but also how this likelihood compares to all other possible assignments. This leads to
the MO measurement model introduced in Section 3.3.2 and requires carefully ranking likely
measurement assignments, discussed in Section 3.3.3.

3.3.1 Multi-object transition model
Compared to the single-object case, the MO transition model has the additional “responsibility”
of dealing with target birth and death (see above). That is, the MO Bayesian filter must allow for
additional objects to be initialised as new measurements come in, or to conclude that an object
no longer exists.

In the standard multi-object model [135], the birth density is represented by a GLMB (Eq. (3.14)),
but an LMB (Eq. (3.13)) is usually sufficient and offers the more intuitive interpretation,
where each component represents a potential new object with distribution 𝑝𝐵,𝑘 and some birth
probability 𝑃𝐵

̊𝜋𝐵,𝑘 = {(𝑃 (ℓ)
𝐵,𝑘, 𝑝𝐵,𝑘(⋅, ℓ))}

ℓ∈ℒ(𝐵𝑘)
. (3.16)

Here, 𝔹𝑘 = ℒ(𝐵𝑘) is a set of labels that did not previously exist, i.e. 𝔹𝑘 ∩ 𝕃𝑘−1 = ∅. The surviving
GLMB is defined by a survival probability 𝑃𝑆,𝑘(𝒙̊𝑘−1) and a single object transition density
𝑓𝑆,𝑘(⋅ |𝒙̊𝑘−1). Both survival and birth are incorporated in the MO transition density ̊𝑓𝑘, which
allows for a direct generalisation of the Chapman-Kolmogorov equation in Eq. (2.24) to RFSs
[135]:

̊𝜋+(𝑋̊𝑘) = ∫ ̊𝑓(𝑋̊𝑘|𝑋̊′
𝑘−1) ̊𝜋𝑘−1(𝑋̊′

𝑘−1)𝛿𝑋̊′
𝑘−1. (3.17)

If both the survival and birth densities are in δ-generalised labelled multi-Bernoulli
(δGLMB) form Eq.  (3.14), then the predicted density can be written conveniently as
̊𝜋GLMB
+ = ̊𝜋GLMB

𝐵,𝑘 ∪ ̊𝜋GLMB
𝑆,𝑘 , which is useful in implementation, as discussed in Section 3.3.4.

3.3.2 Multi-object measurement model
Another elementary requirement to transform the Bayesian framework to MOT is a multi-object
version of the measurement likelihood. In the discussion on single-object estimation (Section 2.2),
it was implicitly assumed that the the measurement sequence 𝑍1:𝑘 consisted of exactly one
measurement per time step, which always originated from the object of interest. However, an
object might not be detected, or clutter measurements might exist that contain no information
about the object’s state. In the general case, a measurement scan 𝑍𝑘 = 𝑂𝑘 ⊎ 𝐶𝑘, where 𝑂𝑘 is the
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set of observations originating from some object states in 𝑋̊𝑘 (others could be undetected) and
𝐶𝑘 is the set of clutter measurements.

Apart from the actual state estimations, a tracker must solve the problem of association, i.e.
determining which objects in 𝑋̊𝑘 caused which measurements in the scan 𝑍𝑘. An answer to this
problem is referred to as an association hypothesis 𝜃𝑘 : ℒ(𝑋̊𝑘) → {0, …, |𝑍𝑘|}, which maps every
label in 𝑋̊𝑘 either to a distinct measurement index or to 0 if the label is undetected.

𝜃𝑘(ℓ) = {𝑖 if object ℓ caused measurement 𝑖 : 𝒐(ℓ)
𝑘 ≜ 𝒛(𝑖)

𝑘
0 if object ℓ is undetected

(3.18)

Consequently, one can define the “inverse” mapping 𝜃−1
𝑘 : {1, …, |𝑍𝑘|} → ℒ(𝑋̊𝑘) ∪ {𝒸}, where 𝒸

represents the clutter/unknown label:

𝜃−1
𝑘 (𝑖) =

{{
{
{{ℓ if object ℓ caused measurement 𝒛(𝑖)

𝑘

𝒸 if no known object caused 𝒄(𝑖)
𝑘 ≜ 𝒛(𝑖)

𝑘
(3.19)

For a given set of prior states 𝑋̊𝑘 and a measurement scan 𝑍𝑘, Θ𝑘 = {𝜃𝑖
𝑘, …} is the set of all

possible association hypotheses.

A. Object observations
Assume an object with state 𝒙̊ ∈ 𝑋̊ has a detection probability 𝑃𝐷(𝒙̊) and if it is detected, the
resulting measurement 𝒐(ℓ)

𝑘  follows the SO density 𝑔𝑘(𝒐|𝒙). This means that the SO observation
set 𝑂(ℓ)

𝑘  follows a Bernoulli RFS Eq. (3.11) and as a result, the MO observation set 𝑂𝑘 =
⨄(𝒙,ℓ)∈𝑋̊ 𝑂(ℓ)

𝑘  is multi-Bernoulli [122] and its MO likelihood follows the convolution Eq. (3.4)

𝑔𝑜
𝑘(𝑂|𝑋̊𝑘) = ∑

⨄ℓ∈𝕃𝑘
𝑂(ℓ)=𝑂[

[
[ ∏

(𝒙,ℓ)∈𝑋̊𝑘

𝑔𝑘(𝑂(ℓ)|{𝒙̊})
]
]
], (3.20a)

where 𝕃𝑘 = ℒ(𝑋̊), (3.20b)

and 𝑔𝑘(𝑂|{𝒙̊}) ================
Eq. (3.11)

{𝑃𝐷(ℓ)𝑔𝑘(𝒐|𝒙̊) if 𝑂 = {𝒐}
1 − 𝑃𝐷(𝒙̊) if 𝑂 = ∅ . (3.20c)

Intuitively, this means that one should consider all possible ways that the states could have
generated these observations, evaluate the probability that each of those actually happened and
sum these probabilities.

B. Clutter measurements
The other source of measurements --the clutter set 𝐶𝑘-- is commonly modelled as a Poisson point
process Eq. (3.10) with time-dependent clutter intensity function 𝜅𝑐 ≜ 𝜅𝑐(⋅, 𝑡𝑘):

𝜋𝑐(𝐶) = 𝑒−𝜆𝑐 ∏
𝒛∈𝐶

𝜅𝑐(𝒛), (3.21)

such that 𝜆𝑐 ≜ 𝜆𝑐(𝑡𝑘) ≜ ⟨𝜅𝑐, 1⟩ represents the expected number of clutter measurements at time
𝑡𝑘.
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C. Complete multi-object measurement likelihood
Combining the two measurement sources, and considering the likelihood of all possible association
scenarios in a single MO measurement model leads to the measurement scan likelihood

𝑔𝑘(𝑍𝑘|𝑋̊𝑘) =

all clutter
⏞

|
|
|
|
|

𝜋𝑐(𝑍𝑘) ⋅

all undetected
⏞⏞⏞⏞⏞

|
|
|
|
|

𝑔𝑜
𝑘(∅|𝑋̊𝑘) ⋅

detected (so not clutter or undetected)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

|
|
|
|
|

∑
𝜃𝑘∈Θ𝑘

[
[[
[
[

∏
𝒙̊≜(𝒙,ℓ):
𝜃𝑘(ℓ)>0

𝑃𝐷(𝒙̊)𝑔𝑘(𝒛𝜃𝑘(ℓ)
𝑘 | 𝒙)

𝜅𝑐(𝒛𝜃𝑘(ℓ)
𝑘 )(1 − 𝑃𝐷(𝒙̊))

]
]]
]
]

, (3.22)

where 𝜋𝑐(𝑍𝑘) is the probability that all measurements are false positives -- computed by Eq. (3.21)
-- and 𝑔𝑜

𝑘(∅|𝑋̊𝑘) = ∏𝒙̊∈𝑋̊(1 − 𝑃𝐷(𝒙̊)) is the probability that none of the objects are detected.
All other options are present in the sum over the possible association hypotheses Θ𝑘, where
the denominator is used to cancel out all unnecessary contributions to the first two terms. As
such, any combination of detected, misdetected and clutter cases are accounted for in this model.
This formulation of the likelihood is very useful from an implementation point of view (see
Section 3.3.3).

D. Sampling measurements from the standard measurement model
For the purpose of testing filter performance on theoretical cases, it is often useful to generate
simulated measurements. Algorithm 3.2 describes how this can be done while keeping consistency
with the standard measurement model in Eq. (3.22).

Algorithm 3.2:  Sampling measurements from the standard measurement model

meas sample(likelihood 𝑔𝑘(𝑍|𝑋̊𝑘; 𝑝𝐷, 𝜅𝑐)):
1 𝑂𝑘 = 𝐶𝑘 = ∅
2 for 𝒙̊𝑘 in 𝑋̊𝑘 ▷ sample observations
3 sample 𝑢 ∼ 𝒰([0, 1])
4 if 𝑢 < 𝑝𝐷(𝒙̊𝑘, 𝑡𝑘)
5 sample 𝒐(ℓ)

𝑘 ∼ 𝑔𝑘(⋅, 𝒙𝑘)
6 𝑂𝑘 = 𝑂𝑘 ∪ {𝒐𝑘}
7 end if
8 end for
9 𝜆𝑐 = ∫

ℤ
𝜅𝑐(𝒛)𝑑𝒛 ▷ clutter rate

10 sample |𝐶𝑘| ∼ Po(𝜆𝑐) ▷ clutter cardinality
11 for 𝑖 in {1, …, |𝐶𝑘|} ▷ sample clutter
12 sample 𝒄𝑘 ∼ 𝜅𝑐(⋅, 𝑡𝑘)
13 𝐶𝑘 = 𝐶𝑘 ∪ {𝒄𝑘}
14 end for
15 𝑍𝑘 = 𝑂𝑘 ∪ 𝐶𝑘

16 return 𝑍𝑘

3.3.3 Optimal assignment
One of the key bottlenecks in MO trackers occurs in the step of measurement association.
Since the complexity of the last term in Eq. (3.22) scales combinatorially with the number of
measurements and labels, the likelihood function is intractable for large-scale tracking problems
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such as SSA. The Bayesian update must therefore be truncated in some meaningful manner. The
practice of finding the hypotheses in Θ𝑘 that contribute the most to the MO likelihood can be
formulated as an optimal assignment problem.

To achieve this, let 𝐿𝜃𝑘
𝑘 ≜ log(𝑔𝜃𝑘

𝑘 (𝑍𝑘|𝑋̊𝑘)) be the log likelihood of observing the measurements
𝑍𝑘 based on the prior 𝑋̊𝑘 and conditioned on specific association mapping 𝜃𝑘 ∈ Θ𝑘 Eq. (3.18):

𝐿𝜃𝑘
𝑘 =

all clutter
⏞⏞⏞⏞⏞
| log[𝜋𝑐(𝑍𝑘)] +

all undetected
⏞⏞⏞⏞⏞⏞⏞
| log[𝑔𝑜

𝑘(∅ | 𝑋̊𝑘)] +

assignment score
⏞⏞⏞⏞⏞
| ∑

𝒙̊≜(𝒙,ℓ)
𝜃𝑘(ℓ)>0

𝜓𝜃𝑘(ℓ)
ℓ , (3.23a)

with 𝜓𝜃𝑘(ℓ)
ℓ =

{{
{{
{{
{

log[
𝑃𝐷(𝒙̊)𝑃𝐺𝑔𝑘(𝒛𝜃𝑘(ℓ)

𝑘 | 𝒙)

𝜅𝑐(𝒛𝜃𝑘(ℓ)
𝑘 )(1−𝑃𝐷(𝒙̊))

] if 𝜃𝑘(ℓ) > 0

0 if 𝜃𝑘(ℓ) = 0 (undetected)
, (3.23b)

where 𝑃𝐺 is the gating probability (discussed further in Section 3.3.3--B). If gating is not applied,
𝑃𝐺 = 1 and this factor disappears. Since 𝜃𝑘 implies every label causes at most 1 measurement,
the association is an assignment problem where the total score is 𝐿𝜃𝑘

𝑘 . Note that taking the
logarithm does not change the order of the scores, but is commonly used to avoid numerical
problems since the score values are typically very low.

Example

The assignment problem can be visualised in a 2D table like Figure 3.2, where 4 track labels
form the rows and the first 5 columns correspond to the measurements. The association
score from Eq. (3.23b) is then computed for each of the target-measurement associations. To
represent the possibility of missed detections, an additional column is added for each target
with one value set to the score 𝜓0

ℓ𝑖
= 0 and all others set to −∞, since they are not allowable

associations.

After assigning each target (row) to a different column, the complete multi-object measurement
log-likelihood is obtained by summing all the relevant scores and adding the constant terms
from Eq. (3.23a). The benefit of formulating the problem like this is that existing algorithms
from other fields can be used to find the assignments with the highest scores.

Again, notice that false-positive observations are modelled implicitly. Any measurement to
which no target is assigned, must be associated to the clutter process. Since the assignment
scores have the clutter intensity in the denominator, the clutter contributions from all assigned
measurements cancel out and what remains of the first constant term in Eq. (3.23a) correctly
represents likelihood that all unassigned observations are false-positives.
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𝒛1 𝒛2 𝒛3 𝒛4 𝒛5 mis1 mis2 mis3 mis4

ℓ1 𝜓1
ℓ1

𝜓2
ℓ1

𝜓3
ℓ1

𝜓4
ℓ1

𝜓5
ℓ1

𝜓0
ℓ1

−∞ −∞ −∞

ℓ2 𝜓1
ℓ2

𝜓2
ℓ2

𝜓3
ℓ2

𝜓4
ℓ2

𝜓5
ℓ2

−∞ 𝜓0
ℓ2

−∞ −∞

ℓ3 𝜓1
ℓ3

𝜓2
ℓ3

𝜓3
ℓ3

𝜓4
ℓ3

𝜓5
ℓ3

−∞ −∞ 𝜓0
ℓ3

−∞

ℓ4 𝜓1
ℓ4

𝜓2
ℓ4

𝜓3
ℓ4

𝜓4
ℓ4

𝜓5
ℓ4

−∞ −∞ −∞ 𝜓0
ℓ4

Figure 3.2:  Example assignment score matrix with potential assignment mapping
𝜃𝑘 : {ℓ1 ↦ 5, ℓ2 ↦ 1, ℓ3 ↦ 0, ℓ4 ↦ 3} indicated in grey. This implies that the object

with label ℓ3 is undetected at time 𝑡𝑘 and 𝒛2 and 𝒛4 are clutter measurements.

A. Auction and Murty for n-best optimal assignment
A variety of algorithms exist that can find the optimal assignment mapping for a score matrix
like in Figure 6 with varying computational complexity [9][11][66][72].

However, finding the single best assignment (hypothesis) is not sufficient. As mentioned before,
the goal is to consider the weighted contributions from multiple hypotheses. Although the
theoretical formulation just considers all hypotheses, this is intractable for realistic numbers of
targets and measurements. Moreover, the large majority of assignments usually has a negligible
likelihood and therefore almost no influence on the final result of the filter update. It is therefore
desirable to select the 𝑛 best assignments for the weighted update and ignore all the others. The
result will be an approximation of the corrected MO density before actually computing it. Vo
and Vo [135, Sec. IV-C] showed that this type of truncation minimises the 𝐿1 distance for the
δGLMB corrected density, which is used in this work (see Section 3.3.4--C).

Solving this ranked assignment problem is often done by Murty’s algorithm [91], which iteratively
uses an optimal assignment solver (here: Auction) and then removes that solution from the search
space until the desired number of solutions is extracted [11]. For this thesis, a version of the
Auction algorithm [9] is implemented, following the description by Blackman and Popoli [11, Sec.
6.5] and the implementation of Murty’s algorithm was based on a paper by Cox and Hingorani
[25, p. 143].

B. Measurement gating
Since the association step is notoriously one of the computational bottlenecks in MOT -- Murty’s
algorithm has about 𝒪[𝑛 ⋅ |𝐿| log|𝐿| ⋅ (|𝑍| + |𝐿|)] complexity when using Auction assignment
algorithm --, it is unfeasible to use it as-is for larger target and measurement sets. In such cases
it is better to eliminate certain associations a-priori, based on the statistical distance between
expected and observed measurements. This is often called gating.

Given a Gaussian measurement model ℎ : 𝕏 → ℤ where ℤ ⊆ ℝ𝑚, every prior state estimate
(𝒙, ℓ) results in an estimated measurement ℎ(𝒙), and an innovation covariance 𝑷Δ𝑧 (recall
Section 2.2.4). Given this probability distribution, the squared Mahalanobis distance Eq. (2.19)
between 𝒩(ℎ(𝒙), 𝑷𝑧(𝒙)) and any measurement 𝒛 originating from object ℓ will be 𝜒2 distributed
with 𝑚 degrees of freedom. One can then define a gate with gating probability 𝑃𝐺, that accepts
measurements 𝒛 for which

𝑑2
𝑀(𝒛; ℎ(𝒙), 𝑷𝑧(𝒙)) < 𝑄𝜒2(𝑃𝐺; 𝑚), (3.24)
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where 𝑄𝜒2(⋅; 𝑚) is the inverse cumulative density function or quantile function of the 𝜒2

distribution for 𝑚 degrees of freedom. This means that there is a 1 − 𝑃𝐺 chance that a correct
measurement falls outside the gate.

The result of gating can be implemented by setting the assignment score in Figure 3.2 to −∞
for the measurements that do not pass a target’s gate. This immediately discards assignment
mappings where any rejected association is included.

C. Assignment grouping
After gating, it is possible to reduce the dimensionality of the measurement association problem
by grouping those targets whose gates admitted the same measurements. Intuitively, it is follows
that if two disjoint measurement sets pass the gates of two disjoint target sets, the ranked
assignment problem may be split into two separate assignment problems that can be solved in
parallel. This is illustrated below for the example from Figure 3.2. Reuter et al. [104] show that
grouping before the filter update introduces negligible errors provided that the gating threshold
is sufficiently large.

Example (cont. from p. 26)

Figure 3.3 visualises how the process of gating and grouping splits the dense assignment matrix
from Figure 3.2 into two smaller problems of reduced complexity. Completely disjoint gates
form separate groups (i.e. assignment matrices) and within groups, various assignments might
be disallowed, resulting in sparse assignment matrices.

Assignment matrix 1:

𝒛1 𝒛3 mis1 mis3 mis4

ℓ1 𝜓1
ℓ1

−∞ 𝜓0
ℓ1

−∞ −∞

ℓ3 −∞ 𝜓3
ℓ3

−∞ 𝜓0
ℓ3

−∞

ℓ4 𝜓1
ℓ4

𝜓3
ℓ4

−∞ −∞ 𝜓0
ℓ4

Gating in measurement space:

Assignment matrix 2:

𝒛2 𝒛5 mis2

ℓ2 𝜓2
ℓ2

𝜓5
ℓ2

𝜓0
ℓ2

Figure 3.3:  Example of grouping and gating with the resulting reduced assignment
score matrices compared to Figure 3.2.

3.3.4 LMB filter implementation
The main part of this work uses the LMB filter for MOT, so this section briefly summarises the
key elements in that algorithm as proposed by Reuter et al. [104] with a focus on how they are
implemented in BASIL for this thesis. The reader is referred to the original paper for details and
derivations. A schematic overview of the LMB recursion is provided in Figure 3.4, referencing
the relevant subsections where each step is further addressed.

page 28



3 Multi-object tracking with random finite sets

predict
3.3.4--A

convert
3.3.4--B

iterate 𝑘 ≔ 𝑘 + 1

estimate
3.3.4--F

approximate
3.3.4--D

correct
3.3.4--C

association
4

probabilities
4

adapt 3.3.4--G

birth
3.3.4--A

meas.
3.3.4--C

4adapt 3.3.4--G
̊𝜋𝐵,𝑘

̊𝜋LMB
𝑘−1|𝑘−1 ̊𝜋LMB

𝑘|𝑘−1 ̊𝜋LMB
𝑘|𝑘 𝑋̊𝑘|𝑘

̊𝜋GLMB
𝑘|𝑘−1 ̊𝜋GLMB

𝑘|𝑘 𝛾𝑘 𝛼𝑘

𝑍𝑘

Figure 3.4:  LMB filter schematic overview. The links direct to the section where
each step is addressed. Note that everything related to association extraction (here

shown with dashed lines) is not part of the original LMB filter.

To provide a more intuitive insight into the procedure, all steps in a single iteration are
illustrated for a very simple example starting on p. 35.

Let ̊𝜋𝑘−1 be a prior LMB multi-object density, where the single-object state densities are
restricted to be labelled Gaussian mixtures 𝒢(ℓ)

𝑘−1 (recall Section 2.1.2) for the purpose of this
work7:

̊𝜋𝑘−1 = {(𝑟(ℓ)
𝑘−1, 𝒢

(ℓ)
𝑘−1)}

ℓ∈𝕃𝑘−1

, (3.25a)

 with 𝒢(ℓ)
𝑘 ≜ {ℰ(ℓ,𝑖)

𝑘 ≜ (𝑤(ℓ,𝑖)
𝑘 , 𝒙(ℓ,𝑖)

𝑘 , 𝑷 (ℓ,𝑖)
𝑘 )}

|𝒢(ℓ)
𝑘 |

𝑖=1
. (3.25b)

A. Prediction
Since the LMB is closed under the Chapman-Kolmogorov equation Eq. (3.17), the prediction
step consists of (1) predicting the components of the previously existing Gaussian mixtures, (2)
adjusting the existence probabilities to account for potential target disappearance (death) and
(3) adding the components of an LMB birth density ̊𝜋𝐵,𝑘:

̊𝜋𝑘|𝑘−1 = {(𝑟(ℓ)
𝑘|𝑘−1, 𝒢

(ℓ)
𝑘|𝑘−1)} = ̊𝜋𝐵,𝑘 ∪ ̊𝜋𝑆,𝑘 (3.26a)

with ̊𝜋𝑆,𝑘 = {(𝑟(ℓ)
𝑘|𝑘−1, 𝒢

(ℓ)
𝑘|𝑘−1)}

ℓ∈𝕃𝑘−1

, (3.26b)

where 𝑟(ℓ)
𝑘|𝑘−1 = 𝑃𝑆,𝑘(𝒙̊)𝑟(ℓ)

𝑘−1 and the mixtures 𝒢(ℓ)
𝑘|𝑘−1 are predicted using Algorithm 2.4. Note

that the birth process causes the label space to be extended to 𝕃𝑘 = 𝕃𝑘−1 ⊎ 𝔹𝑘. To limit the
computational complexity, the implementation sets configurable capping and pruning thresholds
that removes the components with lowest existence probability.

7This GM limitation is not necessary for the LMB filter, but it is chosen for simplicity and to reflect the present
implementation. The notation here does assume that the GM is closed under both the prediction and Bayes
update, which is not true in general, but holds for the Gaussian simplifications from Section 2.2.4.
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B. Conversion from LMB to GLMB
As Reuter et al. [104][135] pointed out, the LMB is not conjugate prior, meaning that the result
of the Bayes update is not an LMB, but rather a GLMB. For this reason, an implementation of
the LMB filter first needs to reformulate the predicted density as δGLMB. Recall from Eq. (3.14)
that the δGLMB contains weighted hypotheses where each hypothesis (𝜉, 𝐿) is defined by a set
of existing labels 𝐿 and a measurement association history 𝜉. The PDF is of every target is
conditioned on 𝜉 and the joint existence probability of the labels in 𝐿 determines the weight.
Since there is no notion of association history in the LMB, 𝜉 is omitted here and the hypotheses
are formed by computing the joint existence probability 𝑤(𝐿) for various label sets 𝐿 ⊆ 𝕃𝑘.

The naive approach is to create one hypothesis for every possible subset of the labels represented
by the LMB density:

̊𝜋GLMB
𝑘|𝑘−1 = {(𝑤(𝐿), 𝑝𝒢

𝑘|𝑘−1)}
𝐿⊆𝕃𝑘

, where 𝑝𝒢
𝑘|𝑘−1(⋅, ℓ) = 𝒢(ℓ)

𝑘|𝑘−1. (3.27)

However, this leads to 2|𝕃𝑘| prior hypotheses, which is infeasible for most realistic scenarios. Since
checking all tracks and keeping only the ones with highest weight is still a task of exponential
complexity, a more efficient solution is needed. One option that is used by Vo and Vo [136] is to
translate this into a graph problem, such that it can be solved using n-shortest path algorithms
like Yen [145] or Eppstein [32], which are significantly less demanding than the exhaustive search
approach. The procedure to transform the problem is shown in Algorithm 3.3 and illustrated for
a small LMB of 3 components in Figure 3.5.

Algorithm 3.3:  Converting LMB to δGLMB using graph shortest path formulation

make glmb( ̊𝜋LMB
𝑘|𝑘−1, 𝑛):

1 𝕃𝑘 label set in ̊𝜋LMB
𝑘|𝑘−1

2 ℓ1, …, ℓ|𝕃𝑘|  s.t. ∀𝑖 < 𝑗 : 𝑟(ℓ𝑖)
𝑘 ≥ 𝑟(ℓ𝑗)

𝑘 ▷ sort labels by descending 𝑟(ℓ)
𝑘

3 𝑁 = {entry, exit} ▷ initialise nodes
4 𝐸 = {(entry → exit, 0)} ▷ initialise edges
5 for 1 ≤ 𝑖 ≤ |𝕃𝑘|
6 𝑁 = 𝑁 ∪ {ℓ𝑖} ▷ add node
7 𝐸 = 𝐸 ∪ {(ℓ𝑖 → exit, 0)} ▷ add 0-weight edge

8 𝑐(ℓ𝑖) = − log( 𝑟(ℓ𝑖)
𝑘

1−𝑟(ℓ𝑖)
𝑘

) ▷ compute weight
9 for 𝑖 < 𝑗 < |𝕃𝑘|

10 𝐸 = 𝐸 ∪ {(ℓ𝑖 → ℓ𝑗, 𝑐(ℓ𝑖))} ▷ add edge
11 end for
12 end for
13 𝐺 = (𝑁, 𝐸) ▷ Create graph
14 𝒫entry → exit ←←←←←←←←

Eppstein
𝑛 shortest paths given 𝐺 ▷ from entry to exit node

15 log[𝑤(∅)] = ∑ℓ∈𝕃𝑘
(1 − 𝑟(ℓ)

𝑘 ) ▷ weight that none exist
16 ̊𝜋GLMB

𝑘|𝑘−1 = ∅
17 for 𝓅 ∈ 𝒫entry → exit

18 𝐿(𝓅) = {ℓ ∈ 𝓅 | ℓ ∈ 𝕃𝑘} ▷ label set included in the path
19 𝑤(𝓅) = exp[−(∑ℓ∈𝐿(𝓅) 𝑐(ℓ) + log[𝑤(∅)])] ▷ correct weight
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20 ̊𝜋GLMB
𝑘|𝑘−1 = ̊𝜋GLMB

𝑘|𝑘−1 ∪ {((𝑤𝓅)𝑝𝒢)} ▷ Add to GLMB
21 end for
22 return ̊𝜋GLMB

𝑘|𝑘−1

Example

This example visualises how the GLMB-to-LMB conversion is translated to a shortest path
problem for a small case with 3 labels. In Figure 3.5, the symbols 𝑟𝑖 ≜ 𝑟(ℓ𝑖) and 𝑞𝑖 ≜ 1 − 𝑟(ℓ𝑖)

are used for simplicity, representing the probability of (non-)existence for each of the target
labels ℓ𝑖. On the left, the exhaustive list of 23 = 8 hypotheses is shown, where a circle is blue
if the label is included in the label set 𝐿𝑗 and red if it is not. The hypothesis weight 𝑤(𝐿𝑗) is
the product of the corresponding probabilities. For example, the fourth row represents 𝐿4 =
{ℓ2, ℓ3} and the weight is 𝑤({ℓ2, ℓ3}) = (1 − 𝑟1) ⋅ 𝑟2 ⋅ 𝑟3, i.e. the probability that both ℓ2 and
ℓ3 are included, and that ℓ1 is excluded.

In the second stage (middle of figure Figure 3.5), the exclusion of labels is modelled implicitly,
by factoring out 𝑞𝑖 for all labels. Further, the entry and exit nodes are added so that every
hypothesis can be interpreted as a path. Notice that the nodes for each label are always 𝑟𝑖

𝑞𝑖

(indicated by a different colour for every label), so this middle step is really an unfolded
representation of a directed graph, where every path from entry to exit represents a possible
label set. The corresponding hypothesis weight is then the product of all included nodes and
the constant ∏𝑖 𝑞𝑖. Considering again the fourth row, the weight has not changed but is now
computed as 𝑤({ℓ2, ℓ3}) = 𝑞1𝑞2𝑞3

𝑟2
𝑞2

𝑟3
𝑞3

.

In the last stage, the directed graph is collapsed and the logarithm is taken on all the node
contributions to transform the product to a sum. By assigning the value in the starting node to
each of the edges, one obtains a weighted, directed graph and the objective of finding the most
likely label sets has become a “longest path” problem. Since most available algorithms instead
minimise path length, the edge weights are negated to obtain a shortest path problem. Once
more addressing the 4th label hypothesis, it is represented in the graph by a 0-weight jump
from entry to the ℓ2 node and then passing through ℓ3 to arrive at exit. The corresponding
weight is again unchanged but computed by

log[𝑤({𝑙2, 𝑙3})] =
constant

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞log(𝑞1) + log(𝑞2) + log(𝑞3) (3.28a)

− 
path length (minimise)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(− log(𝑟2) − log(𝑟3) + log(𝑞1) + log(𝑞2) + log(𝑞3)). (3.28b)

In this form, the most probable label sets can be found efficiently using established graph
algorithms. It should be noted that the approach results in improved scalability and therefore
reduced run times for large numbers of labels, but does not provide any speed-up in the 3-
component case.
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Figure 3.5:  Conversion from LMB to GLMB; example with 3 Bernoullis. Left:
All hypotheses generated in the naive approach, centre: hypotheses reformulated as
paths, right: hypotheses combined in graph with additive path cost. The represen-
tation on the right is used for truncation before computation to reduce complexity.

In this thesis, the algorithm from Eppstein [32] is used, resulting in a complexity of 𝒪(𝑙 log(𝑙) +
𝑚 + 𝑛) where 𝑙 = (|𝐿𝑘| + 2), 𝑚 = 𝑙(𝑙+1)

2  and 𝑛 is the number of shortest paths to find. For
illustration, a label set of 20 objects would already require over 106 operations with the naive
approach, whereas the graph implementation is still 𝒪(103).

C. GLMB Bayes update
In the δGLMB form, one can perform the Bayes update for the MO density, i.e. all prior
hypotheses in ℋ+ ≜ ℋ𝑘|𝑘−1 are evaluated independently, generating new posterior hypotheses
in ℋ𝑘 ≜ ℋ𝑘|𝑘 for every measurement assignment option. Since this would lead to hypothesis
explosion, the truncation before computation properties of the δGLMB [135] are used to limit the
complexity. This correction step is represented schematically in Figure 3.6 and can be summarised
as follows:
(i) If the measurement set is empty, this means that all existing objects were undetected. The

posterior hypotheses are the same as the prior hypotheses, but their weights are scaled by
the probability of all missed detections and no clutter.

(ii) Otherwise, the update for every prior state and measurement combination is precomputed8.
(iii) For every prior hypothesis (each with a different label set), an 𝑛-best assignment problem is

solved using Murty’s algorithm (see Section 3.3.3) and the appropriate weights are computed
to reflect the posterior joint existence probabilities conditioned on the prior hypotheses.

8This can only be done because in this case, the GLMB is derived from the LMB, so there is only one SO
distribution per label. For the general GLMB, this is intractable.
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Figure 3.6:  Schematic representation of the GLMB update. The parts highlighted
in red represent the contributions of clutter Eq. (3.21) and blue is related to detection
probability. The formulation of the joint existence probabilities corresponds to the
MO measurement likelihood from Eq. (3.22). The yellow circles indicate all hypotheses

forming the posterior GLMB.

Note that this step lends itself very well to parallelisation. Each of the prior hypotheses can
be updated entirely independently, after which all (mutually disjoint) posterior hypothesis sets
merge to form the posterior δGLMB.
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D. Approximating the posterior GLMB
After the GLMB update, the correction step of
the LMB filter is completed by approximating the
posterior δGLMB with an LMB density. Reuter et
al. [104] showed that this is essentially a moment
matching process, resulting in an identical unla-
belled PHD (first moment) and the exact same
decomposition into individual tracks.

Figure 3.7 illustrates how the existence probability
for each labelled Bernoulli can be computed from
the posterior δGLMB hypotheses. This results in the
LMB formulation

̊𝜋𝑘(⋅ |𝑍𝑘) = {(𝑟(ℓ)
𝑘 , 𝒢(ℓ)

𝑘 (⋅ |𝑍𝑘))}, (3.29a)

with

{{
{{
{{
{𝑟(ℓ)

𝑘 = ∑(𝜉,𝐿)∈ℋ𝑘
:ℓ∈𝐿

𝑤(𝜉)
𝑘 (𝐿)

𝒢(ℓ)
𝑘 (⋅ |𝑍𝑘) = 1

𝑟(ℓ)
𝑘

[∑(𝜉,𝐿)∈ℋ𝑘
𝑤(𝜉)

𝑘 (𝐿)𝑝(𝜉)
𝑘 (⋅, ℓ)]

.

Notice that the labelled densities are now a weighted
superposition of all the association hypotheses, so
this step erases the information on which measure-
ment contributed most to each of the target state
updates. A solution to this problem is proposed in
Chapter 4.

Figure 3.7:  Computing existence
probabilities for LMB approximation
using a very simple example with a
total of 3 labels and two association

hypotheses.

E. LMB reduction
It was already discussed in Section 3.3.1 and Section 3.3.4--A that new components -- representing
new objects -- can be added to the LMB filtering density by means of a birth process. However,
depending on how this is modelled, many new targets might be created in every step with a
relatively low existence probability. If there are no later measurements that confirm a new label
represents a real object, then the component can be removed to reduce unnecessary computations.
This can be done by LMB pruning and capping, similar to the GM reduction methods with
the same names (Section 2.1.2). Given a pruning threshold 𝜗LMB

𝑃 ∈ [0, 1) and capping parameter
𝜗LMB

𝐶 ∈ ℕ+, the original LMB ̊𝜋LMB
𝑜  can be reduced to

̊𝜋LMB
𝑟 ⊆ ̊𝜋LMB

𝑜 (3.30a)

s.t. | ̊𝜋LMB
𝑟 | ≤ 𝜗𝐶 (3.30b)

and ∀ℓ1 ∈ ℒ( ̊𝜋LMB
𝑟 ), ℓ2 ∈ ℒ( ̊𝜋LMB

𝑜 ∖ ̊𝜋LMB
𝑟 ) : 𝑟(ℓ1) > 𝑟(ℓ2) ∧ 𝑟(ℓ1) > 𝜗LMB

𝑃 (3.30c)

F. State extraction
The final step of the filter is to extract deterministic state estimates from the corrected LMB
density. This can be seen as the filter’s “best guess” of the MO state, based on all the information
it has received. There are multiple possible estimators for the LMB, but the default BASIL
implementation takes the cardinality 𝑛̂𝑘 as the maximum a-posteriori (MAP) estimate of its
distribution
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𝑛̂𝑘 = arg max
𝑛

[𝜌LMB
𝑘 (𝑛)], (3.31)

then chooses the 𝑛̂𝑘 labels with the highest existence probability

𝐿̂𝑘 ⊆ 𝕃𝑘 with |𝐿̂𝑘| = 𝑛̂𝑘, and ∀{ℓ𝑖 ∈ 𝐿̂𝑘
ℓ𝑗 ∈ 𝕃𝑘 ∖ 𝐿̂𝑘

: 𝑟(ℓ𝑖) > 𝑟(ℓ𝑗), (3.32)

and estimates each of the corresponding states as the expected value of their SO distributions

̂𝑋̊𝑘 = {(𝔼𝑝̊(⋅,ℓ)[𝒙], ℓ) : ℓ ∈ 𝐿̂𝑘}. (3.33)

Reuter et al. [104, p. 10] use an alternative that passes each label with existence probability
above a lower threshold 𝜗𝑙, as long as it has once exceeded a higher threshold 𝜗𝑢,

̂𝑋̊𝑘 = {(𝑥, ℓ) : 𝑟(ℓ)
max > 𝜗𝑢 ∧ 𝑟(ℓ)

𝑘 > 𝜗𝑙}, with 𝜗𝑙 < 𝜗𝑢. (3.34)

However, this introduces two more tuning parameters that can be avoided with the other
approach. This last tuning argument is the only reason to prefer the estimator based on MAP
cardinality as the default BASIL implementation. However, for cases like SSA where target
death is very uncommon, this threshold alternative may be relatively intuitive and well-behaved.
Extensive estimator comparison is left outside the scope of the present work.

Example (cont. from p. 13)
Using the same 1D linear example as before (first introduced on p. 11), suppose there are
now a finite but unknown number of trains on parallel rails, so that there is no interaction
between them. If there is previous knowledge for the position and velocity of one train, this
might be represented by the LMB in Figure 3.8. The prediction step propagates this forward
with 𝑃𝑆 = 0.98 and some birth process generates a new label (another potential train); The
union of those surviving and newborn components is the predicted LMB (Figure 3.10).

Figure 3.8:  1D linear example -- initial
LMB with 1 component. The ellipses in all
these plots indicate the 𝑑𝑀 = 1 covariance

bound of a Gaussian distribution.

Figure 3.9:  1D linear example -- pre-
dicted LMB with 1 surviving component

(blue) and 1 birth component (red).

This predicted LMB is then represented as GLMB in Figure 3.10 with 4 hypotheses -- one
for each label subset 𝐿 ⊆ 𝕃1. The LMB existence probabilities 𝑟(⋅) are incorporated in the
hypothesis weights 𝑤(𝐿) (hence the name joint existence probability). Each prior hypothesis
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gives rise to a predicted measurement set, which is to be associated with the single observation
in the measurement scan 𝑍1 = {𝒛(𝑚1)}.

Figure 3.10:  1D linear example -- prior GLMB and predicted measurement distri-
butions for ℓ1 and ℓ2. The yellow Gaussian is the observed measurement distribution.

The set of all possible association solutions then constitutes the corrected GLMB, shown in
Figure 3.11. The weights are omitted here but can be computed by multiplying the prior
hypothesis weights 𝑤(𝐿) by the association likelihoods (recall Eq. (3.23) and Figure 3.6).

Figure 3.11:  1D linear example -- prior GLMB and predicted measurements
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The weighted superposition of all hypotheses as described in Eq. (3.29) then results in the LMB
approximation of Figure 3.12 and extracting the mean states for the most likely cardinality
gives the estimated state (Figure 3.13).

Figure 3.12:  1D linear example -- poste-
rior LMB with the weighted contributions

of all association hypotheses

Figure 3.13:  1D linear example -- esti-
mated multi-object state

If Figure 3.12 is now substituted for Figure 3.8, the posterior LMB becomes the new prior and
another iteration can be performed for the next measurement scan.

G. Adaptive birth
Recall from Section 3.3.1 that introducing new labels into the MO filter is part of the prediction
step. However, it is possible to make the birth process depend on the observed measurements
at the previous time step, using the association information in the GLMB update step (recall
Figure 3.6).

First, the probability is computed that a measurement 𝒛 was not associated to any of the
previously existing labels: [104][134]

𝑟𝑈,𝑘−1(𝒛) = 1 − ∑
(𝜉𝜃,𝐿)∈ℋ𝑘

𝟏𝜃(𝒛) 𝑤(𝜉𝜃)
𝑘 (𝐿), (3.35)

where the indicator function 𝟏𝜃[𝒛] checks if a label was assigned to 𝒛 by the mapping 𝜃. As
addressed in Section 3.3.2, an unassociated measurement could either be a false positive (clutter)
or it stems from an unknown object. To distinguish between the two, Reuter et al. [104] assume
the number of birth components at time 𝑡𝑘 is Poisson distributed with mean 𝜆𝐵,𝑘 and then
impose a maximum 𝑟𝐵, max to compute the existence probabilities for birth components from
each measurement

𝑟𝐵,𝑘(𝒛) = min

(
((
((
(

𝑟𝐵, max,
𝑟𝑈,𝑘−1(𝒛)

∑
𝝃∈𝑍𝑘−1

𝑟𝑈,𝑘−1(𝝃)
𝜆𝐵,𝑘

)
))
))
)

. (3.36)

However, this doesn’t work well if the birth cardinality does not really follow a Poisson distrib-
ution.
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Example

If an MO filter is used to discover a population of objects and estimate the trajectories without
any prior information (as will be the case for several test scenarios in Chapter 7), the expected
number of birth components depends on how many objects are in the population, how many
have already been found and how many are observable in a particular time step. The birth
cardinality in this situation cannot be accurately modelled as Poisson.

Instead, this thesis uses the expected ratio between birth and clutter 𝜆𝐵
𝜆𝑐

 to scale the existence
probabilities,

𝑟𝐵,𝑘(𝒛) = min(𝑟𝐵, max, 𝑟𝑈,𝑘−1(𝒛)
𝜆𝐵,𝑘

𝜆𝑐,𝑘−1
). (3.37)

This still leaves a seemingly arbitrary parameter, but it is found to be easier to tune in the SSA
case, where the expected number of born targets depends among others on the extent of the
existing catalogue, and the sensitivity and position of the sensor.

To the author’s knowledge, this approach is not previously used in the literature and it is worth
discussing briefly why that might be the case. The tuning convenience of this birth-to-clutter
ratio 𝜆𝐵

𝜆𝑐
 comes at the cost of an important theoretical weakness. This parameter couples the

birth process to the clutter model, which is in principle not desirable. By definition, a clutter
measurement is a false positive and thus does not belong to any real object. Eq. (3.37) makes birth
probabilities dependent upon the clutter model. Notice that the original version in Eq. (3.36)
decouples the two by first normalising the probabilities of non-association 𝑟𝑈,𝑘−1 and therefore
does not have the same issue.

The final step is to create an initial SO density from the information in the measurement. Since
the state is usually only partially observable, this requires some assumptions depending on the
application. In the context of orbit determination, a variety of approaches exist, including initial
orbit determination and admissible regions. These are addressed in Section 5.3 and Appendix D.

3.3.5 Overview of the LMB parameters
This chapter has introduced a number of parameters which must be adjusted based on the
specific tracking scenario under consideration or tuned to alter the behaviour of the LMB filter.
A short overview of the most important parameters is provided in Table 3.1 for reference.

Table 3.1:  Summary of LMB parameters and their meaning

Category Name Symbol Notes
Single-object State transition

function
Eq. (2.22)

𝜑𝑘,𝑘−1 Model that maps a target state from time 𝑡𝑘−1
to 𝑡𝑘. These are the system state dynamics or
equations of motion.

Measurement
mapping
Eq. (2.23)

ℎ𝑘 Model to predict the measurements based on
the propagated target state at time 𝑡𝑘. This
may be dependent on additional sensor infor-
mation, such as its position or pointing.

UT scaling
parameters
Eq. (2.30)

𝛼, 𝛽, 𝜅 These parameters influence the assumed shape
of the distribution in the unscented transform.
Refer to [139] for details.
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Category Name Symbol Notes
Adaptive birth
Section 3.3.4--G

Max. existence
probability

𝑟𝐵, max This is a cap on the existence probability and
can be used to moderate the confidence of new
targets. If this is low, targets will require more
time to get confirmed, but setting this value
too low may result in estimates that should
not exist.

Birth rate
Eq. (3.36)

𝜆𝐵,𝑘 Expected number of birth components at a
particular time 𝑡𝑘.

Birth-to-clutter
Eq. (3.37)

𝜆𝐵,𝑘
𝜆𝑐,𝑘−1

Expected ratio between birth and clutter rate.
This alternative to 𝜆𝐵 is useful if the number
of new objects per step varies a lot over time
and there are only few false-positives.

Prediction
Section 3.3.1

survival probability
Eq. (3.24)

𝑃𝑆 probability that a target still exists after a
single prediction step. In the SSA context,
this is usually ∼ 1, since RSOs don’t tend to
disappear (see Section 5.1.5).

max. predicted
hypotheses

𝜗GLMB
𝐶,𝑘|𝑘−1 Maximum number of components/hypotheses

to retain after conversion of the predicted
LMB to GLMB. Higher is more accurate, but
slower.

Clutter
Section 3.3.2--B

clutter rate 𝜆𝑐 Expected number of false positive measure-
ments in a single observation scan (e.g. image).

clutter intensity
Eq. (3.21)

𝜅𝑐 Distribution that integrates to 𝜆𝑐 over the
measurement space, describing the relative
likelihood of finding a false-positive at any
value of 𝒛. Often modelled as uniform over
some FOV (see Section 5.2.3).

Update
Section 3.3.2
Section 3.3.4--C

detection
probability

𝑃𝐷 Probability that an object is detected, as a
function of the predicted target state. For SSA,
refer to Section 5.2.2.

gating probability
Section 3.3.3--B

𝑃𝐺 The gate is a region Δ𝒛 < 𝑑G
𝑀 , where 𝑑G

𝑀  is
the Mahalanobis distance from the predicted
measurement. 1 − 𝑃𝐺 is the design probability
that a measurement is wrongfully rejected.
𝑑G

𝑀  and 𝑃𝐺 are related by the 𝜒2 distribution
(Appendix E).

max. corrected
hypotheses
Section 3.3.4--C

𝜗GLMB
𝐶 Maximum number of components/hypotheses

to retain after the GLMB update. This influ-
ences how many measurement associations are
considered for each prior hypothesis.

LMB reduction
Section 3.3.4--E

pruning threshold 𝜗LMB
𝑃 A higher threshold may reduce runtime at the

expense of accuracy (premature target death).
capping threshold 𝜗LMB

𝐶 Should be significantly larger than the ex-
pected number of objects being tracked.
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Category Name Symbol Notes
GM reduction
Section 2.1.2

pruning threshold
Eq. (2.15)

𝜗GM
𝑃 This threshold is a trade-off between runtime

and accuracy. A high value results in fewer GM
components, which reduces the correctness of
the mixture representation.

merging threshold
Algorithm 1

𝜗GM
𝑀 Consider that merging is done using the Ma-

halanobis distance, and its 𝜒2 distribution
determines the confidence of the merging oper-
ation (see Appendix E).

capping threshold
Section 2.1.2--D

𝜗GM
𝐶 Should be significantly larger than the ex-

pected number of objects

3.3.6 Multi-object divergence metrics
The distance and divergence concepts introduced in Section 2.1.3 can be extended to finite sets
of vectors. As discussed, one of the applications is to evaluate and compare filter performance.
Several metrics are briefly introduced here, but the reader is referred to Mahler [84, Sec. 6.2],
who discusses this at length.

A. Optimal sub-pattern assignment (OSPA) metric
In MO tracking scenarios, an important question is how to evaluate the quality of the filter
estimate. Since the result is a set of vectors, it is not immediately obvious how it can be compared
to a ground truth. If the filter was initialised with prior information, it would be valuable to
compare the corresponding states based on the label, but in the general case, it is not clear which
target label in the filter belongs to which object in the ground truth.

One solution to this problem is provided by the optimal sub-pattern assignment metric (OSPA),
a consistent distance measure that was first proposed by Schuhmacher and Xia [113][114] to
compare finite sets. The OSPA metric of order 𝑝 ∈ [1, ∞[ with cut-off 𝑐 > 0 is here defined
between two arbitrary sets 𝑋, 𝑌 ⊂ 𝔜.

Given some single-target distance metric 𝑑(𝒙, 𝒚), such as the Euclidean distance, define the
associated cut-off metric to be 𝑑𝑐(𝒙, 𝒚) = min{𝑐, 𝑑(𝒙, 𝒚)} and let Π𝑘 denote the set of all
permutations on {1, …, 𝑘}. The OSPA distance is then defined as

𝑑OSPA
𝑝,𝑐 (𝑋, 𝑌 ) =

[
[[

1
|𝑌 |(

(( min
𝜋∈Π|𝑌 |

∑
|𝑋|

𝑖=1
𝑑𝑐(𝒙𝑖, 𝒚𝜋(𝑖))

𝑝
+ 𝑐𝑝(|𝑌 | − |𝑋|)

)
))

]
]]

1/𝑝

,

(3.38)

provided that |𝑋| ≤ |𝑌 |. However, if |𝑋| > |𝑌 |, the metric can be computed by simply swapping
the inputs: 𝑑OSPA

𝑝,𝑐 (𝑋, 𝑌 ) ≜ 𝑑OSPA
𝑝,𝑐 (𝑌 , 𝑋) [114]. Finally, 𝑑OSPA

𝑝,𝑐 (∅, ∅) = 0 by convention. Notice that
𝑐 can be seen as the cost for cardinality differences and 𝑝 drives the level of “punishment” for
outliers.

In practice, the OSPA is computed in three steps:
(i) Find the optimal subpattern assignment 𝜋, that minimises the summed distance between

the elements from 𝑋 and a selection of |𝑋| vectors from 𝑌  (i.e. find the minimum for the
first term of Eq. (3.38)).

(ii) Using the optimal sub-assignment 𝜋, set 𝛼𝑖 for every 𝒚𝑖, with the distance 𝑑𝑐 if 𝒚𝑖 was
assigned and 𝑐 otherwise:
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𝛼𝑖 = {𝑑𝑐(𝒙𝑖, 𝒚𝜋(𝑖)) for 1 ≤ 𝑖 ≤ |𝑋|
𝑐 for |𝑋| < 𝑖 ≲ |𝑌 |

. (3.39)

(iii) Compute the p-th order average ( 1
|𝑌 | ∑

|𝑌 |
𝑖=1 𝛼𝑝

𝑖 )
1/𝑝.

B. Temporal OSPA (TOSPA) metric
Notice that the OSPA metric can only be used to evaluate the error of the multi-object state at
a single epoch. To extend this to the quality of trajectories, Ristic et al. [107][108] introduced
a temporal version of OSPA (TOSPA or OSPA(2)), which allows evaluating the performance of
the track, including accuracy of localisation, target numbering and target labelling. For more
details, the reader is referred to the papers by Ristic et al. and the implementation of this metric
is left for future work.

3.4 Implementations in BASIL
All MOT elements in the previous and current chapter are implemented from scratch for this
thesis in the Bayesian Association and State Inference Library (BASIL), a new Java library which
has Hipparchus9 as its only core dependency. The choice to implement this in Java is mainly to
ensure compatibility with the ORbits Extrapolation KIT (Orekit), a widely used astrodynamics
library. However, the core models in BASIL are entirely independent of Orekit and agnostic to
the specific dynamics, state representations, measurement models, sensor assumptions, and so
forth. To leverage the MO filters in concrete scenarios, users must implement several models for
specific functionality. An overview of the core building blocks for the BASIL MOT toolbox is
provided in Figure 3.14.

For the specific case of orbit determination, BASIL also provides a wrapper for Orekit, so that
any state representation and measurement type implemented in Orekit can also be used for MOT.
One point of caution is that BASIL provides no specific handling for multi-sensor observation
sets and one of the core assumptions is that every measurement scan can contain at most one
observation for each tracked object. If a user considers fusing the observations from multiple
sensors, they must ensure that this assumption is not violated.

BASIL employs a modular approach where each of the elements in the MO filtering recursion
(such as the single-object models, MO density, MO estimator, prediction and update methods,
birth models and more) can be easily adjusted, extended and replaced. An observer pattern
is used in some of the core components to attach building blocks that extract information
for separate handling. One specific use of the latter is to extract association probabilities (see
Chapter 4) or to feed information back to an adaptive birth model (recall Section 3.3.4--G).

9https://www.hipparchus.org/
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Figure 3.14:  Overview of selected MOT components implemented in BASIL. Blue
boxes are core blocks with extensive logic that cannot be easily replaced. Notice that
the lower box lists orbit-specific functionalities (see Chapter 5) and the upper box

contains some novel features introduced in Chapter 4 and Section 6.1
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Chapter 4

Extracting associations

As discussed, a core feature of MO trackers is dealing with the measurement association problem
in order to obtain an accurate MO trajectory. In that process, however, the actual association
results are often disregarded or lost. For many MO density representations, including PHD and
LMB, this information is even lost in the process of moment matching, where the contributions
of multiple hypotheses are combined to form the target distribution.

However, in the context of SSA and cataloguing it is useful to know which measurements belong
to which RSOs, such that they can be grouped together to perform more specific single-object
analysis and post-processing.

This section proposes a method to extract the time-marginal association probabilities from the
GLMB update, i.e. the likelihood that any target was associated to any measurement at a
particular time step. In addition, we formulate how one can accumulate the probabilities over
time if the same measurement label occurs more than once.10

These two new probabilities can then be used to form a deterministic conclusion on the
measurement association and enable storing those associations for future use. Particularly in
SSA, where the historical ephemeris of individual objects is often still of interest, extracting that
information can be required. As mentioned before, traditional methods obtain this information
before even updating the orbits in the catalogue, but the methods of this chapter allow using
the full rigour of FISST for the tracklet association purpose.

4.1 Time-marginal association probability
Up to this point, measurement assignments have been done based on their index in the obser-
vation scan 𝑍𝑘 (see e.g. Eq. (3.18)), consistent with the existing literature. However, one can
also assign an identifier to each measurement to monitor its associations independently of the
other measurements. Given an observation vector 𝒛 ∈ ℤ and a measurement label 𝓂 ∈ 𝕄, the
labelled single-object measurement is ̊𝒛 ≜ (𝒛, 𝓂). Additionally, define 𝕄𝑘 ⊂ 𝕄 as containing all
measurement labels occurring in the measurement set ̊𝑍𝑘 and recall that 𝕃𝑘 represents the set
of all existing target labels up to and including time 𝑡𝑘¹¹:

𝕄𝑘 = {𝓂 |(𝒛, 𝓂) ∈ ̊𝑍𝑘} ⊂ 𝕄, and 𝕃𝑘 = ⨄
𝑘

𝑗=1
𝔹𝑘. (4.1)

Then, every posterior GLMB hypothesis (𝜉, 𝐿) ∈ ℋ𝑘, corresponds to an association mapping
𝛾(𝜉,𝐿)

𝑘 : 𝕃𝑘 → 𝕄𝑘 ∪ {−1, 0}, where 0 means undetected (missed) and −1 means non-existent
(dead) in the hypothesis (ℓ ∉ 𝐿) [134]. Note that this is a slightly extended version of the
association hypothesis 𝜃𝑘(ℓ) from Eq. (3.18), but it accounts for the case that a target label is

10In other words, if some pre-processing stage already grouped measurements that certainly belong together.
This is common in SSA (tracklets) and is addressed in Chapter 6.

¹¹Note that the GLMB/LMB recursion never formally removes labels, but approximation by truncation can
lead to labels disappearing over time. In practical implementations, 𝕃𝑘 can be interpreted as all target labels that
have not been pruned out.
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not part of the domain of 𝜃𝑘. This can happen because different hypotheses could have different
label sets or labels could be introduced by the birth process at a later time.

The time-marginal association probability 𝛼(ℓ,𝓂)
𝑘  can then be computed by summing the weights

of all GLMB hypotheses at time 𝑡𝑘 where the target ℓ was associated to the measurement label
𝓂¹² as

∀ℓ ∈ 𝕃𝑘, 𝓂 ∈ 𝕄𝑘 ∪ {0} : (4.2a)

𝛼(ℓ,𝓂)
𝑘 = ∑

(𝜉,𝐿)∈ℋ𝑘

𝟏𝐿(ℓ) ⋅ 𝛿𝛾(𝜉,𝐿)
𝑘 (ℓ)(𝓂) ⋅ 𝑤(𝜉)(𝐿), (4.2b)

where 𝟏𝐿 indicates existing labels (Eq. (2.7)) and the weights 𝑤 are pre-normalised such that
∑(𝜉,𝐿)∈ℋ𝑘

𝑤(𝜉)(𝐿) = 1. As a result, the probabilities of non-association are complementary and
determined by

∀ℓ ∈ 𝕃𝑘 : 𝛼(ℓ,−1)
𝑘 ≜ 1 − ∑

𝓂∈𝕄𝑘

𝛼(ℓ,𝓂)
𝑘 − 𝛼(ℓ,0)

𝑘 (4.3a)

= Pr(ℓ non-existent), (4.3b)

∀𝑚 ∈ 𝕄𝑘 : 𝛼(𝓂)
𝑘 ≜ 1 − ∑

ℓ∈𝕃𝑘

𝛼(ℓ,𝓂)
𝑘 (4.3c)

= Pr(𝒛(𝓂)
𝑘 clutter ∨ 𝓂target unknown). (4.3d)

Notice that an unassociated 𝓂 still has an ambiguous origin, as it might mean that the
corresponding measurement at time 𝑡𝑘 is clutter or that the target to which 𝓂 belongs does
not (yet) exist in the MO filter. Figure 4.1 illustrates this by a sample association result and
Algorithm 4.1 details how the values for Eq. (4.2) and Eq. (4.3) can be obtained.

Figure 4.1:  Example label association result. The widths of the connection represent
the association probability. Note that these sum to 1 for each 𝓂 ∈ 𝕄𝑘 and each ℓ ∈

𝕃𝑘, but not for the non-association nodes (𝓂 ∈ {0, −1} and ℓ ∉ 𝕃𝑘).

In case the observations used for the filter are unlabelled, i.e. there is no prior knowledge on
any correlation between the measurements, then these time-marginal probabilities constitute all
the information the GLMB filter has on which measurement-to-object associations are likely
and which are not. They can then be used to draw a definitive conclusion on the measurement
assignment, for example using a MAP estimator like in Eq. (4.8). Knowing which measurements
belong to each other is often useful in the space cataloguing context, as it allows for single-object
processing such as precise orbit determination and conjunction assessment.

¹²Notice that 𝛼(ℓ,0)
𝑘  is the probability that target ℓ was not detected at time 𝑡𝑘.
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It should be noted that the association probabilities extracted from the GLMB recursion are
based on the joint likelihood of consistent MO measurement assignments, and not just on the
likelihood that each single target produced each single measurement (as traditional approaches
do). The probabilities depend on all observations in the scan, together with the models for false
positives and missed detections.

Algorithm 4.1:  Marginal association probability mapping at time 𝑡𝑘

alpha(ℋ𝑘, 𝛾𝑘):
1 𝛼(ℓ,𝓂)

𝑘 = 0, 𝛼(ℓ,−1)
𝑘 = 1, 𝛼(𝓂)

𝑘 = 1 ▷ ∀ℓ ∈ 𝕃𝑘,  𝓂 ∈ 𝕄𝑘

2 𝛼(ℓ,0)
𝑘 = 0 ▷ ∀ℓ ∈ 𝕃𝑘

3 for (𝜉, 𝐿) ∈ ℋ𝑘

4 𝑤 = 𝑤(𝜉)(𝐿)
5 for ℓ ∈ 𝐿
6 𝓂 = 𝛾(𝜉,𝐿)

𝑘 (ℓ) ▷ Note 𝑚 ≠ −1
7 𝛼(ℓ,𝓂)

𝑘 ← 𝛼(ℓ,𝓂)
𝑘 + 𝑤 ▷ ℓ and 𝓂 associated

8 𝛼(ℓ,−1)
𝑘 ← 𝛼(ℓ,−1)

𝑘 − 𝑤 ▷ ℓ exists
9 if 𝑚 ∈ 𝕄𝑘

10 𝛼(𝓂)
𝑘 ← 𝛼(𝓂)

𝑘 − 𝑤 ▷ 𝓂 not clutter/unknown
11 end if
12 end for
13 end for
14 return 𝛼(⋅,⋅)

𝑘 , 𝛼(⋅)
𝑘

4.2 Accumulated (tracklet) association probability
If, instead, some prior knowledge indicates that measurements from different scans belong to the
same object, then this information can be used to refine the association probabilities over multiple
steps in the filter. Such prior knowledge can arise, for example, if close-spaced observations are
already collected into tracklets by some external method (as is often the case in SSA). It is
important to stress that nothing here has an influence on the LMB/GLMB recursion itself. The
state estimates are still updated based on single observations, but the accumulated probabilities
allow cataloguing tracklet associations instead of single measurement associations, reducing the
influence of outliers and of edge-effects introduced by the models for detection probability and
clutter¹³.

It is here assumed that a process like tracklet formation has assigned the same label 𝓂 to all
measurements (over multiple consecutive observation scans) that certainly belong to the same
object. This section details a proposed approach to accumulate the (time-marginal) association
probabilities for all measurements with the same label and effectively obtain the tracklet associ-
ation probability 𝛼(𝓂)

1:𝑘 (⋅). Several considerations complicate this process.
(i) Some measurement labels might occur only once, and others many times.
(ii) The time-marginal associations probability is conditioned on the existing label set 𝕃𝑘, so

an unassociated measurement label 𝓂 could correspond to a target ℓ that has yet to be
included in the filter birth process.

¹³This is later demonstrated by a numerical simulation in Section 7.2
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(iii) The accumulated quantity must define a PMF for every tracklet label 𝓂, meaning that the
sum of probabilities for all possible assignments of that label is

∑
ℓ∈𝕃𝑘

𝛼(𝓂)
1:𝑘 (ℓ) + 𝛼(𝓂)

1:𝑘 = 1, (4.4)

where 𝛼(𝓂)
1:𝑘 (ℓ) is the probability that 𝓂 is assigned to target label ℓ and 𝛼(𝓂)

1:𝑘  represents the
false-positive probability (similar to Eq. (4.3)), all based on information up to and including
time 𝑡𝑘.

To approach this, it is useful to reiterate the assumption that every measurement label 𝓂 can
originate from at most one target ℓ, but a single ℓ can give rise to any number of measurement
labels as long as they are in different time steps of the filter. For this reason, the accumulated
probability 𝛼(𝓂)

1:𝑘 (ℓ) is a separate mapping 𝕃𝑘 → [0, 1) for every measurement 𝓂.

For convenience, define the extended weight 𝛽(𝓂)
𝑘 (ℓ) related to the marginal association probability

at time 𝑡𝑘 but including all possible target labels in its domain as

𝛽(𝓂)
𝑘 (ℓ) =

{{
{
{{𝛼(ℓ,𝓂)

𝑗 if ℓ ∈ 𝕃𝑘

𝛼(𝓂)
𝑗 otherwise

, (4.5)

Note that these are not probabilities, as there could be an infinite number of future labels that
are not yet included in 𝕃𝑘. These weights can be accumulated for every 𝓂 over all the times
where 𝓂 was present by

𝛽(𝓂)
1:𝑘 (ℓ) = ∏

𝑘

𝑡𝑗∈𝑇 (𝓂)
1:𝑘

𝛽(𝓂)
𝑗 (ℓ), and 𝛽(𝓂)

1:𝑘 = ∏
𝑘

𝑡𝑗∈𝑇 (𝓂)
1:𝑘

𝛼(𝓂)
𝑗 , (4.6a)

with 𝑇 (𝓂)
1:𝑘 = {𝑡𝑗 | 𝓂 ∈ 𝕄𝑗}

𝑘
𝑗=1

. (4.6b)

Using these accumulated weights, the accumulated association probabilities per measurement
label are computed as

∀𝓂 ∈ 𝕄𝑘 : 𝛼(𝓂)
1:𝑘 (ℓ) = 𝛽(𝓂)

1:𝑘 (ℓ)
Σ𝛽(𝓂)

1:𝑘

, and 𝛼(𝓂)
1:𝑘 = 𝛽(𝓂)

1:𝑘

Σ𝛽(𝓂)
1:𝑘

, (4.7a)

where Σ𝛽(𝓂)
1:𝑘 = ∑

ℓ′∈𝕃𝑘

[𝛽(𝓂)
1:𝑘 (ℓ′)] + 𝛽(𝓂)

1:𝑘 . (4.7b)

This ensures that the accumulated probabilities sum to 1 for each measurement label14. To avoid
overflow/underflow complications in this normalisation step, one can use the log-sum-exp trick
described in Appendix E.2.

Algorithm 4.2 shows a recursive implementation for the accumulation of probabilities in Eq. (4.7),
as used inside an MO filter of this thesis.

14Contrary to the time-marginal association probabilities, these accumulated values are not probabilities on 𝕃𝑘,
since it is possible for multiple measurement labels 𝓂 to be associated to a single target ℓ, as long as they exist
at different times.
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To illustrate the validity of this approach intuitively, consider these simplifying edge cases as
a sanity check:
(i) If no targets are ever created (𝕃𝑘 = ∅), then ∀𝑚 ∈ 𝕄𝑘 : 𝛼(𝓂)

1:𝑘 = 1.
(ii) If a measurement label 𝓂 exists at exactly one time step 𝑡𝑗, then

∀ℓ ∈ 𝕃𝑗 : 𝛼(𝓂)
1:𝑘 (ℓ) = 𝛼(ℓ,𝓂)

𝑗  and ∀ℓ ∉ 𝕃𝑗 : 𝛼(𝓂)
1:𝑘 (ℓ) = 𝛼(𝓂)

𝑗 .

Algorithm 4.2:  Accumulated association probability mapping up to time 𝑡𝑘. This
implementation assumes that pruned-out labels can never return, which is equivalent

to assuming the birth process generates unique labels.

accumulated-alpha(𝛼𝑘, 𝛽1:𝑘−1, 𝕃𝑘, 𝕄𝑘):
1 𝕄1:𝑘 = 𝕄1:𝑘−1 ∪ 𝕄𝑘

2 for 𝓂 ∈ 𝕄𝑘

3 if 𝓂 ∉ 𝕄1:𝑘−1

4 log[𝛽(𝓂)
1:𝑘−1] = 0

5 end if
6 for ℓ ∈ 𝕃𝑘

7 if ℓ ∈ 𝔹𝑘 ▷ or ℓ ∉ 𝕃𝑘−1

8 log[𝛽(𝓂)
1:𝑘−1(ℓ)] = log[𝛽(𝓂)

1:𝑘−1]
9 end if

10 log[𝛽(𝓂)
1:𝑘 (ℓ)] = log[𝛽(𝓂)

1:𝑘−1(ℓ)] + log[𝛼(ℓ,𝓂)
𝑘 ]

11 end for
12 log[𝛽(𝓂)

1:𝑘 ] = log[𝛽(𝓂)
1:𝑘−1] + log[𝛼(𝓂)

𝑘 ]

13 𝛼(𝓂)
1:𝑘 (⋅), 𝛼(𝓂)

1:𝑘 ← normalise(𝛽(𝓂)
1:𝑘 (⋅);  𝛽(𝓂)

1:𝑘 ) ▷ Eq. (4.7)
14 end for
15 return 𝛼1:𝑘, 𝛼1:𝑘

The association conclusion then consists of the most likely originator for each measurement label
and can be obtained by a MAP estimator:

∀𝓂 ∈ 𝕄1:𝑘 : ℓ̂(𝓂) =

{{
{{
{{
{arg sup

ℓ∈𝕃𝑘

𝛼(𝓂)
1:𝑘 (ℓ) if sup

ℓ∈𝕃𝑘

𝛼(𝓂)
1:𝑘 (ℓ) > 𝛼(𝓂)

1:𝑘

clutter/unknown otherwise

(4.8)

Finally, measurements associated to the same target could be collected and stored for future
single-object estimation processes:

ℳ(ℓ) = {𝓂 ∈ 𝕄1:𝑘 | ℓ̂(𝓂) = ℓ}. (4.9)

In conclusion, the quantities proposed in this chapter allow for the principled extraction of
complete measurement histories for each of the targets in a GLMB/LMB filter, along with the
confidence of the assignments. The time-marginal association probabilities from Eq. (4.2) do this
for single unlabelled measurements, whereas the accumulated probabilities from Eq. (4.7) can
be used to obtain a single assignment for complete pre-formed tracklets. These quantities can
either be used for further SO processing or to determine the confidence of new components in a
tracklet-based adaptive birth model (see Section 5.3.3).
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Chapter 5

Multi-object tracking in space

The previous sections discussed the relevant background and formulation of RFS-based multi-
object tracking. When using these to solve orbital tracking problems in SSA, several domain-
specific challenges arise. This section introduces the main building blocks to use the LMB filter
for orbital tracking of RSOs. The present implementation of everything related to spacecraft
dynamics relies on the open-source software package Orekit [85], but the MOT logic is completely
separate and could be used for other representations of the dynamical and observation models.

5.1 Orbital motion model
The main part of the RSO target state consists of six orbital components. The most straight-
forward representation of that state combines simply its position vector 𝒓 and velocity vector
𝒗 = ̇𝒓, expressed in some Cartesian inertial reference frame:

𝒙 = (𝒓
̇𝒓) = (𝑥 𝑦 𝑧 ̇𝑥 ̇𝑦 ̇𝑧). (5.1)

Ignoring process noise for now, the motion model (recall Eq. (2.21)) for this Cartesian, orbital
state is

𝒙̇ = ( ̇𝒓
̈𝒓), (5.2)

where the acceleration vector over time ̈𝒓 is determined by the equations of motion and applied
force models (see Section 5.1.2).

Note that it is very common in orbit determination to extend the spacecraft state by parameters
of the relevant force models (e.g. drag and radiation pressure coefficients), so that these can be
estimated as well, instead of relying on prior knowledge only. The orbital model in BASIL does
not presently support adding estimated dynamical parameters and limits itself to 6D orbital
state estimation. However, this would require only minor modification, as Orekit has extensive
support for parameter estimation and only a robust mapping between the state representations
of Orekit and BASIL is lacking.

5.1.1 Reference frames
Many reference frames exist in which to express the state and associated equations of motion.
Here, only the relevant reference frames are addressed as used in the thesis.

A. Earth-centred frames
The state of geocentric orbits is most easily expressed in a coordinate system that also has the
Earth as reference. By convention, these frames always have their 𝒖𝑧 axis aligned with the Earth’s
axis of rotation, such that 𝒖𝑥 and 𝒖𝑦 are in the equatorial plane. However, the orientation of the
latter two depends on the specific coordinate system. In Earth-centred inertial (ECI) frames, 𝒖𝑥
usually points to the vernal equinox ♈ and 𝒖𝑦 completes the right-handed system, resulting in a
quasi-inertial reference frame. Figure 5.1 shows this family of frames as the (𝑋, 𝑌 , 𝑍) axes. This
figure schematically represents the Earth-Sun two-body motion from a geocentric perspective,
so that the vernal equinox can be seen as the ascending node of the ecliptic orbit (𝒖𝑥 = 𝒖𝑧 ×
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5 Multi-object tracking in space

𝒉). The difference between various ECI frames is usually how the equatorial and ecliptic planes
are defined, since these vary over time due to perturbations. This thesis uses the Earth mean
equinox reference frame at Julian epoch J2000 (EME2000) [92].

Figure 5.1:  The Sun-Earth two-body motion is represented in geocentric perspective
to illustrate the family of Earth-centred reference frames (𝑋′, 𝑌 ′, 𝑍′) in relation to the
celestial parameters. The orbital plane defined by the Sun-Earth angular momentum
𝒉 is the ecliptic the intersections with the equatorial plane are the vernal and autumnal
equinox. (𝑋, 𝑌 , 𝑍) represents the ECI frame and ECEF is shown as (𝑥, 𝑦, 𝑧) [124, p. 30].

When expressing positions relative to objects of interest on Earth (such as ground stations
and observers), it is often more straightforward to use a rotating frame with the same angular
velocity as the Earth. In such Earth-centred Earth-fixed (ECEF) frames, the 𝒖𝑥 basis vector
is usually directed towards the Greenwich meridian and 𝒖𝑦 again completes the system -- the
frame is represented as (𝑥, 𝑦, 𝑧) in Figure 5.1. Once more, slight variations exist between the
references of various frames. ECEF positions in this work are expressed in the International
Terrestrial Reference Frame (ITRF) with International Earth Rotation Service 2010 (IERS2010)
conventions [12][60].

B. Object-centred frame
Analysing estimation errors is usually inconvenient and not very insightful in Earth-centred
frames. It is often more useful to formulate the error with respect to a frame that follows the
truth or reference orbit. One common choice is referred to as the radial, transverse, normal (RTN)
frame and is visualised in Figure 5.2. The basis vector 𝒖𝑅 is aligned with the reference position
vector, 𝒖𝑁  follows the angular momentum 𝒉 of the reference orbit and 𝒖𝑇  completes the right-
handed, orthogonal system.
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2025 5.1 Orbital motion model

Figure 5.2:  RTN reference frame [124, p. 42]

5.1.2 Equations of motion
The equations of motion for orbital states describe how the state evolves over time. In the
case of the Cartesian state representation (Eq. (5.1)), this means defining an acceleration model
depending on the position and velocity of the object and as a function of time.

The main contribution for an object in Earth’s orbit is the point mass gravity contribution,
modelled as

̈𝒓 = − 𝜇𝐸
‖𝒓‖3 𝒓, (5.3)

where 𝜇𝐸 = 𝐺𝑚𝐸 ≈ 3.986 × 1014 m3 s−2 is the standard gravitational parameter.

In reality, various perturbations complicate the orbital motion. Since BASIL relies on Orekit [85]
to perform all orbital propagation, the models are not developed in detail here, but the main
perturbations are listed for reference.

A. Spherical harmonic gravity
Since the Earth is in reality not a perfect sphere with uniform density but rather an oblate
ellipsoid commonly referred to as the geoid, the gravity is commonly described in terms of its
potential

𝑈𝐸 = 𝜇𝐸
‖𝒓‖

∑
∞

ℓ=0
( 𝑎𝐸

‖𝒓‖
)

ℓ

∑
ℓ

𝑚=0
𝑃ℓ,𝑚(sin(𝜙))[𝐶ℓ,𝑚 cos(𝑚𝜆) + 𝑆ℓ,𝑚 sin(𝑚𝜆)], (5.4)

where 𝑎𝐸 is the semi-major axis of the Earth’s reference ellipsoid [93], 𝜑 and 𝜆 are the latitude
and longitude in an ECEF reference frame, 𝐶ℓ,𝑚 and 𝑆ℓ,𝑚 are the spherical harmonic coefficients
and 𝑃ℓ,𝑚 is the associated Legendre polynomial of degree ℓ and order 𝑚.

The potential can be approximating by truncating the double series in Eq. (5.4) to the desired
degree and order and the resulting accleration caused by the Earth’s gravity is then the gradient
of that potential field

̈𝒓𝐺,𝐸 = ∇𝑈𝐸. (5.5)

Note that this simplifies to Eq. (5.3) for ℓmax = 𝑚max = 0.
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5 Multi-object tracking in space

B. Third-body gravity perturbations
Apart from the Earth, other celestial bodies such as the Sun and the Moon cause additional
gravitational accelerations. These are usually modelled as point-mass gravity effects, taking into
account that Earth also experiences an influence from the same perturbing bodies.

C. Drag
Even though the atmospheric density reduces exponentially with altitude, there is still a non-
negligible drag force causing an acceleration opposing the spacecraft velocity. Using some
underlying density model as a function of position and time, the acceleration can be written as

̈𝒓𝐷 = −1
2
𝐶𝑏𝜌(𝒓, 𝑡)‖𝒗rel‖𝒗rel, (5.6)

where 𝐶𝑏 = 𝐶𝑑𝑆𝐷
𝑚  is the ballistic coefficient, composed of the dimensionless drag coefficient 𝐶𝑑,

the effective drag area 𝑆𝐷 and the object mass 𝑚. Note that the velocity 𝒗rel = ̇𝒓 − 𝒗atm is the
velocity relative to the atmosphere, which has its own motion due to the rotation of the Earth
and wind effects [125]. In LEO orbits, this is usually the main source of propagation errors over
time, due to the high complexity of atmospheric density modelling.

D. Solar radiation pressure
Photons emitted by the Sun constantly interact with objects in space and thereby transfer some
of their momentum. Since the photons all come from the same direction, the combined effect is
a resultant force called solar radiation pressure (SRP). The Cannonball model approximates the
space object as a sphere and formulates the corresponding acceleration as [146]

̈𝒓SRP = 𝑃0𝑅2
0

𝑐
𝐶SRP

𝒓𝑠

‖𝒓𝑠‖
3 , (5.7)

where 𝑃0 ≈ 1 367 W/m2 is the Solar flux at a distance of 𝑅0 = 1 AU, 𝑐 is the speed of light and
the radiation pressure coefficient 𝐶SRP = 𝐶𝑟𝑆SRP

𝑚  consists of the reflection coefficient 𝐶𝑟, the SRP
effective area 𝑆SRP and the mass 𝑚. Finally, 𝒓𝑠 = 𝒓 − 𝒓Sun is the vector from the Sun to the
object.

5.1.3 Evolution of uncertainty
It has already been discussed that the Gaussian approximations are not always valid in non-
linear scenarios. To illustrate that the propagation of Cartesian coordinates is non-Gaussian, even
with the most simple dynamics, Figure 5.3 visualises the uncertainty evolution under Keplerian
motion in LEO. The blue dot represents the initial state for an orbit at 700 km perigee altitude
and eccentricity 𝑒 = 0.1 with a Gaussian uncertainty where 𝜎𝑟 = 10 km and 𝜎𝑣 = 10 m/s in all
directions. Propagating 1000 samples for 1 day results in the distribution of red dots, which is
clearly non-Gaussian. A linearised prediction using the EKF equations would result in the yellow
covariance ellipsoid, which is not at all representative for the true distribution.

To resolve this problem, one might choose to use a GM representation of the initial distribution
as discussed in Section 2.1.2, which definitely improves the fidelity of the predicted uncertainty.
However, it can be observed that the samples mainly spread along the orbit while the shape
of that orbit is not heavily affected. If the state is instead represented in orbital elements, it
becomes clear that the two-body dynamics are almost linear and only affect the uncertainty in
true anomaly.

page 51



2025 5.1 Orbital motion model

Figure 5.3:  Uncertainty evolution in LEO under Keplerian dynamics. Initial uncer-
tainty is Gaussian (blue dot) and 1000 samples are propagated analytically for 1 day
(14 revolutions). The Gaussian properties are lost in Cartesian coordinates (left) but

remain in the orbital element representation (right).

5.1.4 State noise compensation
Choosing suitable models to represent process noise is a complicated task and often requires
extensive tuning with application-specific test cases and background knowledge. In this work,
the process noise assumes that an object in orbit is a constant velocity particle in the RTN frame
with a white noise perturbation on the acceleration 𝜈𝑎 ∼ 𝒩(𝟎, 𝑸𝑎); the fact that this is not an
inertial reference frame is ignored. Eq. 43 from Reid and Term [103] is then used to obtain the
continuous-time process noise matrix for position and velocity in the RTN frame as

𝑸RTN
𝑘,𝑘−1 = (

Δ𝑡3

4 𝑸𝑎
Δ𝑡2

2 𝑸𝑎

Δ𝑡2

2 𝑸𝑎

Δ𝑡𝑸𝑎
), where 𝑸𝑎 =

(
((
(𝑞𝑅

0
0

0
𝑞𝑇
0

0
0

𝑞𝑁)
))
). (5.8)

Here Δ𝑡 is the propagation time between two measurement scans and 𝑞𝑅, 𝑞𝑇 , 𝑞𝑁  are tuning
parameters. To avoid overly large noise after long propagations, the time gap is artificially
capped at Δ𝑡max, so that Δ𝑡 = min(𝑡𝑘 − 𝑡𝑘−1, Δ𝑡max). This RTN process noise matrix can then
be transformed to the appropriate state space and used in the SO prediction step.

5.1.5 Survival model
The final component to make this a complete MO prediction model is the probability of survival
(recall Section 3.3.1). In principle, the only way RSOs could disappear is if they reach end of
life and burn up in the atmosphere or depart Earth orbit. For this reason, a common choice
is to use a constant 𝑃𝑆 ≲ 1. However, it is also possible to exploit this mechanism to enforce
constraints on the orbits of interest. Sometimes, incorrect measurement associations can give rise
to unrealistic orbit predictions, so the survival model used here is

𝑝𝑆(𝒙, ℓ) = {𝑃𝑆 if 𝒙 ∈ 𝒞
0 if 𝒙 ∉ 𝒞, (5.9)

Where 𝒞 ⊆ 𝕏 is the constrained region defined by any number of orbital constraints. To avoid
hyperbolic orbits and sub-orbital trajectories, define

𝒞 = {𝒙 ∈ 𝕏 : 𝑎(1 − 𝑒) > 𝑅𝐸 ∧ 𝑒 < 1}, (5.10)

where 𝑎 and 𝑒 are the semi-major axis and eccentricity of the orbit associated to 𝒙 and 𝑅𝐸 is the
equatorial radius of the Earth. If a constrained admissible region approach is used for the birth
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5 Multi-object tracking in space

process (see Section 5.3), then it could also make sense to apply the same constrained admissible
region (CAR) constraints here.

Implementation note

If 𝒙 is distributed as a GM 𝑝(𝒙, ℓ) = 𝒢, then the survival probability can be computed as

𝑝𝑆(𝒙, ℓ) = ∑
(𝑤,𝝁,𝑷 )∈𝒢

𝑤 𝑝𝑆(𝝁, ℓ). (5.11)

5.2 Angles-only optical observation model
Within the scope of this thesis, observations for SSA are optical measurements 𝒛 = (𝛼, 𝛿),
representing the topocentric right ascension and declination in some ECI coordinate system
(here: EME2000), as determined from an observer with state 𝒙𝑜 = (𝒓𝑇

𝑜 , 𝒗𝑇
𝑜 ). For a target object

with known state 𝒙 = (𝒓𝑇 , 𝒗𝑇 )𝑇 , the slant vector15 𝝆 = 𝒓 − 𝒓𝑜 fully determines the simplified
measurement model:

𝛼(𝒙) = atan2(⟨𝝆, 𝒖𝑗⟩, ⟨𝝆, 𝒖𝑖⟩), (5.12a)

and 𝛿(𝒙) = arcsin(⟨𝝆, 𝒖𝑘⟩), (5.12b)

where (𝒖𝑖 𝒖𝑗 𝒖𝑘) = 𝑰3×3 represent the unit vectors of the ECI coordinate system and ⟨⋅, ⋅⟩
represents the dot product. Note that the slant range ‖𝝆‖ is unknown, so only part of the position
vector is observable with these measurements. Other measurement types like RADAR can also
incorporate that extra information.

In any case, the model in Eq. (5.12) does not take into account that the target and observer
move during the time the light travels from one to the other. This is often referred to as the
light time correction. In other words, one must compute the angles such that they correspond to
where the satellite was at the time the observed light was reflected on it. This effect is visualised
in Figure 5.4.

For a satellite in GEO orbit, which is at least 35 790 km away from the ground observer, and
moves at about 3.1 km/s, the light travels for about Δ𝑡 ≈ ‖𝝆‖

𝑐 = 0.12 s. This corresponds to
a displacement of ∼ 370 m or about 2.1″. Since measurement noise is often in the order of
several arcseconds (1𝜎), this effect is not negligible.

For measurements where the observer is ground-based, the implementation of this model is
provided by Orekit16. Using a simple wrapper, the Orekit implementation can be used as
measurement model for the filters in BASIL (see Section 3.4), without any adaptations.

5.2.1 Space-based observers
Apart from ground-based telescopes, Vyoma will rely on its constellation of space-based tele-
scopes to collect observations. This offers a multitude of advantages, as discussed in Appendix A,
and since the measurements are still (𝛼, 𝛿), a very similar measurement model can be used. The
main difference is that the observer position is no longer fixed in an ECEF reference frame, and
must be obtained by dedicated orbit determination (OD) routines. In the present work, it is

15This is also often referred to as the line of sight (LOS) vector, with respect to the observer
16The AngularRaDec measurement type is documented at https://www.orekit.org/static/apidocs/org/orekit/

estimation/measurements/AngularRaDec.html.
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2025 5.2 Angles-only optical observation model

assumed that this is done ahead of time and accurate observer ephemeris is available17.

In addition to the light-time effect (depicted in Figure 5.4), optical observations are also distorted
by stellar aberration. This is a relativistic effect caused by the observer’s velocity with respect to
the inertial reference frame. Due to the movement of the observer relative to the incoming light,
the inertial star background is slightly distorted, and the angle between the observer velocity
and line of sight to the star is observed (𝜃obs) smaller than in reality (𝜃true). Since the right
ascension and declination of the tracking observations are obtained by comparison with inertial
star background, this stellar aberration must be incorporated in the measurement model.

tan(𝜃obs
2

) = √1 − 𝑣𝑜/𝑐
1 + 𝑣𝑜/𝑐

 tan(𝜃true
2

), (5.13)

where 𝑣𝑜 = ‖𝒗𝑜‖ is the observer’s velocity in the ECI frame and 𝑐 is the speed of light. The
influence of aberration is visualised in Figure 5.5. Notice that the effective observer velocity in
the celestial frame consists of (1) its quasi-inertial velocity w.r.t. the Earth and (2) the movement
of the ECI frame relative to the Sun. Since the latter has a period of 1 year, it is commonly
referred to as the annual aberration. The former, short-period component has a daily variation
for ground-based observers, whereas space-based sensors introduce a once-per-orbit fluctuation.

• To compute the maximum annual aberration, consider that the Earth moves at about
29.8 km/s w.r.t. the Sun. For an inertial angle of 90°, where the effect is largest, the offset
becomes Δ𝜃max

annual ≈ 20.5″.
• For a ground-based observer, the maximum ECI velocity occurs at the equator with

about 465 m/s. Again evaluating the offset for 𝜃true = 90°, the daily aberration is limited
by Δ𝜃max

daily ≈ 0.32″.
• Finally, an observer in circular LEO orbit, e.g. at 500 km altitude, has a velocity of 7.6 km/s.

This causes an aberration up to Δ𝜃max
LEO ≈ 5.2″.

Depending on the measurement noise level of the sensor, it might be acceptable to ignore the
daily aberration, but the annual and once-per-orbit effects must certainly be accounted for to
avoid that model limitations dominate the measurement errors.

Figure 5.4:  Exaggerated visualisation of
light-time effect for space-based observer

Figure 5.5:  Exaggerated visualisation of
aberration effect for space-based observer

17It is assumed that the influence of observer position errors on the observations is at least an order of magnitude
below the measurement noise.
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5.2.2 Probability of detection
Another essential part of the MO filtering model is quantifying the detection probability. Recall
from Eq. (2.23) that the detection model is part of the MO measurement model and has an
implicit influence on the existence probability of the targets in the filter. For example, if a
target has a very high detection probability but none of the likely association solutions assign a
measurement to this target, then its probability of existence will reduce.

Since the sensors in the SSA case have a very limited FOV compared to the complete state space,
most targets will generally be unobservable most of the time. For this reason, it is common to
use a constant detection probability 𝑃𝐷 if the target is inside the field of view, and 0 otherwise.

Define the local reference frame of a sensor 𝑠 using the non-inertial basis vectors (𝒃𝑠, 𝒋𝑠, 𝒌𝑠),
where 𝒃𝑠 is the boresight vector, 𝒋𝑠 is the image horizontal and 𝒌𝑠 completes the system. Then
define the field of view of sensor 𝑠 as FOV𝑠 = {𝝍𝑠} ⊆ [0, 𝜋] × [0, 2𝜋) where
• 𝝍𝑠 ≜ (𝜃𝑠, 𝜙𝑠)

𝑇  is the angular position of a line of sight in the sensor frame.
• 𝜃𝑠 is the offset angle between the line of sight vector 𝝆𝑠 = 𝑹𝑠←ECI(𝒓 − 𝒓𝑠) and the sensor’s

boresight vector 𝒃𝑠.
• 𝜙𝑠 is the angle between the projected line of sight and the image horizontal 𝒋𝑠.

Given a state 𝒙, this angular position can be computed for the sensor as

𝝍𝑠(𝒙, 𝑡) = (𝜃𝑠(𝒙, 𝑡)
𝜙𝑠(𝒙, 𝑡)) = ( arccos(⟨𝝆𝑠, 𝒃𝑠⟩)

atan2 (⟨𝝆𝑠, 𝒌𝑠⟩, ⟨𝝆𝑠, 𝒋𝑠⟩)
). (5.14)

The detection probability is then

𝑃𝐷(𝒙, ℓ, 𝑡𝑘|𝑠) = {𝑃𝐷 if 𝝍𝑠(𝔼[𝒙], 𝑡𝑘) ∈ FOV𝑠
0 otherwise . (5.15)

However, if the previous state was very uncertain (for example because it was the result of a
birth process and has not yet been confirmed by more measurements), significant portions of
the PDF may lie both inside and outside the FOV (illustrated in Figure 5.6). If a high 𝑃𝐷 is
assigned and the target is not observed, its existence probability will drop and it might never get
confirmed. Conversely, if it is assigned 𝑃𝐷 = 0 while it was in fact observed, this measurement
will be effectively ignored and cannot help to confirm the target. For this reason, a more rigorous
procedure is applied for the detection probability.

Given that 𝒙̊ has a predicted distribution 𝑝𝑘|𝑘−1(⋅, ℓ), one can project this distribution onto the
2D 𝝍-space using an unscented transform

𝑃𝑘|𝑘−1(𝝍𝑠, ℓ) ←
UT

𝑝𝑘|𝑘−1(𝒙, ℓ), (5.16)

after which this density can be integrated over the entire FOV -- this results in the probability
that the target is inside the field of view at time 𝑡𝑘. Finally, multiply by the constant 𝑃𝐷 to
obtain the realistic detection probability

𝑃𝐷(𝒙, ℓ, 𝑡𝑘|𝑠) = 𝑃𝐷 ∫
FOV𝑠

𝑝𝑘|𝑘−1(𝝍𝑠, ℓ)𝑑𝝍𝑠. (5.17)

Since the distribution resulting from the unscented transform is a bivariate Gaussian (mixture),
an efficient numerical algorithm by Genz [51] is implemented to easily obtain the cumulative
probability. The reader is referred to the original paper for algorithm details.
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Figure 5.6:  Detection probability based on field of view. Projecting the probability
distributions onto the image plane and integrating over the FOV yields the probability

that the target was in the FOV at the time of the measurement.

5.2.3 Clutter model
The clutter measurements for the optical sensor are modelled as in Eq. (3.21), using a Poisson
assumption on the number of clutter measurements per image and allowing the clutter measure-
ment to appear anywhere in the FOV with uniform intensity. This means that 𝜅𝑐(𝒛) = 0 if
𝒛 ∉ FOV.

Since zero clutter intensity is detrimental to the filter implementation18, it is best to filter out any
measurement that falls outside the configured field of view, as it is by definition never expected
to occur.

5.2.4 Optical tracklets
Because SSA sensors have a limited FOV compared to the orbital state space, it is common
to see a particular object multiple times in quick succession before it leaves the field of view,
returning only hours or even days later19. In those short passes through the FOV, the topocentric
right ascension/declination measurements (𝛼, 𝛿) often follow linear or curvilinear motion in only
2 dimensions and it is therefore possible to group them into tracklets, without even resorting to
orbital dynamics. This process of tracklet formation is well-established and commonly used in
traditional space cataloguing approaches. Due to the lower dimensionality and simplified motion
model, outliers and false-positives can already be removed before considering them in the orbital
tracking setting. In Section 5.3, these tracklets will be used to drive the birth model. Later, in
Chapter 6, tracklets are leveraged further by considering them in full individual measurements
in the tracklet LMB filter.

5.3 Initial orbit determination - space birth models
In many other applications, a common choice of birth model for the LMB filter is to distribute
the means of new Bernoulli components uniformly over the state space, or over a part of it where
new objects might enter the filter.

18Recall the clutter associations are represented implicitly by dividing all association scores in Eq. (3.23) by
the clutter intensity and cancelling them out afterwards. This results in log(0) or division by 0 operations and
undefined behaviour.

19Note that this holds specifically if the observer is in surveillance mode, tracking as many objects as possible
without any preference for individual satellites.
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For example, consider maritime tracking using RADAR. The birth model could place new LMB
components along the boundary of the detection range, as this is where new ships are expected
to appear. The velocity mean could point towards the observer and the state covariance can
account for all options. With a limited number of components, it is possible to represent all
possible new objects.

This works if the birth region is well-bounded and of limited dimensionality, and if newborn
objects are expected to appear with significant separation (a single labelled birth component can
represent at most 1 real object). Most importantly, this requires relatively dense measurements,
so that the initial uncertainty has limited time to grow before the components are accepted or
rejected. For these reasons, it is generally infeasible in SSA to use an uninformed multi-Bernoulli
birth density over the entire domain; the space of possible orbital states is so large that such
an approach is either insufficient or intractable. Instead, the unassociated measurements from a
previous time step can be used to create an adaptive initial distribution for new targets [41][48]
[65][105]. The creation of an orbit state from a limited number of measurements is commonly
referred to as initial orbit determination (IOD).

Many different approaches exist to address this, some of which were mentioned in Section A.3.
It is possible to initialise birth densities by combining uncorrelated tracklets (UCTs) at multiple
time steps [14][116], but the focus in this work is on IOD based on a single UCT, i.e. a tracklet that
has a low association probability for all of the existing targets in the MO filter. The reason multi-
tracklet IOD methods are not used here is that it is hard to avoid introducing bias into the RFS
framework. Since the same tracklet might contribute to multiple birth components, coordinating
the relevant uncertainties and existence probabilities is more involved and considered beyond
the scope of this thesis.

In the numerical simulations of Chapter 7, the advantages and shortcomings of two different
orbit birth methods are highlighted -- they are briefly introduced below. Section 5.3.1 describes a
method using batch least-squares optimisation, which can be suitable for relatively long tracklets
with low measurement noise. The other approach relies on the linearity of (𝛼, 𝛿) in short tracklets
and uses constraints on the orbit geometry to obtain an initial distribution for the newborn
target state (Section 5.3.2--A). Since both methods are well-established in the SSA literature,
these sections are kept short and the reader referred to external sources for extensive details.

5.3.1 Gooding and batch least squares
One approach that is expected to work for IOD with relatively long tracklets uses the first, last
and central observation in the tracklet to obtain an initial orbit estimate by Gooding’s method
[52][53]. After that, the complete tracklet is used in a batch least squares (LS) optimisation to
compute a single state and covariance matrix.

For this thesis, these methods were used as implemented by Orekit, and they are well described in
existing literature (e.g. [26][48][124]) so only a brief overview of the main steps is provided here.

(i) Choose three (𝛼, 𝛿)𝑇  measurements in the tracklet for the Gooding initial guess. These
should be separated as far as possible.

(ii) Find the position of the observer 𝒓obs(𝑡) at each of the measurement epochs
(iii) Guess the initial slant range 𝜌 from the observer to the target object at the first and last

measurements (note that 𝒓𝑇
obs and (𝛼, 𝛿, 𝜌)𝑇  constrain the position of the target object).

(iv) Now that two position vectors and the time of flight are known, use a Lambert solver [62]
to fully constrain the orbit estimate.
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(v) Predict the remaining (central) measurement based on the current orbit estimate and
compute the measurement residual.

(vi) Update the slant range guesses iteratively in a Newton-Raphson optimisation until conver-
gence of the central measurement prediction. An illustrative case is visualised in Figure 5.7.

(vii) Feed the resulting initial orbit to a batch LS estimator that uses the complete dynamical
model and all measurements in the tracklet to obtain a state and covariance matrix at
the central time. Note that the covariance is usually approximated as the inverse Fisher
information matrix, which constitutes the lower bound of the uncertainty for an unbiased
estimator [69]. If the dynamics are imperfect, the measurement noise is larger than expected,
or the observation errors in the tracklet are not Gaussian, the estimated covariance will be
underestimated.

Figure 5.7:  Example of initial orbit determination using Gooding’s method. Note
that the geometry in this example is unrealistic, as tracklets are generally not expected

to be this long.

For sufficiently long tracklets where the evolution of (𝛼, 𝛿) is not linear over time, this approach
is expected to produce a realistic orbit estimate (see Section 7.3). However, if tracklets are very
short (only a small fraction of the orbit is observed) in combination with measurement noise,
many potential orbits could have created the same tracklet. Since the batch estimator does not
impose any constraints on the orbit geometry of the solution it produces, it often leads to very
large uncertainties and even hyperbolic orbits due to the limited angular arc and lack of curvature
information in these short tracklets. In such cases the single covariance matrix will not be an
accurate representation of the orbit probability distribution, especially when propagated further
in time.

In summary, this method can be a suitable choice for particular observation strategies, but should
generally be treated with care as a birth process in the tracklet LMB filter.

5.3.2 Attributable and constrained admissible region
In those cases where the Batch approach does not have sufficient information to obtain a well-
constrained orbit, the second approach implemented for this thesis can be a suitable choice. This
method relies on the linearity of 𝛼 and 𝛿 in short tracklets and uses pre-defined orbit restrictions
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to define a space of possible states (region). An approximation by Gaussian mixture then ensures
an accurate propagation of the probability distribution to be refined by future tracklets.

Given a sufficiently short tracklet of topocentric right ascension/declination measurements, it
is possible to approximate it with a single attributable 𝒂, located at the centre epoch of the
original tracklet and containing the estimated angles, along with their rates. The attributable is
denoted as

𝒂 = (𝛼 𝛿 ̇𝛼 ̇𝛿)
𝑇
, (5.18)

where 𝛼 and 𝛿 are the right ascension and declination,
respectively. A linear LS estimation can be used to obtain a
mean 𝝁𝑎 and covariance 𝑷𝑎 for the combined attributable
measurement. However, to obtain an orbit density, there
are two more unresolved dimensions. To completely define
an orbit, an additional estimate is required for the slant
range 𝜌 and its rate ̇𝜌 -- that is, the unknown distance
between the observer and the observed object.

Figure 5.8 visualises by example why a single attribute
does not fully constrain the orbit of an observed RSO. In
particular, different combinations of semi-major axis 𝑎 and
eccentricity 𝑒 can result in the same angles and angular
rates at specific time.

By putting bounds on the acceptable values of 𝑎 and 𝑒, one
can limit the number of possible solutions for 𝜌 and ̇𝜌 and
thereby obtain a 6D initial orbit distribution.

Figure 5.8:  Identical attribut-
able for very different orbits. In
this example (not to scale), 𝜌 is
the same for both orbits and only

̇𝜌 differs.

A. Constrained admissible regions
The procedure of constraining the geometry of new orbits densities by putting bounds on the
orbital parameters results in a constrained admissible region (CAR) [88].

The full development on how to compute the orbital elements for a given attributable and (𝜌, ̇𝜌)
assumption is provided in Appendix D, along with how to invert this mapping to obtain bounds
on the slant range and its first derivative based on constraints in 𝑎 and 𝑒. An example CAR for
an attributable observed by a ground-based telescope is shown in Figure 5.9, where the semi-
major axis is constrained to be smaller than that of a GEO orbit and the eccentricity is limited
to < 0.4.

Plotting a sample of the orbits that are accepted by the CAR results in Figure 5.10, where it
is clear the that the inclination is very well constrained, but many different combinations of 𝑎
and 𝑒 cause in large position uncertainty over time. The distribution of semi-major axis and
eccentricity for the solutions inside the CAR is visualised in Figure 5.11.
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Figure 5.9:  Example constrained admissible region with ground-based ob-
server. This example follows the settings as discussed in [28, p. 1326] the
observer is located at 30 deg latitude and the attributable observation is 𝒂 =

(10 deg, −2 deg, 15 deg/h, 3 deg/h).

Figure 5.10:  Example ground-based CAR -- The distribution of orbits sampled from
the admissible region and seen from two points of view.

B. Gaussian mixture approximation
Provided that no other information is available on the distribution of orbital parameters, the
target state density is assumed to be uniform in (𝜌, ̇𝜌) over the entire CAR. To be able to use
the closed-form Kalman filter equations (recall Section 2.2.4), it is useful to approximate the
uniform region as a GM. The process to achieve this is detailed by DeMars and Jah [28], but
can be briefly summarised as follows:

(i) Compute the range-marginal PDF 𝑝𝜌(𝜌) = ∫∞
−∞

𝑝𝜌, ̇𝜌(𝜌, 𝜁)𝑑𝜁, where 𝑝𝜌, ̇𝜌 is the complete,
uniform PDF of the constrained admissible region.

(ii) Based on a desired slant range uncertainty 𝜎𝜌, choose the appropriate number of range
components 𝐿𝜌 from [28, Table 1]20 such that 𝜎̃𝜌 ≲ 𝜎𝜌, distribute them equally over the

20Note that Table 1 in [28] is unitless, so the design uncertainties 𝜎𝜌 and 𝜎 ̇𝜌 need to be divided by the extent
of the domain and later multiplied again. Additionally, if the domain is very large or the desired 𝜎 very small,
the maximum 𝐿 = 15 is used and the standard deviation adjusted accordingly.
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Figure 5.11:  Example ground-based
CAR -- distribution of semi-major axis

and eccentricity for accepted (𝜌, ̇𝜌).

Figure 5.12:  Example ground-based CAR
-- range-marginal probability density function
and its approximation by GM for 𝜎𝜌 = 220 km.

𝜌 domain and estimate the GM weights {𝑤(𝑖)
𝜌 : 1 ≤ 𝑖 ≤ 𝐿𝜌} by linear least squares to

approximate the range-marginal PDF as shown in Figure 5.12.
(iii) For each of the slant range means 𝜌𝑖, compute the local domain of the range rate and

create 𝐿(𝑖)
̇𝜌  components with equal spacing for a desired 𝜎 ̇𝜌 such that 𝜎(𝑖)

̇𝜌 ≲ 𝜎 ̇𝜌. This time,
the distribution is conditioned on 𝜌𝑖 and thus uniform, so all GM weights are equal to
𝑤(𝑖,𝑗) = 1

𝐿 ̇𝜌(𝜌𝑖)
.

(iv) The complete 2D GM is constructed by combining all the components as

𝒢𝜌, ̇𝜌 =
{{
{
{{

[
[[𝑤(𝑖)

𝜌 𝑤(𝑖,𝑗)
̇𝜌 , ( 𝜌𝑖

̇𝜌𝑖,𝑗
),

(
((

𝜎̃𝜌

0
0

𝜎̃(𝑖)
̇𝜌 )
))

]
]]

}}
}
}}

(𝑖,𝑗)∈𝐿𝜌×𝐿(𝑖)
̇𝜌

, (5.19)

and depicted for the present example in Figure D.8.

By combining this GM with the estimated attributable density 𝒩(𝝁𝑎, 𝑷𝑎), a complete 6D GM
distribution is obtained

𝒢𝒂,𝜌, ̇𝜌 = {[𝑤(𝑖,𝑗)
𝜌, ̇𝜌 , (

𝝁𝑎

𝝁(𝑖,𝑗)
𝜌, ̇𝜌

), (
𝑷𝑎

𝟎2×4

𝟎4×2

𝑷 (𝑖,𝑗)
𝜌, ̇𝜌

)]}
(𝑖,𝑗)∈𝐿𝜌×𝐿(𝑖)

̇𝜌

, (5.20)

which can in turn be mapped to the orbital state space of choice using an unscented transform
(recall Eq. (2.30)).

This method is implemented in BASIL following the detailed descriptions by DeMars and Jah
[28][30] and Fujimoto and Scheeres [44], and based on the implementation in the Multitarget
Estimation, Tracking and Information Synthesis (METIS) Python library by Gehly [47][49]. Two
validation cases that compare to these references are also provided in Appendix D.

Since the CAR approach allows for the use of a single uncorrelated tracklet to form a birth target
and one can represent the state PDF by a GM, this model is consistent with the current LMB
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implementation in BASIL and chosen as the main method to model the birth process in the
numerical simulations of Chapter 7.

Figure 5.13:  Example ground-based CAR
-- Gaussian mixture approximation with

𝜎𝜌 = 220 km and 𝜎 ̇𝜌 = 80 m/s.

Figure 5.14:  Example ground-based CAR
-- Gaussian mixture approximation with

𝜎𝜌 = 220 km and 𝜎 ̇𝜌 = 80 m/s.

C. Probabilistic admissible regions
Although the CAR approach already provides a relatively robust framework to get an intial
orbit density, [110] points out that the uniform region with hard constraints is not the best
representation of our knowledge on the distribution of RSOs. Instead, the known statistics
on the spread of 𝑎, eccentricity 𝑒, inclination 𝑖 and right ascension of the ascending node Ω
can be combined with the uncertainty in the (𝛼, 𝛿) observations and to form a more informed
probabilistic admissible region (PAR). Cament et al. [17] uses this method inside a Poisson LMB
filter with promising results.

As discussed in the next chapter, CARs do not always perform well for LEO targets observed
by space-based sensors. Adapting to a probabilistic admissible region (PAR) approach might
improve the behaviour in such scenarios but the implementation and analysis of such solutions
for the tracklet LMB filter is left for future work.

5.3.3 Adaptive birth with tracklets
The previous two sections described how a single-object density can be obtained from an optical
tracklet. What remains is to assign a label and existence probability to all components, so that
they are completely defined labelled Bernoullis. For simplicity, let the birth component produced
by a tracklet with label 𝓂 be labelled ℓ𝓂. The existence probability 𝑟(ℓ𝑚)

𝐵  can be assigned using
the adaptive birth approach (Section 3.3.4--G), by either Eq. (3.36) or Eq. (3.37).

Note that both equations rely on 𝑟𝑈,𝑘−1(𝒛) from Eq. (3.35) -- the probability that a measurement
𝒛 was unassigned in the previous time step. Using the development from Chapter 4, there are
two options to generalise this to a tracklet with label 𝓂, depending on the type of the LMB
filter:
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(i) Either tracklets are processed as measurements in the filter (this is the topic of Chapter 6),
in which case 𝑟𝑈,𝑘−1 is exactly equivalent to the time-marginal association probability 𝛼(𝓂)

𝑘−1
from Eq. (4.2).

(ii) Otherwise, if the traditional LMB filter is used, a tracklet should only be added to the birth
model as soon as the filter has processed all its measurements (i.e. all measurements with
label 𝓂). The probability that this tracklet is a UCT and thus not associated to any existing
label is then the complement 𝛼(𝓂)

1:𝑘−1 of the accumulated association probability from Eq. (4.7).
Here 𝑡𝑘−1 is the time of the last measurement in the tracklet and the birth component is
introduced at 𝑡𝑘. It should be mentioned that none of the test cases in Chapter 7 use a birth
model in combination with the single-measurement LMB filter. Thus, this option is only
theoretical and not experimentally verified in the scope of this work.

To limit the number of birth components, the birth model is only run for tracklets with 𝑟(ℓ𝓂)
𝐵

above some minimum threshold 𝑟𝐵, min. At a minimum, this parameter is equal to the LMB
pruning threshold 𝜗LMB

𝑃  and birth components with 𝑟(ℓ𝓂)
𝐵  below that value can be pre-pruned,

before computing the corresponding SO density.
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Chapter 6

The tracklet LMB filter

In the case of RSOs, it is expected to see the same object multiple times in close succession, after
which it leaves the telescope’s field of view, only to return hours or days later²¹. As discussed in
Section 5.2.4, it is common to first group the measurements from single passes through the FOV
into tracklets, and then associate the tracklets to existing RSO orbits or to each other (e.g. [16]
[43][99][116][147]).

In the conventional MOT setting, measurements are chronologically fed to the filter in the form of
scans 𝑍𝑘, where each 𝒛𝑘 ∈ 𝑍𝑘 is valid at the exact same time 𝑡𝑘 and the measurements themselves
contain no information that could associate them with observations at different times. This
means that measurement labels obtained by tracklet formation methods are entirely ignored.
Recall that tracklet formation is usually reliable as it can be solved in fewer dimensions and with
(near-)linear dynamics.

Some efforts to introduce the benefits of tracklets in MOT were made by Frueh et al. [41]. Their
paper describes a multi-stage PHD filter where measurements in fixed intervals are associated
into tracklets and the tracklets are used as a whole to obtain the posterior PHD. That method
incorporates the tracklet formation and orbit determination as two stages of the same algorithm,
and assumes that all tracklets overlap completely with a clear start and end time. However,
enforcing time intervals on all the tracklets inevitably results in some of them being split
unnecessarily. The method proposed by Frueh also does not label the estimated targets and does
not retain the association result.

In what follows, a novel approach is introduced to adapt the LMB filter so that it can accept
complete, pre-formed tracklets as measurements. Additionally, the method adapts its time steps
dynamically based on the available tracklets. The expected benefit compared to the traditional
LMB is threefold:
(i) Tracklet formation can be done in the image space, effectively reducing the complexity of

short-term measurement association to a linear problem in two dimensions.
(ii) Small variations in time stamps due to shutter time effects are more easily handled, as

measurements do not need to be at the exact same time [41].
(iii) The effect of individual outliers is reduced, as entire tracklets are associated rather than

individual detections.

Section 6.1 first details how all elements in the LMB iteration can be adapted to facilitate groups
of tracklets instead of scans of observations. After that Section 6.2, addresses how these tracklet
groups can be created to ensure that the tracklets in each group represent distinct RSOs, while
maximising the number of tracklets in every step.

6.1 Tracklets as measurements
This approach leaves as much as possible from the original (G)LMB formulation intact, but
aims to substitute the measurement vectors 𝒛 ∈ ℤ𝑘 by tracklets 𝔗(𝓂)

𝑎,𝑏  (i.e. labelled sequences
of measurements). This sacrifices some of the mathematical rigour of the GLMB, particularly

²¹The time between observations is highly dependent on the pointing strategy of the observer, as well as the
target’s orbit and the observation geometry.
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in relation to modelling clutter and target death, but offers an effective framework for tracklet
association.

Let 𝔗(𝓂)
𝑎,𝑏 ≜ (𝔗𝑎,𝑏, 𝓂) ≜ {𝒛(𝓂)

𝑎 , …, 𝒛(𝓂)
𝑏 } be a labelled tracklet with sorted observation set 𝔗𝑎,𝑏

and label 𝓂 ∈ 𝕄𝑘, such that 𝑡𝑖 ∈ [𝑡𝑎, 𝑡𝑏] for every observation 𝒛(𝓂)
𝑖 ∈ 𝔗(𝓂)

𝑎,𝑏  and assume that the
duration of such a tracklet 𝑡𝑏 − 𝑡𝑎 is always very short with respect to the targets orbital period.²²

Now assume it is possible to form a group of these tracklets that are guaranteed to originate
from different targets and denote it as

ℨ𝑘 = {𝔗(𝓂)
𝑎,𝑏 }

𝓂∈𝕄𝑘

, (6.1a)

s.t. ∀𝓂 ∈ 𝕄𝑘 : [𝑡(𝓂)
𝑎 , 𝑡(𝓂)

𝑏 ] ⊂  ]𝑡𝑘−1, 𝑡𝑘], (6.1b)

where 𝕄𝑘 is the set of all measurement labels in ℨ𝑘 and no other available tracklet has
measurements in this time interval. Section 6.2 suggests a simple method to form valid groups
in most cases, but for now assume the mentioned requirements are satisfied. If this is the case,
the tracklet group ℨ𝑘 can be used as substitute for the measurement scan 𝑍𝑘 from the original
LMB filter.

Since there are now measurements at multiple epochs, the predicted and corrected filtering
densities will be defined at different points in time. The following three times are relevant for
the tracklet LMB filter:
• 𝑡𝑘−1 is the time of the previous corrected MO density
• 𝑡∗𝑘 = min𝑚∈𝕄𝑘

𝑡(𝓂)
𝑎  is the time of the first observed measurement in the tracklet group, here

referred to as the prior time.
• 𝑡𝑘 = max𝑚∈𝕄𝑘

𝑡(𝓂)
𝑏  is the time of the last observed measurement in the tracklet group and

thereby also the epoch of the next corrected MO density. It is here called the posterior time.

The LMB recursion for this tracklet filter can then be summarised with some minor modifications
compared to the original LMB filter:

(i) Given the previous LMB density ̊𝜋LMB
𝑘−1  at time 𝑡𝑘−1.

(ii) Predict the surviving LMB at the prior time 𝑡∗𝑘: ̊𝜋LMB
𝑆,𝑘∗|𝑘−1 (see Section 3.3.4--A).

(iii) Add birth components ̊𝜋LMB
𝐵,𝑘∗  from an adaptive birth model (see Section 5.3).

(iv) Convert to GLMB: ̊𝜋GLMB
𝑘∗|𝑘−1 (see Section 3.3.4--B).

(v) Compute the detection probabilities for all targets ℓ ∈ 𝕃𝑘 during the interval [𝑡∗𝑘, 𝑡𝑘] (see
Section 6.1.1)

(vi) For every viable combination of measurement 𝓂 and target ℓ, compute the tracklet
measurement log likelihood (see Section 6.1.2)

(vii) Compute the weights 𝑤(𝜉𝜃)(𝐿) for these updates using the normal GLMB update step, but
employing the adapted detection, clutter and likelihood models.

(viii) Compute the posterior densities for each hypotheses by running a single-object filter (e.g.
EKF/UKF) through all the observations and propagating further to the posterior time 𝑡𝑘.
Note that undetected targets must also be propagated to 𝑡𝑘 to ensure the posterior MO
density ̊𝜋GLMB

𝑘  is defined at a single point in time.
(ix) Convert the posterior to LMB: ̊𝜋LMB

𝑘  (see Section 3.3.4--D).
(x) Set 𝑘 ≔ 𝑘 + 1 and return to (i).

²²For optical tracklets obtained during general surveillance, the duration is often more than two orders of
magnitude shorter than the target orbital period.
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6.1.1 Tracklet detection probability
The procedure in Section 5.2.2 showed how the detection probability is obtained for a discrete
observation time 𝑡𝑘, but since the update now happens in a time window [𝑡∗𝑘, 𝑡𝑘], the detection
probability must be adapted accordingly.

Assuming the sensor still collects measurement scans at discrete times, then the illustration in
Figure 5.6 can be extended to Figure 6.1. The relevant quantity is the probability that each
target was observed during at least one of these scans.

Figure 6.1:  Multi-scan detection probability with field of view. This shows the target
densities projected onto the FOV at all measurement scan epochs. The

If 𝑃𝐷 ≲ 1 for an object inside the FOV, the most straightforward solution to obtain the multi-
scan detection probability is to use the maximum value

𝑃𝐷(𝒙𝑘∗ , ℓ, {𝑡∗𝑘, …, 𝑡𝑘}) = max
𝑡𝑗∈{𝑡∗

𝑘,…,𝑡𝑘}
𝑃𝐷(𝜑𝑗(𝒙𝑘∗), ℓ, 𝑡𝑗) (6.2)

where 𝜑𝑗 represents the predicted state (along with its uncertainty) to time 𝑡𝑗 and 𝑃𝐷(𝒙, ℓ, 𝑡)
follows Eq. (5.17).

However, for lower 𝑃𝐷, this method will underestimate the detection probability of targets that
remain in the FOV longer. Instead, compute the probability that the target is outside the field
of view during each of the measurement scans. The complement is then the probability that the
target is observed at least once,

𝑃𝐷(𝒙𝑘∗ , ℓ, {𝑡∗𝑘, …, 𝑡𝑘}) = 1 − ∏
𝑘

𝑗=𝑘∗

[1 − 𝑃𝐷(𝜑𝑗(𝒙𝑘∗), ℓ, 𝑡𝑗)]. (6.3)

Example -- Consider target ℓ2 in Figure 6.1 and assume the detection probability in the FOV
is 𝑃𝐷 = 0.5. During this time span, there are five observation opportunities and the predicted
target mean is inside the FOV at 4 of those times. According to Eq. (6.2), the detection
probability would now still be 𝑃𝐷(𝒙, ℓ2, {𝑡1, …, 𝑡5}) ≈ 0.5, which is not realistic. The probability
that it was not detected in any of the scans is (0.5)4 ≈ 0.06, so the probability of detection
according to Eq. (6.3) becomes 0.94.
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Recall from Eq. (3.23) that the measurement assignment score has 1 − 𝑃𝐷 in the denominator,
so 𝑃𝐷(⋅) = 1 results in a singularity and should be avoided. Therefore, an upper bound 𝑃max

𝐷
(e.g. 0.99) is used so that

𝑃𝐷(…) = min(𝑃max
𝐷 , 𝑃𝐷(…)), (6.4)

which also explains why Eq. (6.3) does not make much difference if 𝑃𝐷 is already close to 1.
Repeated presence of a target in the FOV would anyway result in 𝑃𝐷(⋅) = 𝑃max

𝐷 .

6.1.2 Tracklet log likelihood
To compute the measurement likelihood for tracklet measurement given a target ℓ and its prior
distribution, one approach is to evaluate all measurements in that tracklet separately and then
use the average log likelihood.

log 𝑔(𝔗(𝓂)|𝒙𝑘∗ , ℓ) = 1
|𝔗(𝓂)|

∑
𝒛∈𝔗(𝓂)

log 𝑔(𝒛|𝒙𝑘∗), (6.5)

where 𝑔(𝒛|𝒙𝑘∗) is a minor misuse of notation to indicate that the prior state density is predicted
to the time of 𝒛 after which the likelihood is computed. For Gaussian (mixture) distributions,
this effectively computes the Kalman filter equations without actually updating the distribution.
Note that Eq. (6.5) is conceptually similar to estimating the likelihood based on the mean squared
Mahalanobis distance (recall Eq. (2.8) and Eq. (2.19)).

6.1.3 Tracklet clutter model
Modelling false positives and measurements from unknown objects is the most challenging part
of the tracklet filter. To fit the core assumptions of the MO measurement model from Eq. (2.23),
the clutter must be modelled as a Poisson RFS. However, since a tracklet is in itself a set of
vectors, the tracklet clutter intensity function 𝜅𝔗

𝑐  will have different units depending on the
number of measurements in the tracklet. It is therefore necessary to also model the size of clutter
tracklets.

Moreover, it is not immediately clear when a tracklet is clutter. One possible definition could
be: “a tracklet is clutter if it consists exclusively of clutter measurements”, but no less valid
would be “the tracklet is clutter if it contains at least 1 clutter measurement” and many other
options. Neiter of these two is ultimately used in this work, but for the sake of argument, the
first definition is briefly developed.

Let 𝜌𝔗
𝑐  be a cardinality PMF, such that 𝜌𝔗

𝑐 (𝑛) is the probability that a clutter tracklet has 𝑛
measurements. Further, assume that individual clutter measurements follow a PPP distribution
with intensity 𝜅𝑐 and clutter rate 𝜆𝑐. Then, the tracklet clutter intensity can be modelled as

𝜅𝔗
𝑐 (𝔗𝓂) = 𝜌𝔗

𝑐 (|𝔗(𝓂)|) ∏
𝒛∈𝔗(𝓂)

𝜅𝑐(𝒛), (6.6)

and the corresponding tracklet clutter rate is

𝜆𝔗
𝑐 = ∑

∞

𝑛=1
[∫

ℤ𝑛

𝜅𝔗
𝑐 (𝔗′)𝛿𝔗′] (6.7a)

= ∑
∞

𝑛=1
𝜌𝔗

𝑐 (𝑛)(𝜆𝑐)
𝑛, (6.7b)
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where the set integral is as discussed in Eq. (3.2). If clutter tracklet length is itself modelled by
a Poisson distribution with mean 𝑛𝔗, then Eq. (6.7) simplifies to

𝜆𝔗
𝑐 = ∑

∞

𝑛=1

exp(−𝑛𝔗) (𝑛𝔗)𝑛

𝑛!
(𝜆𝑐)

𝑛 = exp(−𝑛𝔗) ∑
∞

𝑛=0

(𝑛𝔗𝜆𝑐)
𝑛

𝑛!
(6.8a)

=
Taylor

𝑒−𝑛𝔗(𝑒𝜆𝑐𝑛𝔗 − 1) (6.8b)

It is important to stress that 𝑛𝔗 does not represent the mean length of any tracklet, but of a clutter
tracklet as defined by the first definition above. It is the mean number of clutter measurements
that would be linked together by the preprocessing step.

Although this representation is mathematically consistent and suitable as a direct substitute
following the assumptions of the GLMB filter, it has several very important drawbacks:
(i) It only models the specific failure mode where a complete tracklet is full of clutter measure-

ments, but this is not sufficient. For example, the tracklet formation process might combine
measurements from different objects in the same (long) tracklet, which would not be captured
by Eq. (6.6).

(ii) It is incompatible with adaptive birth (see Section 3.3.4--G), which relies on the mechanism of
association probabilities to select tracklets for newborn targets. Since the MO measurement
model does not distinguish between clutter measurements and measurements belonging to
an unknown object, the clutter model must capture both scenarios.

The last drawback of course also applies to a model that considers tracklets with ≥ 1 clutter
measurement as false positive (second definition above). In addition, such a model would be
unreasonably quick to discard longer tracklets and has other downsides that make it undesirable.

In the context of this work, the clutter model is mainly used to accommodate the measurement-
driven birth model and a heuristic method is used as a first attempt, where the tracklet clutter
intensity is set to the geometric mean of its measurement clutter intensities and the tracklet
clutter rate is set to the clutter rate:

𝜆𝔗
𝑐 = 𝜆𝑐, 𝜅𝔗

𝑐 = exp[ 1
|𝔗|

∑
𝒛𝑖∈𝔗

log 𝜅𝑐(𝒛𝑖)]. (6.9)

This is a sub-optimal approach for many reasons; most importantly because it violates²³ the
definition of the PPP clutter model and therefore introduces a bias in the GLMB update.
Rigorously quantifying this bias is also not possible without clearly defining all the types of false-
positive tracklet measurements. The problem of accurately and consistently modelling tracklet
clutter is now briefly introduced but further investigation is considered beyond the scope of this
thesis and will be left for future work.

Aside from the mentioned limitations in mathematical consistency, it should be stressed that
the tracklet formation process should significantly reduce the clutter rate, and the expected
number of false-positives is already relatively low for optical observations in SSA (compared to
e.g. RADAR). For this reason, it is expected that the effective clutter rate with tracklets as
measurements will be close to zero and the clutter model can be exploited mostly to represent

²³Eq. (6.9) does not have units [ 1
ℤ𝑛 ] (where 𝑛 = |𝔗|) and thus does not define a proper intensity function. This

breaks the additivity and total expectation property from Eq. (6.7a).
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6 The tracklet LMB filter

unknown objects that will later be introduced by the adaptive birth model from Section 3.3.4--
G and Section 5.3.

6.2 Tracklet grouping
To build the LMB filter with tracklets as measurements, it was assumed that tracklet groups ℨ𝑘
can be formed such that
(i) they contain tracklets which certainly belong to different objects and
(ii) no two tracklets in different groups have overlapping measurement times.

This section proposes a simple algorithm to obtain such groups, based on the sole assumption
that there is some minimum time span Δ𝑡valid between tracklets that originate from the same
target. In other words, given two tracklets with labels 𝑚1 and 𝑚2, if

[𝑡(𝑚1)
𝑎 , 𝑡(𝑚1)

𝑏 + Δ𝑡valid] ∩ [𝑡(𝓂2)
𝑎 , 𝑡(𝑚2)

𝑏 + Δ𝑡valid] ≠ ∅, (6.10)

then 𝑚1 and 𝑚2 are guaranteed to belong to different objects and can be in the same tracklet
group. This validity padding Δ𝑡valid is the only design parameter for the grouping method and
can be must be adjusted to context of the problem. Note that the validity padding is dependent
on the specific tracking scenario and particularly on the sensor tasking. This thesis is limited
to single-observer cases, so Δ𝑡valid mostly depends on the target objects regime, the observer
position/orbit and its pointing strategy.

Given a set of tracklets 𝕿 = {𝔗(𝓂)
𝑎,𝑏 }

𝓂∈𝕄1:𝑘

 ordered by 𝑡(𝓂)
𝑎 , Figure 6.2 visualises how the they

are then robustly collected into measurements groups. In general, the first tracklet defines 𝑡∗𝑘,
and tracklets are added to the group as long as they satisfy Eq. (6.10) with the first one. If not,
a new group is started. In case the first excluded tracklet overlaps with a tracklet in the group
-- violating requirement (ii), the tracklet after the last gap marks the start of a new group.

Figure 6.2:  Tracklet grouping example. 𝓂1 defines the start of ℨ1. 𝓂2 and 𝓂3 are
added because their start time overlaps with the validity padding of 𝓂1. 𝓂4 does
not overlap and therefore starts a new group ℨ2. 𝓂5, 𝓂6 and 𝓂7 could be added to
that group, however 𝓂8 cannot and overlaps with 𝓂7. Since this would violate the

requirement (ii), 𝓂7 marks the start of a new group.

The complete procedure is also reflected in Algorithm 6.1, where the following abbreviations are
used in the notation for convenience:

𝔗 ≜ 𝔗(𝓂)
𝑎,𝑏 , 𝑡𝑎(𝔗) ≜ 𝑡(𝓂)

𝑎 , and 𝑡𝑎(ℨ) ≜ min
𝔗∈ℨ

𝑡𝑎(𝔗). (6.11)
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2025 6.2 Tracklet grouping

Algorithm 6.1:  Simple tracklet grouping

group(𝕿 ≜ {𝔗𝑎,𝑏}, Δ𝑡valid):
1 𝖅 = ∅ ▷ groups
2 ℨ𝑐 = ∅ ▷ confirmed tracklets
3 ℨ𝑝 = ∅ ▷ pending tracklets
4 sort 𝕿 by start time 𝑡𝑎(𝔗)
5 for 𝔗 ∈ 𝕿
6 if ℨ𝑑 = ∅ ▷ Initialise
7 ℨ𝑐 = {𝔗}
8 continue
9 end if

10
11 if 𝑡𝑎(𝔗) < 𝑡𝑏(ℨ𝑐) ▷ confirmed overlap
12 ℨ𝑐 = ℨ𝑐 ∪ {𝔗}
13 else if 𝑡𝑎(𝔗) < 𝑡𝑏(ℨ𝑝) ▷ pending overlap
14 ℨ𝑝 = ℨ𝑝 ∪ {𝔗}
15 else ▷ New gap; all pending confirmed
16 ℨ𝑐 = ℨ𝑐 ∪ ℨ𝑝

17 ℨ𝑝 = {𝔗}
18 end if
19
20 if 𝑡𝑎(𝔗) < 𝑡𝑎(ℨ𝑐) + Δ𝑡valid ▷ New group needed
21 if ℨ𝑝 = ∅ ▷ Continuously overlapping
22 throw algorithm fails ▷ grouping ambiguous
23 end if
24 𝖅 = 𝖅 ∪ {ℨ𝑐} ▷ register confirmed group
25 ℨ𝑐 = 𝖅𝒑 ▷ pending → new group
26 ℨ𝑝 = ∅ ▷ No gaps yet
27 end if
28
29 end for
30 ℨ𝑐 = ℨ𝑐 ∪ ℨ𝑝 ▷ Collect all remaning
31 if ℨ𝑐 ≠ ∅
32 𝖅 = 𝖅 ∪ {ℨ𝑐} ▷ Register final group
33 end if

Using this grouping method, sets of tracklets can robustly be incorporated as substitutes for the
traditional measurement scans in the new tracklet LMB filter, leveraging both the rigour of the
LRFS framework and the reliability of existing tracklet formation pipelines.
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Chapter 7

Simulations

Various test cases are investigated to analyse the effectiveness of the association extraction
methods and the tracklet LMB filter. Every test case has several points of focus for investigation,
as stated at the start of the section. Still, the main objectives are to demonstrate that measure-
ment association results can be extracted from the LMB filter as worked out in Chapter 4 and to
illustrate the properties of the adapted LMB filter using angles-only tracklets as measurements.
Each scenario’s case setup is briefly summarised in Table 7.1.

Table 7.1:  Overview of simulation cases

Focus Observer type Pointing strategy # Objects Regime Section
Association extraction ground (TFRM) 2 h GEO fences 8 GEO 7.1
Closely spaced objects 𝑖 = 0° (500 km) Zenith 7 GEO 7.2
GEO object discovery 𝑖 = 97° (500 km) GEO equinox line 200 GEO 7.3
LEO object discovery 𝑖 = 97° (500 km) Above the poles 10 LEO 7.4

7.1 Tracklet to tracklet association in GEO
The first test case borrows from the setup discussed by Pirovano [98, p. 59 et seq.], who in turn
adapted it from Zittersteijn et al. [148]. This scenario with measurements from a ground-based
telescope serves a triple purpose:
(i) to evaluate the algorithm’s ability to associate tracklets from a small number of objects in

the geostationary regime,
(ii) to confirm the usefulness of the CAR birth model for the LMB filter with objects in GEO and
(iii) to validate the filter convergence when detection is certain.

7.1.1 Setup
The object population for this case is a set of 8 satellites with ground truth initial states as
reported in Appendix G. All measurements are simulated for January 2016 for a single ground-
based observer at the location of the Telescope Fabra ROA Montsec (TFRM) observatory, where
the pointing strategy is to use a fence that keeps the right ascension fixed for 2 hours, after
which the fence is moved 2 hours in right ascension. The process repeats 4 times every night
during three consecutive nights. Measurement scans are collected every 30 seconds for a range
of declination values in such a way that every object is certainly observed in every fence and
no two tracklets in a single fence can originate from the same object. Given that the telescope
has a field of view of 1 degree, the resulting tracklets contain about 7 observations (3 minutes).
The fences and all observations are visualised in Figure 7.1. The measurement noise is assumed
Gaussian with 𝑹 = (2″)2𝑰.
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2025 7.1 Tracklet to tracklet association in GEO

Figure 7.1:  Observation geometry for ground-based GEO observations with fences
and all 3 nights of observations (based on [18][98][148])

This case has several advantages for an initial performance check of the tracklet filter. First of all,
it avoids the need for dedicated grouping, because this pointing strategy immediately satisfies
the tracklet group requirements listed in Section 6.2, so that the measurements can simply be
grouped by observation fence. The fact that every object is observed in every group also allows
using a constant detection probability 𝑃𝐷 = 0.99.

The filter is initialised without any prior information and the birth process uses a constrained
admissible region approach with 0.95 𝑎GEO < 𝑎 < 1.05 𝑎GEO and 𝑒 < 0.1 and GM approximation
with desired uncertainty in slant range and range rate of 𝜎𝜌 = 500 km and 𝜎 ̇𝜌 = 20 m/s, respec-
tively. The existence probabilities are computed by the adaptive method from Eq. (3.37) with
𝜆𝐵
𝜆𝑐

= 1 and 𝑟𝐵, max = 0.3. For consistency, the survival model uses these same CAR constraints
as the birth model and assigns 𝑝𝑆(𝒙, 𝑡𝑘) = 1 if the state fulfils the constraints and 0 otherwise
(recall Section 5.1.5). In case the state is a GM, the survival probability is a weighted sum. In
principle, RSOs do not disappear and should therefore not die in the filter, but the mechanism
of target death is, for example, needed to prevent that a failed birth component results in a
persisting hypothesis if it never returns to the field of view.

7.1.2 Results
Because no initial information was provided to the filter, all 8 tracklets from the first fence
immediately feed into the CAR birth process, which produces new labelled Bernoullis at the
start of the second tracklet group. Since the constraints for the admissible region in this case are
more stringent (particularly for the eccentricity) than in the example discussed in Section 5.3.2--
A, the CAR generates, on average, 14 GM components per Bernoulli in the birth mixture and
all but one or two of those are pruned out after only a few measurement updates.

The second-order OSPA error results are presented in Figure 7.2. Note that position and
velocity components are separated to ensure consistent units in Eq. (3.38). Furthermore, the
plot distinguishes between estimated errors, which occur after a filtering step of a single tracklet
group, and propagated errors which are obtained simply by predicting the last estimated MO
state forward and comparing it to the ground truth.

After the first tracklet group, there are no estimates because there are no target labels yet.
Therefore the cardinality penalty is applied for each of the objects and the OSPA starts at cut-
off values of 100 km and 100 m/s for position and velocity, respectively. One filter step later,
the position OSPA is still close to the maximum, but now because the orbit estimates have
not converged yet. To confirm this, Figure 7.3 shows the Euclidean position errors. The median
estimated error is still above 200 km and none of the estimates are closer than ∼ 40 km to the
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truth. At the end of the first observation night, all errors are below 3 km, but since these are then
propagated for about 18 hours, the OSPA also increases again. During the next 4 observation
fences (the second night), all states are reduced enough to avoid growing errors in the second
observation gap and the final position errors are at most ∼ 400 m (Figure 7.3). These results
demonstrate that the tracklet LMB filter integrates well with CAR birth and converges for a
small number of objects in GEO.

Figure 7.2:  OSPA errors in position and velocity for the small population in GEO
with a ground-based telescope

Figure 7.3:  Euclidean position errors of the corrected states w.r.t. ground truth.
Note that this plot starts with the estimates after the second tracklet group, since

there were no labels in te filter at the first time step.

Additionally, the single-object uncertainty bounds, estimated by the filter, correctly capture the
estimation errors for each RSO. This is shown for object 26038 in Figure 7.4, but all others
exhibit similar behaviour. That plot shows the RTN errors after every tracklet group and thus
represents the update based on a complete tracklet. The covariance is large at first because it
represents the uncertainty of the CAR. It then shrinks quickly as the estimates become better
but no filter saturation occurs, indicating that the process noise is well-tuned. Recall that there
are 12 tracklets for each object -- one for all 4 fences in 3 consecutive nights, but the first night
in Figure 7.4 contains only 2 estimates. As mentioned before, there cannot be an estimate for
the first step, because the filter was initialised with an empty MO density, so the first tracklet
must go to the adaptive birth model and only contributes in the prediction step for the next
iteration of the filter (see Section 3.3.1) After the first update, its existence probability was still
insufficient to be included in the state extraction (recall that 𝑟𝐵, max = 0.3 was used here to
avoid an overconfident birth process) and only after the second measurement update (i.e. the
third tracklet group) did the filter consider this target confirmed. Remember that the decision
to include targets in the MO state is made by estimating the number of objects 𝑛̂ based on the
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mode of the cardinality distribution (MAP). Only the 𝑛̂ labels with highest existence probability
𝑟(ℓ) result in an estimate (Eq. (3.31) and Eq. (3.32)). A target is considered confirmed if it is
consistently included in the MO state estimate.

This is also consistent with the high OSPA in the beginning (Figure 7.2), due in part to the
underestimated cardinality. To obtain accurate state estimates from the initial epochs onwards,
one could perform a smoothing operation to go back in time with the newly obtained information.
However, for this thesis, the focus is instead on collecting all the correct tracklet associations,
such that a dedicated single-object estimation model can later be used to improve the orbit fit
if required.

Figure 7.4:  RTN filter estimation errors and uncertainty bounds for object 26038.
Note that the uncertainty bounds are only valid at the estimation times and corre-
spond to the posterior uncertainty. The apparent decrease in uncertainty during the

measurement gaps is a plotting artefact.

Extracting the association results is done as discussed in Section 4.1. Since measurement labels
are unique to each tracklet and the tracklet filter is used in this case, there is no need to
accumulate the association probabilities. In contrast to direct tracklet-to-tracklet association
methods, where the tracklets are evaluated two-by-two, this type of association is indirect as the
observations are assigned to targets in the filter and therefore implicitly associated to all other
measurements of that target label.

The complete output with association probabilities for every combination of tracklet label 𝓂 and
target label ℓ can be found in Figure F.1 of the appendix. Here, the performance is summarised by
Figure 7.5. Since the tracklet labels contain the true ID of the source object24, and the target labels
are borrowed from the tracklet used for their IOD, this confusion matrix gives information on the
correctness of the association estimates. In this case, no target has measurements from different
sources and all tracklets from each source are assigned to a single target, so the association is
perfect here.

24This information is of course not used by the filter and only serves to evaluate the output and behaviour of
the algorithm.
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Figure 7.5:  Confusion matrix for GEO
objects with ground-based observer. All 12
tracklets are correctly assigned for each of

the objects

Figure 7.6:  Overview of components in
the LMB filter .

.

.

The average runtime of this test case based on 25 samples was 20.1 seconds, where 80% of the
time was spent processing the first 3 out of 12 tracklet groups. The reason is that most GM
components resulting from the birth process are pruned out after several measurement updates.
This fact can be appreciated from Figure 7.6, where the cardinalities of several key sets in the
LMB filter are summarised. Since the initial state is empty (no prior knowledge), all tracklets
from the first group result in a GM, introducing a significant number of Gaussian components. In
this case, the total number of predicted GM components is 121 (not depicted in the figure). Since
all targets have 𝑃𝐷 ≈ 1, the Kalman correction is computed for every combination of Gaussian
component and tracklet (i.e. 968 updates). After the next measurement update, 80 of those
remain (see Figure 7.6) and after half of the second night, each target has a single Gaussian left,
allowing the final associations to complete in a fraction of a second.

7.1.3 Summary
This test case borrowed its setup from existing literature. It showed that the tracklet LMB filter
can find and estimate the state of a small number of GEO objects based on sparse, ground-based
measurements and correctly extract measurement associations from the sequential estimation
process.

7.2 Closely spaced GEO satellites with space-based observer
The next test case considers a small number of GEO objects in close proximity to each other,
observed by a space-based telescope. The case is used to investigate:
(i) The performance of the proposed tracklet LMB filter as compared to the single-scan imple-

mentation, both for state estimation and measurement association.
(ii) The features of the CAR IOD method with a space-based observer.

7.2.1 Setup
For this scenario, the object population consists of Arabsat 4B, 5B, 6B and 7B, ES’HAIL 1 and 2
and SKYNET 5B. These seven satellites have very similar, near-circular orbits at geosynchronous
altitude with a longitude between 25° and 26.2° East in the ECEF reference frame. The two-line
elements (TLEs) used as a reference for the simulation are listed in Table G.2 of the appendix.

The observer is a space-based telescope in a circular orbit at 500 km altitude, the viewing direction
is constantly pointed towards zenith, and the FOV is 4 by 4 degrees. To reduce the data density,
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the observer orbit has a 10-degree inclination. Although this type of orbit and pointing strategy
is not very realistic for a space-based observer, it does ensure that most tracklets are about
the same length and avoids telescope pointing logic that might introduce its own errors in the
analysis.

If the observer is at 500 km with 𝑖obs = 0° the centre of the FOV shifts by about 228.3°/h, while
GEO satellites move at 15°/h. Given a 4° × 4° FOV, the expected tracklet length is 4°

(228.3−15)°/h
or slightly more than 1 minute. For increasing observer inclination, this length reduces.

Observations are simulated for a period of one week with an observation frequency of 1 Hz,
resulting in the complete geometry shown in Figure 7.8. Note that tracklets are found when
the observer crosses the equator and with declination 𝛿 roughly between −2° and 2°, which
corresponds to the half-angle of the FOV. The variation in right ascension originates from the
movement of the space-based observer and the observed satellites, while the FOV overlaps with
the RSO orbits. Most objects are in the FOV for ∼ 55 seconds (see Figure 7.7), but some are
longer depending on the inclination of the observed object.

Figure 7.7:  Distribution of
tracklet duration

Figure 7.8:  Observation geometry of GEO satellites
observed from LEO with 𝑖obs = 10° for 7 observation

days. Every marker represents a complete tracklet

Notice from Figure 7.8 that SKYNET 5B (32294) is more often visible than the rest of the
objects due to its inclination of 4.3°. The FOV crosses this satellite significantly more often than
all the others. Therefore, this object is expected to be relatively easy to identify compared to
the rest of the RSOs.

The tracking problem is solved using both the classical LMB filter (Section 3.3.4) and the
proposed variation with tracklets as measurements (Chapter 6). To ensure a fair and insightful
comparison between the filters, most of the common parameters are kept constant and are as
listed in Table 7.2. Notice that the survival probability is set to 1.0. This is, in particular,
necessary for the single-measurement filter because if an object is not observed during a specific
pass, this corresponds to ∼ 60 propagation steps and thus an effective survival probability of
(𝑃𝑆)60. This unfairly affects objects that are less often seen and results in premature target
death. As mentioned before, target death is not expected in the case of SSA and merely serves
to stabilise the filter if the birth process produces too many targets. This is addressed in more
detail for the current case in Section 7.2.4.
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Table 7.2:  Common parameters for the case with closely spaced GEO objects

Parameter Value Unit
Measurement noise 𝜎𝛼 = 𝜎𝛿 5 ″
GM pruning 𝜗GM

𝑃 10−5

GM cap 𝑛GM
max 10

LMB pruning 𝜗𝑃 LMB 10−5

GLMB prior hypotheses cap | ̊𝜋GLMB
𝑘|𝑘−1 |

max
1000

GLMB posterior hypotheses cap | ̊𝜋GLMB
𝑘|𝑘 |

max
1000

Survival 𝑃𝑆 1.0
Gating 𝑃𝐺 0.99999
Clutter rate 𝜆𝑐 10−4

Clutter intensity 𝜅𝑐
𝜆𝑐

∫
FOV

𝑑𝒚 = 𝜆𝑐
16 deg−2

Process noise 𝑸𝑎 (Section 5.1.4) 10−16𝑰3×3 m/s2

Dynamics Keplerian
State representation Cartesian

7.2.2 Single-measurement LMB filter with prior knowledge
The first approach to address this tracking and association scenario is to use the classical LMB
filter, where the update steps consider a set 𝑍𝑘 of individual measurements at a particular time
𝑡𝑘. Here, the MO state is initialised based on prior knowledge of the objects, 4 hours before the
first measurements. An offset is applied to the ground truth as sampled from an uncorrelated
Gaussian distribution where the initial position and velocity errors follow 𝒩(𝟎, (10 km)2𝑰3×3)
and 𝒩(𝟎, (10 m/s)2𝑰3×3), respectively.

Since the objects are in GEO, 4 hours is much less than 1 orbital period, and the predicted
uncertainty can be obtained using the Clohessy-Wiltshire equations [22][26]. The resulting RTN
position covariance is shown in Figure 7.9, and its trace is (259 km)2. Note that this rapid
uncertainty growth is mostly due to the initial velocity error. For comparison, Figure 7.10 shows
the inter-satellite distance between the tracked objects at the time of the first measurements.
Apart from SKYNET-5B (32294), most satellites are at distances similar to the prior position
uncertainty.
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Figure 7.9:  Predicted state uncertainty at
time of first measurements using Clohessy-

Wiltshire equations

Figure 7.10:  Euclidean distance between
the simulated objects just after the first

tracklet group

As shown in Figure 7.11, the filter converges after about 60 hours of observation time, which
corresponds to about 4 tracklets per satellite (except SKYNET 5B, which is observed 6 times
by then). Because passes occur where not all objects have measurements, the errors of the
unobserved objects keep increasing and the OSPA distance can therefore also increase between
different estimated steps.

Figure 7.11:  OSPA for classical LMB filter with 7 closely spaced GEO objects

The association results are first extracted based on the maximum of the individual (time-
marginal) association probabilities from Eq. (4.2) in Section 4.1, and the resulting confusion
matrix is shown in Figure 7.12. No false associations are found, but 225 out of 5014 measurements
(4.5 %) are incorrectly categorised as clutter. Without changing anything in the filtering approach
(i.e. still using the classical, single-measurement LMB filter), one can refine these association
results considering that the measurements belong to tracklets and are therefore labelled. Even if
the filter does not use this information, it is known which observations should belong to the same
object and therefore, the tracklet association probabilities can be computed by accumulating the
results as discussed in Section 4.2 by Eq. (4.7). The result is shown in Figure 7.13.

In other words, the difference between the two association results is that Figure 7.12 has indepen-
dent assignment decisions for every single observation, whereas in Figure 7.13, all measurements
from an entire tracklet are assigned as one to an object or to the clutter/unknown category.

page 78



7 Simulations

For 4 of the 7 satellites, this accumulation step manages to pick up the previously rejected
measurements so that all tracklets are correctly linked. The three others are each left with one
tracklet that could not be associated. These are left in the last column of Figure 7.13.

Figure 7.12:  Confusion matrix for clas-
sical LMB filter with time-marginal proba-

bilities

Figure 7.13:  Confusion matrix for classi-
cal LMB filter with accumulated probabil-

ities

Remembering that the tracklets consist on average of 55 measurements (Figure 7.7), the total
number of missed observations went from 225 in Figure 7.12 to ∼ 165 (or 3.3 %) in Figure 7.13. It
is essential to mention that the missed measurements using the marginal association probability
in Figure 7.12 do not all originate from the same tracklet. They were individual measurements
from various tracklets. In case a tracklet has relatively few incorrect associations, the accumu-
lation step incorporates them based on all the correct conclusions from other measurements with
the same label. However, this effect also works the other way. If many individual measurements
in a tracklet are incorrectly rejected, the associated measurements are also considered clutter. So
even though the total number of correctly assigned measurements is larger with the accumulated
result from Figure 7.13, some observations that were correctly assigned in Figure 7.12 are now
marked as clutter/unknown. This is a limitation of the method because even if the total number
of associated measurements is higher, they might come from fewer tracklets. In a sparse data
environment, rejecting all measurements from a tracklet might not be desirable.

To further investigate why some tracklets correctly pick up missed measurements and others are
wrongly assigned to clutter, the existence and detection probabilities over time are shown for
Arabsat 6B (41029) and 7B (56757) in Figure 7.14 and Figure 7.15, respectively. These plots
indicate the target’s existence probability before every measurement update with a triangle and
use crosses to represent the detection probability. In addition, all tracklets for the relevant object
are indicated, along with the duration of the tracklet group of which they are a part. Notice
that tracklet groups are not used in the single-measurement LMB filter, but they show that
the tracklets overlap extensively. First of all, notice that both targets start with an existence
probability of 5, but are immediately confirmed by the first measurements, reaching 𝑟(ℓ) ≈ 1 and
remaining there indefinitely, as expected. At the times far away from the tracklets, the detection
probability is zero, which corresponds to the FOV-based detection model from Section 5.2.2.

Focusing on the zoomed area in Figure 7.14, notice that the detection probability drops to
∼ 0 before the end of the tracklet, making it very unlikely that the filter would associate the
corresponding measurements correctly. This is an undesirable effect of the sharp edges of the
FOV. However, because the majority of the measurements in this 41029 tracklet are still correctly
associated, the missed observations are incorporated by the accumulation step and the complete
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tracklet is assigned to the appropriate label (recall that there are no clutter assignments for
41029 in Figure 7.46). In contrast, if the detection probability is underestimated most of the
time, the effects also build up and push the filter towards concluding that the target should have
been undetected. In that case, the target could not have caused the tracklet, and the association
is missed. Figure 7.15, the plot for Arabsat 7B, is a fitting example. Here, the modelled detection
probability is only close to 1 for a small fraction of the tracklet (the predicted orbit may pass
through a corner of the FOV instead of through the middle), and hence the tracklet is rejected
in Figure 7.13.

Notice that the mismodelled detection probability mostly occurs after the object has not been
detected for a while (several days in the examples of Figure 7.14 and Figure 7.15). After this
time, the state error has increased enough to be outside the FOV most of the time.

Finally, it should be mentioned that the accumulation step for the association probabilities (recall
Section 4.2) occurs after the filter update and therefore does not influence the convergence of the
state estimates. It only serves to improve the extraction of measurement and tracklet associations
for later evaluation.

Figure 7.14:  Detection probabilities for Arabsat 6B. Here, the majority of the tracklet
falls inside the predicted FOV, and the tracklet is correctly associated.
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Figure 7.15:  Detection probabilities for Arabsat 7B. In this case, the predicted FOV
is so far off that the accumulated association probability decides in favour of clutter.

7.2.3 Tracklet LMB filter with prior knowledge
If the same problem is to be addressed by the new tracklet LMB filter (Chapter 6), several
additional settings must be provided to the filter. Since the observer is space-based with a period
of about 90 min and all objects are in GEO, the tracklet grouping can be performed with a
validity padding of Δ𝑡valid = 1 h. Because all objects are very close to each other in this case,
the grouping algorithm has no difficulty with identifying tracklets that belong to the same filter
update. Furthermore, the birth model is disabled here since it is not expected to discover new
objects anyway. Finally, the same errors as before are introduced in the initial state.

Figure 7.16:  OSPA for tracklet LMB filter with 7 closely spaced GEO objects

The tracklet filter converges as quickly as the classical LMB filter did (Figure 7.16 shows
the OSPA errors for comparison, but a similar discussion applies as for the SO result from
Figure 7.11) and the association conclusion is shown in Figure 7.17. This method only leaves a
single tracklet unassociated while all the others previously marked clutter are resolved. Again,
the reason for misassociation is the detection model. The detection probability for ES’HAIL 2
(43700) is predicted close to zero for the first tracklet after a measurement gap of almost 40
hours. Therefore, the tracklet was not associated with the satellite but with a clutter process or
some object unknown to the filter.
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Figure 7.17:  Confusion matrix for closely spaced GEO objects with tracklet LMB
filter

For this case, the estimation errors over time are shown in Figure 7.18. Notice that the errors
first increase because of the initial velocity error, which takes a while to correct with optical
observations. Then, there is a first significant reduction in the error about 20 hours after the
reference epoch and then the median error again increases for two days. Recall from Figure 7.14
and Figure 7.15 that most objects were not observable during that time and therefore did not have
a possibility to obtain an improved state estimate. For insight in the accuracy of the estimated
covariance bounds, Figure 7.19 visualises the Mahalanobis distance for all objects. The fact that
all errors are far below the theoretical bound of 90 % confidence, demonstrates that no filter
saturation occurred. The applied process noise could arguably have been even slightly lower, but
this is not considered a problem as it does not interfere with the convergence of the filter and
also avoids filter saturation.

Figure 7.18:  Post-fit estimation errors using the tracklet LMB filter.

Figure 7.19:  Mahalanobis distance between truth and estimated results using the
tracklet LMB filter.
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Although no extensive runtime comparison was performed, it is worth mentioning that the
tracklet filter completes this problem in 11 seconds on average, whereas the single-measurement
filter generally takes more than 4 times as much for the current scenario. It is important to
mention that many parameters influence the runtime, particularly those related to hypothesis
pruning and GM reduction. Furthermore, the duration of the tracklets heavily influences the
complexity of the tracklet update step. This impact is likely further increased if the underlying
propagation method is more complex than Keplerian or TLE dynamics.

7.2.4 Tracklet LMB filter without prior knowledge
To evaluate the working of CAR IOD with a space-based observer, the same case is addressed
but without prior knowledge. The goal is for the tracklet LMB filter to discover all targets and, as
before, to extract the association results. The adaptive birth process models existence probability
based on the expected birth-to-clutter ratio in Eq. (3.37) and uses the single-tracklet CAR
approach from Section 5.3.2. The relevant parameters, design uncertainties and CAR constraints
are mentioned in Table 7.3. Additionally, the survival model is also conditioned on similar but
less stringent constraints to ensure the results of bad associations get pruned out, just like in the
first test case (see Section 7.1.1).

Table 7.3:  Admissible region settings for closely spaced GEO objects. Here, 𝑎GEO ≈
42.2 × 106 m represents the theoretical geostationary semi-major axis for a point mass

gravity model

Parameter Birth value Survival value Unit
𝑎min 0.99 0.95 𝑎GEO

𝑎max 1.01 1.05 𝑎GEO

𝑒max 0.03 0.1 --
Desired 𝜎𝜌 10 -- km
Desired 𝜎 ̇𝜌 20 -- m/s
Birth-to-clutter 𝜆𝐵,𝑘

𝜆𝑐,𝑘
0.5 -- --

Maximum existence 𝑟max
𝐵 0.5 -- --

At first glance, the resulting association output (Figure 7.20) is not very successful. However,
this confusion matrix merits closer evaluation as it provides insight into when the IOD process
is successful and what it takes for a target to get confirmed in the filter. The complete matrix
of association probabilities from which this figure is derived can be found in Figure F.2 of the
appendix. It provides a more detailed log of which tracklets are misassociated and when each
target is introduced.

In Figure 7.20, every column represents a separate target label in the filter, born based on distinct
tracklets, but only the object ID found in that tracklet label is shown here. This association
result has no column to represent clutter/unknown because those associations give rise to the
birth components and are thus associated accordingly.
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Figure 7.20:  Confusion matrix for track
let LMB filter without prior knowledge.

Figure 7.21:  Confusion matrix for track
let LMB filter without prior knowledge,
rearranged by final association and drop-
ping labels that are not part of the final

estimated state

Notice that there are multiple columns in Figure 7.20 with the same NORAD ID (parent object),
which means that the birth process sometimes created various targets over time, competing to
represent the same object. In each case where this occurs, however, a clearly dominating target
collected most of the subsequent tracklets. For the satellites SKYNET 5B (32294), Arabsat 5B
(36592), and ES’HAIL 2 (43700), a single target was created based on the first available tracklet
and all other tracklets were correctly associated with it. For the other four satellites, the firstborn
target was unsuccessful and resulted in a confusing association step, after which most of these
initial hypotheses are pruned out and the second target converges. The one exception is Arabsat
7B (56757), which doesn’t seem to have a target with many measurement associations. This is
because all but the first of its tracklets were associated with the firstborn label of SKYNET 5B
(39233). Thus, two targets started from a 39233 tracklet but converged on different satellites over
time. So the filter was able to discover and converge on the states of all the individual satellites,
but the close proximity of the RSOs, the initial uncertainty of the birth process and the sparsity
of the tracklets resulted in track switching in the early stages of each target’s existence. This can
be visually confirmed by rearranging the columns of the confusion matrix and removing those
labels with fewer than 3 associated tracklets. The result is Figure 7.21 and it shows clearly that
each object has a target, but the one for 56757 was born from a tracklet that actually belonged
to 39233 and immediately switched.

This conclusion is also supported by the evolution of the OSPA metric in Figure 7.22, which is
agnostic to the correct labelling but confirms that the estimated number of states is accurate.
Each RSO has a corresponding target with an absolute state error below 100 m and 0.1 m/s
(Euclidean distance).
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Figure 7.22:  OSPA for tracklet LMB filter without any initial information. Reference
epoch is 2025-06-07T19:00:00Z

Suppose one is interested in retrieving corrected associations for the early tracklets. In that case,
it is possible to feed all tracklets to the filter in reverse order, since the scenario now corresponds
to that where an initial state is known and a result similar to Section 7.2.3 can be expected. Note
that this introduces a bias because the same information is considered twice and a more rigorous
smoothing approach could be desirable. Still, for the present case, this bias does not affect the
results and MO smoothing in the tracklet LMB filter is left to be explored in future work.

To illustrate the process of discovering the targets, it is worth focusing on Arabsat 6B, for which
3 different labels were born. Figure 7.23 shows the evolution of their existence and detection
probabilities (before each measurement update), and all association probabilities can be consulted
in Figure F.2 for more context. The first tracklet from Arabsat 6B creates the target ℓ1 =
41029-07T22:55, which is undetected 90 minutes later, but has some components passing through
the FOV after half a day (15.5 h after the reference epoch). Notice that 𝑃𝐷 ≈ 0.5 results from the
birth uncertainties increasing over time -- some of the GM components pass through the FOV
whereas others do not and the resulting detection probability is a weighted product, accumulated

Figure 7.23:  Tracklet detection probabilities of Arabsat 6B with tracklet LMB
filter. The different colours represent different targets in the filter, born from the first
three tracks. The triangles and crosses represent existence and detection probabilities,

respectively.
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Figure 7.24:  Predicted densities for Arabsat 4B and 6B at the start of three different
tracklet groups. At 15.5 hours after the reference epoch, both densities overlap very
much and the number of GM components is insufficient to correctly capture the

difference.

over the duration of the tracklet group (recall Eq. (6.3)). At this point, the filtering density of
Arabsat 6B overlaps nearly completely with that of Arabsat 4B, and the filter makes the wrong
association conclusion. The overlapping GM densities are depicted in Figure 7.24. At the same
time, the correct tracklet creates a new label ℓ2 = 41029-08T10:44 for Arabsat 6B with very low
existence probability. The wrong association of ℓ1 results in several components that do not pass
the survival constraints and ℓ1 is pruned out, while 𝑟(ℓ2) increases enough for the target state to
converge. A final label ℓ3 = 41029-08T22:33 is created from the third tracklet because 𝑟(ℓ2) was
still very low, but it quickly loses credibility and later also disappears.

The above discussion captures part of what is going on in the tracklet filter, but ignores an
important sensitivity in the filter parameters. As mentioned in the test case definition and
Table 7.2, the same basic LMB filter settings were used for all solution methods and in particular,
the settings dictate that the posterior density for each label must be a GM with at most
𝑛GM

max = 10 components. This makes sense if prior information is available on the object states
but is incompatible with the CAR birth model used here. This becomes very clear when the
birth density is plotted for a typical attributable in this scenario. Figure 7.25 shows the GM
approximation for the CAR with design parameters from Table 7.3, which often has more than
100 components, and Figure 7.26 depicts the associated range-marginal PDF, which is mostly
well-behaved and only shows some instability towards the concave edge of the region. Since all
components have very similar weights, capping this mixture to only 10 components is detrimental
and should be avoided.
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Figure 7.25:  CAR birth GM approxima-
tion with space-based observer.

Figure 7.26:  CAR birth range-marginal
PDF with space-based observer

Looking back at Figure 7.24, it is also clear that the predicted density at 𝑡 = 𝑡0 + 15.5 h has only
10 components for each object, even though neither of the birth densities was ever updated by
a tracklet. This prediction cannot fairly represent the mixture from Figure 7.25.

Indeed, if the GM capping threshold is removed, the track switching no longer occurs and the
tracklet filter manages to obtain a near-perfect association of all tracklets, without any prior
knowledge on the number of objects and their states. The full association result is shown in
Figure F.3 of the appendix, which also makes clear that the only wrong association has only
a 41% association probability, indicating correctly that this result should be treated with care.
The resulting confusion matrix is provided in Figure 7.27 for comparison.

It is important to stress that the imperfect results in Figure 7.20 are thus mostly caused by non-
optimal tuning of the parameters (or even a single parameter) in the filter, rather than by a
deficit in the filter itself.

Figure 7.27:  Confusion matrix for tracklet LMB filter with more GM components.
Refer to Figure 7.20 for comparison.

7.2.5 Evaluating association performance
As an alternative to the confusion matrices, it is also useful to define some notion of true positive
(TP), false positive (FP) and false negative (FN) associations to evaluate the quality of the
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measurement association result as a whole. If those are defined, it is also possible to compute
widely used metrics such as the positive predictive value (PPV) and true positive rate (TPR),
also referred to as precision and recall:

precision = PPV = TP
TP + FP

, (7.1a)

recall = TPR = TP
TP + FN

. (7.1b)

For the purpose of this analysis, the following procedure is used to count the number of correct
and incorrect associations:
• For every true object, initialise TP = FP = FN = 0.

‣ Loop over a sorted list of measurements that belong to this object (ground truth association)
‣ If the current and previous measurement are assigned to the same target label: TP + 1
‣ If the current measurement is associated to clutter: FN + 1
‣ If the current measurement is assigned to a different target than the previous: FP + 1

• The total counts are found by the sum over all objects.
• Note that if the assignment deviates a single time and then immediately returns to the previous

target label, the above rules would count 2 FPs. To avoid such double counting of outliers, a
single FP is considered in such a scenario. For example, if the measurements for object A are
assigned chronologically to ℓ1, ℓ1, ℓ1, ℓ2, ℓ1, ℓ1

It is important to mention that precision and recall are often used as properties of a method
or algorithm. However, the results from individual scenarios do not necessarily apply in other
situations. Instead, this thesis uses the concepts to compare the accuracy of individual association
outputs -- these should not be read as claims on the the overall performance.

By the above rules, the association results from the discussed case compared for all of the
considered approaches and the result is summarised in Table 7.4.

Table 7.4:  Overview of association performance for GEO objects from LEO observer

Initial state Birth Meas. type TP FP FN PPV TPR Confusion matrix
Yes None (𝛼, 𝛿) 4789 0 225 1.00 0.96 Figure 7.12
Yes None Labelled (𝛼, 𝛿) 87 0 3 1.00 0.97 Figure 7.13
Yes None (𝛼, 𝛿) tracklet 89 0 1 1.00 0.99 Figure 7.17
No CAR (𝛼, 𝛿) tracklet 89 1 0 0.99 1.00 Figure 7.20

7.2.6 Summary
This test case showed that the LMB filter in both presented forms is able to converge on the
states of closely spaced objects in GEO and that the measurement association probabilities can
be extracted from the GLMB update as proposed in Chapter 4. It was found that the extraction
of measurement associations is sensitive to correct modelling of the detection probability, definitely
in scenarios where 𝑃𝐷 ≲ 1 inside a small field of view and nearly 0 otherwise. It was shown that
using the accumulated association probabilities can alleviate this issue, but only if a significant
portion of the predicted trajectory passes through the field of view. The tracklet LMB filter
introduced in Chapter 6 of this work does not have the 𝑃𝐷 sensitivity, as long as the predicted
trajectory passes through the FOV during at least one of the observation epochs. Further, it
was found that the CAR birth model can be suitable for a space-based telescope observing GEO
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objects. However, the ability of the LMB filter to confirm the components can be heavily affected
by incompatible filter settings, in particular related to overly aggressive component reduction.
Such inconsistencies are hard to detect without good knowledge of the algorithms.

7.3 Discovering GEO population from LEO
The following case aims to test the tracklet LMB filter for a larger number of GEO objects with
measurements from a space-based observer in a polar LEO orbit. The purpose of this scenario
is twofold:
(i) to analyse how the filter handles a larger number of targets, and
(ii) to evaluate the applicability of CAR IOD for a more complex observation geometry.

7.3.1 Setup
For this scenario, the RSO population is a set of objects in GEO, where the ground truth for the
simulation is the Space-Track25 TLE catalogue on 23 May 2025. Since the current implementation
is not focused on performance and memory optimisation, the case considers a sample of 200
objects to simulate measurements from26. The resulting distribution of semi-major axis and
eccentricity is shown in Figure 7.28 and the ECEF longitudes of the sample are reflected in
Figure 7.29.

Figure 7.28:  Distribution of 𝑎 and 𝑒 200
for considered GEO objects

Figure 7.29:  Longitude distribution for
considered GEO objects

This time, the observer is in a circular, near-polar orbit with 𝑎obs = 𝑅𝐸 + 500 km, Ωobs = 90°
and 𝑖obs = 97°. The attitude is defined such that observer line-of-sight 𝝆LOS intersects with
the equatorial GEO orbit at vernal equinox (i.e. ⟨(𝑎GEO, 0, 0)𝑇 − 𝒓obs, 𝝆LOS⟩ = 0) and the image
horizontal is parallel to the equatorial plane. Again, the FOV is square-shaped with a half-angle
of 2°. A visualisation of this pointing method is shown in Figure 7.30. This observation strategy
is expected to be effective in discovering new GEO objects with either low inclination or with
right ascension of the ascending node (RAAN) close to Ω = 0 or Ω = 180°.

25https://www.space-track.org/
26The TLE catalogue is first filtered on orbital period between 1 435.9 and 1 436.2 min. After that, 200 objects

were randomly selected.
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Figure 7.30:  Observation strategy to discover GEO objects with polar observer. The
line-of-sight vector 𝝆LOS is equivalent to the 𝑥 axis of the observer body frame and

aligned with the centre of the FOV.

The filter uses the tracklet LMB method with similar parameters as in the previous test case
(recall Table 7.2), but several adjustments are made to account for the larger number of expected
targets and listed in Table 7.5.

Table 7.5:  Common parameters for case with 200 GEO objects. Settings not
mentioned here are the same as in Table 7.2.

Parameter Value Unit
GM cap 𝑛GM

max 200
GLMB prior hypotheses cap | ̊𝜋GLMB

𝑘|𝑘−1 |
max

2000

GLMB posterior hypotheses cap | ̊𝜋GLMB
𝑘|𝑘 |

max
10000

Tracklet validity padding Δ𝑡valid 1.0 h

7.3.2 Birth model
This test case clearly illustrates why the birth model must be tailored to the specific case. This
is not only limited to ground-based vs. space-based and target regime variations, but it can also
be highly dependent on the observation strategy. In the previous case, the tracklets were in the
order of a minute, and the attributable approximation used for CAR IOD was then completely
justifiable. However, the situation is very different with the observation strategy from Figure 7.30.

Assuming for simplicity that the FOV is constant, then a GEO satellite with 𝑖 = 0° will produce
a tracklet of roughly 4

360 ⋅ 24 h ≈ 16 min. During this time, the observer traverses nearly 20%
of its orbit.

The tracklets are thus not expected to be linear in the (𝛼, 𝛿) space, and that is confirmed by
Figure 7.31, which shows a small number of tracklets as they are provided to the MO filter. The
paths are curved, as dictated by the fast movement of the observer. Trying to fit an attributable
vector through such a tracklet might result in reasonable angular rates because of symmetry
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Figure 7.31:  Shape of GEO tracklets with polar space-based observer. Clearly, these
tracklets are not suitable for linear approximation by an attributable.

properties, but the estimated right ascension and declination are almost always too far off to
result in a representative admissible region. Additionally, since there are now more measurements
per tracklet and the variation over time far exceeds the measurement noise, this observation
geometry lends itself well to a Batch LS IOD. To improve the chance of convergence, the initial
guess can be obtained by Gooding’s algorithm (recall Section 5.3.1), where the first slant ranges
are set to 𝑎GEO. One potential disadvantage is that this method provides only a single Gaussian
component; this might be insufficient if the uncertainty is large and must be propagated for a
long time. For the present example, it is not a significant problem since most objects will be
observed about once per revolution (1 day), as they pass through the nearly fixed FOV depicted
in Figure 7.30.

7.3.3 Filter results
Using the described observation strategy for a total duration of 2 weeks results in 2486 tracklets
spanning 2-17 minutes each and originating from 171 different objects -- the other 29 are
unobservable due to their inclination. The grouping algorithm divides these tracklets into 280
groups with an average duration of 53 minutes, and none of these groups contains more than
one tracklet from the same object. This confirms that the grouping method can handle larger
target populations correctly.

Over the two observation weeks, the filter extracts state estimates based on tracklets from 170
different objects. Some of the targets do not get confirmed and the final MO state contains 147
converged estimates (or 86% of the observable population).

Figure 7.32 shows that most objects are discovered within the first 100 hours (75 tracklet groups),
during which time the birth process produces on average 5.2 new target labels per group. After
that, the number of birth components keeps fluctuating between 0 and 5 per filter step, but
the resulting target labels mostly have a low existence probability and are pruned out shortly
after. This is also clear from the figure, which shows that the corrected LMB ̊𝜋LMB

𝑘|𝑘  usually
contains about 10 target labels more than the estimated MO state 𝑋̂𝑘. The total number of GM
components (denoted ∑ℓ|𝒢

(ℓ)
𝑘|𝑘| in the plot) is barely larger than the number of target labels since

the batch LS birth process introduces a single Gaussian component per object and the mixture
only grows due to association ambiguity.
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Figure 7.32:  Component counts in the tracklet LMB filter, observing 171 objects in
GEO. The batch LS birth process produces a single GM component per target, so the
total number of GM components only grows due to association ambiguity. The number
of LMB components is higher than the number of estimates, as birth components are

created with 𝑟(ℓ) < 𝑟max
𝐵  and need time to be confirmed or rejected.

In Figure 7.33, it is observed that the post-fit OSPA errors level off at 54 km and 52 m/s
for position and velocity, respectively (with 𝑝 = 2 and 𝑐 = 100 in both cases). Correcting for
the 29 unobservable objects that all contribute an unavoidable cardinality penalty, the OSPA
distance compared to the observable population is 41 km and 39 m/s. To better understand the
errors for those objects that the filter has discovered, the OSPA can also be computed without
any cardinality penalty. Since the second-order (𝑝 = 2) distance is used here, this is effectively

Figure 7.33:  OSPA errors over time as compared to various subsets of the ground
truth population. The blue curve uses all 200 objects, the red curve reduces the
cardinality penalty for unobservable objects and the yellow one considers the final
estimated cardinalty as the truth (With 𝑝 = 2, this correponds to the RMS error for

the optimal assignment).
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equivalent to the RMS error between the estimates and the best-matched object of the ground
truth. All these results are summarised in Table 7.6.

Table 7.6:  OSPA distances as computed from Eq. (3.38) using different penalties for
cardinality. 𝑌  indicates the ground truth MO state, 𝑝 = 2, 𝑐pos = 100 km and 𝑐vel =

100 m/s.

All objects Observable Observed Unit
|𝑌 | 200 171 147 --
Position 𝑑OSPA

𝑝,𝑐 (𝑌 , 𝑋̂) 53.9 41.3 18.6 km
Velocity 𝑑OSPA

𝑝,𝑐 (𝑌 , 𝑋̂) 52.2 38.6 10.1 m/s

In what follows, the parent object for a specific target label refers to the source of the tracklet
used in the birth process to introduce this target. Just like before, it is found that not all targets
converge on their respective parent object, and some quickly switch to another RSO after an
initial association confusion. This is the same type of early-stage track switching that was also
observed in the previous test case. The switching behaviour doesn’t make the final state estimates
less valid but prevents directly computing the errors with respect to the ground truth27.

One way to evaluate how many targets converged on a different object is by inspecting the
Mahalanobis distance. If this is high, it means that the error between the target and its parent
object is far larger than the estimated covariance bound. That might suggest that the filter has
consistently found measurements to support the target’s existence and narrow down its state,
but these measurements do not belong to the same object as the original birth tracklet. The
middle plot of Figure 7.34 shows that the errors for more than 90 % of the final estimates are
smaller than the 90 % confidence interval from their estimated covariance (i.e 𝑑𝑀 < 3.26). The
median distance is within 𝑑𝑀 < 2, proving that the errors are usually well-bounded by the filter
uncertainty. 10 targets have 𝑑𝑀 > 5 (note from Section E.1 that this is outside the 99.97%
confidence limit), so they must either have switched to a different object or diverged due to
filter saturation. Because of the previous observation that the OSPA distance without cardinality
penalty is below 20 km (recall Figure 7.33), it can be assumed that no filter saturation has
occurred for al the targets in the estimated MO state.

For all targets that converged on their parent object (𝑑𝑀 < 5), the evolution of the error is
represented in the lower plot of Figure 7.34, showing that half of the targets have final estimation
errors below 1.9 km and the rest are within 11 km of the truth. Since this represents an angular
offset of about 58″, it is safe to conclude that all targets indeed converged on separate objects.
Notice that the errors in that figure are oscillating with a period of 1 day. This is most likely due
to the fact that the objects are not uniformly distributed over the GEO orbit. Figure 7.29 shows
that the sample has far fewer objects in the Eastern hemisphere than in the Western hemisphere
and the GEO regime is generally less populated above the Pacific ocean. During times when
no objects are observed, the median error increases, whereas dense observation scans cause the
median error to reduce -- hence the observed trend.

A summary of all the object discovery results is shown in Table 7.7. Finally, to better understand
why 21 of the observable objects were not confirmed by the LMB filter, the actual and estimated
distribution of RAAN and inclination are plotted in Figure 7.35 and Figure 7.36, along with

27In principle, the most reliable way to obtain the errors would be to extract the sub-pattern assignment from
the OSPA distance computation, but this information is not retained in the current implementation.
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Figure 7.34:  Evolution of estimates over time. Top: cardinality, both including
and excluding targets that that did not converge on their parent object. Middle:
Mahalanobis distance median with 0-90% percentile interval. Objects for which 𝑑𝑀 >

5 at the end are shown individually. Bottom: Estimation errors.

the theoretical observability limit. These plots seem to indicate that the chosen set of objects is
not uniform in RAAN and particularly dense at Ω ≈ 90°. There does not seem to be a specific
trend in hard-to-find GEO objects, and since the cardinality estimate is still increasing and the
birth process still generating components at the end of the simulation (recall Figure 7.32), it is
possible that the remaining objects would also be discovered given more time.

Table 7.7:  GEO object discovery results from polar LEO observer

Total objects # observable # found # confirmed # converged on parent object
200 171 170 147 137
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Figure 7.35:  True distribution of inclination and
RAAN for 200 GEO objects. Objects are marked
red if estimated at the final filter epoch, blue if
estimated at least once and yellow if never found

at all.

Figure 7.36:  Estimated distri-
bution of inclination and RAAN

at the final filter epoch.

The final estimation errors are shown in the RTN local orbit frame in Figure 7.37. Visual
inspection suggests that these errors are nearly Gaussian and unbiased (centred around 0 in
all coordinates). The position error is dominated by the along-track component (T) whereas
the velocity error is mostly in the radial direction (𝑅̇). This is consistent with expectations;
uncertainties in semi-major axis cause phase drift which mostly affects the along-track component
of the orbital state (recall the example from Figure 5.3) The radial velocity error results from
its geometric coupling with the transverse position error.

Furthermore, notice that the RMS errors are 1.83 km and 0.17 m/s, respectively. These are the
errors for all objects that converged on their parent object (𝑑𝑀 < 5). Recall that the RMS errors
were computed before in Figure 7.33, by removing the cardinality penalty from the second-order
OSPA distance. Those errors were more than an order of magnitude larger (see Figure 7.33).
That means that one or more of the targets with 𝑑𝑀 > 5 did not switch to another object, but
rather diverged altogether without representing any real satellite.

Finally, the association performance metrics from Section 7.2.5 are listed in Table 7.8 for the
current case. The precision of 0.99 shows that -- in this setting -- the adapted LMB filter very
rarely misassigns tracklets once a target is confirmed, but if newborn targets do not converge
fast enough (i.e. if it takes too long before they are again in the FOV), this results in clutter
assignments (FNs), causing lower recall value of 0.91.

Table 7.8:  Association quality for GEO discovery case

TP FP FN PPV TPR
1613 14 166 0.99 0.91

7.3.4 Summary
This test case aimed to discover a subset of the GEO population from space-based measurements.
The chosen observation strategy resulted in long tracklets and it was shown that the CAR
approach is unsuitable when the observer moves too much during a single pass. The Gooding
+ Batch LS approach worked better in this scenario and the tracklet LMB filter converged on
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Figure 7.37:  Final RTN error histograms for all objects that converged on the parent
object.

reliable estimates for 86% of the observable RSOs, with all errors below 11 km and 1 m/s, but
the majority almost an order of magnitude smaller. Finally, the tracklet grouping performed as
expected, resulting in consistent and non-ambiguous measurement sets.

7.4 Polar payload separation
As a final test case, it is attempted to observe a payload separation event28 in LEO and track the
new RSOs using a space-based observer. The primary goal is to determine how all the previous
findings in GEO translate to a different target orbit regime.

7.4.1 Setup
This case considers a rocket upper stage in a near-circular orbit at 800 km altitude with 𝑖 = 90°
and Ω = 25°. Its 9 rideshare payloads separate with a relative velocity between 0.5 and 3 m/s in
the transverse (T) direction of the local orbit frame, each 1 minute after the previous one. The
resulting orbital elements for the ground truth are listed in Table G.3 of the appendix.

The observer is in the same near-polar orbit as before with 𝑖 = 97° and Ω = 90°, but now employs
a different observation strategy, depicted in Figure 7.38. The telescope is pointed at the ECI point
(0, 0, 𝑅𝐸 + 800 km) when it is above the equatorial plane and at (0, 0, −𝑅𝐸 − 800 km) when it is
below. The resulting tracklets (Figure 7.39) are very close to each other but are still relatively
varied in right ascension and declination due to the space-based observer.

7.4.2 CAR birth model
First, the problem is attempted without any prior knowledge and using the CAR approach to
discover the separate payloads. The constraints are set at 𝑅𝐸 + 700 km < 𝑎 < 𝑅𝐸 + 800 km and
𝑒 < 0.05. Since both the target object and the observer are in LEO, however, the admissible
region is less straightforward than before.

28The case setup is inspired by this type of scenario, but it should be noted that conditions are not entirely
realistic. Still, the setup sheds light on the kind of observations and filter behaviour that can be expected tracking
closely spaced LEO objects from a space-based observer.
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Figure 7.38:  Observer attitude profile for
polar payload separation. Note that the Earth

is not drawn to scale (about 70%).

Figure 7.39:  Tracklet distribution for
polar targets from polar observer

 

Figure 7.40 depicts the mapping of semi-major axis and eccentricity in the (𝜌, ̇𝜌) space for an
arbitrarily chosen but representative case where the observer state and attributable in ECI are

𝒓obs =
(
((
( 815.3

−1596.9
6640.3 )

))
) km, 𝒗obs =

(
((
( −215.4

−7404.6
−1754.3)

))
) m/s, and 𝒂 =

(
((
((
((

117.2°
18.4°

5.32°/min
−3.26°/min)

))
))
))

. (7.2)

Several key differences can be observed compared to the CAR behaviour for GEO objects. First,
note that there are now two distinct regions where both constraints are satisfied. One of those
contains the point (0, 0), which corresponds to the observer orbit itself and, thus, the trivial
solution. Other solutions in that region are targets that would have nearly the same trajectory
as the observing satellite. Clearly, a discontinuous SO density is detrimental at the point of state
estimation -- if a mean estimator is used, a weighted sum of the two regions will most likely result
in a value outside of both. For this reason, the region containing the observer is discarded for
the present application; it is not expected to find an object there.

Furthermore, the second region is far more elongated than the CAR results previously found for
GEO orbits. Recall Figure 7.32, where the maximum slant range in the region was less than 1%
larger than the minimum and the allowable range rate varied by less than 250 m/s. For the current
admissible region, these measures are nearly 50% and 1.8 km/s. The GM approximation of this
CAR with design uncertainties of 𝜎𝜌 = 30 km and 𝜎𝜌 = 10 m/s is shown in Figure 7.41, which
highlights another shortcoming of the approach in this context: each of the Gaussian components
assumes no correlation between 𝜌 and ̇𝜌, but it is apparent from visual inspection that the region
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Figure 7.40:  Constrained admissible region for polar observer and target

would be better represented if the covariance ellipses were at an angle. Incidentally, this would
require fewer components for an adequate approximation.

In Figure 7.42, it is shown how this elongated CAR heavily affects the distribution of orbital
elements. The trivial solution is found again in the upper right corner, overlapping with the
observer. The other solutions are in a nearly uniform region that spans about 4° of inclination
and nearly 15° in RAAN. This makes the IOD far more varied in geometry than it was for GEO
orbits.

Not surprisingly, the tracklet LMB filter with CAR birth model does not produce satisfactory
results for this scenario. The large uncertainties, combined with very closely spaced targets, result
in low measurement likelihoods for each association hypothesis. In the beginning, most tracklet
cause their own birth label and new components keep appearing until the objects are sufficiently

Figure 7.41:  GM approximation of CAR
in LEO, ignoring the trivial solution.

Figure 7.42:  Distribution of RAAN and
inclination resulting from a CAR in LEO.
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separated. Only after  4 days (over 50 orbital revolutions) the final objects are confirmed, and
the solution converges.

Figure 7.43:  Association summary for polar
targets from polar observer. Note tracklets
marked “clutter” are at the start of the simu-

lation.

Figure 7.44:  Association summary,
rearranged by final association. Uncon-

firmed targets are removed.

The confusion matrix in Figure 7.43, and the complete set of association probabilities in
Appendix F show that early-stage track switching again occurs for three of the targets (columns
2, 8 and 10 in Figure 7.43 and Figure 7.44). After that, all associated tracklets (with three
exceptions) belong to the same object. Note that the clutter column contains mostly the early
tracklets and gives an indication of how long it took to find the corresponding object. Note that
an extra target is present with 3 associated tracklets (column 4 in the above confusion matrices).
Thes associations rais the existence probability enough to influence the cardinality estimate and
the resulting orbit estimate never again passes through the field of view. Since 𝑃𝑆 ≈ 1, this rogue
target is not easily removed, even though it is not supported by new tracklets. The final OSPA
distance is summarised in Table 7.9.

Table 7.9:  Final OSPA distances for payload separation with CAR birth. The actual
OSPS includes the cardinality penalty, but removing it shows that all tracked objects

are within 0.5 km of the truth.

Actual Ignoring rogue target Unit
|𝑋̂| 11 10
𝑑OSPA

𝒓 30.15 0.47 km
𝑑OSPA

𝒗 30.17 1.22 m/s

Using the rules from Section 7.2.5 and the definitions from Eq. (7.1), the TP/FP/FN association
counts are listed for all objects of the current case in Table 7.10, resulting in an overall precision
of 89 % and recall of 63 %. This again confirms that the method has a tendency to overestimate
the probability of clutter. It is further interesting to plot the cumulative evolution of the TP,
FP and FN quantities per object as a function of the number of tracklets considered thus far.
This is shown in Figure 7.45 and shows that the majority of clutter assignments (FNs) occur
at the start of the simulation and the curve later flattens off. In contrast, there are essentially
no TPs in the early filter steps, but once an object is confirmed, the correct assignments keep
increasing.
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Table 7.10:  Association count for all
objects. These correpond to the final values

in Figure 7.45.

Object ID TP FP FN PPV TPR
0001 13 1 16 0.93 0.45
0002 20 1 8 0.95 0.71
0003 18 2 10 0.90 0.64
0004 23 1 6 0.96 0.79
0005 20 3 6 0.87 0.77
0006 11 3 15 0.79 0.42
0007 17 2 11 0.89 0.61
0008 9 3 15 0.75 0.38
0009 21 1 4 0.95 0.84
0010 16 3 9 0.84 0.64
Total 168 20 100 0.89 0.63

Figure 7.45:  Cumulative association
counts per object over time. The x-axis
indicates the number of tracklets that were
already seen per object and the cumulative
count of TP/FP/FN is shown on the y-axis.

Since this shows that it is possible for a tracklet to be associated with the birth density from a
space-based CAR, it is worth revisiting why the early tracklets are more likely associated with
the clutter process than with any of the existing targets. One probable hypothesis is that this is
caused by the heavy simplifications in the tracklet clutter model. Recall from Section 6.1.3 that a
heuristic is used to model the tracklet clutter intensity as the geometric mean of its measurement
clutter intensities. This violates the PPP clutter assumption of the standard measurement model
(Eq. (3.21)) since the clutter intensity will not integrate to 𝜆𝑐 over all possible tracklets but rather
to some larger value. Therefore, the MO measurement likelihoods (Eq. (2.23)) are consistently
underestimated and because the GLMB accounts for clutter implicitly (by the complement of
other hypotheses), its likelihood is then overestimated. This effect only manifests if the measure-
ment association likelihoods are low, which is the case for the large LEO CAR densities, but
also in case the predicted target is outside the FOV and is therefore assigned a low detection
probability.

To further support this hypothesis, it could be good to use the CAR in combination with the
single-measurement LMB filter and test if the targets get confirmed earlier. The expectation
is that this would indeed be the case, because clutter is modelled consistently and there is no
coupling between clutter and birth. For adaptive tracklet birth using the traditional LMB filter,
refer to Section 5.3.3.
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7.4.3 Gaussian birth from rocket upper stage
Alternatively, it is possible to eliminate the birth model and initialise the filter at the time of
the first tracklet based on prior tracking knowledge of the rocket upper stage. The initial LMB
is then

̊𝜋LMB
0|0 = {(𝑟(ℓ𝑖), {(1, 𝒙𝑖, 𝑷0)})}10

𝑖=1
, with 𝑟(ℓ𝑖) = 0.8, (7.3a)

and 𝒙𝑖 ⟵
sample

𝒩(𝒙rocket
0 , 𝑷0), 𝑷0 = ((5 km)2𝑰

𝟎
𝟎

(5 m/s)2𝑰). (7.3b)

Keeping all other settings the same, the association results of the first 10 tracklets per object are
shown in Figure F.4 of the appendix, which indicates that the association probabilities for the
first tracklet groups are very low and distributed over multiple targets. This is because of the
large state uncertainty and close proximity of all the targets in the filter. As a result, there is some
early track switching after which the following associations still have relatively low probability
but consistently result in the correct assignments. These are summarised in Figure 7.46 and
rearranged for clarity in Figure 7.47. It should be stressed that the birth model is disabled so the
“target label” in these plots has no intrinsic meaning but was arbitrarily assigned by the filter
while sampling the initial states. It is used here to ensure consistency with the detailed output
in Figure F.4.

Figure 7.46:  Assignment summary for
payload separation case with initial state

from rocket body and no birth model

Figure 7.47:  Assignment summary for
payload separation case with initial state,

reordered by final association.

Using the same approach as in the previous section, the association counts are listed in Table 7.11
and the PPV and TPR for the tracklet LMB filter in this scenario become 0.95 and 0.96,
respectively.
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Table 7.11:  Association counts summary
for payload separation without birth model

TP FP FN PPV TPR
261 13 11 0.95 0.96

Furthermore, Figure 7.48 demonstrates that all
FPs and FNs are within the first three tracklets
per object and thus before the state estimates
converged on particular objects. This suggests
that one could implement a smoothing method
to also refine the first associations. For this
reason, this test case can be considered a very
successful application of the tracklet LMB filter
in LEO.

Figure 7.48:  Cumulative association
counts per object without birth model

Additional note

One of the previous cases (Section 7.2.4) already showed that GM capping can have undesirable
effects on the filter performance. It was pointed out that the CAR birth model may produce
many components of nearly equal weight, such that removing some of them results in a
distorted distribution that reduces the model fidelity. It is good to briefly return to this issue
for the current scenario, because it is relevant in a slightly different way.

Notice that the only clutter assignment in Figure 7.47 is for a tracklet from object 0001. In
early results for this test case, all 0001 tracklets that came after this one were assigned to the
clutter process and the corresponding target (ℓ = 0001) was pruned out of the filter. Figure 7.49
visualises how the existence probability drops after the first measurement gap (𝑡 + 20 h) and
the detection probability is already much lower. Consecutive assignments fail as well and at
some point 𝑟(0001) drops below the LMB pruning threshold 𝜗LMB

𝑃  and it is removed from the
MO state density.

Apart from all the advantages that the labelled RFS framework provides, the possibility that
confirmed targets experience a sudden drop in existence probability or are pruned out entirely
is logically inconsistent in a space object cataloguing context. This reflects a mismatch between
the physical meaning of object survival (which is nearly certain in the SSA context) and the
filtering mechanism that systematically needs to remove hypothesised objects that do not find
confirmation in the observations (any more).

Nevertheless, in this specific case, the reason for the poor behaviour was once again the
GM capping threshold of 10 components. Since there is no birth model here, the number of
components grew because of all the uncertain associations in the early stages of the simulation.
The SO density then has an increased number of components because of the various potential
associations. Capping the GM resulted in the removal of crucial components and the filter
does not recover. Once again, this is a very small but deeply nested configuration problem
that is not straightforward to track down. In general, it should be recommended to only rely
on GM capping if absolutely necessary for runtime reasons and to avoid LMB pruning in cases
without birth model.
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Figure 7.49:  Detection and existence probabilities for target 0001 with overly
aggressive GM capping and LMB pruning

7.4.4 Summary
This test case showed that the constrained admissible region approach yields valid birth densities
for LEO targets with space-based observations, albeit with far more variation in orbit geometry
than for GEO. Additionally, the GM approximation could benefit from components with non-
zero (𝜌, ̇𝜌) correlation to better represent the elongated regions that the constraints often produce
for a space-based LEO attributable. Using limited prior information, the tracklet LMB filter can
extract the tracklet association for a polar payload separation event with a precision of 0.95 and
recall of 0.96, where the remaining inaccuracies are mostly due to large uncertainties in the early
stages of the simulation and may be resolved by a smoothing approach.
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Chapter 8

Conclusion

This thesis investigated how tracking methods based on labelled random finite sets (LRFSs)
can be employed to perform tracklet association and orbit determination for resident space
objects (RSOs), particularly using space-based angles-only observations. The main contributions
resulting from these efforts are first listed below and then framed in the original research questions
in Section 8.1. Possible directions for future work are discussed in Section 8.2.

A. Development
The work detailed the development of BASIL, a flexible and extensible estimation library con-
taining the necessary building blocks for RFS-based multi-object tracking and data association,
with a focus on the (generalised) labelled multi-Bernoulli (LMB) density and corresponding
LMB filter. The core algorithms can work for any multi-object estimation problem, but are
implemented and tested in particular for the context of space situational awareness (SSA)
through an interface with Orekit [85].

B. Tracklet LMB filter
Since the duration of a single pass through a telescope’s field of view (FOV) is mostly orders of
magnitude shorter than one orbital period, the observations are often nearly linear in topocentric
right ascension and declination. Therefore, successive measurements can already be combined
into tracklets without resorting to orbital dynamics. Existing RFS methods generally discard
this information and update the state estimates at every distinct observation epoch. This
work proposed an adapted LMB filter that can consider groups of tracklets instead of single-
epoch measurement scans, where groups are formed dynamically to ensure object uniqueness in
every filter step. Computing measurement likelihood based on complete tracklets minimises the
contribution of individual outliers and thereby reduces hypothesis explosion in the state density,
leading to improved convergence properties. Without measurement-driven target birth, the filter
performs as intended in low-clutter environments with LEO or GEO objects, using ground-based
and space-based observers.

C. Extracting associations
The LMB filter is shown to allow extracting measurement associations from the update step,
so they can be stored for further single-object analysis. It was found that measurements at the
edge of the FOV are often missed using the original LMB filter, if the predicted state has not yet
entered or already left that FOV. For labelled measurements (based on some external tracklet
formation process), accumulating association probabilities helped recover some of these missed
measurements, but only when a large portion of the tracklet was within the FOV. The proposed
tracklet LMB filter addresses this issue by evaluating the detection probability over the entire
tracklet group, significantly reducing sensitivity to sharp FOV boundaries and almost entirely
mitigating the problem.

D. Insights for initial orbit determination
While not a core contribution, the work also examined suitable methods for the discovery or
birth of new RSOs based on single uncorrelated tracklets (UCTs). For target objects in the
geostationary (GEO) regime, the constrained admissible region (CAR) provided an excellent
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tracklet-driven birth method if the observer was either ground-based or used a fixed pointing
strategy, resulting in sufficiently short tracklets for a linear approximation of the angular rates.
Observation modes where the observer’s position and attitude changed significantly within the
span of a single pass resulted in curved tracklets and poor translation of the constraints to the
initial density. For sufficiently long GEO tracklets, a combination of Gooding’s method and batch
least squares estimation was shown to be a suitable alternative. Using this method and without
prior knowledge, the tracklet LMB filter discovered 86% of a downsampled GEO population,
with most objects confirmed after 3 revolutions or less.

Admissible regions for objects in LEO lead to distributions with more variation in orbital
geometry and are less accurately represented by the Gaussian mixture approximation that
worked well for objects in GEO. A payload separation test case in polar orbit showed that these
widespread densities can converge based on follow-up measurements. However, if multiple very
uncertain birth densities exist, clutter probabilities are implicitly inflated, and the association
often fails. This highlights an intrinsic bias introduced by the tracklet clutter model, which should
be addressed to make the approach mathematically rigorous.

8.1 Revisiting the research questions
(i) Which available MOT methods are suitable for tracking and data association with space-
based optical measurements?

The LRFS framework was identified as an appropriate candidate for RSO tracking, especially
through the LMB filter. Unlike its unlabelled counterpart, LRFS has the advantage that it
inherently outputs trajectory estimates, rather than single-epoch states. Since maintaining object
identity is crucial in space object cataloguing, a labelled approach is preferred. This avoids
heuristic post-processing steps to associate state estimates with the appropriate catalogue entries.
In its most rigorous form, LRFS tracking is based on the GLMB density, but the LMB filter offers
an efficient, first-moment approximation that inherits most benefits. Although computationally
expensive -- scaling at most cubically with the number of measurements per scan -- the LMB
filter remains significantly more tractable than classical methods such as MHT and JPDA, which
are typically NP-hard.

A test case with close-spaced objects in GEO demonstrated that observations from a space-based
telescope can be used effectively in the LMB filter, with all estimates converging based on several
minutes of observations spread over the first two observation days.

(ii) How can the optimal tracklet association with catalogued RSOs be extracted from MOT
methods, independent of the state estimation?

While updating the multi-object state using a scan of measurements, the LMB filter considers a
set of the most probable measurement-to-object association hypotheses. The joint likelihood of
each hypothesis determines how much it contributes to the corrected state density. This process
accounts for possible missed detections and clutter measurements that do not correspond to any
real object.

In the LMB/GLMB filter, the associations exist as explicit mappings between the target labels
(which may be linked to real objects in a catalogue) and individual measurements. By extracting
these and normalising their joint likelihoods, one can construct an association probability distri-
bution for each measurement over all catalogued objects. The mode of this distribution then
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yields the final deterministic assignment, allowing the resulting single-object measurement sets
to be catalogued and used for further analysis of individual space objects.

If observations are already pre-grouped in tracklets, the notion of measurement association
probability can be extended to tracklet association probability without making any adaptations
to the filter itself. A tracklet then simply dictates that all its measurements relate to the same
(space) object. To this end, a method to accumulate the association probabilities was proposed.
It was found that this reduces the negative impact of FOV-based detection models, and improves
the overall assignment accuracy.

It is important to note that this approach is only as reliable as the internal representation within
the GLMB filter itself. If the filter’s association hypotheses are poor—due to, for example, an
inaccurate birth model or high state uncertainty—the extracted associations may also be unre-
liable. Thus, ensuring well-tuned filter models remains critical for robust tracklet-to-catalogue
assignment.

(iii) How can the MOT methods be adapted to use all information of optical tracklets?

To fully incorporate pre-existing tracklets in the MO estimation process, the proposed tracklet
LMB filter extends all the relevant building blocks of the original method so that it can interpret
tracklets as measurements. The main adaptations can be summarised as:
• Instead of measurement scans, the new filter uses tracklet groups. A simple grouping method

ensures that tracklets within the same group certainly originate from distinct objects.
• The single-object tracklet likelihood is computed as the geometric mean of the likelihoods of

the individual measurements.
• The detection model is extended to consider all possible observation times within the duration

of the tracklet group.
• The concept of a clutter tracklet is ill-defined, since a tracklet might be “corrupted” in various

ways. This work assumes that tracklet formation significantly reduces the already low clutter
rate in optical observations and uses a preliminary heuristic model to represent tracklets not
belonging to any existing target.

• Finally, this version of the LMB filter is directly compatible with single-tracklet birth models,
facilitating the discovery of new objects.

Various simulation cases have confirmed the applicability of this method for SSA tasks. The filter
reduces the sensitivity of the detection probability to the observer FOV, successfully discovers
and maintains a downsampled population of GEO objects, and converges on all new RSOs
following a payload separation in LEO. While the filter struggles to confirm targets in LEO when
many objects appear simultaneously at the same location, it reliably incorporates all subsequent
tracklets once convergence is achieved.

8.2 Limitations and future work
The implementation and results presented in this work indicate several possibilities for improve-
ment and further research.

A. Detection probability model
The classical implementation of the LMB filter was found to be sensitive to wrongly estimated
detection probability, particularly because it is modelled constant inside the field of view and
near-zero outside. That discontinuity at the edge can result in missed associations if the predicted
state is just outside the FOV while the actual object is just inside; the opposite scenario results in
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an unjustified reduction of the existence probability. While integrating target position uncertainty
over the FOV partially addresses this issue, the results suggest that more realistic visibility
models might result in more stable filter behaviour.

B. Tracklet clutter modelling
The Poisson clutter assumptions of the standard multi-object measurement model are not
easily enforced for tracklets as measurements, because the definition of a false positive tracklet
is ambiguous. For example, a tracklet might be considered clutter because it contains clutter
measurements, but one could argue that some outliers in a tracklet could be acceptable as long as
the true positives all belong to the same object. Conversely, a tracklet formed with observations
from more than one object should also be considered invalid, even though it contains no actual
clutter measurements. For a mathematically rigorous filter, it is necessary to define a consistent
model for tracklet clutter intensity that addresses all types of false positives and integrates to the
clutter rate over all possible tracklets. The multi-scan filter from Vo and Vo [129][134, Sec. IV-
F] might provide the relevant framework to obtain such a model, although some domain-specific
knowledge on the tracklet formation process should likely be introduced.

C. Initial orbit determination
In this thesis, two separate birth models were considered; the CAR approach worked well if
tracklets were almost linear in right ascension and declination, whereas a batch LS optimisation
initialised by Gooding’s method was promising for strongly curved tracklets of sufficient duration.
A combined approach that uses the appropriate method based on the tracklet geometry would
make the filter more robust and adaptable to scenarios with objects in various orbit regimes and
multiple observers in space and on ground.

Furthermore, for objects in LEO observed from space, the admissible regions often result in high
uncertainties for the orientation of the orbital plane. A probabilistic admissible region (PAR)
approach could help further define the density [110]. Additionally, very short tracklets would
benefit from a multi-tracklet birth model. Analogous to the approach used by Cai et al. [16],
semi-analytical methods could be used on different combinations of tracklets from two or three
consecutive groups to obtain a birth density.

D. Smoothing and multi-scan LMB
In the early stages of object discovery, association confusion often results in track switching, before
the various uncertain birth components converge on a specific object. After that, the tracklet filter
can effectively perform tracklet association, but the early tracklets remain incorrectly assigned.
To update the association results for those observations, a smoothing [123] version of the tracklet
LMB filter could be considered, using the converged state to go back in time and resolve the
previous uncertainties in the tracklet assignment. Stauch et al. [120] successfully applied a similar
approach for single measurements association, but an extension to tracklet-level inference could
improve the performance of the tracklet LMB filter.

E. Parameter consistency
This work has shown that incorrect choices for certain configuration parameters, particularly
the GM and LMB reduction thresholds, can be detrimental to filter accuracy. For instance, if
the maximum number of GM components is set too low, essential birth components may be
silently discarded (see Section 7.2.4), or ambiguous measurement updates could be inadequately
represented (Section 7.4.3). Although these effects are intuitively understood, tracing specific
issues back to individual configuration parameters requires detailed knowledge of the methods
and their interdependencies. A better understanding of potential failure modes would enable the
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implementation of automated checks to detect or warn against problematic configurations, and
could even allow for dynamic adaptation mechanisms to make the methods more robust, while
reducing the burden of manual parameter tuning.

F. Accumulated probabilities for adaptive birth
In this work, the accumulated association probability was used to extract tracklet associations
from the traditional (single-scan) LMB filter. However, one could also use the accumulated
probability that a tracklet is not associated to identify UCTs, which may in turn feed back into
the adaptive birth process.

G. Tracklets from multiple sensors
The formulation of the traditional LMB filter and its implementation in BASIL do not set any
limitations on the variety of measurement types and number of observers used in the estimation
process. Specifically for SSA, all measurement models in Orekit [85] are supported out of the box.
However, the validity of the new tracklet LMB filter heavily depends on the assumptions that
valid tracklet groups can be formed that guarantee object uniqueness. The current approach relies
on the notion of a minimum time between passes through the FOV, but this is not necessarily
relevant in the general multi-sensor case. A more versatile tracklet grouping approach would be
necessary to robustly deal with more than one observer.
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Appendix A

Literature review

This appendix contains a slightly reduced version of the literature review from December 202429.

In general, estimation of any dynamical system refers to the practice of fine-tuning the defining
components of that system based on noisy measurements. This consists of three main elements:
(i) state estimation, i.e. finding the state of the system/object over time,
(ii) system characterisation, which is adjusting the driving parameters of the system models --

including dynamic parameters like coefficients of drag and radiation pressure--, and
(iii) control estimation, referring to the systematic adjustment of state input to match the

measurements [134]. The focus of this thesis is on the first element, which is also commonly
referred to as tracking.

For the context of this work, let tracking be the practice of estimating the trajectory (or track)
of one or more objects (or targets) over time [131].

A.1 Single-object Bayesian filtering
In general, Bayesian filtering refers to the sequential estimation of a time-varying system, based
on noisy measurements [123]. Usually, these measurements are indirect observations of the
system, and there exists some mapping between the measurements and the estimated state.

In statistical estimation, states and measurements are represented as PDFs, which describe the
relative likelihood of each possible value for these quantities [111]. That is, integrating the PDF
over some subspace of possible values yields the probability that the true value is indeed part of
that subspace.

The Bayesian filter is a statistically optimal estimator that provides the posterior PDF of
all estimated states, based on their assumed prior density and a set of measurements. The
measurements constitute a partial observation of the states and are distributed according to a
likelihood function, conditioned on the prior, i.e. given a prior PDF of the state, the measurement
likelihood function can be used to determine the probability of observing something in a part
of the measurement space. This update is described in mathematics as an inversion problem
and is usually formulated using Bayes’ theorem [109]. Although the description is theoretically
very useful, the presence of multiple uncertain measurements, missed detections and non-linear
evolution of general uncertainty causes the computational complexity to increase very quickly
and become intractable for any practical application.

For the development of approximation algorithms, it is generally desirable to limit the complexity
of the posterior computation by employing a conjugate family of distributions for the state
PDF [135]. Given a measurement likelihood function, a prior density is called conjugate prior if
the Bayes posterior always belongs to the same family. A very common choice is the Gaussian
distribution, which is conjugate prior for Gaussian likelihood, and particularly attractive because
of its analytical convenience and simple formulation [50, p. 40].

29As this version is integrated in the same document as the thesis, abbreviations are not repeated in full. Please
referer to the list of acronyms at the start of the document for reference.
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The filtering complexity is often reduced by considering measurements one by one and only
performing the Bayes update for the estimated state at the time of the latest measurement [124].
The closed-form solution to the linear Gaussian filtering problem is given by the Kalman filter
equations. However, it is only valid if the underlying dynamics are linear in the estimated state. If
this is not the case, the linear mapping itself can be propagated using Taylor series linearisation,
giving rise to the EKF technique [69], at the cost of 𝑛2 additional integrated variables, 𝑛 being
the dimension of the state vector. In highly non-linear cases, where this linearisation is not
representative, the UKF can further improve the realism [67][68][139]. This approach directly
propagates a representative sample of so-called sigma points and reconstructs a Gaussian prior
and measurement cross-covariance at the time of interest [123]. As observed by Ito and Xiong
[61], the UKF is a special case of what they call general Gaussian filtering, which uses moment
matching to propagate assumed Gaussian densities and can be approximated using a variety of
integration methods like Gauss-Hermite and spherical cubature30 [2].

Asymptotic optimality can be achieved by sequential Monte Carlo (SMC) integration in particle
filters (PFs) such as the bootstrap filter [55], but due to their very high computational burden
compared to the analytic alternatives, these methods are mostly useful from an academic and
benchmarking perspective [144].

One way to preserve non-Gaussian behaviour without resorting to an SMC approach is to
represent the PDF as a GM, i.e. a weighted sum of Gaussian densities [119]. A filter such as EKF
and UKF can then act independently on each component to compute the Bayesian recursion.
This mixture approach also becomes particularly useful in the context of multi-target tracking,
where the added complexity of uncertain measurement association can cause highly non-Gaussian
posterior PDFs [29][59][64][128].

Within the field of OD, the state consists of 6 orbital parameters (for example, a Cartesian
position and velocity) along with any number of estimated dynamic and measurement parameters
to tune the motion and observation models [124][143]. The conventional approach in OD is to
represent the state’s PDF as a single Gaussian using its mean for the estimate and covariance for
the uncertainty distribution. However, the exceptional sparsity of measurements in SSA often
calls for long propagation times (regularly several orbital periods) so that the true state density
quickly loses its Gaussian properties. For example, LEO orbits are influenced by drag effects,
which cause rapidly increasing non-Gaussian uncertainties, mainly in the along-track direction
[58][125]. Therefore, the orbital PDF propagation can certainly benefit from a GM representation.

The Gaussian assumption remains valid longer when classical orbital elements (COE) or modified
equinoctial elements (MEE) are used to describe the object state [59]. This can reduce the
required number of components in the GM, although this approach introduces other issues like
singularities for specific types of orbits and additional implementation complexity.

A.2 Multiple object tracking
While single-object tracking scenarios already have the potential problem of missed detections,
clutter and observation noise, the main challenge posed in the MO case is that of measurement
association [5].

30in the context of numerical integration, cubature refers to multi-dimensional integrals, as an extension of
quadrature, which is generally reserved for the one-dimensional case.
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A.2.1 Tracking after association
Traditional approaches consider the association step separately and then perform single-object
updates afterwards. The simplest solutions include the nearest neighbour and strongest neighbour
Kalman filters, which only consider the observations closest in statistical distance for each of the
single-object filters [100]. Methods like probabilistic data association (PDA) go one step further
by including several likely associations in the update and then condensing the GM posterior back
to one Gaussian component [6].

A.2.2 Tracking while associating
Note that the single-object approaches have the risk of ambiguous data associations. It is possible
for one observation to be a “strong neighbour” of multiple objects. “True” MOT algorithms
treat the association problem by considering all measurements and objects simultaneously. The
most straightforward example is the global nearest neighbour (GNN) algorithm, which assigns a
known number of objects to a set of measurements, by minimising a global association distance
metric [11].

The JPDA filter [7][39] instead considers a collection of feasible joint association events, using
a validity gate for each object to limit the number of options. The marginal probabilities of the
events are then computed jointly, after which uncoupled Bayesian updates can be performed for
each object, while merging the update components using a moment matching approach [131].
Although this method has been very popular and effective, one of its drawbacks is the reduced
performance in case of densely spaced targets. This is because it merges information related to
wrongly associated observations [11][49].

Alternatively, MHT is a method that keeps a separate global hypothesis for any permutation of
measurement associations over time [10][86][102]. At every time step, all the valid measurement-
to-track associations (M2TAs) are applied to each of the previous hypotheses to update the
global hypotheses. In this way, the algorithm delays the association decision, allowing multiple
measurement scans to have influence on the result [10]. Since the number of hypotheses can grow
exponentially [131], a combination of pruning, merging, clustering and capping the components
is usually employed to limit the complexity. The original hypothesis-oriented formulation from
Reid [102] has an additional drawback related to the fact that the same association sequences
can be present in multiple global hypotheses. For this reason, a track-oriented (TO) formulation
as proposed by Kurien [74] can be more desirable, as it stores independent association sequences
for each of the objects, together with a lookup table to indicate which combinations of those
tracks form the global hypotheses. An additional benefit is that component reduction happens
on the track level (a complete sequence of M2TAs) so that the individual hypotheses do not lose
any statistical significance³¹ [10]. A variety of other MHT flavours exist, some of which have been
successfully applied to SSA [3][70].

A new suite of methods based on FISST has been under rapid development over the last two of
decades, after being introduced as a simplification of simple point process theory by Mahler [82]
[84]. Instead of state and measurement vectors as the primary element of the Bayesian recursion,
these methods represent the tracked objects and observations as random finite sets (RFSs) of
vectors. Using the notion of multi-object densities and set integrals [54][81] allows the MOT

³¹In the original measurement-oriented MHT, the tracks are formed by the superposition of all likely hypotheses
at every time step and the association sequence is implicit. Local hypotheses with a single, very unlikely association
might be pruned out, thereby reducing the weight of all other (potentially correct) associations in that hypothesis.
TO MHT does not have this issue, as association histories are pruned out for every target individually.
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problem to be formulated equivalently to the single-object counterpart and the state estimation
and measurement association to be performed as one.

Many variations of RFSs exist, but an essential feature is that their MO density contains
information on both the distribution of the objects in the state space and the cardinality
distribution. This means that the number of elements in the set is also a random variable with a
certain distribution, and can thus change based on the Bayes measurement update. One of the
most common examples is the Poisson RFS or PPP³² [27]. Its elements are i.i.d. based on some
single-state density and its cardinality is Poisson distributed. The PPP with uniform PDF is a
popular choice for modelling clutter or object birth. Note that the PPP is a special type of i.i.d.
Cluster RFS, which allows for any type of cardinality distribution, as long as the components are
i.i.d., conditioned on that cardinality [84]. Another useful form is the Bernoulli RFS, which is
parametrised by a single-object PDF and an existence probability. The resulting set is therefore
either empty or a singleton. By taking the union of independent Bernoulli’s, this model can easily
be extended to the multi-Bernoulli RFS [134], which can be a very intuitive representation of
hypothesised objects in an MOT context.

The RFS framework allows for a statistically optimal formulation of the Bayes’ filter for MO
systems [106], but since any implementation is intractable for realistic time spans and target
counts, many approximations have emerged.

The first-moment approximation of an RFS is its intensity function or PHD, defined such that it
integrates to the expected cardinality of the set [81]. Note that this is equivalent to approximating
the RFS as a PPP. For practical purposes, the evolution of the PHD can be modelled using
SMC filters [115][126][127] or a GM representation [128]. These filters have simple, efficient
implementations and work well in straightforward tracking scenarios [42][49], but the PHD’s
implicit cardinality estimate is particularly erratic in scenarios with dense clutter or frequent
missed detections [33]. Mahler [83] addresses this problem with the cardinalised probability
hypothesis density (CPHD) filter, which propagates the cardinality distribution alongside the
PHD. This keeps the state estimates first-order, but allows for higher-order propagation of
the target count and also generalises the PPP assumption to become i.i.d. cluster since the
cardinality can now have an arbitrary distribution. Closed-form solutions to this formulation
exist and indeed show a drastic reduction in the variance on the number of objects [105][137].
One downside of the CPHD is a complication called the spooky effect. If an object is not detected,
the local cardinality estimate reduces and the filter compensates this by increasing the PHD
near detected objects at arbitrarily large distances from that missed detection [40][45]. This can
be very undesirable in sparse measurement cases such as SSA. It is possible to use measurement
gating and clustering methods to alleviate this issue [49][84], but more rigorous applications of
FISST may be preferable.

Multi-Bernoulli random finite set (MB) filters were suggested by Mahler [84], where each
Bernoulli component in an MB represents a hypothesised object and target birth is also modelled
as independent Bernoulli components. It was later shown that this filter is biased in the number
of targets, mostly in high clutter scenarios. Vo et al. [138] derive the expected bias and present
a cardinality-balanced version of the of the filter with SMC and GM implementations, but it
only outperforms the CPHD filter in highly non-linear scenarios where GM approximations are
invalid.

³²In the context of MOT, the terms Poisson RFS and PPP are synonymous and can be found interchangeably
in the literature.
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Multi-Bernoulli mixture (MBM) filters combine the intent of the MB filter with something
resembling TO-MHT to model likely association sequences [46][142]. Every component in the
mixture then represents a global association hypothesis with a weight that represents the
likelihoods and an MB representation of the MO state as described before. Williams [142]
suggests a PPP to represent undetected objects and simultaneously model target birth. The
resulting Poisson multi-Bernoulli mixture (PMBM) filter is conjugate prior and strongly reduces
complexity compared to the equivalent with Bernoulli birth [46]. The general capping, pruning
and merging methods from TO-MHT can be applied here as well, and another strong benefit is
that Bernoulli components with a low existence probability can be projected onto the Poisson
component instead of just deleted, which improves the performance of track initialisation [141]
since unassociated measurements will influence the birth intensity at the next time step.

In all of the above-mentioned RFS filters, the tracks of object states are not explicitly represented
and one would have to infer this information independently. For many on-line tracking scenarios
with frequent object birth and death this is not a problem, since one might only be interested in
the current location of the targets [5]. However, cases that call for reconstruction and prediction
of the trajectories (like SSA) need a more explicit labelling. For favourable observation conditions
(low signal-to-noise ratio (SNR), small sensor noise and few clutter observations), this problem
is already largely addressed by conventional approaches like TO-MHT [11][82]. However, for the
method to be consistent, it requires that unknown targets are uniformly distributed and can be
initialised (born) in the filter by some external, heuristic procedure [13][23].

The labelled version of RFS theory (LRFS) solves the track generation problem by explicitly
making the label a part of the estimated state representation [84][133][135]. Explicit labelling
also gives rise to the notion of joint existence probability, which is very useful from an estimator
point of view since it gives more information than the cardinality distribution [134].

Most RFSs can be extended relatively easily to their labelled counterpart by applying the right
marking method [134]. One particularly useful LRFS is the LMB [133][135], which is constructed
by marking a set of Bernoulli’s with a unique label. Note that unmarking an LMB only yields
an MB if the Bernoulli’s are distinct [134]. LRFSs also have an intensity function (PHD), albeit
one that is also a function of the label. In the case of the LMB, this labelled PHD provides
a complete characterisation of the distribution³³. This property lends itself well for estimators
based on the same principles as the MB filter, only without the discussed cardinality bias and
with better accuracy performance [104]. It also does not suffer from the spooky effect observed in
the CPHD. Although its implementations are more demanding than the (cardinality-balanced)
MB [138], the mentioned benefits as well as the fact that it outputs target tracks and performs
better in low SNR scenarios make it a very attractive filtering option [96]. Finally, Reuter et al.
[104] also introduces a dynamic target grouping method that allows high levels of parallelisation
and thus significant runtime reduction.

As it turns out, the LMB is just a special case of the GLMB filter in its δGLMB form [134]. Vo
and Vo [135] and Vo et al. [133] introduced the GLMB RFS family as an analytical, closed-form
solution to the MO Bayes’ filter for non-linear non-Gaussian dynamic systems. It is characterised
by a mixture that accommodates diverse LRFSs such as the LMB and labelled i.i.d.. cluster
[134]. Note that δGLMB refers to the formulation that explicitly separates the various label sets
and thereby lends itself better to numerical implementations and approximations [84][96]. GM

³³For this reason, the LMB can be seen as the “mean” (first moment) of an LRFS, just as the unlabelled PHD
serves this purpose for the unlabelled RFS.
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and SMC implementations of the filter exist and show significant improvement in cardinality and
state estimation as compared to the corresponding flavours of the CPHD, albeit at much higher
computational load [133]. A significant bottleneck occurs in the Bayes correction step, where
Murty’s algorithm [91] is used to find the best solutions to the optimal measurement assignment
problem.

Many promising variations of the filter have been proposed to reduce the dramatic scaling of
components in the posterior, and to improve scalability in specific scenarios [8][36][37].

One thing left undiscussed so far is how to measure the accuracy of an RFS-based MO filter.
Since errors can exist in both the estimated cardinality and the estimated states, the usual
SO distance metrics such as Euclidean and Mahalanobis distance cannot be easily applied and
a unifying metric would be useful to compare performance between implementations. Several
classical measures are based on track-to-truth assignment [11, Sec. 13.6], but their definition is ad-
hoc and lacks mathematical rigour. The OSPA is a consistent metric proposed by Schuhmacher
et al. [114] to compare RFSs, along with a version for labelled sets by Ristic et al. [108]. The
metric finds the optimal assignment to match elements from the smaller set to elements from
the larger one, and applies a penalty to account for the unmatched elements. Rahmathullah et
al. [101] argue that this definition is too focused on the RFS framework, rather than the original
MOT problem, and that it does not sufficiently punish false and missed detections. Instead,
they suggest the Generalised OSPA (GOSPA), but it is not generally accepted in the literature
[95][134].

A.3 MOT for SSA
Applying MOT methods to SSA gives rise to a number of problem-specific challenges, mainly
related to the sparsity of measurements, the non-linear orbital dynamics, complications in
initialising new objects from UCTs and failed associations because of unannounced manoeuvres
by observed satellites.

First of all, the measurements for objects in space surveillance are notoriously sparse. Since most
observations are optical angles-only or radar measurements from ground-based observers, an
individual observation tracklet might have a duration under a minute, after which it could take
many orbital revolutions until the same object is observed again. In the meantime, one must rely
on imperfect dynamical models to propagate an uncertain estimated orbit into the future [125],
causing wide uncertainty spreads with highly non-linear and often non-Gaussian properties. In
particular, small debris objects often have a high area-to-mass ratio, which makes modelling
aerodynamic and radiation pressure forces exceedingly challenging [65][90].

The measurement sparsity problem also implies that tracking sensors are scarce and observation
time is a valuable resource. Sensor tasking is a whole problem of its own and has solutions that
use information theory by maximising the information gain (e.g. [15][49]).

One appealing way to increase the measurement density is by placing an SSA observer in an orbit
around the Earth. An observer in LEO will perform a full orbit every 90 minutes and thereby
have far more opportunity to collect measurements from objects of interest than any ground-
based observer would. In addition, the collected observation geometry has more variation, which
is usually good for the convergence and accuracy of estimation algorithms. Contrary to ground-
based observers, space-based observers (SBOs) don’t suffer from the influence of atmosphere
and weather conditions, nor are there geographical or political restrictions on their position. In
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addition, SBOs theoretically have visibility of the complete GEO regime and better observation
conditions for small particles in LEO due to their proximity [38].

Another problem that all RFS-based SSA solutions must address is that of target birth. In the
context of space objects, this is referred to as IOD and relates to the practice of initialising
new components in the set based on well-chosen metrics. Because the state space is in principle
unbounded (an optical observation could originate from a satellite or body in any orbital
altitude), naive approaches that populate the field of view with Bernoulli components or use a
uniform PPP are ineffective or intractable. The fact that target births require a 6-dimensional
state initialisation further discourages to randomly populate the search space with birth densities
and instead calls for more informed approaches [65].

Because the IOD problem requires information from multiple points across the orbit, it is
generally not feasible to obtain an accurate orbit estimate from a single optical measurement.
RFS-based filters therefore require the use of a smoothing method to infer IOD from measure-
ments at different epochs [65, p. 1282][132]. Alternatively, approaches based on CAR [88] or PAR
[28] have been proposed to represent likely locations for object birth based on tracklets of angular
measurements. A mixture density is then initialised over that region so that it can be updated by
future measurements. CARs and PARs have been actively used and extended [89][110]. Siminski
et al. [116] reformulated IOD for tracklet association with a boundary value problem (BVP)
approach using angles and angular rate. The most probable association hypotheses then result in
deterministic orbit solutions, meaning that the method does not inherently estimate the uncer-
tainty distribution. This approach has been used as input for adaptive MO birth processes [105]
in the LMB filter implementations [14][16] with very promising reported effects. The approach
is more efficient since it avoids the need for large Gaussian mixtures and the smooth topography
of the BVP formulation allows for quick optimisation [16, p. 840]. Gehly et al. [48] use Gooding
IOD [52] to solve the BVP, but several other methods are available. A variety of other IOD
approaches exist that haven’t been fully integrated with MOT, for example based on differential
algebra [4] or machine learning [75].

Note that, apart from modelling object birth, there are equivalent challenges to represent survival
and detection probabilities [42], presence of clutter as well as spawning objects [65].

A final major point of interest and active field of research in SSA is that of anomaly and
manoeuvre detection. In the field of MOT, this means overcoming all the association challenges
related to unknown changes in the dynamics of an RSO. Note that model errors can also
cause propagation offsets, so it is very challenging to distinguish those from manoeuvres [65].
Approaches have been suggested based on minimum control effort between UCTs [57] or optimal
control problem formulations [77]--[79]. These have reported promising single-object results as
compared to process-noise based Kalman filter approaches and have also been applied with in
various RFS filters (e.g [35]). However, it remains very challenging to separate model uncertainties
from object manoeuvres.
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Project plan

This appendix contains part of the original project plan from December 2024.

A high-level preliminary work breakdown is shown in Figure B.1 to illustrate top-level flow of
the thesis efforts. Note that there is some chronological dependency between the phases, but I
propose a slightly iterative approach that aims to address the entire problem before increasing
the complexity in each of the elements.

For example, a first iteration could be to implement the LMB filter and test it on the case of
tracklet formation case (this nearly linear application lends itself well to test the filter in an
uncomplicated way). If this is successful, the LMB can be applied to small number of RSOs with
simplified dynamics and a naive birth model and some more challenging scenarios can be set
up for validation. This can constitute a first iteration as “proof of concept”, after which each of
the phases in Figure B.1 can be incrementally expanded to reach more realistic scenarios, more
filters to compare and filter adjustments that can reach competitive performance.

Figure B.1:  Work Breakdown Structure

In the interest of planning the main thesis activities over time, a high-level schedule is created,
dividing time over admin, reading, writing and coding. This is purposefully kept very general,
so that it can serve as a guideline to be refined as the project moves along. Please refer to
Figure B.2.
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Figure B.2:  Preliminary activity time planning
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Testing the LMB in two dimensions

To validate the implementation of the conventional LMB filter in BASIL, it is more straight-
forward to first address a problem of lower complexity. Using a simulation of objects in two
dimensions with relatively simple dynamics, the results can be more intuitively interpreted and
compared to reference outputs from the literature.

C.1 Reuter and Vo LMB EKF
To validate the high-level working functionality of the LMB filter implementation, the demon-
stration test case on LMB-EKF/UKF by Reuter et al. [104][136], is reproduced as closely as
possible.

A. Setup
The target state is 𝒙 = (𝑥, 𝑦, ̇𝑥, ̇𝑦, 𝜔)𝑇 , which represents a two-dimensional position and velocity,
along with a turn rate 𝜔. The linearised prediction model then has state transition matrix around
𝜔𝑘

Φ𝑘,𝑘−1 =
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and a discrete-time process noise model is defined as
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, and {𝜎𝑤 = 15 m/s2

𝜎𝑣 = 𝜋
180 rad/s. (C.2)

The measurements are 𝒛 = (𝜃, 𝜌)𝑇 , where 𝜃 ∈ [−𝜋
2 , 𝜋

2 ] is the angle to the positive 𝑦 axis and
𝜌 ∈ [0, 2000] is the distance to the origin. Clutter is modelled as a PPP with clutter rate 𝜆𝑐
and uniform spacial density over the observable measurement domain. Detection and survival
probabilities are constant and listed in Table C.1.

Table C.1:  LMB parameters for
2D test case

Parameter Value
𝑃𝑆 0.99
𝑃𝐷 0.98
𝜆𝑐 10
𝜗LMB

𝑃 1 × 10−5

Table C.2:  Constant birth model parameters for
2D test case

𝑖 𝑟(𝑖)
𝐵 𝑥 [m] 𝑦 [m/s] ̇𝑥 [m/s] ̇𝑦 [m/s] 𝜔 [ rad/s]

1 0.02 −1500 0 250 0 0
2 0.02 −250 0 1000 0 0
3 0.03 250 0 750 0 0
4 0.03 1000 0 1500 0 0
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Finally, the case uses a constant multi-Bernoulli birth model with four Gaussian components such
that 𝜋𝐵,𝑘 = {(𝑟(𝑖), 𝑝(𝑖)

𝐵 )}
4

𝑖=1
 with 𝑝(𝑖)

𝐵 = 𝒩(𝒙; 𝝁(𝑖)
𝐵 , 𝑷𝐵). The distribution is further defined by a

constant covariance matrix 𝑷𝐵 = diag[(50, 50, 50, 50, 6𝜋/180)𝑇 ] and the parameters in Table C.2.

A set of objects is simulated along with measurements following the described models and all the
information is visualised in Figure C.1. Note that the filter does not have any way to distinguish
between real measurements and false positives from the input itself.

Figure C.1:  2D test case ground truth and measurements (Based on [136])

B. Results
The LMB filter behaves as expected and is able to detect the birth of all simulated targets.
Figure C.2 shows that all 10 objects are found by the filter and the estimates accurately approach
the ground truth.

Figure C.2:  2D test case LMB estimates

The cardinality estimate shows that there is some delay to confirm newborn targets and remove
those that no longer exist (see Figure C.3), which is reflected as the temporary spikes in OSPA
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distance as shown in Figure C.4. Again, this is expected in MO filtering framework, to avoid
that clutter measurements or missed detections too easily affect the filtering estimates.

Figure C.3:  2D test case LMB cardinality Figure C.4:  2D test case LMB OSPA
metric

It should be noted that the cardinality is at times underestimated incorrectly, even when no
objects are dying or being born. The likely reason is that two missed detections occurred in
immediate succession and the existence probability therefore dropped significantly for one of
the targets. Because the cardinality estimate 𝑛̂ is obtained as the MAP of its distribution
(Section 3.3.4--F), and only 𝑛̂ are then estimated, the filter might be slightly too sensitive to
these types of missed detection incidents.

All these observations are consistent with the results in the RFS-MOT toolbox from Vo and Vo
[136] and the details reported by Reuter et al. [104]. For that reason, the basic verification of the
core LMB algorithms is considered successful.
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Constrained admissible region IOD

This appendix gives the relevant details to derive the constrained admissible region (CAR)
approach as proposed by Milani et al. [88] and discussed in Section 5.3.2--A. The development
follows that of DeMars and Jah [28], as repeated by e.g. Gehly [47][49] and Cament et al. [17].

Using a tracklet of topocentric right ascension/declination measurements (𝛼, 𝛿)𝑇  or some other
measurement source for an RSO, the attributable observation is obtained of the form

𝒂 = (𝛼 𝛿 ̇𝛼 ̇𝛿) ∈ [−𝜋, 𝜋) × (−𝜋
2
, 𝜋
2
) × ℝ2. (D.1)

Denote the ECI 6-dimensional Cartesian object state as 𝒙 = (𝒓𝑇 , ̇𝒓𝑇 )𝑇 , where 𝒓 is its position
vector and ̇𝒓 = 𝒗 is the velocity vector. The two-body specific orbital energy is then given by

ℰ = ‖ ̇𝒓‖2

2
− 𝜇

‖𝒓‖
= − 𝜇

2𝑎
, (D.2)

where 𝑎 is the orbit’s semi-major axis. Let an observer with state 𝒙𝑜 observe the object such that
𝒙𝜌 = (𝝆𝑇 , ̇𝝆𝑇 )𝑇  is the state vector relative to the observer, i.e. 𝒙 = 𝒙𝑜 + 𝒙𝜌. Let this relative
state vector be expressed in spherical coordinates,

𝝆 = 𝜌𝒖𝜌, and ̇𝝆 = ̇𝜌𝒖𝜌 + 𝜌 ̇𝛼𝒖𝛼 + 𝜌 ̇𝛿𝒖𝛿, (D.3)

where the unit vectors are defined by

𝒖𝜌 =
(
((
(cos(𝛼) cos(𝛿)

sin(𝛼) cos(𝛿)
sin(𝛿) )

))
), 𝒖𝛼 =

(
((
(− sin(𝛼) cos(𝛿)

cos(𝛼) cos(𝛿)
0 )

))
), (D.4a)

and 𝒖𝛿 =
(
((
(− cos(𝛼) sin(𝛿)

− sin(𝛼) sin(𝛿)
cos(𝛿) )

))
). (D.4b)

Then, define the scalars

𝑤0 = ‖𝒓𝑜‖
2, 𝑤1 = 2⟨ ̇𝒓𝑜, 𝒖𝜌⟩, 𝑤2 = ̇𝛼2 cos2(𝛿) + ̇𝛿2, (D.5a)

𝑤3 = 2 ̇𝛼⟨ ̇𝒓𝑜, 𝒖𝛿⟩ + 2 ̇𝛿⟨ ̇𝒓𝑜, 𝒖𝛿⟩, 𝑤4 = ‖ ̇𝒓𝑜‖
2, (D.5b)

and 𝑤5 = 2⟨𝒓𝑜, 𝒖𝜌⟩. (D.5c)

The squared norm of the observed object’s position and velocity vector in ECI are then

‖𝒓‖2 = 𝜌2 + 𝑤5𝜌 + 𝑤0, (D.6a)

‖ ̇𝒓‖2 = ̇𝜌2 + 𝑤1 ̇𝜌 + 𝑤2𝜌2 + 𝑤3𝜌 + 𝑤4. (D.6b)

These expressions can be substituted into Eq. (D.2) to obtain

̇𝜌2 + 𝑤1 ̇𝜌 + 𝐹(𝜌) − 2ℰ = 0, (D.7)
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where 𝐹(𝜌) = 𝑤2𝜌2 + 𝑤3𝜌 + 𝑤4 − 2𝜇
√𝜌2 + 𝑤5𝜌 + 𝑤0

. (D.8)

Solving Eq. (D.7), an expression can be obtained for ̇𝜌 as a function of 𝜌:

̇𝜌 = −𝑤1
2

± √(𝑤1
2

)
2

− 𝐹(𝜌) + 2ℰ. (D.9)

If one now requires that the observed object is in orbit around Earth, the region of admissible
combinations of 𝜌 and ̇𝜌 is bounded by setting ℰ < 0.

D.1 Constraining the admissible region
Instead of only requiring the orbital energy to be negative, it can be useful in many cases to
further constrain the allowable orbits for IOD. This is referred to as a constrained admissible
region (CAR).

A. Semi-major axis
Define an admissible range of semi-major axis 𝑎 ∈ [𝑎min, 𝑎max]. This translates directly to an
energy constraint by Eq. (D.2), so two bounding curves can be constructed to constrain the semi-
major axis.

B. Eccentricity
Further, it is often desirable to limit the search to (near-circular) orbits or just put a limit on
how eccentric the target orbits can be. To achieve such an eccentricity constraint, first recall the
definition of specific angular momentum:

𝒉 = 𝒓 × ̇𝒓. (D.10)

It can further be shown that

𝒉 = ̇𝜌𝒉1 + 𝜌2𝒉2 + 𝜌𝒉3 + 𝒉4, (D.11a)

and ‖𝒉‖2 = 𝑐0 ̇𝜌2 + 𝑃(𝜌) ̇𝜌 + 𝑈(𝜌), (D.11b)

based on the definition of four vector parameters

𝒉1 = 𝒓𝑜 × 𝒖𝜌, 𝒉2 = 𝒖𝜌 × ( ̇𝛼𝒖𝛼 + ̇𝛿𝒖𝛿), (D.12a)

𝒉4 = 𝒓𝑜 × ̇𝒓𝑜,  and 𝒉3 = 𝒖𝜌 × ̇𝒓𝑜 + 𝒓𝑜 × ( ̇𝛼𝒖𝛼 + ̇𝛿𝒖𝛿), (D.12b)

nine scalar parameters

𝑐0 = ‖𝒉1‖
2, 𝑐1 = 2⟨𝒉1, 𝒉2⟩, 𝑐2 = 2⟨𝒉1, 𝒉3⟩, (D.13a)

𝑐3 = 2⟨𝒉1, 𝒉4⟩, 𝑐4 = ‖𝒉2‖
2, 𝑐5 = 2⟨𝒉2, 𝒉3⟩, (D.13b)

𝑐6 = 2⟨𝒉2, 𝒉4⟩ + ‖𝒉3‖
2, 𝑐7 = 2⟨𝒉3, 𝒉4⟩,  and 𝑐8 = ‖𝒉4‖

2, (D.13c)

and two scalar functions

𝑃(𝜌) = 𝑐1𝜌2 + 𝑐2𝜌 + 𝑐3, (D.14a)

𝑈(𝜌) = 𝑐4𝜌4 + 𝑐5𝜌3 + 𝑐6𝜌2 + 𝑐7𝜌 + 𝑐8. (D.14b)

The relation between eccentricity, angular momentum and specific orbital energy can be formu-
lated as [125, p. 97]
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2ℰ‖𝒉‖2 = −𝜇2(1 − 𝑒2). (D.15)

which can be expanded, by substitution of Eq. (D.7) for 2ℰ and Eq. (D.11) for ‖𝒉‖2, to

[ ̇𝜌2 + 𝑤1 ̇𝜌 + 𝐹(𝜌)][𝑐0 ̇𝜌2 + 𝑃(𝜌) ̇𝜌 + 𝑈(𝜌)] = −𝜇2(1 − 𝑒2) (D.16)

and otherwise rewritten as a fourth order polynomial equation in ̇𝜌

𝑎4 ̇𝜌4 + 𝑎3 ̇𝜌3 + 𝑎2 ̇𝜌2 + 𝑎1 ̇𝜌 + 𝑎0 = 0, (D.17)

where

𝑎4 = 𝑐0, 𝑎3 = 𝑃(𝜌) + 𝑐0𝑤1, 𝑎2 = 𝑈(𝜌) + 𝑐0𝐹(𝜌) + 𝑤1𝑃(𝜌), (D.18a)

𝑎1 = 𝐹(𝜌)𝑃(𝜌) + 𝑤1𝑈(𝜌),  and 𝑎0 = 𝐹(𝜌)𝑈(𝜌) + 𝜇2(1 − 𝑒2). (D.18b)

The constraint 𝑒 < 𝑒max may be enforced by finding the real-valued roots of Eq. (D.7) for all
values of 𝜌 with 𝑒 = 𝑒max.

C. Approximation by Gaussian mixture
The procedure to convert the uniform admissible region in (𝜌, ̇𝜌) to a Gaussian mixture in the
Cartesian orbit space was already summarised in Section 5.3.2--B and more extensive details can
be found in the paper by DeMars and Jah [28].

D.2 Attributable prediction
Given the observer state 𝒙𝑜 and a target state 𝒙 (guess/estimate), one can compute the expected
attributable. Note that the slant range vector 𝝆 and its derivative ̇𝝆 are simply the difference
between the target and the observer state

(𝝆
̇𝝆) = 𝒙 − 𝒙𝑜. (D.19)

Define the basis vectors of the topocentric reference frame parallel to ECI and centred at the
observer as

(𝒖𝑖 𝒖𝑗 𝒖𝑘) = 𝑰3×3 (D.20)

Then, compute the slant range and its direction by

𝜌 = ‖𝝆‖, and 𝒖𝜌 = 𝝆
𝜌

. (D.21)

Further solve the unit vectors in Eq. (D.4) to find 𝛼 and 𝛿

𝛿 = arcsin(⟨𝒖𝜌, 𝒖𝑘⟩), cos(𝛿) = √1 − ⟨𝒖𝜌, 𝒖𝑘⟩2 (D.22a)

𝛼 = atan2(⟨𝒖𝜌, 𝒖𝑗⟩, ⟨𝒖𝜌, 𝒖𝑖⟩) (D.22b)

where atan2(𝑦, 𝑥) is defined as arctan(𝑦
𝑥), but adjusted to be in the correct quadrant such that

the result is in [−𝜋, 𝜋):
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atan2(𝑦, 𝑥) =

{
{
{
{
{
{
{
{
{
{
{arctan(𝑦

𝑥) if 𝑥 > 0
arctan(𝑦

𝑥) + 𝜋 if 𝑥 < 0 ∧ 𝑦 ≥ 0
arctan(𝑦

𝑥) − 𝜋 if 𝑥 > 0 ∧ 𝑦 < 0
+𝜋

2 if 𝑥 = 0 ∧ 𝑦 > 0
−𝜋

2 if 𝑥 = 0 ∧ 𝑦 < 0
undefined if 𝑥 = 0 ∧ 𝑦 = 0

. (D.23)

Finally, use Eq. (D.3) to solve for the angular rates

̇𝜌 = ‖ ̇𝝆‖, ̇𝛼 = 1
𝜌
⟨ ̇𝝆, 𝒖𝛼⟩, and ̇𝛿 = 1

𝜌
⟨ ̇𝝆, 𝒖𝛿⟩. (D.24)

D.3 CAR Examples
For the purpose of validating the implementation, it is useful to reproduce several examples of
CARs from the literature. Additionally, an example using space-based observations of a GEO
object is briefely introduced for comparison. A LEO region with space-based observer is addressed
in Section 7.4, related to one of the simulation cases.

D.3.1 Ground-based observer
A. Reproducing DeMars result
The scenario from DeMars and Jah [28] was used as example in Section 5.3.2--A and the relevant
illustrations and plots can also be found there. By visual inspection, it is confirmed that Figure 5.9
and Figure 5.14 match the expected region and approximation from the original paper. One
discrepancy is that the design values of 𝜎𝜌 and 𝜎 ̇𝜌 are much higher in this case, leading to fewer
GM components. It was deliberately chosen to limit the number of components to 15x15 for the
present work, to limit computation time. However allowing increasingly dense approximations
would require only minor modifications in the implementation.

B. Repreoducing Gehly result
For further validation purposes, the second example follows the settings from a unit test
in the METIS library [47], which was also discussed by Gehly [49]. The observer is
located on the Earth’s surface at 30° latitude, and the attributable observation is 𝒂 =
(10 deg, −2 deg, 15 deg/h, 3 deg/h). The (𝜌, ̇𝜌) space is constrained in semi-major axis 𝑎 ∈
[42565, 41764] km and in eccentricity 𝑒 < 0.1.

Figure D.1 shows the CAR as computed using the BASIL implementation, which closely resem-
bles the results from METIS in Figure D.2. The corresponding GM approximation of the uniform
region in (𝜌, ̇𝜌) is plotted in Figure D.4 and Figure D.6 for BASIL and METIS, respectively.
The number of components and locations of the means are indistinguishable between both
implementations.

The only noticeable difference is in the range-marginal PDF. METIS does not handle the concav-
ity of the CAR correctly, resulting in a discontinuity in the range-marginal PDF (Figure D.5). The
BASIL solution in Figure D.3 does not have this issue and corresponds well with expectations.

In summary, the results from both ground-based test cases match the literature and reference
code, so the verification of BASIL’s CAR implementation is considered successful.
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Figure D.1:  Constrained admissible region with ground-based observer for Gehly
test case, produced with BASIL

Figure D.2:  GM approximation for Gehly test case, produced with METIS [47]

Figure D.3:  Range-marginal PDF for
Gehly test case, produced with BASIL

Figure D.4:  GM approximation for the Gehly
test case produced with BASIL
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Figure D.5:  Range-marginal PDF for
Gehly test case, produced with METIS [47]

Figure D.6:  GM approximation for Gehly
test case, produced with METIS [47]

D.3.2 Space-based observer
For comparison, Figure D.7 shows a CAR based on a space-based observer in a circular LEO
orbit. There are now two disjoint eccentricity regions, where one includes the trivial solution
(0, 0), representing the observer orbit. Space-based CARs are further discussed in Section 7.4.

Figure D.7:  Example constrained admissible region with space-based observer
and near-circular, near-GEO constraints. The observer is at 500 km altitude and the

attributable observation is 𝒂 = (74.6 deg, 0.0 deg, −13.2 deg/h, 0.0 deg/h).

Figure D.8:  GM approximation with
𝜎𝜌 = 300 km and 𝜎 ̇𝜌 = 80 m/s.

Figure D.9:  Range-marginal probability den-
sity function and GM for 𝜎𝜌 = 300 km.
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Appendix E

Auxiliary computations

E.1 Covariance ellipsoids and the 𝜒2 distribution
The uncertainty spread in a multivariate Gaussian distribution 𝒩(𝝁, 𝑷 ) is often represented by
a so-called covariance ellipsoid. This is a locus of limited Mahalanobis distance 𝑑𝑀(⋅; 𝝁, 𝑷 ) <
𝑑max

𝑀  around the mean 𝝁, and represents a confidence interval for the given distribution. Since the
squared Mahalanobis distance 𝑑2

𝑀  follows a 𝜒2 distribution, the confidence level for a particular
𝑑𝑀  ellipsoid depends on the number of dimensions it represents. Table E.1 summarises the
confidence levels for various choices of 𝑑max

𝑀 .

Note that the 𝑑max
𝑀 = 1 ellipsoid in 1 dimension corresponds to the ±1𝜎 uncertainty bound,

representing a 68% confidence interval. However, in two and three dimensions, 𝑑max
𝑀 = 1 bounds

only 39% and 20%, respectively. Covariance ellipsoids in higher dimensions are not easily
visualised and not really used, but they are relevant in MOT for the purpose of e.g. GM merging
(Section 2.1.2--C) and measurement gating (Section 3.3.3--B).

Table E.1:  Cumulative densities of the 𝜒 distribution. This is the probability that
the Mahalanobis distance is smaller than 𝑑max

𝑀

Dimensions 𝑑max
𝑀 = 1 𝑑max

𝑀 = 2 𝑑max
𝑀 = 3 𝑑max

𝑀 = 4 𝑑max
𝑀 = 5 𝑑max

𝑀 = 6
1 0.683 0.954 0.997 0.999937 0.999999 1.000000
2 0.393 0.865 0.989 0.999665 0.999996 1.000000
3 0.199 0.739 0.971 0.998866 0.999985 1.000000
4 0.090 0.594 0.939 0.996981 0.999950 1.000000
5 0.037 0.451 0.891 0.993156 0.999861 0.999999
6 0.014 0.323 0.826 0.986246 0.999659 0.999997

E.2 LogSumExp normalisation
In MOT, there are many cases where a set of weights need to be normalised (e.g. after GM
reduction or in managing GLMB hypotheses). Since it is very common that some weights are
many orders of magnitude smaller than others, simply dividing all weights by the sum can lead
to underflow or overflow complications. These can be avoided by solving the normalisation in
log-space [97].

Let 𝒙 ∈ ℝ𝑁  be a vector of weights to be normalised and 𝟏 ≜ 𝟏𝑁 ∈ ℝ𝑁  the vector of ones. Then

𝒙̃ = 𝒙
𝟏𝑇 𝒙

⇒ 𝒙 = log(𝒙̃) + log(𝟏𝑇 𝒙) ⇒ 𝒙̃ = exp

(
(((
(

𝜼 − log[𝟏𝑇 exp(𝜼)]⏟⏟⏟⏟⏟⏟⏟
LogSumExp(𝜼) )

)))
)

, (E.1)

where 𝜼 = log(𝒙) and LogSumExp(𝜼) is computed using this stable formulation:

exp(𝜼) = exp(𝜂max) exp(𝜼 − 𝜂max𝟏) ⇒ 𝟏𝑇 exp(𝜼) = exp(𝜂max)[𝟏𝑇 exp(𝜼 − 𝜂max𝟏)] (E.2a)
⇒ LogSumExp(𝜼) = 𝜂max + LogSumExp(𝜼 − 𝜂max𝟏) (E.2b)
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Appendix F

Association matrices

This appendix contains the association probabilities for some of the cases in Chapter 7, as
computed from the GLMB update. Every row represents a tracklet and the columns correspond
to all targets in the filter with at least 1 associated tracklet. Since all these results use the tracklet
LMB filter from Chapter 6, no accumulation of the probabilities is required and the values in
these table are the time-marginal association probabilities from Eq. (4.2).

Figure F.1:  Measurement association probabilities for GEO objects and ground-
based observer without initial information (see Section 7.1)
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Figure F.2:  Measurement association probabilities for close-spaced GEO objects
and space-based observer without initial information (Section 7.2.4). Here, Gaussian
mixture were capped at a maximum of 10 components, far too few in comparison to

the CAR birth mixtures.
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Figure F.3:  Measurement association probabilities for close-spaced GEO objects and
space-based observer without initial information (Section 7.2.4). Here, the GM capping
threshold was removed and the resulting association is far superior. Only the second
tracklet from Arabsat 6B (41029) results in an incorrect association conclusion, albeit

with only 41% association probability.
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Figure F.4:  measurement association probabilities for payload separation with
space-based observer. Here, the CAR birth model was omitted and the only birth
components were single Gaussians from the rocket upper stage. The association matrix
is truncated after 10 passes (first three days); all remaining tracklets had 100%

association probability with the correct target.
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Appendix G

Simulated object data

Table G.1:  Orbital elements for test case objects at epoch 2016-01-14T12:00:00 UTC, based on Pirovano
[98, Appendix A]

Norad 𝑎 [km] 𝑒 [-] 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝜃 [deg]

26470 42165.70 0.00058 0.714 205.356 84.527 330.293

36380 42165.97 0.00031 0.085 179.045 111.543 329.532

37381 43674.63 0.02663 7.002 222.357 42.568 43.194

37816 42166.11 0.00047 0.142 222.187 58.793 338.872

38087 42166.49 0.00024 0.112 211.319 73.127 346.808

26038 42106.22 0.00059 0.128 265.581 91.955 272.955

24652 42407.16 0.00062 2.806 199.149 73.446 359.985

25516 42430.15 0.00040 4.538 216.120 63.980 348.544

Table G.2:  TLE data for closely spaced GEO objects, obtained from SpaceTrack

Name Norad TLE

Arabsat 4B 29526 1 29526U 06051A 25159.72868902 .00000164 00000-0 00000-0 0 9991
2 29526 1.0405 85.0357 0003686 330.7572 130.1283 1.00270415 47520

Arabsat 6B 41029 1 41029U 15065B 25159.72860213 .00000164 00000-0 00000-0 0 9995
2 41029 0.0374 235.5605 0002925 329.8417 340.2334 1.00270611 35027

Arabsat 5B 36592 1 36592U 10025A 25159.72860213 .00000164 00000-0 00000-0 0 9995
2 36592 0.0591 122.6279 0004899 347.5433 75.4588 1.00273063 49473

Arabsat 7B 56757 1 56757U 23075A 25159.27405853 .00000163 00000-0 00000-0 0 9993
2 56757 0.0772 28.6718 0004707 356.2770 356.6138 1.00271624 7370

ES’HAIL 2 43700 1 43700U 18090A 25159.72860213 .00000164 00000-0 00000-0 0 9994
2 43700 0.0212 59.6695 0002403 51.1694 74.5997 1.00273860 23931

ES’HAIL 1 39233 1 39233U 13044A 25159.72851525 .00000162 00000-0 00000-0 0 9998
2 39233 0.0481 354.7340 0002473 82.6728 107.6878 1.00271738 42888

SKYNET 5B 32294 1 32294U 07056B 25159.51422862 .00000157 00000-0 00000-0 0 9993
2 32294 4.3017 77.9940 0003726 351.0512 38.3310 1.00268975 64453

Table G.3:  Orbital elements for payload separation test case objects at epoch 2025-05-25T20:00:00 UTC,

ID 𝑎 [km] 𝑒 [-] 𝑖 [deg] Ω [deg] 𝜔 [deg] 𝜃 [deg]

0000 7170.30 0.00115 0.028 −7.606 −184.370 176.765

0001 7172.23 0.00088 0.028 −7.606 −183.387 175.782

0002 7174.15 0.00062 0.028 −7.606 −181.550 173.945

0003 7176.07 0.00035 0.028 −7.606 −176.914 169.308

0004 7178.00 0.00010 0.028 −7.606 −147.042 139.437

0005 7179.93 0.00020 0.028 −7.606 −26.281 18.676

0006 7181.86 0.00047 0.028 −7.606 −15.641 8.036

0007 7183.78 0.00073 0.028 −7.606 −12.705 5.099

0008 7185.72 0.00100 0.028 −7.606 −11.338 3.733

0009 7187.65 0.00127 0.028 −7.606 −10.549 2.943
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